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ABSTRACT 

 
Transshipment, when possible, can be used as one effective way to reduce total inventory 

and increase service level in a distribution system. Essentially, transshipment allows the 

distribution system to take advantage of the risk pooling effect to deal with uncertain 

demands at different retail locations. Excess inventory at one retail location can be used 

to cover shortage at another location. Physically, one can interpret inventory stocking at 

each individual location as being ―pooled‖ together to meet the demands at any other 

location within the distribution system. As such, the use of transhipment provides more 

flexibility in deploying the available inventory in the system to meet uncertain customer 

demand. From a management and operation perspective, a fundamental question in this 

problem is whether the company should move the product into the demand ports directly 

from the supply port, or whether the transhipment operation using an established 

warehouse can help to reduce the total cost to the company and increase responsiveness. 

From the resource utilization perspective, a transhipment system is certainly preferred as 

it provides a better utilization of the transporting goods. Currently, as at the time of this 

work, there is no such method for determining which route to be used in transporting the 

products by the company. The routes are chosen using guess work and by the discretion 

of the people in charge. For the data used for our analysis, the company using their crude 

approach arrived at the following conclusion; shipped the loads of 15000, 5000, 10000, 

8000, 2000 and 10000 at a unit costs of GH¢15,  GH¢7,  GH¢10,  GH¢4, GH¢3 and 

GH¢2 through the routes  X - W2 – B,  X - W2 – C,  Y - W1 – A,  Y – W1- B,  Y - W2 – 

D, and  Z – W2. Total cost of transporting these products was four hundred and eighteen 

thousand Ghana cedis (GH¢418,000.00). 
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CHAPTER ONE  

1.0 INTRODUCTION 

Consider a distribution system consisting of multiple retail locations. Demands occur at 

each retail location, which replenishes its inventory from some central warehouse on a 

periodic basis. Demands at each retail location are first met from the available inventory 

at the location. When shortage occurs at one location, the shortage can be covered from 

available inventory at other retail locations through possible lateral transshipment. The 

objective is to determine the optimal order quantity of each retail location and the 

resulting optimal transshipment policy after demands are realized at each period so as to 

minimize the total expected replenishment costs, inventory holding costs, shortage costs 

and the transshipment costs among the multiple retail locations during some finite time 

horizon.   

 Transshipment, when possible, can be used as one effective way to reduce total 

inventory and increase service level in a distribution system. Essentially, transshipment 

allows the distribution system to take advantage of the risk pooling effect to deal with 

uncertain demands at different retail locations. Excess inventory at one retail location can 

be used to cover shortage at another location. Physically, one can interpret inventory 

stocking at each individual location as being ―pooled‖ together to meet the demands at 

any other location within the distribution system. As such, the use of transhipment 

provides more flexibility in deploying the available inventory in the system to meet 

uncertain customer demand. Consequently, transshipment can help to reduce the total 

system inventory and stock-out level at each individual location, at the expense of a 

higher transportation cost for transshipping the products among the different retail 
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locations. It is interesting yet unclear as to what kind of system configurations and 

retailer characteristics would benefit most from using transshipment. One objective of 

this paper is to address a number of managerial issues regarding the impact of 

transshipment on reducing the costs of the distribution system under different system 

configurations and retailer characteristics. Our distribution system with transshipment 

involves a convoluted decision problem consisting of two basic types of decisions that 

influence each other throughout the finite time horizon. The first type involves the 

decision for the optimal order quantity at the retail locations during each replenishment 

cycle. We refer to this decision as the optimal replenishment policy. The second type 

involves the decision for transshipping the products among the retail locations after 

demands are observed and shortages occur at different retail locations. We refer to this 

decision as the optimal transshipment policy.  

The combined optimal replenishment problem with transshipment and stochastic demand 

is generally difficult to solve. The problem is complicated even for the single period 

model consisting of a two-stage decision problem, where the transshipment decisions are 

considered as a recourse action to cover shortage after the replenishment quantity has 

been selected and uncertain demands have been realized. For a finite time horizon, the 

optimal replenishment policy generally depends on the replenishment and transshipment 

decisions as well as realized demands in earlier periods. On the other hand, the optimal 

transshipment policy, which entails the decision of how much as well as from which 

location the transshipments should come from, also depends on the replenishment policy 

and realized demands in earlier periods. 
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This thesis presents a mathematical modeling of a transshipment problem, which can 

provide useful information to aid decision-makers in their supply chain decision making.  

In this chapter of the thesis, an overview of transportation and transshipment model 

would be given; a brief description of the problem statement of the thesis is also 

presented together with the objectives, the methodology, the justification and the 

organization of the thesis.  

  

1.1 BACKGROUND OF STUDY 

Supply chain management is one of the main sources of competitive advantage for 

companies and its importance is increasing due to its effects on solving problems faced 

by many companies in terms of mismatches between customer demand and supply, 

which will lead to low levels of customer satisfaction and eventually decreasing sales and 

market share. Logistics is a critical part of supply chain management, and is used to 

control the flow of materials, services and information taking into account the cost of 

these activities on one side and the value created in terms of both the customers and the 

organization on the other. Supply chain management entails effective replenishment and 

inventory policies. The use of transshipment points in supply chains renders monitored 

movement of stocks to intermediary storage locations between two echelon levels. 

Transshipments are effective policies for correcting discrepancies between demand and 

inventory available at specific locations, serving as a tool for effective management of 

stocks that are already procured and delivered into the system. By using transshipments 

as a tool for utilizing stocks, a company can reduce its costs and improve the level of 

service without increasing the stock level and bearing additional costs. Transshipment 
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problems are variations of transportation problems in which goods and services are 

distributed between sources, storage points and destinations. Like in many cases, the 

objective function of transshipment problems is to minimize cost. Transshipments 

problems were first defined by Orden (1956) as an extension of transportation problems 

with transshipment points between the sources and the destinations (Hemaida, 1994). 

Transshipment models can be used to enhance cost efficient movement of goods and 

improve the level of customer satisfaction.  

In the last couple of decades, the numbers of products offered to the market have 

generally exploded. At the same time, the product life-time has decreased drastically. The 

combination of these two trends leads to increased inaccuracy of the demand forecasts, 

leading to firms facing an increased demand uncertainty resulting in the increase in 

inventory levels. The role of inventory as a buffer against uncertainty has been 

established for a long time. However, more recently, the disadvantages of holding 

inventory have been increasingly recognized, particularly with regard to the adverse 

impact that this may have on supply chain responsiveness. Increasing globalization has 

tended to lead to longer supply lead-times, which, by conventional inventory control 

theory, result in greater levels of inventory to provide the same service levels (Waters, 

2002). In lean supply chain thinking, inventory is regarded as one of the seven ―wastes‖ 

and, therefore, it is considered as something to be reduced as much as possible (Womack 

and Jones, 1996). Similarly, in agile supply chains, inventory is held at few echelons, 

with goods passing through supply chains quickly so that companies can respond rapidly 

to exploit changes in market demand (Christopher and Towill, 2001). There have been 
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various supply chain taxonomies based on these concepts and most stress the need for 

inventory reduction within each of the classifications.  

Interest in the concept of supply chain management has steadily increased since the 

1980‘s when companies saw the benefits of collaborative relationships within and beyond 

their own organization. The concept of supply chain is about managing coordinated 

information and material flows, plant operations, and logistics. It provides flexibility and 

agility in responding to consumer demand shifts without cost overlays in resource 

utilization. The fundamental premise of this philosophy is; synchronization among 

multiple autonomous business entities represented in it. That is, improved coordination 

within and between various supply-chain members. Increased coordination can lead to 

reduction in lead times and costs, alignment of interdependent decision-making 

processes, and improvement in the overall performance of each member as well as the 

supply chain.  

Supply Chain Management (SCM), which is also known as a logistics network (Simchi-

Levi et al., 2003) has been extensively studied in recent years. The logistical network 

consists of facilities and distribution options that perform the functions of procurement of 

materials, transformation of these materials into intermediate and finished products, and 

the distribution of these finished products to customers. SCM encompasses the 

management of all these (process) activities associated with moving goods from raw 

materials through to the end user. 

SCM coordinates and integrates all of these activities into a seamless process. It embraces 

and links all of the partners in the chain. For this reason, successful SCM is the process of 

optimizing a company‘s internal practices, as well as the company‘s interaction with 
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suppliers and customers, in order to bring products to market more efficiently. As we 

know that firms can no longer effectively compete in isolation of their suppliers and other 

entities in the supply chain. A typical structure of a divergent inventory system is number 

of locations which replenish from a central supplier. Due to demand uncertainty 

inventory investments can be very high in such supply chain systems. A commonly used 

strategy to introduce flexibility in the system is to establish transshipment links between 

locations at the same echelon. This means that locations at the same echelon in some 

sense share inventory. Transshipments, the monitored movement of material between 

locations at the same echelon, provide an effective mechanism for correcting 

discrepancies between the locations‘ observed demand and their available inventory. As a 

result, transshipments may lead to cost reductions and improved service without 

increasing system-wide inventories. Lateral transshipments between stocking locations 

are used to enhance cost efficiency and improve customer service in different ways.   

 

 There are basically two main approaches to capture the impact of transshipments 

between stocking locations. Within the first approach, transshipments are used after the 

demand is observed but before it is satisfied. If there is excess demand at some of the 

stocking locations while some have surplus inventory, lateral transshipments between 

stocking locations can work as a correction mechanism. Moreover, pooling the stocks can 

be viewed as a secondary source of supply for inventory shortages, especially when 

transshipments between stocking locations are faster and less costly than emergency 

shipments from a central depot or backlogging of excess demand. An alternative way of 

analyzing the impact of transshipments between stocking locations is to consider it as a 
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tool to balance inventory levels of stocking locations during order cycles. To guarantee a 

certain level of customer service in all stocking locations, it is desirable to keep the 

inventory position at each location in balance relative to each other. 

With increased product specialization and globalization, the shipping industry has 

experienced steady growth during the past few decades. At the same time, ocean carriers 

have competed to offer better service at a cheaper price. Carriers are constantly looking 

for opportunities to introduce new services/ routes to attract and capture more market 

demand. Operation has indeed become one of the key competitive advantages with 

optimization-based approaches being expected to play an important role.  

Transshipments, the movement of material between locations at the same echelon, 

provide an effective mechanism for correcting discrepancies between the locations‘ 

observed demand and their available inventory. As a result, transshipments may lead to 

cost reductions and improved service without increasing system-wide inventories.  

In today‘s competitive market, an efficient distribution system is essential to meet rapidly 

changing demands in a cost-effective and responsive manner. In particular, effective 

deployment of inventory in a distribution system is necessary to reduce inventory cost, 

and at the same time, to provide a high customer service level under uncertain market 

conditions. Transshipment has been considered as one effective way to achieve these 

goals for a distribution system. Essentially, transshipment allows the distribution system 

to take advantage of the risk pooling effect to deal with uncertain demands at different 

locations, where excess inventory at one location can be used to cover shortage at another 

location. Physically, one can interpret inventory stocking at each individual location as 

being ―pooled‖ together to meet the demands at any other location within the distribution 
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system. As such, the use of transshipment provides more flexibility in deploying the 

available inventory in the system to meet uncertain customer demand. 

Supply chain management has become an increasingly important consideration for many 

firms due to its impact on cost, service level, and production quality. Among other issues, 

it entails defining replenishment and associated inventory policies which are cost 

effective. One such policy, commonly practiced in multi-location inventory systems, 

involves movement of stock between locations at the same echelon level. These stock 

movements are termed lateral stock transshipments, or simply, transshipments. Research 

efforts have generally viewed transshipments as an emergency recourse when unexpected 

circumstances have caused a surplus at one location and a shortage at another. One 

reason for considering only this reason for transshipments is the general lack of 

consideration of fixed replenishment costs. When these costs are present, we may want to 

replenish at one location and transship items to another location, in order to save on the 

fixed costs. Another reason for transshipments is to save on the holding costs, exploiting 

cases where different locations have different holding costs.  

 

1.2 PROBLEM STATEMENT 

The specific form of problem that this thesis seeks to solve is to mathematically model a 

company‘s distribution problem as transshipment problem and solve the problem. A 

transshipment problem allows shipment between supply points and between demand 

points and it may also contain transshipment points through which goods may be shipped 

on their way from a supply point to a demand point. Using the following method, a 

transshipment problem may be transformed into a balanced transportation problem. 
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1.3 OBJECTIVES  

The objectives of the study are: 

i. To determine the optimal transshipment cost of Blue Sky Limited.  

ii. To model a distribution problem of Blue Sky Limited in Ghana. 

iii. To use transshipment related models to solve it. 

 

1.4 JUSTIFICATION  

A transportation problem allows only shipments that go directly from a supply point to a 

demand point. In many situations, shipments are allowed between supply points or 

between demand points. Sometimes there may also be points (called transshipment 

points) through which goods can be transshipped on their journey from a supply point to 

a demand point. Shipping problems with any or all of these characteristics are 

transhipment problems. Fortunately, the optimal solution to a transshipment problem can 

be found by solving a transportation problem Hence, the studies of transshipment and 

transportation problems and their algorithms, has become an important area of research in 

the contribution to academic knowledge and the benefit of the economy as a whole, 

hence the reason for solving the transshipment problem. 

 

1.5 METHODOLOGY  

Our proposed methodology to our problem would be solved by using the transshipment 

model with intermediate destinations between the sources and the destinations. The 

transshipment problem will be converted to a transportation problem and the transportation 
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algorithm will be used to solve it. A real life computational study would be performed and 

the Excel Solver software will be used to analyze the data.  

1.6 LIMITATIONS 

 

Our study is limited to some number of constraints. Management of Blue Limited was 

not willing to release information on their operations. This made data collection very 

difficult. 

Another limitation was financial difficulty. Getting money for transportation, printing and 

binding also became a problem. 

1.7 ORGANIZATION OF THE THESIS 

In chapter one, we presented a background study of transshipment problem model.  

In chapter two, related work in the transshipment problem will be discussed. 

 In chapter three, the transshipment and transportations algorithms by Amponsah and 

Darkwah (2009) will be introduced and explained.  

Chapter four will provide a computational study of the algorithm applied to our 

transshipment problem instances.  

Chapter five will conclude this thesis with conclusions and recommendations 

1.8 SUMMARY  

In this chapter, we discussed the introduction, background of the study. We also looked at 

the Objectives, Justifications, Methodology, Limitations and the Organisation of the 

study. 

In the next chapter we shall put forward relevant literature on transshipment. 
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CHAPTER TWO 

LITERATURE REVIEW 

Banerjee et al., (2003) examined the effects of transshipments in different operating 

conditions one of which is based on the concept of inventory balancing via 

transshipments. Under their redistribution policy, the beginning inventory at each 

location is equalized. Bertrand and Bookbinder (1998) also use the balancing of the 

beginning inventory as a redistribution policy for identical retailers. 

Tagaras (1989) used the fill rate and the probability of no-stockout to reflect the level of 

service. For an identical demand structure, balancing the fill rate is equivalent to starting 

with identical beginning inventory at each location. In a later study, while analyzing the 

effect of risk pooling in a setting with one central warehouse and three stocking locations, 

Tagaras (1999) compared random allocation with a ‗risk balancing‘transshipment policy. 

In risk balancing, transshipment quantities are determined so as to equalize the 

probability of a stockout in the following period. For an identical demand structure, risk 

of stockout will be balanced if each location starts with the same inventory.       

 Kut (2006) studied a distribution system consisting of multiple retail locations with 

transshipment operations among the retailers. Due to the difficulty in computing the 

optimal solution imposed by the transshipment operations and in estimating shortage cost 

from a practical perspective, we propose a robust optimization framework for analyzing 

the impact of transshipment operations on such a distribution system. We demonstrate 

that our proposed robust optimization framework is analytically tractable and is 

computationally efficient for analyzing even large-scale distribution systems. From a 

numerical study using this robust optimization framework, we address a number of 
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managerial issues regarding the impact of transshipment on reducing the costs of the 

distribution system under different system configurations and retailer characteristics. In 

particular, we consider two system configurations, line and circle, and study how 

inventory holding cost, transshipment cost, and demand size and variability affect the 

effectiveness of transshipment operations for the cases of both homogeneous and non-

homogeneous retailers. The managerial insights obtained from our robust optimization 

framework can help to evaluate the potential benefits when investing in transshipment 

operations. 

Krishnan and Rao (1965) examined the transshipment problems with multiple retail 

locations with identical cost structure. They showed that the optimal stocking quantities 

satisfy the equal fractile property.  

Tagaras (1989) presented a model which extended Krishnan and Rao‘s two-location 

model to allow for different cost structures, and analyzed the pooling effect due to 

transshipment. His model can also allow for a service constraint on the minimum 

acceptable fill rates 

Taragas and Cohen (1993) studied two-location transshipment model which allow for 

positive replenishment lead-times. With positive replenishment lead-times, it might be 

beneficial to hold back stock for future demands, and so it is not necessarily optimal to 

always transship from the other location (complete pooling) when shortages occur. 

However, their numerical results showed that complete pooling generally dominates 

partial pooling.  
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Herer and Rashit (1999) studied the two-location transshipment problem to include fixed 

and joint replenishment costs, and derived several properties regarding the structure of 

the corresponding optimal replenishment and transshipment policies.  

Herer and Tzur (2001) considered a dynamic two-location transshipment problem where 

demands are deterministic and the objective is to minimize the total replenishment, 

holding and transshipment costs over a finite horizon. The author derived some structural 

results on the optimal policy and provided a polynomial time algorithm for finding the 

optimal policy.  

Rudi et al., (2001) studied a two location model with decentralized decision making. 

They analyzed the optimal transshipment prices to maximize the total profit.  

Dong and Rudi (2004) analyzed how transshipment can benefit a manufacturer and 

multiple retailers in settings where the manufacturer can serve as a price setter or a price 

taking. In their model, the multiple retailers have the same cost structure and complete 

pooling among retailers is assumed.  

Wee and Dada (2005) studied the optimal policies for transshipping inventory in a retail 

network. They focused on the integrated transshipment decisions instead of the 

interaction`s among the retailers and the impact of the network structure.  

When there are more than two locations in the system and the cost structures are non-

identical, the optimal transshipment policy becomes more complex, as one needs to 

determine from which location, in addition to how many, to transship when a shortage 

occurs at any location. In general, it is analytically intractable to determine the joint 

optimal replenishment and transshipment policy. A number of papers studied different 

heuristic decision rules for lateral transshipment and then evaluated the optimal 
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replenishment policy under these decision rules. This line of research includes the work 

of Alfredsson and Verrijdt (1999), Archibald, et al. (1997), Axsater (1990, 2003), Dada 

(1992), Grahovac and Chakravarty (2001), Lee (1987), Minner et al., (2003), and 

Robinson (1990).  

There is a closely related literature where transshipment is allowed in a distribution 

system periodically as a way to rebalance stock at different locations rather than to cover 

shortage. This includes the work of Cohen, et al. (1986), Das (1975), Diks and de Kok 

(1996), Hoadley and Heyman (1977), Jonsson and Silver (1987), and Karmarker and 

Patel (1977).  

 Cross docking is a logistic technique which seeks to reduce costs related to inventory 

holding, order picking, transportation as well as the delivery time. Most of the existing 

studies in the area are interested in the dock assignment problem and the design of the 

cross dock transportation networks. Little attention has been given to the transshipment 

operations inside a cross docking platform. Larbi et al., (2003) studied the transshipment 

scheduling problem in a simple cross dock with a single strip door and single stack door. 

The authors proposed a graph based model for the problem. The shortest path in the 

graph gives the schedule which minimizes the total cost of transshipment operations.  

Supply chain management is one of the main sources of competitive advantage for 

companies. As a useful tool for inventory and transportation management in supply 

chains, transshipment points provide an effective mechanism for correcting discrepancies 

between demand and available inventory. Deniz et al., (2009) studied transshipment 

problem of a company in the apparel industry with multiple Sub-contractors and 

customers, and a transshipment depot in between. Unlike a typical transshipment problem 
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that considers only the total cost of transportation, our model also considers the supplier 

lead times and the customer due dates in the system and it can be used for both supplier 

selection and timely distribution planning. The proposed model can also be adapted 

easily by other companies in the industry.  

 

Deniz et al., (2008) considered a supply chain, which consists of N stocking locations and 

one supplier. The locations may be coordinated through replenishment strategies and 

lateral transshipments, i.e., transfer of a product among locations at the same echelon 

level. The supplier has limited production capacity. Therefore, the total amount of 

product supplied to the N locations is limited in each time period. When total 

replenishment orders exceed total supply, not all locations will be able to attain their base 

stock values. Therefore, different allocation rules are considered to specify how the 

supplier rations its limited capacity among the locations. We team up the modeling 

flexibility of simulation with sample path optimization to address the multi-location 

transshipment problem. The authors solved the sample average approximation problem 

by random search and by gradient search. With this numerical approach, we can study 

problems with non-identical costs and correlated demand structures.  

Roberto et al., (2009) considered the stochastic capacitated transshipment problem for 

freight transportation where an optimal location of the transshipment facilities, which 

minimizes total cost, must be found. The total cost is given by the sum of the total fixed 

cost plus the expected minimum total flow cost, when the total throughput costs of the 

facilities are random variables with unknown probability distribution. By applying the 

asymptotic approximation method derived from the extreme value theory, a deterministic 

nonlinear model, which belongs to a wide class of Entropy maximizing models, is then 
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obtained. The computational results showed a very good performance of this 

deterministic model when compared with stochastic one. 

Supply chain management emphasizes collaborative relationships between supply chain 

members. Mangal and Chandna (2007) examined the antecedents of retailer - retailer 

partnership and to explore its impact on the supply chain performance. The authors 

considered coordination among stocking locations through replenishment strategies that 

take explicitly into consideration transshipments, transfer of a product among locations at 

the same echelon level. A continuous review inventory system has been adopted, in 

which lateral transshipments are allowed. In general, if a demand occurs at a location and 

there is no stock on hand, the demand is assumed to be backordered or lost. Lateral 

transshipments serve as an emergency supply in case of stock out and the rule for lateral 

transshipments is to always transship when there is a shortage at one location and stock 

on hand at the other. The aim is to explore the role of lateral transshipment to control 

inventory and associated cost within supply chain and, from this, to develop an 

exploratory framework that assists understanding in the area. A simple and intuitive 

model is presented that enables us to characterize optimal inventory and transshipment 

policies for ‗n‘ locations. The research is based on a case study of a bi-wheeler company 

in India by using its data and to strengthen its supply chain. This study represents such an 

effort in that it integrates both inventory and transshipment components in the study of 

multi-location inventory systems. This study will enable the managers to overcome the 

uncertainties of demand and lead-time resulting into customer satisfaction and cost 

reduction.  
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Banu and Sunderesh (2005) studied a single-item two-echelon inventory system where 

the items can be stored in each of N stocking locations is optimized using simulation. The 

aim of this study is to minimize the total inventory, backorder, and transshipments costs, 

based on the replenishment and transshipment quantities. In this study, transshipments 

which are the transfer of products among locations at the same echelon level and 

transportation capacities which are the transshipment quantities between stocking 

locations, are also considered. Here, the transportation capacities among the stocking 

locations are bounded due to transportation media or the locations‘ transshipment policy. 

Assuming stochastic demand, the system is modeled based on different cases of 

transshipment capacities and costs. To find out the optimum levels of the transshipment 

quantities among stocking locations and the replenishment quantities, the simulation 

model of the problem is developed using ARENA 10.0 and then optimized using the Opt 

Quest tool in this software.  

Mabel et al., (2006) developed an analytical framework for studying a two-echelon 

distribution system consisting of one central warehouse and multiple retail locations with 

transshipment operations among the retailers. Our framework can be used to model very 

general distribution systems and analyze the impact of transshipment under different 

system configurations. The authors demonstrated that their proposed analytical 

framework is analytically tractable and is computationally efficient for analyzing even 

large-scale distribution systems. From a numerical study using our framework, we 

address a number of managerial issues regarding the impact of transshipment on reducing 

the costs of the distribution system under different system configurations and retailer 
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characteristics. The managerial insights obtained from our analysis can help to evaluate 

the potential benefits when investing in transshipment operations.  

As competition from emerging economies such as China and India puts pressure on 

global supply chains and as new constraints emerge, it presents opportunities for 

approaches such as game theory for solving the transshipment problem. Pedro (2004) 

studied a model which used the well-known Shapley value concept from cooperative 

game theory as an approach to solve the transshipment problem for maintaining stable 

conditions in the logistics network. A numerical example was presented to show the 

usefulness of this approach.  

 

What is the best distribution strategy to ship materials from a source to multiple 

destinations on a regular basis? This is a common question confronting logistics planners 

in many industries. Mabel et al., (2004) examined this issue in the context of the ocean 

freight industry. In particular, the authors tackled the economics of freighting raw 

materials through a transshipment hub, and propose a method to synchronize the 

materials flow through the hub. The authors also compared the transshipment hub model 

with a direct service model, where a vessel is chartered and dispatched directly to bring 

materials to all the destinations in a single voyage. Our analysis shows that the value of 

the transshipment hub operation is largely determined by the trade-offs of three factors: 

(i) the cost of loading/unloading operation at the hub,(ii) cost of detaining material at the 

hub, and (iii) cost of material/inventory in transit. This conclusion is robust and relatively 

insensitive to the demand usage at the destinations. 

The transportation problem has offered two mathematical facets: (1) as a specialized type 

of linear programming problem, (2) as a method of representation of some combinatorial 
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problems. Orden (1956) developed a third aspect of the mathematical properties of the 

transportation problem. It is shown that the same mathematical framework can be 

extended beyond pair-wise connections, to the determination of optimum linked paths 

over a series of points. This extension although viewed here as a linear programming 

problem, takes advantage of the combinatorial aspect of the transportation problem, and 

applications may arise which, like the assignment problem, appear to be combinatorial 

problems, but which can be solved by linear programming.  

A dynamic network consists of a graph with capacities and transit times on its edges. The 

quickest transshipment problem is defined by a dynamic network with several sources 

and sinks; each source has a specified supply and each sink has a specified demand. The 

problem is to send exactly the right amount of flow out of each source and into each sink 

in the minimum overall time. Variations of the quickest transshipment problem have been 

studied extensively; the special case of the problem with a single sink is commonly used 

to model building evacuation. Similar dynamic network flow problems have numerous 

other applications; in some of these, the capacities are small integers and it is important to 

find integral flows. There are no polynomial-time algorithms known for most of these 

problems.  Hoppe and Tardos (1997) presented the first polynomial-time algorithm for 

the quickest transshipment problem. The author‘s algorithm provides an integral 

optimum flow. Previously, the quickest transshipment problem could only be solved 

efficiently in the special case of a single source and single sink.  

Glover et al., (2005) developed a primal simplex procedure to solve transshipment 

problems with an arbitrary additional constraint. The procedure incorporates efficient 

methods for pricing-out the basis, determining certain key vector representations, and 
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implementing the change of basis. These methods exploit the near triangularity of the 

basis in a manner that takes advantage of computational schemes and list structures used 

to solve the pure transshipment problem. We have implemented these results in a 

computer code, I/O PNETS-I. Computational results (necessarily limited) confirm that 

this code is significantly faster than APEX-III on some large problems. We have also 

developed a fast method for determining near optimal integer solutions. Computational 

results show that the near optimum integer solution value is usually within 0.5% of the 

value of the optimum continuous solution value.  

Transshipments, monitored movements of material at the same echelon of a supply 

chain, represent an effective pooling mechanism. With a single exception, research on 

transshipments overlooks replenishment lead times. The only approach for two-location 

inventory systems with non-negligible lead times could not be generalized to a multi-

location setting, and the proposed heuristic method cannot guarantee to provide optimal 

solutions. Gong and Yucesan (2006) studied a model that uses simulation optimization 

by combining an LP/network flow formulation with infinitesimal perturbation analysis 

to examine the multi-location transshipment problem with positive replenishment lead 

times, and demonstrates the computation of the optimal base stock quantities through 

sample path optimization. From a methodological perspective, this paper deploys an 

elegant duality-based gradient computation method to improve computational efficiency. 

In test problems, our algorithm was also able to achieve better objective values than an 

existing algorithm.  

Herer and Tzur (2001) investigated the strategy of transshipments in a dynamic 

deterministic demand environment over a finite planning horizon. This is the first time 
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that transshipments are examined in a dynamic or deterministic setting. The authors 

considered a system of two locations which replenish their stock from a single supplier, 

and where transshipments between the locations are possible. Our model includes fixed 

(possibly joint) and variable replenishment costs, fixed and variable transshipment costs, 

as well as holding costs for each location and transshipment costs between locations. The 

problem is to determine how much to replenish and how much to transship each period; 

thus this work can be viewed as a synthesis of transshipment problems in a static 

stochastic setting and multi-location dynamic deterministic lot sizing problems. The 

authors provided interesting structural properties of optimal policies which enhance our 

understanding of the important issues which motivate transshipments and allow us to 

develop an efficient polynomial time algorithm for obtaining the optimal strategy. By 

exploring the reasons for using transshipments, we enable practitioners to envision the 

sources of savings from using this strategy and therefore motivate them to incorporate it 

into their replenishment strategies.  

A transshipment problem with demands that exceed network capacity can be solved by 

sending flow in several waves. How can this be done using the minimum number of 

iterations? This is the question tackled in the quickest transshipment problem. Hoppe and 

Tardos (1997) describe the only known polynomial time algorithm that finds an integral 

solution to this problem. Their algorithm repeatedly minimizes sub-modular functions 

using the ellipsoid method, and is therefore not at all practical. Fleischer presented an 

algorithm that finds a fully integral quickest transshipment with a polynomial number of 

maximum flow computations. When there is only one sink, the quickest transshipment 

problem is significantly easier. For this case, I show how the algorithm can be sped up to 
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return an integral solution using O(k) maximum flow computations, where k is the 

number of sources. Hajek and Ogier (2003) describe an algorithm that finds a fractional 

solution to the single-sink quickest transshipment problem. 

Virtually all available data on commodity shipments identify the origin and destination 

but not any transshipment points along the way. Transshipment has large implications for 

the provision of public infrastructure. A better macroscopic understanding of 

transshipment is needed. Within travel forecasting models the transshipment problem can 

be formulated as seeking the probability that a commodity with an origin at location A 

and a destination at location B has a transshipment point at location C. Transshipment has 

been studied extensively by researchers in logistics, but almost all those studies relate to 

improving the activities of an individual firm, rather than on the net effect of many firms 

acting within a whole economy. Horowitz (2009) studied a model which addressed the 

above problem. 

Ozdemir et al., (2003) studied a supply chain model, which consists of N retailers and 

one supplier. The retailers may be coordinated through replenishment strategies and 

lateral transshipments, that is, movement of a product among the locations at the same 

echelon level. Transshipment quantities may be limited, however, due to the physical 

constraints of the transportation media or due to the reluctance of retailers to completely 

pool their stock with other retailers. The authors introduced a stochastic approximation 

algorithm to compute the order-up-to quantities using a sample-path-based optimization 

procedure. Given an order-up-to S policy, we determine an optimal transshipment policy, 

using an LP/network flow framework. Such a numerical approach allows us to study 

systems with arbitrary complexity. 
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The decentralized transshipment problem is a two-stage decision making problem where 

the companies first choose their individual production levels in anticipation of random 

demands and after demand realizations they pool residuals via transshipment. The 

coordination will be achieved if at optimality all the decision variables, i.e. production 

levels and transshipment patterns, in the decentralized system are the same as those of 

centralized system. Hezarkhani and Kubiak (2009) studied a model with the coordination 

via transshipment prices. The authors proposed a procedure for deriving the 

transshipment prices based on the coordinating allocation rule introduced by Anupindi et 

al, (2006). With the transshipment prices being set, the companies are free to match their 

residuals based on their individual preferences. The authors drew upon the concept of 

pair-wise stability to capture the dynamics of corresponding matching process. As the 

main result of this paper, we show that with the derived transshipment prices, the 

optimum transshipment patterns are always pair-wise stable, i.e. there are no pairs of 

companies that can be jointly better off by unilaterally deviating from the optimum 

transshipment patterns. 

De Rosa et al., (2001) studied the Arc Routing and Scheduling Problem with 

Transshipment (ARPT), a particular Arc Routing Problem whose applications arise in 

garbage collection. In the ARPT, the demand is collected by specially equipped vehicles, 

taken to a transfer station, shredded or compacted and, finally, transported to a dump site 

by means of high-capacity trucks. A lower bound, based on a relaxation of an integer 

linear formulation of the problem, is developed for the ARPT. A tailored Tabu Search 

heuristic is also devised. Computational results on a set of benchmark instances are 

reported.  
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Asmuth et al., (1979) studied a multi-commodity transshipment problem where the prices 

at each location are an affine function of the supplies and demands at that location and 

the shipping costs are an affine function of the quantities shipped. A system of prices, 

supplies, demands, and shipments is defined to be equilibrium, if there is a balance in the 

shipments, supplies, and demands of goods at each location, if local prices do not exceed 

the cost of importing, and if shipments are price efficient. Lemke‘s algorithm is used to 

compute equilibrium.  

Perincherry and Kikuchi (1990) presented a transshipment problem in which the 

projected demand and supply at different locations on different days are known in fuzzy 

quantities. The formulation of the model follows that of fuzzy linear programming in that 

the solution is a shipment schedule which satisfies the objective at a `reasonable cost'. 

Priorities for satisfying requirements at demand points and supply points on selected days 

are incorporated by multiplying corresponding weights to h, the level of satisfaction. The 

presentation follows from the general to the specific formulation with an example. 

The multi-location replenishment and transshipment problem is concerned with several 

retailers facing random demand for the same item at distinct markets, that may use 

transshipments to eliminate excess inventory/shortages after demand realization. When 

the system is decentralized so that each retailer operates to maximize their own profit, 

there are incentive problems that prevent coordination. These problems arise even with 

two retailers who may pay each other for transshipped units. Hanany et al., (2010) 

presented a new mechanism based on a transshipment fund, which is the first to 

coordinate the system, in a fully non-cooperative setting, for all instances of two retailers 
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as well as all instances of any number of retailers. Moreover, our mechanism strongly 

coordinates the system, i.e., achieves coordination as the unique equilibrium. The 

computation and information requirements of this mechanism are realistic and relatively 

modest. We also present necessary and sufficient conditions for coordination and prove 

they are always satisfied with our mechanism. Numerical examples illustrate some of the 

properties underlying this mechanism for two retailers.  

Dahan (2009) studied a model, which considered two retailers between which 

transshipments can take place at the end of the period. The retailers differ in cost and 

demand distributions, operate in a single period, and cooperate to minimize joint costs. 

The authors work differs from previous analyses as it considers the possibility that 

customers are not always willing to wait for transshipments. Instead, only some 

customers are willing to wait and return to the retailer for transshipments. The objective 

of the research was to find the replenishment levels and transshipment quantities that 

minimize the total expected system cost. The authors considered two cases - a partially 

deterministic case, and a fully stochastic case. In the partially deterministic case, the 

number of returning customers is a known fraction of those that could not be satisfied 

off-the-shelf. The fully stochastic case treats the number of returning customers as a 

random variable whose probability density function is known and whose expected value 

is a fraction of the customers that could not be satisfied off-the-shelf. In the partially 

deterministic case, we show that the transshipment decision has a form similar to 

complete pooling. Thereafter, we prove that the objective function is convex in the 

replenishment levels, and suggest numerical methods for finding the optimal 

replenishment levels. In the fully stochastic case the number of returning customers is 
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unknown. Thus, the transshipment decision is a stochastic planning problem. The authors 

have a newsvendor problem (the optimal transshipment quantity) nested within a larger 

newsvendor problem (the optimal replenishment levels). We show that the optimal 

transshipment quantity is found by solving a capacitated newsvendor problem. 

Thereafter, the authors analyze the convexity of the objective function with respect to the 

replenishment levels. We illustrate the analysis with a probability density function of 

returning customers which is normally distributed. the authors showed that for this 

distribution, the objective function is not convex in the decision variables. Two 

approximations to the objective function are presented, and shown to be convex. The 

authors proposed a solution methodology which utilizes numerical methods on the 

objective function and the two approximations.  

Topkis (1984) developed a complement and substitution principles applicable to sittings 

in transhipment dual stage problems such as those encountered in factories and 

warehouses. Direct examination of the basic property of this transportation problem 

suggests that two locations of a similar nature would be reasonable substitutes. Such 

elements may not apply to location pairs where there is one or more warehouses. Where 

no warehouse is present, complement and substitution principles are functional. Model 

illustrations of factory warehouses and demand centre locations are highlighted. 

Huang and Greys (2008) studied a newsvendor game with transshipments, in which n 

retailers face a stochastic demand for an identical product. Before the demand is realized, 

each retailer independently orders her initial inventory. After the demand is realized, the 

retailers select an optimal transshipment pattern and ship residual inventories to meet 



 35 

residual demands. Unsold inventories are salvaged at the end of the period. The authors 

compared two methods for distribution of residual profit—transshipment prices (TPs) and 

dual allocations (DAs)—that were previously analyzed in literature. TPs are selected 

before the demand is known, and DAs, which are obtained by calculating the dual prices 

for the transshipment problem, are calculated after observing the true demand. The 

authors first studied the conditions for the existence of the Nash equilibrium under DA 

and then compared the performance of the two methods and show that neither allocation 

method dominates the other. The author‘s analysis suggests that DAs may yield higher 

efficiency among ―more asymmetric‖ retailers, whereas TPs work better with retailers 

that are ―more alike,‖ but the difference in profits does not seem significant. The authors 

also linked expected dual prices to TPs and use those results to develop heuristics for TPs 

with more than two symmetric retailers. For general instances with more than two 

asymmetric retailers, the authors proposed a TP agreement that uses a neutral central 

depot to coordinate the transshipments (TPND). Although DAs in general outperform 

TPND in our numerical simulations, its ease of implementation makes TPND an 

attractive alternative to DAs when the efficiency losses are not significant (e.g., high 

critical fractiles or lower demand variances).  

Lateral transshipments in multi-echelon stochastic inventory systems imply that locations 

at the same echelon of a supply chain share inventories in some way, in order to deal with 

local uncertainties in demands. While the structure of a transshipment policy will depend 

on many important factors, a commonly observed phenomenon at the retail level, called 

"customer switching", may be of some significance. Under such a phenomenon, a 

customer, who cannot obtain a desired product at a specific location, may visit one or 
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more other retail locations in search of the item. Liao (2010) studied the inventory 

replenishment and transshipment decisions in the presence of such stochastic "customer 

switching" behavior, for two firms which are either under centralized control, or operate 

independently. The first model adopted in this study considers two retailers that sell the 

same product to retail customers. After demand is realized, transshipments occur if only 

one location has insufficient inventory. Under this circumstance, a random fraction of the 

unfulfilled demand from the stocked out firm (which we refer to as the "shortage firm") 

may switch to the other firm with surplus inventory (which we refer to as the "surplus 

firm"). We examine the impact of such customer switching behavior on the firms' 

inventory decisions. The authors identified situations when the firm with surplus 

inventory is willing to (1) transship the entire quantity requested ("complete pooling 

policy"), (2) transship a portion of the amount requested ("inventory keeping policy"), or 

(3) transship nothing ("no-shipping policy") to the shortage firm. The authors 

demonstrated that a unique pair of optimal order quantities exists if the two firms are 

centeredly coordinated. When the firms operate independently, we derive a sufficient 

condition for the existence of a unique equilibrium replenishment order quantity pair. The 

authors also explored the optimal shortage or excess reporting policy when inventory 

information is asymmetric. Since the firm with a surplus makes a transshipment decision 

based on the magnitude of the shortage at the other location, it is possible that the 

shortage firm reports to the surplus firm some desired shortage quantity, instead of the 

real shortage. The authors proved that there is a possibility that the under-reporting 

situation exists. 
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Herer et al., (2006) considered coordination among stocking locations through 

replenishment strategies that take explicitly into consideration transshipments, that is, 

transfer of a product among locations at the same echelon level. They incorporate 

transportation capacity such that transshipment quantities between stocking locations are 

bounded due to transportation media or the location's transshipment policy. They model 

different cases of transshipment capacity as a capacitated network flow problem 

embedded in a stochastic optimization problem. Under the assumption of instantaneous 

transshipments, they develop a solution procedure based on infinitesimal perturbation 

analysis to solve the stochastic optimization problem, where the objective is to find the 

policy that minimizes the expected total cost of inventory, shortage, and transshipments. 

Such a numerical approach provides the flexibility to solve complex problems. 

Investigating two problem settings, they show the impact of transshipment capacity 

between stocking locations on system behavior. They observe that transportation capacity 

constraints not only increase total cost, but also modify the inventory distribution 

throughout the network.  

Zhaowei et al., (2009) studied a new type of transshipment problem, the flows through 

the cross dock are constrained by fixed transportation schedules and any cargos delayed 

at the last moment of the time horizon of the problem will incur relative high inventory 

penalty cost. The problem is known to be NP-complete in the strong sense. The authors 

therefore focused on developing efficient heuristics. Based on the problem structure, we 

propose a Genetic Algorithm to solve the problem efficiently. Computational 

experiments under different scenarios show that GA outperforms CPLEX solver. 
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Herer and Tzur (1998) investigated the strategy of transshipments in a dynamic 

deterministic demand environment over a finite planning horizon. This is the first time 

that transshipments are examined in a dynamic or deterministic setting. The authors 

considered a system of two locations which replenish their stock from a single supplier, 

and where transshipments between the locations are possible. Our model includes fixed 

(possibly joint) and variable replenishment costs, fixed and variable transshipment costs, 

as well as holding costs for each location and transshipment costs between locations. The 

problem is to determine how much to replenish and how much to transship each period; 

thus this work can be viewed as a synthesis of transshipment problems in a static 

stochastic setting and multi-location dynamic deterministic lot sizing problems. The 

authors provided interesting structural properties of optimal policies which enhance our 

understanding of the important issues which motivate transshipments and allow us to 

develop an efficient polynomial time algorithm for obtaining the optimal strategy. By 

exploring the reasons for using transshipments, the authors enable practitioners to 

envision the sources of savings from using this strategy and therefore motivate them to 

incorporate it into their replenishment strategies 

 

Belgasmi et al., (2008) studied a multi-location inventory system where inventory 

choices at each location are centrally coordinated. Lateral transshipments are allowed as 

recourse actions within the same echelon in the inventory system to reduce costs and 

improve service level. However, this transshipment process usually causes undesirable 

lead times. The authors proposed a multi-objective model of the multi-location 

transshipment problem which addresses optimizing three conflicting objectives: (1) 

minimizing the aggregate expected cost, (2) maximizing the expected fill rate, and (3) 
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minimizing the expected transshipment lead times. We apply an evolutionary multi-

objective optimization approach using the strength Pareto evolutionary algorithm 

(SPEA2), to approximate the optimal Pareto front. Simulation with a wide choice of 

model parameters shows the different trades-off between the conflicting objectives.  

Transshipments, monitored movements of material at the same echelon of a supply chain, 

represent an effective pooling mechanism. Earlier papers dealing with transshipments 

either do not incorporate replenishment lead times into their analysis, or only provide a 

heuristic algorithm where optimality cannot be guaranteed beyond settings with two 

locations. Gong and Yucesan (2010) presented a method that uses infinitesimal 

perturbation analysis by combining with a stochastic approximation method to examine 

the multi-location transshipment problem with positive replenishment lead times. It 

demonstrates the computation of optimal base stock quantities through sample path 

optimization. From a methodological perspective, this study deploys a duality-based 

gradient computation method to improve computational efficiency. From an application 

perspective, it solves transshipment problems with non-negligible replenishment lead 

times. A numerical study illustrates the performance of the proposed approach.  

 One of the most important problems in supply chain management is the distribution 

network design problem system which involves locating production plants and 

distribution warehouses, and determining the best strategy for distributing the product 

from the plants to the warehouses and from the warehouses to the customers. Vahidreza 

et al., (2009) studied a model which allows for multiple levels of capacities available to 

the warehouses and plants. The authors developed a mixed integer programming model 

for the problem and solved it by a heuristic procedure which contains 2 sub-procedures. 
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The authors used harmony-search meta-heuristic as the main procedure and linear 

programming to solve a transshipment problem as a subroutine at any iteration of the 

main procedure. 

Glover et al., (1974) presented a primal simplex procedure to solve transshipment 

problems with an arbitrary additional constraint. The procedure incorporates efficient 

methods for pricing-out the basis, determining representations, and implementing the 

change of basis. These methods exploit the near triangularity of the basis in order to take 

full advantage of the computational schemes and list structures used in solving the pure 

transshipment problem. Also reported is the development of a computer code, I/O 

PNETS-I for solving large scale singularly constrained transshipment problems. This 

code has demonstrated its efficiency over a wide range of problems and has succeeded in 

solving a singularly constrained transshipment problem with 3000 nodes and 12,000 

variables in less than 5 minutes on a CDC 6600. Additionally, a fast method for 

determining near optimal integer solutions is also developed. Computational results show 

that the near optimum integer solution value is usually within a half of one percent of the 

value of the optimum continuous solution value. 

Cheng and Karimi (2002) addressed a special case of the general chemical transhipment 

problem, namely the tanker lightering problem. When tankers are fully loaded with crude 

oil, they may not be able to enter the shallow channels or refinery ports due to the draft 

limitation. Under such circumstances, it is necessary to transfer some part of the crude oil 

from the tanker to lightering vessels in order to make the tanker ―lighter‖. After such 

transhipment operation, the tanker can travel to the refinery port, which it previously 

cannot. And, the lightering vessels also travel to the refinery port to deliver the lightered 
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crude oil. With tanker lightering operation, large tankers can also deliver crude oil to 

shallow-draught refinery ports. Furthermore, it helps to reduce the demurrage costs of 

tankers as well as inventory holding costs (Chajakis, 2000) at the refinery. During 

congested time, tankers could spend days awaiting lightering service. Since the 

demurrage costs of tankers are extremely high, effective scheduling of lightering 

operation is crucial for minimizing the system cost by reducing the waiting times of 

tankers and increasing the utilization of lightering vessels.  

Chajakis (1997) considered a scheduling problem faced by a shipping company that 

provides lightering services to multiple refineries clustered in a region. The company 

operates a fleet of multi-compartment lightering vessels with a mix of different 

configurations such as numbers of compartments, sizes, speeds, heating equipment, and 

so on. When a tanker arrives at the lightering location, one lightering vessel pumps off 

crude oil from one side of the tanker. Therefore, at most two lightering services can take 

place simultaneously for a tanker, one at each side of the tanker. And, these multi-

compartment lightering vessels can pick up multiple types of crude from the 

same/different tankers during a voyage. After enough crude oil has been offloaded, the 

tanker leaves the lightering system and travels to its designated refinery port. However, 

lightering vessels travel to the refinery ports, deliver the crude oils, and then return to the 

lightering location to continue their service. In other words, the lightering vessels make 

multiple voyages among the refinery ports and lightering location in order to service 

multiple tankers. Furthermore, we consider a two-stage lightering practice for large 

tankers, first stage at an offshore location farther from the refinery and the second stage at 

the lightering location closer to the refinery.  
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Lin et al. (2003) addressed a limited form of the two-stage lightering practice for large 

tankers, first stage at an offshore location farther from the refinery and the second stage at 

the lightering location closer to the refinery using an event-based approach. They 

assumed single-compartment vessels, did not restrict the number of simultaneous services 

for a single tanker, did not allow pickups from more than two tankers within one voyage 

of a lightering vessel, ignored differences in crude densities, and did not allow the 

freedom to select lightering crudes. In this paper, we develop a new continuous-time 

MILP formulation that addresses all of the above drawbacks. Thus, we allow multi-

compartment lightering vessels, restrict the number of simultaneous transfers to two, 

allow more than two pickups in one voyage for any lightering vessel, consider the impact 

of varying crude densities, select optimally the right lightering crudes, and most 

importantly use a realistic cost-based scheduling objective. Often, these features are real 

and important in the tank lightering problem. In contrast to the general chemical 

transhipment problem, the volumes and assignments to lightering vessels in this case are 

decided by the optimization model. In addition, the system cost here is an indicator of the 

customer satisfaction level as well as the utilization of fleet of lightering vessels. Our 

MILP model generates optimal lightering schedule with lightering volumes, sequence, 

times, and assignments, which minimizes the operating costs of lightering vessels, the 

demurrage costs of tankers as well as the delivery times of crude oil from the lightering 

location to refinery ports.  

Mues et al., (2005) stated that the transhipment Problems and Vehicle Routing Problems 

with Time Windows (VRPTW) are common network flow problems and well studied. 

Combinations of both are known as intermodal transportation problems. This concept 
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describes some real world transportation problems more precisely and can lead to better 

solutions, but they are examined rarely as mathematical optimization problems.  

According to White, (1972) the movement of vehicles and goods in a transportation 

system can be represented as flows through a time-dependent transhipment network. An 

inductive out-of-kilter type of algorithm is presented which utilizes the basic underlying 

properties of the dynamic transhipment network to optimize the flow of a homogeneous 

commodity through the network, given a linear cost function.  

Hsu and Bassok (1999) considered a single period problem with one input resulting in a 

random yield of multiple, downward substitutable products. They showed how the 

network structure of the problem can be used to devise an efficient algorithm.  

McGillivray and Silver (1978) considered a case where products had identical costs and 

there is a fixed probability that a customer demand for a stocked-out product can be 

substituted by another available product.  

Gilbert et al., (1997) identified some of the main issues in freight transportation planning 

and operations, and presented appropriate Operations Research models and methods, as 

well as computer-based planning tools. 

Allahviranloo and Afandizadeh (2008) formulated a model to determine the optimum 

investment on port development from a national investment prospective. On the other 

hand, costs and benefits are calculated from consumer and investor view point. 
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CHAPTER THREE 

METHODOLOGY 

3.0 INTRODUCTION 

In this chapter we shall put forward the transportation and the transshipment problems 

and their solution procedures. 

3.1.1 The Transportation Problem  

The transportation problem seeks the determination of a shipping plan of a single 

commodity from a number of sources, m, say, to a number of destinations, n, say, at a 

minimum total cost, while satisfying the demand at all destination.  

The standard scenario where a transportation problem arises is that of sending units of a 

product across a network of highways that connect a given set of cities. Each city is 

considered either as a "source," (supply route) or a "sink,‖ (demand route). Each source 

has a given supply, each sink has a given demand, and each highway that connects a 

source-sink pair has a given transportation cost per unit of shipment. This can be 

visualized in the form of a network, as depicted in Fig 3.1.  
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                                     Fig. 3.1 The Shipment from sources to sinks 

Given such a network, the problem of interest is to determine an optimal transportation 

scheme that minimizes the total cost of shipments, subject to supply and demand 

constraints. Problems with this structure arise in many real-life situations. The 

transportation problem is a linear programming problem, which can be solved by the 

regular simplex method but due to its special structure a technique called the 

transportation technique is used to solve the transportation problem. It got its name from 

its application to problems involving transporting products from several sources to 

several destinations, although the formation can be used to represent more general 

assignment and scheduling problems as well as transportation and distribution problems. 

The two common objectives of such problems are either to:   

 minimize the total transportation cost of shipping a single commodity from m 

sources to n destinations, or   
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 maximize the profit of shipping from m sources to n destinations.    

 

3.1.2 Characteristics of a Transportation Problem  

(i) Objective function is to reduce the transportation cost to the minimum.  

(ii) Maximum quantity available at the sources is limited. This is a constraint.  

(iii) Maximum quantity required at the destination is specified. This cannot be exceeded, 

this is another constraint.  

(iv) Transportation cost is specified for each item.  

(v) Sum of the products available from all sources is equal to sum of the products 

distributed at various destinations  

Maximum quantity available at the source, maximum quantity required at the destination 

and the cost of transportation, all refer to a single product.  

3.1.3 Degeneracy in Transportation Problem  

Transportation with m-origins and n-destinations can have (m+n-1) positive basic 

variables, otherwise the basic solution degenerates. So whenever the number of basic 

cells is less than (m + n-1), the transportation problem is degenerate.  

3.1.4 How to resolve degeneracy in transportation problem  

To resolve the degeneracy, the positive variables are augmented by as many zero-valued 

variables as is necessary to complete (m +n –1) basic variables.  
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3.2 MATHEMATICAL FORMULATION  

Let the cost of transporting one unit of goods form i
th

 origin to j
th

 destination be Cij , i= 

1,2, ….m, j=1,2,….n. If xij   0 be the amount of goods to be transported from i
th

 origin to 

j
th

 destination, then the problem is to determine xij so as to 

                                   Minimize           
   

 
    

Subject to the constraint  

                                             
    , ( i = 1, 2, ..., m)  

                                             
    , ( j = 1, 2, ..., n)  

                                and xij   0 , for all i and j.  

 

3.2.1 Feasible Solution  

A set of non-negative allocations, x which satisfies the row and column restrictions is 

known as feasible solution. A feasible solution to an m-origin and n-destination problem 

is said to be basic feasible solution if the number of positive allocations are (m+n–1).  

3.2.2 Non – Degenerate Basic Feasible Solution  

A basic feasible solution of an (m × n) transportation problem is said to be non- 

Degenerate if it has following two properties: (a) Initial basic feasible solution must 

contain exactly (m+n–1) number of individual allocations.  

(b) These allocations must be in independent positions. Independent positions of a set of 

allocations mean that it is always impossible to form any closed loop through these 

allocations. 
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Definition (Loop) 

In a transportation table, an ordered set of four or more cells is said to form a loop if:  

(i). Any two adjacent cells in the ordered set lie in the same row or in the same column.  

(ii). Any three or more adjacent cells in the ordered set do not lie in the same row or in 

the same column.  

3.2.3 Degenerate Basic Feasible Solution A basic feasible solution that contains less 

than (m + n – 1) non – negative allocations is said to be degenerate basic feasible 

solutions.  

3.3 BALANCED TRANSPORTATION PROBLEM If total supply equals total 

demand, the problem is said to be a balanced transportation problem: that is  

                                          
     =     

    

3.3.1 Unbalanced Transportation Problem  

If the transportation problem is known as an unbalanced transportation problem then, 

there are two cases. 

Case (1).  

Here,        
    >     

    

To solve this, we first balance it by introducing a dummy destination in the transportation 

table. The cost of transporting to this destination is all set equal to zero. The requirement 

at this destination is assumed to be equal to  

                                      
     -      
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Case (2) .  

Here,       
     <      

    

To solve this, we first balanced it by introducing a dummy origin in the transportation 

table; the costs associated with are set equal to zero. The availability is  

                                          
     =     

    

 

3.4 METHODS OF FINDING INITIAL BASIC FEASIBLE SOLUTION FOR A 

BALANCED TRANSPORTATION PROBLEM  

The three basic methods are:  

 The Northwest Corner Method  

 The Least Cost Method  

 The Vogel‘s Approximation Method  

3.4.1 Northwest-Corner Method  

The steps below are used in the Northwest- Corner method 

Step (1) The first assignment is made in the cell occupying the upper left-hand (North 

West) corner of the transportation table. The maximum feasible amount is allocated there, 

i.e.; x11 = min (a1, b1) .  

Step (2) If b1 > a1, the capacity of origin O1 is exhausted but the requirement at D1 is not 

satisfied. So move downs to the second row, and make the second allocation: x21 = min ( 

a2 , b1 – x11 ) in the cell ( 2,1 ). If a1 > b1, allocate x12 = min ( a1 - x11 , b2 ) in the cell ( 

1,2) . Continue this until all the requirements and supplies are satisfied. 
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3.4.2 Least-Cost Method  

The least cost method uses shipping costs in order to come up with a basic feasible 

solution that has a lower cost. To begin the minimum cost method, first we find the 

decision variable with the smallest shipping cost xij. Then assign xij its largest possible 

value, which is the minimum of si and dj . After that, as in the Northwest Corner Method 

we should cross out row i and column j and reduce the supply or demand of the non 

crossed-out row or column by the value of xij, then we will choose the cell with the 

minimum cost of shipping from the cells that do not lie in a crossed-out row or column 

and we will repeat the procedure. 

 

3.4.3 Vogel’S Approximation Method (VAM)  

Step 1 For each row of the transportation table, identify the smallest and the next to-

smallest costs. Determine the difference between them for each row. Display them 

alongside the transportation table by enclosing them in parenthesis against the respective 

rows. Similarly compute the differences for each column. 

Step 2 Identify the row or column with the largest difference among all the rows and 

columns. If a tie occurs, use any arbitrary tie breaking choice. Let the greatest difference 

correspond to i
th

 row and the minimum cost be Cij . Allocate a maximum feasible amount 

xij = min ( ai , bj ) in the ( i, j )
th

 cell, and cross off the i
th

 row or j
th

 column. 

 Step 3. Re compute the column and row differences for the reduced transportation table 

and go to step 2. Repeat the procedure until all the rim requirements are satisfied. 
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3.5 OPTIMAL SOLUTION  

A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total 

transportation cost. 

3.5.1 Theorem for Testing Optimality.  

If we have a B.F.S. consisting of m + n – 1 independent positive allocations and a set of 

arbitrary number u and v (i =1,2,...m;  j =1,2,...n) such that crs = ur + vs for all occupied 

cells (r,s) then the evaluation dij corresponding to each empty cell (i, j) is given by  

dij = cij – (ui + vj)  

3.5.2 Solution to Optimality  

As mentioned above, the solution method for transportation problems is a streamlined 

version of the Simplex algorithm. As such, the solution method also has two phases. In 

the first phase, the aim is to construct an initial basic feasible solution; and in the second 

phase, to iterate to an optimal solution. For optimality, we need a method, like the 

simplex method, to check and obtain the optimal solution. The two methods used are:  

i. Stepping-stone method  

ii. Modified distributed method (MODI)  

3.5.3 Stepping Stone  

(i). Consider an initial tableau  

(ii). Introduce a non-basic variable into basic variable  
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(iii). Add the minimum value of all the negative cells into cells that has ― positive sign‖, 

and subtracts the same value to the ―negative‖ cells  

(iv). Repeat this process to all possible non-basic cells in the tableau until one has the 

minimum cost. If it does not give the optimal solution or yield a good results, Introduce 

the MODI method for optimality  

3.5.4 Modified distributed method (MODI)  

It is a modified version of the stepping stone method  

MODI determines if a tableau is the optimal, tells which non-basic variable should be 

firstly considered as an entry variable, and makes use of stepping-stone to get its answer 

of next iteration  

Procedure (MODI) 

 Step 1: let ui, v , cij variables represent rows, columns, and cost in the transportation 

tableau, respectively  

Step 2: (a) form a set of equations that uses to represent all basic variables ui + vj = cij   

         (b) Solve variables by assign one variable = 0  

Step3: (a) form a set of equations use to represent non-basic variable (or empty cell) as  

         Such cij – ui – vj = kij  

         (b) Solve variables by using step 2b information  

Step 4: Select the cell that has the most negative value in 3b 

 Step 5: Use stepping-stone method to allocate resource to cell in Step 4 

 Step 6: Repeat the above steps until all cells in 3a has no negative Value. 
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3.6 THE TRANSSHIPMENT PROBLEM  

We may come across a certain situation that a company (or companies) may be producing 

the product to their capacity, but the demand arises to these products during certain 

period in the year or the demand may reach the peak point in a certain period of the year. 

This is particularly true that products like Cool drinks, Textbooks, Notebooks and 

Crackers, etc. The normal demand for such products will exist, throughout the year, but 

the demand may reach peak points during certain months in the year. It may not possible 

for all the companies put together to satisfy the demand during peak months. It is not 

possible to produce beyond the capacity of the plant. Hence many companies have their 

regular production throughout the year, and after satisfying the existing demand, they 

stock the excess production in a warehouse and satisfy the peak demand during the peak 

period by releasing the stock from the warehouse. This is quite common in the business 

world. Only thing that we have to observe the inventory carrying charges of the goods for 

the months for which it is stocked is to be charged to the consumer. Take for example 

crackers; though their production cost is very much less, they are sold at very high prices, 

because of inventory carrying charges. When a company stocks its goods in warehouse 

and then sends the goods from warehouse to the market, the problem is known as 

Transshipment problem.  
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                                       Figure 3.2: The Transshipment Problem 

The transshipment problem is an extension of the framework of the transportation 

problem. The extension is in allowing the presence of a set of transshipment points that 

can serve as intermediate stops for shipments, possibly with a net gain or loss in units. 

Any given transshipment problem can be converted into an equivalent transportation 

problem. Hence, the procedure for solving the transportation problems can be applied to 

the solution of transshipment problem as well.  

A transshipment problem (or network flow problem) consists of finding the cheapest way 

of shipping goods through a network of routes so that all given demands at all points of 

the network is satisfied. 

Given: 

 • a network of routes as a graph 

 • a set of nodes which act as sources (supplies)  

 • a set of nodes which act as sinks (demands) 

 • the amount of supply and demand at each node 

 • the cost of each transport route (edge)  
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The transshipment problem is similar to the transportation problem except that in the 

transshipment problem it is possible to ship both into and out of the same node (point). It 

is an extension of the transportation problem in which intermediate nodes, referred to as 

transshipment nodes are added to source as well as sink nodes to account for locations 

such as warehouses. In this more general type of distribution problem, shipments may be 

made between any pair of the three general types of nodes: origin nodes, transshipment 

nodes and destination nodes. For example (i) transshipment problems permits shipments 

of goods from origins to transshipment nodes and on to destinations, (ii) From one origin 

to another origin, (iii) From one transshipment location to another, (iv) from one 

destination location to another and (v) directly from origins to destinations. 

THE MODEL  

The general linear programming model of a transshipment problem is 

                                    Min                

Subject to  

                                           -            = Si      nodes Origin i 

                                           -            = 0     Transshipment nodes  

                                          -             = Di    demand nodes j 

Where  

                    xij =  amount of units shiped from node i to node j 

                    Cij = cost per unit of shipping from node i to node j 

                    Si = supply at origin node i  

                    Dj = demand at origin node j 
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The following steps describe how the optimal solution to a transshipment problem can be 

found by solving a transportation problem. 

 Step1: If necessary, add a dummy to a demand point or supply points (with a supply of 0 

and a demand equal to the problems excess supply) to balance the problem. Shipments to 

the dummy and from a point to itself will be zero. Let s = total available supply and d= 

total demand. 

Step2: Construct a transportation tableau as follows: A row in the tableau will be needed 

for each supply point and transshipment point, and a column will be needed for each 

demand point and transshipment point. Each supply point will have a supply equal to its 

original supply, and each demand point will have a demand to its original demand. Let s 

= total available supply and d = demand. Then each transshipment point will have a 

supply equal to (point‘s original supply) + s and a demand equal to (point‘s original 

demand) + s. This ensures that any transshipment point that is a net supplier will have a 

net outflow equal to point‘s original supply and a net demander will have a net inflow 

equal to point‘s original demand. Although we do not know how much will be shipped 

through each transshipment point, we can be sure that the total amount will not exceed s. 

Step 3: Solve the transportation table of step 2 by the transportation technique. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 

 In this chapter, we shall present data collection and analysis of the data. Data from 

the Blue Sky Limited shall be examined. 

4.1 Data Collection and Analysis 

A company has three factories X, Y and Z producing product P and two warehouses to 

stock the goods and the goods are to be sent to four market centres A, B, C and D when 

the demand arises.  Figure 4.1 shows the cost of transportation from factories to 

warehouses and from warehouses to the market centres, the capacities of the factories, 

and the demands of the market centres. Formulate a transportation matrix and solve the 

problem for minimizing the total transportation cost. 

Figure 4.1 depicts the cost of transportation from factories to warehouses and from 

warehouses to the market centres (in thousand Ghana cedis). 
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To formulate a transportation problem for three factories and four market centers, we 

have to find out the cost coefficients of cells. For this, if we want the cost of the cell XA, 

the cost of transportation from X to warehouse W1 + Cost transportation from W1 to 

market center A are calculated and as our objective is to minimize the cost, the least of 

the above should be entered as the cost coefficient of cell XA. Similarly, we have to 

workout the costs and enter in the respective cells. 

Cell XA: Route X-W1-A and X- W2- A minimum of these two (26 and 15) i.e. 15 

Cell XB Route X - W1 - B and X - W2 - B Minimum of the two is (29, 10) i.e. 10 

Cell XC Route X - W1 - C and X- W2 - C Minimum of the two is (27, 4) i.e. 4 

Cell XD Route X- W1 - D and X- W2 - D Minimum of the two is (34, 3) i.e. 3 

Cell YA: Route Y-W1-A and Y- W2- A minimum of these two (7 and 15) i.e. 7 

Cell YB Route Y - W1 - B and Y - W2 - B Minimum of the two is (10, 10) i.e. 10 

Cell YC Route Y - W1 - C and Y- W2 - C Minimum of the two is (8, 4) i.e. 4 

Cell YD Route Y- W1 - D and Y- W2 - D Minimum of the two is (15, 3) i.e. 3 

Cell ZA: Route Z-W1-A and Z- W2- A minimum of these two (9 and 14) i.e. 9 

Cell ZB Route Z - W1 - B and Z - W2 - B Minimum of the two is (12, 9) i.e. 9 

Cell ZC Route Z - W1 - C and Z- W2 - C Minimum of the two is (10, 3) i.e. 3 

Cell ZD Route Z- W1 - D and Z- W2 - D Minimum of the two is (17, 2) i.e. 2 
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The required transportation problem is shown in Table 4.2:  

 A B C D SUPPLY 

X 15 10 4 3 15 

Y 7 10 4 3 25 

Z 9 9 3 2 10 

DEMAND 20 10 8 12 50 

 

To formulate the problem, form transportation tableau, let  

i= product to be shipped.  

j = destination of each product.  

s
i =

the capacity of source node i,  

d
j =

the demand of destination j,  

x
ij
= the total capacity from source i to destination j  

C
ij
= the per unit cost of transporting commodity from i to destination j.  

The problem can be modeled as: 

  Minimize    15x11 + 10 x12 + 4 x13 + 3 x14  

            7x21 + 10 x22 +4 x23 + 3 x24  

                                            9x31 + 9 x32 + 3 x33 + 2 x34  
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Subject to    

                                             x11 + x12 + x13 + x14 = 15 

            x21 + x22 + x23 + x24 = 25 

                                            x31 + x32 + x33 + x34 = 10 

                                                    x11 + x21 + x31  = 20 

                                                   x12 + x22 + x32  = 10 

                                                  x13 + x23 + x33  = 8 

                                                  x14 + x24 + x34 = 12  

Using the West Corner rule we get the initial basic solution.  

The solution tableau is as shown in Table 4.3 below,  

 

 A B C D SUPPLY 

X 15           15              10               4              3 15 

Y   5           7 10          10   8            4  2             3 25 

Z               9               9                3  10           2 10 

DEMAND 20 10 8 12 50 

 

The initial basic feasible solution is; 

   = (xB11, x12, x13, x14, xB21, xB22, xB23, x24, x31, x32, x33, xB34)  
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This from the table is given as; 

                               = (15, 0, 0, 0, 5, 10, 8, 2, 0, 0, 0, 10) in thousands with the total 

transportation cost of 

Cost = (15000*15) + (5000*7) + (10,000*10) + (8,000*4) + (2,000*3) + (10,000*2) 

Total Cost = GH¢418,000.00 

Now, we use the optimality conditions to improve upon our solution by the MODI 

method. 

Now we find the cost equation of the basic cell; 

    Cij = ui + vj  

Thus,        u1 + v1 = 15  

                  u2 + v1 = 7             

                  u2 + v2 = 10 

                  u2 + v3 = 4  

                 u2 + v4 = 3          

                 u3 + v4 = 2 

Letting u1 = 0, from the equations we have; 

          u1 = 0 

          v1 = 15 

          u2 = -8 

          v2 = 18 

          v3 = 12 

          u3 = -9 

          v4 = 11 
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We find the net evaluation factor or the reduced costs for the non-basic variables. 

       eij = Cij –ui - vj 

        e12 = 10 – u1 –v2       

        e13 = 4 – u1 – v3      

        e14 = 3 – u1 – v4 

        e31 = 9 – u3 –v1           

        e32 = 9 – u3 – v2      

        e33 = 3 – u3 – v3 

Hence, 

         e12 = -8        

         e13 = -8         

         e14 = -8 

         e31 = 3               

         e32 = 0         

         e33 = 0 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x13. 

Therefore x13 should enter the basis since it is the most negative reduced cost. 

We then move on to next improvement iteration.  

At the end of this stage of iteration, the basic feasible solution is: 

   = (7, 0, 8, 0, 13, 10, 0, 2, 0, 0, 0, 10) in thousands  

Now we find the cost equation of the basic cell; 

    Cij = ui + vj  
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Thus, 

         u1 + v1 = 15 

         u1 + v3 = 4  

         u2 + v1 = 7 

         u2 + v2 =10 

         u2 + v4 = 3 

         u3 + v4 = 2 

Letting u1 = 0, from the equations we have; 

        u1 = 0 

        v1 = 15 

        u2 = -8 

        v2 = 18 

        v3 = 4  

        u3 = -9 

        v4 = 11 

We find the net evaluation factor or the reduced costs for the non-basic variables. 

        eij = Cij –ui - vj 

        e12 = 10 – u1 –v2     

        e14 = 3 – u1 – v4       

        e23 = 4 – u2 – v3 

        e31 = 9 – u3 –v1     

        e32 = 9 – u3 – v2    

        e33 = 3 – u3 – v3 
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Hence, 

           e12 = -8      

           e14 = -8      

           e23 = 8 

            e31 = 3       

            e32 = 0        

            e33 = 8 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x12. 

Therefore x12 should enter the basis since it is the most negative reduced cost. 

We then move on to next improvement iteration.  

At the end of this stage of iteration, the basic feasible solution is: 

   = (0, 7, 8, 0, 20, 3, 0, 2, 0, 0, 0, 10) in thousands  

Now we find the cost equation of the basic cell; 

    Cij = ui + vj  

Thus, 

      u1 + v2 = 10 

      u1 + v3 = 4 

      u2 + v1 = 7 

     u2 + v2 =10 

     u2 + v4 = 3 

     u3 + v4 = 2 

Letting u1 = 0, from the equations we have; 
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     u1 = 0 

    v1 = 7 

    u2 = 0 

    v2 = 10 

    v3 = 4 

    u3 = -1 

    v4 = 3 

We find the net evaluation factor or the reduced costs for the non-basic variables. 

         eij = Cij –ui - vj 

         e11 = 15 – u1 –v1      

         e14 = 3 – u1 – v4        

         e23 = 4 – u2 – v3 

         e31 = 9 – u3 –v1   

         e32 = 9 – u3 – v2      

         e33 = 3 – u3 – v3 

Hence, 

          e11 = 8    

          e14 = 0        

          e23 = 0 

          e31 = 3      

          e32 = 0      

          e33 = 0 
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Since all the reduced cost for the non-basic variables are all positive, it implies the 

optimal solution is reached. 

We then proceed to find our optimal route and calculate our total cost of shipment from 

the routes to the various destinations. 

The optimal allocation is: 

Cell                   Route                    Load                      Cost in GH¢ 

XB                   X - W2 - B             7000                           10  

XC                   X - W2 – C             8000                           4  

YA                   Y - W1 – A            20000                         7 

YB                   Y – W1- B              3000                          10 

YD                   Y - W2 - D             2000                           3 

ZD                   Z – W2 –D              10000                         2  

Cost = (7000*10) + (8000*4) + (20,000*7) + (3,000*10) + (2,000*3) + (10,000*2) 

Total Cost = GH¢278,000.00 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

      With increased product specialization and globalization, the shipping industry has 

experienced steady growth during the past few decades. At the same time, ocean carriers 

have competed to offer better service at a cheaper price. Carriers are constantly looking 

for opportunities to introduce new services/routes to attract and capture more market 

demand. Operation has indeed become one of the key competitive advantages with 

optimization-based approaches being expected to play an important role. 

Our study is largely motivated by a practical problem faced by a logistics subsidiary of a 

shipping company. The company has three factories X, Y and Z producing product P and 

two warehouses to stock the goods and the goods are to be sent to four market centres A, 

B, C and D when the demand arises.  The challenge for the logistics subsidiary is to help 

the client to determine the most cost effective distribution strategy to move the products 

from the supply port to the demand ports.  

From a management and operation perspective, a fundamental question in this problem is 

whether the company should move the product into the demand ports directly from the 

supply port, or whether the transhipment operation using an established warehouse can 

help to reduce the total cost to the company and increase responsiveness. From the 

resource utilization perspective, a transhipment system is certainly preferred as it 

provides a better utilization of the transporting goods. 
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5.1 CONCLUSIONS 

      This thesis seeks to solve a real-life problem of a Company in Ghana using 

transhipment models. It was observed that the route that gave minimum achievable 

transportation cost was  

 X - W2 – B,  X - W2 – C,  Y - W1 – A,  Y – W1- B,  Y - W2 – D, and  Z – W2 –D at the 

unit transportation cost of GH¢10,  GH¢4,  GH¢7,  GH¢10, GH¢3 and GH¢2 with a 

shipping loads of 7000, 8000, 20000, 3000, 2000 and 10000. This means that the 

company should spend a total cost of two hundred and seventy-eight thousand Ghana 

cedis (GH¢278,000.00) to transport its products from the production centers through the 

warehouse to the market centers using the above routes. 

      Currently, as at the time of this work, there is no such method for determining which 

routes to be used in transporting the products by the company. The routes are chosen 

using guess work and by the discretion of the people in charge. 

For the data used for our analysis, the company using their crude approach arrived at the 

following conclusion; shipped the loads of 15000, 5000, 10000, 8000, 2000 and 10000 at 

a unit costs of GH¢15,  GH¢7,  GH¢10,  GH¢4, GH¢3 and GH¢2 through the routes  

X - W2 – B,  X - W2 – C,  Y - W1 – A,  Y – W1- B,  Y - W2 – D, and  Z – W2. 

Total cost of transporting these products was four hundred and eighteen thousand Ghana 

cedis (GH¢418,000.00). 
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5.2 RECOMMENDATIONS 

      The use of computer application in computation gives a systematic and transparent 

solution as compared with an arbitrary method. Operation has become one of the key 

competitive advantages with optimization-based approaches being expected to play an 

important role. Using optimization-based approaches to model industrial problem gives a 

better result. Management may benefit from the proposed approach for transporting the 

goods from the manufacturing centers to the various market centers in order to minimized 

transportation cost. We therefore recommend that our transshipment model should be 

adopted by the company for its transshipment planning. 
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