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Abstract 

Option pricing is a critical issue in the financial market. An investigation into the 

use of Sampling Importance Resampling (SIR) filter for financial option pricing in 

the Black-Schole model is performed. The impact of process noise, measurement 

noise, and the number of particles on the accuracy and performance of SIR filter 

is examined. The Black-Schole model is solved by the finite difference scheme. 

The SIR filter is implemented by the use of the GARCH model and the Black-Schole 

model with synthetic data. The effect of different process noise, measurement 

noise, and number of particles on the SIR filter was examined. It was found that 

the SIR filter performed well at lower process noise and high measurement noise 

when considering profitability of a call option. Also, as the number of particle 

decrease the SIR filter performed very well.  
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Chapter 1 

Introduction 

In the financial world, option is basically a contract, which does not oblige but give 

the right to an investor to either buy or sell a financial asset often called 

underlying asset. Options have undoubtedly become a major part of financial 

market, with its ability to cover the risk to certain extent coupled with it high 

degree of complexity. The thesis focused on American-styled options that permit 

an exercise at any time from the inception date to the expiration date. The 

BlackScholes Model(1973) describing a mathematical framework on option 

pricing is adapted in this thesis. 

An investigation into particle filtering as a technique to pricing American-styled 

options is explored. Obviously over the years, a number of different ways have 

been used in the pricing of financial instrument. 

1.1 Background of the study 

Data assimilation schemes are designed to utilize measured observations in 

conjunction with the dynamic system, with estimates of the uncertainty in the 

estimated states. The two types of data assimilation schemes are the sequential 

and variational assimilation. Variational data assimilation use all the observation 

available over a given period of time to give improved estimates for all the states 

in that time period. It is based on optimal control theory. Sequential data 

assimilation uses a probabilistic framework and given estimates of the whole 

system state sequentially by propagating information only forward in time. 

Therefore avoid deriving an inverse model and make sequential method easier to 

adopt for all models according to Bertino et al. (2003) 
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Data assimilation basically quantify error found in both the model predictions and 

observations. These errors may be caused by a number of factors. For example, 

violation in the assumption of the model, the use of incorrect parameter values 

that are not optimal can result in model error. The continuous dynamic systems 

are solved numerically and so are transformed into discrete dynamical systems. 

Computations resulting from this often bring round-off errors in the model 

predictions. During reading of data and inaccurate instrument often introduce 

human error into the observation. Finite difference schemes is used in providing 

a numerical solution to the underlying models of the systems. Data assimilation 

does not only quantify errors but also reduce errors and to provide a more 

accurate predictions of both states and parameters. 

1.2 Statement of the Problem 

Sampling Importance Resampling (SIR) filter is a Monte Carlo (MC) method for 

implementing a recursive Bayesian filter by representing the required posterior 

density function by a set of random samples with associated weights and to 

compute estimates based on these samples and weights. according to Dablemont 

et al. (2009) 

This study investigates the performance of sampling importance resampling filter 

first proposed by Gordon et al. (1993) in estimating Black-Schole model when the 

stock price and time to maturity are varied whiles keeping other parameters 

constant, effect of different measurement and process noise and finally the effect 

of different number of particles. The performance of the SIR is evaluated by the 

use of synthetic data. 
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1.3 Objectives of the Study 

In this study, the objective is to examine the performance of the Sampling 

Importance Resampling (SIR) filter in pricing options. SIR filter’s performance is 

evaluated through experimentation to comparing the effect of different: • stock 

price and time to maturity on mean volatility 

• process noise on the filter. 

• measurement noise on the filter. 

• number of particles of SIR filter. 

1.4 Methodology 

The performance and accuracy of the SIR filter is examined based on the impact 

of the process noise, measurement noise and the number of particles. The 

statespace estimation problem was investigated by the use of the SIR. 

Finite difference scheme was used to solve the Black-Scholes model. A detailed 

algorithm of the SIR filter was developed and implemented using the GARCH 

model as state equation and the Black-Scholes model as observation equation. 

The algorithms used in the study were implemented in Matlab and used in 

performing a number of experiments with synthetic data. 

1.5 Significance of the study 

Options provide investors ie individuals or institutions with great leveraging 

power, lesser risk, higher potential return and limit losses. What is the best price 

to buy or sell options ie pricing of financial options and how to determine this 

price is a relevant question to answer. Surely, a number of data assimilation 

schemes have been applied in determining the price of options, for example Jasra 

and Del Moral (2010) and Lindstrom and Guo (2013). What has not been done is 
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the use of the GARCH model with the SIR filter. This thesis investigate the 

application SIR filter with the GARCH model. 

1.6 Organization of the study 

The study is outlined in five chapters. In Chapter 1, an introduction to research is 

presented. Chapter 2 contains literature review and a general framework of the 

study. The methodology employed in this study is discussed in Chapter 3. In 

Chapter 4, there is the discussion of result and findings from estimation problem 

of pricing financial instruments. Finally Chapter 5 presents the summary of 

findings, conclusion and recommendations.  
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Chapter 2 

Literature Review 

2.1 Introduction 

An option is a financial product usually called instrument whose value is obtained 

from the value of another asset hence it is called a ’derivative’. The method for 

pricing such instruments was more or less based on guesswork until 1973. In 

1973, Black and Scholes (1973) and Merton (1973) published their work on 

options. Since then, option pricing has been transformed into science by the 

Black-Scholes equation. This chapter deals with review of literature on pricing of 

options and the use of data assimilation methods in option pricing. 

2.2 Options 

In the financial world, an option is basically a contract, which does not oblige but 

give the right to an investor to either buy or sell a financial asset often called 

underlying asset S0. Options are bought at specific price known as strike price K 

and can be exercised or acted on, before or on expiration date (T). The sellers of 

these options also known as the writer, incur the obligation to buy or sell the 

underlying if the investor choose to exercise his right. Investors pay a premium 

for this right to writer. Options can either be a call option or put option. Call option 

give the investor the right to buy an underlying at a specific exercise price. A put 

option gives the investor the right to sell an underlying at a specific strike 

price. 

Options that are exercised at any time up to its expiration date are known as 

American Options whiles options that can only be exercised at its expiration date 

is referred to as European options, Hull (2006). 
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For American options to be profitable, the underlying asset’s price should be 

greater than the strike price in the case of a call option and in the case of put 

option the strike price should be greater than the underlying asset’s price. 

If we suppose the price of the underlying asset at time t is a random variable St:= 

S(t) with a strike price K,then the payoff from a call option at time of maturity is 

Vc(S,T) = max{S − K,0}. 

Also for a put option at time of maturity is 

(2.1) 

Vp(S,T) = max{K − S,0}. (2.2) 

2.3 Valuation of Financial Options 

Financial options are widely trade assets in the financial market thus there is the 

need for a structured method for determining it price. A simple way to determine 

the value of an option is whether or not it will likely be in-the-money or out-

themoney at expiration date. For a call option, it is in-the-money if S > K and out-

the-money, if S < K. A put option is in-the-money, if S < K and out-themoney, if S > 

K. The value of an option is known as the premium. The premium of an option is 

price paid by the buyer and amount received by the seller. The value of an option 

(Premium) can be broken down into two simple parts: - Intrinsic value: This is 

the difference between the price of the underlying asset and strike price. 

Intrinsic value = S − K (Call Option) (2.3) 

 = K − S (Put Option) 
 

(2.4) 

- Time value: This is the price paid for an option greater than its intrinsic value 

with a belief that before the expiration date the value of the option will increase 

due to favourable changes in the underlying price. For a greater time value, the 

option must spend longer time in the market. 

 Time value = Option Premium − Intrinsic V alue (2.5) 

A number of factor influence the value of an option. In Hull (2006), six major 

factors affect options: the price of underlying asset (S0), the strike price K, the 
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time of expiration T, the volatility of the price (σ), the risk free interest rate r, and 

the dividends expected during the life of the option. 

Table 2.1: Determinants of Option value 

Factors Call Value Put Value 

Increase in stock price Increase Decrease 

Increase in strike price Decrease Increase 

Increase in expiration 

time 

Increase Increase 

Increase in volatility Increase Increase 

Increase in interest rate Increase Decrease 

Increase in dividends Decrease Increase 

For greater accuracy and consistency, mathematical models are 

employed. The most famous of these models is the Black-Schole’s model (Black 

and Scholes (1973)) used for the pricing of European put and call option. 

A theoretical pricing formula for pricing option was derived by Black and Scholes 

(1973). The underlying principles of the formula are: if options are correctly 

priced in the market, it should not be possible to make sure profit by creating 

portfolios of long and short positions in options and their underlying assets. This 

model is useful to corporate liabilities such as traded stocks, bonds, commodities 

and index. 

Rubinstein (1983) worked on a option pricing formula that places the main 

source of risk on the risk of individual underlying assets. In relation to the Black-

Scholes equation, the displaced diffusion formula has several desirable features. 

The equation encompasses differential riskiness of the assets, their relative 

weights in price determination of the firm, the effect of firm debt and the effect of 

a dividend payment policy with constant and random components. 

In 1992, Gallant et al. (1992), worked on the joint dynamics of price changes and 

volume on the stock market making use of daily data on S&P composite index and 

total NYSE trading volume from 1928 to 1987. Nonparametric technique was 

used in achieving the set goals. Gallant et al. (1992) discovered that there was a 

positive and nonlinear relationship between daily trading volume and the 
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magnitude of the daily price change and that price change leads to volume 

movements. 

Heston (1993) developed a new technique, based on the Black-Scholes equation, 

to derive a closed-form solution to the pricing of an European call option on an 

asset with stochastic volatility. The model allows arbitrary correlation between 

volatility and spot assets returns. With the introduction of stochastic interest rate, 

Heston (1993) demonstrated how the model can be applied to bond options and 

foreign currency options. Result from Heston (1993) showed that correlation 

between volatility and the spot asset price is important in tell the story of return 

skewness and strike price biases in the Black-Scholes model (Black and Scholes 

(1973)). Hull and White (1987), Stein and Stein (1991) have also contributed to 

the literature on stochastic volatility option pricing. 

Pastorello et al. (2000) worked on the estimation of continuous-time stochastic 

volatility models for pricing options.They developed a Monte Carlo experiment 

which compared two strategies based on different information sets.Their basic 

assumptions were:An Ornstein-Uhlenbeck process for log of the volatility, a 

zerovolatility risk premium and no leverage effect. In their work, they kept to the 

framework with no over-identifying restrictions, which led to showing that 

estimation based on option prices were far more precise in samples of typical size 

for a given option pricing model. 

In Harrison and Pliska (1981), the value of American-styled option, is found, 

guided by the fundamental theorem of no arbitrage pricing. Also the solution to 

the European option pricing problem in a non-arbitrage, constant volatility 

framework is provide in the work of 4. A number of references on American 

option pricing include Brennan and Schwartz (1977), Broadie and Glasserman 

(1997), Detemple and Tain (2002), Geske and Johnson (1984). 
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2.4 Data Assimilation 

The application of data assimilation which is typically referred to the estimation 

of the state of a physical system given a model and observation, is specifically 

applied to option pricing. In Lahoz et al. (2010), the aim of a data assimilation 

scheme is to use measured observations in combination with a dynamical system 

model in order to derive accurate estimates of the current and future states of the 

system, together with estimates of the uncertainty in the estimated states. Data 

assimilation is interested in the flow and prediction of the state of processes 

where in most cases are time dependent. A model is useful and necessary to 

express the temporal changes of the process. Models that are time-dependent of 

this kind are called dynamical system or dynamical model. In Weisstein (2002), ” 

a means of describing how one state develops into another state over the course 

of time” is what defines a dynamical system. Thus a mathematical formulation of 

one or more factors assumed to influence the dynamics of a process is what we 

call a dynamical system. There are two kinds of dynamical systems: deterministic 

system and stochastic system. In a deterministic system, given an initial 

condition, the evolution of the system is completely expressed as a rule relating 

one state to the future state. Most deterministic system make a number of 

assumptions about a process which make them incomplete. To account for these 

assumptions, a stochastic term often referred to as system noise or model error 

is added to the deterministic system. Thus making such systems stochastic in 

nature. The focus of this thesis is stochastic systems. The combination of dynamic 

model and observation to obtain improved estimates is called data assimilation. 

Most data assimilation schemes are developed for more accurate estimate of the 

current and future state of dynamic system by use of measured observation and 

dynamic models. (Kalman (1960); Evensen (2003); Ott et al. (2004)). An 

analytical technique where observed data is accumulated into the model state by 

taking advantage of consistency constraints with laws of time evolution and 
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physical properties defines data assimilation by (Bouttier and Courtier (2009)). 

Errors in models often come from inaccurate parameters in the dynamic model. 

Data assimilation is often used to estimate the parameters. There are two 

approaches to data assimilation. These are variational and sequential data 

assimilation. Variational data assimilation makes use of observation from the 

future in instances of reanalysis and observation are processed in small 

batches,Bouttier and Courtier (2009). The focus of this thesis was sequential data 

assimilation. More specifically the thesis focused on sequential data assimilation 

to stochastic system. 

2.5 Sequential Data Assimilation 

In sequential data assimilation, observation are fed back into the model at each 

time these are available and a best estimate is produced and used to predict 

future states. To describe the sequential data assimilation technique, we assume 

a perfect dynamic system modeled by the equation 

xk = fk(xk−1,uk−1,vk;w) 

with the observational equation is given by: 

(2.6) 

yk = hk(xk,nk;w) (2.7) 

where: 

xk:the state vector at the time k, yk:the 

measurement vector, 

uk:an external input of the system, assumed known, vk:the process 

noise that drives the dynamic system, nk:the measurement noise 

corrupting the observation of the state, fk:a time-variant, linear or 

non-linear function, hk:a time-variant, linear or non-linear 

function, w: the parameters vector. 

Assuming that at time tk, prior background estimate  for the various states are 

known. The differences between the observations of the true states and the 
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observations predicted by the background states at this time (yk − hk(xck)), are 

then used to make a correction to the background state vector in order to obtain 

improved estimates xak referred to as the analysis states. The model is then 

evolved forward from analysis states to the next time tk+1 where observations are 

available. The evolved states of the system at time tk+1 become the background 

states and are denoted by xck+1. The background is then corrected to obtain an 

analysis at this time and the process is repeated. 

According to Barillec (2009), if the model and the observation operator are linear, 

and if all distributions are Gaussian, then the Kalman filter (Kalman (1960)) 

provides an optimal (variance minimising) solution to the filtering problem. If the 

operators are non-linear, sub-optimal methods can be derived. The Extended 

Kalman Filter (Jazwinski (1970); Maybeck (1979)) and the Ensemble Kalman 

Filter (Evensen (1994)) provide respectively a linearised and a Monte Carlo 

approximations to the Kalman Filter. Another Monte-Carlo approach, the Particle 

Filter (Doucet et al. (2001)), allows the Gaussian assumption to be relaxed. The 

Monte Carlo methods is a kind to stochastic sampling approach aiming to tackle 

the complex systems which are analytically intractable. This Monte Carlo 

methods are so powerful that they are able to attack the difficult numerical 

integration problems. Examples of these Monte Carlo methods include Bayesian 

Bootstrap, 

Hybrid Monte Carlo, Quasi Monte Carlo. 

2.6 Particle Filtering 

Particle filtering as a sequential Monte Carlo method is explored. The sequential 

Monte Carlo methods have become attractive due to the fact that they allow 

online estimation by combining the powerful Monte Carlo sampling methods with 

Bayesian inference, at an expense of reasonable computational cost. Particularly, 

the sequential Monte Carlo methods has been used in parameter estimation and 

state estimation where the latter is referred to as particle filter. The basic idea of 

particle filter is to use a number of independent random variables called particles, 
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sampled directly from the state space, to represent the posterior probability, and 

update the posterior by involving the new observations; the particle system is 

properly located, weighted and propagated recursively according to the Bayesian 

rule. The earliest idea of Monte Carlo method used in statistical inference is found 

in Handschin (1970) and Akashi and Kumamoto (1975), but the formal 

establishment of particle filter seems fair to be due to Gordon et al. (1993), who 

introduced novel resampling technique to the formulation. A number of 

statisticians also independently rediscovered and developed the sampling-

importanceresampling (SIR) idea (Kong et al. (1994), Smith and Gelfand (1992)), 

which was originally proposed by Rubin (1987) in a non-dynamic framework. 

The rediscovery of particle filters in the mid-1990s after a long dominant period, 

partially thanks to the ever increasing computing power. Recently, a lot of work 

has been done to improve the performance of particle filters which include Musso 

et al. (2001), Norton and Verse (2002), Torma and Szepesvari (2001). Most of 

these works are based on the work of Doucet et al. (2001). 

Chapter 3 

Methodology 

3.1 INTRODUCTION 

The Black-Schole’s equation which is used in the pricing of options is considered. 

In this chapter, analytical and numerical solutions to the Black-Schole’s equation 

is discussed. Data assimilation is considered next. Particle filtering is discussed as 

a data assimilation scheme. An investigation into the performance of numerical 

solution and Particle filter is conducted. 
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3.1.1 Black-Scholes 

In the build up of Black-Schole’s equation,it is necessary to understand the 

fundamental role of stochastic differential equation (SDE). 

Stochastic process is a parametrized collection of random variables  

Ω, defined on a probability space (ω,f,P) and take values in Rn. The price 

of underlying are often times very erratic and uncertain in nature. The value of a 

stock follows directly from Brownian motion, a form of stochastic process. 

Brownian motion,Wt, is a stochastic process, with three main properties: 

• Wt = 0 

• {W(t), t≥ 0} has stationary and independent increments. 

• Wt has independent increments with Wt − Ws ∼ N(0,t − s) for 0 ≤ s < t. 

Ito calculus is employed to solve the dilemma where Brownian motion is 

continuous everywhere and differentiable nowhere in tradition calculus. From 

the 

Taylor’s theorem, Ito calculus makes the following assumptions, called as Ito’s 

Multiplication Table in Table 3.1; 

Table 3.1: Ito’s Multiplication Table 

 dWt dt 

dWt dt 0 

dt 0 0 

Ito’s lemma for Brownian motion, which use Table 3.1 above, states the 

following: 

Assuming X(t)= Xt satisfies the following stochastic differential equation 
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dXt = µ(x,t)dt + σ(x,t)dWt 

and f(t,x) is any differentiable twice function of x,t. 

For 

(3.1) 

  (3.2) 

A stochastic process, Xt is called a geometric Brownian motion (GBM) with 

parameters µ and σ2 if its logarithm forms a Brownian motion with mean µ and 

variance rate σ2. 

The price of a stock follows a GBM process with µ and σ constant. Furthermore, 

the GBM satisfies the following stochastic differential equation: 

 dSt = µStdt + σStdWt (3.3) 

Where 

St is the underlying asset price at time t, µ is the 

rate of return on risk-less asset (or drift), σ 

captures the volatility of the stock, Wt represent a 

Brownian motion. 

3.1.2 Black -Scholes Model 

Black-Scholes model is a parabolic partial differential equation with a closed-form 

solution obtained by changing the equation by use of a change of variable into a 

heat equation. Then the Black-Schole equation has become a simple parabolic 

PDE whose solution is known since that the solution of heat equation is also 

known. 

ASSUMPTION 

The Black-Scholes model provides answers to the problem of option pricing by 

constructing a portfolio made up of cash, options, and underlying asset. By the 

use of the following assumption, analysis of Black and Scholes (1973) can be 

done: 
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• The underlying asset follows a lognormal random walk with µ and σ as 

constant. 

• The short selling of the underlying asset is permitted. 

• The risk-free interest rate, r is constant. 

• There are no transaction cost or taxes. 

• All asset are perfectly divisible. 

• There are no dividends on asset. 

• Trading in underlying asset can be done continuously. 

• There are no risk-less opportunities for arbitrage. 

3.1.3 The Black-Scholes Equation 

With the assumption that the underlying asset price, St follows the GBM, 

 dSt = µStdt + σStdWt (3.3) 

with µ and σ constant and Wt being a Brownian motion. The value of the option is 

denoted by V = V (S,t). 

With the help of Ito’s lemma, (3.1) becomes 

 

3.1.4 Portfolio 

To derive the Black-Scholes equation, we begin with a basic portfolio. Assuming 

the portfolio comprises of a call option of value V , a function of the stochastic 
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variable S and a deterministic variable t, with ∆ units of underlying asset with 

price S. Assuming Π is the value of a portfolio, then Π(0) = Π0. The value of the 

portfolio at time t is 

 Π = −V + ∆S (3.5) 

And an infinitesimal change in time period dt with ∆ remain constant, leads to a 

change in the value of the portfolio which is given by 

 dΠ = −V + ∆S (3.6a) 

 

Let 

 

gives a complete deterministic equation because of the dt term and the removal 

of terms associated with µ. We then have 

  (3.7) 

Letting ∆ =  removes all uncertainty and makes the portfolio riskless since there 

is no stochastic variable, dWt. 

If the risk free interest rate is r, then the portfolio becomes 

 dΠ = rΠdt (3.8a) 

(3.8b) (3.8c) 
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An investor exercise an option only when there is profit to be made. Due to the 

no-arbitrage principle, riskless portfolio cannot have value greater than the 

option’s portfolio, thus gives 

 (3.9) Thus the 

famous Black-Scholes partial differential equation is 

 = 0 (3.10) 

3.1.5 Transformation of Black-Scholes into the Diffusion 

equation 

The solution of the Heat equation is already known. Therefore transforming the 

Black-Scholes to the second order heat equation makes it easy to solve. 

With Black-Scholes equation in the form, 

 = 0 (3.10) 

Let be the change of the 

independent variable and let 

be the 

change in the dependent variable 

, 

Putting this back into (1) we have 

 = 0 (3.11) 
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Finally, the Black-Scholes equation can be reduced to a simple heat equation with 

these transformations: 

Constant transformations: 

. 

Variable transformations: 

. 

Therefore: 

V (S,t) = Kv(x,τ) (3.12a) 

v(x,τ) = e−γx−β2τu(x,τ). (3.12b) 

V (S,t) = Ke−γx−β2τu(x,τ). (3.12c) 

3.1.6 Pricing Call Option 

For a call option,the solution to Black-Scholes equation after transforming it into 

a heat equation gives the following results: 

u(x,0) = v(x,0)eγx. (3.13a) 

v(x,0) = max{ex − 1,0} 

Therefore 

(3.13b) 

  (3.14) 

Finally, the price of a Call Option is given by  

Vc(S,t) = Kv(x,τ) (3.15a) 

= SΦ(d1) − Ke−r(T−t)Φ(d2) (3.15b) 

With 
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 S = Kex ⇒ 

Where 

S is the stock price at time t, K is the strike price of the 

option, r is the risk-free interest rate, 

T is the maturity time, 

Φ(d) is the CDF of the standard normal distribution of d. 

3.1.7 Pricing Put Option 

The value of Put Option is very similar to that of a Call Option but the Put Option 

is the negative of the Call Option. So we obtain the following. 

 u(x,0) = v(x,0)eγx. (3.16a) 

  (3.16b) 

Giving 

 (3.17) Then finally, for a Put Option 

 Vp(S,t) = Kv(x,τ) (3.18a) 

 = Ke−r(T−t)Φ(−d2) − SΦ(−d1) (3.18b) 
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3.2 NUMERICAL SOLUTION 

Three different finite difference methods for the European style option will be 

used in solving the Black-Scholes equation. 

3.2.1 Finite Difference Methods 

The finite difference methods are used by approximating the continuous-time 

differential equation which shows how an option changes over time by a set of 

discrete-time difference equation.This discrete-time difference equation is then 

solved iteratively to find a price of the option 

The finite difference methods to be used include; 

• Implicit method 

• Explicit method 

• Crank-Nicolson method 

Implicit Finite difference method is considered in this thesis. The implicit method 

is more stable compared with the explicit method. But the Crank-Nicolson 

method is more stable than the implicit method. 

There is a direct relation between the truncation error and the rate of 

convergence. The explicit and implicit methods both converge at the rate of O(δt) 

and O(δS2). The Crank-Nicolson method converges at the rate of O(δt) and O(δS2) 

which is obviously faster compared to the explicit and implicit method. 

Hence the Crank-Nicolson method converges at the rates of O(δt) and O(δS2). This 

is a faster rate of convergence than either the explicit method, or the implicit 

method. Also the explicit method converges at the rates of O(δt) and O(δS2). This 

is the same convergence rate as the implicit method, but slower than the 

Crank-Nicolson method. Finally the implicit method converges at the rates of 

O(δt) and O(δS2). This is the same convergence rate as the explicit method, but 

slower than the Crank-Nicolson method. 
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3.2.2 Numerical Scheme 

The Implicit Finite Difference Method 

The Black-Scholes equation, 

 = 0 (3.19) 

the implicit finite difference method discretizes it by use of the following formulae 

- the forward approximation for  

 

- the central approximation for  

 

- the standard approximation for  

 

rewriting Black-Scholes equation,it becomes 

 

(3.20) 

Multiplying through by ∆t∆S2 and 

let 

 

[Vi,j+1−Vi,j]∆S2+a[Vi+1,j+Vi−1,j−2Vi,j]∆t+b[Vi+1,j−Vi−1,j]∆t∆S−rVi,j∆t∆S2 = 0 

(3.21) 

Let  and simplify making Vi,j+1 the subject 

Vi,j+1 = Vi.j + acVi+1,j + acVi−1,j − 2acVi,j + bdVi+1,j − bdVi−1,j − r∆tVi,j 

(3.22a) 

= [1 − 2ac − r∆t]Vi,j + [ac + bd]Vi+1,j + [ac − bd]Vi−1,j (3.22b) 
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= γVi,j + βVi+1,j + αVi−1,j (3.22c) 

where 

 

3.3 DATA ASSIMILATION 

Data assimilation is primarily interested with the use of observational data into 

mathematical models. The Bayesian view of data assimilation where prior 

information about a system is combined with data to give a posterior distribution. 

Data assimilation involves observing a physical process by use of a model and 

observed data. There are basically two component of Data Assimilation: a model, 

which give to the best possible degree the process of interest, and observations, 

which help in estimating the model parameters (the state) in space and in time 

if applicable. 

There are two major ways to discuss data assimilation. The deterministic 

approach where a single optimal estimate of the true process is sought after and 

the stochastic approach where the uncertainty associated with estimate is 

considered. The Bayesian framework for the formulation of the stochastic data 

assimilation is considered, where the probability distribution of the estimate is 

followed instead of the estimate only. 

3.3.1 Dynamical System 

According to Weisstein (2002), a dynamical system can be defined as a means of 

describing how one state develops into another state over the course of time. The 

mathematical formulation that provides factors assumed to be responsible for the 
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dynamic process is a dynamic system. The main design of any dynamic system is 

to understand and reproduce the evolutionary phenomena observed in the real 

world. 

The major interest of data assimilation is to track and predict the state of process 

and in most application, these processes are time dependent. The required model 

to express such temporal change of the process are often referred to as dynamical 

systems or dynamical models. These dynamical system can further be classified 

into deterministic systems or stochastic systems. 

3.3.2 Deterministic System 

The deterministic character of a dynamic system is, for a given initial condition 

x0, the future transformation of the system is completely determined. This 

transformation of a deterministic system may be expressed as a rule relating the 

state of the system at a given instant to its state at a later time. A differential 

equation is generally used in expressing this rule. 

 ) (3.23) 

where f is the system operator responsible for propagating the state forward in 

time. 

3.3.3 Stochastic System 

Physical phenomenon is a result of many causes but only the most important is 

identified and use in deterministic system. Most phenomenon are approximated 

by an incomplete system. To account for the approximation between the true 

process and the system, a stochastic term is added to the deterministic system. 

 ) (3.24) 
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h(x,t) represent effect of all the unrepresented factors in the model and is often 

referred to as system noise or model error. 

3.3.4 Stochastic Approach 

The stochastic approach of data assimilation in the dynamic framework is 

considered. The state of the model and the state of the observation are related as 

follows: 

xt = mt(xt−1) + ηt (3.25a) 

yt = ht(xt) + εt (3.25b) 

One concern lies in evaluating the joint probability density function of the state 

specified for all observations up to which includes a specified time t: p(Xt|Yt). 

For the model and observation equations that are linear with Gaussian 

distribution, the Kalman filter (Kalman (1960)) gives an optimal solution which 

minimises the variance to the filtering problem. The Extended Kalman Filter 

(Jazwinski (1970); Maybeck (1979)) gives a linear approximation to the Kalman 

filter whiles the Ensemble Kalman Filter (Evensen (2003)) provides a Monte 

Carlo approximation as well. The Particle Filter (Doucet et al. (2001)) is another 

Monte-Carlo approximation that helps in dealing with non-Gaussian 

distributions. Particle Filtering is discussed in the remaining of section. 

3.3.5 Bayesian Framework 

Suppose data x = (x1,...,xn) with distribution p(x|θ) where θ is the unknown 

parameter we want to estimate. The basic idea of the Bayesian approach is to 

treat the parameter θ as a random variable and to use a priori knowledge of the 

distribution π(θ) of θ and then to estimate θ by calculating the a posteriori 

distribution π(θ|x) of θ. 

The one-dimension case. 

In the one-dimensional case the a posteriori distribution π(θ|x) of θ is calculated 

by the so called Bayes0sformula using the priori distribution π(θ|x) as follows 
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  (3.26) 

where the denominator is a proportionality making the total a posteriori 

probability equal to one. Now by using the posterior distribution π(θ|x) the 

parameter θ can be estimated by the mean θˆ = E[π(θ|x)]. 

Multi-dimension case. 

In the multi-dimensional case θ = (θ1,...,θk), the a posteriori distribution of θ can 

be calculated by the Bayes formula as follow 

 . (3.27) 

By using the marginal distribution π(θi|x) of the joint posterior distribution π(θ|x) 

 Z Z 

 π(θi|x) = ... π(θ|x)dθ1...dθi−1dθi+1...dθk (3.28) 

θ is estimated by the ways described in the one - dimensional case. Usually 

problems arise in calculating the integrals in equation which require 

approximation techniques as Markov Chain Monte Carlo Methods (MCMC). 

3.3.6 Framework 

The hidden system state xk, with initial probability density p(x0), over time 

changes to be a partially observed first order Markov process according to the 

conditional probability density p(xk|xk−1). The observations yk are conditionally 

independent given the state and are generated according to the conditional 

probability density p(yk|xk). The evolution of the state is produced by the 

Transition equation: 

 xk = fk(xk−1,uk−1,vk;w), (3.29) 

and the Measurement equation is given by: 



 

26 

 yk = hk(xk,nk;w), (3.30) 

where: 

xk:the state vector at the time k, yk:the measurement vector, uk:an 

external input of the system, assumed known, vk:the process noise 

that drives the dynamic system, nk:the measurement noise 

corrupting the observation of the state, fk:a time-variant, linear or 

non-linear function, hk:a time-variant, linear or non-linear 

function, w: the parameters vector. 

The state transition density p(xk|xk−1) is fully specified by fk and the process noise 

distribution p(vk), whereas hk and the observation noise distribution p(nk) fully 

specify the observation likelihood p(yk|xk). 

3.4 PARTICLE FILTERING 

The Particle Filter is a filter that is based on the Monte Carlo methods. The Monte 

Carlo methods gives an approximation to continuous distribution by use of a 

discrete set of samples {xi}i=1:N called ”particles”. This filter does not require the 

state’s probability density function to be Gaussian. 

Let the system be: 

xk = fk(xk−1,uk−1,vk;w), 

 yk = hk(xk,nk;w), (3.31) 

The algorithm of Particle filter is made up of the following steps:Initialization, 

Prediction, Updating and Resampling. 

According to Dablemont et al. (2009), during the initialization, sampling is taken 

N times from the initial distribution η0. By sampling xi from a distribution µ, for i 

= 1,...,N, a simulation of N independent random samples, named particles, 
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according to µ. Hence, the N random variables xi for i = 1,...,N are independent and 

identical distributed (i.i.d.) according to η0. Afterwards, the values of the particles 

are predicted for the next time step according to the dynamics of the state Markov 

process. During the ”Updating” step, each predicted particle is weighted by the 

likelihood function gk(yk − hk(.)), which is determined by the observation process. 

The ”Resampling” step can be view as a special case of a ”Selection” step. The 

particles are selected in accordance with the weighting function gk. This step gives 

birth to some particles at the expense of light particles which die. 

3.4.1 Sequential Importance Sampling 

The Sequential Importance Sampling (SIS) has always been a Monte Carlo MC 

method at the foundation of most sequential Monte Carlo filters developed for a 

number of years now. A recursive Bayesian filter by Monte Carlo simulation is 

implemented in SIS. The working technique of particle filters is as follows: The 

state-space is partitioned into many parts, where the particles fill in based on a 

probability measure. With higher probability comes a concentration of denser 

particles. The particle system evolves with state equation along with time. The 

evolving pdf is represented by a number of particles provided by the random 

sampling of the state space. This ramdom sampling of the state space is an 

approximation of the initial pdf. There is always a difficult in sampling posterior 

density model, since it is unknown. An alternative distribution is chosen for the 

purposes of efficient sampling. 

For the detailed algorithm, let  for i = 1,...,Ns a Random measure that 

characterizes the posterior pdf p(x0:k|y1:k), where  for i = 1,...,Ns is a set of 

support points with associated weight  for i = 1,...,Ns and x0:k = {xj,j = 0,...,k} is 

the posterior density at k can be approximated as 

Ns 

 p(x0:k|y1:k) ≈ Xwiδ(x0:k − xi0:k) ≡ pˆ(x0:k|y1:k) (3.32) 
i=1 
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where  are assumed to be i.i.d. drawn from p(x0:k|y1:k). For sufficiently large 

Ns, ˆp(x0:k|y1:k) give an approximation of the true posterior p(x0:k|y1:k). The mean 

of a nonlinear function can be estimated by this approximation. 

Z 

 E[f(x0:k)] = f(x0:k)pˆ(x0:k|y1:k)dx0:k (3.33a) 

 (3.33b) 

 (3.33c) 

The proposal distribution which is an easy-to-implement distribution from where 

the sampling is done. This is denoted by q(x0:k|y1:k), therefore 

(3.34a) 

(3.34b) (3.34c) 

where wk(x0:k) 

are the unnormalized importance weights, and are given by 

  (3.35) 

Then 

(3.36a) 

(3.36b) 

where Eq[.] denotes the expectations taken over the proposal distribution 

q(x0:k|y1:k). The independent identical distribution (iid) sample is drawn from 

thee proposal distribution q(x0:k|y1:k), gives an approximation of the expectation by: 

  (3.37) 



 

29 

Nx 

 = Xw˜k(i)f(x(0:i)k), (3.37b) 

i=1 

where ˜ denotes the normalized importance weights are provided by: 

  (3.38) 

If the proposal distribution has the form: 

 q(x0:k|y1:k) = q(x0:k−1|y1:k−1)q(xk|x0:k−1,y1:k) (3.39a) 
k 

 = q(x0)Yq(xj|x0:j−1,y1:j) (3.39b) 
j=1 

With the assumptions that the states corresponds to a first order Markov process 

and the observations are conditionally independent given the states, we obtain: 

k 

p(x0:k) = p(x0)Yp(xj|xj−1) 
j=1 

(3.40a) 

k 

p(y1:k|x0:k) = Yp(yj|xj) (3.40b) 
j=1 

factorizing the posterior distribution to obtain: 

(3.41a) 

) (3.41b) .

 (3.41c) 

Also factorizing a recursive estimate for the importance weights to obtain: 

  (3.42a) 

  (3.42b) 
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Also, if ), then the importance density depends 

on only xk−1 and yk. The modified weight is: 

 , (3.43) 

and the posterior filtered density p(xk|y1:k) can be approximated as: 

Nx 

 p(xk|y1:k) ≈ Xwk(i)δ(xk − x(ki)), (3.44) 
i=1 

where the weights are defined in (48). It can be shown that as Nx → ∞ the 

approximation (49) approaches the true posterior density p(xk|y1:k). 

The SIS algorithm consists of recursive propagation of the weights and points as 

each measurement is received sequentially. A pseudo-code description of this 

algorithm is provided by algorithm 1. 

 

3.4.2 Degeneracy Problem 

A major setback with the SIS particle filter is the degeneracy phenomenon, in that 

after a few iterations, all but one particle will have negligible weight. Doucet 

(1998) has shown that the variance of the importance weights can only increase 

over time and so it is impossible to avoid the degeneracy phenomenon. A large 

computational effort is put into updating particles whose contribution to the 

approximation to p(xk|y1:k) is almost zero. One approach to dealing with this 

situation, is the use of a very large number of particles Ns. But this approach is 

[ { x i k ,w i k } N s 
i =1 ] = SIS [ { x i k ,w i k } N s 

i =1 ,y k ] 
for i = 1 ; N 

s do 
Draw x i k ∼ q ( x 

( i ) 
k | x 

( i ) 
0: k − 1 ,y k ) 

Evaluate the importance weights up to a normalizing constant 

w 
( i ) 
k = w 

( i ) 
k − 1 

p ( y k | x i k ) p ( x ( i ) k | x ( i ) k − 1 ) 
q ( x ( i ) k | x ( i ) 0: k − 1 ,y k ) 

, 

end for 

Algorithm1: SISParticleFiltering 
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often very impractical. A good choice of Importance density and the use of 

Resampling are two alternative method to the solve the degeneracy problem. 

3.4.3 Resampling 

The elimination of particles which have small weights and the concentration on 

particles with very large weights is the underline idea of resampling. This method 

involves generating a new set  for i = 1,...,Ns by resampling with replacement 

Ns times from an approximate discrete representation of p(xk|y1:k) given by 

Ns 

 p(xk|y1:k) ≈ Xwki δ(xk − xik) (3.45) 
t=1 

so that . The resulting sample is in fact an i.i.d sample from 

the discrete density (6), and the weights are not reset to . The systematic 

resampling Kitagawa (1996) is implemented in algorithm 2 since it is simple to 

implement, takes O(Ns) and minimises the MC variation. For each resampled 

particle , this resampling algorithm also stores the index of its parent, denoted 

by ij. 

A generic particle filter is described by algorithm 3. 

] = RESAMPLE [  

Initialize the CDF: c1 = wk1 

for i = 2 : Ns do 

Construct CDF: 

end for 

Start at the bottom of the CDF: i = 1 Draw 

a starting point: uj ∼ U(0,Ns−1) for j = 1 : Ns 

do 

Move along the CDF: 

while uj > ci do 

i = i + 1 end while 
Assign sample: 
Assign weight: 
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Assign parent: ij = i end 

for 

Algorithm 2: Resampling Particle Filtering  
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Algorithm 3: Generic Particle Filtering 

3.4.4 Sampling Importance Resampling Filter 

The Sampling Importance Resampling (SIR) filter proposed in Gordon et al. 

(1993) is a Monte Carlo method that can be applied to recursive Bayesian filtering 

problems. The assumptions required to use the SIR filter are very weak. 

• The state dynamics and measurement function, fk(.,.) and hk(.,.) in (3.29) and 

(3.30)respectively, needs to be known. 

• It is required to be able to sample realizations from the process noise 

distribution of vk−1 and from the prior. 

• The likelihood function p(yk|xk) needs to be available for pointwise 

evaluation (at least up to proportionality). 

It is easy to derive the SIR algorithm from the SIS algorithm by an 

appropriate choice of: 

• The importance density: q(xk|xik−1,y1:k) is chosen to be the prior density 
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p(xk|xik−1), 

• Resampling step: to be applied at every time index. 

A sample xik ∼ p(xk|xik−1) can be generated by first generating a process 

noise sample vki−1 ∼ pv(vk−1) and setting xik = fk(xki−1,vki−1), where pv(.) is the pdf of 

vk−. For this particular choice of importance density, it is evident that the weights 

are given by 

 . (3.46) 

However, noting that resampling is applied at every time index, given wki− = N1 ∀i 

and so 

 ) (3.47) 

The weights given by the proportionality is (7) are normalized before the 

resampling stage. The iteration of the algorithm is described by algorithm 4. 

 
Algorithm 4: SIR (Bootstrap) Particle Filtering 

3.5 Application of Particle Filtering 

This section looks at the implementation of the particle filtering method 

discussed in this chapter to the Black-Scholes European call option and the 

GARCH model. The Generalized Autoregressive Conditional Heteroskedasticity 

GARCH model was first introduced by Bollerslev (1986) in the parameterization 

form. The model is a weighted average of past squared residuals, with declining 

[ { x i k ,w i k } N s 
i =1 ] = SIR [ { x i k − 1 ,w i k − 1 } N s 

i =1 ,y k ] 
for i = 1 : N 

s do 
Draw x i k ∼ p ( x k | x i k − 1 ) 
Calculate w i k = p ( y k | x i k ) 

end for 
Calculate total weight; t [ = SUM { w i k } N s 

i =1 ] 
for i = 1 : N 

s do 
Normalize: w i 

k = t − 1 w i 
k 

end for 
Resample using algorithm 2: 
[ { x 

j ∗ 
k ,w 

j 
k ,i 

j } N s 
j =1 [ ] = RESAMPLE { x i k ,w i k } N s 

i =1 ] 
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weights that never goes to zero completely. The standard GARCH(1,1) is of the 

form: 

 dVt = xn = ω + αun−1 + βvn−1 + wn (3.48) 

The experimental setup used seek to investigate the performance of the SIR 

method. The effect of the process noise, measurement noise and the number of 

particle on the performance of the SIR method is investigated. 

In applying the particle filtering, the GARCH model estimates the variance 

from the underlying stock returns. The state therefore becomes the variance x 

with control signal being stock returns u and the observations are option price 

c. The state or dynamic equation therefore is; 

 xn = ω + αun−1 + βvn−1 + wn (3.49) 

where wn is the normally distributed noise term and ω is the long run average 

volatility. The state equation as α + β < 1 as a constraint. The non-linear 

observation equation thus is the standard Black-Scholes equation for an 

European call option: 

 C = S0N(d1) − Ke−rT N(d2) (3.50) 

where 

 
√ 

d2 = d1 − x T 

The experiment is setup to test the performance of SIR in the estimation 

of volatility as the process noise is varied at different underlying price S0 for a call 

option. This was achieved by setup of different experiment for varying the process 
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noise, measurement noise and number of particles to evaluate the performance 

of the SIR. 

In the first experiment, the process noise is varied P0 = [0.5,1,5] in order to 

estimate volatility with time t = 1,2,...,100. Figures 3.1 displays volatility with time 

when the process noise is at P0 = [0.5,1,5] for the underlying stock price S0 of $60 

respectively. 

 

Figure 3.1: The estimated volatility over time of 100 days with a process noise of 

P0 of 1 at an underlying price S0 of $60 and a strike price K0 of $50. 

 

Figure 3.2: The estimated volatility over time of 100 days with a process noise of 

P0 of 0.5 at an underlying price S0 of $60 and a strike price K0 of $50. 
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Figure 3.3: The estimated volatility over time of 100 days with a process noise of 

P0 of 5 at an underlying price S0 of $60 and a strike price K0 of $50. 

Table 3.2: RMSE of Particle Filter for various process noise 

RMSE OF Particle Filter for P0 

Underlying 

Price 

0.5 1 5 

40 0.2220 0.2145 0.8882 

50 0.1212 0.1974 1.1781 

60 0.3424 0.4282 NaN 

Table 3.2 shows the root means square error of the SIR when the process 

noise is at P0 = [0.5,1,5]. It is observed that the SIR performs better when the 

process noise P0 of 0.5 for underlying asset price S0 of $50 and $60. This is so 

because of the low RMSE it produce compared to P0 of 1 and P0 of 5. Plot of 

volatility at P0 of 0.5 displayed in Figure 3.2 show the better estimation of SIR 

compared to the volatility at P0 of 1, and at P0 of 5. 

The next experiment vary the measurement noise while other 

parameters are kept fixed. Table 3.3 summarizes the performance of the SIR 

under varying measurement noise. Figure 3.2 also display the volatility with time 

of 100 days at an underlying asset price of $60. 

 

Figure 3.4: The estimated volatility over time of 100 days with a measurement 

noise of M0 of 1 at an underlying price S0 of $60 and a strike price K0 of $50. 
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Figure 3.5: The estimated volatility over time of 100 days with a measurement 

noise of M0 of 0.5 at an underlying price S0 of $60 and a strike price K0 of $50. 

 

Figure 3.6: The estimated volatility over time of 100 days with a measurement 

noise of M0 of 5 at an underlying price S0 of $60 and a strike price K0 of $50. 

Table 3.3: RMSE of Particle Filter for various measurement noise 

RMSE OF Particle Filter for M0 

Underlying 

Price 

0.5 1 5 

40 0.2022 0.2131 0.2889 

50 0.1907 0.1910 0.2540 

60 0.4426 0.4328 0.4054 

Table 3.3 reveals that the estimate best when the underlying asset price 

is equal to the strike price ie S0 = $50 = K0. The SIR performs poorly at S0 of $60 

given the highest RMSE for all measurement noise tested. In order to be 

profitable, the call option should have underlying asset S0 ¿ K0 the strike price. 

With interest in the performance of SIR at S0 of $60, the SIR performance best at 

high measurement noise M0 as suggested by measurement noise M0 of 5 with 

RMSE of 0.4054 and poorly at low measurement noise in the case of M0 of 0.5 with 

RMSE of 0.4426. 
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Finally, an experiment to investigate the performance of SIR when the number of 

particle (nPF) in SIR is varied is performed. The process noise and measurement 

noise is kept at 1 respectively. Figures 3.7,3.8,3.9 also shows volatility over time 

for 100 days. A summary of result of the performance of SIR in terms of RMSE is 

displayed in Table 3.4. 

 

Figure 3.7: The estimated volatility over time of 100 days with 1000 particles 

 

Figure 3.8: The estimated volatility over time of 100 days with 10000 particles 
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Figure 3.9: The estimated volatility over time of 100 days with 100000 particles 

Table 3.4: RMSE of Particle Filter for different number of particle 

RMSE OF Particle Filter for nPF 

Underlying 

Price 

1000 10000 100000 

40 0.2158 0.2161 0.2211 

50 0.1957 0.2139 0.2263 

60 0.4352 0.4603 0.4862 

The experimental result in Table 3.4 indicates that the RMSE of SIR 

increases as the number of particles nPF increases. This indicate that the SIR 

performs best with a small number of particles.  
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Chapter 4 

Analysis 

4.1 Introduction 

In this chapter,a number of experiments are performed by the use of the particle 

filtering method. The results of the predictions of volatility of financial options in 

the Black-Scholes models by the use of the particle filter specifically the bootstrap 

method is outlined. The estimates were obtained for 100 samples and experiment 

was repeated 100 times given a mean value, with associated variances similar to 

zero. Synthetic data is generated and used in evaluation of the pricing algorithm. 

At the foundation of the option pricing is the famous Black-Scholes model. The 

partial differential equation describes the Black-Scholes model best. 

 = 0 (4.1) 

where V (S,t) is a European put or call option with an underlying asset price Sand 

at time t, r(t) is the risk free interest rate with volatility of underlying asset σ. The 

Black-Scholes model describes the European call option Vc(S,t) and put option 

Vp(S,t) with no-dividend payment on stocks as: 

Vc(S,t) = SΦ(d1) − Ke−r(T−t)Φ(d2) (4.2) 

Vp(S,t) = Ke−r(T−t)Φ(−d2) − SΦ(−d1) (4.3) 

where K is the strike price, T − t is the time until expiration. Φ(.) is the cumulative 

normal distribution function and d1 and d2 are: 
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The hidden states is the volatility of underlying states whereas the call and put 

options are considered as the output observation. The input observations are the 

current value of underlying asset price and the time to maturity. Thus the model 

setup represents a parameter estimation problem with the observation equation 

given by Equation 4.2 and Equation 4.3 which allows us to compute for the 

daily probability distributions for the volatility whiles keeping the risk free rate 

constant. 

4.2 Result and Discussion 

4.2.1 Call Option 

Figure 4.1 and figure 4.2 present the estimated volatility and the estimated price 

with respect to time at underlying price S0= $50 and $60 respectively, with strike 

price K=$50, for a call option. 

 

Figure 4.1: The estimated volatility at an underlying price of $50 over time of 100 

days 
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Figure 4.2: The estimated volatility at an underlying price of $60 over time of 100 

days 

 

Figure 4.3: The estimated price at an underlying price of $50 over time of 100 
days 

 

Figure 4.4: The estimated price at an underlying price of $60 over time of 100 
days 

Table 4.1: Estimated mean volatility and RMSE for a Call Option 

Call Option  

Underlying Price Mean PF RMSE PF 

50 0.0304 0.2157 

60 0.0063 0.3440 
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Table 4.1 provides the root mean square error RSME showing the 

performance of the particle filter. 

4.2.2 Put Option 

The estimated volatility and price over time for a put option is displayed in figure 

4.3 and 4.4 respectively. These estimates where obtained for an underlying stock 

price of $40 and $50 respectively at a strike price of $50 over a 100 days time 

period. 

 

Figure 4.5: The estimated volatility at an underlying price of $40 over time of 

100 days 

 

Figure 4.6: The estimated volatility at an underlying price of $50 over time of 100 

days 
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Figure 4.7: The estimated price at an underlying price of $40 over time of 100 
days 

 

Figure 4.8: The estimated price at an underlying price of $50 over time of 100 
days 

Table 4.2: Estimated mean volatility and RMSE for a Put Option 

Put Option  

Underlying Price Mean PF RMSE PF 

40 0.0218 0.2823 

50 0.0339 0.2156 

Table 4.2 provides the estimated mean volatility and the root mean 

square error RSME showing the performance of the particle filter. Mean volatility 

decrease as the underlying price S decrease from the position where underlying 

price is equal to strike price K of $50. Whiles RMSE increase as underlying price 

decrease from $50 to $40.  
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Chapter 5 

Conclusion 

5.1 Introduction 

This study has investigated the performance of the Sampling Importance 

Resampling(SIR) also known as the bootstrap filter by taking into consideration 

the effect of different process noise, different measurement noise, different 

number of particles. The bootstrap filter was implemented by use of synthetic 

data. A comparison test for when the options are profitable (in the money) was 

performed for both put and call options. This Chapter present conclusion and a 

number of recommendations. 

5.2 Conclusion 

Gorden et al. (1993) proposed the SIR filter. SIR filter was implemented under the 

following of scenarios: 

• effect of different underlying price 

• effect of different process noise on filter 

• effect of different measurement noise of filter 

• effect of different number of particles of SIR filter. 

At different process noise, SIR filter was found to perform better when 

P0 < 1. In term being in-the-money for a call option, SIR filter still performed 

better when process noise P0 < 1. At-the-money (S = K), SIR filter performed 
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well when process noise was P0 < 1 whiles performing poorly in-the-money 

(S > K) Generally, the SIR filter performed well at low measurement noise 

M0 < 1. In-the-money, a measurement noise M0 > 1 is required for a call 

option for a good performance of SIR filter. Also the performance of SIR 

filter is better at-the-money when compared with inthe-money for 

measurement noise. The performance of SIR filter improved as number of 

particles decreased. This is shown in the fact that the RMSE declined as the 

number of particles also declined. Once again, the SIR filter performs better 

at-the-money than in-the-money. 

 5.3 Recommendation 

On the basis of our findings, it is recommended that the process noise, 

measurement noise and number of particles should be minimal. A 

performance comparison of Auxiliary SIR particle filter and Regularized 

particle filter in option pricing. 
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