

USING NATURAL REPRODUCTION PROCESSES (CROSSOVER, MUTATION

AND EVOLUTION) TO SOLVE SOME SPECIAL COMPLEX FUNCTIONS

BY

EMMANUEL SARKODIE ADABOR (BSC. MATHEMATICS)

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS,

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY (APPLIED MATHEMATICS)

COLLEGE OF SCIENCE

JUNE 2012

ii

DECLARATION

This thesis is a true work of the undersigned candidate and that it has not been submitted in

any form to any organization, institution or body for the award of any degree. All inclusions

as well as references from works of previous authors have been duly acknowledged.

Emmanuel Sarkodie Adabor (PG5069210) ………………………… ……………….....

 Signature Date

Certified by …………………………… …………………

J. Ackora-Prah Signature Date

Mr. F. K. Darkwah ………………………… …………………

Head of Department Signature Date

iii

ABSTRACT

In recent years, Genetic Algorithms (GAs) have become increasingly robust and easy to use.

Current knowledge and many successful experiments suggest that the application of GAs is

not limited to easy-to-optimize unimodal functions. This work has as its objective to

demonstrate the suitability of Genetic Algorithms in optimizing complex, multivariable and

multimodal functions. In the quest to establish this objective, a Genetic Algorithm was used

to solve three standard complicated functions namely Rosenbrock‟s function, Schwefel‟s

function and the Rastrigin‟s function. These functions are classified as standard/benchmark to

test the quality of an optimization procedure based on the difficulty of the techniques to

obtain the global minimum. A MATLAB function for the Genetic Algorithm was

implemented to establish the general solutions and then consequently the conclusion. It was

found after simulations that the global minimum for the two dimension Rosenbrock‟s

function was 0.0000496 which occurred at the point (1.0070, 1.0140); global minimum of the

one dimension Rastrigin‟s function was 0.00000000239 which occurred at the point

0.00000347; and the global minimum of the Schwefel‟s function of a single variable was -

418.9829 and it occurred at the point 420.9618. Similar results were also obtained for the

Rastrigin‟s function with five variables. The GA was recommended for the optimization of

multimodal functions with huge number of local extremes and other problems with the

behaviour of the Rosenbrock‟s function, Rastrigin‟s function or the Schwefel‟s function.

iv

TABLE OF CONTENTS

DECLARATION .. II

ABSTRACT ... III

TABLE OF CONTENTS ... IV

LIST OF TABLES.. VI

LIST OF FIGURES ... VII

DEDICATION .. VIII

ACKNOWLEDGEMENT ...IX

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 CLASSIFICATION OF METHODS ... 1

1.2 BACKGROUND .. 2

1.3 STATEMENT OF PROBLEM ... 4

1.4 OBJECTIVE ... 4

1.5 METHODOLOGY ... 5

1.6 JUSTIFICATION ... 6

1.7 SCOPE / ORGANIZATION OF STUDY ... 7

CHAPTER 2 ... 8

LITERATURE REVIEW .. 8

2.0 INTRODUCTION .. 8

2.1 DEVELOPMENT OF EVOLUTIONARY COMPUTATION ... 8

2.1.1 DEVELOPMENT OF GENETIC ALGORITHMS ... 8

2.1.2 DEVELOPMENT OF GENETIC PROGRAMMING .. 9

2.1.3 DEVELOPMENT OF EVOLUTIONARY STRATEGIES ... 11

2.1.4 DEVELOPMENT OF EVOLUTIONARY PROGRAMMING (EP) .. 12

2.2 LITERATURE REVIEWS OF GENETIC ALGORITHMS .. 12

CHAPTER 3 ... 25

METHODOLOGY ... 25

3.0 INTRODUCTION .. 25

3.1 GENETIC ALGORITHM .. 25

3.1.1 BASIC OPERATORS USED IN GA .. 29

3.1.2 SELECTION .. 33

3.1.3 CROSSOVER .. 39

3.1.4 MUTATION .. 42

3.1.5 REPLACEMENT ... 43

3.1.6 SEARCH TERMINATION ... 45

3.2 THE BUILDING BLOCKS... 47

3.2.1 Building Block Hypothesis .. 48

3.2.2 The Schema Theorem .. 49

3.2.3 Implicit Parallelism .. 51

3.2.4 The No Free Lunch Theorem .. 52

v

3.2.5 Distinction between Genetic Algorithms with other Optimization Techniques 53

3.3 CONVENTIONAL OPTIMIZATION AND SEARCH TECHNIQUES .. 59

3.3.1 SIMULATED ANNEALING .. 60

3.3.2 STOCHASTIC HILL CLIMBING .. 62

CHAPTER 4 ... 64

APPLICATION OF GENETIC ALGORITHM TO SOLVE SPECIAL FUNCTIONS 64

4.0 INTRODUCTION .. 64

4.1 LITERATURE BENCHMARK ... 64

4.2 SOLVING OF ROSENBROCK‟S FUNCTION OR VALLEY .. 66

4.3 SOLVING OF RASTRIGIN‟S FUNCTION .. 68

4.4 SOLVING OF SCHWEFEL‟S FUNCTION .. 70

CHAPTER 5 ... 74

CONCLUSION AND RECOMMENDATIONS .. 74

5.1 CONCLUSION .. 74

5.2 RECOMMENDATIONS ... 75

REFERENCES ... 76

APPENDIX A ... 79

M-FILE FOR GENETIC ALGORITHM .. 79

APPENDIX B ... 90

M-FILES FOR OBJECTIVE FUNCTIONS ... 90

vi

LIST OF TABLES
TABLE 3.1: COMPARISON OF NATURAL EVOLUTION WITH GENETIC ALGORITHM TERMINOLOGY ... 27

TABLE 3.2: SELECTION .. 56

TABLE 3.3: CROSSOVER .. 58

TABLE 3.3: MUTATION ... 59

TABLE 4.1: SUMMARY OF RESULTS.. 73

vii

LIST OF FIGURES
FIGURE 1.1: CATEGORIES OF TECHNIQUES .. 3

FIGURE 1.3: OVERVIEW OF GENETIC ALGORITHM .. 5

FIGURE 1.2: THE SEARCH FOR LOCAL MINIMUM .. 6

FIGURE 2.1: SUBTREE CROSSOVER OF PARENTS 1 AND 2 TO FORM OFFSPRING 1 AND 2 ... 10

FIGURE 2.12: GAUSSIAN MUTATION OF PARENT TO FORM A CHILD .. 11

FIGURE 2.13: ANALYTIC DFT PARAMETERS ARE OPTIMIZED USING A PARALLEL GENETIC ALGORITHM AGAINST THE EXTENDED G2 SET

OF MOLECULES’ ATOMIZATION ENERGIES. .. 21

FIGURE 3.1: BIT-STRING CROSSOVER OF PARENTS TO FORM OFFSPRING .. 28

FIGURE 3.2: BIT-FLIPPING MUTATION OF PARENT TO FORM OFFSPRING .. 28

FIGURE 3.3: THE REPRESENTATION OF GENOTYPE AND PHENOTYPE. .. 30

FIGURE 3.4: EXAMPLE OF POPULATION ... 31

FIGURE 3.5: PERMUTATION ENCODING .. 32

FIGURE 3.6: VALUE ENCODING .. 33

FIGURE 3.7: STOCHASTIC UNIVERSAL SAMPLING .. 38

FIGURE 3.8: SINGLE POINT CROSSOVER .. 40

FIGURE 3.9 MUTATION FLIPPING .. 42

FIGURE 3.10: ROULETTE WHEEL ... 56

FIGURE 4.1: OVERVIEW OF ROSENBROCK’S FUNCTION .. 67

FIGURE 4.2: SIMULATION OF FITNESS VALUES WITH RESPECT TO GENERATION (ITERATION) OF ROSENBROCK’S FUNCTION 68

FIGURE 4.3: OVERVIEW OF THE RASTRIGIN’S FUNCTION .. 69

FIGURE 4.4: SIMULATION OF FITNESS VALUES WITH RESPECT TO GENERATION (ITERATION) OF RASTRIGIN’S FUNCTION 70

FIGURE 4.5: OVERVIEW OF SCHWEFEL’S FUNCTION .. 71

FIGURE 4.6: SIMULATION OF FITNESS VALUES WITH RESPECT TO GENERATION (ITERATION) OF SCHWEFEL’S FUNCTION 72

viii

DEDICATION

This work is dedicated to all those who will benefit from this work

ix

ACKNOWLEDGEMENT

To God be the glory for the great things He has done.

Firstly, I thank God for all things because it is from him and through him and to him are all

things.

I also thank my supervisor, Mr. J. Ackora-Prah, for his guidance and painstakingly

supervising his work despite his busy schedule. May his heart desires be the will of God for

his life.

Many thanks to Dr. S. K. Amponsah and family for their immense support both physically

and spiritually towards the completion of this work. God continue to bless you all.

I am also indebted to the Head of Department of Mathematics, KNUST, for his fatherly

pieces of advice and the entire staff of the Department of Mathematics for their support

towards the completion of this work. God richly bless you all.

Finally, I cannot hold back my appreciation to my fellow students, friends, and loved ones

who in diverse ways contributed to the success of this work. Thank you all.

x

1

CHAPTER 1

INTRODUCTION

As far as human beings are concerned, the search for an optimal state has been fundamental

principles in the world. Man since creation has always strived for perfection in many areas.

The biological principle of “survival of the fittest” together with the biological evolution,

leads to better adaptation of the species to their environment. Homo sapiens have reached this

level sharing it with ants, bacteria, flies, cockroaches, and all sorts of other creepy creatures.

Optimization is the process of making something better. The Genetic Algorithm (GA) is an

optimization and search technique based on the principles of genetics and natural selection. A

GA allows a population composed of many individuals to evolve under specified selection

rules to a state that maximizes the “fitness” (i.e., minimizes the cost function). In a Genetic

Algorithm, a local optimum is a well-adapted species that dominates all other animals in its

surroundings.

1.1 CLASSIFICATION OF METHODS

There are a wide range of global optimization techniques which are classified according to

the method of operation and sometimes the properties. Generally, based on method of

operation, optimization algorithms can be divided in two basic classes: deterministic and

probabilistic algorithms.

Deterministic algorithms are most often used if a clear relation between the characteristics of

the possible solutions and their utility for a given problem exists. Divide – and – conquer

algorithm is an example of a deterministic algorithm. However, probabilistic algorithms are

used in situations where the relation between a solution candidate and its fitness are not so

2

obvious or too complicated, or the dimensionality of the search space is very high. Monte

Carlo based approaches are examples of probabilistic algorithm.

A heuristic is a part of an optimization algorithm that uses the information currently gathered

by the algorithm to help to decide which solution candidate should be tested next or how the

next individual can be produced. Heuristics are usually problem class dependent.

A metaheuristic is a method for solving very general classes of problems. It combines

objective functions or heuristics in an abstract and hopefully efficient way, usually without

utilizing deeper insight into their structure, i.e., by treating them as black-box-procedures.

This work makes use of Genetic Algorithm which is an Evolutionary Algorithm and falls

under Evolutionary Computations in the Mont Carlo metaheuristics class. Evolutionary

Computation comprises all algorithms that are based on a set of multiple solution candidates

(called population) which are iteratively refined. It is inspired by biological evolution

(mutation, crossover, natural selection, and survival of the fittest). The Figure 1.1 below

shows the divisions with the various approaches.

1.2 BACKGROUND

Darwin‟s principle of survival of the fittest was used as a starting point in introducing

evolutionary computation. Biological species have solved the problems of chaos, chance,

nonlinear interactivities and temporality. These problems proved to be equivalence with the

classic methods of optimization. Evolutionary concepts are of recent interest since for some

practical problems heuristic solutions may lead to unsatisfactory results.

Genetic Algorithm (GA) is an evolutionary algorithm inspired by Charles Darwin (1859). It

is a search technique used in computing to find exact or approximate solutions to

optimization and search problems.

3

Figure 1.1: Categories of techniques

The following principles in Darwin‟s principle of the survival of the fittest inspired the

genetic algorithm.

 Species live in a competitive world.

Probabilistic

Artificial Intelligence

Monte Carlo Algorithms

Memetic Algorithm

Harmonic Search

Computational intelligence

Soft computing

Evolutionary Computation

Standard Genetic Programming

Linear Genetic Programming

Grammar guided genetic prog.

Differential Evolution

Ant Colony Optimization

Particle Swarm Optimization

Swarm Intelligence
Genetic Algorithms

Evolutionary Programming

Evolutionary strategy

Genetic Programming

Evolutionary Algorithm

Hill Climbing

Random optimization

Simulated Annealing

Tabu Search

Parallel Tempering

Stochastic Tunneling

Direct Monte Carlo

Sampling

State Space Search, Branch and bound, algebraic geometry

Deterministic

4

 The continued survival of the species depends on the fitness competition and having

offspring who are stronger than or equally as strong as their parents.

 The offspring genetically take the characteristics of their parents

 The offspring are however unique and there is probability of slight variations in some

of their genes.

 In the competitive environment less fit individuals die off and may not become

parents for breeding.

Since its conception, genetic algorithms have been used widely as a tool in computer

programming and artificial intelligence, optimization, neural network training, and many

other areas.

1.3 STATEMENT OF PROBLEM

Several approaches that can determine the maximum or minimum of optimization problems

exist. Evolutionary concepts are of recent interest since some methods may not lead to the

satisfactory results. There is therefore the need to find an algorithm that explores the search

space for the global optima of problems. In this work, the suitability of Genetic Algorithms to

solve problems which are complex, multivariable and multimodal functions is to be

examined.

1.4 OBJECTIVE

The objective of this work is to implement a Genetic Algorithm to solve some special

complex functions namely Rosenbrock‟s function, Rastrigin‟s function and Schwefel‟s

function in which the application of other search methods will not lead to satisfactory

solutions. This will establish the suitability of Genetic Algorithms in optimizing complex

multivariable and multimodal functions.

5

1.5 METHODOLOGY

This research investigates the actual Genetic Algorithm procedure. Genetic Algorithm

handles a population of possible solutions. Each solution is represented through a

chromosome. Coding all the possible solutions into a chromosome is the first part, but

certainly not that easy to accomplish in a Genetic Algorithm. A set of reproduction operators

has to be determined, too. Reproduction operators are applied directly on the chromosomes,

and are used to perform mutations and recombination over solutions of the problem.

Selection is done by using a fitness function. Each chromosome has an associated value

corresponding to the fitness of the solution it represents. The fitness should correspond to an

evaluation of how good the candidate solution is. The optimal solution is the one, which

maximizes or minimizes the fitness function. Once the reproduction and the fitness function

have been properly defined, a Genetic Algorithm is repeated according to the same basic

structure. The steps involved in Genetic algorithm are summarized in Figure 1.3 below. It is

tedious to implement the algorithm manually and so MATLAB will be used instead.

Figure 1.3: Overview of Genetic Algorithm

Create new population

Select parent based on fitness

Evaluate the fitness of each

individual

Create initial population

Evaluation

Selection

Recombination

6

1.6 JUSTIFICATION

The maximum or minimum of optimization problems may be obtained by several

approaches. If the function we seek to optimize is differentiable, then the techniques which

make use of gradient or approximation to the problems are used. Other methods such as

Fibonacci search method, Davies Swann and Campes method, Nelder and Mead methods

may be used in situations where the objective function is not differentiable or may require

some kind of direct search for optimum. Newton-Raphson and many other search methods

are based on the use of local information. The function value and the derivatives with respect

to the parameters optimized are used to take a step in an appropriate direction towards a local

maximum or minimum. These will only find local maximum or minimum. The Figure 1.2

below illustrates a clear case where the Newton-Raphson method fails since it only search for

local minimum. The search for global optima in real life problems by scientists motivated the

research into Genetic algorithm for use in such situations since it explores the entire search

space.

Figure 1.2: The search for local minimum

end search

Start search

7

1.7 SCOPE / ORGANIZATION OF STUDY

Chapter 1 introduces the research, the background of this research, the problem statement the

objective, justification and a brief methodology of the Genetic algorithm. There have been

some researches into the applications of GA and theory. Chapter 2 reviews developmental

stages of evolutionary computations, some heuristics methods and some earlier researches

carried out in the field.

 A detailed methodology of the GA is presented in Chapter 3. The suitability and application

of Genetic Algorithm to optimization problems are examined in Chapter 4. The Chapter 5 of

this work presents the conclusion and recommendations based on this research conducted.

8

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

There series of works in evolutionary algorithms especially Genetic Algorithms. This Chapter

focuses on the background and historical patterns of evolutionary computations: genetic

algorithms, genetic programming, evolutionary strategies and evolutionary programming.

The Chapter also reviews various literatures on Genetic Algorithms.

2.1 DEVELOPMENT OF EVOLUTIONARY COMPUTATION

There have been four historical patterns in evolutionary computations that have served as the

basis for much of the activity of the field: genetic algorithms (Holland, 1975), genetic

programming (Koza, 1992, 1994), evolutionary strategies (Recheuberg, 1973) and

evolutionary programming (Forgel et al., 1966). The basic differences have been the

representation schemes, the reproduction operators and selection methods. We briefly

describe the variants of the evolutionary computation below.

2.1.1 DEVELOPMENT OF GENETIC ALGORITHMS

The most popular technique in evolutionary computation research has been the Genetic

Algorithm. In the traditional GA, the representation used is a fixed-length bit string. Each

position in the string is assumed to represent a particular feature of an individual, and the

value stored in that position represents how that feature is expressed in the solution. Usually,

the string is evaluated as a collection of structural features of a solution that have little or no

interactions.

The main reproduction operator used is bit-string crossover, in which two strings are used as

parents and new individuals are formed by swapping a sub-sequence between the two strings.

9

Another popular operator is bit-flipping mutation, in which a single bit in the string is flipped

to form a new offspring string. Varieties of operators have also been developed, but are used

less frequently (e.g., inversion, in which a subsequence in the bit string is reversed).

A primary distinction that may be made between the various operators is whether or not they

introduce any new information into the population. Crossover, for example, does not while

mutation does. All operators are also constrained to manipulate the string in a manner

consistent with the structural interpretation of genes. For example, two genes at the same

location on two strings may be swapped between parents, but not combined based on their

values. Traditionally, individuals are selected to be parents probabilistically based upon their

fitness values, and the offspring that are created replace the parents. For example, if N parents

are selected, then N offspring are generated which replace the parents in the next generation.

(Source: Introduction to Genetic Algorithms by S. N. Deepa and S. N. Sivanandam, 2008).

2.1.2 DEVELOPMENT OF GENETIC PROGRAMMING

Genetic programming is an increasing popular technique of evolutionary computation. In a

standard genetic program, the representation used is a variable-sized tree of functions and

values. Each leaf in the tree is a label from an available set of value labels. Each internal node

in the tree is label from an available set of function labels. The entire tree corresponds to a

single function that may be evaluated. Typically, the tree is evaluated in a leftmost depth-first

manner. A leaf is evaluated as the corresponding value. A function is evaluated using

arguments that are the result of the evaluation of its children. Genetic algorithms and genetic

programming are similar in most other respects, except that the reproduction operators are

tailored to a tree representation.

The most commonly used operator is subtree crossover, in which an entire subtree is swapped

between two parents as shown in Figure 2.1. In a standard genetic program, all values and

10

functions are assumed to return the same type, although functions may vary in the number of

arguments they take. This closure principle allows any subtree to be considered structurally

on similarity with any other subtree, and ensures that operators such as sub-tree crossover

will always produce legal offspring. (Source: Introduction to Genetic Algorithms by S. N.

Deepa and S. N. Sivanandam, 2008).

Figure 2.1: Subtree crossover of parents 1 and 2 to form offspring 1 and 2

+ +

+ – – 1

3
2

3
2 1

4

x

5 +

x

5 1

1 4

Parent 1

Parent 2

Offspring 1

Offspring 2

11

2.1.3 DEVELOPMENT OF EVOLUTIONARY STRATEGIES

In evolutionary strategies, the representation used is a fixed-length real-valued vector. As

with the bit-strings of genetic algorithms, each position in the vector corresponds to a feature

of the individual. However, the features are considered to be behavioral rather than structural.

Consequently, arbitrary non-linear interactions between features during evaluation are

expected which forces a more holistic approach to evolving solutions. The main reproduction

operator in evolutionary strategies is Gaussian mutation, in which a random value from a

Gaussian distribution is added to each element of an individual‟s vector to create a new

offspring as shown in Figure 2.12. Another operator that is used is intermediate

recombination, in which the vectors of two parents are averaged together, element by

element, to form a new offspring. The effects of these operators reflect the behavioral as

opposed to structural interpretation of the representation since knowledge of the values of

vector elements is used to derive new vector elements. The selection of parents to form

offspring is less constrained than it is in genetic algorithms and genetic programming. For

instance, due to the nature of the representation, it is easy to average vectors from many

individuals to form a single offspring.

In a typical evolutionary strategy, N parents are selected uniformly randomly, which is not

based upon fitness, more than N offspring are generated through the use of recombination,

and then N survivors are selected deterministically. The survivors are chosen either from the

best N offspring (i.e., no parents survive) or from the best N parents and offspring. (Source:

Introduction to Genetic Algorithms by S. N. Deepa and S. N. Sivanandam, 2008).

Figure 2.12: Gaussian mutation of parent to form a child

1.3 0.4 1.8 0.2 0.0 1.0 1.2 0.7 1.6 0.2 0.1 1.2

Parent Offspring

12

2.1.4 DEVELOPMENT OF EVOLUTIONARY PROGRAMMING (EP)

The development in evolutionary programming took the idea of representing individuals‟

phenotypically as finite state machines capable of responding to environmental stimuli and

developing operators for effecting structural and behavioral change over time. This idea was

applied to a wide range of problems including prediction problems, optimization and machine

learning. This led to the following observations:

 GA practitioners were seldom constrained to fixed-length binary implementations.

 GP enables the use of variable sized tree of functions and values.

 ES practitioners incorporated recombination operators into their systems.

Evolutionary programming is used for the evolution of finite state machines. The

representations used in evolutionary programming are typically tailored to the problem

domain. One representation commonly used is a fixed-length real-valued vector. The primary

difference between evolutionary programming and the previous approaches is that no

exchange of material between individuals in the population is made. Thus, only mutation

operators are used. For real-valued vector representations, evolutionary programming is very

similar to evolutionary strategies without recombination.

A typical selection method is to select all the individuals in the population to be the N

parents, to mutate each parent to form N offspring, and to probabilistically select, based upon

fitness, N survivors from the total 2N individuals to form the next generation. (Source:

Introduction to Genetic Algorithms by S. N. Deepa and S. N. Sivanandam, 2008).

2.2 LITERATURE REVIEWS OF GENETIC ALGORITHMS

Cao and Wu (1999) presented an attractive approach for teaching genetic algorithm (GA).

The authors approach was based primarily on using MATLAB in implementing the genetic

operators: crossover, mutation and selection. Cao and Wu (1999) presented a detailed

13

illustrative example to demonstrate that GA was capable of finding global or near-global

optimum solutions of multi-modal functions and applied GA to design a robust controller for

uncertain control to show its potential in designing engineering intelligent systems.

Mühlenbein et al., (1991) applied the Parallel Genetic Algorithm (PGA) which used mixed

strategy to the optimization of continuous functions. In Mühlenbein et al., (1991)

presentation, Subpopulations were used to locate good local minima. If a subpopulation did

not progress after a number of generations, hill climbing was done. Good local minima of a

subpopulation were diffused to neighboring subpopulations. Many simulation results were

given by the authors with popular test functions. Mühlenbein et al., (1991), concluded that

PGA was at least as good as other genetic algorithms on simple problems. However, they

found out that the PGA was able to find the global minimum of Rastrigin's function of

dimension 400 on a 64 processor system which was compared with other mathematical

optimization methods. Mühlenbein et al., (1991), finally provided an example of a superlinear

speedup.

To exploit a heterogeneous computing (HC) environment, an application task may be

decomposed into subtasks that have data dependencies. Wang et al., (1997) examined how to

achieve the minimal completion time for Subtask matching and scheduling consists of

assigning subtasks to machines, ordering subtask execution for each machine, and ordering

inter-machine data transfers. A heuristic approach based on a genetic algorithm was

developed to do matching and scheduling in HC environments by the authors. It was assumed

that the matcher/scheduler was in control of a dedicated HC suite of machines. The

characteristics of that genetic-algorithm-based approach included: separation of the matching

and the scheduling representations, independence of the chromosome structure from the

details of the communication subsystem, and consideration of overlap among all

computations and communications that obey subtask precedence constraints. It was

14

applicable to the static scheduling of production jobs and could be readily used to collectively

schedule a set of tasks that were decomposed into subtasks. Some parameters and the

selection scheme of the genetic algorithm were chosen by Wang et al., (1997) experimentally

to achieve the best performance and conducted extensive simulation tests. For small-sized

problems (e.g., a small number of subtasks and a small number of machines), exhaustive

searches were used to verify that this genetic-algorithm-based approach found the optimal

solutions. Wang et al. (1997) found out that the genetic-algorithm-based approach

outperformed two non-evolutionary heuristics and a random search.

Gregurick et al., (1996) proposed a global geometry optimization technique using a modified

Genetic Algorithm approach for clusters. They referred to their technique as a

deterministic/stochastic genetic algorithm (DS‐GA). In that technique, the stochastic part was

a traditional GA, with the manipulations being carried out on binary‐coded internal

coordinates (atom–atom distances). The deterministic aspect of their method was the

inclusion of a coarse gradient descent calculation on each geometry which avoided spending

a large amount of computer time searching parts of the configuration space which correspond

to high‐energy geometries. Their tests of the technique showed that it was vastly more

efficient than searches without this local minimization. They report geometries for clusters of

up to n=29 Ar atoms, and found that their computer time scales as O(n
4.5

).

Niesse and Howard (1996) recast the genetic algorithm optimization in space‐fixed Cartesian

coordinates, which scaled much more favorably than internal coordinates for large clusters.

The authors introduced genetic operators suited for real (base‐10) variables and found

convergence for clusters up to n = 55 the algorithm scales as O(n
3.3

). It was concluded that

genetic algorithm optimization in non-separable real variables was not only viable, but

numerically superior to that in internal candidates for atomic cluster calculations.

Furthermore, no special choice of variable needed to be made for different cluster types; real

15

Cartesian variables were readily portable, and could be used for atomic and molecular

clusters with no extra effort.

Pond et al., (2006) developed a likelihood-based model selection procedure that uses a

genetic algorithm to search multiple sequence alignments for evidence of recombination

breakpoints and identify putative recombinant sequences. Pond et al., (2006) presented a

Genetic Algorithm for Recombination Detection (GARD) was an extensible and intuitive

method that could be run efficiently in parallel. The authors found that the method nearly

always outperforms other available tools, both in terms of power and accuracy and that the

use of GARD to screen sequences for recombination ensures good statistical properties for

methods aimed at detecting positive selection.

In the parallel machine scheduling problem with earliness and tardiness penalties

(PMSPE/TP) considered by Sivrikaya-Şerifoǧlu and Ulusoy (1999), a set of independent jobs

with sequence-dependent setups was given to be scheduled on a set of parallel machines

(processors) in a non-preemptive fashion such that the sum of the weighted earliness and

tardiness values of all jobs was minimized. The due dates of the jobs were distinct and each

job had its own arrival time which brought the model closer to reality which complicated the

problem. The weights for earliness and tardiness are common to all jobs and are unequal in

general. Sivrikaya-Şerifoǧlu and Ulusoy (1999) employed Two genetic algorithm approaches

to attack the problem; one with a crossover operator which was developed to solve multi-

component combinatorial optimization problems of which parallel machine scheduling

problem with earliness and tardiness penalties is an instance, and the other with no crossover

operator. The authors found out that from tests on 960 randomly generated problems, genetic

algorithms provide an efficient algorithm for the parallel machine scheduling problem with

earliness and tardiness penalties; that neighborhood exchange type of search can yield

relatively better results in small and easy instances of the problem but the genetic algorithm

16

with the crossover operator outperforms such search in larger-sized, more difficult problems;

and that the re-combinative power of the genetic algorithm with the crossover operator

improves with increasing problem size and difficulty making it ever more attractive for

applications of larger sizes.

Arifovic (1994) examined the cobweb model in which competitive firms, in a market for a

single good, used a genetic algorithm to update their decision rules about next-period

production and sales. The authors observations from simulations showed that the genetic

algorithm converges to the rational expectations equilibrium for a wider range of parameter

values than other algorithms frequently studied within the context of the cobweb model.

Arifovic (1994) compared price and quantity patterns generated by the genetic algorithm to

the data of experimental cobweb economies. The author concluded that the algorithm could

capture several features of the experimental behavior of human subjects better than three

other learning algorithms that were considered.

Software test-data generation is the process of identifying a set of data, which satisfies a

given testing criterion. For solving this difficult problem there were a lot of research works,

which have been done in the past. The most commonly encountered are random test-data

generation, symbolic test-data generation, dynamic test-data generation, and recently, test-

data generation based on genetic algorithms. The paper presented by Aljahdali et al., (2010)

at the Computer Systems and Applications (AICCSA), 2010 IEEE/ACS International

Conference on 16-19 May, 2010 gave a survey of the majority of software test-data

generation techniques based on genetic algorithms. The authors compared and classified the

surveyed techniques according to the genetic algorithms features and parameters. (Available

at http://ieeexplore.ieee.org/xpl/freeabsall.jsp?Arnumber=5586984&abstractAccess=no&use

T ype=inst#Abstract)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570122
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570122
http://ieeexplore.ieee.org/xpl/freeabsall.jsp?Arnumber=5586984&abstract

17

Genetic algorithms have been used successfully to generate software test data automatically;

all branches were covered with substantially fewer generated tests than simple random

testing. Jones et al., (1998) generated test sets which executed all branches in a variety of

programs including a quadratic equation solver, remainder, linear and binary search

procedures, and a triangle classifier comprising a system of five procedures. The authors

regarded the generation of test sets as a search through the input domain for appropriate

inputs. The genetic algorithms generated test data to give 100% branch coverage in up to two

orders of magnitude fewer tests than random testing. Whilst some of this benefit was offset

by increased computation effort, the adequacy of the test data was improved by the genetic

algorithm's ability to generate test sets which were at or close to the input subdomain

boundaries. Jones et al., (1998) revealed that genetic algorithms may be used for fault-based

testing where faults associated with mistakes in branch predicates and that the software had

been deliberately seeded with faults in the branch predicates (i.e. mutation testing), and the

system successfully killed 97% of the mutants.

Grefenstette(1992) investigated a modification of the standard generational genetic algorithm

that was designed to maintain the diversity required to track a changing response surface. An

experimental study showed some promise for the new technique

(http://scholar.googleusercontent.com/scholar?q=cache:RMOEVCL7xDYJ:scholar.google.co

m/+Genetic+algorithms+for+changing+environments+by+Grefenstette,+J.+J.+%28%29.&hl

=en&as_sdt=0,5).

In recent years, genetic algorithms have become increasingly robust and easy to use. Current

knowledge and many successful experiments suggest that the application of GAs is not

limited to easy-to-optimize unimodal functions. Several results and GA theory give the

impression that GAs easily escape from millions of local optima and reliably converge to a

single global optimum. The theoretical analysis presented in Salomon (1996) showed that

http://scholar.googleusercontent.com/scholar?q=cache:RMOEVCL7xDYJ:scholar.google.com/+Genetic+algorithms+for+changing+environments+by+Grefenstette,+J.+J.+%28%29.&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:RMOEVCL7xDYJ:scholar.google.com/+Genetic+algorithms+for+changing+environments+by+Grefenstette,+J.+J.+%28%29.&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:RMOEVCL7xDYJ:scholar.google.com/+Genetic+algorithms+for+changing+environments+by+Grefenstette,+J.+J.+%28%29.&hl=en&as_sdt=0,5

18

most of the widely-used test functions have n independent parameters and that, when

optimizing such functions, many GAs scale with an O(nlnn) complexity. Salomon (1996)

further showed that the current design of GAs and its parameter settings were optimal with

respect to independent parameters. Both analysis and results presented by Salomon showed

that a rotation of the coordinate system causes a severe performance loss to GAs that use a

small mutation rate. However, in case of a rotation, the GA's complexity can increase up to

O(n
n
) = O(exp(n ln n)). The author recommended that future work should find new GA

designs that solve the performance loss and that as long as these problems have not been

solved, the application of GAs will be limited to the optimization of easy-to-optimize

functions.

Jung (2009) proposed a selective mutation method for improving the performances of genetic

algorithms. In the author‟s procedure, individuals were first ranked and then additionally

mutated one bit in a part of their strings which was selected corresponding to their ranks. The

selective mutation helped genetic algorithms to fast approach the global optimum and to

quickly escape local optima. This results in increasing the performances of genetic

algorithms. Jung (2009) measured the effects of selective mutation with four function

optimization problems. The author found from extensive experiments that the selective

mutation could significantly enhance the performances of genetic algorithms. (Available at

http://www.waset.org/journals/waset/v56/v56-89.pdf).

Bierwirth and Mattfeld (2004) examined job shop scheduling problems with release and due-

dates, as well as various tardiness objectives. To date, no efficient general-purpose heuristics

have been developed for these problems. Genetic algorithms can be applied almost directly,

but come along with apparent weaknesses. Bierwirth and Mattfeld (2004) showed that a

heuristic reduction of the search space could help the algorithm to find better solutions in a

shorter computation time. The authors investigated two ways of reducing a search space by

19

considering short-term decisions made at the machine level and by long-term decisions made

at the shop floor level.

In today‟s companies, the shifting of functions from central divisions to the production areas

leads to new requirements in the field of production planning. Flexible planning systems

using algorithms which are adapted to the needs and the objectives of the different production

areas are necessary to fulfill these new demands. Therefore Wiendahl and Garlichs (1994)

presented a graphical-oriented decision support system for the decentral production

scheduling of assembly systems using a Genetic algorithm as the scheduling algorithm.

Wu and Chow (1995) described the application of genetic algorithms to nonlinear constrained

mixed discrete-integer optimization problems with optimal sets of parameters furnished by a

meta-genetic algorithm. Genetic algorithms are combinatorial in nature, and therefore are

computationally suitable for treating discrete and integer design variables. The authors

modified the genetic algorithms to promote computational efficiency and performed some

numerical experiments so as to determine the appropriate range of genetic parameter values.

Wu and Chow (1995) used the meta-genetic algorithm to optimize these parameters to locate

the best solution. Three examples were further presented by authors to demonstrate the

effectiveness of the methodology that was developed. The authors concluded that a four-point

crossover operator performs best after comparing four crossover operators.

Geisendorf (1999) described the application of Genetic Algorithms to a Resource Economics

problem; the decision about the intensity of exploitation of a renewable resource. Genetic

Algorithms, developed by Holland (1975), are a model of biological evolution, which

captures some important features of evolution in general: selection, recombination, and

arbitrary mistakes. They have therefore also been used already to model economic evolution

and learning processes. Geisendorf (1999) based the model on two main assumptions. First,

the agents using the resource were not informed about its reproduction dynamics. And

20

second, although profits were their only concern, they were not able to calculate the optimal

extraction rate that would maximize present value of all present and future benefits, like in

neoclassical Resource Economics. This was caused by restrictions on the informational as

well as the intellectual level, all referred to as bounded rationality. Geisendorf (1999)

explained the model and its results. (http://www.santafe. edu/media/workingpapers/99-08-

058.pdf)

Thompson and Dunlap (2008) presented the construction and implementation of a parallel

genetic algorithm (PGA) for use in optimization of analytic density-functional theory.

Thompson and Dunlap (2008) demonstrated comparable performance to the previous simplex

optimizer when benchmarked against the extended G2 set as shown in Figure 2.13, and the

considerable scatter between different optimizations showed that robust methods were

required. The authors revealed that the new PGA would allow for further expansion of the

parameter space while efficiently utilizing cluster and supercomputing resources as the

problems grew larger.

http://www.santafe/

21

Figure 2.13: Analytic DFT parameters are optimized using a parallel genetic algorithm

against the extended G2 set of molecules‟ atomization energies.

Eiben et al., (1991) made a step towards a concise theory of genetic algorithms (GAs) and

simulated annealing (SA) when they firstly set up an abstract stochastic algorithm which

generalized and unified genetic algorithms and simulated annealing, such that any GA or SA

algorithm at hand is an instance of our abstract algorithm for treating combinatorial

optimization problems. Secondly, the authors defined the evolution belonging to the abstract

algorithm as a Markov chain and found conditions implying that the evolution found an

optimum with probability of one (1).

Genetic algorithms (GAs) are the adaptation methods broadly applicable to many classes of

problems. Adaptation to changing environments is one of the important classes of such

problems. Continuous search for the solutions by the GA is the fundamental mechanism for

adaptation, and therefore to avoid convergence by maintaining the diversity is an intrinsic

requirement for successful search. Naoki et al., (2001) utilized the thermo-dynamical genetic

algorithms (TDGA), a genetic algorithm which maintains the diversity of the population by

evaluating its entropy, for the problem of adaptation to changing environments. However, if

the environmental change has a recurrent nature, Naoki et al., (2001) used a memory-based

approach, i.e., to memorize the results of past adaptation and to retrieve them as candidates

for the solution, will be a smart strategy. The authors combined the memory-based approach

with TDGA as an adaptation algorithm to changing environments. The adaptation ability of

the proposed method by the authors was verified by computer simulations taking recurrently

varying knapsack problems as examples.

Hisayoshi and Meng (2001) examined the conventional operators of GA, and introduce new

techniques of mutating and seeding the population. The authors were motivated by the fact

that genetic algorithm (GA), as a global optimization method, is very convenient for use in

http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=MISAKA%20HISAYOSHI&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=MENG%20Z%20Q&combine=phrase&search=SEARCH

22

optimizing any type of parameters, especially for inverse problems, and many remarkable

results that have been obtained. One of the problems of GA is how to achieve the evolution

towards the global minimum efficiently.

The portfolio optimization model, initially proposed by Markowitz in 1952 and known as

mean-variance model (MV model), is applied to find the optimized allocation among assets

to get higher investment return and lower investment risk. However, the MV model did not

consider some practical limitations of financial market, including: transaction cost and

minimal transaction lots. While these constraints are not considered in the model, the

practicability of the model will be restrained. But when they are included in the model, the

model will become an NP hard problem, which cannot obtain global optimal solution by

traditional mathematics programming techniques. ChiangLin (2006) proposed various models

to include afore-mentioned consideration in the MV model applied genetic algorithms to

solve these models at a Joint Conference on information Science (JCIS) as part of advances

on intelligent systems research held in October, 2006 when he made a presentation on the

topic “Applications of Genetic Algorithm to Portfolio Optimization with Practical

Transaction Constraints.” ChiangLin (2006) performed empirical tests in the Taiwan stock

market are provided to prove the applicability of the techniques. (Available at JCIS06-FTT-

126.pdf).

Dandekar and König (1999) investigated a new search strategy in combination with the

simple genetic algorithm on a two-dimensional lattice model to improve protein folding

simulations. In the research by Dandekar and König (1999), they called systematic crossover,

couples the best individuals, tests every possible crossover point, and takes the two best

individuals for the next generation. The authors compared standard genetic algorithm with

and without the new implementation for various chain lengths and showed that the proposed

23

strategy found local minima with better energy values and was significantly faster in

identifying the global minimum than the standard genetic algorithm.

Isao et al., (1999) presented a new genetic algorithm (GA) for function optimization,

considering epitasis‟ among parameters. When a GA is applied to a function to minimize it,

parents are expected to lie on some ponds or along some valleys that are promising areas

because of selection pressure as the search goes on. Especially when the function has epitasis

among parameters, it has valleys that are not parallel to coordinate axes. In that case, the

authors believed that a crossover should generate children along the valleys in order to focus

the search on such promising area from a view point of search efficiency. Isao et al. (1999)

employed the real number vector as a representation and proposed the Unimodal Normal

Distribution Crossover (UNDX) taking account of epistasis among parameters. The UNDX

generates children near the line segment connecting two parents so that the children lie on the

valley where the two parents were when the UNDX was applied to a function with epistasis

among parameters. Isao et al. (1999) demonstrated that the UNDX could efficiently optimize

various functions including multi-modal ones and ones that have epistasis among parameters

by applying the UNDX to some famous benchmark functions.

Reeves (1995) described the basic concepts of Genetic Algorithms after which a Genetic

Algorithm was developed for finding (approximately) the minimum make-span of the n-job,

m-machine permutation flow-shop sequencing problem. The performance of the algorithm

was then compared with that of a naive Neighborhood Search technique and with a proven

Simulated Annealing algorithm on some carefully designed sets of instances of the problem

by the author.

Leardi (2000) modified genetic algorithms to be used in the problem of wavelength selection

in the case of a multivariate calibration performed by PLS. Unlike what happens with the

majority of feature selection methods applied to spectral data, the variables selected by the

24

algorithm often correspond to well-defined and characteristic spectral regions instead of

being single variables scattered throughout the spectrum. Leardi (2000) found the model to be

having a better predictive ability than the full-spectrum model. Furthermore, the author found

that analysis of the selected regions could be a valuable help in understanding which the

relevant parts of the spectra were.

Earlier researchers has recognized that in order to be successful with an indirect genetic

algorithm approach using a decoder, the decoder had to strike a balance between being an

optimizer in its own right and finding feasible solutions which balance was achieved

manually. Aickelin (2002) presented an automated approach where the genetic algorithm

solving the problem, sets weights to balance the components out. Aickelin (2002) was able to

solve a complex and non-linear scheduling problem better than with a standard direct genetic

algorithm implementation.

Wang (1991) introduced a genetic algorithm for function optimization and applied it to

calibration of a conceptual rainfall-runoff model for data from a particular catchment. All

seven parameters of the model were optimized. The Author found out that the genetic

algorithm could be efficient and robust.

Leehter and Sethares (1994) used a modified genetic algorithm to solve the parameter

identification problem for linear and nonlinear IIR digital filters. The authors found out that

under suitable hypotheses, the estimation error converge in probability to zero. Leehter and

Sethares (1994) also applied the algorithm to feed forward and recurrent neural networks.

25

CHAPTER 3

METHODOLOGY

3.0 INTRODUCTION

The search for global optima of some problems can also be seen as a process of evolution of

species. This Chapter explains the concept of Genetic Algorithm and the operations involved

in finding the global optima of problems using the algorithm. Conventional optimization and

search techniques such as Simulated Annealing and Stochastic Hill Climbing are also

discussed in this chapter.

3.1 GENETIC ALGORITHM

A genetic algorithm is a probabilistic search technique that has its roots in the principles of

genetics. The terminology used in describing genetic algorithms is adopted from genetics.

The most popular technique in evolutionary computation research has been the genetic

algorithm.

In the traditional genetic algorithm, the representation used is a fixed-length bit string. Each

position in the string is assumed to represent a particular feature of an individual, and the

value stored in that position represents how that feature is expressed in the solution. Usually,

the string is evaluated as a collection of structural features of a solution that have little or no

interactions. The analogy may be drawn directly to genes in biological organisms.

The table 3.1 below shows comparisons between the evolutionary principles and associated

terms as used in genetic algorithm.

26

EVOLUTION GENETIC ALGORITHM

An individual is a genotype of the species. An individual is a solution of optimization

problem.

Chromosome stores all the genetic

information.

Chromosomes represent the data structure of

solutions.

Chromosomes are divided into several parts

called genes which code the properties of

species.

Chromosomes consists of a sequence of

genes of species which are placeholder boxes

containing string of data whose unique

combination give the solution value.

The genetic information or trait in each gene

is called an allele.

An allele is an element of the data structure

stored in a gene placeholder.

Fitness of an individual is an interpretation of

how the chromosomes have adapted to the

competition of the environment.

Fitness of a solution consists in evaluation of

measure of the objective functions for the

solution and comparing it to the evaluations

for other solutions.

A population is a collection of the species

found in a given location.

A population is a set of solutions that form

the domain search space

A generation is a given number of

individuals of the population identified over a

period of time.

A generation is a set of solutions taken from

the population and generated at an instant of

time or iteration.

Selection is pairing of individuals as parents

for reproduction.

Selection is the operation of selecting parents

from the generation to produce offspring.

Crossover is mating and breeding of Crossover is the operation whereby pairs of

27

offspring by pairs of parents whereby

chromosomes characteristics are exchanged

to form new individuals.

parents exchange characteristics of their data

structure to produce two new individuals as

offspring.

Mutation is a random chromosomal process

of modification whereby the inherited genes

of the offspring from their parents are

distorted.

Mutation is random operation whereby the

allele of the gene in a chromosome of the

offspring is changed by a probability.

Recombination is a process of nature‟s

survival of the fittest.

Recombination is the operation whereby

elements of the offspring form an

intermediate generation and less fit

chromosomes are taken from the generation.

Table 3.1: Comparison of natural evolution with genetic algorithm terminology

Each gene represents an entity that is structurally independent of other genes. The main

reproduction operator used is bit-string crossover, in which two strings are used as parents

and new individuals are formed by swapping a sub-sequence between the two strings (see

Figure 3.1). Another popular operator is bit-flipping mutation, in which a single bit in the

string is flipped to form a new offspring string (see figure 3.2).

28

Figure 3.1: Bit-string crossover of parents to form offspring

Figure 3.2: Bit-flipping mutation of parent to form offspring

 There are other operators which are less used frequently (e.g., inversion, in which a

subsequence in the bit string is reversed). A primary distinction that may be made between

the various operators is whether or not they introduce any new information into the

population. Crossover, for example, does not while mutation does. All operators are also

constrained to manipulate the string in a manner consistent with the structural interpretation

of genes. For example, two genes at the same location on two strings may be swapped

between parents, but not combined based on their values. Traditionally, individuals are

selected to be parents probabilistically based upon their fitness values, and the offspring that

are created replace the parents. For example, if N parents are selected, then N offspring are

generated which replace the parents in the next generation.

1 1 0 1 0 0

1 0 1 0 0

0

1 1 0 1 0 0 0

1 1 0 1 0 1

Crossover point

Parents Offspring

1 0 1 0

0

1
0

1 0 1 1

0

1 0

Parent Offspring

29

3.1.1 BASIC OPERATORS USED IN GA

 For Genetic Algorithms to find a best optimum solution, it is necessary to perform certain

operations on the individuals of the population as discussed below.

The individual groups together the chromosomes and the phenotype. The phenotype is the

expressive of the chromosome in the terms of the model. A chromosome is subdivided into

genes. A gene is the GA‟s representation of a single factor for a control factor. Each factor in

the solution set corresponds to gene in the chromosome. Each chromosome must define one

unique solution. All the candidate solutions of the problem must correspond to at least one

possible chromosome to ensure that the whole search space can be explored. When the same

solution can be encoded by different chromosomes, the representation is said to be

degenerate. A slight degeneracy is not so worrying, even if the space where the algorithm is

looking for the optimal solution is inevitably enlarged. But a too important degeneracy could

be a more serious problem. It can badly affect the behavior of the GA, mostly because if

several chromosomes can represent the same phenotype, the meaning of each gene will not

correspond to a specific characteristic of the solution. The search therefore will not be

accurate. Figure 3.3 shows the representation of Genotype and phenotype.

A chromosome is a sequence of genes. Genes may describe a possible solution to a problem

without actually being the solution. A gene is a bit string of arbitrary lengths. The bit string is

a binary representation of number of intervals from a lower bound. There are 2l permutations

for a binary string of length l. The 2l permutations consist of both infeasible and feasible

solutions which constitute the search space. In general data structure used for the

representation of the individuals depends on variables of the problem at hand.

30

Figure 3.3: The representation of Genotype and phenotype.

The Fitness function is a measure associated with the collective objective functions of the

optimization problem. The fitness of an individual in a genetic algorithm is the value of an

objective function for its phenotype. For calculating fitness, the chromosome has to be first

decoded and the objective function has to be evaluated. The fitness not only indicates how

good the solution is, but also corresponds to how close the chromosome is to the optimal one.

A collection of individuals is a population. Two important aspects of population are the

population size and the initial population generation. For each and every problem, the

population size will depend on the complexity of the problem. A random initialization of

population is carried out. In the case of a binary coded chromosome this means, that each bit

is initialized to a random zero or one. But there may be instances where the initialization of

population is carried out with some known good solutions. Thus, the mean fitness of the

population is already high and it may help the genetic algorithm to find good solutions faster.

But for doing this one should be sure that the gene pool is still large enough. Otherwise, if the

population badly lacks diversity, the algorithm will just explore a small part of the search

Solution set Phenotype

Factor 1 Factor 2 ………….. Factor N

Gene 1 Gene 2 ………….. Gene N

Chromosome Genotype

31

space and never find global optimal solutions. Thus for a smaller population size, the

algorithm takes a longer time to find the optimal solution.

The larger the population, the easier it is to explore the search space. The time required by a

GA to converge is O(nlogn) function evaluations where n is the population size. The

population is said to have converged when all the individuals are very much alike and further

improvement may only be possible by mutation. The efficiency of a GA to reach global

optimum largely depends on size of population. Thus a large population size is useful but

requires more computational cost, memory and time. Figure 3.4 shows a population

consisting of four chromosomes.

Figure 3.4: Example of Population

Encoding is a process of representing individual genes. The process can be performed using

bits, numbers, trees, arrays, lists or any other objects. The encoding depends mainly on

solving the problem. For example, one can encode directly real or integer numbers.

The most common way of encoding is a binary string. It uses string made up of zero (0) and

one (1). Each chromosome encodes a binary (bit) string. Figure 3.4 is an example of a binary

string encoding. It must be noted that every bit string is a solution but not necessarily the best

solution. The way bit strings can code differs from problem to problem.

Octal encoding uses string made up of octal numbers (0–7).

Population

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

1 1 1 0 0 0 1 0

0 1 1 1 1 0 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

32

Hexadecimal encoding uses string made up of hexadecimal numbers (0–9, A–F).

Permutation encoding (Real Number coding)

In permutation encoding, every chromosome is a string of integer/real values, which

represents number in a sequence. Permutation encoding is only useful for ordering problems

and the Travelling Salesman Problem. Even for these problems, some types of crossover and

mutation corrections must be made to leave the chromosome consistent (i.e., have real

sequence in it).

Figure 3.5: Permutation encoding

Value Encoding

Every chromosome is a string of values and the values can be anything connected to the

problem. This encoding produces best results for some special problems. On the other hand,

it is often necessary to develop new genetic operators for the specific problem. Direct value

encoding can be used in problems, where some complicated values, such as real numbers, are

used. Use of binary encoding for this type of problems would be very difficult. In value

encoding, every chromosome is a string of some values. Values can be anything connected to

problem, form numbers, real numbers or characters to some complicated objects. This

encoding requires that some new crossover and mutation be developed for the specific

problem.

1 5 3 2 6 4 7 9 8

8 5 6 7 2 3 1 4 9

Chromosome A

Chromosome B

33

Figure 3.6: Value Encoding

Tree Encoding

This encoding is mainly used for evolving programs or expressions for genetic programming.

Every chromosome is a tree of some objects such as functions and commands of a

programming language.

3.1.2 SELECTION

Breeding process is the heart of the genetic algorithm. Selecting of parents is an integral part

of the breeding process. After deciding on an encoding, the next step is to decide how to

perform selection i.e., how to choose individuals in the population that will create offspring

for the next generation and how many offspring each will create. Selection is the process of

choosing two parents from the population for crossing. The purpose of selection is to

emphasize fitter individuals in the population in hopes that their offspring have higher fitness.

Chromosomes are randomly selected from the initial population according to their evaluation

function to be parents for reproduction.

The higher the fitness function, the more chance an individual has to be selected. The

selection pressure is defined as the degree to which the better individuals are favoured. The

higher the selection pressure, the more the better individuals are favored. This selection

pressure drives the GA to improve the population fitness over the successive generations. The

convergence rate of GA is largely determined by the magnitude of the selection pressure,

with higher selection pressures resulting in higher convergence rates.

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B (back), (back), (right), (forward), (left)

34

Genetic Algorithms should be able to identify optimal or nearly optimal solutions under a

wide range of selection scheme pressure. However, if the selection pressure is too low, the

convergence rate will be slow, and the GA will take unnecessarily longer time to find the

optimal solution. If the selection pressure is too high, there is an increased change of the GA

prematurely converging to an incorrect (sub-optimal) solution. In addition to providing

selection pressure, selection schemes should also preserve population diversity, as this helps

to avoid premature convergence. Selection scheme can be either proportionate selection or

ordinal-based selection.

Proportionate-based selection picks out individuals based upon their fitness values relative to

the fitness of the other individuals in the population. Ordinal mode of selection scheme

selects individuals not upon their raw fitness, but upon their rank within the population. This

requires that the selection pressure is independent of the fitness distribution of the population,

and is solely based upon the relative ordering (ranking) of the population. Selection has to be

balanced with variation of crossover and mutation. Too strong selection means sub optimal

highly fit individuals will take over the population, reducing the diversity needed for change

and progress; too weak selection will result in too slow evolution. The general selection

process involves reproduction, crossover and mutation operations. The various selection

methods are discussed next.

Proportional fitness (Roulette Wheel) Selection

It is the commonly used reproduction operator where a string is selected from the mating pool

with a probability proportional to the fitness. The principle of roulette selection is a linear

search through a roulette wheel with the slots in the wheel weighted in proportion to the

individual‟s fitness values. It is biased towards chromosomes with best fitness values.

However a wide range of chromosomes are selected. A target value is set, which is a random

35

proportion of the sum of the fitness of individuals in the population. The population is

stepped through until the target value is reached. In the first stage, a roulette wheel is

constructed with the relative fitness and cumulative fitness of chromosomes.

The relative fitness of each chromosome is calculated by

1

, `i
i kn

k

k

f
w where f is the fitness of kth chromosome

f

The cumulative fitness (cj) of the jth chromosome is calculated by

1

j

j l

l

c w

This creates the roulette wheel.

In the second stage, a random number rj is chosen and if rj > cj then the j-th chromosome is

selected.

The above calculation is based on maximization problems. For minimization problems the

following calculations are made:

 max 1i i

i
i n

k

k

F f f

F
w

F

Where fmax is the maximum fitness of all chromosomes and Fk is the reverse magnitude

fitness.

Roulette wheel selection is easier to implement but is noisy. The rate of evolution depends on

the variance of fitness in the population.

36

Random Selection

This technique randomly selects a parent from the population irrespective of their fitness. It is

a little more disruptive, on average, than roulette wheel selection.

Rank Selection

The Roulette wheel will have a problem when the fitness values differ very much. If the best

chromosome fitness is 90%, its circumference occupies 90% of Roulette wheel, and then

other chromosomes have too few chances to be selected. Rank Selection ranks the population

and every chromosome receives fitness from the ranking. The worst has fitness 1 and the best

has fitness N. Potential parents are selected and a tournament is held to decide which of the

individuals will be the parent. It results in slow convergence but prevents too quick

convergence. It also keeps up selection pressure when the fitness variance is low. It preserves

diversity and hence leads to a successful search. A practical way to carry out this method is to

select a pair of individuals at random. Generate a random number, R, between 0 and 1. If R <

r use the first individual as a parent. If the R ≥ r then use the second individual as the parent.

This is repeated to select the second parent. The value of r is a parameter to this method.

Alternative tournament may be conducted after selecting a pair of individuals.

Tournament Selection

In tournament selection, a tournament competition among Nu individuals is held. The winner

is the individual with highest fitness and is selected and inserted into the mating pool. The

process is repeated until the required number of chromosomes is obtained. The mating pool

comprising of the tournament winner has higher average population fitness. The fitness

37

difference provides the selection pressure, which drives GA to improve the fitness of the

succeeding genes. This Method is more efficient and leads to an optimal solution.

Boltzmann Selection

In Boltzmann selection a continuously varying temperature controls the rate of selection

according to a preset schedule. The temperature starts out high, which means the selection

pressure is low. The temperature is gradually lowered, which gradually increases the

selection pressure, thereby allowing the GA to narrow in more closely to the best part of the

search space while maintaining the appropriate degree of diversity.

Let fmax be the fitness of the currently available best string. If the next string has fitness f(Xi)

such that f(Xi) > fmax, then the new string is selected. Otherwise it is selected with Boltzmann

probability, maxexp /iP f f X T where 0 1 1 100 /
k

T T and k g G ; g

is the current generation number; G, the maximum value of g. The value of α can be chosen

from the range [0, 1] and T0 from the range [5, 100]. The final state is reached when

computation approaches zero value of T, i.e., the global solution is achieved at this point. The

probability that the best string is selected and introduced into the mating pool is very high.

However, Elitism can be used to eliminate the chance of any undesired loss of information

during the mutation stage. Moreover, the execution time is less.

Elitism (Reproduction) Selection

The first best chromosome or few best chromosomes are copied to the population. This

process ensures that a percentage of the current population which is greatly highly fit is

copied directly as part of the new generation. If elitism is used, only N-1 individuals are

produced by recombining the information from parents. The last individual is a copy of the

fittest individual from the previous generation. This ensures that the best chromosome is

38

never lost in the optimization process due to random events. This significantly improves the

GA‟s performance.

Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and minimum spread. It ensures a selection

of offspring which is closer to what is deserved than the roulette wheel selection. The

individuals are mapped to contiguous segments of a line, such that each individual‟s segment

is equal in size to its fitness exactly as in roulette-wheel selection. Here equally spaced

pointers are placed over the line, as many as there are individuals to be selected.

Consider NPointer the number of individuals to be selected, then the distance between the

pointers are
1

N
Pointer and the position of the first pointer is given by a randomly generated

number in the range [0,
1

N
Pointer]. For 6 individuals to be selected, the distance between the

pointers is
1

6
= 0.167. Figure 3.7 shows the selection for the above example. Sample of 1

random number in the range [0, 0.167]: 0.1. After selection the mating population consists of

the individuals 1, 2, 3, 4, 6, 8.

Figure 3.7: Stochastic universal sampling

39

3.1.3 CROSSOVER

After the selection (reproduction) process, the population is enriched with better individuals.

Crossover is the process of taking two parent solutions and producing from them a child.

Crossover operator is applied to the mating pool with the hope that it creates a better

offspring. The point between two alleles of a chromosome where it is cut is called crossover

point. The process involves choosing randomly some crossover points and copying

everything before this point from the first parent and then copying everything after the

crossover point from the other parent. Crossover operation is an exploratory operator that

allows the Genetic Algorithm to take to converge faster. As convergence is approached the

exploratory power of crossover operation diminishes.

Crossover is a recombination operator that proceeds in three steps:

i. The reproduction operator selects at random a pair of two individual strings for the

mating.

ii. A crossover point is selected at random along the string length.

iii. Finally, the position values are swapped between the two strings following the

crossover point.

The various crossover techniques are discussed below.

In a single point crossover, the two mating chromosomes are cut at corresponding points and

the sections after the cut exchanged. If appropriate site is chosen, better children can be

obtained by combining good parents else it severely hampers string quality. The crossover

point can be chosen randomly. Figure 3.8 shows how a single point crossover point is

conducted.

40

 Figure 3.8: Single point crossover

In a two-point crossover, two crossover points are chosen and the contents between these

points are exchanged between two mated parents. It must be noted that adding further

crossover points reduces the performance of the GA. The problem with adding additional

crossover points is that building blocks are more likely to be disrupted. However, an

advantage of having more crossover points is that the problem space may be searched more

thoroughly.

There are two ways in conducting a multipoint (N-point) crossover. One is even number of

cross-sites (crossover points) and the other is odd number of cross-sites. In the case of even

number of cross-sites, cross-sites are selected randomly around a circle and information is

exchanged. In the case of odd number of cross-sites, a different cross-point is always

assumed at the string beginning.

In a Uniform Crossover, each gene in the offspring is created by copying the corresponding

gene from one or the other parent chosen according to a random generated binary crossover

mask of the same length as the chromosomes. Where there is a 1 in the crossover mask, the

gene is copied from the first parent, and where there is a 0 in the mask the gene is copied

from the second parent. A new crossover mask is randomly generated for each pair of

parents. Offspring, therefore contain a mixture of genes from each parent. The number of

effective crossing point is not fixed, but will average
2

L
 (where L is the chromosome length).

Parent 1 1 0 1 1 0 0 1 0

Parent 2 1 0 1 0 1 1 1 1

Child 1 1 0 1 1 0 1 1 1

Child 2 1 0 1 0 1 0 1 0

41

In a three parent crossover, three parents are randomly chosen. Each bit of the first parent is

compared with the bit of the second parent. If both are the same, the bit is taken for the

offspring otherwise; the bit from the third parent is taken for the offspring.

Other Crossover Techniques

Crossover with Reduced Surrogate

The reduced surrogate operator constrains crossover to always produce new individuals

wherever possible. This is implemented by restricting the location of crossover points such

that crossover points only occur where gene values differ.

Shuffle Crossover

Shuffle crossover is related to uniform crossover. A single crossover position (as in single-

point crossover) is selected. But before the variables are exchanged, they are randomly

shuffled in both parents. After recombination, the variables in the offspring are unshuffled.

This removes positional bias as the variables are randomly reassigned each time crossover is

performed.

Ordered Crossover, Precedence Preservative Crossover (PPX), and Partially Matched

Crossover (PMX) are all other techniques of crossover.

Crossover Probability

Crossover probability is a parameter to describe how often crossover will be performed. If

there is no crossover, offspring are exact copies of parents. If there is crossover, offspring are

made from parts of both parents‟ chromosomes. If crossover probability is 100%, then all

offspring are made by crossover. If it is 0%, whole new generation is made from exact copies

of chromosomes from old population (but this does not mean that the new generation is the

same). Crossover is made in hope that new chromosomes will contain good parts of old

chromosomes and therefore the new chromosomes will be better.

42

3.1.4 MUTATION

After crossover, the strings are subjected to mutation. If crossover is supposed to exploit the

current solution to find better ones, mutation is supposed to help for the exploration of the

whole search space. Mutation prevents the algorithm to be trapped in a local minimum.

Mutation is viewed as a background operator to maintain genetic diversity in the population.

It introduces new genetic structures in the population by randomly modifying some of its

building blocks. Mutation helps escape from local minima‟s trap and maintains diversity in

the population. It also keeps the gene pool well stocked, and thus ensuring ergodicity. A

search space is said to be ergodic if there is a non-zero probability of generating any solution

from any population state. Mutation operation is performed on the individual chromosome

whereby the alleles are changed probabilistically. There are many different forms of mutation

for the different kinds of representation.

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation chromosome

generated. The figure 3.9 explains mutation-flipping concept. A parent is considered and a

mutation chromosome is randomly generated. For a 1 in mutation chromosome, then

corresponding bit in parent chromosome is flipped (0 to 1 and 1 to 0) and child chromosome

is produced. In the above case, there occurs 1 at 3 places of mutation chromosome, the

corresponding bits in parent chromosome are flipped and child is generated.

Figure 3.9 Mutation flipping

Parent 1 1 0 1 1 0 1 0 1

Mutation chromosome 1 0 0 0 1 0 0 1

Child 0 0 1 1 1 1 0 0

43

In Mutation by interchange of bits, two random positions of the string are chosen and the bits

corresponding to those positions are interchanged. It is also called random swap mutation.

In Mutation by reversing bit, a random position is chosen and the bits next to that position are

reversed and child chromosome is produced. This is sometimes called Move-and-insert gene

mutation. In a Move-and-insert sequence mutation, a sequence of bits instead of positions is

reversed.

Mutation Probability

 The important parameter in the mutation technique is the mutation probability (Pm). The

mutation probability decides how often parts of chromosome will be mutated. If there is no

mutation, offspring are generated immediately after crossover (or directly copied) without

any change. If mutation is performed, one or more parts of a chromosome are changed. If

mutation probability is 100%, whole chromosome is changed, if it is 0%, nothing is changed.

3.1.5 REPLACEMENT

Once offspring are produced, a method must determine which of the current members of the

population, if any, should be replaced by the new solutions. The technique used to decide

which individual stay in a population and which are replaced in on a par with the selection in

influencing convergence. Basically, there are two kinds of methods for maintaining the

population; generational updates and steady state updates.

The basic generational update scheme consists in producing N children from a population of

size N to form the population at the next time step (generation), and this new population of

children completely replaces the parent selection. Clearly this kind of update implies that an

individual can only reproduce with individuals from the same generation.

44

In a steady state update, new individuals are inserted in the population as soon as they are

created, as opposed to the generational update where an entire new generation is produced at

each time step. The insertion of a new individual usually necessitates the replacement of

another population member. The individual to be deleted can be chosen as the worst member

of the population. It leads to a very strong selection pressure, or as the oldest member of the

population, but those methods are quite radical. Generally steady state updates use an ordinal

based method for both the selection and the replacement, usually a tournament method.

Tournament replacement is exactly analogous to tournament selection except the less good

solutions are picked more often than the good ones.

Note that in random replacement, the children replace two randomly chosen individuals in the

population. The parents are also candidates for selection. This can be useful for continuing

the search in small populations, since weak individuals can be introduced into the population.

Weak parent replacement is another form of replacement. This is where a weaker parent is

replaced by a strong child. With the four individuals only the fittest two, parent or child,

return to population. This process improves the overall fitness of the population when paired

with a selection technique that selects both fit and weak parents for crossing, but if weak

individuals are discriminated against in selection the opportunity will never raise to replace

them.

A simple replacement technique is the both parents replacement where the child replaces the

parent. In this case, each individual only gets to breed once. As a result, the population and

genetic material moves around but leads to a problem when combined with a selection

technique that strongly favors fit parents: the fit breed and then are disposed off.

45

3.1.6 SEARCH TERMINATION

The termination or convergence criterion finally brings the search to a halt. The various

stopping conditions are as follows:

 Maximum generations – The genetic algorithm stops when the specified number of

generations has evolved.

 Elapsed time – The genetic process will end when a specified time has elapsed.

Note: If the maximum number of generation has been reached before the specified

time has elapsed, the process will end.

 No change in fitness – The genetic process will end if there is no change to the

population‟s best fitness for a specified number of generations.

Note: If the maximum number of generation has been reached before the specified

number of generations with no changes has been reached, the process will end.

 Stall generations – The algorithm stops if there is no improvement in the objective

function for a sequence of consecutive generations of length Stall generations.

 Stall time limit – The algorithm stops if there is no improvement in the objective

function during an interval of time in seconds equal to Stall time limit.

The steps involved in a standard Genetic algorithm as stipulated by Goldberg (1989) are as

follows:

1. Start with a population of n random individuals (x) each with L-bit chromosome

representation.

2. Calculate the fitness f(x) of each individual.

3. Choose based on fitness, two individuals and call them parents. Remove the parents

from the population.

46

4. Use a random process to determine whether to perform crossover. If so refer to the

output of the crossover as children. If not, simply refer to the parents as the children.

5. Mutate the children with probability, Pm of mutation for each bit.

6. Put the children into an empty set called the new generation.

7. Return to step 2 until the new generation contains n individuals. Delete one child at

random if n is odd. Then replace the old population with the new generations. Return

to step 1.

Representation of n-variables

The chromosome data structure stores an entire population in a single matrix of size Nind ×

Lind, where Nind is the number of individuals in the population and Lind is the length of the

genotypic representation of those individuals. Each row corresponds to an individual‟s

genotype (coded string) consisting of base n, typically binary values.

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1

2

Lind

Lind

Nind Nind Nind Lind

g g g individual

g g g individual
Chromosome

g g g individual Nind

Decoded Structure or Phenotypes

The decision variables in the GA are obtained by applying some mapping from chromosome

representation into the decision variable space. Here, each string contained in the

chromosome structure decodes to a row vector of order Nvar, according to the number of

dimensions in the search space and corresponding to the decision variable vector value. The

decision variables are stored in a numerical matrix of size Nind × Nvar. It is feasible using

this representation to have vector of decision variables of different types. Example, mixed

integer, real valued and binary decision variables in the same phenotypic data structure.

47

1,1 1,2 1, var

2,1 2,2 2, var

,1 ,2 , var

1

2

N

N

Nind Nind Nind N

x x x individual

x x x individual
Phenotype

x x x individual Nind

From the above representations, it can be seen that the corresponding fitness of individuals

will be a column vector with its entries corresponding to the individuals. In case of multi-

objective values will also be put in a matrix as in

1,1 1,2 1, var

2,1 2,2 2, var

,1 ,2 , var

1

2

N

N

Nind Nind Nind N

y y y individual

y y y individual
Phenotype

y y y individual Nind

3.2 THE BUILDING BLOCKS

A schema is defined as templates for describing a subset of chromosomes with similar

sections. The schemata consist of bits 0, 1 and meta-character. The template is a suitable way

of describing similarities among Patterns in the chromosomes. Holland derived an expression

that predicts the number of copies a particular schema would have in the next generation after

undergoing exploitation, crossover and mutation. The number of fixed positions in the

template is called the order. The defining length is the distance between the first and last

specific positions. It should be noted that particularly good schemata will propagate in future

generations. Thus, schema that are low-order, well defined and have above average fitness

are preferred and are termed building blocks. This leads to a building block principle of

Genetic Algorithms: low order, well-defined, average fitness schemata will combine through

crossover to form high order, above average fitness schemata. Since GAs process may

schemata in a given generation they are said to have the property of implicit parallelism.

48

3.2.1 Building Block Hypothesis

The building block hypothesis is one of the most important criteria of how a genetic

algorithm works. Schemata with high fitness values and small defining length are called

Building Blocks. A genetic algorithm seeks near-optimal performance through the

juxtaposition of short, low-order, high-performance schemata, called the building blocks.

A schema is highly fit if its average fitness is considerably higher than the average fitness of

all strings in the search space. This version of the building block hypothesis might be called

the static building block hypothesis. Under this interpretation, it is easy to give counter

examples to the building block hypothesis.

For example, suppose that the string length is 100 and that the order of the schema is 10.

Then the schema will contain 90 points. First, suppose that every string in the schema except

one has relatively low fitness. The single point has very high fitness so that the average

schema fitness relative to the search space is high. Then any randomly chosen finite

population is highly likely to never see the high fitness point, and so the schema will be very

likely to disappear in a few generations. Similarly, one can choose most points to have high

fitness, with a few points having sufficiently low fitness that the schema fitness relative to the

whole population is low. Then of course, this low-fitness schema will probably grow and may

lead to a good solution.

Another interpretation is that a schema is highly fit if the average fitness of the schema

representatives in the populations of the genetic algorithm run is higher than the average

fitness of all individuals in these populations. This might be called the relative building block

hypothesis. The meaning of the building block hypothesis can be illustrated by considering

the concatenated trap functions fitness functions that Goldberg has used as test problems.

For each trap function, the all-zeros string is a global optimum. The schemata that correspond

to these strings are the building blocks. For example, suppose that 5 trap functions are

49

concatenated where each trap function has string length 4 (so that the total string length is

20). Then the building blocks are the schemata 000****************,

****0000************, etc. If the population size is sufficiently large, then the initial

population will contain strings that are in the building block schemata, but it is unlikely for a

string to be in very many building block schemata. If the population size is large enough, the

GA with one-point crossover will be able to find the global optimum.

Building block hypothesis is a good explanation of why a GA works on a particular problem.

This suggests that crossover should be designed so that it will not be too disruptive of

building blocks, but presented in order to combine building blocks. Thus, knowledge of the

configuration of potential building blocks is important in the design of the appropriate

crossover. If the building blocks tend to be contiguous on the string, then one-point crossover

is most appropriate. If building blocks are distributed arbitrarily over the string, the GA will

not be successful unless the building blocks are identified before running the GA.

3.2.2 The Schema Theorem

A schema is a similarity template describing a subset of string displaying similarities at

certain string positions. The fitness of a schema is the average fitness of all strings matching

the schema. It is formed by the ternary alphabet {0,1,*}, where * is simply a notation symbol,

that allows the description of all possible similarities among strings of a particular length and

alphabet. In general, there are 2l different strings or chromosome of length l , but schemata

display an order of 3l . A particular string of length l inside a population of „n‟ individuals

into one of the 2l schemata can be obtained from this string. Thus, in the entire population

the number of schemata present in each generation is somewhere between 2l and 2ln ,

depending upon the population diversity.

50

A schema represents an affined variety of the search space: for example the schema

01**11*0 is a sub-space of the space of codes of 8 bits length (* can be 0 or 1). The GA

modeled in schema theory is a canonical GA, which acts on binary strings, and for which the

creation of a new generation is based on three operators;

 A proportionate selection, where the fitness function steps in: the probability that a

solution of the current population is selected and is proportional to its fitness.

 The genetic operators: single point crossover and bit-flip mutation, randomly applied

with probabilities Pc and Pm.

Schemata represent global information about the fitness function. A genetic algorithm works

on a population of N codes, and implicitly uses information on a certain number of schemata.

The basic schema theorem presented below is based on the observation that the evaluation of

a single code makes it possible to deduce some knowledge about the schemata to which that

code belongs.

Theorem

The Schema Theorem by Holland (1975) is also called the fundamental theorem of genetic

algorithm. Given a schema H, let

 ,m H t be the relative frequency of the schema H in the population of the t
th

 generation.

 f H be the mean fitness of the elements of H or fitness of H.

 O h be the number of fixed bits in the schema H called the order of the schema.

 H be the distance between the first and the last fixed bit of the schema called the

definition length of the schema.

f is the mean or average fitness of the current population.

51

cP is the crossover probability.

mP is the mutation probability

Then

 , 1 , 1
1

c m

f H H
E m H t m H t P O H P

lf

Thus above-average fit schemata having a short definition length and a low order tend to

grow very rapidly in the population. The applications of schema theorem include the

following:

 It provides some tools to check whether a given representation is well-suited to a GA.

 The analysis of nature of the “good” schemata gives few ideas on the efficiency of

genetic algorithm.

3.2.3 Implicit Parallelism

Even though at each generation one performs a proportional computation to the size of the

population n, we obtain useful processing of n
3
 schemata‟s in parallel with memory other

than the population itself. At present, the common interpretation is that a GA processes an

enormous amount of schemata implicitly. This is accomplished by exploiting the currently

available, incomplete information about these schemata continuously, while trying to explore

more information about them and other, possibly better schemata. This remarkable property

is commonly called the implicit parallelism of genetic algorithms. A simple GA has only m

structures in one time step, without any memory or bookkeeping about the previous

generations.

52

There are 3n schemata of length n. A single binary string fulfills n schema of order 1,
2

n

schemata of order 2, and in general,
n

k

 schemata of order k. Hence a string satisfies

1

2
n

n

k

n

k

 .

Theorem:

Consider a randomly generated start population of a simple GA and let ε (0, 1) be a fixed

error bound. Then schemata of length

 1 1sl n

have a probability of at least 1 − ε to survive one-point crossover. If the population size is

chosen as
2

2

l

sm , the number of schemata, which survive for the next generation, is of order

O(m
3
).

3.2.4 The No Free Lunch Theorem

The No Free Lunch work is a framework that addresses the core aspects of search, focusing

on the connection between fitness functions and effective search algorithms. The central

importance of this connection is demonstrated by the No Free Lunch theorem, which states

that, averaged over all problems, all search algorithms perform equally well. This result

implies that if we are comparing a genetic algorithm to some other algorithm (e.g., simulated

annealing, or even random search) and performs better for some class of problems, then the

other algorithm necessarily performs better on problems outside the class. Thus it is essential

to incorporate knowledge of the problem into the search algorithm. The No Free Lunch

framework also does the following:

53

 it provides a geometric interpretation of what it means for an algorithm to be well

matched to a problem;

 it brings insights provided by information theory into the search procedure;

 it investigates time-varying fitness functions;

 it proves that without the fitness function, one cannot (without prior domain

knowledge) successfully choose between two algorithms based on their previous

behaviour;

 it provides a number of formal measures of how well an algorithm performs; and

 it addresses the difficulty of optimization problems from a viewpoint outside of

traditional computational complexity.

3.2.5 Distinction between Genetic Algorithms with other Optimization Techniques

Genetic Algorithm differs substantially from more traditional search and optimization

methods. The four most significant differences are:

i. It operates with coded versions of the problem parameters rather than parameters

themselves i.e., GA works with the coding of solution set and not with the solution

itself.

ii. Almost all conventional optimization techniques search from a single point but

Genetic Algorithms always operate on a whole population of points (strings). i.e., it

uses population of solutions rather than a single solution for searching. This plays a

major role to the robustness of genetic algorithms. It improves the chance of reaching

the global optimum and also helps in avoiding local stationary point.

iii. It uses fitness function for evaluation rather than derivatives. As a result, they can be

applied to any kind of continuous or discrete optimization problem. The key point to

be performed here is to identify and specify a meaningful decoding function.

54

iv. It uses probabilistic transition operators while conventional methods for continuous

optimization apply deterministic transition operators i.e., GAs does not use

deterministic rules.

MAXIMIZING FUNCTION PROBLEM

 2 1,2,3,...,31Max f x x for x

The steps involved in solving this problem are as follows:

Step 1: For using genetic algorithms approach, one must first code the decision variable „x‟

into a finite length string. Using a five bit (binary integer) unsigned integer, numbers between

0(00000) and 31(11111) can be obtained.

The objective function here is f (x) = x
2
 which is to be maximized. A single generation of a

genetic algorithm is performed here with encoding, selection, crossover and mutation. To

start with, select initial population at random as shown in table 3.2. Here initial population of

size 4 is chosen, but any number of populations can be selected based on the requirement and

application.

Step 2: Obtain the decoded x values for the initial population generated. For string 1, we have

4 3 2 1 001100 0 2 1 2 1 2 0 2 0 2

0 8 4 0 0 12

All other strings are computed as such.

Step 3: Calculate the fitness or objective function for each x.

When, x = 12, the fitness value is f (x) = x
2
 = (12)

2
 = 144 and so on, until the entire population

is computed.

55

Step 4: Compute the probability of selection as

1

i

n

i

i

f x
P x

f x

 where n is number of

populations and i is the i-th chromosome. Table 3.2 has the values of probability of selection.

Step 5: The next step is to calculate the expected count, which is calculated as,

1

i

n

i

i

f x
Expected count

average f x

f x

where average f x
n

The expected count gives an idea of which individual of population can be selected for

further processing in the mating pool.

Step 6: Now the actual count is to be obtained to select the individuals, which would

participate in the crossover cycle using Roulette wheel selection. Roulette wheel is of 100%

and the probability of selection as calculated in step 4 for the entire populations are used as

indicators to fit into the Roulette wheel. Now the wheel may be spun and the number of

occurrences of population is noted to get actual count.

String 1 occupies 12.47%, so there is a chance for it to occur at least once. Hence its actual

count may be 1. With string 2 occupying 54.11% of the Roulette wheel, it has a fair chance of

being selected twice. Thus its actual count can be considered as 2. On the other hand, string 3

has the least probability percentage of 2.16%, so their occurrence for next cycle is very poor.

As a result, its actual count is 0. String 4 with 31.26% has at least one chance for occurring

while Roulette wheel is spun, thus its actual count is 1. The actual count may also be

achieved by rounding up expected count to the nearest integer. The values associated with

this example shown in table 3.2. The Roulette wheel is formed as shown in Fig. 3.10.

56

Figure 3.10: Roulette wheel

Step 7: Now, writing the mating pool based upon the actual count is shown in table 3.3. The

actual count of string 1 is 1; hence it occurs once in the mating pool. The actual count of

string 2 is 2; hence it occurs twice in the mating pool. Since the actual count of string 3 is 0, it

does not occur in the mating pool. Similarly, the actual count of string 4 being 1, it occurs

once in the mating pool. Based on this, the mating pool is formed.

String No. Initial

population

x value Function

value (x
2
)

P(x) Percentage

probability

Expected

count

Actual

count

1 0 1 1 0 0 12 144 0.1247 12.47% 0.4987 1

2 1 1 0 0 1 25 625 0.5411 54.11% 2.1645 2

3 0 0 1 0 1 5 25 0.0216 2.61% 0.0866 0

4 1 0 0 1 1 19 361 0.3126 31.26% 1.2502 1

Sum 1155 1.0000 100% 4.0000 4

Average 288.75 0.2500 25% 1.0000 1

Maximum 625 0.5411 54.11% 2.1645 2

Table 3.2: Selection

2.16%

31.26%

54.11%

12.47%

57

Step 8: Crossover operation is performed to produce new offspring (children). The crossover

point is specified and based on the crossover point, single point crossover is performed and

new offspring is produced as shown in table 3.3.

Step 9: After crossover operations, new offspring are produced and x values are decoded and

fitness is calculated.

Step 10: In this step, mutation operation is performed to produce new offspring after

crossover operation. The mutation is performed on a bit-bit by basis. Table 3.4 shows the new

offspring after mutation. Once the offspring are obtained after mutation, they are decoded to x

values and fitness values are computed. This completes one generation. The results are shown

in table 3.4.

The crossover probability and mutation probability was assumed to be 1.0 and 0.001

respectively. Once selection, crossover and mutation are performed, the new population is

now ready to be tested. This is performed by decoding the new strings created by the simple

genetic algorithm after mutation and calculates the fitness function values from the x values

thus decoded.

58

String No. Mating

pool

Crossover

point

Offspring

after

crossover

x value Function

value (x
2
)

1 0 1 1 0 0 4 0 1 1 0 1 13 169

2 1 1 0 0 1 4 1 1 0 0 0 24 576

3 1 1 0 0 1 3 1 1 0 1 1 27 729

4 1 0 0 1 1 3 1 0 0 0 1 17 289

Sum 1763

Average 440.75

Maximum 729

Table 3.3: Crossover

In tables 3.2 – 3.4, it can be found that maximal and average performance has improved in

the new population. The population average fitness has improved from 288.75 to 636.5 in one

generation. The maximum fitness has increased from 625 to 841 during same period.

Although random processes make this best solution, its improvement can also be seen

successively. The best string of the initial population (1 1 0 0 1) receives two chances for its

existence because of its high, above-average performance. When this combines at random

with the next highest string (1 0 0 1 1) and is crossed at crossover point 2 (as shown in Table

3.3), one of the resulting strings (1 1 0 1 1) proves to be the very best solution indeed. Thus

after mutation at random, a new best offspring (1 1 1 0 1) is produced.

59

String No. Offspring

after

crossover

Mutation

Chromosomes

for flipping

Offspring

after

Mutation

x value Function

value (x
2
)

1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 29 841

2 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 24 576

3 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 27 729

4 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 20 400

Sum 2564

Average 636.5

Maximum 841

Table 3.3: Mutation

3.3 CONVENTIONAL OPTIMIZATION AND SEARCH TECHNIQUES

The basic principle of optimization is the efficient allocation of scarce resources.

Optimization can be applied to any scientific or engineering discipline. However there is no

specific method which solves all optimization problems. Therefore, one can solve

optimization problems by combining human creativity and the raw processing power of the

computers. Conventional optimization and search techniques include gradient – based local

optimization method, random search method, stochastic climbing method, simulated

annealing and Symbolic Artificial Intelligence (AI) methods. This work discusses both the

simulated annealing and Stochastic Hill Climbing methods.

60

3.3.1 SIMULATED ANNEALING

In metallurgy and material science, annealing is a heat treatment of material with the goal of

altering its properties such as hardness. Simulated Annealing was originally inspired by

formation of crystal in solids during cooling i.e., the physical cooling phenomenon. It is a

method that simulates the thermodynamic process in which a metal is heated to its melting

temperature and then is allowed to cool slowly so that its structure is frozen at the crystal

configuration of lowest energy. The slower the cooling, the more perfect is the crystal

formed. By cooling, complex physical systems naturally converge towards a state of minimal

energy. For an infinitely slow cooling, this method is certain to find the global optimum. The

only point is that infinitely slow consists in finding the appropriate temperature decrease rate

to obtain a good behavior of its algorithm.

The system moves randomly, but the probability to stay in a particular configuration depends

directly on the energy of the system and on its temperature as in Gibs law.

Gibbs law gives this probability as:

 TE k
p e

Where E stands for the energy, k is the Boltzmann constant and T is the temperature.

Research has revealed that Simulated Annealing algorithms with appropriate cooling

strategies will asymptotically converge to the global optimum. In describing Simulated

Annealing as used to solve a minimizing objective function of an optimization problem, the

algorithm that follows is used.

Algorithm for Simulated Annealing

Algorithm begins

 pnew.g ← initial guess

61

pcur ← pnew

p* ← pnew

 t ← 0

while termination Criterion is not satisfied do

. .

0

. *. *

()

()

1

*.

k

new cur

cur new

cur cur

E T

cur new

E f p x f p x

if E then

p p

if f p x f p x then p p

else

T get Temperature t

if random generate e then p p

update temperature

t t

return p x

end

Simulated Annealing is a serious competitor to Genetic Algorithms. Both Genetic Algorithms

and Simulated Annealing are derived from analogy with natural system evolution and both

deal with the same kind of optimization problem.

However, it is less efficient compared to the Genetic Algorithm since it only deals with one

individual at each iteration. Genetic algorithm is population based and so covers a wider

search space at each iteration. In light of this Simulated Annealing is faster and simple or

easier to implement. The Simulated Annealing can be used to determine the optimal layout of

printed circuit board or the traveling salesman problem.

62

3.3.2 STOCHASTIC HILL CLIMBING

Hill climbing is a very old and simple search and optimization algorithm for continuous

unimodal functions. It uses a kind of gradient to guide the direction of the search. In

principle, hill climbing algorithms perform a loop in which the currently known best solution

is used to search for a new one. Stochastic hill climbing (also called stochastic gradient

descent) which is one of such methods consists of choosing randomly a solution in the

neighbourhood of the current solution and retains this new solution only if it improves the

objective function.

On multimodal functions, the algorithm is likely to stop on the first peak it finds even if it is

only a local optimum. This is a problem of hill climbing. To avoid this problem, it is

advisable to repeat several hill climbs each time starting from a different randomly chosen

point after the first local optimum. This method is sometimes known as iterated hill

climbing. Once different local optimal points have been obtained, the global optimum can

easily be observed. However, if the function of interest is very noisy with many small peaks

then definitely stochastic hill climbing is not the best method. Nevertheless the advantage of

this method is that it is easy to implement to achieve a fairly good solution faster.

Stochastic hill climbing usually starts from a randomly selected point. In describing the

algorithm, below is a well stated outline.

Hill Climbing algorithm

Input: f: the objective function subject to minimization

Data: pnew: the new element created

Data: p*: the (currently) best individual

Output: x*: the best element found

1. P* .g ← create (Implicitly: p*.x ← gpm(p*.g))

63

2. while termination Criterion is not satisfied do

3. pnew.x ← gpm(pnew.g)

4. if f (pnew.x) < f (p*.x) then p* ← pnew

5. return p* .x

6. end

64

CHAPTER 4

APPLICATION OF GENETIC ALGORITHM TO SOLVE SPECIAL

FUNCTIONS

4.0 INTRODUCTION

This Chapter examines the categories of common literature benchmark. In this Chapter, the

Genetic Algorithm is used to solve three of such special functions namely Rosenbrock‟s

function, Rastrigin‟s function and the Schwefel‟s function.

4.1 LITERATURE BENCHMARK

The quality of any optimization procedures are frequently evaluated by using common

standard literature yardstick (benchmark) based on the difficulty of the techniques to obtain

the global minimum. There are several classes of such test functions which are all continuous.

They include:

a) unimodal, convex, multidimensional functions,

b) multimodal, two-dimensional with a small number of local extremes functions,

c) multimodal, two-dimensional with huge number of local extremes functions and

d) multimodal, multidimensional, with huge number of local extremes functions.

The first category (a) of functions contains malicious cases causing poor or slow convergence

to single global extremum. An example of such functions is the first function of De Jong

given by 2

1

n

i

i

f x x

 .

The second category (b) is an intermediate between (a) and (c)-(d), and is used to test quality

of standard optimization procedures in the hostile environment, namely that having few local

extremes with single global one. The last two categories (c)-(d) are special cases

65

recommended to test quality of intelligent resistant optimization methods such as Genetic

Algorithm, Simulated Annealing and Tabu Search. This research work examines the quality

of Genetic Algorithm by applying it to some functions of the third category since the interest

is in finding the quality (efficiency) of GA to identify the global minimum in a huge number

of local minima.

Researchers in this field believe that the third category (c) is artificial in some sense, since the

behavior of optimization procedure is usually justified, explained and supported by human

intuitions on two-dimensional surfaces which are rare. Usually multidimensional functions

occur in practice. For example, job shop scheduling problem which has a dimension of 90.

All problems are formulated and solved as minimization problems. Nevertheless, it can be

applied also to maximization problems by simply inverting sign of the function. In all cases

two-point crossover was applied.

This chapter investigates the use of GA to determine the minimum of such complicated

functions. The computations involved in the GA may be tedious. For this reason a MATLAB

function by the MathWorks, Inc. (2006) was modified and used to solve the problems in

hereafter. However, Mathematica and other software could have been used.

The following parameters were used in the simulation of all the functions:

Probability of crossover = 0.8

Probability of mutation = 0.2

Initial population = 50

Maximum generations = 100

Stall generations = 50

66

4.2 SOLVING OF ROSENBROCK’S FUNCTION OR VALLEY

Rosenbrock‟s function is a classic optimization problem, also known as banana function

because of its distinctive shape in a contour plot. The global optimum lies inside a long,

narrow, parabolic shaped flat valley as shown in figure 4.1. To find a minimum point is

trivial, however convergence to the global optimum is difficult and hence this problem has

been frequently used to test the performance of optimization techniques or algorithms. The

minimum point causes a lot of problems for search algorithms such as the method of steepest

descents which will quickly find the entrance to the valley and then spend hundreds of

iterations zigzagging from one side of it to the other – making very slow progress towards the

minimum itself. The function has the following definition

22 2, 1 100f x y x y x .

This can be extended into a common multidimensional extension as

1

22 2

1

1

1 100
n

i i i

i

f x x x x

Where xi lies in the range 2.048,2.048 and i = 1, 2, …, n.

http://mathworld.wolfram.com/MethodofSteepestDescent.html
http://mathworld.wolfram.com/MethodofSteepestDescent.html

67

Figure 4.1: Overview of Rosenbrock‟s function

A MATLAB code was used to find the minimum of a two-dimension Rosenbrock‟s function

with the above stated conditions.

It was observed that the minimum of the Rosenbrock‟s function was 0.0000496

(approximately zero which is the global minimum of the function) and it occurred at the point

(1.0070, 1.0140). This value was reached at the 51
st
 generation when the stopping criterion

was satisfied after 2.35 seconds. The stopping criterion satisfied was the stall generations

with the extra condition that the average change in fitness value was less than the tolerance

set as 1×10
-6

 (1e-6).

The figure shows the search for best fitness over 51 generations with the mean fitness of

68.3697. In this figure the mean fitness for each generation is compared with the best fitness

as plotted.

Minimum point

68

Figure 4.2: Simulation of fitness values with respect to generation (iteration) of Rosenbrock‟s

function

4.3 SOLVING OF RASTRIGIN’S FUNCTION

Rastrigin‟s function is based on the first De Jong‟s function (shown earlier) with the addition

of cosine modulation in order to produce frequent local minima. An overview of the

Rastrigin‟s function is shown in figure 4.3. Thus, the test function is highly multimodal.

However, the locations of minima are regularly distributed.

Function has the following definition

 2

1

10 10cos 2 .
n

i i

i

f x n x x

Where xi is expected in the range 5.12,5.12 and i = 1, 2, …,n.

69

Figure 4.3: Overview of the Rastrigin‟s function

A MATLAB code was used to find the minimum of a simple Rastrigin‟s function with the

parameters stated above.

It was observed that the minimum of the Rastrigin‟s function was 0.00000000239

(approximately zero which is the global minimum of the function) and it occurred at

0.00000347 (approximately zero). This value was reached at the 51
st
 generation when the

stopping criterion was satisfied after 2.35 seconds. The stopping criterion satisfied was the

stall generations with the extra condition that the average change in fitness value was less

than the tolerance set as 1×10
-6

 (1e-6). In general, the global minimum for an n-dimensional

Rastrigin‟s function is zero (0) at xi = 0 for i = 1, 2, …, n. For instance, further simulation of

this function with n = 5 resulted in a global minimum value of 0.0309 at values 0.0125,

0.0000, -0.0000, 0.0001, -0.0000 which are all approximately zero (0) satisfying the standard

results.

70

The figure shows the search for best fitness over 51 generations with the mean fitness of

3.3762. In this figure the mean fitness for each generation is compared with the best fitness as

plotted.

Figure 4.4: Simulation of fitness values with respect to generation (iteration) of Rastrigin‟s

function

4.4 SOLVING OF SCHWEFEL’S FUNCTION

Schwefel‟s function is deceptive because the global minimum is geometrically distant, over

the parameter space from the next best local minima. Therefore, the search algorithms are

potentially prone to convergence in the wrong direction. An overview of the Schwefel‟s

function is shown in figure 4.5.

Function has the following definition

1

sin
n

i i

i

f x x x

 , where [500,500]ix and i = 1, 2, …, n

71

Figure 4.5: Overview of Schwefel‟s function

The MATLAB was used to find the minimum of the schwefel‟s function with the parameters

stated above.

It was observed that the minimum of a simple Schwefel‟s function, f(x) is -418.9829 which

occurred at 420.9618. This value was reached at the 51
st
 generation when the stopping

criterion was satisfied after 23.02 seconds. The stopping criterion satisfied was the stall

generations with the extra condition that the average change in fitness value was less than the

tolerance set as 1×10
-6

 (1e-6). In general, the global minimum for an n-dimensional

Schwefel‟s function is -418.9829n at xi = 420.9618 for i = 1, 2, …, n. For instance, further

simulation with n = 10 resulted in a global minimum value as low as -4.7620 ×10
114

.

The figure 4.6 shows a search for best fitness over 51 generations with the mean fitness of -

418.982. In this figure the mean fitness for each generation is compared with the best fitness

as plotted.

72

Figure 4.6: Simulation of fitness values with respect to generation (iteration) of Schwefel‟s

function

It must be noted that all solutions were achieved at different times indicating that the

computational times for each function is different. However, the minimum points were

obtained under a minute which actually shows that the GA procedure is able to complete

faster. The results from the algorithm are summarized in table 4.1 below.

73

Function Dimension Optimal Solution Global Optimum

Rosenbrock 2 1.0070,1.0140 0.0000496

Rastrigin 1 0.00000347 0.00000000239

Rastrigin 5 0.0125, 0.0000,-0.0000,

0.0001,-0.0000

0.0309

Schwefel 1 420.9618 -418.9829

Schwefel 10 10
114

×(-0.000,0.000,-0.000,-

0.000,-0.000,0.000,-0.000, -

4.930,-0.000,0.000)

-4.7620×10
114

Table 4.1: Summary of results

74

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The results obtained by simulation of the function approximation problem reveals the

superiority of the Genetic Algorithm over other methods of optimization in both complicated

and multimodal functions. This is due to its ability to locate the global minimum of functions

within the shortest time limit. However, since the algorithm involves the randomization of the

initial population, it was found that the procedure might take unnecessary longer time to

converge on the global minimum in cases where the initial randomization is set from a

distant.

The results revealed that the global minimum for the two dimension Rosenbrock‟s function

was 0.0000496 (approximately zero) and it occurred at the point (1.0070, 1.0140).

Furthermore, it was found that the global minimum of the Rastrigin‟s function was

0.00000000239 (approximately zero) and it occurred at 0.00000347 (approximately zero).

The global minimum of Rastrigin‟s function with five (5) variables was 0.0309 which

occurred at the values 0.0125, 0.0000, -0.0000, 0.0001, -0.0000. These results confirms

standard results which expects the global minimum of n-dimensional Rastrigin‟s function to

be close or approximate to zero.

The Schwefel‟s function which is a multimodal function with several minimum points was

also found to have a global minimum of -418.9829 when the function was solved in single

dimension. This occurred at the point 420.9618. However, when the variables were increased

to ten (10) the GA was also able to identify the global minimum as -4.7620 ×10
114

 which is a

multiple of the global minimum of the simple Schwefel‟s function. The ability of the GA to

75

reveal this global minimum makes it a very good optimization tool for problems with several

minima.

A revelation in this research was the short time and the flexibility of the GA to produce the

solution to the problems. The results confirms Wang (1991) conclusion that the GA could be

efficient and robust and several other results and theory that revealed that GAs easily escape

from millions of local optima and reliably converge to a single global optimum (Jung, 2009).

These properties of the GA were identified as the major reason why the GA is the most

efficient optimization tool for multimodal functions with at most ten (10) variables.

5.2 RECOMMENDATIONS

As an efficient optimization tool for multimodal and multidimensional functions, Genetic

Algorithm is very useful for special problems (such as identifying the minimum point of

Drop Wave function) with difficulties in narrowing down to the global minimum. In light of

this capacity of the GA the following recommendations have been made:

 Genetic Algorithm is recommended for problems whose behaviour resembles

Rosenbrock‟s function, Schwefel‟s function or the Rastrigin‟s function. It must be

noted that if problems are presented as maximization; they can be solved by

minimizing the objective function multiplied by negative one.

 It is further recommended that other interested researchers will research into the

variants of Genetic Algorithms to indentify which form of the Genetic algorithm is

suitable for which problem.

76

REFERENCES

Aickelin, U. (2002). Enhanced Direct and Indirect Genetic Algorithm Approaches for a Mall

Layout and Tenant Problem. Journal of Heuristics: Volume 8, Issue 5, Pages 503-514.

Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of Economic

Dynamics and Control: Volume 18, Issue 1, Pages 3-28.

Bierwirth, D.C. and Mattfeld, C. (2004). An efficient Genetic Algorithm for Job Shop

Scheduling with tardiness objectives. European Journal of Operational Research: Volume

155, Issue 3, Pages 616-630.

Cao, Y. J. and Wu, Q. H. (1999). Teaching Genetic Algorithm Using MATLAB. Int. J. Elect.

Enging. Educ., Volume 6, Pages 139–153.

Eiben, A. E., E. H. L. and Van Hee, K. M. (1991). Global convergence of genetic algorithms:

A markov chain analysis. Parallel Problem Solving from Nature: Lecture Notes in Computer

Science, Volume 496, Pages. 3-12.

Funda Sivrikaya-Şerifoǧlu, F. and Ulusoy, G. (1999). Parallel machine scheduling with

earliness and tardiness penalties. Computers & Operations Research: Volume 26, Issue 8,

Pages 773-787.

Gregurick, S. K., Alexander, M. H. and Hartke, B.(1996). A Global Geometry Optimization

Technique Using A Modified Genetic Algorithm Approach for Clusters. J. Chem. Phys. 104,

2684.

Hisayoshi, M. and Meng, Z. Q. (2001). Fast Genetic Algorithm for Optimization of Inverse

Scattering Problem. Papers of Technical Meeting on Electromagnetic: VOL. EMT-01; NO.

96-109; Pages 7-12.

http://www.sciencedirect.com/science/journal/01651889
http://www.sciencedirect.com/science/journal/01651889
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0165188900X00905&_cid=271650&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=fbc2191534a60547bbb4dd9dbad2d4c7
http://www.sciencedirect.com/science/journal/03772217
http://www.springerlink.com/content/?Author=A.+E.+Eiben
http://www.springerlink.com/content/?Author=K.+M.+Van+Hee
http://www.springerlink.com/content/978-3-540-54148-6/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0305054800X00500&_cid=271709&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=ae6821cb3ecdf93fe1707c07c26c432c
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=MISAKA%20HISAYOSHI&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=MENG%20Z%20Q&combine=phrase&search=SEARCH

77

Isao, O., Hiroshi, S. and Shigenobu, K. (1999). A Real-Coded Genetic Algorithm for

Function Optimization Using the Unimodal Normal Distribution Crossover. Journal of

Japanese Society for Artificial Intelligence: Volume 14, Issue 6, Pages 1146 – 1155.

Jones, B. F., Eyres, D. E.and H.-H. Sthamer, H. H. (1998). A Strategy for using Genetic

Algorithms to Automate Branch and Fault-based Testing. Oxford Journals; Mathematics &

Physical Sciences; Computer Journal: Volume 41, Issue 2, Pages 98 – 107.

König, R. and Dandekar, T. (1999). Improving Genetic Algorithms for Protein folding

Simulations by Systematic Crossover. Biosystems: Volume 50, Issue 1, Pages 17-25.

Leardi, R. (2000). Application of genetic algorithm–PLS for feature selection in spectral data

sets. Journal of Chemometrics: Volume 14, Issue 5-6, pages 643–655.

Leehter, Y. and Sethares, W. A. (1994). Nonlinear Parameter Estimation via the genetic

Algorithm. Signal Processing, IEEE Transactions: Volume 42, Issue 4, pages 927 – 935.

Mühlenbein, H., Schomisch, M. and Born J. (1991). The Parallel Genetic Algorithm as

Function Optimizer. Parallel Computing: Volume 17, Issues 6-7, Pages 619-632.

Naoki, M., Hajime, K. And Yoshikazu, N. (2001). Adaptation to Changing Environments by

Means of the Memory Based Thermodynamical Genetic Algorithm. Transactions of the

Institute of Systems, Control and Information Engineers: Volume 14, Issue 1, Pages 33-41.

Niesse, J. A. and Mayne, H. R. (1996). Global geometry optimization of atomic clusters

using a modified genetic algorithm in space‐fixed coordinates. Journal of Chemical Physics:

Volume 105, Issue 11, Page 7.

Pond, S. L. K., Posada, D., Gravenor, M. B., Woelk, C. H. and Frost, D. W. S. (2006).

GARD: A Genetic Algorithm for Recombination Detection. Oxford Journals,Life Sciences &

Mathematics & Physical Sciences Bioinformatics: Volume 22, Issue 24 ; Pages 3096-3098.

http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=ONO%20ISAO&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=SATO%20HIROSHI&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=KOBAYASHI%20SHIGENOBU&combine=phrase&search=SEARCH
http://comjnl.oxfordjournals.org/search?author1=B.+F.+Jones&sortspec=date&submit=Submit
http://comjnl.oxfordjournals.org/search?author1=D.+E.+Eyres&sortspec=date&submit=Submit
http://comjnl.oxfordjournals.org/search?author1=H.-H.+Sthamer&sortspec=date&submit=Submit
http://services.oxfordjournals.org/cgi/tslogin?url=http%3A%2F%2Fwww.oxfordjournals.org
http://www.oxfordjournals.org/subject/mathematics/
http://www.oxfordjournals.org/subject/mathematics/
http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/content/41/2.toc
http://www.sciencedirect.com/science/journal/03032647
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0303264700X0038X&_cid=271079&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=8d3d84eea6f190d4303f6ebae7e3a907
http://onlinelibrary.wiley.com/doi/10.1002/1099-128X%28200009/12%2914:5/6%3C%3E1.0.CO;2-R/issuetoc
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78
http://www.sciencedirect.com/science/journal/01678191
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0167819105X80516&_cid=271636&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=b23e46d9905b413dd389558090061b71
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=MORI%20NAOKI&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=KITA%20HAJIME&combine=phrase&search=SEARCH
http://sciencelinks.jp/j-east/result.php?field1=author&keyword1=NISHIKAWA%20YOSHIKAZU&combine=phrase&search=SEARCH
http://jcp.aip.org/
http://jcp.aip.org/resource/1/jcpsa6/v105
http://jcp.aip.org/resource/1/jcpsa6/v105/i11
http://bioinformatics.oxfordjournals.org/search?author1=Sergei+L.+Kosakovsky+Pond&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=David+Posada&sortspec=date&submit=Submit
http://services.oxfordjournals.org/cgi/tslogin?url=http%3A%2F%2Fwww.oxfordjournals.org
http://www.oxfordjournals.org/subject/life_sciences/
http://www.oxfordjournals.org/subject/mathematics/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/content/22/24.toc

78

Reeves, C. R. (1995). A Genetic Algorithm for Flowshop Sequencing. Computers &

Operations Research: Volume 22, Issue 1, Pages 5-13.

Salomon, R. (1996). Re-evaluating genetic algorithm performance under coordinate rotation

of benchmark functions: A survey of some theoretical and practical aspects of genetic

algorithms. Biosystems; Volume 39, Issue 3, 1996, Pages 263-278.

Sivanandam, S.N. and Deepa, S.N. (2008). Introduction to Genetic Algorithm. Springer-

Verlag Berlin Heidelberg, New York, pages 2-5,24-29.

Thompson, M. A. and Dunlap, B. I. (2008). Optimization of Analytic Density Function by

Parallel Genetic Algorithm. Chemical Physics Letters, Volume 463, Issues 1-3, Pages 278-

282.

Wang, L., Howard Jay Siegel, H. J., Roychowdhury, V. P., and Anthony, A. M. (1997). Task

Matching and Scheduling in Heterogeneous Computing Environments Using a Genetic-

Algorithm-Based Approach. Journal of Parallel and Distributed Computing; Volume 47,

Issue 1, Pages 8-22.

Wang, Q. J. (1991). The Genetic Algorithm and its Application to Calibrating Conceptual

Rainfall-Runoff Models. Water Resource Research: Volume 27, Issue 9, Pages 2467–2471.

Wiendahl, H. P. and Garlichs, R. (1994). Decentral Production Scheduling of Assembly

Systems with Genetic Algorithm. CIRP Annals - Manufacturing Technology: Volume 43,

Issue 1, 1994, Pages 389-395.

Wu, S. J. and Chow, P. T. (1995).Genetic Algorithms for Nonlinear Mixed Discrete-Integer

Optimization Problems Via Meta-Genetic Parameter Optimization. Engineering

Optimization: Volume 24, Issue 2, pages 137-159.

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0305054800X00214&_cid=271709&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=17eb369d2d0ece88daa30c656bdcd240
http://www.sciencedirect.com/science/journal/03032647
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%234921%231996%23999609996%2379080%23FLP%23&_cdi=4921&_pubType=J&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=1d11f130e724c5a9b51ad91f10f31f6a
http://www.sciencedirect.com/science/journal/00092614
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235231%232008%23995369998%23697640%23FLA%23&_cdi=5231&_pubType=J&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=953e51ea557106512f9b70df83ef03c8
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0743731500X0055X&_cid=272438&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=5d923a469e6b43b0ca437f9236c41731
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0743731500X0055X&_cid=272438&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=5d923a469e6b43b0ca437f9236c41731
http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2340087%231994%23999569998%23679107%23FLP%23&_cdi=40087&_pubType=J&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=97e92f5433c30addfc7d2f9c396c0ef8
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2340087%231994%23999569998%23679107%23FLP%23&_cdi=40087&_pubType=J&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=97e92f5433c30addfc7d2f9c396c0ef8
http://www.tandfonline.com/loi/geno20?open=24#vol_24
http://www.tandfonline.com/toc/geno20/24/2

79

APPENDIX A

M-FILE FOR GENETIC ALGORITHM

function [x,fval,exitFlag,output,population,scores] = …

ga(FUN,GenomeLength,Aineq,Bineq,Aeq,Beq,LB,UB,nonlcon,options)

tic

defaultopt = struct('PopulationType', 'doubleVector', ...

 'PopInitRange', [0;1], ...

 'PopulationSize', 20, ...

 'EliteCount', 2, ...

 'CrossoverFraction', 0.8, ...

 'MigrationDirection','forward', ...

 'MigrationInterval',20, ...

 'MigrationFraction',0.2, ...

 'Generations', 100, ...

 'TimeLimit', inf, ...

 'FitnessLimit', -inf, ...

 'StallGenLimit', 50, ...

 'StallTimeLimit', 20, ...

 'TolFun', 1e-6, ...

 'TolCon', 1e-6, ...

 'InitialPopulation',[], ...

 'InitialScores', [], ...

 'InitialPenalty', 10, ...

 'PenaltyFactor', 100, ...

80

 'PlotInterval',1, ...

 'CreationFcn',@gacreationuniform, ...

 'FitnessScalingFcn', @fitscalingrank, ...

 'SelectionFcn', @selectionroulette, ...

 'CrossoverFcn',@crossovertwopoint, ...

 'MutationFcn',@mutationgaussian, ...

 'HybridFcn',[], ...

 'Display', 'final', ...

 'PlotFcns', [], ...

 'OutputFcns', [], ...

 'Vectorized','off');

% Check number of input arguments

errmsg = nargchk(1,10,nargin);

if ~isempty(errmsg)

 error('gads:ga:numberOfInputs',[errmsg,' GA requires at least 1 input argument.']);

end

% If just 'defaults' passed in, return the default options in X

if nargin == 1 && nargout <= 1 && isequal(FUN,'defaults')

 x = defaultopt;

 return

end

if nargin < 10, options = [];

 if nargin < 9, nonlcon = [];

81

 if nargin < 8, UB = [];

 if nargin < 7, LB = [];

 if nargin <6, Beq = [];

 if nargin <5, Aeq = [];

 if nargin < 4, Bineq = [];

 if nargin < 3, Aineq = [];

 end

 end

 end

 end

 end

 end

 end

end

% Is third argument a structure

if nargin == 3 && isstruct(Aineq) % Old syntax

 options = Aineq; Aineq = [];

end

% Input can be a problem structure

if nargin == 1

 try

 options = FUN.options;

 GenomeLength = FUN.nvars;

 % If using new syntax then must have all the fields; check one

82

 % field

 if isfield(FUN,'Aineq')

 Aineq = FUN.Aineq;

 Bineq = FUN.Bineq;

 Aeq = FUN.Aeq;

 Beq = FUN.Beq;

 LB = FUN.LB;

 UB = FUN.UB;

 nonlcon = FUN.nonlcon;

 else

 Aineq = []; Bineq = [];

 Aeq = []; Beq = [];

 LB = []; UB = [];

 nonlcon = [];

 end

 % optional fields

 if isfield(FUN, 'randstate') && isfield(FUN, 'randnstate') && ...

 isa(FUN.randstate, 'double') && isequal(size(FUN.randstate),[625, 1]) && ...

 isa(FUN.randnstate, 'double') && isequal(size(FUN.randnstate),[2, 1])

 rand('twister',FUN.randstate);

 randn('state',FUN.randnstate);

 end

 FUN = FUN.fitnessfcn;

 catch

83

 error('gads:ga:invalidStructInput','The input should be a structure with valid fields or

provide at least two arguments to GA.');

 end

end

% We need to check the GenomeLength here before we call any solver

valid = isnumeric(GenomeLength) && isscalar(GenomeLength)&& (GenomeLength > 0) ...

 && (GenomeLength == floor(GenomeLength));

if(~valid)

 error('gads:ga:validNumberofVariables:notValidNvars','Number of variables (NVARS)

must be a positive integer.');

end

% Use default options if empty

if ~isempty(options) && ~isa(options,'struct')

 error('gads:ga:optionsNotAStruct','Tenth input argument must be a valid structure

created with GAOPTIMSET.');

elseif isempty(options)

 options = defaultopt;

end

user_options = options;

% All inputs should be double

try

 dataType = superiorfloat(GenomeLength,Aineq,Bineq,Aeq,Beq,LB,UB);

 if ~isequal('double', dataType)

 error('gads:ga:dataType', ...

84

 'GA only accepts inputs of data type double.')

 end

catch

 error('gads:ga:dataType', ...

 'GA only accepts inputs of data type double.')

end

% Remember the random number states used

output.randstate = rand('twister');

output.randnstate = randn('state');

output.generations = 0;

output.funccount = 0;

output.message = '';

% Determine the 'type' of the problem

if ~isempty(nonlcon)

 type = 'nonlinearconstr';

 % Determine the sub-problem type for the constrained problem (used in ALPS)

 if ~isempty(Aeq) || ~isempty(Beq) || ~isempty(Aineq) || ~isempty(Bineq)

 subtype = 'linearconstraints';

 elseif ~isempty(LB) || ~isempty(UB)

 subtype = 'boundconstraints';

 else

 subtype = 'unconstrained';

 end

85

 % If Aeq or Aineq is not empty, then problem has linear constraints.

elseif ~isempty(Aeq) || ~isempty(Beq) || ~isempty(Aineq) || ~isempty(Bineq)

 type = 'linearconstraints';

 % This condition satisfies bound constraints

elseif ~isempty(LB) || ~isempty(UB)

 type = 'boundconstraints';

 % If all constraints fields are empty then it is unconstrained

else

 type = 'unconstrained';

end

% Initialize output structure

output.problemtype = type;

% If nonlinear constraints, then subtype is needed to process linear

% constraints (see function preProcessLinearConstr)

if strcmp(type,'nonlinearconstr')

 type = subtype;

end

% Validate options and fitness function

[options,GenomeLength,FitnessFcn,NonconFcn] =

validate(GenomeLength,FUN,nonlcon,options,type);

if ~strcmp(output.problemtype,'unconstrained')

86

 % Determine a start point

 if ~isempty(options.InitialPopulation)

 x = options.InitialPopulation(1,:);

 else

 x = randn(1,GenomeLength);

 end

 Iterate.x = x(:);

else

 Iterate.x = [];

end

% Initialize output

fval = [];

x = [];

population = [];

scores = [];

% Bound correction

[LB,UB,msg,exitFlag] = checkbound(LB,UB,GenomeLength);

if exitFlag < 0

 output.message = msg;

 if options.Verbosity > 0

 fprintf('%s\n',msg)

 end

 return;

end

87

% Linear constraints correction

[Iterate.x,Aineq,Bineq,Aeq,Beq,LB,UB,msg,exitFlag] = ...

preProcessLinearConstr(Iterate.x,Aineq,Bineq,Aeq,Beq,LB,UB,GenomeLength,type,options.

Verbosity);

if exitFlag < 0

 output.message = msg;

 if options.Verbosity > 0

 fprintf('%s\n',msg)

 end

 return;

end

% If initial population was not empty then we replace the first individual

% by the feasible point just found

if ~isempty(options.InitialPopulation) && ~isempty(Iterate.x)

 options.InitialPopulation(1,:) = Iterate.x';

 try % InitialScores may not be present

 options.InitialScores(1) = [];

 catch

 end

end

% Verify that individuals in InitialPopulation are feasible

if ~isempty(options.InitialPopulation) && ~strcmp(type,'unconstrained')

 pop = size(options.InitialPopulation,1);

88

 feasible = true(pop,1);

 for i = 1:pop

 feasible(i) =

isTrialFeasible(options.InitialPopulation(i,:)',Aineq,Bineq,Aeq,Beq,LB,UB,options.TolCon);

 end

 options.InitialPopulation(~feasible,:) = [];

 try % InitialScores may not be present

 options.InitialScores(~feasible) = [];

 catch

 end

end

% Validate nonlinear constraints

[LinearConstr, Iterate,nineqcstr,neqcstr,ncstr] = constrValidate(NonconFcn, ...

 Iterate,Aineq,Bineq,Aeq,Beq,LB,UB,type,options);

options.LinearConstr = LinearConstr;

% Make sure that bounds and PopInitRange are consistent

options.PopInitRange = checkPopulationInitRange(LB,UB,options.PopInitRange);

% Print some diagnostic information if asked for

if options.Verbosity > 2

 gadiagnose(FitnessFcn,NonconFcn,GenomeLength,nineqcstr,neqcstr,ncstr,user_options);

end

 % Call appropriate single objective optimization solver

89

switch(output.problemtype)

 case 'unconstrained'

 [x,fval,exitFlag,output,population,scores] = gaunc(FitnessFcn,GenomeLength, ...

 options,output,Iterate);

 case {'boundconstraints', 'linearconstraints'}

 [x,fval,exitFlag,output,population,scores] = galincon(FitnessFcn,GenomeLength, ...

 Aineq,Bineq,Aeq,Beq,LB,UB,options,output,Iterate);

 case 'nonlinearconstr'

 [x,fval,exitFlag,output,population,scores] = gacon(FitnessFcn,GenomeLength, ...

 Aineq,Bineq,Aeq,Beq,LB,UB,NonconFcn,options,output,Iterate,subtype);

end

toc

90

APPENDIX B

M-FILES FOR OBJECTIVE FUNCTIONS

1. Rosenbrock‟s Function

function f=rosenbrock(x)

sumc=0;

for i=1:length(x)-1

sumc = sumc+100*((x(i+1)-x(i)^2)^2) + (1-x(i))^2;

end

f = sumc

2. Rastrigin‟s Function

function scores = rastriginsfcn(x)

scores = 10.0 * size(x,2) + sum(x .^2 - 10.0 * cos(2 * pi .*x),2);

3. Schwefel‟s function

function y=schwefel(x)

sz=size(x);

if sz(1)==1

x=x';

end

y=-sum(x.*sin(sqrt(abs(x))));

