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ABSTRACT 

Sample size determination is often important steps in planning any statistical study and is 

usually not easy calculating. To determine appropriate sample size it is important to use 

detail approach than to use short cuts. This thesis work offers distinct approaches for 

calculating successful and meaningful sample size for different study designs. 

 Additionally, there are also different procedures for calculating sample size for two (2) 

approaches of drawing statistical inference from the study results. That is, confidence 

interval and test of significance approach. Also discussed is the relationship between power 

and sample size estimation. Power and sample size estimations are critical steps in the 

design of clinical trials. Power characterizes the ability of a study to detect a meaningful 

significant effect if indeed it exists. Usually these tasks can be accomplished by a 

statistician by using estimates of treatment effect and variance or sample standard deviation 

from past trials or from pilot studies. 

However, when exact power computations are not possible or when there is no effect size 

of clinical data, then simulation base approach must be adopted. This helps to recruit as 

many patients as required by the study than more or less patients that are not required.    
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 CHAPTR 1 

1.0 INTRODUCTION 

1.1  BACKGROUND STUDY 

Despite considerable efforts throughout the century to eradicate or control malaria, it is still 

the most prevalent and most devastating disease in the tropics. The disease has crippling 

effect on the economic growth and perpetuates vicious cycles of poverty in Africa. 

According to United Nations Children’s Fund, UNICEF (2004), it cost Africa US$10-12 

billion every year in Gross domestic product even though it could be controlled for a 

fraction of that sum. Sagoe-Moses (2005) contended that in Africa Malaria causes 

approximately 20% of cerebral conditions leading to coma and death. One of the important 

strategies to prevent people from the risk of Malaria infection is the use of Insecticide 

Treated Mosquito Nets (ITMNs). The 2003 Ghana Demographic Health Survey (GDHS) 

revealed that among the 6251 households surveyed 17.6% had a bed net and only 3.2% had 

ITMNs. Recent studies have shown that the use of bed nets, especially the ITMNs may 

reduce both transmission and mortality by at least 25% when used properly (Sagoe-Moses 

2005). It is suggested that a vast majority of household in the country do not have this 

simple but effective way of avoiding Malaria. The ownership distribution is not uniform; 

the highest ownership was recorded in the Upper East Region (25.1%). This may be 

attributed to the fact that UNICEF has since 2002 been distributing ITMNs at highly 

subsidized cost to pregnant women and children under 5 years in Northern Ghana as part of 

its Survival and Reproductive Health Programmes (SRHP).  

In 2007, UNICEF started another strategy of supporting a pilot implementation of a new 

and promising Malaria prevention called “Intermittent Preventive Treatment in Infants 

(IPTI)”.  
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This strategy involves the provision of curative doses of anti-Malaria, (Sulphadoxine-

Pyrimethamine) to infants as they attend routine Childhood Immunization. The anti-

Malaria is believed to be highly effective in reducing Malaria infection and Anaemia.  

1.1.1 AFIGYE-SEKYERE DISTRICT, ASHANTI REGION, GHANA 

Afigya-Sehyere district is one of the 18 administrative districts in Ashanti Region. It is 

bounded in the North by Sekyere West District, in the East by Sekyere East District, in the 

South by Kwabre District and in the West by Offinso District.  Its 1998 population was 

estimated at 110,000 based on the 1984 census with a growth rate of 3.1%. The under 12 

months and the under 5 years are 4.0% and 18.6% respectively of the population.  

The health system in the district is based on Ghana’s 3-tier Primary Health Care system. It 

is organised at 3 levels: 

i. the district-led by the District Health Management Team (DHMT) with the District 

Director of Health Services (DDHS) as its leader,  

ii. the sub-district led by the Sub-District Health Team (SDHT) based at a specified 

health facility and responsible for a defined geographical area and catchment 

population  

iii.  the community level - led by the Village Health Committee (VHC). The health 

district is divided into 6 sub-districts. It has the following health facilities: 1 district 

hospital (manned by the Seventh Day Adventist [SDA] Church), 5 health centers, 5 

maternity clinics, 3 clinics and 1 Maternal and Chile Health centre. 

The Expanded Programme on Immunisation (EPI) is one of the main activities of the 

Maternal and Child Health Unit of the district. Measles coverage for 1997 was 80%. The 

strategies used are static clinics, outreach clinics, house-to-house mop-up campaigns and 
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limited mass immunisation campaigns, with over 90% of infants having road-to-health 

cards (Browne, 1996). 

The principal malaria vectors are the Anopheles gambiae complex and Anopheles funestus. 

Only three human plasmodia species are present: P. falciparum (80-90%), P. malariae (20-

36%) and P. ovale (0-15%).  

Malaria transmission in the district is hyper-endemic although site-specific data is lacking. 

In a recent unpublished study in the Ejisu-Juaben district, which shares similar ecological 

characteristics with the study area, Plasmodium falciparum parasite rates in children aged 2 

- 9 years varied from 70% - 90% in the dry season in 24 communities. (Afari et al, 1992) 

In a 1997 study in Afigya-Sekyere district of the Ashanti Region of Ghana, 32781 

outpatient visits to hospitals were recorded.  Malaria (Presumptive) accounted for 20552 

visits (62.7%) with 784 Anaemia cases reported (2.3%). Admissions for 1997 were 8774. 

Malaria accounted for 3096 cases (35.3%) and was the leading cause of death at the district 

hospital. Malaria is therefore important health problems in this district. The health district 

therefore, provides a suitable field site for studies on Malaria control in infants in rural 

Ghana. (Schultz et al., 1994; Schultz et al., 1995) 

1.2 PROBLEM STATEMENT 

Malaria presents a serious health problem in Ghana and Afigya-Sekyere District is no 

exception. It is hyper- endemic with a crude parasite rate ranging from 10 – 70% and 

plasmodium falciparum the major malaria parasite, dominating. Although a number of 

statistical studies have been conducted in Afigya-Sekyere District, we want to check 

appropriate sample size with respect to power and significant level in this thesis work.  
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1.3 OBJECTIVE 

1. To estimate sample sizes given significance level and power.  

2. To examine the influence of sample size on the malaria data. 

1.4 METHODOLOGY 

Statistical research in the area of health is undertaken to obtain information for planning, 

operating, monitoring and evaluating health services. Central to the planning of any 

statistical research, is the decision on how large a sample to select from the population 

under study giving power and significant level, so as to help health workers and managers 

in making informed decision about the conduct of the research.  

Hypothesis testing would be considered and power analysis would be used to test whether 

there is statistical effect in the sample. Data analysis was conducted using secondary data 

obtained from the department of community health of KNUST. The data is from a study 

conducted between 2002 and 2003 on children aged between 1-11years undergoing 

Expanded Program on Immunisation (EPI), in the Afigya-Sekyere District.  

STATA and Matlab software would also be used to code simple formulae (mean and 

proportion) that will aid in determining sample size at various levels of significance given 

the effect size (the difference between two Population Parameters) and power (the 

probability of rejecting the null hypothesis when it is actually wrong). Information from the 

internet and KNUST Library is used in this research work. 

1.5 JUSTIFICATION  

Malaria affects everybody irrespective of one’s marital status and presents significant costs 

to the affected households since it is possible to experience multiple and repeated attacks in 

a year. The cost of treatment of malaria varies according to the type of drugs given and the 
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length of stay in the hospital. This research work aims to stimulate increased malaria 

research activities in Afigya-Sekyere District in particular and in Ghana at large. A research 

work with reliable parameters will help in policy planning that will mitigate the spread of 

malaria.  Thus, with good planning and reduction in malaria, the cost of treatment and 

waste of resources would be minimized. 

Improvement in the health status of people, imply healthy workforce would be realized to 

grow the economy and also more children would have the opportunity to continue 

schooling.  

 

1.6 THEISIS ORGANISATION 

Thus, Chapter One covers Introduction of the thesis topic, Back ground of study, Problem 

statement, Objectives of the research, Research methodology and finally Research 

justification.   

Chapter Two, covers Literature review and Chapter Three covers Methodology. Data 

analysis and findings are presented in Chapter Four. Finally Chapter Five deals with 

conclusions and recommendations. 
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CHAPTER TWO 

2.0 LTERARURE REVIEW 

2.1 HISTORICAL BACKGROUND  

Lipsey (1990) explained that statistical studies are the best means of making inference 

about the population and therefore should be carefully planned. Since it would be 

impossible to study the entire population, conclusions about the population by sample data 

are without a problem. The problem should be carefully defined and operationalized. 

Sample unit must be selected randomly from the appropriate population of interest. The 

study must be of adequate size relative to the goals of the study. That is, it must be ‘big 

enough’ to detect statistical significance. 

According to Shuster (1990), not all sample-size problems are the same, nor is sample size 

equally important in all studies. For example, the ethical issues in an opinion poll are very 

different from those in a medical experiment, and the consequences of an over- or under-

sized study also differ. Sample size issues are usually more important when it takes a lot of 

time to collect the data. An agricultural experiment may require a whole growing season, or 

even a decade, to complete. If its sample size is not adequate, the consequences are severe.  

It thus becomes much more important to plan carefully and to place greater emphasis on 

hedging for the possibility of under-estimating the error variance, since that would cause us 

to under-estimate the sample size. An under-size study exposes the subjects to potentially 

harmful treatment without having the capability to produce useful results, while an over-

size study exposes subjects to potentially harmful treatments that use more resources than 

are necessary. 

Odeh and Fox, (1991) argues that there are several approaches to sample size. There is 

sample size to achieve a specified standard error and sample size to achieve a specified 
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probability of obtaining statistical significance. For example, one can specify the desired 

width of a confidence interval and determine the sample size that achieves that goal. But 

the most popular approaches to sample-size determination involve studying the power of a 

test of hypothesis.  

2.2 COX REGRESSION MODEL 

Cox (1972) Regression Model is a statistical technique exploring the relationship between 

the survival of patients and several explanatory variables. It provides an estimate of the 

treatment effect on survival after adjustment for other explanatory variables. It also allows 

us to estimate the hazard (or risk) of death for an individual, given prognostic variables. 

Interpreting the Cox Regression Model involves examining the coefficients for each 

explanatory variable. A positive regression coefficient for an explanatory variable means 

that the hazard is higher and thus have worse prognosis. Conversely, a negative regression 

coefficient implies a better prognosis for patients with higher values of that variable.  

Lagakos et al. (1978) explained that if a researcher has conducted a previous trial using 

different treatments A and B say, and has an estimate of the survival curve for B (SB), the 

researcher can use Simpson’s rule to approximate the proportion of patients that will die on 

treatment B:  

dB= { })()5.0(4)(
6
1 afSafSfS BBB ++++ . 

Where a is the accrual period and f is the followed-up period. 

Also the proportion of patients that will die on treatment A can be approximated as: 

dA= ∆−−
1

)1(1 Bd . 

Thus, number of deaths = )log/()( 22
1 ∆− − eBAPPZZ αβ   
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Then the number of patients required for the trial is equal to the number of deaths divided 
by d. 

 d=PAdA +PBdB. 

Julious et al. (2005) suggest that, when designing a clinical trial, an appropriate justification 

for sample size should be provided in the protocol. This justification could be the previous 

power calculation or other considerations. They argue that the greater the sample size, the 

smaller the standard error and consequently the greater the precision about the mean 

difference as assessed by its two-sided confident interval. The situation considered here is 

to assess with a finite sample size, what gain of precision would be realized for every unit 

increase in the sample size per group. A two-sided confident interval for a parallel group 

trial is defined as; 
n
stxx nBA

2

22,2/1
2

−±− α .      

2.2.1 SAMPLE SIZE FOR THE PROPORTIONAL HAZARD REGRESSION 

MODEL 

Schoenfeld (1981) recommended that Sample Size Formula for the Proportional Hazard 

Regression Model should be derived for determining the number of observations necessary 

to test the quantity of two survival distributions when concomitant information is 

incorporated. This formula should be useful in designing clinical trials with a 

heterogeneous patient population. He derived the asymptotic power of a class of statistics 

used to test the equality of two survival distributions. That result is extended to the case 

where concomitant information is available for each individual and where the proportional-

hazards model holds. The loss of efficiency caused by ignoring concomitant variables is 

also computed. 
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According to Fleming et al. (1980) suppose that there are two treatments, A and B. The 

proportional-hazards model specifies that the ratio of the hazard function of a patient given 

Treatment B to the same patient given Treatment A will be a constant, denoted by ∆, 

irrespective of time or the characteristics of the patient. Thus, one parameter specifies the 

effect of treatment. If survival is improved more by Treatment A than by Treatment B, ∆ 

will be greater than 1. The assumption of proportional hazards is reasonable whenever the 

effect of treatment is constant over time or treatment permanently affects the disease 

process. If treatment has a transitory effect, then tests based on the proportional-hazards 

model should not be used and the sample-size formula given here is not valid.  

 

2.2.2 Sample Size Formula  

Cox (1975) added that, the sample size formula for a clinical trial can be simplified if it is 

expressed as the number of reduction of prevalence of disease required rather than as the 

number of patients. Suppose that a randomised controlled trial has been designed to detect a 

30% reduction in the prevalence of severe anaemia in the control group (placebo 

iron/placebo anti-malarial) compared with intervention group (daily iron/intermittent anti-

malarial). The prevalence of anaemia in the control group is assumed to be 30%. Power is 

80%, with 5% level of significance and 20% loss to follow. He states also that, one-sided 

test would be performed with a significance level of α and power of β when the Hazard 

ratio is 0∆ . Let α−1Z  and βZ  be the 1-α and β percentile of the normal distribution 

respectively and let PA and PB be the proportion of the patients randomized to treatments A 

and B respectively, the treatment effect would be tested by an approximate test based on 

partial likelihood.         
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Bernstein and Lagakos, (1978) suggested using approximate test based on partial likelihood 

to calculate sample size when two homogeneous patient groups are compared by using the 

F test  for exponential survival, or when the logrank test is used to compare treatments with 

proportional hazards without covariates. However, this does not imply that covariate 

analysis is without benefit.   

Schoenfeld, (1982) added that the formula for sample size is the same whether covariates 

are adjusted for or not, the powers of the two procedures are different. If the two treatment 

groups follow the proportional-hazards regression model, then, if covariates are ignored, 

the ratio of the hazard functions of the two groups will be non-proportional. This ratio will 

be less than ∆ at every value of t > 0 and the power of any test without covariates will be 

less than that of the test that uses covariates. 

 

2.3 VIEWS ON SAMPLE SIZE DETERMINATION 

Thornley and Adams (1998) had it that one way to clarify the process of hypothesis testing 

is to imagine first of all a population to which no treatment have been applied and the 

parameters of this population (the mean and standard deviation) are known. Another 

population exists, that is the same as the first population, except that some treatment has 

been applied and the parameters are not known. Samples are drawn from later population 

and the statistic derived from the sample serve as the estimate of the unknown population 

parameter. This is the situation in which hypothesis testing is applied. Hypothesis testing 

begins with drawing a sample and calculating its characteristics called ‘statistic’, which is 

used to make inference about the population. The aim of hypothesis testing is usually to 

correctly reject the null hypothesis.  
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Bach and Sharpe, (1989) stated that most experimenters hope to reject the null hypothesis 

and therefore claim that their experimental treatment has had an effect. However, as false 

claims of treatment effects (type I error) are scientifically serious, it is necessary to set 

stringent criteria. It cannot be absolutely certain that the null hypothesis is correctly rejected 

or failed to be rejected but the probability associated with making an error in this process 

can be determined.  

Snedecor and Cochran (1989) explained that, sample means very close to the population 

mean are highly likely and sample means distant to the population mean are unlikely but 

they do occur. If the null hypothesis is failed to be rejected while the treatment has no 

effect, it would be expected that the sample that has been drawn will have mean close to 

that of the population. However, sample means that have been found in the normal 

distribution tails indicate that the null hypothesis should be rejected. In such a case a 

boundary or a decision line has to be drawn therefore, between those sample means that are 

expected, giving the null hypothesis and those that are unlikely to lead to the rejection of 

the null hypothesis. That boundary is called the ‘level of significance’ or ‘alpha level (α )’. 

The alpha level indicates the probability value beyond which obtained sample means are 

very unlikely to occur if the null hypothesis is true.  

 

According to Cohen (1988) when testing the null hypothesis, it can be rejected when the 

difference between the sample data and that which would be expected according to the null 

hypothesis is large enough. However, if a small difference is obtained, the null hypothesis 

should not be accepted, instead it is failed to be rejected. He states in this case that, the 

researcher is according to the logic involved in this process, entitled to say that, the null is 

failed to be rejected.     
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Rejecting the null hypothesis means that the difference obtained is sufficiently unlikely to 

occur by chance alone and the findings were said to be statistically significant. In this case, 

type I error is said to be committed since there is a small chance that the conclusion is 

wrong. If however, the null hypothesis is not rejected the findings are not statistically 

significant. The null hypothesis always says that there is no treatment effect, while the 

alternative hypothesis says that there is treatment effect. Such statement is said to be a two-

tailed hypothesis because highly unlikely events in either tail of the distribution will lead to 

rejection of the null hypothesis. The probability of correctly rejecting the null hypothesis is 

called ‘the power’ of the statistical test. It is large when treatment effect is large (large 

difference between sample data and the original population). In designing a study to 

maximize the power of detecting a statistically significant comparison, it is generally better, 

if possible, to double the effect size than to double the sample size n, since standard errors 

of estimation decrease with the square root of the sample size.  

Muller and Benignus (1992) explained that power is calculated as 1 - β, where β is the 

probability of making a Type II error (failing to reject the null hypothesis when it is false). 

Statistical power is large when the treatment effect is large. Put another way, there is more 

likely to correctly reject the null hypothesis when the treatment has created a large 

difference between your sample data and the original population.  

Other factors that influence power are: 

•  Sample size. Larger samples provide greater power.   

• Whether a one-tailed or two-tailed test is used, statistical power is greater for one-

tailed        tests.  

• The beta (β) level chosen. Smaller beta (β) levels produce smaller values for power. 
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2.4 CONCEPT OF SAMPLE SIZE DETERMINATION 

Chow et al (2003) stated that numerous mathematical formulas have been developed to 

calculate sample size for various scenarios in clinical research based on different research 

objectives, designs, data analysis methods, power, type I and type II errors, variability and 

effect size. So order to be more accurate, sample size must be chosen such that resources 

and time can be well managed and that will yield interpretable results and minimizes 

research waste. If the sample size is too small, even a well conducted study may fail to 

answer its research question, may fail to detect important effects or associations, or may 

estimate those effects or associations too imprecisely. Similarly, if the sample size is too 

large, the study will be more difficult and costly, and may even lead to a loss in accuracy, 

effort, and research money and yields statistically inconclusive results. But Lwanga and 

Lemeshow, (1991) argued that sample size large enough can lead to potentially important 

research advances that go undetected.  

Zodpey and Ughade (1999) stipulated that, medical researchers primarily consult 

statisticians for two reasons. Firstly, they want to know how many subjects (sample size) 

randomly selected should be included in their study. Secondly, they desire to attribute a p-

value to their results to claim significant results. Both these statistical issues are 

interrelated.  

If a study does not have an optimum sample size, the significant of the results in reality 

(true difference) may not be detected. This implies that the study would lack power to 

detect the significance of differences because of inadequate sample size. Whatever the 

outstanding results the study produces, if the sample size is inadequate their validity would 

be questioned.  
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Millard, (1987a) argues persuasively that, the ingredients in a sample size calculation for 

one or two groups are; 

i) Type I error (α): probability of rejecting the null hypothesis when it is true. 

ii) Type II error (β): probability of not rejecting the null hypothesis when it is false. 

iii) Power (1- β): probability of rejecting the null hypothesis when it is false. 

iv) 2
0σ and 2

1σ : Variances under the null and alternative hypothesis respectively (may 

be homogeneous). 

v) 0µ and 1µ means under the null and alternative hypothesis respectively, 

vi) 0n and 1n Sample sizes in two groups (may be homogeneous). 

 

He claims that the choice of the alternative hypothesis is challenging and that there is 

debate about what the null hypothesis is and what the alternative hypothesis is. His 

conclusion was that whatever the case, the choice affects sample size calculation and that if 

researchers knew the value of the alternative hypothesis, they would not need to do the 

study.  

According to Wright (1999) in most research settings, the null hypothesis is assumed to be 

hypothesis of no effect and alternative hypothesis is from the researcher; “an alternative 

hypothesis must make sense of the data and do so with essential simplicity and shed light 

on other areas”. This provides some challenging guidance to the selection of an alternative 

hypothesis. The alternative hypothesis then defines the type II error (β) and the power (1-β), 

while the null hypothesis provides the basis for determining the rejection region, whether 

the test is one or two sided and the probability of type I error (α)-the size of the test. 
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In survey, sampling questions to researchers are frequently addressed in terms of wanting to 

know a population with a specific precision. And according to Van Belle and Martin 

(2000), survey sampling typically deals with a finite population of size N with a 

corresponding reduction in the variability if sampling is without replacement. They added 

that, a sample of size n is calculated using the standard error of the sample mean ( x ). Then 

the standard error of the sample mean ( x ) is:  

SE( x )= 2σ
nN

nN −  

The above formula reduces the standard deviation and is known as the finite population 

correction. 

In construction management and real estate research, there are certain rules in relation to 

data and sample size which must be considered in the analysis. Norusis (1999) describes 

this analysis as Factor Analysis. He explains that the goal of factor analysis is to identify 

observable factors based on a larger set of observable variables. The processes are as 

follows: 

1. The first step in factor analysis is to produce a correlation matrix for all variables. 

Variables      that do not appear to be related to other variables can be identified from 

this matrix.  

2. The number of factors necessary to represent the data and the method for calculating the 

sample size must then be determined. Principal component analysis1 (PCA) is the most 

widely used method of extracting factors. In PCA, linear combinations of variables are 

formed. The first principal component is that which accounts for the largest amount of 

variance in the sample, the second principal component is that which accounts for the 
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next largest amount of variance and is uncorrelated with the first and so on. In order to 

ascertain how well the model (the factor structure) fits the data, coefficients called 

‘factor loadings’ that relate variables to identified factors, are calculated.  

3. Factor models are then often ‘rotated’ to ensure that each factor has non-zero loadings 

for only some of the variables. Rotation makes the factor matrix more interpretable.  

4. Following rotation, scores for each factor can be computed for each case in a sample. 

These scores are often used in further data analysis.  

But small samples present problems in factor analysis due to splintering of factors into 

smaller groupings of items that really constitute a larger factor and other forms of sampling 

error, which can manifest itself in factors that are specific to one data set.  

Result of unique patterns of responding to a single survey question, Costello and Osborne 

(2005a) report two extreme problems in factor analysis; the Heywood effect (in which the 

impossible outcome of factor loadings greater than 1.0 emerge) and the failure to produce a 

solution, were only observed in small samples. The failure to produce a solution occurred in 

almost one third of analyses in the smallest sample size category. They empirically tested 

the effect of sample size on the results of factor analysis reporting that larger samples tend 

to produce more accurate solutions (70% of the samples with the largest N:p ratio (20:1) 

produced correct solutions).   

 

2.5 SAMPLE SIZE DETERMINATION FOR SAMPLE MEAN AND PROPORTION 

Wunsch (1986) is holding the view that researchers use information gathered from survey 

to generalize findings from a drawn sample back to a population within the limits of drawn 

error.  
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They do consider single Mean and Proportion as well as difference in Means and 

proportions and Power. However, when analysing business education research, two of the 

most consistent flaws include; 

1) Disregard for sampling error when determining sample size. 
 
2) Disregard for response and non-response bias. 
 
But Holton and Burnette (1977) argued that within a quantitative survey design 

determining sample size and dealing with non-response bias is essential.  

2.6 SAMPL SIZE AND POWER 

Sample size and power calculations are often based on a two-group comparison. However, 

in some cases the group membership cannot be ascertained until after the sample has been 

collected. According to Rowe et al. (2006), to conduct sample size calculations for the two-

group case, a researcher needs to specify the outcome of interest (Proportion for binary 

response) to be used in estimating the sample size, the group variances, the desire power, 

the type I error rate, the number of sides of the test and the ratio of the two-group sizes and 

that the desired power must be sufficient. This is because in clinical studies, without 

sufficient power, the study can fail to detect a significant effect when it exists. This 

consideration must be well balanced with the high cost of recruiting and evaluating large 

samples of subjects, thus making power calculations a crucial step in designing clinical 

research studies. 
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2.6.0 MEAN AND PROPORTION METHOLOGY 

2.6.1 MEAN 

Kraemer and Thiemann (1987) believed that the clearest reason why statistical analyses are 

based on the means of samples instead of single values is that they are more reliable when 

it comes to estimation of population parameter. In relative terms the sample statistic is used 

to estimate population parameter.  Suppose we are trying to estimate populations mean 

value µ  from data nxx ,,.........1 , a random sample of size n. The quick estimate of ( µ ), the 

population mean, is the sample mean, ( x ). Similarly the sample variance ( 2S ) is used to 

estimate the population variance ( 2σ ). In broader terms the sample becomes more precise 

estimate of the population mean as the sample size (n) increases.  

A quantitative measure of this precision is the standard error,
n

σ , which decreases as the 

precision increases and the vice versa. The larger n becomes the smaller the standard error 

becomes.  

 

According to Lachin (1981), the dependence of standard error on the sample size can be 

exploited at the planning stage. The investigator decides how much precision is needed for 

this purpose and designs the study accordingly. Sample size could be based directly on the 

measure of precision so that the width of a confident interval or the size of the standard 

error is required to be at most a prescribe value. Alternatively, sample size can be 

determined by setting a hypothesis test with a giving power. The latter is probably more 

widely used by researchers than the former. It is most important to ensure that the right 

standard error is used otherwise the sample size (n) might not be optimum.  
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The same applies to difference between means of two groups. A limit is set for the standard 

error of the difference between the means of the two groups.  

If the response in the two groups have a common standard deviation, then the standard error 

of 21 xx −  is:
21

11
nn

s + , where s estimates the common standard deviation and 21,nn are the 

sizes of the two groups.  

 

Another case cited by Machin et al. (1997), on sample size calculation when comparing 

means of samples. In this case the researcher question is whether the new treatment works 

when compared to placebo; (Prevention trial). He wants to find out how many patients with 

mild hypertension would need to be recruited into a trial, in order to detect an average 

difference of 5mm Hg in systolic blood pressure, between an intervention group who 

receive a new anti-hypertensive and a control group (who effectively receive delayed 

intervention). He assumes the standard deviation of systolic blood pressure is 10mmHg, 

90%power and 95%confident interval (5%significant level). And also standard difference 

(effect size) is ∆. In the case of two means, 1µ and 2µ , the number of patients with mild 

hypertension is estimated as; 

n = 2

2
)2/1( ][2

∆
+× − βα ZZ

 

 

2.6.2 PROPORTION 

Guilford (1954a) reported that, proportion in sampling describes a case in which the 

occurrence of an event is of interest to a researcher. The researcher may be interested in 

establishing that the proportion of a sample response to a treatment.  
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Like the mean, a researcher can determine sample size using proportion either by 

confidence interval or hypothesis testing.   

Within the confident interval, sample size can be achieved by specifying the standard error. 

To demonstrate this, it must be ensured that the population proportion from which the 

sample proportion is to be selected randomly is normally distributed.  

 

Guilford (1954b) also reported that the sample proportion is not known until the study is 

complete. For research purposes, researchers get values for p̂ from previous studies or pilot 

studies. Otherwise, p̂  is assumed to be 1/2 or (0.5), because the bigger p̂ (1- p̂ ) is, the 

larger n has to be. And p̂ (1- p̂ ) takes its biggest value at p̂ = 0.5. He estimated the 

proportion of the population who support the death penalty (under a particular question 

wording) where the population proportion is suspected to be around 60%. He first 

considered the goal of estimating the true proportion p to accuracy (standard error) to be at 

least 0.05 or 5 percentage points, from a simple random sample of size n. The standard 

error of the proportion is npp /)1( − . Substituting the guessed value of 0.6 for p yields a 

standard error of n/4.06.0 × = n/49.0 , and so we need 05.0/49.0 ≤n or 96≥n . More 

generally, we do not know p, so we would use a conservative standard error 

of nn /5.0/5.05.0 =× , so that 100,05.0/5.0 ≥≤ norn .  

 

Mace (1964) claimed that, Hepatitis B is rated as the fourth biggest killer among the world 

infectious diseases. He wanted to take a sample of citizens of a particular city to determine 

the percentage of people who have Hepatitis B by way of using confidence interval.  
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He assumes that if n is large enough and confidence interval for the true proportion P is 

given by p̂ ± Z*se( p̂ ).  

The interval has width (w), which is twice the margin of error. This expression involves 

p̂ which is unknown until the study is finished. Suppose the margin of error is to be at most 

m.  

Then ).ˆ1(ˆ
2

pp
m
Zn +×






≥

 
(1994 World Health Organization)  

The above equation depends on p̂ which is unknown when planning the survey. However, 

taken p̂ = 0.5 makes p̂ (1- p̂ ) biggest for larger n. This shows that huge samples are 

needed to estimate proportions very precisely. 

 

Altman, (1990) stated that for intervention trial (comparing new treatment with an existing 

one) the researcher’s challenge is to determine whether the new treatment will work better 

than the existing one. With standard therapy 40% of patients on average, achieve a 

favourable outcome (e.g. single-layer compression stockings for the treatment of venous 

leg ulcer). It is anticipated that a new treatment (e.g. Multi-layer compression stockings) 

will increase the ‘cure’ rate to 50%. He explained that with 80% power at a 5% level of 

statistical significance, the sample size required in each intervention group can be obtained 

using test of hypothesis. Where βα −− 12/1 ZandZ  represent percentage points of the normal 

distribution for statistical significance level and power respectively.   

According to Costello and Osborne (2005b), demonstrating that more than half the 

population supports a death penalty, then the appropriate sample size to achieve a specified 

probability of obtaining statistical significance using hypothesis that p >1/2 is based on the 
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estimate 
n
xp =ˆ  from a sample of size n. This will be evaluated under the hypothesis that 

the true proportion is p = 0.60, using the conservative standard error for 

p̂ of nn /5.0/5.05.0 =× .  

This is however, mistaken because it confuses the assumption that p = 0.6 with the claim 

that 6.0ˆ >p . In fact, if p = 0.6, then p̂ depends on the sample, and it has an approximate 

normal distribution with mean 0.6 and standard deviation ./49.0/4.06.0 nn =×  

Cohen (1988) found that to determine the appropriate sample size, the desired power and 

the interval level (the conventional level of power and interval level in sample size 

calculations is 80% and 95% respectively) must be specified. That is, 80% of the possible 

95% confidence intervals will not include 0.5 and the probability that a 95% interval will be 

entirely above the comparison point of 0.5. When the sample size (n) is increased, the 

estimate becomes closer (on average) to the true value, and the width of the confidence 

interval decreases.  
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CHAPTER 3 
 

 INTRODUCTION 

 

3.1 SAMPLE SIZE DETERMINATION TECHNIQUES   

Sample size calculation is very important for research studies where samples are required. 

If the research population size is large, then the costs involved in collecting data from all 

subjects would automatically be high. In this respect, the sample means ( x ) becomes better 

estimate of the population mean ( µ ) as the sample size increases. The reasons why 

statistical analysis are based on means of samples is that they make more sense. If a 

conclusion can be drawn from a small sample size that has the power to detect any 

statistically significant effect, then recruiting more than necessary subjects will be 

unnecessary since it has the tendency not only to cause financial and management problems 

but it raises ethical concerns.    

Determining the sample size for a study is a crucial component of study design. The goal is 

to include sufficient numbers of subjects so that statistically significant results can be 

achieved. In this study simple formulae are provided for the sample size determination for 

both mean and proportion. For simplicity, formulae are expressed in terms of hypothesis 

testing for both mean and proportion. This is necessitated in the medical field by 

Epidemiologists, where a treatment group is compared with a control (an intervention) 

group to test the efficacy of a new drug on a particular ailment. The Epidemiologist will 

then have to determine the number of patients required for both groups (the new drug and 

placebo) that can detect any statistical difference if it exists. Since the levels of almost any 

attributes exhibits variability, then the treatment group values will exhibit some level of 

variability, likewise the control group.  
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Many statistical analyses grapple with this problem-giving that if it is known that subjects 

will vary in their responses to the same treatment, then the observed difference between 

treatment groups would be consistent to state with relative certainty that the treatment 

worked, (Faraday, 2006). When an epidemiologist is planning a clinical trial, it is very 

important to consider how many participants will be needed to reliably answer the clinical 

question. One of the most important decisions to make before calculating a sample size is to 

define a clinically important treatment effect, δ (or delta), which should not be confused 

with a statistically significant treatment effect. Of course, since researchers are embarking 

on a study, new intervention would be expected to be an improvement of previous 

intervention, such that the difference can be estimated realistically. In other words, to 

estimate the difference is to consider whether the observed treatment effect would make the 

current clinical practice change. For example, if the new intervention was looking at a 

treatment to lower blood pressure, the researcher might argue that an average lowering of 

systolic BP of 5mm Hg is clinically important; however, the researcher might decide that 

an average lowering of systolic BP of 10mm Hg would be clinically important and 

necessary before he would possibly think about prescribing this treatment. 

 

The number of participants required depends on four (5) parameters. These are: 

(1) Statistical Power levels 

(2) P-value 

(3) Statistical Significance Level 

(4) Treatment variability 

(5) Error variability 
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Statistical power is the probability of detecting treatment effect if it exists. Beta (β) is 

defined as false-negative rate and power as 1- β. Power should be stated such that it can 

optimally detect treatment effect. Adequate power for a trial is widely accepted as 0.8 (or 

80%) probability of detecting treatment effect, Cochran (1977).  

 

P-value measures consistency between the results actually obtained in the trial and the 

“pure chance” explanation for those results. It is used to test a null hypothesis against an 

alternative hypothesis using a data set. In other words, P-value is a probability value 

quantifying the strength of the evidence against the null hypothesis in favor of the 

alternative hypothesis. It has been recommended that the size of the P-value be used as a 

measure of the evidence against the null hypothesis. A similar approach, but which has a 

slightly different emphasis, is to reject the null hypothesis if the P-value is below some 

critical value, C. According to Cochran (1977), the critical value is set generally at 0.05 or 

5% probability of detecting significant difference which will occur by chance.  

 

In determining appropriate sample size, parameters such as statistical significant level, alpha 

( α), typically 5% is sometimes written α =0.05, power written = 1- β, P-value, population 

mean (µ) population proportion (P) are to be considered. For the first three parameters, that 

is statistical significant, power and p-value can be pre-determined and the rest are estimated. 

Thus, the researcher can estimate them by using pilot studies, relevant literature or rule-of-

thumb. 

 

The standard deviation, which usually comes from previous research or pilot studies, is 

often used for the response variable. 
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 Pilot studies is said to be the most accurate calculation of sample size in that relevant data 

will be collected on pilot basis from which an estimate of treatment and error variability 

can be made.  

It is however, worth noting that the results of a pilot study need not necessarily be 

statistically significant in order for the data to be used to estimate treatment and error 

variability. This procedure is the first best method of calculating sample size.     

Another way to calculate appropriate sample size by way of estimating treatment and error 

variability is the used of relevant literature. This estimate can be achieved by means of 

published work of investigators who have conducted similar studies. This is the second best 

method of calculating sample size. 

 

The last means of estimating treatment and error variability is the rule-of-thumb. This is 

accepted if and only if data or published works are absent. In fact this is the least accurate 

means of calculating sample size. In general if the variability associated with the treatment 

is large relative to the error, then relatively few subjects will be required to obtain 

statistically significant results.  

On the other hand, if the variability associated with the treatment is small relative to the 

error then, relatively more subjects will be required to obtain statistically significant results.  

(Faraday, 2006) 

 

In the valuation of new drugs and vaccine, treatments are in general allocated randomly to 

individual subjects and methods for the design and analysis of such trials are well 

established. 
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According to Faraday (2006), many such trials have been conducted over different 

occasions and times.  

These include: a series of trials of the impact of insecticides-treated bed-nets on child 

mortality in Africa in which treated nets were randomized to villages and other 

geographical areas, a trial of the impact of improved treatment services for sexually-

transmitted diseases (STD) on the incident of HIV infection in which rural communities in 

Ghana were randomly assigned to intervention or control groups and a trial of a smoking 

cessation intervention in which communities in Ghana were assigned randomly to 

intervention or control groups. The most commonly encountered clinical trial scenario is 

the comparison of two equal-sized studied groups where the primary outcomes are either 

proportions (e.g. percentage responding to treatment) or means (e.g. average blood 

pressure). A number of previous reports have discussed sample size calculations for such 

trials most of which focused on the variable of interest on either the mean or the 

proportions. It is often possible to perform such calculations using available standard 

statistical software packages for this purpose.  

3.2 SAMPLE SIZE FOR COX REGRESSION MODEL 

In clinical trials, there is a period of observation within which the subject is censured. Thus 

the data typically consists of censored failure times where the censoring time may also 

differ among the subjects; such censoring techniques arise when subjects quit the study at 

various. The censoring time is considered to occur at random in certain studies. The model 

described below is known as Cox Regression Model (CRM). 
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h(t; x) = h0(t)exp{β1x1+………+βkxk}………………… (1)  

where h (t; x) is the hazard function at time t for a subject with covariate values 

x1,..……….., xk, h0 is the baseline hazard function when all covariate equal to zero,  

βi is the regression coefficient for the ith covariate, xi. 

Statistical analysis of failure-time data is an active and important area of research that has 

received considerable attention from several applied disciplines. Historically, failure times 

are modeled by fitting an exponential, or log normal distribution to the data. It is shown 

that the formula for the sample size that requires the comparison of two groups with 

exponential curves is valid when Proportional Hazard Regression Model (PHRM) is used 

to adjust for covariates. A patient hazard function will depend on the treatment he or she 

receives as well as the characteristics of the patient. If patients have a decrease probability 

of death after they survive past the first or second year, then the hazard function decreases. 

On the other hand, in long-term studies the hazard function increases as age increases the 

probability of death. 

The formula below is used to calculate appropriate sample size when two homogeneous 

patient groups are compared.   

n = (Zβ  + Z1-α)2/(PAPBloge
2∆)………… (2)  

 where n is number of deaths,  

β and α are power and significant level respectively,  

Z1-α and Zβ are percentile of the normal distribution respectively,  

∆ is hazard ratio,  
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PA and PB are the proportion of the patients randomized to treatments A and B respectively. 

(Bernstein and Lagakos, 1978) 

Cox’s method is similar to multiple regression analysis, except that the dependent (Y) 

variable is the hazard function at a given time. If we have several explanatory (X) variables 

of interest (for example, age, sex and treatment group), then we can express the hazard or 

risk of dying at time t h(t)=ho (t)exp(βixi)  

as: h(t) = h0(t) x exp(b1age + b2.sex + ... + b3.group) 

 

The regression coefficients b1 to b3 give the proportional change that can be expected in the 

hazard, related to changes in the explanatory variables. They are estimated by statistical 

method called maximum likelihood, using an appropriate computer program  

(for example, SAS, SPSS or STATA). [Freeman et al, 2008] 

 

The Cox Regression Model (CRM) or Proportional Hazard Model since 1992 has become a 

statistical theory of counting process that unifies and extends nonparametric censored 

survival analysis. It provides an estimate of effect on survival after adjustment for other 

explanatory variables. In addition, it allows us to estimate the hazard (or risk) of death for 

an individual, given their prognostic variables. The approach integrates the benefits on 

nonparametric approaches to statistical inferences. The data in CRM includes (Ti, Zi), i = 1, 

2,…… n,  

where n is the number of observations in the study,  

Ti is the time of failure of the ith observation, 

Zi is the p-dimensional vector of covariates.  
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We continue by providing simple sample size formulae for both continuous and categorical 

data.  

 

3.3 CATEGORICAL DATA  
 
Formula and procedure for determining sample size for categorical data are very similar to 

that of continuous data. Assuming that Cochran’s formula is to be used for the calculation 

of sample size with t significant level, p proportion and d  margin of error, then; 

2

2

0 )(
))(()(

d
qptn ×

=   

where q= (1-p) 

Supposing the population size (N) is known and the sample size calculated ( 0n ) is greater 

than 5% of N, that is 0n > N×0.05, then the researcher will resort to use Cochran’s 

correction formula below; 

( ))/(1
0

0
1 populationn

nn
+

=    

TABLE: 3.1 STATISTICAL TABLE FOR SIGNIFICANCE LEVEL AND POWER  
     

Significance level Power 

5% 1% 0.1% 80% 85% 90% 98% 

1.96 2.5758 3.295 0.8416 1.0364 1.2816 1.6449 
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Illustrative Example; 

Suppose a researcher has set significant level t=0.05,  

an estimated proportion p=0.5, 

q=0.5 and an estimated standard deviation d=0.05 

then: 

2

2

0 )05.0(
)5.0()5.0()96.1( ××

=n = 384 

If N=1679, then N×0.05=84.  

This is less than the calculated sample size 0n . 

So using the Cochran’s 1977 correction formula  

)1679/3841(
384

1 +
=n =313  

This is the minimum returned sample size required. 

 

3.4 CONTINUOUS DATA  

Before a researcher proceed with sample size calculation using continuous data, the 

researcher determines if categorical variable will play primary role in the data analysis. If it 

can, then sample size formula for categorical data is used. Otherwise, sample size formula 

below propounded by Cochran (1977), for continuous data is appropriate.     
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2

22

0 )(
)()(

d
stn ×

=
 

Assuming the population size (N) is known and the sample size calculated ( 0n ) is greater 

than 5% of N, that is 0n > N×0.05, then the researcher will use Cochran’s correction 

formula below; 

( ))/(1
0

0
1 populationn

nn
+

=  

 

Illustrative Example; 

Suppose a researcher has set significant level t =0.05 

acceptable margin of error estimated for mean d =0.21, 

an estimated standard deviation in the population s = 1.167. 

then; 

 2

22

0 )21.0(
)167.1()96.1( ×

=n =118  

For population N=1679, the required sample size is 118. 

However, since this sample size exceeds 5% of the population (1,679*.05=84), Cochran’s 

(1977) correction formula is used to calculate the final sample size.  

This calculation is as follows: 

111
)1679/1181(

118
=

+  

These procedures result in the minimum returned sample size. 
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However, as alpha (α) level decrease from 5% to say 1% and the acceptable margin of error 

increases from 5% to say 10%, the sample size calculated is said to be significant foe any 

giving population and therefore, Cochran’s correction formula is not applicable in this case.   

 

3.5 PROPORTIONS  

In this research like most research, the objective is to compare the proportions of two 

groups (intervention and control). Assume that 0π and 1π  are the estimated sample 

proportions of the true population proportions in the intervention and the control group 

respectively. Also assume that 2/αZ and βZ  are percentage points of the normal distribution 

for statistical significance level and power, respectively. Then   for individually-

randomized trials, standard formula requires a total of n individuals in each group is 

expressed as follows; 
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n
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This is the required sample size for each group a researcher will consider to find out 

whether there is a significant difference between the two groups (intervention and placebo).
 

Suppose we sought to calculate sample size of citizens of a particular community to 

determine the percentage of people who are carrying a given diseases.  

Suppose also that 95% confidence level of precision is required. Assuming the sample size 

n is large enough, then the confident interval for the true proportion p by;  

)ˆ(ˆ pseZp ∗± ,  

where )ˆ( pse
 

is the standard error of the true proportion and is given as;
 

)ˆ( pse  = 

n
pp )ˆ1(ˆ −  

If the distribution is normally and randomly selected, then the interval will have 

width; n
ppZw )ˆ1(ˆ2 2/

−×= α  

The expression which involves p̂  is unknown until the study is complete.  

Now let E= n
ppZ )ˆ1(ˆ

2/
−

α  , 

where E is the margin of error.  

 

Suppose the researcher wants E to be no more than a certain value, say b, then is E ≤ b. 

n
ppZ )ˆ1(ˆ

2/
−

α ≤ b 

Squaring both sides and making n the subject, we have 

[ ])ˆ1(ˆ
2

pp
b
Zn −






≥  
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From the above equation we realized that n depends eventually upon p̂ which is unknown 

initially and also the size of )ˆ1(ˆ pp −  depends on p̂ . When )ˆ1(ˆ pp −  is larger, then n is also 

larger. As the case may be )ˆ1(ˆ pp −  takes its largest value when p̂ =1/2 or 0.5.  

 

The plot of )ˆ1(ˆ pp −  versus p̂ to gives Figure 3.1 below 

 

 

Figure 3.1: Plot of )ˆ1(ˆ pp − against p̂  

 
 
If we use 95% confident interval, that is z=1.96, b=0.025,  p̂ = 0.5, then 

n≥ )5.0)(5.0(
025.0
96.1 2

×





 =1536.64. Rounding it up would probably end up taken 1500 

or 2000 depending upon the budget.  

NB: Use p̂ =1/2 unless it is known that p̂  belongs to an interval k ≤ p̂  ≤ m that does not 

include1/2, in this case substitute the interval endpoint nearer to 1/2 for p̂ . (Hirano, K., and 

J.R. Porter. 2008). 

 

According to (Fleiss, 1981; Shuster, 1999) if 0.2 ≤ p̂ ≤ 0.6 or 0.4 ≤ p̂ ≤0.9, substitute p̂ = 

0.5.  

If it is known that 0.02 ≤ p̂  ≤ 0.10, substitute p̂  = 0.1, and if 0.7 ≤ p̂  ≤ 0.9, substitute p̂  

= 0.7.  
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These calculations are applicable only when researchers seek to get the require precision 

for single proportion estimates. As researchers increase confidence for p̂  and increase the 

width of the confident interval, n becomes larger. On the other hand, when holding width 

and the confidence interval constant and decrease p̂  then n decreases. But larger numbers 

are needed to get precisions for differences. However, researchers often use sample less 

than one thousand people for reason of cost and difficulty in controlling biases. It is very 

difficult to reducing sampling error base on the level of biases. (Cohen, 1977) 

 

3.6 COMPARISON OF TWO PROPORTIONS 

3.6.1Intervention Trial Example 

In epidemiological studies, comparison of two proportions is quite common. Here the 

objective is to compare two treatment groups (those living on new treatment and those on 

old treatment) to find out if there is any treatment effect.  

An epidemiologist would be required to calculate an appropriate sample size that can detect 

the treatment if it exists. Suppose that the number of patients in each group is n,  

then: 

,
][2

2

2
)1()

2
1(

∆

+×
=

−
−

βα ZZ
n  

∆ =
)1(

21

pp
pp

−
− ,  

 
2

)( 21 ppp +
=  

where )2/1( α−Z  and )1( β−Z represent percentage points of the normal distribution for 

statistical significance level and power respectively, 
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∆ is the standardize difference,  

n is the required sample size for each group 

p1 and p2 are the two proportions 

p is the average of the two proportions 

Illustrative Example:   

With standard therapy, 40% of patients, on average, achieve a favorable outcome (e.g. 

single layer compression treatment of ordinary stomach ulcers). It is anticipated that a new 

treatment (e.g. multi-layer compression) will increase the ‘cure’ rate to 50%.  

What sample size would be required in order to detect such a treatment effect with 80% 

power at a 5% level of significance? 

First calculate ∆, the standardized difference. In the case of two proportions, p1 and p2,  

p1=0.50 (or 50%), p2=0.40 (or 40%) and so 
2

)4.05.0( +
=p = 0.45 

Hence ∆ = 
)45.01(45.0

)4.05.0(
−×

− = 201.0
46749.0

10.0
2475.0
10.0

55.045.0
10.0

===
×

 

Using the values from the table for 5% level of significance, )2/1( α−Z = 1.96, and 90% 

power, )1( β−Z = 1.2816.  

Then, 

n= 2

2

)201.0(
)2816.196.1(2 +×

= 
0404.0

01594112.21
0404.0

)50797056.10(2
)201.0(

)2416.3(2
2

2

=
×

=
×

= 520.2 

Rounding up to the nearest whole number and say that 521 participants are required per 

treatment group or 1042 in total. 

In the medical environment the outcome measure of most interest at the end of the study 

will be dichotomous; yes or no, dead or alive, improve or not improve.   
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Suppose a medical researcher wishes to design a study to compare two treatment groups 

with respect to the proportion of successes in each using two-sided test. The hypothesis is, 

0: 210 =− ppH 0: 211 ≠− ppH .  

Let us assume that p2 > p1, an effect size (ES) = 12 pp − . Assume also that both 

proportions 2p and 1p  have the common sample size, n1= n2 = n, then the appropriate 

sample size (n); 

2
2

12

2211 )(
)(

)1()1(
βα ZZ

pp
ppppn +×

−
−+−

=   

If the population proportion is normally distributed and the test statistic for both samples is 

Z, then; 

Z =
)/1(2

ˆˆ 12

nqp
pp

×
− , where 

2
ˆˆ 12 ppp +

= and pq −=1 . 

Under the null hypothesis (H0), power = 1-β =P ( Z  > 02/ / HZα  false) then 
)/1(2

ˆˆ 12

nqp
pp

×
−  

> 2/αZ is the rejection region.  

Under the alternate hypothesis (H1) the effect size (ES) is 12 pp −  and the standard 

deviation is
n

qpqp 2211 +  instead of
n

qp2 , since 021 ≠− pp . Now Z which is normally 

distributed =

n
qpqp

ESpp

2211

12 ˆˆ
+

−− . Thus =− 12 ˆˆ pp  Z
n

qp2  and so Z=

n
qpqp

ES
n

qpZ

2211

2

+

−
 

 Now P ( Z > 02/ / HZα  false) becomes  
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P  

But β

α

Z

n
qpqp

ES
n

qpZ
=

+

−

2211

2/
2

 

βα Z
n

qpqpES
n

qpZ ×
+

=− 2211
2/

2  








 +
−+=

n
qpqpZ

n
qpZES 2211

2/
2

βα .  

Squaring both sides; 

βα
22211

2/
22 )(2)( Z

n
qpqp

n
qpZES +

+=  

.
)(

)()2(
2

2
22112/

2








 ++
=∴

ES
ZqpqpqpZn βα  

By some transformations,  

 

2

22112/ 2











 ++
=

ES
qpqpZqpZ

ni
βα . 

where the sample size for each group is in .  

 

3.7 METHOD BASED ON ESTIMATION 

The confidence interval for a mean is nstx /∗± ,  

where s is the sample standard deviation,  

 t is the appropriate point from a t-distribution.  
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The value of t changes with n once n > 30. Consequently it is much simpler to base sample 

size calculation on the approximate confident interval nszx /∗± , where Z is the 

appropriate point of a standard normal distribution. If the calculation results in a value of n 

below 30 then it might be prudent to increase the value slightly to allow for this 

approximation. If the standard error required is to be less than a certain value, say L then n 

must exceed 22 / LS .  

Also if the value of s is unknown, it can be replaced by σ  if it is known. In case σ  is not 

known, it is appropriate to use values from either pilot studies or previous literature and 

then n must exceed 22 / Lσ . It is important to ensure that the correct standard error is used. 

The formula nszx /∗± , uses the standard error of the sample mean ]/)([ nsxse = . If 

the standard error is meant for the difference between means of two groups with common 

standard deviation then the standard error of 21 xx − is;  

21 /1/1 nnS + , where S estimates the common standard deviation, n1and n2 are the sizes of 

the groups. Suppose the standard error of the two groups is required to be at most a given 

value, say L, then; 

21 /1/1 nnSL +≥ . Recall that n1= n2=n.  

n
S

n
SL 211

=
+

≥  

n
SL

2
2 2

≥  

22 /2 LSn ≥∴ . This is the sample size for each group. 
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3.8 METHOD BASED ON HYPOTHESIS TESTS 

In hypothesis testing of two means, the null hypothesis of is that the two population means 

are equal ( 21 µµ = ) and the alternative hypothesis is that the two population means are not 

equal ( 21 µµ ≠ ).  

It is assumed that the responses in the two groups share a common population standard 

deviation. Two errors are said to be committed in this case; type I error (rejecting the true 

hypothesis) and type II error (failing to reject the false hypothesis). The probability of 

committing type I error does not depend on n but on critical value and the probability of 

committing type II error depends on n. 

We set 021 =− µµ for null hypothesis and 021 ≠− µµ for alternative hypothesis. We know 

that 21 xx − is an imprecise estimate but contains information on 21 µµ − .  

Consider these two cases in which one 21 µµ − (1) has a giving value and the other 

21 µµ − (2) has a value twice the previous and both cases have the same standard deviation. 

The observed values of 21 xx −  in the two cases are shown in the figure below:  

Figure 3.2 below indicates the distributions of the observed values 21 xx − . The dashed 

curve has a mean 1µ and the solid curve has a mean 2µ . This concludes that 021 ≠− µµ  

since the solid curve has twice the population mean of the dashed curve. In other words, 

212 µµ = .  

As se/)( 21 µµ −  gets larger the solid curve moves to the right, so the chance of not rejecting 

the null hypothesis gets smaller.  
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Difference between groups 
 

Figure 3.2: distribution of different sample means ( 21, xx )  
 

A second circumstance to consider is when there are two cases, where the difference in the 

population means is the same in both cases but the standard errors are different. This is 

shown in figure 3.3 below. 

Solid curve has half the standard error of the dashed curve but both have the same mean.  

It is clear that we have a much better chance of inferring that 21 µµ − is non-zero in the case 

with the smaller standard error. The standard error depends on the sample size and it can be 

made as small as possible by making the sample size sufficiently large. If the standard error 

is sufficiently small, then the distribution of 21 xx − will be clustered sufficiently tightly 

about 21 µµ −  that (provided 21 µµ −  really is not zero) it will be very likely to be able to 

infer that 021 ≠− µµ . This is the basis of using this approach to set sample sizes.  
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Difference between groups 
 

Figure 3.3: distribution of the same sample mean 
 
 
3.8.1 Sample Size Formula 
 
Suppose a researcher is comparing two groups of studies, with the responses in both groups 

having a normal distribution with the same standard deviation (σ ) but different means, 1µ  

and 2µ respectively. A test of the null hypothesis that these means are equal will have Type 

II error β (so power 1-β).  

 

The null and the alternate hypothesis here are: 

210 : µµ =H  ,     11 : µH 2µ  

Where 1µ and 2µ  are the population means for the two groups, assume that the population 

variance is the same for both groups. If the same number of subjects is to be used in each 

group then the appropriate test statistic is given as;  
2

21 nxxZ ×
−

=
σ
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where 1x and 2x  are the average weight gains observed in the two groups and Z is the test 

statistic of the normal distribution. The null hypothesis is rejected in favour of the 

alternative if; Z > αZ  

where  αZ  is the appropriate normal deviate.  

The type II error, β  is defined to be; β = p (accept 10 / HH false) = p (Z< αZ / 1H false). 

If 1H is true then Z has a normal distribution with mean given by; 
2

21 n
×

−
=

σ
µµµ  and 

standard deviation equal to one. 

 

Consequently µαβ −= ZZ  

So that β = ∫
−

∞−

−µα

π
Z x dxe 2/2

2
1

.  

Additionally β = ∫ ∞−

−β

π
Z x dxe 2/2

2
1

. 

 

seZZ /)( 212/ µµαβ −−=−  

where se = 
21

11
nn

+σ   

n1 =n2 =n 

Leading to βασ
µµ ZZn

+=×
−

2
21  

That implies
)(
)(2

21 µµ
σβα

−
+

=
ZZ

n , and therefore n = ( )2
21

2
2/

2 )(2
µµ

σ βα

−

+ ZZ
.  
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The problem with this approach is the choosing of values for σ  and )( 21 µµ − . If there is 

little or no past data on the studies for the chosen response variable it may be impossible to 

choose appropriate value for both σ  and )( 21 µµ − .  It is important to be clear how to think 

of the value of 21 µµ − . (Cohen, 1977; Kraemer and Thieman, 1982) 

The choice of α and β , type I and type II error rates respectively, is on the researcher. 

Butσ and ( 21 µµ − ) need to be obtained whether from the literature, existing data or design 

pilot study.  

As 21 µµ − gets larger, either positively or negatively, the probability of rejecting the null 

hypothesis approaches 1. However, if 21 µµ −  =0 then the probability of rejecting the null 

hypothesis is fixed at 0.05 (or, more generally, α), so the curves for all tests, whatever 

sample size they use, must pass through the point (0, 0.05). At a given value of 21 µµ −  

(strictly σµµ /21 −  ), the higher curve in figure 3.4 corresponds to the larger sample sizes. 

Sample size is larger in dashed case than solid. 

It is remarked that the power of a test was a function of 21 µµ −  and this is made explicit in 
figure 3.4. 
  
 

 
 

Figure 3.4: power curves for two tests 
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3.9. MEAN 

Sample sizes could be based directly either on the measure of precision so that the size of a 

standard error is required to be less than a prescribe value or the sample size could be set so 

that a hypothesis test have a giving power. A numerical measure of this precision is the 

standard error, n/σ  which decreases as the precision increases. It is important to realize 

that sample size calculation do not give exact values, they depend on the values of the 

unknown parameter (population mean; population standard deviation) and therefore will 

vary as the values used for the parameters vary.  

Then,
0

2
0

2
0 )(

n
ZZ σµ βα += ,  

1

2
1

2
1 )(

n
ZZ σµ βα += ,  

1
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2
10 )()()(

n
ZZ

n
ZZ σσµµ βαβα +++=−  

Assume that n0= n1= n 
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
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3.10 COMPARISON OF TWO MEANS 
 
3.10.1 Prevention trial example 

 
In epidemiological study, comparison of two proportions is more often than comparison of 

two means. This is because clinical or public health decisions are based on clear outcome 

and less on the difference of the mean values.  

For instance, an epidemiologist may want to administer treatment and placebo on patients 

and would want to find out the number of patients for each group that should be recruited in 

the study in order to achieve effectiveness. If this is so, then 

2

2
)1()

2
1(

)(2

∆

+×
=

−
−

βα ZZ
ni    

Where i=1, 2 and n1=n2 

s
21 µµ −

=∆ , is the standard difference 

( 21 µµ − ) is the effect size (ES), and s is the common standard deviation  

 

Illustrative example: 

An epidemiologist wants to find out how many patients with mild hypertension would need 

to be recruited in a trial in order to detect an average difference ( 21 µµ − ) of 5mmHg in 

systolic blood pressure between the treatment group and the placebo group, assuming the 

standard deviation (s) of systolic blood pressure is 10mmHg, 98% power, and 1% level of 

significance. 

==∆
mmHg
mmHg

10
5 0.5 

)2/1( α−Z = 2.5758,    )1( β−Z = 1.6449 
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Then 2

2

)5.0(
)6449.15758.2(2 +

=in =
25.0

)2207.4(2 2

 

in = 142.5 ≈ 143 for each group.  

Also suppose a researcher wants to design a study such that two treatment groups can be 

compared with respect to the means which are two-sided test and are normally distributed. 

Then the hypothesis is that; 

0: 120 =− µµH   

0: 121 ≠− µµH .  

If 2µ ˃ 1µ , then the effect size (ES) = 12 µµ − .  

Let nnn == 21 , and 2
2

2
1 σσ = . 

If Z is the test statistic and, 1x and 2x  are estimates for 1µ and 2µ  respectively,  

then under the null hypothesis (H0); 

 

n

xx
Z

2

12

2σ
−= …………. (3.1) 

 

Power (1- β )= /( 2/1 α−> ZZp H0 is false). If 2/1 α−> ZZ it means that the variable of interest 

is within the rejection region and therefore H0 is false.  

Since n1=n2=n, then under the alternative hypothesis the common standard error  

 

D =
n

2
2

2
1 σσ + ,  
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The test statistic now becomes; 
 

Z= 

n

ESxx
2

2
2

1

12

σσ +

−−
…… (3.2)

 
 

 

From (3.1) 
n

Zxx
2
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2σ

=− , so (3.2) becomes 
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Then power = 1-β = P . 
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Squaring both sides, 
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By some transformations
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where the sample size for each group is ni. 

According to Mark Woodward (1999) and Altman (1990), as power increases say from 

80% to 90%, sample size increases and the more likely one is to detect a treatment effect if 

it exists. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

CHAPTER 4 

4.0 DATA ANALYSIS AND RESULTS 

4.1 PARAMETERS OF STUDY ON SULFADOXINE/PLACEBO FROM AFIGYA-

SEKYERE DISTRICT 

This chapter focuses on analysis of study data from Afigya-Sekyere District of the Ashanti 

Region in 1998. The trial was designed to detect a 30% reduction in the prevalence of 

malaria in the intervention group (sulfadoxine) compared with control group (placebo anti-

malaria). The prevalence of malaria in the control group was assumed to be 30%. Power 

was 80% with 5% level of significance and 20% loss to follow. The objective was to 

determine the effect of intermittent malaria treatment in infancy at risk of malaria. 

The 1998 population of Afigya-Sekyere District was estimated at 110,000 based on the 

1984 census with children with at most one year being 4, 400. The sample size for the total 

population of children within that year group was estimated at 900 in total. The method 

used was continuous enrolment of infants for a period of 12 months. During the study, all 

infants who came for Maternal and Child Health (MCH) clinic were recruited after 

informed consent was given by mother and the inclusion criteria were met. Details of 

children who are permanent resident of Afigye-Sekyere District and those who are not 

resident as well as other relevant information were recorded in a chart sheet. Infants 

recruited into the study were randomised into one of the two trial groups (Control/ 

Intervention) and a computer generated random number were assigned to each individual. 

Mothers were provided information on their next clinic date for collection of monthly 

supply of sulfadoxine or placebo. Field workers made monthly visits to homes of study 

infants to check on compliance with sulfadoxine/placebo supplementation and replenish 

supplies.  
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4.2 ANALYSIS IN SAMPLE SIZE DETERMINATION        

Since the study was aimed at protecting infants against prevalence of malaria in Afigya-

Sekyere-District where the prevalence of malaria is assumed to be 60%, they were put on 

two treatment groups, A (placebo) and B (sulfadoxine), trial. The trial was designed to 

detect 30% reduction in the prevalence of malaria in the intervention group (sulfadoxine) 

compared with the control group (placebo). The prevalence of malaria in the control group 

is assumed to be 30%. Power is 80% with 5% level of significance and 20% loss to follow. 

The sample size used, based on these assumptions was 450 infants per group (900 infants in 

total). Assume that the two treatments, A (Placebo) and B (Sulfadoxine) are administered.  

Let PA = proportion of infants randomized on treatment A  

PB = proportion of infants randomized on treatment B  

∆ = ratio of the hazard function  

4.3 SUMMARY OF DATA FROM AFIGYA-SEKYER DISTRICT 

Prevalence of malaria in infants on placebo was 

PA= 0.3 or 

 PA = 30%  

Expected prevalence of malaria reduction in infants on sulfadoxine was 30%. 

 Therefore, the actual prevalence for PB was [30% - (1/3×30%)]  

Therefore, PB = 20% or  

PB= 0.2  
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∆ = 0.15 

Duration of study =12 months  

Total sample size for both arms= 900 (450 for each of two arms) 

)2/1( α−Z  = value for 95% confidence interval 

βZ  = value for 80% power 

Then according to Fleming et al. (1980) the formula for appropriate sample size for the  

proportional hazard function is given by 

)log/()( 22
)2/1( ∆+= − eBAPPZZn βα .  

The hazard function was coded using STATA software and the results of the STATA 

analysis are shown in tables 4.1 and 4.3. Where )2/1( α−Z  = 95%, ∆ = 0.15, PB are constants 

and βZ , PA, were varied with prevalence.   

From the STATA software, table 4.1 below shows prevalence percentages of malaria in 

column 2, the power in column 1. For each prevalence there correspond two outcomes (No 

parasite and Parasite present) with each outcome relating to two variables, the number of 

infants on placebo (nA) and the number of infants on sulfadoxine (nB), where the total 

sample size for each variable is distributed randomly among the outcomes. Total sample 

size for each prevalence is displayed in column six (6). The purpose of this table is to 

generate total sample size for each percentage prevalence for a given power. 

 

 



54 
 

Table 4.1: SAMPLE SIZE DISTRIBUTION OF TREATMENT GROUPS FOR 

INFECTED AND NON-INFECTED INFANTS 

POWER PERCENTAGE 
 

 VARIABLES  

 
 
 
 
 
 
 
 
 

80% 

 
 

30% 

Malaria Placebo(na) Sulfadoxine(nb) Total 
No Parasite 12 (44.4%) 14 (66.7%) 26 (54.2%) 

Parasite Present 15 (55.6%) 7 (33.3%) 
 

22 (45.8%) 

Total 27 (100%) 21 (100%) 
 

48 (100%) 
 

 
 
 

40% 

    
No Parasite 43 (49.4%) 

 
79 (73.8%) 

 
122 (62.9%) 

 
Parasite Present 

 
44 (50.6%) 

 
28 (26.2%) 

 
72 (37.1%) 

 
Total 87 (100%) 

 
107 (100%) 

 
194 (100%) 

 
 
 
 

50% 

    
No Parasite 43 (49.4%) 

 
72 (72.7%) 

 
115 (61.8%) 

 
Parasite Present 44 (50.6%) 

 
27 (27.3%) 

 
71 (38.2%) 

 
Total 87 (100%) 

 
99 (100%) 

 
186 (100%) 

 
 
 
 
 
 
 
 
 
 
 

85% 

 
 
 

30% 

    
No Parasite 14 (45.2%) 

 
16 (69.6%) 

 
30 (55.6%) 

 
Parasite Present 17 (54.8%) 

 
 7 (30.4%)                 24 (44.40%) 

Total 31 (100%) 
 

23 (100%)             54 (100%) 
 

 
 
 
    40% 
 
 
 

    
No Parasite 47 (49.5%) 

 
94 (74.0%) 
 

141 (63.5%) 
 

Parasite Present 48 (50.5%) 
 

33 (26.0%) 
 

81 (36.5%) 
 

Total 95 (100%) 
 

127 (100%) 
 

222 (100%) 
 

 
 
 

50% 

    
No Parasite 47 (50.5%) 

 
89 (73.6%) 

 
136 (63.6%) 

 
Parasite Present 46 (49.5%) 32 (26.4%) 78 (36.4%) 
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Total 93 (100%) 

 
121 (100%) 

 
214 (100%) 

 
 
 
 
 
 
 
 
 
 
 
 

90% 

 
 
 

30% 
 

    

No Parasite 16 (44.4%) 
 

17 (65.4%) 
 

33 (53.2%) 
 

Parasite Present 20 (55.6%) 
 

9 (34.6%) 
 

29 (46.8%) 
 

Total 36 (100%) 
 

26 (100%) 
 

62 (100%) 
 

 
 
 

40% 

    
No Parasite 55 (50.0%) 

 
109 (72.7%) 

 
164 (63.1%) 

 
Parasite Present 55 (50.0%) 

 
41 (27.3%) 

 
96 (36.9%) 

 
Total 110 (100%) 

 
150 (100%) 

 
260 (100%) 

 
 
 
 

50% 
 

    
No Parasite 52 (49.5%) 

 
105 (72.4%) 

 
157 (62.8%) 

Parasite Present 53 (50.5%) 
 

40 (27.6%) 
 

93 (37.2%) 
 

Total 105 (100%) 
 

145 (100%) 
 

250 (100%) 
 

 
 
 
 
 
 
 
 
 
 

98% 

 
 
 
 

30% 

    
No Parasite 22 (50.0%) 

 
22 (68.8%) 

 
44 (53.6%) 

 
Parasite Present 22 (50.0%) 

 
10 (31.2%) 

 
32 (46.4%) 

 
Total 44 (100%) 

 
32 (100%) 

 
76 (100%) 

 
 
 
 

40% 

    
No Parasite 59 (46.5%) 143 (74.1%) 

 
202 (63.1%) 

 
Parasite Present 68 (53.5%) 

 
50 (25.9%) 

 
118 (36.9%) 

 
Total 127 (100%) 

 
193 (100%) 

 
320 (100%) 

 
 
 
 

50% 
 
 

    
No Parasite 58 (47.5%) 

 
135 (73.4%) 

 
193 (63.1%) 

 
Parasite Present 64 (52.5%) 

 
49 (26.6%) 
 

113 (36.9%) 
 

Total 122 (100%) 
 

184 (100%) 
 

306 (100%) 
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Table 4.2 below shows percentage prevalence in column 1 and proportion in column 2 

(Proportion =
100

prevalence ). 

4.2 Percentage Prevalence and Corresponding Proportion 

Prevalence Proportion 

30% 0.3 

40% 0.4 

50% 0.5 

 

It is observed from Table 4.2 that for a given prevalence, there corresponds a given 

proportion. 

Table 4.3 below is an extract from Table 4.1 and it shows the STATA computed sample 

size corresponding to a given prevalence and power.  

Table 4.3: Distribution of Sample Sizes for a given Prevalence and a given Power  

 Power 
 
 

Prevalence 

 80%       85%     90%     98%  
30% 48          54         62        76 
40% 194        222       260      320 
50% 186        214       250      306 

 

It is observed from Table 4.3 that for a given power (say 80%) the sample size follows a 

concave curve as prevalence increase from 30% to 50%. 

Figures 4.1 to 4.4 below are the graphical representations of the sample size variation as 

observed in Table 4.2. 

Sample sizes are plotted on the vertical axis and Prevalence Rates on horizontal axis for the 

various powers.  
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                         54 

 

                                          30%           40%            50%          

 

Figure 4.1: Plot of Total Sample Sizes against Prevalent Rates for 80% Power. 
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                         62 
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Figure 4.2: Plot of Total Sample Sizes against Prevalent Rates for 85% Power 
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                         76 
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Figure 4.3: Plot of Total Sample Sizes against Prevalent Rates for 90% Power 
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Total Sample 
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                         54 
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Figure 4.4: Plot of Total Sample Sizes against Prevalent Rates for 98% Power 

From Figures 4.1 to 4.4 it is observed that at a certain prevalence, sample size reaches its 

peak and any further increase in prevalence corresponds to decrease sample size. 
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4.4 ESTIMATING TOTAL SAMPLE SIZE WITH THE LEAST INTERVAL WIDTH    

USING POWER ANALYSIS 

A well powered sample size should have the least interval width for a particular confidence 

interval and for a given prevalence percentage (Odeh et al., 1991). For the 1998 study in 

Afigya-Sekyere District, prevalence percentage was 30% with 80% power and a total 

sample size of 900. 

Table 4.4 below is used to analyse the effectiveness of the study. It shows power in column 

1; prevalence percentage of malaria in column 2; sample sizes (n) in column 3; STATA 

generated Hazard Ratio at 95% confidence interval in column 4 and interval width in 

column 5 (the difference between numbers in bracket in column 4 give the interval width). 

For each power there corresponds various prevalence rates each relating to a sample size 

and an interval width. The aim of this table is to obtain at a given power a sample size and 

corresponding prevalence percentage that has the least interval width 95% confidence 

interval. 

 

 

 

 

 

 

 



60 
 

Table 4.4: POWER ANALYSIS 

 
Power 

 
Prevalence 

 
n 
 

 
Hazard Ratio (95%CI) 

 
Interval Width 

 
 

80% 

 
30% 
40% 
50% 

   
48 
194 
186 

 

 
0.79(0.40,1.55) 
0.87(0.63,1.20) 
0.89(0.67,1.23) 

 

 
1.15 
0.57 
0.56 

 
 

85% 

 
30% 
40% 
50% 

 
54 
222 
214 

 

 
0.94(0.51,1.73) 
0.90(0.66,1.21) 

            0.86(0.63,1.17) 

 
1.22 
0.55 
0.54 

 
 

90% 
 

 
30% 
40% 
50% 

 
62 
260 
250 

 
1.09(0.65,1.85) 
0.91(0.86,1.22) 
0.87(0.65,1.16) 

 

 
1.20 
0.36 
0.51 

 
 

98% 

 
30% 
40% 
50% 

 
76 
320 
306 

 

 
1.01(0.63,1.63) 
1.04(0.80,1.35) 
1.02(0.78,1.32) 

 
1.00 
0.55 
0.54 

 

Table 4.5a below is extracted from Table 4.4 and it shows the STATA computed sample 

size corresponding to a given power and prevalence. It shows the various powers in column 

2; the various prevalence in row 2 and varying sample sizes in columns 3 to 5. 
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Table 4.5a: Distribution of Sample Sizes for a given Power and a given Prevalence 

 

 

 

Power 

Prevalence 

 30% 40% 50% 

80% 

85% 

90% 

98% 

48 

54 

62 

76 

194 

222 

260 

320 

186 

214 

250 

306 

 

It was observed in Table 4.5a that as power increases the corresponding sample size 

increases for a given prevalence rate (say 30%).      

Table 4.5b below is also extracted from Table 4.1 and shows power in column 1; 

prevalence percentage in column 2; interval width in column 3 and sample size in column 

4. The table illustrates the prevalence percentage and sample size that corresponds to the 

minimum interval width for each power.  

Table 4.5b: Appropriate Sample Sizes  

POWER RATE (%)                     INTERVAL WIDTH                   SAMPLE SIZE (n) 
80% 
85% 
90% 
98% 

50 0.56 184 
50                                  0.54                                                        214 
40                                  0.36                                                        260 
50                                  0.54                                                        306 
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It was observed that as power was increasing the corresponding sample size was also 

increasing for a given prevalence rate. But this pattern did not show in the interval width. 

For effectiveness of research, researchers seek to use the characteristic of sample size with 

the smallest interval width (Odeh et al., 1991). From Table 4.5b above the smallest interval 

width is 0.36 which occurs at sample size of 260 with expected prevalence rate of 40% and 

of power 90%.  

Table 4.5b shows that at a particular prevalence of 50% using power of 85% for research 

instead of increased power of 98% gives the same interval width and therefore the same 

efficiency of research. However, the sample size to be used (306) at 98% is greater than 

(214) at 85% power. Since increased sample size cost more for the research activities, the 

lack of corresponding efficiency means it is better to use power of 85% and the sample size 

of 214 for such a research if 50% prevalence is to be expected. This confirms Cochran 

(1977) contribution that, large sample size corresponding to high power does not 

necessarily mean that it can detect any significance difference. Sample size which is well 

powered and has the smallest interval width is reasonable enough to detect any significance 

difference if it exists.  

4.3 DISCUSSION OF RESULTS       

This study revealed that for a given power sample size is a concave curve function of 

expected prevalence rate. For the same prevalence rate and interval width the power 

corresponding to a lower sample size is preferred.  

For 1998 study in Afigya-Sekyere District a sample size of 520 (260 for each of the two 

arms) at 90% prevalence should be used with prevalence of 40%. It is observed from Table 

4.5b that as power increases the corresponding sample size increases for a given prevalence 

rate.    
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The Literature shows that different methods of calculating sample size should be used for 

different experimental designs. 

For single mean and single proportion the maximum error formula could be used. 

For difference in means and proportions formula for hypothesis testing could be used. 

Tables and figures on the use of these formulae are found in appendix 6 to 19. 
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CHAPTER 5 

5.0 CONCLUSION AND RECOMMENDATION 

 

5.1 CONCLUSION 

This thesis work covered the basic discussions for estimating sample size given 

significance level and power, and for examining the influence of sample size on malaria 

data in Affigye-Sekyere District. 

It addresses the position of power and its relationship to sample size and interval width.      

It was revealed in Table 4.5a that as power was increasing sample size was also increasing 

for a given prevalence rate. But the pattern deviates in Table 4.5b for interval width. 

For the 1998 study in Afigya-Sekyere District a sample size of 520 (260 for each of the two 

arms) at 90% confidence interval should be used since that is has the least interval width of 

0.36 with prevalence of 40%. 

The STATA analysis used in this thesis was based on the hazard function since the Afigya-

Sekyere study used survival analysis. 

The research revealed that different methods of calculating sample size could be used for 

different experimental designs. For single mean and single proportion the maximum error 

formula could be used, and for difference in means and proportions formula for hypothesis 

testing could be used.    
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5.2 RECOMMENDATION 

It is usual for researchers to have different opinions as to how sample size should be 

calculated. The procedures used in this thesis work are comprehensive enough to narrow 

the different opinions researchers have. Well powered studies estimate reasonable sample 

sizes where cost of studies is saved at the end. In order to obtain a more realistic sample 

size estimate, it is appropriate for researchers to simulate data on survival distribution. 

Models like Monte Carlo simulation could be used to estimate appropriate sample size. 
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APPENDICES 

APPENDIX_1 

CODES FOR SAMPLE DETERMINATION USING SINGLE PROPORTION 

function table=SampleSizeDetSingleProp(p_cap,E) 

Z_Alpha_on_2=[1.64 1.96 2.5758];q_cap=1-p_cap; 

table=cell(2,length(Z_Alpha_on_2)+1);%Create a matrix of strings to contain the Z and n 

values 

table{1,1}='Z_Alpha/2';table{2,1}='n';%1st row 1st colum contain 'Z_Alpha_on_2', 

                                       %2nd row 1st colum contain 'n' 

for i=1:length(Z_Alpha_on_2)%For every element of Z_Alpha_on_2 

n(i)=ceil(p_cap*q_cap*(Z_Alpha_on_2(i)/E)^2);%Find n 

end 

for i=2:length(Z_Alpha_on_2)+1%From the 2nd column onwards 

table{2,i}=n(i-1);;%Let the 2nd row, ith column of the table be i-1th element of n 

table{1,i}=Z_Alpha_on_2(i-1);%Let the 1st row, ith column of the table be i-1th elementof 

Z_Alpha_on_2 

end 

xlswrite('SampleSizeDetSingleProp.xls',table) 
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APPENDIX_2 

CODE FOR SAMPLE DETERMINATION USING DIFFERENCE IN PROPORTION 

function table=SampleSizeDetDiffProp(p1,p2) 

Z_beta=[0.84161.03641.28161.6449];Z_Alpha_on_2=1.64;%[1.64 1.96 2.5758]; 

table=cell(length(Z_Alpha_on_2)+1,length(Z_beta)+1);%Create a matrix of strings to 

contain the Z and n values 

table{1,1}='Z_Alpha/2/Z_beta';%1st row 1st colum contain 'Z_Alpha_on_2' and 'Z_beta' 

q1=1-p1;q2=1-p2;ES=abs(p2-p1);p_bar=(p1+p2)/2;q_bar=1-p_bar; 

for i=1:length(Z_Alpha_on_2)%For each element of Z_Alpha_on_2 

for j=1:length(Z_beta)%For each element of Z_beta 

n(i,j)=ceil(((Z_Alpha_on_2(i)*sqrt(2*p_bar*q_bar)+Z_beta(j)*sqrt(p1*q1+p2*q2))/ES)^2)

;%Find n(i,j) 

end 

end 

plot(n,Z_beta)%Plot n against Z_beta 

xlabel('n');ylabel('Power')%Label the x and y axes as n and power respectively 

legend('Z_{\alpha/2}=1.64')%Indicate a description of the plot 

for i=2:length(Z_Alpha_on_2)+1%From the 2nd row onwards 

for j=2:length(Z_beta)+1%From the 2nd column onwards 
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table{i,j}=n(i-1,j-1);%Let the ith row, jth column entery of table be the i-1th row, j-1th 

column %element of n 

table{1,j}=Z_beta(j-1);%Let the 1st row jth column entery of table be the j-1th element of 

Z_beta 

end 

table{i,1}=Z_Alpha_on_2(i-1);%Let the ith row, 1st column entery of table be thei-1th 

element of Z_Alpha_on_2 

end 

xlswrite('SampleSizeDetDiffProp.xls',table) 
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APPENDIX_3 

CODES FOR SAMPLE DETERMINATION USING SINGLE MEAN 

function table=SampleSizeDetSingleMean(Sigma,E) 

Z_Alpha_on_2=[1.64 1.96 2.5758]; 

table=cell(2,length(Z_Alpha_on_2)+1);%Create a matrix of strings to contain the Z and n 

values 

table{1,1}='Z_Alpha/2';table{2,1}='n';%1st row 1st colum contain 'Z_Alpha_on_2', 

   %2nd row 1st colum contain 'n' 

for i=1:length(Z_Alpha_on_2) 

n(i)=ceil(Sigma^2*(Z_Alpha_on_2(i)/E)^2);%For every value of Z_Alpha_on_2 calculate 

%which is and integer 

end 

for i=2:length(Z_Alpha_on_2)+1%For the remaining columns 

table{2,i}=n(i-1);              %Put the i-1 n value in the 2nd row and ith column 

table{1,i}=Z_Alpha_on_2(i-1);%Put the i-1 Z_Alpha_on_2 value in the 1st row and ith 

column 

end 

xlswrite('SampleSizeDetSingleMean.xls',table)%Write the table in excel withthe name 

SampleSizeDetSingleMean.xls 
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APPENDIX_4  

CODES FOR SAMPLE SIZE DETERMINATION USING DIFFERENT MEANS BUT 

COMMON SIGMA 

function table=SampleSizeDetSameSigma(Mu_1,Mu_2,Sigma) 

Z_beta=[0.84161.03641.28161.6449]; 

Z_Alpha_on_2=1.64; 

table=cell(length(Z_Alpha_on_2)+1,length(Z_beta)+1);%Create a matrix of strings to 

contain the Z and n values 

table{1,1}='Z_Alpha/2/Z_beta';%1st row 1st colum contain 'Z_Alpha_on_2' and 'Z_beta', 

for i=1:length(Z_Alpha_on_2)%For every value of Z_Alpha_on_2 

for j=1:length(Z_beta) %For every value of Z_beta 

n(i,j)=ceil(2*Sigma^2*(Z_Alpha_on_2(i)+Z_beta(j))^2/(Mu_1-Mu_2)^2);%Find n which 

is an integer 

end 

end 

for i=2:length(Z_Alpha_on_2)+1%For the 2nd row onwards 

for j=2:length(Z_beta)+1%For the 2nd column onwards 

table{i,j}=n(i-1,j-1);%Let the ith row, jth column entery of table be thei-1th row, j-1th 

column entry of n 
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table{1,j}=Z_beta(j-1);%Let the 1st row, jth column of the table be the j-1th element of 

Z_beta 

end 

table{i,1}=Z_Alpha_on_2(i-1);%Let the ith row, 1st column of the table be the element of 

Z_Alpha_on_2 

end 

plot(n,Z_beta)%Plot n against Z_beta 

xlabel('n');ylabel('Power')%Label the x and y axes as n and Power respectively 

legend('Z_{\alpha/2}=1.64')%Indicate a description of the plot 

xlswrite('SampleSizeDetSameSigma.xls',table) 
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APPENDIX_5 

CODES FOR SAMPLE SIZE DETERMINATION USING DIFFERENCE IN MEANS 

AND DIFFERENT SIGMA 

function table=SampleSizeDetDiffSigma(Mu_0,Mu_1,Sigma_0,Sigma_1) 

Z_beta=[0.84161.03641.2816 1.6449];Z_Alpha_on_2=1.96;%[1.64 1.96 2.5758]; 

table=cell(length(Z_Alpha_on_2)+1,length(Z_beta)+1);%Create a matrix of strings to 

containthe Z and n values 

table{1,1}='Z_Alpha/2/Z_beta';%1st row 1st column contain 'Z_Alpha_on_2' and 'Z_beta' 

for i=1:length(Z_Alpha_on_2)%For every element of Z_Alpha_on_2 

for j=1:length(Z_beta)%For every element of Z_beta 

n(i,j)=ceil((Z_Alpha_on_2(i)+Z_beta(j))^2*(Sigma_0^2+Sigma_1^2)/(Mu_0-

Mu_1)^2);%Find n 

end 

end 

plot(n,Z_beta)%Plot n against Z_beta 

xlabel('n');ylabel('Power')%Label the x and y axes as n and Power respectively 

legend('Z_{\alpha/2}=1.96')%Indicate a description of the plot 

for i=2:length(Z_Alpha_on_2)+1%From the 2nd row of the table onwards 

for j=2:length(Z_beta)+1%From the 2nd column  of the table onwards 
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table{i,j}=n(i-1,j-1);%Let the ith row, jth column entry of the table be thei-1th row, j-1th 

column element of n 

table{1,j}=Z_beta(j-1);%Let the 1st row, jth column of entry of the table be j-1th element 

of Z_beta 

end 

table{i,1}=Z_Alpha_on_2(i-1);%Let the ith row, 1st column entry of table be i-1th element 

Z_Alpha_on_2 

end 

xlswrite('SampleSizeDetDiffSigma.xls',table)%Put the matrix table in excel and give it the 

nameSampleSizeDetDiffSigma.xls 
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APPENDIX_6 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

PROPORTIONS AND USING 90% CONFIDENCE INTERVAL.  

            For 1p̂ =0.6 and 2p̂ =0.4 

 

Graph of power against sample size (n), using difference in population proportions for 

α =1.64. 
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APPENDIX_7 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

PROPORTIONS USING 95% CONFIDENCE INTERVAL.  

 

 

Graph of power against sample size (n), using difference in population proportions for 

α =1.96. 
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APPENDIX_8 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

PROPORTIONS USING 99% CONFIDENCE INTERVAL.  

 

Graph of power against sample size (n), using difference in population proportions forα = 

2.5758. 
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APPENDIX_9 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

MEANS WITH COMMON STANDARD DEVIATION AND 90% CONFIDENDENCE 

INTERVAL. 

      For 1µ =135, 2µ =120 and σ =21  

 

Graph of power against sample size (n), using difference in population means with common 

standard deviation for α =1.64.   
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APPENDIX_10 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

MEANS WITH COMMON STANDARD DEVIATION AND 95% CONFIDENDENCE 

INTERVAL. 

      For 1µ =135, 2µ =120 and σ =21  

 

Graph of power against sample size (n), using difference in population means with common 
standard deviation for α =1.96. 
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APPENDIX_11 

GRAPH OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN POPULATION 

MEANS WITH COMMON STANDARD DEVIATION AND 99% CONFIDENCE 

INTERVAL. 

      For 1µ =135, 2µ =120 and σ =21  

 

 

Graph of power against sample size (n), using difference in population means with common 

standard deviation for α =2.5758.   
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APPENDIX_12 

GRAPHS OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN MEANS 

AND  DIFFERENCE IN STANDARD DEVIATIONS WITH 90% CONFIDENT 

INTERVAL. 

For 1µ =135, 2µ =120 and 1σ =32, 2σ =22 

 

Graph of power against sample size (n), using difference in population means and different 

standard deviations for α =1.64. 
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APPENDIX_13 

GRAPHS OF DETERMINING SAMPLE SIZES USING DIFFERENCE IN MEANS 

AND  DIFFERENCE IN STANDARD DEVIATIONS WITH 95% CONFIDENT 

INTERVAL. 

For 1µ =135, 2µ =120 and 1σ =32, 2σ =22 

 

 

Graph of power against sample size (n), using difference in population means and different 

standard deviations for α =1.96.  
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APPENDIX_14 

 

TABLE 4.3: SAMPLE SIZES DETERMINATION USING SINGLE PROPORTION  

CI (%) )2/1( α−Z  ip̂  iE  N 
90 
95 
99 

1.64 
1.96 
2.57 

 
0.1 

 
0.025 

388 
554 
956 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
0.5 

 
0.03 

 
784 
1068 
718 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
0.4 

 
0.03 
 

 
718 
1025 
1770 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
0.4 

 
0.05 

 
259 
369 
637 
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APPENDIX_15 

TABLE: 4.4 SAMPLE SIZES DETERMINATION USING DIFFERENCE IN 

POPULATION PROPORTIONS 

For 1p̂ =0.6 and 2p̂ =0.4 

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 76 89 105 133 
1.96 97 111 130 160 
2.5758 145 162 184 220 

 

For 1p̂ =0.7 and 2p̂ =0.3 

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 19 21 25 31 
1.96 24 27 31 38 
2.5758 36 39 44 53 

 

For 1p̂ =0.5 and 2p̂ =0.3  

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 73 85 101 127 
1.96 93 107 125 153 
2.5758 139 155 177 211 
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APPENDIX_16 

TABLE: 4.5 SAMPLE SIZE DETERMINATION USING MAXIMUM ERROR OF THE 

MEAN. 

CI (%) )2/1( α−Z  iσ  iE  N 
90 
95 
99 

1.64 
1.96 
2.57 

 
2.15 

 
0.05 

4974 
7104 
12268 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
2.0 

 
0.05 

 
4304 
6147 
10616 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
2.0 

 
0.03 
 

 
11954 
17074 
29488 

 
90 
95 
99 

 
1.64 
1.96 
2.57 

 
1.2 

 
0.05 

 
1550 
2213 
3822 
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APPENDIX_17 

TABLE: 4.6 SAMPLE SIZES DETERMINATION USING DIFFERENCE IN 

POPULATION MEANS WITH COMMON STANDARD DEVIATION. 

For 1µ =120, 2µ =132, σ =42  

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 151 176 210 265 
1.96 193 220 130 319 
2.5758 287 320 184 437 

 

For 1µ =62, 2µ =110, σ =42 

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 10 11 14 17 
1.96 13 14 130 20 
2.5758 18 20 184 28 

 

For 1µ =120, 2µ =132, σ =21 

)1( β−Z  0.8416 1.0364 1.2816 1.6449 
 

2/αZ  
   

 
 
1.64 38 44 53 67 
1.96 49 55 65 80 
2.5758 72 80 92 110 

 

 

 


