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ABSTRACT 

 

In this thesis the physical modeling of two Ghanaian percussive drums the “donno” of the Akans 

or “Lunna” of the Dagbambas and the “Atumpan” of the Akans was approached using the two 

dimensional wave equations and by imposing boundary and initial conditions on the drumhead. 

A remark is made about the overtones of these local drums after using matrix laboratory (matlab) 

to generate their Normal modes using three different types of initial velocity functions. 

  

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

CONTENT                                                                                                                      Page 

Declaration                                                                                                                i 

Acknowledgements                                                                                                          ii 

Dedication                                                                                                                         iii 

Abstract                                                                                                                             iv 

Table of Contents                                                                                                              v 

 

CHAPTER ONE                                                                                                              1 

 Introduction:                                                                                                                     1 

1.1       The History of drums                                                                                             1 

1.2       Importance of Drums to Africa                                                                              2 

1.3      The history and importance of the Talking Drum in West Africa                          4 

1.4      Cultural background of the Donno (hand-held talking drum)                                5 

1.5      Description of the talking drum                                                                              8 

CHAPTER TWO                                                                                                            11 

Literature Review:                                                                                                             11 

2.1      The History of the Mathematics of Musical Instruments                                       11 

 2.2     The mathematics of the willow flute                                                                      13 

2.3      A mathematical model of a guitar string                                                                 15 

2.4      The mathematics of the Kettle drum (Timpani)                                                      19 

2.5      The Indian Local drum                                                                                            22 

2.6      Some African Instruments: their Classification and Uses                                       27 

 

 

              



vii 
 

 

CHAPTER THREE                                                                                                    33 

The Vibrating Membrane:                                                                                              33 

3.1     Two-Dimensional Wave Equation                                                                       33 

3.2     The Circular Membrane                                                                                        37 

3.3     Transformation of the two dimensional Cartesian wave equation into                38 

          Plane Polar                            

3.4.    Vibrating membrane with constant tension                                                           40 

 

CHAPTER FOUR                                                                                                          50 

The mathematics of the vibrating membrane with varying tension:                                50 

4.1   Modified Two-Dimensional Wave Equation                                                           50 

4.2   Vibrating Membrane with Varying Tension                                                            51 

 

CHAPTER FIVE                                                                                                            60 

 Application of Two- Dimensional wave equation to the Local Drums in Ghana:          60                                                                                     

5.1. Computation of Vibrational Modes Using the Two Models                                     60 

5.2. The vibrational modes of a drum  head with constant tension using .       61 
 
5.3. The normal mode of a vibrating drum head with constant tension using 
        

                                                                                                             66 
 

5.4. The normal mode of a vibrating drum head with constant tension using 

                                                                                                               70 

5.5. The vibrational modes of a drum head with varying tension using           74 



viii 
 

 

 

5.6. The normal mode of a vibrating drum head with varying tension using 

                                                                                                               79 

 

5.7. The normal mode of a vibrating drum head with varying tension using 

                                                                                                                 84 

5.8    Description of the Normal modes of the two models                                               88 

CHAPTER SIX                                                                                                                  90 

Analysis of Results, Conclusion and Recommendations:                                                   90 

6.1 Findings and Discussion                                                                                                90 

6.2 Analysis of Results                                                                                                        91 

6.3 Conclusion                                                                                                                     96 

6.4 Recommendations                                                                                                          96 

6.5 Areas of further Studies.                                                                                                98 

References                                                                                                                            99 

Appendix A                                                                                                                          101 

Appendix B                                                                                                                          116 

Appendix C                                                                                                                          117  

 

 

 

 



ix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

CHAPTER ONE 

INTRODUCTION 

1.1     The History of drums  

 A Drum is a musical instrument in the percussion family, technically classified as a 

Membranophone, which literally means “skin sound”. It is a Latin and Greek word 

combined into one. It describes the instrument made by stretching a skin of animal, 

vegetable, or man-made material so that when it vibrates it produces sound. The history 

of drums goes back to the seventh century B.C.   

In various forms, they have existed before 6000 B.C., and had been found historically, in 

nearly every culture of the world. Drums consist of a body or a hollowed-shell and a 

membrane or a piece of animal skin or synthetic material stretched over one end or both 

ends of the hollowed body. The membrane is called the drumhead or drum skin and it is 

played by beating on the stretched membrane, either directly with parts of the player's 

body, or with some sort of implement such as a drumstick, to produce sound. Drums are 

among the world's oldest and most ubiquitous musical instruments, and the basic design 

has been virtually unchanged for hundreds of years. The shell almost invariably, has a 

circular opening over which the drumhead is stretched, but the shape of the remainder of 

the shell varies widely. In the western musical tradition, the most usual shape is 

cylindrical, although the Timpani drum for example use bowl-shaped shells. Other 

shapes include truncated cones (bongo drums) and joined truncated cones (talking 

drums). Drums with cylindrical shells can be open at one end (as in our local drum- 
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fontomfrom) or more commonly in the Western tradition, they can have another drum 

head. Sometimes they have a solid shell with no holes in at all though this is rare. It is 

usual for a drum to have some sort of hole, to let air move through the drum when it is 

struck. This gives a louder and longer ring to the notes of the drum, thus drums with two 

drum skin covering both ends of a tubular shell often have a small hole halfway between 

the two drumheads. The membrane is struck, either with the hand or with a drumstick, 

and the shell forms a resonating chamber for the resulting sound. The sound of a drum 

depends on several variables including shell shape, size, thickness of shell, materials of 

the shell, type of drumhead, tension of the drumhead, position of the drum, location, and 

how it is struck.  

 Drums weren’t used for entertainment way back then, but had ceremonial, sacred, and 

symbolic associations. Many civilizations adopted the use of drums, or similar 

instruments, to warn their people against dangers or to initiate their armies. The drum 

was a perfect choice because it was easy to make, made a lot of noise, and could be 

heard loud and clear.         

 1.2 Importance of Drums to Africa 

Africa is a land of many countries, climates, and cultures. It is a place of modern cities, 

and traditional villages.  

One cannot talk of drums and drumming in Africa without making mention of Music, 

since music is an integral part of every African individual from birth. In traditional  

African societies, the absence of music in daily life is unthinkable. Music is used to  
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heal the sick, praise a leader, ensure successful delivery of a child, cure bed wetting, and 

even to stop a woman from flirting with another woman's husband. Music is also 

involved with birth, naming of a child, teething, marriage, new moon, death, puberty, 

agriculture, re-enacting of historical events, hunting, preparation for war, victory 

celebrations and religious rites. In some African societies music is a dynamic and 

driving force that animates the life of the entire community. In most cases music goes 

along with drumming amidst dancing.  

 

Ensemble drumming  

Other uses of drums are seen in Artistic performances such as Ensemble drumming. It is 

practiced throughout West Africa. Drum ensembles play for social occasions, ritual, 

ceremonies, weddings, funerals, parties, and religious meetings. 

 Other instruments often join the drums to accompany singing and dancing. Drumming, 

singing and dancing are often performed in a circular formation going counterclockwise.  

Drum ensembles are often led by a master drummer who plays solos against the 

overlapping patterns. The master drummer also leads the ensemble by playing signals 

that tell the other players to switch to a different section, change drum patterns, change 

the tempo, signal the dancer, or end the piece. 

Drums are among the most important art forms in Africa, used both as musical 

instruments and as work of sculpture significant in many ceremonial functions, 
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including communication of messages. (Susan Simandle-The Music and Instruments of 

West Africa) 

 

1.3 The history and importance of the Talking Drum in West Africa 

The talking drum originated from the Mali Empire (10th-16th C.AD) where master 

drummers who were known as griots would travel throughout the villages playing the 

news of the day. Today the talking drum can be found throughout West Africa, with 

many variations of the drum and of its use. 

For nearly three and a half centuries, the Walo Walo of Senegal who are the descendants 

of the ancient Wolof Kingdom of Walo, have played the tama ( Senegalese talking 

drum) by using rhythms extensively to represent words and by tradition the audience 

know what these rhythms and sounds of the talking drum represent.  

The Yoruba of Nigeria have played the talking drum for generations. It is believed to 

have been originated from Oyo. It was first assembled for the Alaafin (the royal father 

and custodian of Oyo and the Yoruba heritage), as his musical outfit whenever he goes 

to war. He used it to motivate his army in the past. The talking drum serves as an 

important instrument of history. It is use to wake up the Alaafin as early as 5.00 am by 

reciting Past Alaafin , telling the incumbent Alaafin the challenges they faced ,how they 

did overcome the challenges as well as the methods they used. The drum goes on to talk 

about particular songs, dance steps or mannerisms of past Alaafin to enable the 

incumbent Alaafin know the history of his predecessors.  
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Something similar could also be said about the Dagbamba of northern Ghana who have 

developed a high standard of ensemble talking drumming.  

It is a common tradition that some chiefs of the smaller neighboring villages together 

with their entourage, dressed in their traditional regalia’s, visit the royal palace early 

morning on Friday.  The drummer troupe stands outside the palace to drum announce 

their arrival on the talking drum. Even before their arrival the drummers are already in 

place outside the doors of the royal palace and the master drummer sings the history of 

all the chiefs who have come, to awake the paramount chief in the process. The leads 

drummer will actually play the names of the visiting chiefs on the talking drum to 

announce them, as well as where they are from. They could also include things like who 

they have come with, and where they are likely to go after their visit, how long it has 

been since their last visit, and if time is permitted the family’s history of their heritage.  

The language spoken by the Dabgambas is Dagbanli. It is a tonal language and so all the 

words you say has a natural rise and fall to them just like in English, the words have an 

emphasis or stress on a part of the word. By virtue of the tonal nature of the Dabganli 

language of the Dabgambas, the master drummers can play proverbs on the Luna 

(talking drum) to describe their roots.  

 

 1.4    Cultural background of the “Donno” (hand-held talking drum) 

 The Dagbamba have a rich musical and cultural history, they are noted for their use of 

the Luna, or hand-held talking drum. They are one of the cultural groups in the Northern 

part of Ghana with a very sophisticated oral culture woven around drums and other 
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musical instruments. Thus most of its history, until quite recently, has been based on oral 

tradition with drummers as professional historians. The drummers belong to a hereditary 

clan called Lunsi. They serve as verbal artists, genealogists, counselors to royalty, 

cultural experts, and entertainers. They hold the history of the people through 

storytelling. According to oral tradition, the political history of Dagbon has its genesis in 

the life story of a legend called Tohazie (translated as Red Hunter.). Culturally the 

Dagbon is heavily influenced by Islam. Inheritance is patrilineal.  Some of the important 

festivals of the Dagbon traditional Area include the two Islamic Eid, Damba, and Bugum 

(fire festival).  

Dagomba membranophone ensembles have two distinct types of drums, the Gungon or 

Brekete which is a low pitched drum with snare and the Luna or Donno which is a 

pressure sensitive squeeze drum. The Gungon is used in dance performances such as 

Bamaya and Damba/Takai. The Luna is smaller than the Gungon. This drum is placed 

underneath the arm and is played with a curved stick. The playing technique of the Luna 

can imitate the nuances of spoken language (Dagbani) through pitch variation. Bamaya 

is usually performed on the way to the shrine. Bamaya literally means that the entire 

place is wet. When the Bamaya dance is being performed the men become subservient, 

dress in women clothes, wear headbands and lipstick and parade around the village 

during the harvest season. The story goes that a village that was very dry did the dance 

to bring rain. It began to rain and rained so much that the villagers were left to perform a 

mud dance. The lesson that could be drawn from performing this dance is that one must 

be careful what one desires, because he/she may ends up getting it. The Bamaya is 
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always danced by wearing smock called batakari with a belt having tassels and 

ornaments that accentuates the movement of the waist. Ankle bells are also worn. 

 

 

     Fig1.The Gungon or Brekete drum                       Fig 2. The Luna or Hour-glass drum 

Damba/Takai 

Damba is an annual New Year’s festival celebrated by the dabgamba people of Ghana,-

west Africa. The Damba dance used to be a religious festival in times past but in modern 

day of the Dagbon traditional community it is regarded as a non religious ceremony that 

is celebrated by the whole community and has been incorporated into the harvest 

festival. The festival provides a platform for the people to pay homage to the sub chiefs 

and the paramount chief who sits in state at his palace. The festival is headed by the 

paramount chief of the area. The Damba involves  series of dances performed to 

commemorate the birth of the prophet Mohammed and are combined in a medley. The 

first two rhythms are Damba and the rest is Takai. The Damba dance can be segregated 

into two main parts. The naming of the prophet Mohammed is So Damba and the 

birthday of the prophet Mohammed is Na Damba. Damba is the signature dance of the 

Damba Festival which celebrates the Birth of the Holy Prophet Mohammed. Damba is 
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almost an obligatory dance for the Dagomba chiefs, and is associated with festivals 

celebrating a large harvest on the farm. 

Takai is a Dagomba area war dance. This war dance is performed for two reasons: To 

train warriors and to show what transpired on the field during the war. The dance is 

traditionally performed by men. The sticks they carry used to be swords in the past. In 

modern time the theater has put together Damba with Takai which is why you see 

women dancing it as well. The first rhythm is the traditional rhythm, and the other 

rhythms were incorporated by the Arts council of Ghana in the 1960’s.  

 

1.5    Description of the talking drum  

The talking drum is a very important instrument in the culture of the Dagomba people. 

They refer to it as the Luna. In addition to being one of the oldest indigenous 

instruments of the Dagbamba, (Dagomba-singular, Dabgamba-plural) it has remained 

faithful to its original construction and is still made of ordinary materials found in the 

Dagomba land. 

The shell of the Luna is carved from cedar wood into its characteristic hourglass shape 

that is two gently curving cones connected by a hollow cylinder. Each end of the shell is 

covered with a goat skin head sewn onto a circular rim made of reed and grass. The two 

heads are connected by antelope skin tension cords from one end of the shell to the other 

end. (See fig.2). The drum is played with a constructed curved wooden stick held in the 

right hand while the Luna is suspended from the left shoulder by a scarf tied to the 

central cylinder shell and fits snugly into the player’s armpit. 
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 The series of strings holding the heads suspended from the circumference and running 

the length of the drum can be squeezed under the arm. This builds up pressure within the 

drum which regulates the tension on the drumheads to raise or lower the resultant pitch. 

In other words when the drum is squeezed, the drumhead tightens and the pitch goes up. 

Also the pitch comes down when the pressure of the strings are released. 

The hand held drum or the “Donno” has a number of possible pitch inflections. Based on 

this characteristic and the fact that tonal languages are use in many African cultures, it is 

possible to send linguistic messages via the drum. The primary use of the “Donno” was 

to send messages in the past and later found its use in religious chants or poetry, local 

festivities and dancing.   

What makes the talking drum unique is its ability to adapt to the tone of any musical 

instrument. The uses of the talking drum are many and it is wide spread in West Africa. 

 

In the chapters that follow, the researcher shall review the literatures of earlier writers on 

the mathematics of some musical instruments and also put into classifications, some 

musical instruments use in Africa for the chapter two. The chapter three would see us 

make certain assumptions on a vibrating membrane in order to derive the two 

dimensional Cartesian wave equation. The Cartesian wave equation will be converted 

into Plane Polar equation in order to model the circular drum with constant tension in the 

drum head. The resulting model would further be transformed into Bessel functions of 

order zero and of order half. For the chapter four, the researcher tries to modify the 

assumptions made on the derivation of the wave equation so as to model a vibrating 
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membrane with varying tension. This model will also be transformed into Bessel 

functions of orders zero and one-third using a suitable substitution. The remaining two 

chapters i.e. chapters five and six will also see us impose some boundary conditions on 

the models derived in previous chapters and apply matrix laboratory (mat lab) to solve 

the normal modes of these models. The results chinned out are then summarized, 

analyzed and interpreted in the light of the thesis topic. Other findings are also discussed 

and finally conclusions and recommendations made.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

The researcher in this chapter tries to review the literatures of what others have done 

on how the mathematics of music began, laying emphasis on some musical 

instruments such as the willow flute, the vibrating string and its application on the 

guitar, the kettle drum, the Indian local drum and how they are modeled 

mathematically. The review shall also touch on some African musical instruments, 

their origins and classifications.   

 

2.1 The History of the Mathematics of Musical Instruments 

The study of the mathematics of musical instruments date back at least to the 

followers of Pythagoras, who on dividing the length of a chord into ratios between 

the numbers one, two, three, and four of a monochord, that is a single stringed 

musical instrument produced vibrations of related pitches, which could be replicated 

by dividing the string into proportions of its length. They discovered harmonic 

series of notes they considered to be pleasing and corresponded to simple ratios of 

lengths. Contrary to this in 1634 Marin Mersenne published the first systematic 

study of harmonics, as “Harmonie Universelle” where he established that the pitch 

of a bowed note is determined by the frequency at which the string vibrates and that 

the frequency depended on the type of string , the tension applied, the length and the 

diameter of the string.  
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In the mid-17th

                                      

                             Fig. 2.1 The Harmonics of Pythagoras 

 century, harmonics offered a true mathematico-experimental 

framework that might not only be applied to strings and pendulums but also to light 

and gravity. Mersenne understood the production of pure tone and notes that 

sounded less clearly by a wave from the  length of the string to be very complex and 

attributed it to some partials or harmonics .It was later confirmed that any string will 

allow for multiple waves to occur, chiefly those that fit neatly along its length. Their 

wavelengths are determined by dividing the string by whole numbers, as well as the 

octaves that result from repeated division by two; other important partials result 

from an odd number of waves fitting along the length of the string (notably the 

dominant, or fifth note of the scale, produced by division into thirds).The quality 

and quantity of partials contribute to the overall sound produced. 

Newton was the first to conduct a detailed analysis of the behavior of sound waves under 

various circumstances and among the first, after Mersenne, to calculate the speed of 

propagation of sound waves, which he called “successive pulses” of pressure arising 

from vibrating parts of a tremulous body. Newton was aware that the amplitude of these 

“pulses” varied both in time and space. Therefore, the obvious mathematical analysis of 

sound is through differential equations because sound propagates both in time and space. 

However, a differential equation governing wave behavior was not discovered until 
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1747, when d’Alembert derived the one-dimensional wave equation for a vibrating 

string.  

The significance of the mathematical behavior of waves in music is far-reaching. 

Without a proper understanding of the mathematics involved, it would be impossible to 

build a proper musical instrument or concert hall. 

For two millennia since Pythagoras, a number of musical systems have evolved but they 

still contain potential discords. It is in this light that the researcher makes an attempt to 

review the works of some earlier writers on wind, string and membrane instruments and 

their mathematical model. 

 

 2.2 The mathematics of the willow flute 

Rachel W. Hall and Kresimir Josić (2000- ) considered the physical properties of a 

primitive wind musical instrument called the willow flute.  

The operation of this instrument does not depend on finger holes to produce different 

pitches, but rather by varying the strength of air blown into the instrument , the player 

selects from a series of pitches called Harmonics whose frequencies are integer 

multiples of the least tone called the fundamental frequency. The flute is made from a 

Hollow willow branch or alternatively in modern times PVC pipes in such a way that 

one end is left open and slot are constructed at the other end into which the player blows, 

forcing air across a notch in the body. Since the instrument has no finger holes the 

resulting vibration of the air creates standing waves inside the instrument whose 

frequency determines the pitch. 
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These researchers stated that quite a number of different tones can be produced on the 

willow flute and the possibility of this assertion lies in the mathematics of sound waves. 

They defined the pressure in a tube by a function U which is dependent on the position x 

along the length of the tube at time t. 

Since the pressure across the tube is close to a constant, the direction is neglected and 

pressure outside the tube is chosen to be zero. The one-dimensional wave equation 

 , provides a good model of the behavior of air molecules in the tube, where 

‘ ’ is a positive constant. Since both ends of the tube are open, the pressure at the ends 

is the same as the outside pressure; that is, if L is the length of the tube,   

.The solution to the wave equation is a linear combination of solutions 

of the form 

 , where  and “a” and “b” are 

constants. To predict the possible frequencies of tones produced by the willow flute, 

Rachel W. Hall and Kresimir Josić considered solutions that contain one value of n, and 

realized that the pressure varies periodically with period  when n and x are fixed 

as t varies. This implies that the frequency of a willow flute or wind instruments in 

general will always be defined as  . Based on their findings 

the researchers concluded that there are two ways to play a wind instrument: either by 

changing the length of the tube, L or by changing n.  

However for the case of a string instrument, which is also governed by the one-

dimensional wave equation, there is a third way of playing it, since besides these 
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variations, the value of “ ” could be changed by changing the tension through string 

bending or by using a string of different density. 

 

2.3    A mathematical model of a guitar string 

The Guitar is a musical instrument that produces sound when stretched strings are made 

to vibrate. The strings are made of gut, metal, and nylon or plastic. Types of stringed 

instruments include: bowed, such as the violin family and viol family; plucked, such as 

the guitar, ukulele, lute, sitar harp, banjo, and lyre; plucked mechanically, such as the 

harpsichord; struck mechanically, such as the piano and clavichord; and hammered, such 

as the dulcimer. 

Rasmus Storjohann (2000- ) used a mathematical model of a vibrating string to 

investigate the effect of plucked point and string properties on the sound of a string, and 

on how the sound of the string evolves over time from the plucked  point to the time 

when the sound fully dies out. Like all physical systems the guitar is constructed so that 

when it is plucked away from the equilibrium position, it would return to the equilibrium 

position by having the side effect of producing a pleasant sound. 

In the stationary position the string possesses potential energy which is converted to 

kinetic energy as the string vibrates due to the non-straight and non-equilibrium state. 

By the time the string is straight, it has so much speed that it overshoots and becomes 

non-straight in the opposite direction. It will then turn around and move towards a 

straight shape, the process is repeated again and again with picking up speed and 

overshoots until the string finally reaches its equilibrium point. The tighter the string, the 
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faster it will move, and the higher the pitch. The heavier the string, the slower it will 

move, and the lower the pitch. The frequency of a vibrating guitar string is determined 

by the tension and the weight of the string, and so by tuning the string to a particular 

frequency say 440Hz, any multiple of this frequency which is not an integer would 

instantly die out; however the guitar string will naturally vibrate at frequencies that are 

integral multiples of the frequency tuned to before plucking. This gives rise to the 

overtone series. The pluck forces the string into some shape that it wants to get away 

from to gain its equilibrium position. The initial shape of the string is determined to a 

large degree by the position of pluck and how hard the player uses the finger or nail on 

the string. These choices have large effect on the resulting sound, since the initial shape 

of the string at the time of the pluck determines the strengths of the various overtones.    

When the string is released it vibrates and after a while the sound dies or decay’s. Thus 

the change in the sound quality from the time of pluck to the time of decay gives the 

guitar two distinct phases known as the attack and decay. The reason associated to this is 

that, the harmonics decay at different rates. The decay is caused by a number of different 

mechanisms namely 

1.  Resistances to the bending of the string 

2.  Air resistances breaking the movement of the string 

3.  Transfer of energy from the string to the body of the guitar; 

(This on the whole drains the vibrating string of its energy, making it return to its 

equilibrium position.) 
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Rasmus Storjohann on the basis of these decay assumptions cited a paper by V.E Howle 

and Lloyd N Trefethen called “Eigen values and Musical instrument” to give the details 

of the relative importance of these different processes. By giving a table to show 

numbers that quantifies the decay rates of the various Harmonics of the type of string on 

the guitar as well as a mathematical model of a vibrating string for investigating these 

processes. Below is a table showing the first four partials and the mathematical model he 

employed in computing them. 

Decay rate of the four first Partial for a guitar equipped with steel or nylon strings. 

    Partial                        Decay rate (steel)             Decay rate (nylon)                       

      1 (fundamental)                 0.1                                     0.4 

      2 (octave)                           0.13                                   0.55 

     3 (etc)                                  0.16                                    0.7 

     4                                           0.18                                    0.9 

    Table 2.3.1  

 ,  

where   and k is the plucked point, which lies in the interval . 

 
 This expression is the solution to the one dimensional wave equation with some 

modification by the introduction of the term: . This 

model is use to compute the value of U which gives the amplitude of the string from its 
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equilibrium position at any point x from one end of the string at any time t in seconds. L 

is the length of string in centimeters, k is the point on the string where it is plucked and 

it is usually expressed as a fraction of the entire string; if the string is plucked at the 

middle k is assigned the value 0.5 if it is plucked near the ends k is assigned the values 

0.1 or 0.9. n gives us the Harmonics or the partials, so that for n=1 we have the 

fundamental, for n=2, we have the first overtone (the octave),  

for n=3 we have the next overtone (octave + fifth) and so on. The ratio of the tension in 

the string to the mass of the string is represented as c in the mathematical model;  is 

the decay rate which can be read off from the table 2.3.1. 

The remaining terms in the equation are as follows:  

   - This expression determines how much there is of each partial 

at the outset, i.e. when the string has been plucked. It is the only place in the expression 

where k appears and the only part of the system that depends on where the string is 

plucked. 

  - This describes the shape of the string. Note that this term is always zero at 

the end points of the string (x=0 and x=L). So that for n=1, a half-wave exist between 

the ends of the string, for n=2 a whole wave, and for n=3 one and a half wave, etc. These 

are known as the overtone series. 

  - Gives the vibration of the string as a function of time.  

  -This term describes the vibration of the nth partial. Each partial decays 

with its own decay rate  which explains the phenomenon of attack. And the term 
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 - Describes the complete time dependence of the position of the 

string, including both the vibration and the exponential decay. 

 

2.4 The mathematics of the Kettle drum (Timpani) 

In his lecture note “Playing the Timpani-Vibrations of a circular membrane” Darryl 

Yong described the Kettle drum or Timpani as a large orchestral percussion drum, made 

of a metal shell which is hemispherical in shape, with the top covered in stretched 

vellum. The pitch of the drum can be altered by adjusting screws at the side which 

changes the tension of the vellum before it is played.  

Traditionally, two kettle drums are used in an orchestra, although the use of three is not 

uncommon in modern piece. The drum is usually played with soft-headed wooden 

drumsticks or mallet. Besides the appearing of the kettle drum in the percussion group in 

classical music the sound of it is present in many forms of music from many different 

parts of the world.  

 

 What makes it easier to identify and distinguish the sounds of different types of drums, 

even without seeing the instruments is that each drum vibrates at characteristic 

frequencies, depending mainly on the size, shape, tension, and composition of its sound-

generating drumhead. In looking at how the kettle drum works mathematically, the 

researcher looked at the vibration of the circular drumhead and the air in the drum 

enclosure.  
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As a first approximation, the vibrations of the timpani’s drumhead can be modeled by 

the wave equation, , where c is the speed of waves travelling on the 

drumhead. The constant c is directly related to the tension of the drumhead. The 

corresponding pitch that is generated by hitting the drumhead with a mallet can also be 

adjusted using a foot pedal.  

 

The sound characterized by the timpani is determined by its vibrational modes and their 

corresponding frequencies. Timpani drums have diameters between 23-29 inches and 

most timpani players usually prefer playing about 4 to 5 inches from the edge than to 

strike the drumhead in the center which produces a sound that is somewhat hollow. In 

his lecture note, however, he showed why this is so by simply giving a mathematical 

model to explain more about the vibrational modes (Eigen functions) of the circular 

membrane via solving the wave equation by separation of variables. Since the membrane 

is circular he said it was convenient to use polar coordinate to explicitly write the 

displacement of the membrane in the wave equation    

as  . This partial differential equation readily reduces to 

three different ordinary differential equations in r,  and t namely 

, 

,  

,  

where the separation constants are  and .  

The first O.D.E. in theta has 2 -periodic solutions only if n is an integer in the form 
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The second O.D.E.  has a general solution of the form  

 ,  

provided so that the frequency of any particular vibration mode is determine by  

 . 

The solution to the third O.D.E. is the Bessel functions of first and second kind of order 

n and has the form 

,  

where ,  are Bessel functions of the first and second kind respectively. In 

order to have a finite solution for the membrane, the solution must lie in the interval 

  where ‘a’ is the radius of the drum, so that D assume a zero value. Since the 

Bessel function of second kind becomes unbounded at r = 0. Also for r = a, we require 

that 

 . 

 By denoting the zeros of Bessel functions as    and noting that 

  Where is a phase shift, Darryl Yong 

gave the solution for computing the vibrational mode of the timpani in a more compact 

form for the nonaxisymmetric case as 
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, for   

provided one is after the qualitative behavior of each vibrational mode, the angular and 

temporal phase shift could be ignored. Finally Darryl Yong said in practice the actual 

sound that we hear from the timpani is different from the above mathematical model for 

computing the vibrational mode of the kettle drum due to the following   important 

factors that have been neglected: 

The motion of the timpani is damped, which changes the vibrational modes and their 

frequencies. Sound waves travelling from the timpani to your ear also experience 

damping. Secondly there are small nonlinear effects such as surface tension which exert 

their own preference for certain modes by transferring energy from one vibration mode 

to another. Thirdly, the tension of the drumhead is not uniform across the entire 

drumhead (c is not really constant). Furthermore, there is a coupling between the 

vibrations of the membrane, the vibrations of the membrane bowl, and the vibrations of 

the air particles that eventually reach your ear. 

 

2.5 The Indian Local drum 

Siddharthan R et.al presented two theoretical models (or distributions) for the loaded 

drum head of the Indian musical drums, using the tabla as the prototypical example. 

(See Fig. 2.5.1 for picture of the Tabla.) 
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 Fig. 2.5.1 Photograph of the Tabla (Indian local drum) 

 The Tabla is the most well-known of all Indian drums. The tabla is a paired drum; the 

first drum is usually placed on the right has a black patch in the centre. This patch is 

made of a mixture of iron, iron oxides, resin, gum etc. and is stuck firmly onto the 

membrane. The thickness of this patch decreases radially outwards.  

The other drum has a wider membrane, and has also black patch similar to the first one, 

except that it is not symmetrically placed at the centre but on one side of the membrane. 

This drum does not produce harmonics but provides lower frequencies in the overall 

sound while the Tabla is being played. The researchers investigated on how the drum 

may be made harmonic by considering two different theoretical models.  (i.e. their study 

was on a radial density distribution and how the density variation of the membrane 

affects the frequencies of the overtones.) 

In making the Indian drum produce harmonic sounds the researchers tried several 

solutions to a membrane with a density variation. The simplest possibility was by 
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considering a loading which varies only with r. This produced a change in the radial part 

of the wave equation from 

 ,  

where   for the uniform membrane to 

, 

 since  so that   , 

or equivalently, 

 , 

 for the loaded membrane. 

The Radial equation was solved numerically for various distributions using the second- 

order Runge-Kutta method. However the two kinds of loading which was successful and 

gave interesting patterns were 

1. The Step function, i.e. concentric rings with varying density were considered. 

2. The Continuous loading, i.e. although the loading is stuck in parts, it becomes more or 

less continuous after it has been played for some time. 

In writing down the wave equation for the loaded membrane, they made these 

assumptions 

1. Normal Modes exist even in the loaded membrane 

2. Tension per unit length is the same throughout the membrane, even in the loaded part. 

The initial conditions for starting the solution of the wave equation by the Runge-Kutta 

method were assumed to be identical to those of the Bessel functions. 
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The allowed frequencies were found in the following way: Firstly, the Radial equation 

was written as 

 , where     

 

Which look exactly like the Bessel equation of order m for the loaded case. Now 

keeping m = 0, the value of  was varied and the solution plotted as a graph on the 

screen until its value became zero at the boundary. The corresponding value of  was 

noted.  was then increased, until the solution again became zero, but this time the 

solution passed through zero once, meaning that there was a nodal circle. This process 

was made for a particular value of m and then, m was increased by one, and the same 

process was continued, and all the allowed frequency values were noted.  

 

By this process they observed m = 0 and m =1 gave the expected results, since the initial 

values of the Bessel functions and their derivatives are non-zero for the zero and first 

orders. However, for m = 2 and higher orders, values of both the Bessel function and its 

derivative become zero at r = 0. 

 This leads to the solution becoming zero at all points for m = 2 and higher orders. This 

happens because the Runge-Kutta method depends on the initial value of the solution 

and its derivative (i.e. r = 0) due to the fact that the iteration begins with the derivative 

and the initial value as zero, it continues to be so for further values of r. To remedy this 

problem, the researchers chose to begin the iteration from an infinitesimally small value 

with r =0.0001 and they were able to compute the values of the Bessel function and its 

derivatives using the first four terms of the series expansion of the Bessel function. 
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Out of their investigation they observed that for continuous loading, all the overtones 

were nearly harmonic with the exception of the fundamental frequency which was found 

to be higher than it should have been.  The results of their finding is summarized in the 

table below  

 

                                              Summary of the findings 

Normal mode
(Nodal diameter,Circles) Unloaded Continuous Loading Multiple Rings Tabla
1    (0,0) 1.00 1.07 1.00 1.00
2    (1,0) 1.59 2.00 1.96 2.00
3    (2,0) 3.14 2.98 2.98 3.00
4    (0,1) 2.30 2.99 3.03 3.00
5    (3,0) 3.65 4.00 4.02 4.00
6    (1,1) 2.92 4.00 3.95 4.00
7    (4,0) 3.16 5.01 5.00 5.00
8    (2,1) 3.50 5.01 5.00 5.00
9    (0,2) 3.60 5.02 4.80 5.00
10  (1,2) 4.24 6.02 5.20
11  (1,3) 5.55 7.80 7.03
12  (2,2) 4.85 7.00 5.90
13  (3,1) 4.06 6.04 6.02
14  (4,1) 4.60 7.09 7.05

Frequency Ratio

Table 2.2

 

 In conclusion we take a look at the uses and differences of the Tabla with western drum. 

The key difference between Indian and foreign drums is the absence of the central 

loading on the membrane and as a result recitals in Indian Classical music is usually 

accompanied by the Tabla which must be harmonic, otherwise, the aharmonicity would 

completely disrupt the recital. 

On the other hand in most cultures drums play different role in contemporary music. 

They provide a rhythm to the music produced by the rest of the instruments, and do not 

produce harmonics. 
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2.6 Some African Instruments Their Classification and Their Uses 

African instruments are believed to be of local origin, or instruments which have 

become integrated into the musical life of their communities. African musical 

instruments could be categorized into four main groups, namely Idiophones, 

Aerophones, Chordophones and membranophones. 

(A) Idiophone  

An Idiophone (literally, “self sounding”) may be broadly defined as any instrument upon 

which a sound may be produced without the addition of a stretched membrane or a 

vibrating string or reed. Idiophones may be used musically as rhythm instruments or 

played independently as melodic instruments. Apart from their musical functions 

Idiophones are used depending on the African communities from which they evolved as 

signals for attracting attention, assembling people, or creating an atmosphere (especially 

during religious rites and ceremonies). They may be use for transmitting messages and 

at times applied for scaring birds away from newly ploughed fields.  

Idiophones found in some African communities includes Shaking Idiophones such as the 

gourd rattle (maracas) which may be used principally as rhythm instruments held and 

played as rattles in the hand or as jingling metals worn on the wrist of dancers or even 

tied to other instruments which serves as modifiers.  

Tuned Idiophones are usually tuned and can be used for playing melodies. They include 

mbira or sansa  (hand piano) which is made of a series of wooden or metal strips 

arranged on a flat sounding board and mounted on a resonator such as a box  a gourd or 

even a tin, and the xylophone. 
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 (B). Membranophones   

Membranophones are instruments that make sound from tightly stretched membranes 

over some sort of frame or shell. The shell of drums are carved out of solid logs of 

wood, or made from earthenware vessels. They could also be made out of strips of wood 

bound together by iron hoops. Another material used for making the drum shell is the 

large gourd or calabash. 

Drums appear in a wide variety of shapes and sizes. They may be conical, cylindrical 

with a bulge in the middle, or a bowl-shaped top, cup-shaped, bottle-shaped or in the 

shape of an hour glass. Some drums are of light weight and could be played when held 

and supported under the players armpit, others are heavy and are normally placed on the 

ground when played. Drums in general could be open at one end – known as single 

headed drum. When both ends of the shell is covered with animal skin, they are known 

as double headed drum. The drum heads are fixed by means of glue or nails over the 

shell, or the drum heads are nailed down by thorns, or suspended by pegs that could be 

pushed in or out to regulate the tension in the drum head.  

The drumhead may also be laced down by strings to another skin at the other end of the 

shell. The lacing may be Y-shaped, W- shaped or X- shaped. Some drums may have 

jingles (akasaa) suspended across the drum head as in the case of the male atumpan 

drum used by the Akans of Ghana. Rattling metals or small bells may be attached to the 

rim of a drum, as in the Yoruba iya ilu drum found in Nigeria. Apart from their musical 

uses, some special drums for nonverbal communication may have symbolic significance 

in some African communities. For communication purposes the sounds of 
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membranophones may function as speech surrogates or as signals (call signals or 

warning signals).  

 

(C). Aerophones   

Aerophones are wind instruments. These instruments achieve the desired sound by 

forcing air through them which creates vibration. 

 There are limited wind instruments seen in most African societies. Aerophones are 

generally classified into three broad groups namely the Flute family, the Horns and 

Trumpets family and the Reed Pipe family. Flutes are made from materials with natural 

bore such as bamboo, the husk of cane, the stalks of millet; they could be carved out of 

wood or from substitutes such as metal or PVC pipes. Flutes may be open-ended or 

stopped, and are usually played in a vertical or transverse position. Flutes may be used 

as solo instruments for playing fixed tunes or improvised pieces for conveying signals. 

They are found in the melody section of an ensemble. The Reed Pipes group are not as 

wide spread or as significant as the Flute class. Reed instruments are usually made from 

millet stalk.    

The reed is sub grouped as single-reed type and double–reed instruments. Single-reed 

instruments are found in the Burkina Faso, Northern Ghana, Benin, and Chad, whiles the 

double reed instruments are mostly found in Nigeria, Cameroon, Kenya and Tanzania. 

The third class of Aerophones is the Horns and trumpets which are made from animal 

horns and elephant tusks. These are found in some Akan communities of Ghana.  
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They are generally designed to be side-blown. There are also trumpets made of bamboo, 

gourd or metal such as the Ethiopian malakat, which may also be covered with leather or 

skin. Horns and trumpets may be used for conveying signals and verbal messages as 

well as for playing music. 

(D). Chordophones.  

Chordophones are instruments that make sound when stretched strings vibrates. 

Normally, these strings are stretched over a box or gourd to maximize reverberation. 

Chordophones are played by plucking, strumming or through friction from a bow. There 

are five basic types found in Africa namely, bows, lyres, harps, lutes, and zithers. Of 

these, the oldest and simplest is the musical bow which is still common or wide spread 

in Africa.  

It exist in a variety of forms, such as the earth bow, which is made of a flexible stick 

stuck in the ground, to whose upper end a piece of string is attached. The string is 

stretched and buried down in the earth with a piece of stone placed on top of the earth to 

keep the string in position. They are found in northern Ghana and Uganda. The other 

forms are the mouth bows and calabash resonator bows. For the mouth bow, the bow 

resonates in the mouth; when hit at a convenient spot, the shape and size of the mouth 

cavity are altered so as to amplify selected partials or harmonics produced by the string. 

And for the bows with calabash resonator, the calabash is placed in the middle of the 

bow or towards the tip. Usually when it is being played the calabash may be placed on 

the chest or some part of the body so as to vary its pitch. 
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Zithers are another type of chordophone found in Africa. One peculiar characteristic of 

Zithers is that the strings of the instrument are positioned horizontally. Examples of 

Zithers include the Tube Zither which has its strings run across the shell of a tube such 

as a hollow bamboo stem. The Trough Zither, it has eight strings which run across the 

entire length of the resonating wooden trough. The Bow Zither is found in the savannah 

belt of west Africa. Its design is a U- shaped bow with a calabash resonator attached to 

its base with five or six strings tied from one side of the bow to the other. 

 

   

           Fig. 2. 6.1 The Trough Zithar 

 Other African stringed musical instruments or chordophones include the Lyres, Lutes 

and Harps. The Lute is an instrument whose strings run parallel to its neck. It has a 

resonating belly such that the strings run from near the base of the belly along the full 

length of the neck.  
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 Some common Lutes include the harp lutes, and the bow lutes which are found in the 

savannah belt of West Africa (Guinea, Niger, Gabon and Cameroon). 

 

 Fig. 2.6.2         The Harp-lute 

The arched or bow harps are closely related to the lute. However, the neck of the harp is 

arched and the strings run from the neck to the sound box at an angle. Unlike the Lute 

and Harp the Lyre is an instrument whose strings run from a yoke to a resonator and 

they are mostly found in the eastern part of Africa. Examples include “begana” lyre 

found in Ethiopia and the “obukano” lyre found in Kenya. Chordophones are generally 

played to accompany a solo singer or in poetry recitals, praise singing and narrative 

songs. 
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CHAPTER THREE 

THE VIBRATING MEMBRANE 

3.1 Two-Dimensional Wave Equation 

A Vibrating membrane, such as a rectangular drumhead has displacements that satisfy 

the two dimensional wave equation. We shall be concerned with the two dimensional 

geometry of the membrane in a plane. Before preparing a model for this problem, we 

describe a few assumptions concerning the material and behavior of the membrane. 

1. The membrane is homogeneous. The density ⍴ is constant. 

2. The membrane is composed of a perfectly flexible material which offers no resistance 

to deformation perpendicular to the xy- plane. Motion of each element is perpendicular 

to the xy- plane. 

3. The membrane is stretched and fixed along a boundary in the xy- plane. 

4. The Tension per unit length T due to stretching is the same in every direction and is 

constant during the motion. Weight of the membrane is negligible. 

5. The Deflection u(x,y,t) of the membrane whiles in motion is relatively small in 

comparison to the size of the membrane and the angles of inclination are small. 

To derive the differential equation which governs the motion of the membrane, we 

consider the forces acting on a small portion of the membrane as shown in figure 3.1.1 

below 
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         Fiq.3.1.1.   An element and projection of a stretched membrane.                               

 An element of the membrane ABCD in figure 3.1.1 is projected into a small rectangle 

with edges   and   parallel to the x and y axes. Deflections and angles of inclination 

are small enough so that the sides of the element are approximated by  and . 

According to the assumption (4), the forces acting on the edges are approximately T  

and T  , and acts tangential to the membrane. 

Horizontal components involve cosines of very small angles of inclination. Since these 

forces are directed in opposite direction they add to zero approximately. The sum of the 

Horizontal forces in the x direction ( See fig. 3.1.2) is  

……………………………                                  (3.1.1) 

And in the y direction the sum is 

…………………………….                                  (3.1.2)  

A 
B 

C D 

An element of stretched vibrating membrane 
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T x∆  
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T y∆  y  y y+ ∆  



35 
 

                    The Cross Sections in x and y Plane of a Membrane 

 

 

     

 

 

 

Fig 3.1.2.      Cross sections of membrane showing angles of inclination. 

 From the cross section in the x and y planes, if the horizontal component of  is , 

then from equation (3.1.1) 

………………………                                (3.1.3) 

and that of  is   then from equation (3.1.2) we have 

……………………….                              (3.1.4) 

 Equations (3.1.3) and (3.1.4) becomes 

…………………………………..                              (3.1.5) 

and 

……………………………………                           (3.1.6)   

 Adding the forces in the vertical direction and using Newton’s second law of motion, 

we obtain 

u  
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………………              (3.1.7) 

If  and  in equation (3.1.7) are replaced by equations (3.1.5) and (3.1.6) then 

 

………………..               (3.1.8) 

Recognizing that  

 and   

 and   therefore equation (3.1.8) becomes 

 + 

 ……………………               (3.1.9) 

If the cosine of the inclinations is all approximately 1, then equation (3.1.9) yields 

 + 

 ……………………             (3.1.10) 

Division of equation (3.1.10) by  permits the form 

 +   

                                                                                    ………………….            (3.1.11) 

as  and  in equation (11), then 

 …………………………                                        (3.1.12) 
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Where  and  

Equation (3.1.12) is the wave equation in two dimensions. 

 

3.2 The Circular Membrane   

This section considers the solution of the two dimensional wave equation of the circular 

membrane such as the local drums “Kete”, “Fontomfrom”, “Atumpan” and so on which 

is struck at the centre and an attempt made to describe its transverse movements. We 

shall transform the two dimensional Cartesian wave equation into its polar form in terms 

of r and θ using the parametric equations 

   

                                                   

because the boundary of the membrane can be modeled simply by the polar equation 

 r= constant. 

The researcher shall consider the solution  of the vibrating membrane which is 

radially symmetric, a case which is independent of  with a single boundary condition 

 (i).                        for all t   

which imply that the membrane is fixed at the ends. And with initial conditions   

(ii).    and     

       ………………………………                                           (3.2.1) 
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The condition in (ii) implies that the membrane is flat initially and at the same time an 

arbitrary velocity is applied in order for the membrane to start vibrating.  

 The method of separation of variables is employed to establish two ordinary differential 

equations using the plane polar form of the two dimensional wave equation. The 

researcher identified the spatial O.D.E. as the Bessel’s differential equation of order zero 

by applying a suitable substitution its solution is obtained. The time O.D.E. was also 

identified as the standard simple harmonic differential equation which belongs to a class 

of second order differential equations with constant coefficient and its solution was also 

adopted accordingly.  

The superposition principle and the Bessel functions orthogonality principle were finally 

applied to obtain the general solution of the circular vibrating membrane. 

 

3.3 Transformation of the two dimensional Cartesian wave equation into Plane 

        Polar.         

By using the parametric equations namely  and , we transform the 

Laplacian,   in the wave equation, from the rectangular coordinates  

 into . Then partially differentiating   with respect to  we get 

, 

where the subscripts are the partial derivatives with respect to the indicated variable.  

Differentiating again with respect to , we first have 
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          ……………………            (3.3.4) 

By applying the chain rule again, we find 

  and  

 . 

To determine the partial derivatives  and  we have to differentiate 

  and    

Then 

  and 

  

Differentiating these two functions again, we obtain 

   and 

 

  

We substitute all these expressions into equation (3.3.4) 
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Assuming continuity of the first and second partial derivatives, we have    and 

we obtain, 

  

        

 …………………      (3.3.5) 

In a similar fashion, it follows that 

 …………………….     (3.3.6) 

By adding equations (3.3.2) and (3.3.3), we see that the Laplacian in polar coordinates is  

  

The wave equation takes the form 

                             …………………………     (3.3.7) 

3.4. Vibrating membrane with constant tension 

We shall now consider the solution of the wave equation which does not depend 

on , 

 so that the wave equation (3.3.7) reduces to the simpler form 

                                        ..…………………………     (3.4.1) 
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Subject to the boundary and initial conditions of equations (i) and (ii) under (3.2.1) 

namely 

                             ……………………………..      (3.4.2) 

since the membrane is fixed along the boundary r = R, and   

      …..……………………..          (3.4.3) 

   Using the method of separation of variables, we first determine the solution that 

satisfies the boundary conditions (3.4.2). Let 

                                        ……………………………        (3.4.4) 

By differentiating and inserting (3.4.4) into (3.4.1) and dividing the resulting equation 

by  ,  where   , we obtain  

 , 

 where dots denote derivatives with respect to  and primes denote derivatives with 

respect to . 

The expressions on both sides must be equal to a constant, and this constant must be 

negative, say, , where k is a non-zero real constant in order to obtain solutions that 

satisfy the boundary conditions. Thus, 

 . 

This yields the two ordinary linear differential equations. 
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 ,                          ……………………………..                       (3.4.5) 

where   and 

  , which on multiplying through by  yields  

              ………………………….               (3.4.6) 

 

Introducing a new independent variable we may write equation (3.4.6) as 

follows: 

Let  , then 

  and    

Using these substitutions and taking out the common factor  we obtain 

 ,                           …………………………               (3.4.7)  

where  . 

This is clearly Bessel’s equation with parameter zero.  

 The general solution is 

,  

where and  are the Bessel functions of the first and second kind of order zero. 
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Since the deflection of the membrane is always finite, while  becomes unbounded 

as  we cannot use  and must choose  and  , if not W will yield 

a trivial solution. Thus setting , we have 

              ………………………………                    (3.4.8) 

Now applying the boundary condition (3.4.2), we have 

                  ………………………………….                 (3.4.9) 

Since  would imply , we require that the boundary condition is satisfied 

whenever . 

The Bessel function  has (infinitely many) real zeros and are slightly irregularly 

spaced. Let us denote the positive zeros of  by  having the exact 

numerical values to four decimal places as follows; 

……… 

Hence equation (3.4.9) would imply 

                  …………………     (3.4.10) 

Thus the functions 

                     …………………    (3.4.11) 

are solutions of equation (3.4.6) which vanish at . 

The time O.D.E. of equation (3.4.5) may be solved to give the solution of the form  
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                             …………………     (3.4.12) 

 with   . 

 However for  an attempt is made to transform the time O.D.E. into Bessel 

function of order  , by proceeding as follows  

Multiply the time O.D.E. by t to get  

                                                                 ……………………     (3.4.13) 

Let  

        ,        

Then 

                   and 

  

 

       

  

           …………………………           (3.4.14) 

 



45 
 

Also 

 …………….       (3.4.15) 

Adding (3.4.14) and (3.4.15) and dividing through by   the time O.D.E.   

 becomes 

   …………….        (3.4.16) 

Let 

 ,  

So that equation (3.4.16) becomes 

                              ……………………………                  (3.4.17) 

Let 

                                                   ……………………………..          (3.4.18) 

 

So that differentiating with respect to t 

     

  

         ……………………………..      (3.4.19) 
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  On substituting equations (3.4.18) and (3.4.19) into (3.4.17) we obtain 

  

  

    ………………………            (3.4.20) 

Finally set  

      and so equation (3.4.20) yields 

,         ………………………..              (3.4.21) 

which is Bessel’s O.D.E. of order    . 

                         …………………………             (3.4.22) 

But     

Therefore substituting we obtain the time solution as 

 ,  …………………………..           (3.4.23) 

where  and  are real numbers. 

Hence the functions 

  

                …………………..          (3.4.24)  
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where   are solutions of the wave equation (3.4.1), satisfying the 

boundary condition (3.4.2). These are the Eigen functions of our problem and the 

corresponding Eigen values are   ,  

Next, we note that the original partial differential equation is linear and as such applying 

the superposition principle on the various particular solutions or normal modes would 

give the general solution in the form 

  

                …………..     (3.4.25) 

With the real constants  and  to be determined using the initial conditions (3.4.3). 

To apply the initial condition we note that Bessel function of order n is  

  

            

                                                                                          ……………. …        (3.4.26) 

Setting      into (3.4.26) we obtain the expansion for the solution 

of the time O.D.E .  so that 
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                       ……………….       (3.4.27) 

Now at  

 

           …………………….                      (3.4.28) 

Multiplying both sides by  and integrating with respect to r from 0 to R we 

obtain 

      ………………….. ..                 (3.4.29) 

By the orthogonality principle of Bessel functions we get 

  

                                                            …..…………………..               (3.4.30) 

Similarly as    

         ………………………               (3.4.31) 
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Multiplying both sides by  and integrating with respect to r from 0 to R we 

obtain 

………..       (3.4.32) 

By the orthogonality principle of Bessel functions we get  

  

            ……………………….             (3.4.33) 

 

   the complete solution becomes 

  

                                                                                   ……………………..           (3.4.34) 

This equation (3.4.34) for  is the mathematical expression of the motion of the 

circular drum with constant tension in the drum head.  
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CHAPTER FOUR 

THE MATHEMATICS OF THE VIBRATING MEMBRANE WITH VARYING 

TENSION 

4.1 Modified Two-Dimensional Wave Equation 

The researcher shall be concerned with the two dimensional geometry of the membrane 

in a plane with a little but significant modification in the assumptions of a vibrating 

membrane. Thus in preparing a model for this problem of how the “donno” (the single 

talking drum) sounds the way it does, we shall retain the description of the assumptions 

concerning the material and behavior of the membrane, as in the case of the vibration of 

a circular membrane with constant tension except that this time we model the circular 

membrane with varying tension. 

Therefore the underlying assumptions of the single talking drum is as follows  

1. The membrane is homogeneous. The density ⍴ is constant. 

2. The membrane is composed of a perfectly flexible material which offers no resistance 

to deformation perpendicular to the xy -plane. Motion of each element is perpendicular o 

the xy -plane. 

3. The membrane is stretched and fixed along a boundary in the xy plane. 

4. The Tension per unit length T is very small and varies periodically with time due to 

the press and release of the strings during the motion. 
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5. The deflection of the membrane while in motion is relatively small in 

comparison to the size of the membrane; the angles of inclination of the deflections are 

small.  

The researcher aimed at a solution of the form  which is radially symmetric due 

to the circular physical orientation of the drum and assumed a periodic function for the 

tension, applied.  

 The Method of separation of variables is applied on the partial differential equation that 

describes the dynamics of the drum to obtain two second order ordinary differential 

equations with variable coefficients. These ordinary differential equations are solved and 

with the boundary and initial conditions imposed, the mathematical expression 

describing the motion of the single talking drum is obtained. We proceed as follows: 

 

4.2 Vibrating Membrane with Varying Tension 

We shall now consider the solution of the wave equation which does not depend 

on , so that the  wave equation in polar coordinates reduces to the new  form with the 

tension modified to vary as a periodic function of time 

                       …………………………           (4.2.1) 

where , . This modification in the wave equation is introduced in the 

modeling of the single talking-drum, commonly called the “donno” of the Akans of 

Ghana, since the tension is made to vary by pressing and releasing the strings within a 

small range of time when it is played. 
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Subject to the boundary and initial conditions namely 

  ,                        ………………………….          (4.2.2) 

since the membrane is fixed along the boundary r = R . 

and for    

      

Using the method of separation of variables, we first determine the solution that satisfies 

the boundary conditions (4.2.2).  Let 

                                       …………………………       (4.2.4)  

By differentiating and inserting (4.2.4) into (4.2.1) and dividing the resulting equation 

by , we obtain 

, where dots denote derivatives with respect to  and primes 

denote derivatives with respect to  . 

 Let the separation constant be  , then 

        ………………………….                   (4.2.5) 

This yields the two ordinary linear differential equations, one purely of the spatial co-

ordinate r and the other purely of the time co-ordinate t.  

                           …………………………..                   (4.2.6) 

……………………......            (4.2.3) 
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where   and 

 , 

which on multiplying through by  yields  

          ……………………….                         (4.2.7) 

The equation (4.2.7) is identified as the Bessel’s differential equation of order zero and 

by applying a suitable substitution its solution is obtained as 

             …………………………..                      (4.2.8) 

where and  are the Bessel functions of the first and second kind of order zero. 

Since the deflection of the membrane is always finite, we cannot use  and must 

choose  Also  else we shall get the trivial solution i.e. .  

 On setting  , then  

            …………………………….                       (4.2.9) 

Now applying the boundary condition (3.4.2), we have 

              ……………………………….                       (4.2.10) 

Since  would imply , we require that the boundary condition is satisfied 

whenever . We note that  has infinitely many zeros and 

so we let   be the positive zeros of . 

. Then              
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    becomes the Eigen values and the corresponding spatial solution is  

                   …………………………………                   (4.2.11) 

Next we consider the time O.D.E.   equation (4.2.6) 

  

Now the interspersed varying of the tension of the vibrating membrane through the twist 

and release of the strings attached to the drum is done in small intervals of time.  Thus 

for small time ,    and the time O.D.E. then becomes  

                                 ……………………………..                (4.2.12) 

This form of the time O.D.E. is identified as the standard Air’s differential equation 

which is oscillatory. Clearly the O.D.E. is a linear second order differential equation 

with variable coefficients. It’s solution could be converted into Bessel function of order 

one-third which are known to be oscillatory like the periodic functions of sine and 

cosine, as follows. 

For  

Multiply the time O.D.E. by t to get  

  

Let  

        ,        
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Then 

                   and 

  

       

  

            …………………………          (4.2.13) 

Also 

   ………….  (4.2.14) 

Adding equations (4.2.13) and (4.2.14) and dividing through by   the time O.D.E. 

becomes 

    ………….     (4.2.15) 

Let 

 ,  

So that equation (4.2.15) becomes 

                       ………………………..              (4.2.16) 
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Let 

                                                     ………………………..              (4.2.17) 

                                       

So that differentiating with respect to t 

     …………………………               (4.2.18) 

  

         ………………………….              (4.2.19) 

  On substituting (4.2.17), (4.2.18) and (4.2.19) into (4.2.16) we obtain 

  

  

    ………….       (4.2.20) 

Finally set  

      and so equation (4.2.20) yields 

                    …………………..       (4.2.21) 

Which is Bessel’s O.D.E. of order . 
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                           ……………………..      (4.2.22) 

But     

Therefore substituting we obtain the time solution as 

         ………………………      (4.2.23) 

Hence the functions 

 , 

                                                                                   ……………………..      (4.2.24) 

 where     Are called the eigen functions and are the solutions of the 

wave equation 

, satisfying the boundary condition . 

Clearly we see that there are infinitely many Eigen values and to each value of  there 

corresponds a particular solution (Eigen function) with the  and  being arbitrary 

constants. 

Now since the original partial differential equation is linear, any linear combination of 

the particular solutions would also be a solution. Accordingly we take the linear 

combination of the  as the general solution of the wave equation, that is 

……… (4.2.25)                                                                                           
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The arbitrary constants  and  in the solution must now be chosen so that the 

boundary conditions at  are satisfied. 

We note that near the starting time at ,   

since the starting time is a branch point of both   and   and neither functions are odd 

nor even. 

This is always so when the order of Bessel function is fractional. Thus we choose 

 . 

Now to apply the initial conditions we note that Bessel functions of order n is  

 

  

            

                                                                                           ……………….      (4.2.26) 

Setting      into (4.2.26) we obtain the expression for the solution of 

the time O.D.E. so that 

  

                 ………………        (4.2.27) 
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With     

                     ...………………        (4.2.28) 

Multiplying both sides by  and integrating with respect to r from 0 to R we 

obtain 

………..   (4.2.29) 

By the orthogonality principle of Bessel functions we get  

  

                 ………………….           (4.2.30) 

   the complete solution becomes 

 

                                                                                   …………………..            (4.2.31) 

This equation (4.2.31) for  is the mathematical expression of the motion of the 

hour-glass like drum or the single talking African drum. 
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CHAPTER FIVE 

APPLICATION OF TWO- DIMENSIONAL WAVE EQUATION TO THE 

LOCAL DRUMS   IN GHANA 

5.1. Computation of Vibrational Modes Using the Two Models 

In this chapter an attempt is made to calculate the vibrational modes for each of the two 

models of drums, namely, a drum with constant tension discussed in chapter three and a 

drum with varying tension as a function of time, discussed in chapter four using the 

matrix laboratory (matlab). The chapter will be composed under the following subtopics 

(a). The vibrational modes of a drum head with constant tension using , The 

normal modes of a vibrating drum head with constant tension using , 

The normal modes of a vibrating drum head with constant tension using

, (b). The vibrational modes of a drum head with varying tension as a function 

of time using , The normal modes of a vibrating drum head with varying 

tension using , The normal modes of a vibrating drum head with 

varying tension using  and (c). The Description of the Normal modes of 

each of the two models (a) and (b). 

 

5.2. The vibrational modes of a drum head with constant tension using . 

To evaluate the vibrational mode of a circular drum using the model of chapter three, the 

researcher considered the boundary value problem having the conditions  
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 as, the condition at the boundary  and  initial velocity  

; the radius used in the computations was taken to be 3.50 inches. 

Three different initial velocity functions were used, namely a velocity which is invariant 

for instance   ; the second type of velocity function used is one dependent on 

the radius and the best candidate selected was a polynomial function of r which has at 

least one trough and one crest. In this case a cubic function i.e. of the form 

 , was chosen.  

The third initial velocity used is also dependent on the radius and had only one trough 

with no crest was a quadratic function of r i.e.  . 

The choice of an initial velocity function with repeated roots of the form

, where the constants a and b are chosen so that the centre would have the 

largest amplitude and least amplitude near the highest value of r, is adapted to ensure 

that at least a nodal point exist on the drum head because the entire drumhead do not 

vibrate at the same time. 

The model for a vibrating circular membrane with fixed tension is a function of r and t  

    

                                                                                       ………………      (5.2.1) 

 

And so by allowing t to take integral values from 0 to 9, while’s r takes on values 

 r = 0 ,1 ,1.5 ,2 ,2.25 , 2.5 ,3 ,3.25 ,3.5 and 4 with 

   , c=1, and  being equal to the 
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first ten zeros of the Bessel function of order zero.    and   , 

Matrix Laboratory codes were applied to compute these expression in the following 

tables   

                       Bessel function of order zero for drumhead with fixed tension 

J_x=
1 1 1 1 1 1 1 1 1 1

0.8854 0.4684 -0.0346 -0.3585 -0.3667 -0.1229 0.167 0.2996 0.204 -0.0267
0.7516 0.0204 -0.3997 -0.1599 0.2431 0.2262 -0.1121 -0.2412 -0.002 0.2142
0.5808 -0.3078 -0.1954 0.2885 0.0332 -0.2468 0.0742 0.1817 -0.1415 -0.1022
0.4861 -0.3863 0.0146 0.2547 -0.2088 -0.0406 0.2079 -0.1336 -0.0733 0.1795
0.3877 -0.4003 0.1973 0.0631 -0.2206 0.1996 -0.0448 -0.1198 0.18 -0.106
0.1887 -0.2604 0.2766 -0.2492 0.1885 -0.1075 0.0206 0.0579 -0.1164 0.147
0.0921 -0.1356 0.1632 -0.18 0.1876 -0.1872 0.1795 -0.1654 0.1458 -0.1219

0 0 0 0 0 0 0 0 0 0
-0.1634 0.2256 -0.2396 0.2158 -0.1633 0.0931 -0.0179 -0.0501 0.1008 -0.1273

                 

                        Table 5.2.1     gives values of Bessel function of order zero varying r 

                      

                         Bessel function of order half for drumhead with fixed tension 

j_y=
0 0 0 0 0 0 0 0 0 0

1.8316 1.906 0.9442 -0.294 -1.0453 -0.9482 -0.2148 0.5668 0.854 0.5037
2.0026 -0.0172 -1.0474 0.4051 0.6383 -0.5842 -0.2962 0.626 -0.0016 -0.5575
1.4707 -1.1002 0.7965 -0.4747 0.1535 0.1318 -0.3478 0.471 -0.4931 0.4216
0.5533 0.0243 -0.3414 0.5146 -0.5661 0.5126 -0.3781 0.1945 0.0022 -0.1772
-0.374 0.852 -0.1379 -0.5292 0.3183 0.2974 -0.3902 -0.0932 0.3819 -0.0785

-0.9797 -0.0298 0.4762 0.5211 0.2114 -0.182 -0.3861 -0.2917 -0.0027 0.2568
-1.0863 -0.7197 -0.5751 -0.4928 -0.438 -0.3981 -0.3675 -0.343 -0.3228 -0.3058
-0.7227 0.0344 0.4315 0.4469 0.1707 -0.1669 -0.3361 -0.2485 0.0032 0.2253
-0.0955 0.6343 -0.131 -0.3864 0.2473 0.214 -0.2941 -0.0634 0.2847 -0.0628

                 

                        Table 5.2.2        gives values of Bessel function of order ½ varying  
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                      The first associated coefficients for drumhead with fixed tension 

A_n_1=
0.6528 -0.123 0.05 -0.0269 0.0168 -0.0115 0.0083 -0.0063 0.005 -0.004  

Table 5.2.3         gives the coefficient of the normal mode with f(r) = 1 

Now by multiplying corresponding columns of tables 5.1, 5.2, 5.3 we obtain matrices of 

the first ten partials of the vibrating membrane with fixed tension and with these partials 

the first ten Normal modes were obtained and tabulated below                                                                                      

The 1st

U_1_1=
0 1.1958 1.3074 0.9601 0.3612 -0.2442 -0.6396 -0.7092 -0.4718 -0.0624
0 1.0587 1.1575 0.8501 0.3198 -0.2162 -0.5663 -0.6279 -0.4178 -0.0552
0 0.8987 0.9826 0.7216 0.2715 -0.1835 -0.4807 -0.533 -0.3546 -0.0469
0 0.6945 0.7593 0.5576 0.2098 -0.1418 -0.3715 -0.4119 -0.274 -0.0362
0 0.5812 0.6354 0.4667 0.1756 -0.3109 -0.3447 -0.2293 -0.0303 -0.0303
0 0.4637 0.5069 0.3723 0.1401 -0.0947 -0.248 -0.275 -0.1829 -0.0242
0 0.2256 0.2467 0.1812 0.0682 -0.0461 -0.1207 -0.1338 -0.089 -0.0118
0 0.1101 0.1204 0.0884 0.0333 -0.0225 -0.0589 -0.0653 -0.0434 -0.0057
0 0 0 0 0 0 0 0 0 0
0 -0.1954 -0.2137 -0.1569 -0.059 0.0399 0.1045 0.1159 0.0771 0.0102

 Normal mode 

           Table 5.2.4:     _1 in U_1_1 is used to identify the velocity function used 

The 2nd

U_2_1=
0 0.9613 1.3095 1.0955 0.3582 -0.349 -0.6359 -0.6206 -0.476 -0.1404
0 0.9489 1.1585 0.9135 0.3184 -0.2653 -0.5646 -0.5864 -0.4197 -0.0918
0 0.8939 0.9826 0.7244 0.2714 -0.1857 -0.4806 -0.5312 -0.3547 -0.0485
0 0.7667 0.7586 0.516 0.2107 -0.1096 -0.3726 -0.4391 -0.2727 -0.0122
0 0.6718 0.6346 0.4144 0.1767 -0.0782 -0.3123 -0.3789 -0.2277 -0.0002
0 0.5575 0.5061 0.3181 0.1412 -0.0527 -0.2495 -0.3104 -0.1813 0.0071
0 0.2867 0.2461 0.1459 0.0689 -0.0188 -0.1216 -0.1569 -0.0879 0.0086
0 0.1419 0.1201 0.07 0.0337 -0.0083 -0.0594 -0.0773 -0.0429 0.0048
0 0 0 0 0 0 0 0 0 0
0 -0.2483 -0.2132 -0.1264 -0.0597 0.0163 0.1054 0.1359 0.0762 -0.0074

 Normal mode 

Table 5.2.5:  _1 in U_2_1 identify the first velocity function used                           
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The 3rd

U_3_1=
0 1.0085 1.2571 1.1353 0.3411 -0.3559 -0.6121 -0.6494 -0.4545 -0.147
0 0.9473 1.1604 0.9121 0.319 -0.2651 -0.5654 -0.5854 -0.4205 -0.0915
0 0.875 1.0035 0.7084 0.2782 -0.1829 -0.4901 -0.5197 -0.3633 -0.0459
0 0.7574 0.7689 0.5082 0.214 -0.1082 -0.3772 -0.4335 -0.2769 -0.0109
0 0.6725 0.6339 0.415 0.1765 -0.0783 -0.3119 -0.3793 -0.2274 -0.0003
0 0.5668 0.4957 0.3259 0.1379 -0.0541 -0.2448 -0.3161 -0.177 0.0058
0 0.2998 0.2317 0.1569 0.0642 -0.0207 -0.1151 -0.1648 -0.082 0.0067
0 0.1496 0.1115 0.0766 0.0309 -0.0094 -0.0555 -0.082 -0.0393 0.0038
0 0 0 0 0 0 0 0 0 0
0 -0.2596 -0.2006 -0.1359 -0.0556 0.0179 0.0996 0.1428 0.071 -0.0058

 Normal mode 

Table 5.2.6           _1 in U_3_1 identify the first velocity function used 

The 4th

U_4_1=
0 1.0164 1.2462 1.1481 0.3273 -0.3416 -0.6261 -0.6361 -0.4665 -0.1366
0 0.9444 1.1643 0.9075 0.324 -0.2702 -0.5604 -0.5902 -0.4162 -0.0953
0 0.8738 1.0053 0.7064 0.2804 -0.1852 -0.4879 -0.5218 -0.3614 -0.0475
0 0.7597 0.7657 0.5119 0.21 -0.1041 -0.3813 -0.4297 -0.2804 -0.0079
0 0.6745 0.6311 0.4182 0.1729 -0.0747 -0.3155 -0.3759 -0.2304 0.0024
0 0.5673 0.495 0.3268 0.137 -0.0532 -0.2456 -0.3153 -0.1778 0.0064
0 0.2978 0.2344 0.1538 0.0677 -0.0242 -0.1116 -0.1681 -0.079 0.0041
0 0.1482 0.1135 0.0743 0.0334 -0.012 -0.053 -0.0844 -0.0372 0.0019
0 0 0 0 0 0 0 0 0 0
0 -0.2579 -0.203 -0.1332 -0.0586 0.021 0.0966 0.1456 0.0684 -0.0036

 Normal mode 

 Table 5.2.7: _1 in U_4_1  identify the first velocity function used 

The 5th

U_5_1
0 0.9988 1.2569 1.1507 0.3178 -0.3363 -0.6226 -0.6435 -0.4636 -0.1324
0 0.9509 1.1603 0.9066 0.3275 -0.2721 -0.5617 -0.5875 -0.4172 -0.0968
0 0.8695 1.0079 0.707 0.2781 -0.1839 -0.487 -0.5236 -0.3607 -0.0465
0 0.7591 0.7661 0.5119 0.2097 -0.1039 -0.3812 -0.4299 -0.2803 -0.0078
0 0.6782 0.6288 0.4177 0.1749 -0.0758 -0.3162 -0.3744 -0.231 0.0015
0 0.5712 0.4927 0.3262 0.1391 -0.0544 -0.2464 -0.3136 -0.1784 0.0055
0 0.2945 0.2364 0.1542 0.0659 -0.0232 -0.1109 -0.1695 -0.0784 0.0049
0 0.1449 0.1155 0.0747 0.0316 -0.011 -0.0523 -0.0858 -0.0366 0.0027
0 0 0 0 0 0 0 0 0 0
0 -0.2551 -0.2047 -0.1336 -0.0571 0.0201 0.096 0.1468 0.0679 -0.0043

 Normal mode 

 Table 5.2.8: _1 in U_5_1  identify the first velocity function used 
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The 6th

U_6_1=
0 1.0097 1.2636 1.1492 0.3119 -0.3397 -0.6205 -0.6389 -0.4617 -0.1349
0 0.9495 1.1595 0.9068 0.3282 -0.2717 -0.5619 -0.5881 -0.4175 -0.0965
0 0.872 1.0094 0.7067 0.2768 -0.1847 -0.4865 -0.5226 -0.3603 -0.0471
0 0.7565 0.7644 0.5123 0.2112 -0.1031 -0.3817 -0.4311 -0.2808 -0.0072
0 0.6777 0.6286 0.4177 0.1752 -0.0756 -0.3163 -0.3746 -0.2311 0.0016
0 0.5734 0.494 0.3259 0.1379 -0.055 -0.246 -0.3127 -0.178 0.005
0 0.2933 0.2357 0.1544 0.0665 -0.0229 -0.1111 -0.17 -0.0786 0.0052
0 0.1429 0.1143 0.075 0.0327 -0.0103 -0.0527 -0.0866 -0.037 0.0031
0 0 0 0 0 0 0 0 0 0
0 -0.2541 -0.2041 -0.1337 -0.0576 0.0198 0.0962 0.1473 0.0681 -0.0045

 Normal mode 

                     Table 5.2.9: _1 in U_6_1  identify the first velocity function used 

                                              

The 7th

U_7_1=
0 1.0079 1.2611 1.1463 0.3088 -0.343 -0.6237 -0.642 -0.4645 -0.1373
0 0.9492 1.1591 0.9063 0.3276 -0.2722 -0.5625 -0.5886 -0.4179 -0.0969
0 0.8722 1.0097 0.707 0.2772 -0.1843 -0.4862 -0.5222 -0.3599 -0.0468
0 0.7563 0.7643 0.5121 0.2109 -0.1033 -0.3819 -0.4313 -0.281 -0.0074
0 0.6773 0.6281 0.4171 0.1745 -0.0763 -0.317 -0.3752 -0.2317 0.0011
0 0.5734 0.4941 0.326 0.1381 -0.0549 -0.2459 -0.3126 -0.1779 0.0051
0 0.2933 0.2356 0.1543 0.0664 -0.0229 -0.1112 -0.1701 -0.0787 0.0051
0 0.1425 0.1138 0.0745 0.0321 -0.0109 -0.0533 -0.0872 -0.0375 0.0027
0 0 0 0 0 0 0 0 0 0
0 -0.254 -0.2041 -0.1337 -0.0575 0.0199 0.0963 0.1473 0.0681 -0.0045

 Normal mode 

                     Table 5.2.10: _1 in U_7_1 identify the first velocity function used 

The 8th

U_8_1=
0 1.0043 1.2572 1.1433 0.3075 -0.3424 -0.6219 -0.6398 -0.4629 -0.1369
0 0.9482 1.1579 0.9054 0.3273 -0.2721 -0.5619 -0.5879 -0.4175 -0.0968
0 0.873 1.0106 0.7077 0.2775 -0.1844 -0.4866 -0.5227 -0.3603 -0.0469
0 0.7557 0.7635 0.5116 0.2107 -0.1032 -0.3816 -0.4309 -0.2807 -0.0073
0 0.6778 0.6286 0.4175 0.1747 -0.0764 -0.3172 -0.3755 -0.2319 0.0011
0 0.5739 0.4946 0.3264 0.1382 -0.055 -0.2461 -0.3128 -0.1781 0.0051
0 0.2931 0.2354 0.1542 0.0664 -0.0229 -0.1111 -0.17 -0.0786 0.0052
0 0.1431 0.1145 0.075 0.0323 -0.011 -0.0536 -0.0875 -0.0378 0.0026
0 0 0 0 0 0 0 0 0 0
0 -0.2539 -0.2039 -0.1335 -0.0575 0.0198 0.0962 0.1472 0.0681 -0.0045

 Normal mode 

  table 5.2.11: _1 in U_8_1  identify the first velocity function used. 
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The 9th

U_9_1=
0 1.0086 1.2572 1.1408 0.3075 -0.3405 -0.6219 -0.6414 -0.4629 -0.1355
0 0.949 1.1579 0.9049 0.3273 -0.2717 -0.5619 -0.5883 -0.4174 -0.0965
0 0.873 1.0106 0.7077 0.2775 -0.1844 -0.4866 -0.5227 -0.3603 -0.0469
0 0.7551 0.7635 0.5119 0.2107 -0.1035 -0.3816 -0.4307 -0.2807 -0.0075
0 0.6775 0.6286 0.4177 0.1747 -0.0765 -0.3172 -0.3754 -0.2319 0.001
0 0.5746 0.4946 0.3259 0.1382 -0.0546 -0.2461 -0.3131 -0.1781 0.0053
0 0.2926 0.2354 0.1545 0.0664 -0.0231 -0.1111 -0.1698 -0.0786 0.005
0 0.1437 0.1145 0.0746 0.0323 -0.0107 -0.0536 -0.0878 -0.0378 0.0028
0 0 0 0 0 0 0 0 0 0
0 -0.2534 -0.2039 -0.1338 -0.0575 0.02 0.0962 0.147 0.0681 -0.0043

 Normal mode 

                      table5.2.12: _1 in U_9_1 identify the first velocity function used 

 

The 10th

U_10_1=
0 1.0066 1.2594 1.1392 0.3082 -0.3402 -0.6229 -0.6402 -0.4638 -0.1352
0 0.9491 1.1579 0.905 0.3273 -0.2717 -0.5619 -0.5883 -0.4174 -0.0965
0 0.8726 1.0111 0.7074 0.2776 -0.1844 -0.4868 -0.5225 -0.3605 -0.0468
0 0.7553 0.7633 0.5121 0.2106 -0.1035 -0.3815 -0.4308 -0.2806 -0.0075
0 0.6772 0.629 0.4174 0.1748 -0.0765 -0.3174 -0.3752 -0.2321 0.001
0 0.5748 0.4944 0.3261 0.1381 -0.0547 -0.246 -0.3133 -0.178 0.0053
0 0.2923 0.2357 0.1542 0.0665 -0.0231 -0.1112 -0.1696 -0.0787 0.005
0 0.144 0.1142 0.0748 0.0322 -0.0108 -0.0535 -0.0879 -0.0377 0.0028
0 0 0 0 0 0 0 0 0 0
0 -0.2532 -0.2042 -0.1336 -0.0576 0.02 0.0963 0.1469 0.0682 -0.0044

 Normal mode 

                       table 5.2.13: _1 in U_10_1 identify the first velocity function used. 

Tables 5.2.4 –Table 5.2.13 gives the first ten normal mode with the velocity function 

f(r)=1 

 

5.3.   The normal mode of a vibrating drum head with constant tension using     

                . 

By using the second initial velocity function considered i.e.  the new 

coefficient is obtained                 
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The second associated coefficients for drumhead with fixed tension 

A_n_2=
1.1727 -0.1191 -0.0277 -0.0147 -0.0022 -0.0046 0.0001 -0.0022 0.0004 -0.0012

table 5.3.1 gives the coefficient of the normal mode with  

And on multiplying the respective columns of tables 5.1.1,5.1.2 and 5.2.1 the matrices of 

the first ten Normal modes were also generated and tabulated below. 

 

The first Normal mode 

U_1_2=
0 2.1481 2.3485 1.7247 0.6489 -0.4386 -1.1489 -1.274 -0.8476 -0.112
0 1.9019 2.0794 1.5271 0.5745 -0.3884 -1.0173 -1.128 -0.7505 -0.0992
0 1.6144 1.7651 1.2963 0.4877 -0.3297 -0.8635 -0.9575 -0.637 -0.0842
0 1.2476 1.364 1.0017 0.3768 -0.2548 -0.6673 -0.7399 -0.4923 -0.0651
0 1.0441 1.1415 0.8383 0.3154 -0.2132 -0.5584 -0.6192 -0.412 -0.0545
0 0.8329 0.9106 0.6688 0.2516 -0.1701 -0.4455 -0.494 -0.3286 -0.0434
0 0.4053 0.4432 0.3255 0.1224 -0.0828 -0.2168 -0.2404 -0.1599 -0.0211
0 0.1978 0.2163 0.1588 0.0597 -0.0404 -0.1058 -0.1173 -0.078 -0.0103
0 0 0 0 0 0 0 0 0 0
0 -0.3511 -0.3838 -0.2819 -0.106 0.0717 0.1878 0.2082 0.1385 0.0183  

 table 5.3.2 :_2 in U_1_2 identify the velocity function used 

 

The 2nd

U_2_2=
0 1.9211 2.3506 1.8558 0.646 -0.5401 -1.1454 -1.1883 -0.8517 -0.1876
0 1.7956 2.0804 1.5885 0.5732 -0.4359 -1.0156 -1.0878 -0.7524 -0.1346
0 1.6098 1.7651 1.2989 0.4876 -0.3317 -0.8634 -0.9557 -0.6371 -0.0857
0 1.3174 1.3634 0.9614 0.3777 -0.2235 -0.6684 -0.7663 -0.491 -0.0418
0 1.1318 1.1407 0.7877 0.3165 -0.174 -0.5598 -0.6523 -0.4104 -0.0253
0 0.9237 0.9098 0.6163 0.2527 -0.1295 -0.4469 -0.5283 -0.327 -0.0132
0 0.4644 0.4426 0.2913 0.1232 -0.0563 -0.2177 -0.2627 -0.1589 -0.0015
0 0.2286 0.216 0.141 0.0601 -0.0266 -0.1063 -0.1289 -0.0775 -0.0001
0 0 0 0 0 0 0 0 0 0
0 -0.4023 -0.3834 -0.2523 -0.1067 0.0488 0.1886 0.2275 0.1376 0.0013

 Normal mode 

     table 5.3.3 : _2in U_2_2 identify the velocity function used                                       
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The 3rd

U_3_2=
0 1.8949 2.3796 1.8337 0.6554 -0.5363 -1.1586 -1.1723 -0.8636 -0.1839
0 1.7965 2.0794 1.5892 0.5728 -0.436 -1.0152 -1.0884 -0.752 -0.1347
0 1.6202 1.7535 1.3078 0.4838 -0.3333 -0.8582 -0.9621 -0.6323 -0.0872
0 1.3226 1.3577 0.9657 0.3759 -0.2243 -0.6658 -0.7694 -0.4887 -0.0425
0 1.1314 1.1411 0.7874 0.3166 -0.174 -0.56 -0.6521 -0.4106 -0.0252
0 0.9186 0.9155 0.612 0.2546 -0.1287 -0.4495 -0.5251 -0.3294 -0.0125
0 0.4572 0.4507 0.2852 0.1258 -0.0553 -0.2214 -0.2583 -0.1622 -0.0005
0 0.2243 0.2207 0.1374 0.0617 -0.026 -0.1084 -0.1263 -0.0794 0.0005
0 0 0 0 0 0 0 0 0 0
0 -0.396 -0.3903 -0.247 -0.109 0.0479 0.1917 0.2237 0.1405 0.0004

 Normal mode 

 table 5.3.4: _2 in U_3_2 identify the velocity function used 

The 4th

U_4_2=
0 1.8993 2.3736 1.8407 0.6478 -0.5285 -1.1662 -1.1651 -0.8702 -0.1783
0 1.795 2.0815 1.5867 0.5755 -0.4388 -1.0124 -1.091 -0.7496 -0.1367
0 1.6195 1.7545 1.3066 0.485 -0.3345 -0.8569 -0.9632 -0.6313 -0.0881
0 1.3238 1.356 0.9677 0.3737 -0.222 -0.668 -0.7673 -0.4906 -0.0409
0 1.1325 1.1396 0.7892 0.3147 -0.172 -0.562 -0.6502 -0.4122 -0.0238
0 0.9189 0.9152 0.6124 0.2541 -0.1282 -0.45 -0.5247 -0.3298 -0.0121
0 0.4561 0.4521 0.2835 0.1277 -0.0572 -0.2195 -0.2601 -0.1605 -0.0019
0 0.2235 0.2218 0.1362 0.063 -0.0274 -0.107 -0.1276 -0.0783 -0.0005
0 0 0 0 0 0 0 0 0 0
0 -0.3951 -0.3916 -0.2455 -0.1106 0.0496 0.1901 0.2253 0.139 0.0016

 Normal mode 

                       table 5.3.5: _2 in U_4_2 identify the velocity function use 

The 5th

U_5_2=
0 1.9015 2.3722 1.8404 0.6491 -0.5292 -1.1667 -1.1641 -0.8706 -0.1788
0 1.7941 2.082 1.5869 0.5751 -0.4386 -1.0122 -1.0913 -0.7495 -0.1365
0 1.6201 1.7541 1.3066 0.4853 -0.3347 -0.857 -0.963 -0.6314 -0.0882
0 1.3239 1.3559 0.9677 0.3737 -0.2221 -0.668 -0.7673 -0.4906 -0.0409
0 1.132 1.1399 0.7892 0.3144 -0.1718 -0.5619 -0.6504 -0.4122 -0.0237
0 0.9184 0.9155 0.6125 0.2539 -0.1281 -0.4499 -0.5249 -0.3297 -0.012
0 0.4566 0.4519 0.2834 0.1279 -0.0574 -0.2195 -0.2599 -0.1606 -0.002
0 0.224 0.2215 0.1361 0.0633 -0.0275 -0.1071 -0.1275 -0.0783 -0.0006
0 0 0 0 0 0 0 0 0 0
0 -0.3954 -0.3914 -0.2455 -0.1108 0.0497 0.1902 0.2251 0.1391 0.0017

 Normal mode 

                     table 5.3.6: _2 in U_5_2 identify the velocity function used 
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The 6th

U_6_2=
0 1.9059 2.3749 1.8397 0.6467 -0.5306 -1.1659 -1.1623 -0.8698 -0.1798
0 1.7936 2.0817 1.5869 0.5754 -0.4384 -1.0123 -1.0916 -0.7496 -0.1364
0 1.6211 1.7548 1.3064 0.4848 -0.335 -0.8568 -0.9626 -0.6312 -0.0885
0 1.3228 1.3553 0.9679 0.3743 -0.2217 -0.6682 -0.7677 -0.4908 -0.0407
0 1.1318 1.1398 0.7893 0.3145 -0.1718 -0.5619 -0.6505 -0.4122 -0.0236
0 0.9192 0.916 0.6123 0.2534 -0.1283 -0.4497 -0.5245 -0.3295 -0.0122
0 0.4561 0.4516 0.2835 0.1282 -0.0572 -0.2196 -0.2601 -0.1607 -0.0019
0 0.2231 0.221 0.1362 0.0637 -0.0273 -0.1073 -0.1278 -0.0785 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.395 -0.3911 -0.2455 -0.111 0.0496 0.1902 0.2253 0.1392 0.0016

 Normal mode 

                         table 5.3.7: _2 in U_6_2 identify the velocity function used 

The 7th

U_7_2=
0 1.9059 2.3749 1.8397 0.6467 -0.5306 -1.1659 -1.1623 -0.8698 -0.1798
0 1.7936 2.0817 1.5869 0.5754 -0.4384 -1.0124 -1.0916 -0.7496 -0.1364
0 1.6211 1.7548 1.3064 0.4848 -0.335 -0.8568 -0.9626 -0.6312 -0.0885
0 1.3228 1.3553 0.9678 0.3743 -0.2217 -0.6682 -0.7677 -0.4908 -0.0407
0 1.1318 1.1398 0.7892 0.3145 -0.1718 -0.5619 -0.6505 -0.4122 -0.0236
0 0.9192 0.916 0.6124 0.2534 -0.1283 -0.4497 -0.5245 -0.3295 -0.0122
0 0.4561 0.4516 0.2835 0.1282 -0.0572 -0.2196 -0.2601 -0.1607 -0.0019
0 0.2231 0.221 0.1362 0.0637 -0.0273 -0.1073 -0.1278 -0.0785 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.395 -0.3911 -0.2455 -0.111 0.0496 0.1902 0.2253 0.1392 0.0016

 Normal mode 

                          table 5.3.8: _2 in U_7_2 identify the velocity function used 

The 8th

U_8_2=
0 1.9047 2.3736 1.8387 0.6462 -0.5304 -1.1653 -1.1616 -0.8693 -0.1797
0 1.7932 2.0813 1.5866 0.5752 -0.4384 -1.0122 -1.0914 -0.7494 -0.1364
0 1.6214 1.7551 1.3067 0.4849 -0.335 -0.857 -0.9628 -0.6313 -0.0885
0 1.3226 1.355 0.9677 0.3743 -0.2217 -0.6681 -0.7676 -0.4907 -0.0406
0 1.132 1.14 0.7894 0.3146 -0.1718 -0.562 -0.6506 -0.4123 -0.0236
0 0.9194 0.9162 0.6125 0.2534 -0.1284 -0.4498 -0.5246 -0.3296 -0.0122
0 0.456 0.4515 0.2834 0.1282 -0.0572 -0.2196 -0.2601 -0.1607 -0.0019
0 0.2233 0.2212 0.1364 0.0638 -0.0273 -0.1074 -0.1279 -0.0786 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.395 -0.3911 -0.2455 -0.111 0.0495 0.1902 0.2253 0.1392 0.0016

 Normal mode 

                         table 5.3.9: _2 in U_8_2 identify the velocity function used 
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The 9th

U_9_2=
0 1.905 2.3736 1.8385 0.6462 -0.5303 -1.1653 -1.1617 -0.8693 -0.1796
0 1.7933 2.0813 1.5866 0.5752 -0.4383 -1.0122 -1.0914 -0.7494 -0.1364
0 1.6214 1.7551 1.3067 0.4849 -0.335 -0.857 -0.9628 -0.6313 -0.0885
0 1.3225 1.355 0.9677 0.3743 -0.2217 -0.6681 -0.7676 -0.4907 -0.0407
0 1.132 1.14 0.7894 0.3146 -0.1718 -0.562 -0.6506 -0.4123 -0.0237
0 0.9194 0.9162 0.6124 0.2534 -0.1283 -0.4498 -0.5246 -0.3296 -0.0122
0 0.456 0.4515 0.2835 0.1282 -0.0572 -0.2196 -0.2601 -0.1607 -0.0019
0 0.2234 0.2212 0.1364 0.0638 -0.0273 -0.1074 -0.1279 -0.0786 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.3949 -0.3911 -0.2455 -0.111 0.0496 0.1902 0.2253 0.1392 0.0016

 Normal mode 

                            table 5.3. 10:    _2 in U_9_2 identify the velocity function used 

The 10th

U_10_2=
0 1.9044 2.3742 1.838 0.6465 -0.5302 -1.1656 -1.1613 -0.8696 -0.1795
0 1.7933 2.0813 1.5866 0.5752 -0.4383 -1.0122 -1.0914 -0.7494 -0.1364
0 1.6214 1.7551 1.3067 0.4849 -0.335 -0.857 -0.9628 -0.6313 -0.0885
0 1.3226 1.355 0.9677 0.3742 -0.2217 -0.6681 -0.7676 -0.4906 -0.0407
0 1.1318 1.1401 0.7893 0.3146 -0.1718 -0.562 -0.6505 -0.4123 -0.0236
0 0.9195 0.9161 0.6125 0.2534 -0.1284 -0.4498 -0.5247 -0.3296 -0.0122
0 0.4559 0.4516 0.2834 0.1282 -0.0572 -0.2197 -0.26 -0.1607 -0.0019
0 0.2235 0.2211 0.1364 0.0638 -0.0273 -0.1074 -0.127 -0.0785 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.3949 -0.3911 -0.2454 -0.111 0.0495 0.1902 0.2252 0.1392 0.0016

 Normal mode 

                            table 5.3.11:     _2 in U_10_2 identify the velocity function used 

 

5.4. The normal mode of a vibrating drum head with constant tension using 

             

Now by using the third initial velocity function considered i.e.  the new 

coefficient is obtained in the table below 
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The third associated coefficients for drumhead with fixed tension 

A_n_3=
0.8959 0.0973 0.0168 0.0052 0.0032 0.0008 0.0012 0.0001 0.0006 0

table 5.4.1 gives the coefficient of the normal mode with  

And on multiplying the respective columns of tables 5.1.1, 5.1.2 and 5.3.1 the matrices 

of the first ten Normal modes were again generated and tabulated below                                           

 

The 1st

U_1_3=
0 1.641 1.7941 1.3176 0.4957 -0.3351 -0.8777 -0.9732 -0.6475 -0.0856
0 1.4529 1.5885 1.1666 0.4389 -0.2967 -0.7771 -0.8617 -0.5733 -0.0758
0 1.2333 1.3484 0.9902 0.3725 -0.2518 -0.6596 -0.7314 -0.4866 -0.0643
0 0.9531 1.042 0.7652 0.2879 -0.1946 -0.5098 -0.5652 -0.3761 -0.0497
0 0.7976 0.872 0.6404 0.2409 -0.1629 -0.4266 -0.473 -0.3147 -0.0416
0 0.6363 0.6956 0.5109 0.1922 -0.1299 -0.3403 -0.3774 -0.2511 -0.0332
0 0.3096 0.3385 0.2486 0.0935 -0.0632 -0.1656 -0.1836 -0.1222 -0.0162
0 0.1511 0.1652 0.1213 0.0456 -0.0309 -0.0808 -0.0896 -0.0596 -0.0079
0 0 0 0 0 0 0 0 0 0
0 -0.2682 -0.2932 -0.2153 -0.081 0.0548 0.1434 0.1591 0.1058 0.014

 Normal mode 

                   table 5.4.2   _3 in U_1_3 identify the velocity function used 

                                                  

The 2nd

U_2_3=
0 1.8265 1.7924 1.2105 0.498 -0.2522 -0.8806 -1.0433 -0.6441 -0.0239
0 1.5398 1.5877 1.1164 0.44 -0.2579 -0.7785 -0.8945 -0.5717 -0.0469
0 1.2371 1.3484 0.9881 0.3726 -0.2501 -0.6597 -0.7329 -0.4866 -0.0631
0 0.8959 1.0425 0.7982 0.2872 -0.2201 -0.5089 -0.5437 -0.3771 -0.0687
0 0.7259 0.8727 0.6818 0.24 -0.1949 -0.4255 -0.446 -0.316 -0.0654
0 0.562 0.6963 0.5537 0.1912 -0.1631 -0.3392 -0.3493 -0.2524 -0.0579
0 0.2613 0.339 0.2765 0.0929 -0.0848 -0.1649 -0.1654 -0.123 -0.0322
0 0.1259 0.1654 0.1358 0.0453 -0.0421 -0.0804 -0.801 -0.0601 -0.0163
0 0 0 0 0 0 0 0 0 0
0 -0.2263 -0.2936 -0.2395 -0.0805 0.0735 0.1428 0.1433 0.1066 0.0279

 Normal mode 

                        table 5.4.3 _3 in U_2_3 identify the velocity function used                                            
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The 3rd

U_3_3=
0 1.8423 1.7748 1.2239 0.4923 -0.2545 -0.8726 -1.0529 -0.6369 -0.0261
0 1.5393 1.5883 1.116 0.4402 -0.2578 -0.7788 -0.8942 -0.572 -0.0468
0 1.2307 1.3554 0.9827 0.3749 -0.2492 -0.6629 -0.729 -0.4895 -0.0622
0 0.8928 1.0459 0.7956 0.2883 -0.2197 -0.5104 -0.5418 -0.3785 -0.0683
0 0.7262 0.8724 0.682 0.2399 -0.1949 -0.4254 -0.4461 -0.3159 -0.0655
0 0.5651 0.6928 0.5564 0.1901 -0.1636 -0.3376 -0.3512 -0.251 -0.0583
0 0.2657 0.3341 0.2802 0.0913 -0.0855 -0.1627 -0.1681 -0.121 -0.0328
0 0.1285 0.1626 0.138 0.0444 -0.0425 -0.0791 -0.0817 -0.0589 -0.0166
0 0 0 0 0 0 0 0 0 0
0 -0.2301 -0.2894 -0.2427 -0.0791 0.074 0.1409 0.1456 0.1048 0.0284

 Normal mode 

                       table 5.4.4 _3 in U_3_3 identify the velocity function used 

The 4th

U_4_3=
0 1.8408 1.7769 1.2214 0.495 -0.2572 -0.8699 -1.0555 -0.6346 -0.0281
0 1.5398 1.5876 1.1169 0.4392 -0.2568 -0.7797 -0.8933 -0.5728 -0.0461
0 1.231 1.355 0.9831 0.3744 -0.2488 -0.6633 -0.7286 -0.4898 -0.0619
0 0.8924 1.0466 0.7949 0.289 -0.2205 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7258 0.8729 0.6813 0.2406 -0.1956 -0.4247 -0.4468 -0.3153 -0.066
0 0.565 0.693 0.5562 0.1903 -0.1637 -0.3374 -0.3514 -0.2508 -0.0585
0 0.2661 0.3336 0.2808 0.0907 -0.0848 -0.1633 -0.1674 -0.1216 -0.0323
0 0.1288 0.1622 0.1385 0.0439 -0.042 -0.0796 -0.0812 -0.0593 -0.0163
0 0 0 0 0 0 0 0 0 0
0 -0.2305 -0.2889 -0.2432 -0.0785 0.0734 0.1415 0.145 0.1053 0.028

 Normal mode 

                        table 5.4.5 _3 in U_4_3 identify the velocity function used 

The 5th

U_5_3=
0 1.8374 1.779 1.2219 0.4932 -0.2562 -0.8692 -1.0569 -0.634 -0.0273
0 1.541 1.5868 1.1167 0.4399 -0.2572 -0.78 -0.8927 -0.573 -0.0464
0 1.2302 1.3555 0.9832 0.374 -0.2485 -0.6632 -0.7289 -0.4897 -0.0617
0 0.8923 1.0466 0.7949 0.289 -0.2204 -0.5096 -0.5426 -0.3778 -0.0688
0 0.7265 0.8725 0.6812 0.241 -0.1958 -0.4248 -0.4465 -0.3154 -0.0662
0 0.5658 0.6925 0.5561 0.1907 -0.164 -0.3376 -0.3511 -0.2509 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0846 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1282 0.1626 0.1386 0.0436 -0.0418 -0.0795 -0.0815 -0.0592 -0.0161
0 0 0 0 0 0 0 0 0 0
0 -0.2299 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                        table 5.4.6  _3 in U_5_3 identify the velocity function used 
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The 6th

U_6_3=
0 1.8367 1.7785 1.222 0.4936 -0.256 -0.8694 -1.0572 -0.6342 -0.0271
0 1.5411 1.5869 1.1167 0.4398 -0.2572 -0.78 -0.8927 -0.573 -0.0464
0 1.23 1.3554 0.9833 0.3741 -0.2485 -0.6632 -0.729 -0.4897 -0.0616
0 0.8925 1.0467 0.7949 0.2889 -0.2205 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7265 0.8725 0.6812 0.241 -0.1959 -0.4248 -0.4465 -0.3154 -0.0662
0 0.5656 0.6924 0.5561 0.1908 -0.1639 -0.3376 -0.3511 -0.251 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0846 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1283 0.1626 0.1385 0.0435 -0.0418 -0.0795 -0.0814 -0.0592 -0.0161
0 0 0 0 0 0 0 0 0 0
0 -0.23 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                        table 5.4.7 _3 in U_6_3 identify the velocity function used 

The 7th

U_7_3=
0 1.8364 1.7782 1.2216 0.4931 -0.2564 -0.8698 -1.0576 -0.6346 -0.0274
0 1.5411 1.5868 1.1166 0.4398 -0.2573 -0.78 -0.8928 -0.5731 -0.0464
0 1.23 1.3555 0.9833 0.3741 -0.2484 -0.6631 -0.729 -0.4897 -0.0616
0 0.8925 1.0467 0.7948 0.2889 -0.2205 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7264 0.8725 0.6812 0.2409 -0.196 -0.4249 -0.4465 -0.3155 -0.0662
0 0.5656 0.6925 0.5562 0.1908 -0.1639 -0.3376 -0.3511 -0.2509 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0846 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1283 0.1626 0.1385 0.0434 -0.0419 -0.0795 -0.0815 -0.0593 -0.0162
0 0 0 0 0 0 0 0 0 0
0 -0.23 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                        table 5.4.8 _3 in U_7_3 identify the velocity function used 

The 8th

U_8_3=
0 1.8365 1.7783 1.2216 0.4931 -0.2564 -0.8698 -1.0576 -0.6346 -0.0274
0 1.5411 1.5869 1.1166 0.4398 -0.2573 -0.78 -0.8928 -0.5731 -0.0464
0 1.23 1.3555 0.9833 0.3741 -0.2484 -0.6631 -0.729 -0.4897 -0.0616
0 0.8925 1.0467 0.7949 0.2889 -0.2205 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7264 0.8725 0.6811 0.2409 -0.196 -0.4249 -0.4465 -0.3155 -0.0662
0 0.5656 0.6924 0.5561 0.1908 -0.1639 -0.3376 -0.3511 -0.2509 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0846 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1283 0.1626 0.1385 0.0434 -0.0419 -0.0795 -0.0815 -0.0592 -0.0162
0 0 0 0 0 0 0 0 0 0
0 -0.23 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                         table 5.4.9 _3 in U_8_3 identify the velocity function used 
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The 9th

U_9_3=
0 1.8365 1.7783 1.2216 0.4931 -0.2562 -0.8699 -1.0578 -0.6346 -0.0273
0 1.5411 1.5869 1.1166 0.4398 -0.2572 -0.78 -0.8928 -0.5731 -0.0464
0 1.23 1.3555 0.9833 0.3741 -0.2484 -0.6631 -0.729 -0.4897 -0.0616
0 0.8925 1.0467 0.7949 0.2889 -0.2206 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7264 0.8725 0.6811 0.2409 -0.196 -0.4249 -0.4465 -0.3155 -0.0662
0 0.5656 0.6924 0.5561 0.1908 -0.1639 -0.3376 -0.3511 -0.2509 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0847 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1283 0.1626 0.1384 0.0434 -0.0419 -0.0795 -0.0815 -0.0592 -0.0162
0 0 0 0 0 0 0 0 0 0
0 -0.23 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                           table 5.4.10 :    _3 in U_9_3 identify the velocity function used 

The 10th

U_10_3=
0 1.8365 1.7783 1.2216 0.4931 -0.2562 -0.8699 -1.0578 -0.6346 -0.0273
0 1.5411 1.5869 1.1166 0.4398 -0.2572 -0.78 -0.8928 -0.5731 -0.0464
0 1.23 1.3555 0.9833 0.3741 -0.2484 -0.6631 -0.729 -0.4897 -0.0616
0 0.8925 1.0467 0.7949 0.2889 -0.2206 -0.5096 -0.5425 -0.3778 -0.0689
0 0.7264 0.8725 0.6811 0.2409 -0.196 -0.4249 -0.4465 -0.3155 -0.0662
0 0.5656 0.6924 0.5561 0.1908 -0.1639 -0.3376 -0.3511 -0.2509 -0.0586
0 0.2655 0.334 0.2809 0.0903 -0.0847 -0.1632 -0.1677 -0.1215 -0.0322
0 0.1283 0.1626 0.1384 0.0434 -0.0419 -0.0795 -0.0815 -0.0592 -0.0162
0 0 0 0 0 0 0 0 0 0
0 -0.23 -0.2893 -0.2433 -0.0782 0.0733 0.1413 0.1452 0.1052 0.0279

 Normal mode 

                        table 5.4.11:    _3 in U_10_3 identify the velocity function used 

 

 

 5.5. The vibrational modes of a drum with varying tension using  

To evaluate the vibrational mode of a circular drum using the model of chapter four, the 

researcher considered the boundary value problem of the talking drum having similar 

conditions as that of the drum with constant tension in the drum head as follows 

The initial boundary condition   , and initial conditions  

  respectively. The radius taken for the drumhead is 3.50 inches and on 
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taking the three initial velocity functions as   ,  and  

 . 

The model of vibrating circular membrane with varying tension is a function of r and t  

   

                                                                                      ………………………5.5.1                             

And so by letting t to take integral values from 0 to 9 whiles r takes on values r = 0 , 1, 

1.5, 2, 2.25, 2.5, 3, 3.25, 3.5 and 4. 

With  , a=1, and   the first ten 

zeros of the Bessel functions of order zero.    and    , 

Matrix Laboratory codes were applied to compute these expression in the following 

tables 

 

Bessel function of order zero for drumhead with varying tension 

J_x=
1 1 1 1 1 1 1 1 1 1

0.8854 0.4684 -0.0346 -0.3585 -0.3667 -0.1229 0.167 0.2996 0.204 -0.0267
0.7516 0.0204 -0.3997 -0.1599 0.2431 0.2262 -0.1121 -0.2412 -0.002 0.2142
0.5808 -0.3078 -0.1954 0.2885 0.0332 -0.2468 0.0742 0.1817 -0.1415 -0.1022
0.4861 -0.3863 0.0146 0.2547 -0.2088 -0.0406 0.2079 -0.1336 -0.0733 0.1795
0.3877 -0.4003 0.1973 0.0631 -0.2206 0.1996 -0.0448 -0.1198 0.18 -0.106
0.1887 -0.2604 0.2766 -0.2492 0.1885 -0.1075 0.0206 0.0579 -0.1164 0.147
0.0921 -0.1356 0.1632 -0.18 0.1876 -0.1872 0.1795 -0.1654 0.1458 -0.1219

0 0 0 0 0 0 0 0 0 0
-0.1634 0.2256 -0.2396 0.2158 -0.1633 0.0931 -0.0179 -0.0501 0.1008 -0.1273

  Table 5.5.1     values of Bessel function of order zero varying r 
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Bessel function of order one-third for drumhead with varying tension 

j_y=
0 0 0 0 0 0 0 0 0

1.9755 2.1818 1.7635 0.9769 0.0834 -0.6647 -1.0818 -1.0931 -0.7477 -0.1947
2.0709 -0.0993 -1.0855 0.2989 0.762 -0.411 -0.5469 0.4785 0.3708 -0.5122
0.7763 -0.5524 0.4657 -0.4183 0.3881 -0.3671 0.3517 -0.3398 0.3303 -0.3225

-0.8651 0.5681 0.5066 -0.3297 -0.4274 0.2099 0.387 -0.1276 -0.3577 0.0635
-0.8363 -0.3677 -0.0903 0.1123 0.2536 0.3337 0.3535 0.319 0.2411 0.1352
0.5942 -0.0015 -0.2937 0.4001 -0.3473 0.1854 0.0154 -0.1826 0.2638 -0.2406
0.5215 0.4186 -0.2549 -0.3154 0.1509 0.2769 -0.0844 -0.2517 0.034 0.2299

-0.6914 -0.4333 -0.0554 0.2446 0.2918 0.1038 -0.1365 -0.2336 -0.1283 0.0712
0.039 -0.1642 0.253 -0.2878 0.2723 -0.2153 0.1306 -0.0343 -0.0566 0.1273

 Table 5.5.2           gives values of Bessel function of order 1/3 varying t 

 

The first associated coefficients for drumhead with varying tension 

A_n_1=
0.9556 -0.2068 0.0906 -0.0514 0.0333 -0.0235 0.0175 -0.0136 0.0109 -0.0089

 Table 5.5.3         gives the coefficient of the normal mode with f(r) =1 

Now on multiplying corresponding columns of tables 5.4.1, 5.4.2 and 5.4.3 we obtain 

matrices of the first ten partials of the vibrating membrane with varying tension and with 

these partials the first ten Normal modes were obtained and tabulated below   

 

The 1st

U_1_1=
0 1.8878 1.9789 0.7418 -0.8267 -0.7991 0.5678 0.4983 -0.6607 0.0373
0 1.6715 1.7522 0.6568 -0.732 -0.7076 0.5027 0.4412 -0.585 0.033
0 1.4188 1.4873 0.5575 -0.6213 -0.6006 0.4267 0.3745 -0.4966 0.028
0 1.0964 1.1493 0.4308 -0.4801 -0.4641 0.3298 0.2894 -0.3837 0.0217
0 0.9176 0.9619 0.3606 -0.4018 -0.3884 0.276 0.2422 -0.3211 0.0181
0 0.732 0.7673 0.2876 -0.3205 -0.3099 0.2202 0.1932 -0.2562 0.0145
0 0.3562 0.3734 0.14 -0.156 -0.1508 0.1071 0.094 -0.1247 0.007
0 0.1738 0.1822 0.0683 -0.0761 -0.0736 0.0523 0.0459 -0.0608 0.0034
0 0 0 0 0 0 0 0 0 0
0 -0.3085 -0.3234 -0.1212 0.1351 0.1306 -0.0928 -0.0814 0.108 -0.0061

 Normal mode 

                         table 5.5.4 :   _1 in U_1_1 identify the velocity function used 
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The 2nd

U_2_1=
0 1.4365 1.9995 0.8561 -0.9442 -0.7231 0.5681 0.4117 -0.5711 0.0712
0 1.4601 1.7618 0.7103 -0.787 -0.6719 0.5029 0.4006 -0.543 0.0489
0 1.4096 1.4877 0.5599 -0.6237 -0.5991 0.4268 0.3727 -0.4947 0.0287
0 1.2353 1.143 0.3957 -0.444 -0.4875 0.3297 0.3161 -0.4113 0.0112
0 1.0919 0.9539 0.3164 -0.3564 -0.4178 0.2759 0.2757 -0.3558 0.005
0 0.9126 0.7591 0.2419 -0.2735 -0.3403 0.22 0.2279 -0.2921 0.0009
0 0.4737 0.3681 0.1102 -0.1254 -0.1706 0.1071 0.1166 -0.148 -0.0018
0 0.235 0.1794 0.0528 -0.0602 -0.0839 0.0522 0.0576 -0.073 -0.0012
0 0 0 0 0 0 0 0 0 0
0 -0.4103 -0.3188 -0.0955 0.1086 0.1478 -0.0927 -0.101 0.1282 0.0016

 Normal mode 

                        table 5.5.4 :     _1 in U_2_1 identify the velocity function used 

The 3rd

U_3_1=
0 -0.2756 -0.0954 0.1698 -0.0773 0.0656 -0.0183 -0.1193 0.0918 0.0547
0 -0.2175 0.0136 0.0516 -0.0564 0.036 0.0008 -0.0394 0.0419 0.0152
0 -0.0794 0.0468 -0.0199 -0.0185 0.0058 0.0074 0.0113 0.0009 -0.0076
0 0.1046 0.0163 -0.046 0.0283 -0.0214 0.0035 0.0331 -0.028 -0.0145
0 0.1769 -0.0096 -0.0433 0.046 -0.0295 -0.0004 0.033 -0.0346 -0.0128
0 0.2153 -0.0311 -0.0348 0.055 -0.0325 -0.0038 0.0282 -0.0354 -0.0095
0 0.1661 -0.0374 -0.0144 0.0417 -0.0227 -0.0052 0.0135 -0.0227 -0.0031
0 0.0899 -0.0217 -0.0064 0.0225 -0.012 -0.0031 0.0064 -0.0118 -0.0012
0 0 0 0 0 0 0 0 0 0
0 -0.1439 0.0324 0.0125 -0.0361 0.0197 0.0045 -0.0117 0.0197 0.0027

 Normal mode 

                       table 5.5.4 :    _1 in U_3_1 identify the velocity function used 

The 4th

U_4_1=
0 -0.3258 -0.1107 0.1913 -0.0604 0.0598 -0.0389 -0.1031 0.0793 0.0695
0 -0.1995 0.0191 0.0439 -0.0625 0.0381 0.0082 -0.0452 0.0464 0.0099
0 -0.0714 0.0492 -0.0233 -0.0212 0.0067 0.0107 0.0087 0.003 -0.01
0 0.0901 0.0119 -0.0398 0.0332 -0.023 -0.0024 0.0377 -0.0316 -0.0102
0 0.1641 -0.0135 -0.0379 0.0503 -0.031 -0.0056 0.0371 -0.0378 -0.009
0 0.2121 -0.0321 -0.0334 0.056 -0.0329 -0.0051 0.0292 -0.0362 -0.0086
0 0.1786 -0.0336 -0.0197 0.0375 -0.0213 -0.0001 0.0095 -0.0196 -0.0068
0 0.0989 -0.0189 -0.0103 0.0194 -0.011 0.0006 0.0035 -0.0095 -0.0039
0 0 0 0 0 0 0 0 0 0
0 -0.1547 0.0291 0.0171 -0.0325 0.0184 0.0001 -0.0082 0.017 0.0059

 Normal mode 

                        table 5.5.5:       _1 in U_4_1 identify the velocity function used 



78 
 

The 5th

U_5_1=
0 -0.323 -0.0854 0.2042 -0.0746 0.0682 -0.0504 -0.098 0.089 0.0785
0 -0.2005 0.0098 0.0391 -0.0573 0.035 0.0124 -0.047 0.0428 0.0066
0 -0.0707 0.0554 -0.0202 -0.0246 0.0087 0.0079 0.0099 0.0053 -0.0077
0 0.0902 0.0127 -0.0394 0.0327 -0.0227 -0.0028 0.0379 -0.0313 -0.0099
0 0.1635 -0.0188 -0.0406 0.0533 -0.0328 -0.0032 0.0361 -0.0398 -0.0109
0 0.2115 -0.0377 -0.0363 0.0592 -0.0347 -0.0025 0.0281 -0.0384 -0.0106
0 0.1791 -0.0288 -0.0173 0.0348 -0.0197 -0.0023 0.0104 -0.0178 -0.0051
0 0.0994 -0.0142 -0.0079 0.0168 -0.0094 -0.0016 0.0044 -0.0077 -0.0022
0 0 0 0 0 0 0 0 0 0
0 -0.1552 0.025 0.015 -0.0302 0.0171 0.002 -0.009 0.0154 0.0044

 Normal mode 

                        table 5.5.6:    _1 in U_5_1 identify the velocity function used 

The 6th

U_6_1=
0 -0.3074 -0.0757 0.2129 -0.0796 0.0604 -0.0548 -0.1046 0.0866 0.0836
0 -0.2024 0.0086 0.0381 -0.0567 0.0359 0.0129 -0.0463 0.0431 0.0059
0 -0.0672 0.0576 -0.0182 -0.0257 0.007 0.0069 0.0085 0.0048 -0.0066
0 0.0864 0.0104 -0.0415 0.0339 -0.0208 -0.0017 0.0395 -0.0307 -0.0112
0 0.1629 -0.0192 -0.0409 0.0535 -0.0325 -0.003 0.0363 -0.0397 -0.0111
0 0.2146 -0.0357 -0.0345 0.0582 -0.0363 -0.0034 0.0268 -0.0389 -0.0096
0 0.1775 -0.0298 -0.0182 0.0353 -0.0188 -0.0018 0.0111 -0.0175 -0.0056
0 0.0965 -0.016 -0.0095 0.0177 -0.0079 -0.0007 0.0056 -0.0073 -0.0031
0 0 0 0 0 0 0 0 0 0
0 -0.1537 0.0259 0.0158 -0.0306 0.0163 0.0016 -0.0096 0.0152 0.0049

 Normal mode 

                       table 5.5.7     _1 in U_6_1 identify the velocity function used 

The 7th

U_7_1=
0 -0.3264 -0.0853 0.219 -0.0728 0.0666 -0.0545 -0.1061 0.0842 0.0859
0 -0.2056 0.007 0.0391 -0.0555 0.037 0.013 -0.0465 0.0427 0.0063
0 -0.0651 0.0586 -0.0189 -0.0265 0.0063 0.0069 0.0086 0.005 -0.0069
0 0.085 0.0097 -0.0411 0.0345 -0.0204 -0.0017 0.0394 -0.0309 -0.011
0 0.159 -0.0212 -0.0396 0.0549 -0.0312 -0.003 0.036 -0.0402 -0.0107
0 0.2155 -0.0353 -0.0348 0.0579 -0.0366 -0.0034 0.0269 -0.0388 -0.0097
0 0.1771 -0.03 -0.0181 0.0355 -0.0187 -0.0018 0.0111 -0.0176 -0.0056
0 0.0931 -0.0177 -0.0084 0.0189 -0.0068 -0.0007 0.0054 -0.0077 -0.0027
0 0 0 0 0 0 0 0 0 0
0 -0.1534 0.026 0.0157 -0.0307 0.0162 0.0016 -0.0096 0.0152 0.0048

 Normal mode 

                        table 5.5.8:       _1 in U_7_1 identify the velocity function used 
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The 8th

U_8_1=
0 -0.3115 -0.0918 0.2236 -0.0711 0.0623 -0.052 -0.1027 0.0874 0.0863
0 -0.2011 0.0051 0.0405 -0.055 0.0357 0.0137 -0.0455 0.0437 0.0065
0 -0.0687 0.0602 -0.02 -0.0269 0.0073 0.0063 0.0078 0.0043 -0.007
0 0.0877 0.0085 -0.0402 0.0348 -0.0211 -0.0012 0.04 -0.0303 -0.0109
0 0.157 -0.0203 -0.0402 0.0546 -0.0306 -0.0033 0.0356 -0.0406 -0.0107
0 0.2137 -0.0345 -0.0354 0.0577 -0.0361 -0.0037 0.0265 -0.0391 -0.0097
0 0.1779 -0.0304 -0.0178 0.0356 -0.019 -0.0017 0.0113 -0.0174 -0.0056
0 0.0906 -0.0166 -0.0091 0.0186 -0.0061 -0.0011 0.0048 -0.0082 -0.0028
0 0 0 0 0 0 0 0 0 0
0 -0.1541 0.0264 0.0154 -0.0308 0.0164 0.0014 -0.0098 0.015 0.0048

 Normal mode 

                        table 5.5.9 :    _1 in U_8_1 identify the velocity function used 

The 9th

U_9_1=
0 -0.3196 -0.0878 0.2272 -0.0749 0.0649 -0.0492 -0.1023 0.086 0.0857
0 -0.2028 0.0059 0.0412 -0.0558 0.0362 0.0143 -0.0454 0.0434 0.0063
0 -0.0686 0.0602 -0.02 -0.0269 0.0073 0.0063 0.0078 0.0043 -0.007
0 0.0888 0.0079 -0.0407 0.0353 -0.0215 -0.0016 0.04 -0.0301 -0.0108
0 0.1576 -0.0206 -0.0405 0.0549 -0.0308 -0.0035 0.0355 -0.0405 -0.0107
0 0.2122 -0.0338 -0.0347 0.057 -0.0356 -0.0032 0.0265 -0.0394 -0.0098
0 0.1789 -0.0309 -0.0182 0.036 -0.0193 -0.002 0.0112 -0.0172 -0.0055
0 0.0895 -0.016 -0.0086 0.0181 -0.0057 -0.0007 0.0049 -0.0084 -0.0029
0 0 0 0 0 0 0 0 0 0
0 -0.155 0.0268 0.0158 -0.0312 0.0167 0.0017 -0.0097 0.0149 0.0047

 Normal mode 

                          table 5.5.10  :     _1 in U_9_1 identify the velocity function used 

The 10th

U_10_1=
0 -0.3179 -0.0832 0.2301 -0.0755 0.0637 -0.047 -0.1043 0.0853 0.0846
0 -0.2028 0.0058 0.0412 -0.0558 0.0362 0.0143 -0.0454 0.0434 0.0064
0 -0.0683 0.0612 -0.0194 -0.027 0.007 0.0068 0.0074 0.0041 -0.0072
0 0.0886 0.0074 -0.041 0.0354 -0.0214 -0.0018 0.0402 -0.0301 -0.0107
0 0.1579 -0.0198 -0.04 0.0548 -0.031 -0.0031 0.0352 -0.0407 -0.0109
0 0.2121 -0.0343 -0.035 0.057 -0.0355 -0.0034 0.0268 -0.0393 -0.0097
0 0.1791 -0.0302 -0.0178 0.0359 -0.0194 -0.0017 0.0109 -0.0173 -0.0056
0 0.0892 -0.0166 -0.009 0.0181 -0.0056 -0.0009 0.0051 -0.0083 -0.0027
0 0 0 0 0 0 0 0 0 0
0 -0.1552 0.0262 0.0154 -0.0311 0.0168 0.0015 -0.0095 0.015 0.0049

 Normal mode 

                         table 5.5.11:    _1 in U_10_1 identify the velocity function used 
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 5.6. The normal mode of a vibrating drum head with varying tension using 

               

Now on using the second initial velocity function considered i.e  the 

new coefficient is then obtained  

                  

The second associated coefficients for drumhead with varying tension 

A_n_2=
1.7166 -0.2002 -0.0502 -0.0281 -0.0043 -0.0095 0.0003 -0.0047 0.0009 -0.0027

Table 5.6.1 gives the coefficient of the normal mode with  

And on multiplying the respective columns of tables 5.4.1, 5.4.2 and 5.5.1 the matrices 

of the first ten Normal modes were also generated and tabulated below. 

                                                  

 

The 1st

U_1_2=
0 3.3912 3.555 1.3326 -1.4851 -1.4356 1.02 0.8952 -1.1869 0.067
0 3.0026 3.1476 1.1799 -1.3149 -1.2711 0.9031 0.7926 -1.0509 0.0593
0 2.5487 2.6718 1.0015 -1.1161 -1.0789 0.7666 0.6728 -0.892 0.0503
0 1.9696 2.0647 0.774 -0.8625 -0.8338 0.5924 0.5199 -0.6893 0.0389
0 1.6483 1.7279 0.6477 -0.7218 -0.6978 0.4958 0.4351 -0.5769 0.0326
0 1.3149 1.3784 0.5167 -0.5758 -0.5566 0.3955 0.3471 -0.4602 0.026
0 0.6399 0.6708 0.2515 -0.2802 -0.2709 0.1925 0.1689 -0.224 0.0126
0 0.3123 0.3273 0.1227 -0.1367 -0.1322 0.0939 0.0824 -0.1093 0.0062
0 0 0 0 0 0 0 0 0 0
0 -0.5542 -0.581 -0.2178 0.2427 0.2346 -0.1667 -0.1463 0.194 -0.0109

 Normal mode 

                       

Table 5.6.2:       _2 in U_1_2 identify the velocity function used 
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The 2nd

U_2_2=
0 2.9544 3.5749 1.4432 -1.5988 -1.362 1.0203 0.8113 -1.1001 0.0999
0 2.798 3.1569 1.2317 -1.3682 -1.2366 0.9033 0.7533 -1.0102 0.0747
0 2.5398 2.6722 1.0038 -1.1185 -1.0774 0.7666 0.6711 -0.8902 0.051
0 2.1041 2.0586 0.7399 -0.8275 -0.8564 0.5923 0.5457 -0.716 0.0288
0 1.8171 1.7202 0.605 -0.6779 -0.7262 0.4957 0.4675 -0.6104 0.0199
0 1.4898 1.3704 0.4724 -0.5303 -0.5861 0.3954 0.3806 -0.4949 0.0128
0 0.7537 0.6656 0.2227 -0.2506 -0.2901 0.1924 0.1907 -0.2466 0.0041
0 0.3715 0.3246 0.1077 -0.1213 -0.1422 0.0939 0.0938 -0.1211 0.0017
0 0 0 0 0 0 0 0 0 0
0 -0.6528 -0.5765 -0.1928 0.2171 0.2512 -0.1666 -0.1652 0.2135 -0.0035

 Normal mode 

                        table 5.6.3:   _2 in U_2_2 identify the velocity function used 

The 3rd

U_3_2=
0 2.8659 3.6293 1.4198 -1.6242 -1.3574 1.035 0.8241 -1.0973 0.0872
0 2.8011 3.155 1.2325 -1.3673 -1.2368 0.9028 0.7529 -1.0103 0.0751
0 2.5752 2.6504 1.0131 -1.1083 -1.0792 0.7607 0.6659 -0.8914 0.0561
0 2.1213 2.0479 0.7445 -0.8225 -0.8573 0.5894 0.5432 -0.7166 0.0313
0 1.8158 1.721 0.6047 -0.6783 -0.7261 0.4959 0.4677 -0.6104 0.0197
0 1.4723 1.3812 0.4678 -0.5353 -0.5852 0.3983 0.3832 -0.4944 0.0103
0 0.7292 0.6807 0.2162 -0.2576 -0.2888 0.1965 0.1943 -0.2458 0.0006
0 0.3371 0.3335 0.1039 -0.1255 -0.1414 0.0963 0.0959 -0.1206 -0.0004
0 0 0 0 0 0 0 0 0 0
0 -0.6316 -0.5896 -0.1872 0.2231 0.2501 -0.1702 -0.1683 0.2129 -0.0005

 Normal mode 

                        table 5.6.4:     _2 in U_3_2 identify the velocity function used 

The 4th Normal mode 

U_4_2=
0 2.8385 3.6209 1.4316 -1.615 -1.3606 1.0238 0.833 -1.1042 0.0952
0 2.8109 3.1581 1.2283 -1.3706 -1.2356 0.9068 0.7497 -1.0079 0.0722
0 2.5796 2.6518 1.0113 -1.1098 -1.0787 0.7625 0.6645 -0.8903 0.0548
0 2.1134 2.0455 0.7479 -0.8199 -0.8582 0.5862 0.5458 -0.7186 0.0336
0 1.8088 1.7189 0.6076 -0.6759 -0.7269 0.493 0.4699 -0.6121 0.0217
0 1.4706 1.3807 0.4686 -0.5347 -0.5854 0.3976 0.3837 -0.4948 0.0108
0 0.736 0.6828 0.2133 -0.26 -0.288 0.1993 0.1921 -0.2441 -0.0014
0 0.362 0.335 0.1018 -0.1271 -0.1409 0.0983 0.0943 -0.1194 -0.0018
0 0 0 0 0 0 0 0 0 0
0 -0.6375 -0.5914 -0.1847 0.2251 0.2495 -0.1726 -0.1664 0.2114 0.0013

                        table 5.6.5:    _2 in U_4_2 identify the velocity function used 
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The 5th Normal mode 

U_5_2=
0 2.8381 3.6176 1.4299 -1.6131 -1.3617 1.0253 0.8323 -1.1055 0.0941
0 2.8111 3.1593 1.2289 -1.3713 -1.2352 0.9062 0.7499 -1.0074 0.0727
0 2.5795 2.651 1.0109 -1.1093 -1.079 0.7629 0.6644 -0.8906 0.0545
0 2.1134 2.0454 0.7478 -0.8198 -0.8583 0.5863 0.5457 -0.7186 0.0336
0 1.8089 1.7196 0.608 -0.6763 -0.7267 0.4927 0.47 -0.6118 0.022
0 1.4706 1.142 0.4689 -0.5351 -0.5852 0.3973 0.3839 -0.4945 0.0111
0 0.736 0.6822 0.213 -0.2596 -0.2882 0.1996 0.192 -0.2443 -0.0017
0 0.3619 0.3334 0.1015 -0.1268 -0.1411 0.0986 0.0942 -0.1196 -0.002
0 0 0 0 0 0 0 0 0 0
0 -0.6374 -0.5908 -0.1844 0.2248 0.2496 -0.1728 -0.1663 0.2116 0.0014

                        table 5.6.6   _2 in U_5_2 identify the velocity function used 

The 6th Normal mode 

U_6_2=
0 2.8445 3.6216 1.4334 -1.6151 -1.3648 1.0236 0.8297 -1.1065 0.0961
0 2.8103 3.1588 1.2285 -1.3711 -1.2348 0.9065 0.7503 -1.0073 0.0724
0 2.5809 2.6519 1.0117 -1.1098 -1.0797 0.7625 0.6638 -0.8908 0.055
0 2.1119 2.0444 0.747 -0.8193 -0.8575 0.5867 0.5464 -0.7184 0.0331
0 1.8086 1.7194 0.6079 -0.6762 -0.7266 0.4928 0.4702 -0.6118 0.0219
0 1.4719 1.3822 0.4696 -0.5355 -0.5858 0.3969 0.3833 -0.4947 0.0115
0 0.7353 0.6818 0.2126 -0.2594 -0.2879 0.1997 0.1922 -0.2442 -0.0019
0 0.3607 0.3337 0.1008 -0.1264 -0.1405 0.0989 0.0947 -0.1194 -0.0024
0 0 0 0 0 0 0 0 0 0
0 -0.6369 -0.5905 -0.1841 0.2247 0.2494 -0.173 -0.1665 0.2115 0.0016

                       table 5.6.7 :   _2 in U_6_2 identify the velocity function used 

The 7thNormal mode 

U_7_2=
0 2.8442 3.6214 1.4335 -1.615 -1.3648 1.0236 0.8297 -1.1065 0.0961
0 2.8102 3.1588 1.2285 -1.371 -1.2348 0.9065 0.7503 -1.0073 0.0724
0 2.5809 2.6519 1.0116 -1.1098 -1.0797 0.7625 0.6638 -0.8908 0.055
0 2.1128 2.0444 0.747 -0.8193 -0.8575 0.5867 0.5464 -0.7184 0.0331
0 1.8085 1.7194 0.6079 -0.6762 -0.7266 0.4928 0.4702 -0.6118 0.0219
0 1.4719 1.3822 0.4696 -0.5355 -0.5858 0.3969 0.3833 -0.4947 0.0115
0 0.7353 0.6818 0.2126 -0.2594 -0.2879 0.1997 0.1922 -0.2442 -0.0019
0 0.3607 0.3337 0.1008 -0.1264 -0.1405 0.0989 0.0947 -0.1194 -0.0024
0 0 0 0 0 0 0 0 0 0
0 -0.6368 -0.5905 -0.1841 0.2247 0.2493 -0.173 -0.1665 0.2115 0.0016

                        table 5.6.8 :     _2 in U_7_2 identify the velocity function used 
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The 8th Normal mode 

U_8_2=
0 2.8493 3.6192 1.435 -1.6144 -1.3662 1.0244 0.8308 -1.1054 0.0963
0 2.8118 3.1581 1.229 -1.3709 -1.2353 0.9067 0.7506 -1.007 0.0725
0 2.5797 2.6524 1.0113 -1.1099 -1.0794 0.7623 0.6635 -0.891 0.0549
0 2.1128 2.044 0.7473 -0.8192 -0.8577 0.5868 0.5466 -0.7182 0.0331
0 1.8079 1.7197 0.6077 -0.6763 -0.7264 0.4927 0.47 -0.612 0.0219
0 1.4713 1.3824 0.4694 -0.5356 -0.5856 0.3968 0.3832 -0.4949 0.0115
0 0.7356 0.6816 0.2127 -0.2594 -0.288 0.1998 0.1923 -0.2441 -0.0019
0 0.3598 0.334 0.1006 -0.1265 -0.1402 0.0988 0.0945 -0.1196 -0.0024
0 0 0 0 0 0 0 0 0 0
0 -0.6371 -0.5904 -0.1842 0.2246 0.2494 -0.173 -0.1666 0.2115 0.0016

                          table 5.6.9:    _2 in U_8_2 identify the velocity function used 

The 9thNormal mode 

U_9_2=
0 2.8486 3.6195 1.4353 -1.6148 -1.366 1.0246 0.8309 -1.1055 0.0962
0 2.8116 3.1582 1.229 -1.3709 -1.2352 0.9068 0.7506 -1.007 0.0725
0 2.5797 2.6524 1.0113 -1.1099 -1.0794 0.7623 0.6635 -0.891 0.0549
0 2.1129 2.044 0.7472 -0.8192 -0.8578 0.5868 0.5466 -0.7181 0.0331
0 1.8079 1.7197 0.6076 -0.6762 -0.7264 0.4926 0.47 -0.6119 0.0219
0 1.4712 1.3825 0.4695 -0.5357 -0.5856 0.3968 0.3832 -0.4949 0.0115
0 0.7356 0.6816 0.2126 -0.2593 -0.288 0.1998 0.1923 -0.2441 -0.0019
0 0.3597 0.3341 0.1006 -0.1265 -0.1402 0.0988 0.0945 -0.1196 -0.0024
0 0 0 0 0 0 0 0 0 0
0 -0.6372 -0.5903 -0.1842 0.2246 0.2494 -0.173 -0.1666 0.2115 0.0016

                      table 5.6.10:     _2 in U_9_2 identify the velocity function used 

The 10th Normal mode 

U_10_2=
0 2.8491 3.6209 1.4362 -1.6149 -1.3664 1.0253 0.8302 -1.1057 0.0959
0 2.8116 3.1581 1.229 -1.3709 -1.2352 0.9067 0.7506 -1.007 0.0725
0 2.5798 2.6527 1.0114 -1.11 -1.0795 0.7624 0.6634 -0.8911 0.0549
0 2.1128 2.0438 0.7471 -0.8191 -0.8577 0.5867 0.5467 -0.7181 0.0331
0 1.808 1.7199 0.6078 -0.6763 -0.7265 0.4928 0.4699 -0.612 0.0218
0 1.4711 1.3824 0.4694 -0.5357 -0.5855 0.3968 0.3833 -0.4949 0.0115
0 0.7357 0.6818 0.2128 -0.2593 -0.2881 0.1999 0.1922 -0.2442 -0.0019
0 0.3597 0.3339 0.1005 -0.1265 -0.1401 0.0987 0.0945 -0.1196 -0.0024
0 0 0 0 0 0 0 0 0 0
0 -0.6372 -0.5905 -0.1843 0.2246 0.2495 -0.1731 -0.1665 0.2115 0.0017

                      table 5.6.11 :    _2 in U_10_2 identify the velocity function used 
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5.7. The normal mode of a vibrating drum head with varying tension using 

             

Finally by using the third initial velocity function considered i.e.  the 

new coefficient for the talking is computed 

                  

The third associated coefficients for drumhead with varying tension 

A_n_3=
1.3114 0.1636 0.0304 0.0099 0.0064 0.0016 0.0025 0.0003 0.0013 0

       table 5.7.1 gives the coefficient of the normal mode with  

And on multiplying the respective columns of tables 5.5.1, 5.6.2 and 5.7.1 the matrices 

of the first ten Normal modes were again generated and tabulated below as follows    

                                                                                

 

The 1st

U_1_3=
0 2.5906 2.7157 1.018 -1.1345 -1.0967 0.7792 0.6838 -0.9067 0.0512
0 2.2938 2.4045 0.9014 -1.0045 -0.971 0.6899 0.6055 -0.8028 0.0453
0 1.947 2.0411 0.7651 -0.8526 -0.8242 0.5856 0.5139 -0.6814 0.0385
0 1.5046 1.5773 0.5913 -0.6589 -0.6369 0.4526 0.3972 -0.5266 0.0297
0 1.2592 1.32 0.4948 -0.5514 -0.533 0.3787 0.3324 -0.4407 0.0249
0 1.0045 1.053 0.3947 -0.4399 -0.4252 0.3021 0.2651 -0.3516 0.0198
0 0.4888 0.5125 0.1921 -0.2141 -0.2069 0.147 0.129 -0.1711 0.0097
0 0.2385 0.2501 0.0937 -0.1045 -0.101 0.0717 0.063 -0.0835 0.0047
0 0 0 0 0 0 0 0 0 0
0 -0.4234 -0.4438 -0.1664 0.1854 0.1792 -0.1274 -0.1118 0.1482 -0.084

 Normal mode 

                        

table 5.7.2 :     _3 in U_1_3 identify the velocity function used 
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The 2nd

U_2_3=
0 2.9476 2.6995 0.9276 -1.0415 -1.1568 0.779 0.7523 -0.9776 0.0243
0 2.461 2.3969 0.859 -0.961 -0.9992 0.6898 0.6376 -0.836 0.0327
0 1.9543 2.0407 0.7633 -0.8507 -0.8255 0.5856 0.5153 -0.6829 0.0379
0 1.3947 1.5823 0.6191 -0.875 -0.6184 0.4526 0.3761 -0.5048 0.038
0 1.1213 1.3263 0.5297 -0.5873 -0.5098 0.3788 0.3059 -0.4133 0.0352
0 0.8616 1.0595 0.4309 -0.4771 -0.4011 0.3022 0.2377 -0.3232 0.0306
0 0.3959 0.5167 0.2156 -0.2883 -0.1913 0.1471 0.1112 -0.1526 0.0167
0 0.1901 0.2523 0.106 -0.1171 -0.0928 0.0718 0.0537 -0.0739 0.0084
0 0 0 0 0 0 0 0 0 0
0 -0.3429 -0.4475 -0.1868 0.2064 0.1657 -0.1274 -0.0963 0.1322 -0.0144

 Normal mode 

                      table 5.7.3:     _3 in U_2_3 identify the velocity function used 

The 3rd

U_3_3=
0 3.0012 2.6665 0.9418 -1.0261 -1.1596 0.77 0.7446 -0.9793 0.032
0 2.4591 2.3981 0.8585 -0.9615 -0.9991 0.6901 0.6378 -0.8359 0.0325
0 1.9329 2.0539 0.7576 -0.8569 -0.8244 0.5892 0.5184 -0.6822 0.0348
0 1.3842 1.5887 0.6163 -0.6905 -0.6179 0.4544 0.3776 -0.5044 0.0365
0 1.1221 1.3258 0.5299 -0.5871 -0.5098 0.3787 0.3058 -0.4133 0.0354
0 0.8722 1.053 0.4337 -0.4741 -0.4017 0.3005 0.2362 -0.3235 0.0321
0 0.4107 0.5076 0.2196 -0.234 -0.192 0.1446 0.1091 -0.1531 0.0188
0 0.1989 0.2469 0.1083 -0.1146 -0.0933 0.0703 0.0524 -0.0741 0.0096
0 0 0 0 0 0 0 0 0 0
0 -0.3557 -0.4396 -0.1902 0.2027 0.1663 -0.1253 -0.0944 0.1326 -0.0163

 Normal mode 

                        table 5.7.4:     _3 in U_3_3 identify the velocity function used 

The 4th

U_4_3=
0 3.0109 2.6694 0.9377 -1.0294 -1.1585 0.774 0.7415 -0.9769 0.0292
0 2.4557 2.397 0.86 -0.9603 -1 0.6887 0.6389 -0.8368 0.0335
0 1.9314 2.0534 0.7583 -0.564 -0.245 0.5886 0.5189 -0.6826 0.0353
0 1.387 1.5896 0.6151 -0.6915 -0.6176 0.4555 0.3767 -0.5037 0.0357
0 1.1245 1.3265 0.5289 -0.5879 -0.5096 0.3797 0.305 -0.4127 0.0346
0 0.8728 1.0532 0.4334 -0.4743 -0.4016 0.3007 0.236 -0.3234 0.0319
0 0.4083 0.5068 0.2206 -0.2332 -0.1923 0.1436 0.1098 -0.1537 0.0195
0 0.1971 0.2463 0.109 -0.114 -0.0935 0.0696 0.053 -0.0746 0.0101
0 0 0 0 0 0 0 0 0 0
0 -0.3536 -0.439 -0.1911 0.202 0.1666 -0.1244 -0.0951 0.1331 -0.0169

 Normal mode 

                        table 5.7.5:     _3 in U_4_3 identify the velocity function used 
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The 5th

U_5_3=
0 3.0114 2.6743 0.9401 -1.0321 -1.1569 0.7718 0.7424 -0.975 0.0309
0 2.4555 2.3952 0.8591 -0.9593 -1.0001 0.6895 0.6386 -0.8375 0.0328
0 1.9315 2.0546 0.7589 -0.857 -0.8241 0.5192 0.5192 -0.6821 0.0357
0 1.387 1.5897 0.6152 -0.6916 -0.6175 0.4554 0.3767 -0.5037 0.0357
0 1.1244 1.3255 0.5284 -0.5874 -0.5099 0.3802 0.3048 -0.4131 0.0343
0 0.8727 1.0521 0.4329 -0.4737 -0.402 0.3012 0.2358 -0.3238 0.0316
0 0.4084 0.5077 0.221 -0.2337 -0.192 0.1432 0.11 -0.1533 0.0198
0 0.1972 0.2473 0.1095 -0.1145 -0.0932 0.0692 0.0532 -0.0742 0.0104
0 0 0 0 0 0 0 0 0 0
0 -0.3537 -0.4398 -0.1915 0.2024 0.1663 -0.1241 -0.0953 0.1328 -0.0172

 Normal mode 

                       table 5.7.6:     _3 in U_5_3 identify the velocity function used 

The 6th

U_6_3=
0 3.0104 2.6736 0.9395 -1.0318 -1.1563 0.7721 0.7429 -0.9748 0.0306
0 2.4556 2.3953 0.8592 -0.9594 -1.0002 0.6895 0.6385 -0.8375 0.0329
0 1.9312 2.0545 0.7587 -0.857 -0.824 0.5881 0.5193 -0.6821 0.0356
0 1.3873 1.5899 0.6153 -0.6916 -0.6176 0.4554 0.3766 -0.5037 0.0358
0 1.1244 1.3255 0.5284 -0.5874 -0.5099 0.3802 0.3084 -0.4131 0.0343
0 0.8725 1.052 0.4328 -0.4736 -0.4019 0.3013 0.2359 -0.3237 0.0315
0 0.4085 0.5078 0.2211 -0.2338 -0.1921 0.1432 0.11 -0.1534 0.0199
0 0.1974 0.2474 0.1096 -0.1145 -0.0933 0.0691 0.0531 -0.0743 0.0105
0 0 0 0 0 0 0 0 0 0
0 -0.3538 -0.4398 -0.1915 0.2025 0.1663 -0.124 -0.0952 0.1328 -0.0172

 Normal mode 

                        table 5.7.7:     _3 in U_6_3 identify the velocity function used 

The 7th

U_7_3=
0 3.0077 2.6723 0.9404 -1.0308 -1.1555 0.7721 0.7427 -0.9752 0.0309
0 2.4552 2.3951 0.8593 -0.9592 -1 0.6895 0.6385 -0.8376 0.0329
0 1.9315 2.0546 0.7586 -0.8571 -0.8241 0.5881 0.5193 -0.6821 0.0356
0 1.3871 1.5898 0.6154 -0.6916 -0.6176 0..4554 0.3766 -0.5037 0.0358
0 1.1239 1.3253 0.5286 -0.5872 -0.5097 0.3802 0.3047 -0.4132 0.0344
0 0.8726 1.052 0.4327 -0.4736 -0.4019 0.3013 0.2359 -0.3237 0.0315
0 0.4085 0.5078 0.2211 -0.2337 -0.192 0.1432 0.111 -0.1534 0.0199
0 0.197 0.2471 0.1098 -0.1144 -0.0931 0.0692 0.053 -0.0743 0.0106
0 0 0 0 0 0 0 0 0 0
0 -0.3538 -0.4398 -0.1915 0.2024 0.1663 -0.124 -0.0952 0.1328 -0.172

 Normal mode 

                        table 5.7.8:     _3 in U_7_3 identify the velocity function used 
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The 8th

U8_3=
0 3.0074 2.6724 0.9403 -1.0309 -1.1554 0.7721 0.7426 -0.9752 0.0309
0 2.4551 2.3951 0.8593 -0.9592 -1 0.6895 0.6385 -0.8376 0.0329
0 1.9316 2.0546 0.7586 -0.8571 -0.8241 0.5881 0.5193 -0.6821 0.0356
0 1.387 1.5898 0.6154 -0.6916 -0.6176 0.4554 0.3766 -0.5038 0.0358
0 1.1239 1.3253 0.5286 -0.5872 -0.5097 0.3802 0.048 -0.4123 0.0344
0 0.8726 1.052 0.4327 -0.4736 -0.4019 0.3013 0.2359 -0.3237 0.0315
0 0.4084 0.5078 0.2211 -0.2337 -0.192 0.1432 0.11 -0.1534 0.0199
0 0.197 0.2471 0.1098 -0.1144 -0.0931 0.0692 0.053 -0.0743 0.0106
0 0 0 0 0 0 0 0 0 0
0 -0.3538 -0.4398 -0.1915 0.2025 0.1663 -0.124 -0.0952 0.1328 -0.0172

 Normal mode 

                        table 5.7.9:     _3 in U_8_3 identify the velocity function used 

The 9th

U_9_3=
0 3.0065 2.6729 0.9408 -1.0313 -1.1551 0.7724 0.7426 -0.9754 0.0308
0 2.4549 2.3952 0.8594 -0.9593 -0.9999 0.6895 0.6385 -0.8376 0.0329
0 1.9316 2.0546 0.7586 -0.8571 -0.8241 0.5881 0.5193 -0.6821 0.0356
0 1.3872 1.5898 0.6153 -0.6915 -0.6176 0.4553 0.3766 -0.5037 0.0358
0 1.124 1.3252 0.5285 -0.5871 -0.5098 0.3801 0.3048 -0.4132 0.0344
0 0.8724 1.0521 0.4328 -0.4737 -0.4019 0.3013 0.2359 -0.3237 0.0315
0 0.4086 0.5077 0.2211 -0.2337 -0.1921 0.1432 0.1099 -0.1534 0.0199
0 0.1969 0.2472 0.1099 -0.1144 -0.0931 0.0692 0.0531 -0.0743 0.0106
0 0 0 0 0 0 0 0 0 0
0 -0.0354 -0.4398 -0.1915 0.2024 0.1664 -0.124 -0.0952 0.1328 -0.0172

 Normal mode 

                      table 5.7.10:     _3 in U_9_3 identify the velocity function used                                        

The 10th

U_10_3=
0 3.0065 2.6729 0.9408 -1.0313 -1.1551 0.7724 0.7426 -0.9754 0.0308
0 2.4549 2.3952 0.8594 -0.9593 -0.9999 0.6895 0.6385 -0.8376 0.0329
0 1.9316 2.0546 0.7586 -0.8571 -0.8241 0.5881 0.5193 -0.6821 0.0356
0 1.3872 1.5898 0.6153 -0.6915 -0.6176 0.4553 0.3766 -0.5037 0.0358
0 1.124 1.3252 0.5285 -0.5871 -0.5098 0.3801 0.3048 -0.4132 0.0344
0 0.8724 1.0521 0.4328 -0.4737 -0.4019 0.3013 0.2359 -0.3237 0.0315
0 0.4086 0.5077 0.2211 -0.2337 -0.1921 0.1432 0.1099 -0.1534 0.0199
0 0.1969 0.2472 0.1099 -0.1144 -0.0931 0.0692 0.0531 -0.0743 0.0106
0 0 0 0 0 0 0 0 0 0
0 -0.0354 -0.4398 -0.1915 0.2024 0.1664 -0.124 -0.0952 0.1328 -0.0172

 Normal mode 

                      table 5.7.11:     _3 in U_10_3 identify the velocity function used 
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 5.8 Description of the Normal modes of the two models 

The first model consists of Bessel functions of order zero and Bessel functions of order 

half which determines the sound nature of the drum. The second model also comprise  

Bessel functions of order zero and Bessel functions of order one-third which makes the 

drum sound the way they do. Clearly the Bessel functions of order zero appear in each of 

the two models and have frequency     cycles per unit time; where  are the Eigen 

values or characteristic values of our problem. Their corresponding Eigen functions are 

the solutions of the wave equation satisfying the boundary conditions for the two 

models.  

The models are also referred to as the Normal modes. The zeros of the Bessel function 

of order zero are not evenly spaced and so the forms of the normal modes can easily be 

obtained from its graph.  

                                    Graph of Bessel function of order zero  

 

Fig 5.8.1 graph of : for showing the normal modes of a drumhead 
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For both models the form of the normal modes is explained as follows;. 

When a drummer plays the drums under consideration, for the first normal mode or for 

n=1, all the points of the membrane move upward (or downward) at the same time. Here 

there is no concentric circle or nodal line. When the drummer operates at n=2 or the 

second normal mode the situation is as follows. The function   is zero 

for   or . The circle  is therefore a nodal line and when at some 

instant the central part of the membrane moves upward, the outer part     moves 

downward and vice versa. Here one nodal line or concentric circle is introduced in the 

drumhead. In general the nth Normal mode has (n-1) nodal lines which are concentric 

circles.  These are illustrated below in (fig. 5.8.2). 

 

 

 

 

  

 

 

 

 

                                                                                                                            

       Fig 5.8.2 showing the vibrational modes of a circular drumhead 

 

The Normal modes of a circular membrane with vibrations independent of the Angle 
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CHAPTER SIX 

ANALYSIS OF RESULTS, CONCLUSION AND RECOMMENDATIONS 

The chapter discusses the results of findings from the chapter five under the following 

subtopics Findings and Discussions, Analysis of Results, Conclusion, Recommendations 

and area of further studies. 

6.1 Findings and Discussions 

The first model is made up of Bessel functions of order zero and Bessel function of 

order half which determines the sound nature of the drum. The second model also 

involves Bessel functions of order zero and Bessel functions of order one-third which 

makes the drum sound the way they do. Clearly the Bessel function of order zero 

appears in both models and by it we are able to determine the frequency of the vibration 

of the drumhead. Each of the two models possesses frequency of     cycles per unit 

time; where  are the Eigen values or characteristic values of our problem.  

 The graph of fig 6.1.1 below also reveals that Bessel function of order zero  has 

certain common features of the trigonometric functions of damped amplitude. i.e. Jo(x) 

begin at 1 for  and oscillates as x increases, although they are not periodic in x and  

that their amplitude decreases slowly from unity as x increases, unlike the graph of  

which also has unity amplitude at ,  is periodic in nature and oscillate 

between  1 and -1.                                  
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Similarly the graph of Bessel functions of order half for the first model and Bessel 

function of order one-third replicates the behavior of the periodic sine graph. They are 

also not periodic and their amplitudes fall off slowly with increasing value of .  

Bessel Functions of orders 1/2, 1/3 and 0: [First Kind]   

  

 

6.2 Analysis of Results 

The researcher focus was on the vibration of membrane having varying tension on the 

drumhead with emphasis on the hour-glass drum or single armpit talking drum 

(“donno”), particularly the way they sound and how they can be interpreted as being a 

harmonic instrument as well as a rhythm maker. This drum comes in variety of sizes; the 
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Fig6.1.1 graphs of Bessel functions of orders 1/2; 1/3 and 0   
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larger ones have three sizes of diameters 7.00, 6.50 and 6.00 inches respectively and the 

smaller one have varying size of 3.5cm, 4.5cm and 5.5cm respectively for their radii. 

In order to make a deductive analysis the researcher chose the hour-glass drum having 

radius 3.5 inches with varying tension in the drumhead and compared it with a 

hypothetical Circular drum with constant tension in the drumhead having the same 

radius .Hypothetical circular drum is used in the sense that most circular drum with 

constant tension have larger diameters than the vibrating membranes or drumheads 

under consideration. Both drum type was subjected to a boundary value problem with 

the initial conditions, , initial deflection , and 

initial velocity  , using three different types of initial velocity functions 

 namely   , and .  

The Summary of the results in using these initial velocity functions is tabulated below                                   

Summary of Results with a quadratic initial velocity function 

 

Table 6.2.1 

U_4(1.5,2)

Normal mode

U_1(1,5)
U_2(0,0)

U_3(2.5,2)

velocity function
f(r)=(2-r/2)^2

U_5(0,2)
U_6(1,6)
U_7(0,0)

U_8(2.5,3)
U_9(1.5,2)
U_10(0,2)

drum with varying tension

-1.0045
0

1.053
2.0534 0.0492

-0.0854
0.0129

0

3.0114
-1.0002

0

drum with constant tension

-0.7076
0

-0.0096

-0.0354
0.0602
-0.0832

1.052
2.0546
3.0065
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Summary of Results with a Cubic initial velocity function 

U_1(1,1) 3.0026

Normal mode Velocity function Drum with varying tension Drum with constant tension

U_10(1,8)

U_2(2,2)
U_2(1.5,3)
U_3(0,0)
U_4(1,8)
U_5(2,2)

U_5(1.5,3)

-1.007

2.0586

f(r)=r(2-r/2)^2 

U_6(0,0)
U_7(1,8)
U_8(2,2)

U_8(1.5,3)
U_9(0,0)

1.0038
0

-1.0079
2.0454
1.0109

1.9019
1.3634
1.2989

0
-0.7496
1.3559
1.3066

00
-1.0073
2.044
1.0113

0

-0.7496
1.355

1.3067
0

-0.7494
 

Table 6.2.2 

  

From tables 6.2.1 and 6.2.2 the drumhead with varying tension gave different variety of 

modes which are nearly integral values and are much higher than that of the drum with 

constant tension. This makes the single armpit talking drum (“donno”) a nearly 

harmonic instrument. The key difference between single armpit talking drum (“donno”) 

and drums with constant tension like the “fontonfrom” is the absence of the strings 

which holds the drumheads together and can be easily squeezed and released while 

playing to produce a wide range of tones of different pitches. Based on this characteristic 

and the fact that tonal languages are used in many African cultures, it is possible to send 

linguistic messages via the (“donno”). Again what makes the single armpit talking drum 

(“donno”) unique is its ability to adapt to the tone of any musical instrument and they 

are  also use in religious chants or poetry.  
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The normal modes for the drum with constant tension using the initial velocity functions 

dependent on the radius (for both quadratic and cubic functions of r) gave overtones 

which are purely decimals and not integral. i.e. their higher modes  do not occur at 

frequencies closely related to the fundamental, so the sounds made by the various 

vibration modes conflict with one another, the result is a collection of unrelated tones 

that combines into a sound that has no discernible pitch. This fact makes such a drum a 

rhythmic instrument and not a harmonic instrument. The Drum with constant tension 

provides the rhythm of any musical piece, rather than add to the harmony due to its 

inharmonic nature since it overtones are not integral multiples of their fundamental 

frequency.                                

Summary of Results with an invariant initial velocity function 

 

Table 6.2.3 

 From table 6.2.3 it can be inferred that the drum with varying tension gave overtones 

which are much smaller than their fundamental normal mode and their Normal modes 

U_7(1.5,2)

Normal modes

U_1(1,1)
U_2(0,3)
U_3(0,1)

U_3(1.5,2)
U_4(1.5,2)
U_5(1.5,2)
U_6(0,1)

U_6(1.5,2)
U_7(0,1)

U_8(0,1)
U_9(0,1)
U_10(0,1)

velocity function
f(r)=1

0.8561
-0.2756
0.0468
0.0492

drum with varying tension

1.6715

1.0097
1.0094
1.0079

0.0554
-0.37074
0.0576
-0.3264

drum with constant tension

1.0085
1.0035
1.0053
1.0079

1.0955
1.0587

1.0097
1.0043
1.0086
1.0066

-0.3196
-0.3179

0.0586
-0.3115
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are in general not integral as compared to that of the drum with constant tension. This 

shows that for the talking drum to be made harmonic the choice of the velocity function 

should not be an invariant. Also it can be seen that all the normal modes for the drum 

with constant tension and velocity are all near to the integer 1 except that the fundament 

frequency is much higher than the other normal mode. 

An important application of the values of these normal modes from a drum with constant 

tension in the drumhead is that If one is able to make another drum with constant tension 

in the drumhead and apply a constant initial velocity such that the normal modes are 

nearly an integer that is not unity then such pair of drum could be used for 

communication purposes, a fact employed by the “Atumpan” paired drum of the Akans 

of Ghana which is made to talk when it is played. The “Atumpan” paired drum has two 

distinct pitches one high and the other low. (i.e. the female and the male drum).  Thus 

for a drum  with constant tension to be head as talking it should be paired to give at least 

two contrasting tones so as to imitate the rhythm or flow of the tonal language it tries to 

imitate.  

The “Atumpan” drum has enough of a sense of pitch to allow them to be tuned. This 

makes the sounds usually accompanied by the paired “Atumpan” drum have a unique 

characteristic otherwise, the rhythmic nature of the drum when it is played, would 

completely disrupt the recitals and appellation being rendered by the drummer who is 

playing the drums or by a different person. 
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6.3 Conclusion 

This thesis has given us a practical insight into why most drums are rhythm instruments 

and some could be made to posses both rhythmic and harmonic characteristic. In our 

quest to investigate the mathematics of vibrating membrane as applied to African drums 

with varying tension compared with those of constant tension and on using the two 

dimensional wave equation, we were able to discover that the single armpit talking drum 

(“donno”) of the Akans of Ghana or the “Lunna” of the Dagbambas of Ghana) posses 

rhythmic and harmonic characteristics. Also the “Atumpan” drum of the Akans of Ghana 

is a rhythm maker and has a high sense of pitches which enables it to imitate tonal 

language by imposing a boundary value problem on the two types of drums. 

 Our local drums can now be considered as having some scientific basis in addition to 

the notion that it is just an artistic creation of our culture.  

 

6.4 Recommendation   

The normal modes obtained for the (“donno”) drum or the talking drum were nearly 

integral in nature, instead of exact integers, this the researcher believe was accounted for 

partly by approximating  by  in the time O.D.E and also by not having the linear 

combinations of the Bessel functions of orders  and    which are two 

independent solutions to the spatial O.D.E .in their computations. We recommend that 

these approximations should be  
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1. Avoided and rather the exact tension function  be used instead of  . 

2. the complete Bessel functions of fractional order for the spatial O.D.E should be 

used, 

And their resulting Mathematical Model obtained should be evaluated at an initial time t 

near zero other than t starting at exactly at zero, since zero is a branch point for Bessel 

functions of fractional orders. This would give vibrational modes which are not 

divergent. 

Also the researcher believes that integral nature of the Normal modes of the single 

armpit talking drum (the “donno” ) would also greatly improve the harmony of the drum 

if an appropriate initial deflection function could be obtained which mimic this physical 

system. Such a deflection function should  

1. Not be an invariant but rather a function dependent on the radius of the drum and 

2.  This function should be differentiable in the interval  to ensure the 

existence of the generation of the Fourier- Bessel co-efficients for the 

mathematical model. 

 In using the two dimensional wave equation, the researcher replaced the constant c for 

the tension on the assumption that the tension was a function of time t in order to derive 

the model for evaluating the vibrational mode of a membrane with varying tension, Thus 

we recommend that further research be made to include the case where the tension is 

dependent on time for the derivation of the wave equation.  
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6.5 Areas of further Studies. 

With the application of boundary value Problems, in the study of our local instruments, 

further scientific studies can be made to find the reason behind the uniqueness of our 

local drums; this will help in modifying and improve upon their designs thus making 

them better. 

                  

 

 

Fig. 6.5 1(a): Picture of the Single Talking drum      Fig.6.51(b): Picture of double Talking drum 
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Appendix A 

Matlab code for evalutating the Normal modes of modes in chapter three and four 

% the code is made to evaluate the normal mode of a vibrating membrane 

%by varying the tensions in the drumhead 

% by keeping the tension in the drumhead constant 

%the code is prepared for the talking drum with radius 3.5cm for the two cases. 

% in order to make comparisms from the output of the code.  

% the following initial and boundary conditions  were used 

%with three different velocity functions namely , and 

% , these functions were chosen so that nearer the origin the normal  

%Mode would be greatest and further from the origin the normal mode would be least. 

% Codes for the model in chapter three model ; 

% Using  

syms R w u 

disp('CASE1 DRUMHEAD WITH FIXED TENSION') 

d=10; a=1; c=1; R=3.5; 

    disp([R']) 

    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 
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    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 

% m the first ten zeros of Bessel function of order zero 

m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

u=m/R; 

%v the values for the varying r’s 

v=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    v(r); 

    x(r,:)=v(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  

j_x=besselj(0,x) 

%intj is the integration in the model 

intJ=double(int(w*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modese 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((2./c)./u).^(1/2)*gamma(3/2).*int

J) 

% v1 the values for the varying time 

v1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 

    v1(t); 

    y(t,:)=(v1(t).*u); 

end 
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% j_y computes the expression involving time in the model using the m’s in columns 

j_y= v1(t)^(1/2)*besselj(1/2,y) 

% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

U1_1=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_1=u_1+u_2 

u_3=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_1=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_1=u_1+u_2+u_3+u_4 

u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_1=u_1+u_2+u_3+u_4+u_5 

u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_1=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 

U9_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 
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U10_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 

% Using , 

syms R w u 

d=10; a=1; c=1; R=3.5; 

    disp([R']) 

    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 

    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 

m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

u=m/R; 

%v the values for the varying r’s 

v=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    v(r); 

    x(r,:)=v(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  

j_x=besselj(0,x) 

%intj is the integration in the model 
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intJ=double(int(w*w*(2-w/2)^(3).*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modes 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((2./c)./u).^(1/2)*gamma(3/2).*int

J) 

% v1 the values for the varying time 

v1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 

    v1(t); 

    y(t,:)=(v1(t).*u); 

end 

% j_y computes the expression involving time in the model using the m’s in columns 

j_y= v1(t)^(1/2)*besselj(1/2,y) 

% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

U1_2=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_2=u_1+u_2 

u_3=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_2=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_2=u_1+u_2+u_3+u_4 

u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_2=u_1+u_2+u_3+u_4+u_5 
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u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_2=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 

U9_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 

U10_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 

% Using , 

syms R w u 

d=10; a=1; c=1; R=3.5; 

    disp([R']) 

    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 

    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 

m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

u=m/R; 
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%v the values for the varying r’s 

v=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    v(r); 

    x(r,:)=v(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  

j_x=besselj(0,x) 

%intj is the integration in the model 

intJ=double(int(w*(2-w/2)^(2).*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modes 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((2./c)./u).^(1/2)*gamma(3/2).*int

J) 

% v1 the values for the varying time 

v1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 

    v1(t); 

    y(t,:)=(v1(t).*u); 

end 

% j_y computes the expression involving time in the model using the m’s in columns 

j_y= v1(t)^(1/2)*besselj(1/2,y) 

% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 
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U1_3=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_3=u_1+u_2 

u_3=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_3=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_3=u_1+u_2+u_3+u_4 

u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_3=u_1+u_2+u_3+u_4+u_5 

u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_3=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 

U9_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 

U10_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 

 disp('CASE 2 DRUMHEAD WITH VARYING TENSION') 

% Using , 

syms R w u 

d=10; a=1;R=3.5;  

    disp([R']) 
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    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 

    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 

m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

%c the values for the varying r’s 

c=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    c(r); 

    x(r,:)=c(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  

j_x=besselj(0,x) 

%intj is the integration in the model 

intJ=double(int(w*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modes 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((3*a)./u).^(1/3)*gamma(2/3).*int

J) 

% c1 the values for the varying time 

c1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 
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    c1(t); 

     y(t,:)=(2.*c1(t).^(3/2).*u)./(3.*a); 

end 

% j_y computes the expression involving time in the model using the m’s in columns 

j_y= c1(t)^(1/2)*besselj(1/3,y) 

% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

U1_1=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_1=u_1+u_2 

u_1=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_1=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_1=u_1+u_2+u_3+u_4 

u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_1=u_1+u_2+u_3+u_4+u_5 

u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_1=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 
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U9_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 

U10_1=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 

% Using , 

syms R w u 

d=10; a=1;R=3.5;  

    disp([R']) 

    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 

    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 

m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

u=m/R; 

%c the values for the varying r’s 

c=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    c(r); 

    x(r,:)=c(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  
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j_x=besselj(0,x) 

%intj is the integration in the model 

intJ=double(int(w*w*(2-w/2)^3.*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modes 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((3*a)./u).^(1/3)*gamma(2/3).*int

J) 

% c1 the values for the varying time 

c1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 

    c1(t); 

    y(t,:)=(2.*c1(t).^(3/2).*u)./(3.*a); 

end 

% j_y computes the expression involving time in the model using the m’s in columns 

j_y= c1(t)^(1/2)*besselj(1/3,y) 

% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

U1_2=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_2=u_1+u_2 

u_3=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_2=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_2=u_1+u_2+u_3+u_4 
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u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_2=u_1+u_2+u_3+u_4+u_5 

u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_2=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 

U9_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 

U10_2=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 

% Using , 

syms R w u 

d=10; a=1;R=3.5;  

    disp([R']) 

    disp('u_j are the partials') 

    disp('Uj_1,Uj_2,Uj_3 are the Normal modes')  

    disp('where _1,_2,_3 are the associated velocity functions used in computing the 

normal mode') 

    disp('j_x are the bessel function of order zero') 

    disp('j_y are the bessel function of order negative one-third and') 

    disp('A_n are the co-efficients associated with the donno problem') 
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m=[2.4048,5.5201,8.6537,11.7915,14.9309,18.0711,21.2116,24.3525,27.4935,30.6346];  

u=m/R; 

%c the values for the varying r’s 

c=[0 1 1.5 2  2.25 2.5 3 3.25 3.5 4]; 

for r=1:d 

    c(r); 

    x(r,:)=c(r).*u; 

end 

% j_x computes Bessel fuction of order zero using each v and m in columns  

j_x=besselj(0,x) 

%intj is the integration in the model 

intJ=double(int(w*(2-w/2)^(2).*besselj(0,w.*u),w,0,R)); 

%A_n, the redefine co-efficients of the model used in computing the normal modes 

A_n=double((2./(R.^2.*besselj(1,m)).*besselj(1,m)).*((3*a)./u).^(1/3)*gamma(2/3).*int

J) 

% c1 the values for the varying time 

c1=[0 1 2 3 4 5 6 7 8 9]; 

for t=1:d 

    c1(t); 

    y(t,:)=(2.*c1(t).^(3/2).*u)./(3.*a); 

end 

% j_y computes the expression involving time in the model using the m’s in columns 

j_y= c1(t)^(1/2)*besselj(1/3,y) 
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% u_j are the partials and U_j are the Normal modes, the _1,_2, and_3 in U_j are the 

respective velocity function used 

u_1=j_x(:,1)*j_y(:,1)'*A_n(1,1); 

U1_3=u_1 

u_2=j_x(:,2)*j_y(:,2)'*A_n(1,2); 

U2_3=u_1+u_2 

u_3=j_x(:,3)*j_y(:,3)'*A_n(1,3); 

U3_3=u_1+u_2+u_3 

u_4=j_x(:,4)*j_y(:,4)'*A_n(1,4); 

U4_3=u_1+u_2+u_3+u_4 

u_5=j_x(:,5)*j_y(:,5)'*A_n(1,5); 

U5_3=u_1+u_2+u_3+u_4+u_5 

u_6=j_x(:,6)*j_y(:,6)'*A_n(1,6); 

U6_3=u_1+u_2+u_3+u_4+u_5+u_6 

u_7=j_x(:,7)*j_y(:,7)'*A_n(1,7); 

U7_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7 

u_8=j_x(:,8)*j_y(:,8)'*A_n(1,8); 

U8_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8 

u_9=j_x(:,9)*j_y(:,9)'*A_n(1,9); 

U9_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9 

u_10=j_x(:,10)*j_y(:,10)'*A_n(1,10); 

U10_3=u_1+u_2+u_3+u_4+u_5+u_6+u_7+u_8+u_9+u_10 
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Appendix B 

Matlabcode for generating values of Bessel function of order zero, of order, half and of 
order one-third  

 
% This MATLAB file generate values of   Bessel functions of order 0,1/3 and 1/2. 
  
% It generate the first thirty values of the Bessel functions of the above 

% order 

x=[0:0.1:2.9]; 

J_0 = besselj(0,x); 

J_1x3 = besselj(1/3,x); 

J_1x2=besselj(1/2,x); 

 fprintf('-------------------------------------------\n') 

fprintf('| Order 0 \t | Order 1/3 \t | Order 1/2 \t|\n') 

fprintf('-------------------------------------------\n') 

fprintf('| %f \t | %f \t  | %f \t |\n',J_0,J_1x3,J_1x2) 

fprintf('-------------------------------------------\n') 

 %gtext('Bessel functions of the first kind'); 
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Appendix C 

Matlabcode for graphing Bessel functions of orders half, one-third and order zero 

xmin = 1e-3; 

 xmax = 10; 

resolution = 200; 

 x = linspace(xmin,xmax,resolution); 

 y_zero = 0*x; 

 % First, compute the Bessel functions. 

 % Bessel functions of the first kind 

 J_0=besselj(0,x); 

 J_1x2 = besselj(1/2,x); 

 %J_1x2 = besselj(0.5,x); 

 J_1x3 = besselj(1/3,x); 

 %J_1x3 = besselj(1.3,x); 

 % set common axis limits 

 xplot_min = 0; 

 xplot_max = xmax; 

 yplot_min = -1.1; 

 yplot_max = +1.1; 

 % Bessel functions of the first kind 

%integer order  

%non-integer order 

plot(x,J_1x2); 

hold on; 
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grid on; 

title('Bessel Function of orders 1/2, 1/3 and 0:[First Kind]') 

 plot(x,J_1x3,'r--'); 

hold on; 

plot(x,J_0,'g-'); 

 plot(x,y_zero,':'); 

 legend('J_{1/2}(x)', 'J_{1/3}(x)','J_0(x)'); 

 xlabel('x'); 

 ylabel('J_\nu(x)'); 

 axis([xplot_min xplot_max yplot_min yplot_max]); 
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