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ABSTRACT 

Examining the effects of land use and land cover change (LULCC) on biodiversity 

loss and human wellbeing in the Pendjari Reserve, a biodiversity hotspot in West 

Africa that has seen human disturbances for years, is the primary goal of this study. 

The study employed Landsat images and utilized the Random Forest classification 

software to analyze the dynamics of LULC for 1998, 2007, 2013, and 2020. The 

expected LULC for 2035 was projected using Terset 18.21. To learn more about 

household socio- economics characteristics and the advantages of trees in the 

townships from Tanguieta and Materi, information from 361 farmers was gathered. 

The influence of farm size, landholding, and district on tree diversity, tree species 

richness, and tree abundance, were examined as their combined impacts. The study 

unveiled notable alterations in LULC patterns, such as a reduced wooded savannah 

and a rise in shrub, cropland, and fallow land. Settlement areas experienced an increase 

in the studied period. The predicted results indicated an imminent slight decrease in 

wooded savannah, increase in shrub savannah, cropland, and fallow land, as well as a 

reduction of settlement areas in the future. Furthermore, farmers' preferences for tree 

and crop associations were assessed, with Parkia biglobosa identified as the tree 

species with the largest mean diameter at breast height (dbh) and height. At the same 

time, Vitellaria paradoxa had the highest height in Materi and Tanguieta. Tree benefits 

played a crucial role in selecting trees for agroforestry systems, with provisioning 

services followed by supporting services being the most common ecosystem benefits 

derived by local communities. Tree-crop associations varied among the farmers. The 

study examined the effects of tree conservation on agricultural output in agroforestry 

systems within the same study region as well as the impact of climate trends on critical 

crop yields. Findings revealed a substantial positive (warming) trend in temperature 

and a decrease in rainfall. There was a general positive warming trend observed 

between 1981 to 2020. Results showed that the lowest temperature positively and 

considerably impacted maize yields, while rainfall and relative humidity adversely 

affected respectively negatively and positively maize yields. The minimum 

temperature and relative humidity had a positive and substantial impact on sorghum. 

The maximum temperature and relative humidity negatively impacted cotton yield, but 

rainfall had affected positively cotton yields. Maximum and minimum temperature 

positively and significantly impacted cowpea yields. The Exponential regression 

model indicated that soil physicochemical characteristics and distance between tree 

and crop were the primary variables influencing crop yields in agroforestry systems. 

Furthermore, the study demonstrated that the maximum carbon stored by wooded 

savannah was projected to be 494,198.1 Mg C ha-1 in 2050, which decreased to 

387,059.4 Mg C ha-1 in 2020 and 387,047.2 Mg C ha-1 in 2035. The lowest value of 

carbon is projected to be sequestered from 2020 to 2035, over a period of fifteen years. 

The highest gain and loss of projected carbon to sequestered for the period 2020 - 2050 

is 108,947 Mg C ha-1 and -57, 996 Mg C ha-1 and the period 2035 -2050 is 108878 Mg 

C ha-1 and -57984.6 Mg C ha-1, respectively. Conversely, the lowest gain and loss were 

anticipated from 2020 to 2035, with value of 845.56 Mg ha-1 and -47.52 Mg C ha-1, 

respectively. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1.Background 

Ecosystems are crucial in supporting local economies, ensuring food security, 

providing forest products, preserving biodiversity, and providing various ecosystem 

services (Agbani et al., 2018). The Millennium Assessment initiated extensive 

research on ecosystem services (Cao et al., 2021). Human activities impact land cover, 

temperature, biogeochemical cycles, biodiversity, and ecosystem services as the 

population rises (Reyers et al., 2013). Detecting and monitoring changes in land use 

and land cover (LULC) is therefore critical to understanding the consequences for 

ecosystem services at various scales. Ecosystem services contribute to human well-

being, including provision, regulation, and cultural services (Kandziora et al., 2013). 

However, climate change and land use change pose substantial risks to biodiversity 

and natural ecosystems. Temperatures have risen by 0.7°C in recent decades, with 

forecasts indicating a future increase ranging from 1.1°C to 6.4°C (IPCC, 2013). In the 

past century, precipitation has experienced an average increase of 2%, which is 

expected to continue. Africa has been warming, with temperature predicted to increase 

by 0.2°C- 0.5°C every decade (IPCC, 2001). 

Precipitation patterns have also become more variable. Aside from climate change, 

land use change has emerged as the critical factor influencing ecosystem service 

supply (Hoyer & Chang, 2014). Land use change, directly or indirectly, modifies 

ecosystems' content and layout, impacting their potential to provide services (Cao et 

al., 2021). The Convention on Biological Diversity (CBD) has established a 

fundamental goal for 2020: managing biodiversity to improve the supply of ecosystem 

services. Target 14 of The Convention on Biological Diversity (CBD) is committed to 

preserving ecological services to enhance livelihoods and wellbeing, focusing on the 
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needs of women, indigenous peoples, and local communities (Paing et al., 2022). 

Target 15 broadly addresses climate control. The ratification of the CBD by over 90% 

of African nations demonstrates a high level of commitment to preserving ecosystem 

services while simultaneously addressing poverty in these countries (Maes et al., 

2012).  

Consequently, research is needed to comprehensively assess the advantages of 

ecosystem services to humans, taking into account monetary and non-monetary 

valuations. This research should also identify critical areas that require conservation 

efforts and places where good management of ecosystems would offer the most 

excellent benefits in terms of ecosystem services. Furthermore, it is essential to assess 

the patterns of ecosystem degradation and decline and the consequences of providing 

ecosystem services (Reyers et al., 2013).  

Understanding the impact of land use and climate change on ecosystem services is 

crucial at the global, regional, and local levels. This knowledge is critical for 

developing alternative management techniques and policies that promote sustainable 

resource utilization. According to Reid et al., (2005), by 1990, more than of specific 

biomes, such as tropical and subtropical forests, had undergone alterations, leaving 

only 23 % of the original forests in their natural state. Due to the growing human 

population and resource demands, natural habitats are still being converted into 

agricultural land, pastures, plantations, urban areas, and infrastructure. The most 

common type of land use, accounting for roughly one-third of the planet's land surface 

(excluding Greenland and Antarctica), is agriculture. Most arable land is cultivated, 

while the remaining areas are unsuitable for food production due to high altitude, steep 

slopes, flat terrain, aridity, or extreme cold (McGuire, 2015). The agricultural sector 

primarily contributes to biodiversity loss, albeit with complex effects on various 
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species. Food production plays a critical role in the decline of ecosystems, particularly 

affecting tropical forests (Zwane, 2007). During the previous twenty years, there has 

been a 12 % expansion in the worldwide arable land area (Kertész et al., 2019), with 

a significant portion attributed to the transformation of natural ecosystems (Dudley & 

Alexander, 2017). During the 1980s and 1990s, forests served as the primary source 

of new agricultural land (Acheampong et al., 2019), and this trend continues to persist 

(Ayoo, 2022). Between 2010 and 2015, the annual reduction in tropical forest cover 

reached 5.5 million hectares (Raj et al., 2022). 

Understanding the importance of the agroecosystem service concept is essential for 

managing and making decisions about farms. Additionally, there are still difficulties in 

accurately defining and pricing these services (Gómez-Baggethun & Barton, 2013) 

and estimating, mapping, and modeling the spatial distribution of ecosystem services, 

supply, and demand (Liu et al., 2023). 

1.2. Problem Statement and Justification 

With the projected global population reaching nine billion by 2050, there is growing 

anticipation for agricultural production systems to fulfill the increasing food demands 

(Giller et al., 2021). The per capita increase in agricultural production, averaging 1.8 

percent per year, corresponds to Africa's population growth rate of 3.1 percent 

annually. In 1995, approximately 90 % of Africa's population comprised rural 

households engaged in subsistence farming, relying solely on wood and charcoal for 

energy. Deforestation in Africa between 1981 and 1995 was estimated at 1.3 million 

hectares per year, with the annual destruction of savannah forests predicted to reach 

2.3 million hectares (Ameixa et al., 2020). Food poverty and dwindling forests have 

been exacerbated further by environmental issues caused by pests and diseases, 

compounding precarious ecological circumstances (Ameixa et al., 2020). Innovative 
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approaches are urgently needed to enhance crop production and ensure stability for 

smallholder farmers. Identifying practical innovations and practices is paramount in 

achieving this objective. It is crucial to build new knowledge to support these 

endeavors. The limitations of the existing agricultural intensification and growth 

paradigm have been discussed. This strategy strongly depends on the increased use of 

capital inputs such as fertilizers and pesticides (Li et al., 2023). Due to advancements 

in crop types, herbicides, and mineral fertilizers, a significant increase in agricultural 

yields was seen in the second half of the 20th century (Jacquet et al., 2022). However, 

the intensification of land use has had detrimental effects on soil organic matter and 

biodiversity (Dang et al., 2021). While land-use intensification has increased yields, it 

has also reduced carbon stocks in soil and above-ground vegetation. Once a critical 

point is reached, researchers anticipate a decline in carbon stock and output (Gessesse 

et al., 2020). Agriculture intensification, marked by the excessive utilization of 

agrochemicals and annual fertilizers exceeding 200 million tons, drives this trend 

(Sharma et al., 2019). Systemic insecticides have been shown to severely harm 

invertebrates, amphibians, and birds (Chagnon et al., 2015), and other pesticides, 

fungicides, and herbicides often used in conjunction have also been the subject of 

similar concerns (Rajak et al., 2023), fungicides, and herbicides (Schuhmann et al., 

2022). Pesticides tend to disperse widely from their point of application (Tudi et al., 

2021). Glyphosate consumption is dominated by herbicide-resistant genetically 

modified (GM) crops, accounting for 56 % (Benbrook, 2016), and the increased 

tolerance of these crops implies a higher probability of future application rate 

escalation (Allison & Goulden, 2017). These findings contribute to understanding why 

biodiversity in and around agricultural landscapes continues to decline (Landis, 2017). 

The emergence of environmental damage and challenges related to economic 
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feasibility are central issues associated with this agricultural model (Schindler et al., 

2016). 

According to Nin et al., (2007) and Sossou et al., (2014), 75 % of the population of 

Benin is employed in agriculture, which generates around 29.89 % of the country's 

GDP and 80 % of its exports. Implementing improved technologies is required to 

increase small-scale farmers' production because they are crucial to Beninese 

agriculture (Diao et al., 2019; Nonvide, 2021). However, traditional farming methods 

that typically support diverse biodiversity have been supplanted by intensive farming 

systems, which range from small-scale agriculture to massive monoculture plantations 

(Kremen et al., 2012). Conversely, increasingly intensive systems, from small-scale 

farming to massive monoculture plantations, have replaced traditional farming 

techniques renowned for aiding biodiversity conservation (Chandler et al., 2013). 

 Agroforestry systems have received particular attention as potential sustainable land 

management technologies. These systems offer private benefits to farmers by 

improving soil fertility and structure, preserving soil and water, fostering soil fauna 

activity and diversity, and bolstering processes of the element cycle (Lorenz & Lal, 

2014). According to studies, agroforestry systems boost agricultural production 

systems' productivity and stability (Brown et al., 2018). Agroforestry presents 

substantial opportunities to enhance agricultural yields, improve food security, and 

reduce the susceptibility of farming systems to climate risks. Additionally, the 

widespread adoption of agroforestry as a method of sustainable land management can 

considerably support environmental public goods, particularly the reduction of climate 

change (Castle et al., 2022). Agroforestry system contributes substantially to climate 

change mitigation by effectively reducing greenhouse gas emissions, accounting for 

14 % of global emissions (Lynch et al., 2021). 
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Furthermore, the sector enhances the removal of greenhouse gas emissions through         

sequestration (Nunes et al., 2020). Soil carbon sequestration alone has the potential to 

represent 89 % of the technical mitigation capacity of agriculture (Shukla et al., 2019). 

Improving productivity can reduce the need for further land conversion to agriculture, 

thereby minimizing direct greenhouse gas emissions from agricultural activities 

(Gołasa et al., 2021). 

1.3.Objectives 

This research aim is to model the impacts of LULC and climate change on the 

provision of agroecosystem services in the riverine area of the Pendjari Reserve, in 

Benin, West Africa.  

The specific objectives were to: 

i. analysis spatiotemporal land use land cover change from 1998 to 2020, 

ii. determine farmer's preferences for tree and plant associations for agroforestry 

systems as an adaptation strategy to climate change, 

iii. assess climate variability and tree protection impacts on crop production in 

the agroforestry system, 

iv. model carbon sequestration potential in agroforestry system. 

1.4.Research Question 

i. What are the LULC patterns in the riverine area of Pendjari Reserve from 1998 

to 2020? 

ii. What are farmers preferred tree species and associations in agroforestry system 

in the study area?  

iii. Do climate change and tree conservation affect crop yield in agroforestry 

systems? 
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iv. Does carbon sequestration potential vary in agroforestry systems? 

1.5.Dissertation outline 

There are seven (7) chapters in the dissertation. Background information, the problem 

statement and justification, the objectives and the study questions are presented in 

Chapter 1. The second chapter presents the literature review, defining keywords used 

in the study and summarizing previous research relevant. In Chapters 3, 4, 5, and 6, 

the study presents the first, second, third, and fourth objectives, respectively, 

presenting introduction, methodology, results discussion findings, and conclusions in 

a manuscript format. Finally, Chapter 7 provides the conclusion and recommendations 

of the study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Ecosystem and Agroecosystem Service 

The concept of ecosystem services has established a link between ecosystem 

functioning and the benefits they offer humans, providing a valuable tool for 

integrating environmental considerations into decision-making processes (Zhang et 

al., 2022). The Common International Classification of Ecosystem Services (Grima et 

al., 2023) defines ecosystem services as climate regulation. The Millennium 

Ecosystem Services (Carpenter et al., 2009) describe them as the goods and services 

nature provides that contribute to human wellbeing. A variety of categories are covered 

by these services, which include provisioning services (such as food and fuel), 

regulatory services (including flood control and carbon sequestration), and cultural 

services (such as aesthetic value and outdoor recreation) (Rippy et al., 2022). 

Ecosystem services are the advantages people obtain from ecological systems, directly 

or indirectly (Vallecillo et al., 2019). The ability to model, measure, map, and value 

ecosystem services is critical for successful natural capital management and 

policymaking. However, rising public demand and global environmental changes 

jeopardize ecosystems' ability to offer these services (Li et al., 2022). Many ecosystem 

services are declining, and this trend will likely worsen in the following few years (Cui 

et al., 2022). It is vital to highlight that an increase in supplying services may come at 

the price of other ecosystem services, and unsustainable management methods may 

jeopardize their future provision. In the past decade, researchers have significantly 

advanced in understanding how ecosystems generate services and quantifying the 

economic value associated with these services (Cao et al., 2021). The sustainability of 

agroecosystems and their contribution to ecosystem services are receiving more 

attention in light of their effects on monetary values and human well-being (Bethwell 
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et al., 2021). Given the complex interrelationships between the environment, 

agriculture, and society, identifying the linkages between agricultural ecosystems and 

ecosystem services can be challenging (Vidaller et al., 2022). Soil preservation, food 

production, and aesthetic value are essential ecological services agroecosystems offer. 

Additionally, they benefit from the ecosystem services provided by non-agricultural 

ecosystems, such as pollination. The management practices implemented within 

agricultural systems can impact the provision of ecosystem services in non-agricultural 

systems. Both climate change and land use change are recognized as major 

environmental issues on a global scale (Nepstad et al., 2013). Agriculture, closely 

intertwined with social, economic, and cultural activities, presents various 

opportunities to tackle these challenges. 

2.2 Agroforestry system 

Multiple definitions of agroforestry vary. Agroforestry integrates trees, crops, and 

livestock within a land management system, providing a wide array of ecosystem 

services and bridging the gap between agriculture, forestry, and livestock (Paudel & 

Shrestha, 2022). According to Watling et al., (2017), agroforestry has been practiced 

in the Amazon forests for over 600 years, involving the temporary clearance of forests 

to cultivate palm trees, maize, squash, and establish settlements. Pantera et al., (2021) 

define agroforestry as integrating perennial forests with crops to optimize land use 

intensively. Both climate change and land use change are recognized as major 

environmental issues on a global scale (Nepstad et al., 2013). Integrating agroforestry 

enhances land productivity and resource utilization efficiency and contributes to vital 

ecosystem services. There are four main types of agroforestry systems identified 

(Dhakal et al., 2012): 
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i. Farmland tree systems: These include both planted and retained trees on 

farmland, serving multiple purposes such as food production, income 

generation, soil improvement, and environmental enhancement. They also 

provide shade during harsh weather conditions; 

ii. Parkland systems: These systems feature well-established scattered trees like 

Parkia biglobosa, Vitellaria paradoxa, Tamarindus indica, and Azadirata 

indica on cultivated and recently fallowed land; 

iii. Alley cropping: This agroforestry system involves cultivating annual crops in 

strips between rows of trees or shrubs; 

iv. Windbreakers and shelter belts: These systems utilize specific tree species, 

including Azadirachta indica, Anacardium occidentale, Mangifera indica, and 

Khaya senegalensis, primarily to control wind erosion. 

Agroforestry systems can further be classified as: 

i. Agro-silvicultural: These resemble shifting cultivation practices, but instead 

of fallow vegetation, economic trees with gestation periods equivalent to the 

fallow period are planted; 

ii. Silvopastoral:  This system combines animal production with trees and 

pastures; 

iii. Mixed farming: This system represents the traditional agroforestry practices 

commonly employed by farming communities. 

2.3 Carbon sequestration, climate change mitigation and adaptation in 

agroforestry system 

The Kyoto Protocol of 1997 established targets for industrialized countries (Annex B) 

to limit the emissions of six greenhouse gases (CO2, CH4, NO2, and fluorinated gases) 
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from 2008-2012. The framers explicitly offered Annex B countries a choice to partially 

fulfill their reduction commitments by actively engaging in reforestation, forest 

management, and other agricultural land management practices. These activities, 

collectively called land use, land cover change, and forest management measures 

(LULUCF), offer avenues to fulfill their targets. Reducing atmospheric CO2 can 

contribute to stabilizing atmospheric CO2 concentrations and mitigating climate 

change. Assessing the spatial distribution of biomass and the amount of carbon stock 

is necessary for carbon balance calculations (Sun et al., 2020). Above-ground biomass 

plays a significant role in biomass carbon and is crucial for carbon inventory in most 

mitigation projects conducted under the Kyoto Protocol (Meragiaw et al., 2021). 

However, increasing carbon emissions and global warming raise interest in estimating 

ecosystem carbon stocks. In mitigating climate change, ecosystems are essential in 

absorbing carbon from the atmosphere. Czcz et al., (2018) define ecosystem services 

as climate control, and indicators include carbon storage and sequestration. Carbon 

sequestration, recognized as an effective strategy for mitigating climate change, has 

long been associated with afforestation and reforestation of degraded natural forests 

(Nunes et al., 2020). Agroforestry, in particular, offers distinct advantages in this 

regard. Integrating trees within agricultural systems not only reduces reliance on 

natural forests for fuel but also provides additional benefits such as livestock forage, 

enhanced soil fertility, erosion control, prevention of waterlogging, regulation of 

stream and river acidification and eutrophication, and increased local biodiversity 

(Jinger et al., 2023). With variations caused by environmental and socioeconomic 

conditions, agroforestry systems in humid tropical climates can store over 70 Mg ha-

1 of carbon in the top 20 cm of soil (Yasin et al., 2021). According to the tree species 

chosen and the region, agroforestry's ability to trap carbon differs (Siarudin et al., 
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2021; Ma et al., 2019). The quantity of carbon stored within agroforestry systems is 

also greatly influenced by the design and operation of various system components 

(Sollen-Norrlin et al., 2020; Komal et al., 2022). 

However, with increasing carbon emissions and global warming, there is a growing 

need to accurately assess carbon stocks within ecosystems (Enríquez-de-Salamanca, 

2022). By absorbing carbon dioxide from the atmosphere, ecosystems serve a critical 

role in preventing climate change, and climate control, including carbon storage and 

sequestration, is acknowledged as an essential ecosystem service (Nunes et al., 2020; 

Baskent, 2020). Degraded natural forests' regeneration and afforestation have long 

been recognized as viable strategies for reducing climate change (Ma et al., 2019). 

Agroforestry systems contribute to these efforts by reducing pressure on natural 

forests, providing livestock forage, enhancing soil fertility, preventing erosion, 

controlling waterlogging, addressing water body acidification and eutrophication, and 

promoting local biodiversity (Jinger et al., 2023). 

It is crucial to examine the specific type of agroforestry system and its influence on 

trees' carbon source or sink function. According to Fahad et al., (2022), systems that 

promote the association of trees and crops act as net sinks, while systems that combine 

crops, trees, and animals have the potential to become sources of greenhouse gases. 

Agroforestry systems provide synergies between adaptation and mitigation measures, 

with a projected technical mitigation potential of 1.1–2.2 Pg C in terrestrial ecosystems 

over the next 50 years (Roe et al., 2021). However, inconsistent methodologies and 

inherent variability in estimating carbon storage potential in agroforestry systems have 

made comparisons challenging (Panwar et al., 2022). Further research is needed to 

identify specific agroforestry practices that show potential for carbon sequestration 

(Tan & Kuebbing, 2023). Global carbon storage varies across ecoregions and different 
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agroforestry systems is showing in Table 2.1 (Murthy et al., 2013; Agbotui et al., 

2023). 

Table 2.1 Carbon storage potential of agroforestry systems in different ecoregions of 

the world; Source: Murthy et al., (2013) 

Continent  Ecoregion System Potential (Mg C 

ha-1) 

Africa Humid tropical high Agrosilvicultural 29-53 

South America Humid tropical low dry 

lowlands 

39-102 

39-195 

Southeast Asia Humid tropical dry 

lowlands 

12-228 

68-81 

Australia Humid tropical low Silvopastoral 28-51 

North America Humid tropical high 

humid tropical low dry 

lowlands 

133-154 

104-198 

90-175 

North Asia Humid tropical low 15-18 

 

2.4 Land use land cover change 

The loss of wetlands and the accompanying ecological services during the 20th century 

was caused mainly by changes in land use (de Silva et al., 2023). One main factor 

driving global change affecting human well-being is the shift in land cover (Hussain 

et al., 2022). Altering the composition or condition of land cover has implications for 

climate (Thiam et al., 2022). Land serves as a space for various human activities, and 

its use, known as "land use," varies depending on its intended purposes, such as food 

production, shelter provision, recreation, material extraction and processing, and the 

inherent biophysical characteristics of the land itself. Intensifying crop production in 

fertile regions and abandoning farming in less favorable areas have global effects on 

natural and cultivated ecosystems (Djihouessi et al., 2022). Understanding how it 

varies is essential for land and subsurface studies, which refer to the biophysical state 

of the Earth's surface as "land cover." Previous research mainly concentrated on the 

tangible consequences of land cover change. Nevertheless, because of land use and 
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cover changes, scientists now understand how land surface processes contribute to 

climate change. 

Furthermore, Dimobe et al., (2022) analyzed soil degradation, while Assogbadjo et al., 

(2022) looked at the ability of biological systems to support human requirements. 

Ganglo (2023) assessed the global effects of land cover change on biotic diversity.  

According to the literature on land use and land cover change, significant agricultural 

land use changes continue to occur globally. Twenty percent of cropland, 19 percent 

of grassland, and 27 percent of rangeland experienced persistently deteriorating 

productivity trends between 1998 and 2013 (Kombienou et al., 2022).  Population 

growth, particularly the increasing demand for food, fuel, and shelter, coupled with 

rising affluence and changes in food consumption patterns towards land-intensive 

commodities like meat and dairy products, contribute to these changes (Elliot et al., 

2022). Recent research indicates that the expansion of agriculture in West Africa is 

causing the loss of savannas and forests (Radwan, 2021). However, evaluating changes 

in land use and land cover necessitates a more thorough examination of the underlying 

mechanisms. Modelling the system, developing, and verifying the connections 

between driving forces and land-cover change (Biaou et al., 2022) can better 

comprehend these change processes. 

2.5 Climate change 

One of the most critical global issues is climate change, which seriously threatens the 

economy and ecology (Bhattacharya, 2023). The repercussions of climate change are 

particularly severe for developing nations in Africa (Djihouessi et al., 2022). The fact 

that these resource-constrained nations face the burden of climate change while also 

finding it difficult to adapt is depressing (Gnansounou et al., 2022). According to 

(Opute and Maboeta 2022), many plant species thrive at an ideal temperature of 33°C. 
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However, higher atmospheric CO2 concentrations may offset any potential increases 

in agricultural production as decreased productivity at higher temperatures could come 

into play. 

Furthermore, the anticipated rise in the frequency of extreme weather events poses a 

significant global concern for agricultural output (Mounirou, 2022). Enhancing crop 

modeling under increasing temperature and changing climate conditions and 

improving crop yield estimates are essential for developing effective adaptation 

strategies (Minoli et al., 2022). Climate shifts severely impact crop production 

worldwide (Pickson & Boateng, 2022). Carr et al., (2022) suggest that climate change 

may have already slowed the growth of food yields by 1-2% per decade during the 

twentieth century. However, it is essential to note that different climatic factors 

influence agricultural output differently. 

In Benin, maize, sorghum, cowpea, and cotton are the most significant arable crops 

(Rege & Sones, 2022). These crops are primarily cultivated for food purposes, with 

maize being a crucial crop selected for intensive development by the government of 

Benin (Akpa et al., 2023). The northern Guinea Savannah region is home to the opaque 

sorghum beer known as tchoukoutou in Benin and by other names in other parts of 

West Africa (Kohnert, 2020). Millions of West Africans depend heavily on cowpea, an 

important grain legume (Anago et al., 2021). Its leaves and grains are highly nutritious, 

with protein contents ranging from 27 % to 43 % and 21 % to 33 % in grains 

(Mekonnen et al., 2022). A significant portion of Benin's national economy, 14% of 

the GDP, and 30 % to 40 % of export revenue come from the cotton industry (Chabi 

Simin Najib et al., 2022). Temperature fluctuations beyond the optimal range for 

maize, cowpea, sorghum, and cotton significantly impact yield variability compared 

to temperature variations below the optimal range and soil water deficit (Mogale et al., 
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2022). Additionally, water scarcity is a significant factor contributing to changes in 

agricultural output across the country (Hejazi et al., 2023). Observed weather 

fluctuations can explain more than 50 % of the variation in rice and soybean production 

in countries like Japan, South Korea, and Argentina, surpassing the impact of 

fluctuations in irrigated land (Hejazi et al., 2023).  

Fluctuations in weather patterns play a significant role in explaining over 50 % of the 

variations observed in rice and soybean production in countries such as Japan, South 

Korea, and Argentina. The sensitivity of these crops to weather conditions surpasses 

the influence of fluctuations in irrigated land. 

2.6 Modelling approach 

2.6.1 Ecosystem Services modelling 

Yang et al., (2022) employed an Invest analysis to demonstrate that land management 

scenarios prioritizing regulatory services such as carbon sequestration, flood control, 

and water quality had the highest levels of biodiversity. Cimon-Morin et al., (2013) 

highlighted the positive connection between biodiversity and the delivery of services, 

emphasizing the need for biodiversity-focused initiatives. However, they found that 

safeguarding the benefits alone did not achieve biodiversity conservation goals. 

Similarly, Lanzas et al., (2019) observed in their study that conservation efforts for 

biodiversity increased service supply, even when they aimed to protect at least 30% of 

vital ecosystem service flows by lowering biodiversity objectives. It is crucial to 

understand and effectively communicate the trade-offs inherent in management 

practices driven by different goals (Green & Healy, 2022). The concept of emitters 

paying to prevent deforestation in other regions as a win-win policy underscores the 

importance of embracing the complexities of trade-offs among social and ecological 

actors for sustained conservation success (Wassenius & Crona, 2022). Jiang et al., 
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(2022), in a meta-analysis of ecosystem service case studies, argued that considering 

trade-offs from the project's inception increases the likelihood of win-win outcomes 

compared to programs striving for an exclusive "win-win" scenario. The applicability, 

data requirements, costs, and usability of the many approaches and software tools 

available for calculating the value of ecosystem services vary (Chalkiadakis et al., 

2022). The supply of ecosystem services can be calculated for various land use 

scenarios, including carbon sequestration models for 2020, 2035, and 2050, using the 

Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) software (Jiang 

et al., 2022). 

2.6.2 Land use land cover change 

Summarized is the state of land-use modelling, with a particular emphasis on the 

usability, applicability, and accessibility of modelling tools, especially concerning 

land-use change as a driver of changes in carbon sequestration. To analyse the effects 

of land-use change and degradation on biodiversity and environmental services, it 

attempts to help them make well-informed judgments regarding the capacity 

requirements and possibilities for using land-use models. Examining future effects on 

ecosystem services, weighing the trade-offs between various land-use demands, and 

guiding decision-making processes are possible thanks to land-use models. Accurately 

predicting future changes is difficult due to the complicated relationships between 

ecosystem services provided by ecosystems and land use.  However, these modelling 

efforts can provide valuable information for prioritizing conservation actions, 

particularly on larger scales. Numerous land-use models operate at different scales, 

from local to global, and provide varied levels of precision. Geographic land-use 

models widely classify various forms of land use based on the land's biophysical, 

infrastructural, and suitability (Adugna et al., 2022). 
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Table 2.2 Description of Invest model Land use and their output in terms of 

ecosystem services 

reference Location Land use model Ecosystem 

Services 

model 

Ecosystem services 

included 

Nelson et 

al.(2010) 

Global The estimated 

change in 

farmland and 

urban land is 

distributed 

spatially. 

InVEST Carbon, habitat, and  

water 

Shoyama 

& 

Yamagata 

(2014) 

Japan Dyna-CLUE InVEST Habitat quality, 

carbon emissions, 

wood, and water 

Lawler et 

al. 

(2014) 

United 

States 

Econometric LU 

model 

Models of 

soil carbon 

sequestration, 

timber 

output, and 

behavioral 

affinities 

Habitat, food 

production, and 

carbon 

Geneletti 

(2013) 

Chile IDRISI Land 

Change Modeler 

InVEST wood production, 

carbon 

sequestration, 

habitat preservation, 

water purification, 

and soil 

conservation 

Polasky et 

al. (2011) 

Minnesota, 

USA 

Maps depicting a  

a recent shift in 

land cover 

InVEST Carbon, water 

quality 

Swetnam et 

al. (2011) 

Eastern 

Arc 

Mountains, 

Tanzania 

Rule-based land-

cover maps 

Rule-based Carbon 

Heubes 

et al. 

(2012) 

Northern 

Benin 

LandSHIFT Species 

distribution  

Model 

(Biomod) 

NTFP 

Van 

Soesbergen 

&Arnell 

(2015) 

East 

Africa, 

Mekong, 

Andes 

LandSHIFT Ecosystem 

Functions 

(Kienast et al. 

2009) 

Bundled 

provisioning and 

regulating services 

Zulian et 

al. 

(2014) 

EU EU-CLUE 

Scanner 100 

ESTIMAP 

framework 

Crop pollination, 

coastal protection, 

outdoor recreation, 

air quality regulation 
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CHAPTER 3: SPATIAL-TEMPORAL LAND USE LAND COVER CHANGE 

FROM 1998 TO 2020 IN THE RIVERINE AREA OF PENDJARI 

RESERVE IN BENIN 

Abstract 

Changes in land use and land cover contribute to biodiversity loss and affect human 

well-being. Understanding this occurrence in the riverine area of Pendjari Reserve, for 

which anthropogenic activity has disturbed for thousands of years and is now 

acknowledged as an important biodiversity hotspot in West Africa, is crucial. The 

researchers used Landsat images from 1998, 2007, 2013, and 2020 to assess changes 

in land use and land cover (LULC) by employing the Random Forest classification in 

the ArcGIS program. Additionally, LULC projections for 2035 and 2050 was simulate 

using Terset 18.21. The results revealed significant changes in LULC patterns. From 

1998 to 2020, the wooded savannah experienced consecutive decreases of 4.7 %, 8 %, 

and 11.5 % in 1998-2007, 2007-2013, and 2013-2020, respectively. On the other hand, 

shrub savannah increased by 10.5 % and 3.88 % during 1998-2007 and 2007-2013 

before a decline of 1.17 %. Cropland initially decreased by 6.66 % from 1998-2007 

but exhibited increases of 4.33 % and 11.1 % from 2007-2013 and 2013-2020, 

respectively. Fallow land experienced a rise of 0.77% and 0.83% for 1998-2007 and 

2013-2020, followed by a slight decrease of 0.7 % from 2007-2013. Between 1998 

and 2020, the settlement area expanded. Furthermore, there is a projection for the 

settlement area to decrease, emphasizing the importance of an African partnership for 

better land management in this study area. 

Keywords: Land degradation, climate change, ecosystem, and human activities. 



20 

3.1 Introduction 

Barbier and Hochard (2018) stated that land degradation is one of today's most urgent 

socioeconomic and environmental issues. The association between land degradation 

and the severity and prevalence of poverty in the population was highlighted in a 

special report by the Intergovernmental Panel on Climate Change (IPCC) (Shukla et 

al., 2019). In drylands regions, a vicious cycle exists between land degradation and 

poverty due to population increases (van der Esch, 2017). Human activities, 

particularly the accelerated process of global urbanization, have led to rapid changes 

in land use and land cover (Rimal et al., 2019; Minelli et al., 2017). 

Land degradation can alter ecosystems' structure and function in the short term, 

impacting ecosystem supply (Zhang et al., 2020; Martinez-Harms et al., 2015). For 

example, societal development has disrupted the balance between ecosystem supply 

and demand. As a result, future land planning and the integration of ecosystem 

assessments have gained importance as research topics (Cortinovis & Geneletti, 2018). 

Human activities threaten the world's ecosystems, which are under increasing pressure. 

Agriculture, while essential for sustaining the human population with food, disrupts 

ecosystem functioning and is a critical driver of global climate change affecting 

various  

human-environment systems. Land cover composition and condition changes 

influence climate, biogeochemical cycles, and energy fluxes (IPCC, 2022). 

Deforestation estimates for tropical regions, particularly West Africa, are scarce and 

uncertain (Lambin et al., 2003). Bekasova (2020) states that by 1990, only 2% to 3% 

of the original forest resembling its natural condition had been preserved in various 

distinct biomes, including tropical and sub-tropical dry broadleaf forests. The 
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conversion of natural habitats to agriculture, pastures, plantations, built areas, and 

infrastructure continues due to population growth and increased resource demand. This 

habitat degradation or loss severely affects populations and biodiversity, as habitat loss 

remains the greatest threat to biodiversity (Hanski, 2011). 

In West Africa, ecosystems have suffered, leading to significant declines in wildlife 

populations (Janssens et al., 2022). However, researchers have recognized Pendjari 

National Park in Benin as a successful conservation area (Bauer et al., 2020). Given 

that Pendjari National Park is the largest surviving protected savannah ecosystem in 

West Africa, Carvalho (2020) notes that it is a refuge for several threatened species. 

The vegetation within the park is highly dynamic and sensitive to land-use changes 

(Ogato et al., 2021), with wildfires, grazing, slash-and-burn agriculture, and irregular 

rainfall being the dominant forms of disturbance affecting vegetation structure and 

physiognomy (El Bilali, 2021). 

Analysis of land use and land cover change is essential for addressing issues in various 

areas, including changes to environmental services (Gilani et al., 2022) and urban 

growth (Deng & Srinivasan, 2016). Understanding the relationships and interactions 

between natural and anthropogenic activities is vital, and change detection is essential 

in this regard (Wang et al., 2021). The effects of urban growth on land use and land 

cover have been studied using change analysis (Rahimi, 2016), as have the effects of 

natural disasters and insect infestations on vegetation cover (Habibur-Rahman et al., 

2022). Cross-correlation analysis, image differencing, post-classification comparison 

(PCC), and image fusion-based land use change detection are some of the advanced 

techniques used by Geographic Information Systems (GIS) and remote sensing to 

observe changes in land use and land cover (Birhanu et al., 2019). This study aims to 
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(i) assess the trends of land use change from 1998 to 2020 and (ii) project land use and 

land cover changes for 2035 and 2050 

3.2 Material and Methods 

3.2.1 Study Area 

The study was conducted in the Pendjari Biosphere Reserve's riverine region, located 

in the Republic of Benin's northwest (10.30 to 11.30 °N; 0.50 to 2.00 °E). The Pendjari 

Biosphere Reserve (BRP) has two zones that are included in the study: the Zone of 

Controlled Occupation, where settlements and all agricultural activities are allowed, 

and the Hunting Zone, which permits medium-impact activities like the controlled 

harvesting of non-timber forest products and trophy hunting by tourists (Janssens et 

al., 2022) (see Figure 3.1). About 340 km2 is covered by the Zone of Controlled 

Occupation, while 1,750 km2 is the Hunting Zone (Sinsin et al., 2002). The BRP is 

made up of two main parts that together make up its 4,661.4 km2 total area: the core 

zone, also known as the National Park of Pendjari (2,660.4 km2), and the hunting 

zones, which include the hunting zones of Pendjari (1,750 km2) and Konkombri (251 

km2) and are spread across four neighbouring countries (Benin, Burkina Faso, Niger, 

and Togo). The Materi and Tanguieta central administrative districts are part of the 

Reserve's geographic division. The Pendjari River and the Atacora mountain range 

form its northern, western, and eastern borders. The dry season in this Sudanese 

ecosystem lasts from October to May, and it is followed by the wet season, which lasts 

from June to September and has yearly rainfall between 800 and 1000 mm. The 

Reserve's vegetation is made up of open grasslands, tree savannahs, and smatterings 

of dry and gallery forests. Large carnivores and other animal species find refuge in 

these diversified settings (Sogbohossou et al., 2014). The mean annual temperature is 

27°C. The Reserve's boundaries are formed by the Tanguieta Porga and Tanguieta 
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Batia main roads. The Berba, Gourmantche, and Wama make up the three main ethnic 

groups in the area. In addition to the local farmers, Fulani pastoralists live in the 

majority of the towns; there are typically one to eight camps per town. 

 

Figure 3.1 Map of riverine Pendjari Biosphere Reserve in the northern part of Benin 

3.2.2 Land use change analysis 

3.2.2.1 Data Pre-processing and Classification 

The Pendjari hunting zone covers two scenes with path/row (193/052 and 193/053) 

Two sets of Landsat 7 ETM+, Landsat 8 OLI, and Landsat 5 TM data with 30 m 
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resolution (Figure 3.2) were downloaded from the United States Geological Survey 

(https://earthexplorer.usgs.gov). 

 

Figure 3.2 Screenshot of the two scenes image of Landsat that cover the study area 

Data were acquired in November 1998, 2007, 2013, and 2020. The study period was 

chosen based on images with a cloud cover of less than 10% and the availability of 

two scenes for each Landsat (Table 3.1). 
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Table 3.1 Satellite images of the study area 

Acquisition 

dates 

Scene Path/Row Cloud 

cover (%) 

Sensor type Spatial 

resolution (m) 

01/11/2020 1 193/052 0.0 OLI/TIRS 30×30 

01/11/2020 2 193/053 0.0 OLI/TIRS 30×30 

14/11/2013 1 193/052 0.0 OLI/TIRS 30×30 

14/11/2013 2 193/053 5.92 OLI/TIRS 30×30 

06/11/2007 1 193/052 0.0 ETM+ 30×30 

06/11/2007 2 193/053 0.0 ETM+ 30×30 

21/11/1998 1 193/052 6.0 TM 30×30 

21/11/1998 2 193/053 3.0 TM 30×30 

 

The pre-processing steps involved performing atmospheric correction, mosaic, and 

gap fill. The two scenes were mosaicked and clipped them to the study area. Five major 

land classes, namely wooded savannah, shrub savannah, fallow, cropland, and 

settlement, were used as in the classification scheme (Table 3.2). 

Table 3.2 Major land use land cover types used and their descriptions 

Number of 

Land use 

LULC Types  Description 

1 Wooded savannah Areas that encompass dense trees, such as 

deciduous forests, evergreen forests, and mixed 

forests. 

2 Shrub savannah The upper story typically presents forms of 

vegetation with a completely grassy ground 

cover with sporadic trees, bushes, or palms. 

3 Cropland  This group includes irrigated regions, 

commercial farms with a focus on sugarcane 

plantations and sesame farming, as well as areas 

used for perennial and annual crops. 

4 Follow The secondary succession of abandoned 

farmland facilitates the rehabilitation of land for 

resumed cropping in regions where shifting 

cultivation is practiced. 

5 Settlement Built-up, residential area 

 

Both the unsupervised and supervised classifications were used for this study. The 

unsupervised classification was conducted to gain insights into the general land cover 
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classes of the study area. To train the model, we performed supervised classification 

using the random forest (RF) machine learning algorithm in QGIS software version 

3.16. showing in the screen shot (Figure 3.3). 

 

Figure 3.3 Screenshot of model training algorithm in QGIS 

Between 5th November 2021 and 15th December 2021, land cover data has collected 

from eight villages namely (Porga, Dassari, Kani, Sepounga, Nanebou, Tchanwassaga, 

Sangou, and Batia).  Three quadrants (30 m×30 m) were strategically placed in each 

land class per village, resulting in a total installation of 120 quadrats. Using a handheld 

Geographical Positioning System (GPS), data was collected from ten sampling points 

per each quadrat, accumulating a dataset of one thousand two hundred (1200) ground 

truth points. The X and Y coordinates were extracted from the ground truth data from 

the GPS and utilized Microsoft Excel software to transform it into CSV format. The 

resulting coordinate data was exported into QGIS and converted into a shapefile. The 

researchers used the collected sample points were used to establish a training site for 

the land cover classification 2020. The accumulated ground truth points derived from 
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the samples into 80% for model training and 20% for validating the accuracy of the 

satellite-derived land cover classes (Figure 3.3). 

The accuracy evaluation establishes how accurately the categorized image depicts the 

actual scene. It is essential to evaluate the accuracy of the classification findings since 

land-use maps created by image classification frequently contain inaccuracies. The 

researchers develop trust in the conclusions and subsequent change detection through 

this evaluation (Girma et al., 2021). To assess the accuracy of the generated land cover 

maps for 2020, the remaining 20% of the field data were used for sample validation. 



28 

 

Figure 3.4 Flowchart of the steps implemented in QGIS to obtain a land cover map 

Validated the Landsat-derived land cover map for 1998, 2007, and 2013 actively using 

a dataset from Google Earth imagery. Sample points were created from Google Earth 

Pro at random and uniformly spaced intervals within each land cover class to 

determine the confusion matrix and assess the overall classification accuracy. 

Additionally, the satellite-derived land cover classes' Kappa coefficient and total error 

were estimated. 

   USGS 

Landsat ETM+, TM and OLI 

Atmospheric correction 

Mosaic and gap fill 

Clip to study area 

Reference sample 

Training sample    validation sample 

Random 

forest 

classification 

Classified maps 1998, 2007, 2013, 2020 

Accuracy assessment: overall accuracy, 

confusion matrix, kappa index 

Change analysis 

NDVI 

Generation of simulated 

map 2020 and model 

validation using LCM tools 

in Terrset 

 

Transition table creation for 

2035, 2050 using LCM tools 

 in Terrset 

Future LULC map 

generation (CA-

Markov model) 

Projected map 

of 2035, 2050 
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The Normalized Difference Vegetation Index ((RED IR) / (RED + IR)) was calculated 

and added to the composites to improve the classification outcomes. The processes 

shown in Figure 3.4 were used in this study's data collection and processing for 

remotely sensed information. The overall accuracy (OA) and the Kappa index (K), as 

specified by Equations (3.1) and (3.2), were used to assess the classification accuracy 

(Yangouliba et al., 2022) as: 

𝐴 =
∑ 𝑥𝑛

1

𝛴1
𝑛𝑋′…………………………………………………………………………[3.1] 

where x is the number of correctly classified samples, and X is the total number of 

samples 

𝐾 =
𝑁 ∑ 𝑥𝑖𝑖𝑟

𝑖=1  −∑ (𝑥𝑖+𝑋𝑥+1)𝑟
𝑖=1

𝑁⋅
2 ∑ (𝑥𝑖+𝑋𝑥+1)𝑟

𝑖=1 

 …………………………………………………….[3.2] 

where r denotes the error matrix's number of rows and columns, N is the total number 

of observations (pixels), xii indicates the observation in row I and column I, Xi denotes 

row I marginal total, and Xi denotes column I marginal total. Additionally, the LULC 

maps from 1998, 2007, 2013, and 2020 had their confusion matrices computed. 

Knowing the origins of misclassification for a LULC unit is possible, thanks to the 

confusion matrix (Liu et al., 2020). 

3.2.2.2 Change Land Use Land Cover 

The Land Change Modeler (LCM) model assessed changes in land use and land cover 

(LULC). The main results from the LCM in this part are the quantitative evaluations 

of several LULC categories by each LULC. Change analysis was conducted utilizing 

the classified maps from 1998, 2007, 2013, and 2020 and the anticipated LULC maps 

for 2035 and 2050 (Leta et al., 2021) to show the pattern of changes. Using the 

categorized photos as a starting point, numerical data were retrieved to assess the 

LULC dynamics across each research period. The images from related eras were cross-
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tabulated and compared to identify the shifting pattern. A probability matrix was 

produced using the LCM for the intervals of 1998–2035. For the LULC categories, the 

change percentage was also estimated (Yangouliba et al., 2022), and the change rate 

(Aniah et al., 2019) Equations (3.3) and (3.4) was used to calculate the number of 

changes that occurred for various LULC categories between the periods. 

  Percentage of change =
Ay−Ax

𝐴𝑥
 *100 ……………………………………….…. [3.3] 

       Rate of change =
Ay−Ax

𝑇
 ………………………………………………………[3.4] 

where Ax is the LULC area of an earlier land cover image, Ay is the LULC area (ha) 

of a later land cover image, and T is the time interval between Ax and Ay in years. 

3.2.2.3 LULC Change prediction 

3.2.2.3.1 LULC Change Prediction 

The researchers used the Land Change Modeler (LCM) contained in the TerrSet Geo-

spatial Monitoring and Modeling System (TGMMS) software to forecast future land 

use and land cover (LULC) for a given year based on classified historical satellite 

photos. According to Ayele et al., (2019), the LCM quantifies the land cover change 

between earlier and later LULC by calculating the relative numbers of transitions. It 

also identifies the variables that would affect future LULC change. It has been put 

through a lot of testing and used to simulate various land cover categories, forecast 

change, and look at implications for biodiversity (Roy et al., 2016). By considering 

losses and gains for each LULC category, the module adjusts the LULC assessment. 

The LCM produces a complex projection map and a soft projection map. A distinct 

land use category is assigned to each pixel on the complex projection map for the 

projected year (Kusiima et al., 2022).  The soft projection map, which gives each pixel 

a value between 0 and 1, signifies vulnerability. According to Gibson et al., (2018), a 
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lower number denotes a reduced exposure to change, whereas a more significant value 

indicates a higher susceptibility to change. 

The trend in variations of land use and land cover (LULC) changes for 1998, 2007, 

2013, and 2020 to predict future changes in the research area were estimated. The 

projected land-use changes were determined by analyzing historical data, current 

trends, and expected future changes. To simulate future changes over time based on 

past changes, the TerrSet model utilized CA-MC, a stochastic modelling technique 

(Fathizad et al., 2020). By employing the Transition Probability Matrix (TPM), the 

model forecasts the spatial arrangement of various LULC categories and situations 

(Wang et al., 2021). 

The Bayes equation (Equation 3.2), which assesses the change by contrasting the initial 

(T1) and subsequent (T2) land cover conditions, is used by the Markov matrix model 

to predict LULC change. 

   S(t+1) = Pij*S(t) …...    …………………………………………………………[3.5] 

         P11     P12        P1n 

 Pij=  P21     P22 P2n   …………………………………………………...[3.6] 

Pn1      Pn2 Pnn 

  where 0 ≤ Pij < 1 and ∑ 𝑃𝑖𝑗 = 1𝑛
𝑗=1 , (i, j = 1, 2, . . . , n). The following equation 

expresses the cellular automata model:  

S(t,t+1) = f[s(t),N]……………………………………………………………….[3.7] 

Where "S(t) and S(t+1) represent the system status at two different times, t and t + 1 

respectively. N denotes a cellular field, F represents the transformation rule of cellular 

states in local space, S represents a set of limited and discrete cellular conditions, and 
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Pij represents the transition probability matrix in a specific form". The CA-Markov 

considers limitations and other criteria to create a single map of appropriateness (Singh 

et al., 2018). The model establishes the probability transition matrix and transition 

probability zones. The probability transition matrix contains the chance of a specific 

LULC class transitioning to another category. The pixel number anticipated to change 

from each LULC class during the designated period is included in the transitional 

region matrix. 

3.2.2.3.2 Model validation 

Model validation was carried out to assess the projected data's precision. The kappa 

coefficient was obtained and used to validate the model after simulating the 2020 land 

use and land cover change (LULCC) conditions using the 1998, 2007, 2013, and 2020 

LULCC maps. By assessing the degree of agreement between the modeled map and 

the 2020 reference map using the Kappa Index of Agreement, the correctness of the 

generated 2020 LULCC map was evaluated. 

The Kappa indices, including Kappa for no information (Kno), Kappa for location 

(Klocation), and Kappa for standard (K Standard) as expressed in Equations (8) to 

(10), were used to determine the overall success rate of the results. A Kappa coefficient 

(K) between 0.75 and 1 (0.75 ≤ K ≤ 1.0) indicates a high level of agreement, while a 

Kappa coefficient between 0.5 and 0.75 (0.5 ≤ K < 0.75) falls within the medium 

agreement range. However, if the Kappa coefficient is less than 0.5 (K < 0.5), it 

indicates a low level of agreement. Once successful Kappa values were obtained, we 

employed the CA-Markov model to simulate the LULCC maps of 2035 and 2050. In 

the equations (9) and (10), the Kappa variations' summary statistics are provided per 

the methodology outlined by (Omar et al., 2014). 
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𝑘𝑛0 = {
𝑀(𝑚)𝑁(𝑛1)

𝑃(𝑝)
− 𝑁(𝑛) …………………………………………… ………[3.8] 

  𝑘𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = {
𝑀(𝑚)𝑁(𝑛1)

𝑃(𝑝)
− 𝑁(𝑛)     ……………………………………………. [3.9] 

𝑘𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = {
𝑀(𝑚)𝑁(𝑛1)

𝑃(𝑝)
− 𝑁(𝑛)  …………………………………………..…[3.10]   

where the definitions of no information (N(n)), medium grid cell-level information 

(M(m)), and perfect grid cell-level information (P(p)) were used.  

3.3 Results 

3.3.1 Accuracy of land use and land cover classification 

The classification was done on the Landsat land use and land cover change (LULCC) 

photos from 1998, 2007, 2013, and 2020. The outcomes of this classification are 

depicted in (Figure 3.2). Various metrics were employed to evaluate the accuracy of 

the LULCC maps developed for this period, including overall accuracy, Kappa 

statistics, producer accuracy, and user accuracy. The LULCC classified images for 

1998, 2007, 2013, and 2020 exhibited overall Kappa statistics of 84.3 %, 85.61 %, 

88.68 %, and 94.4 3%. Moreover, the researchers determined the overall accuracy for 

these same years to be 90.99 %, 92.15 %, 93.19 %, and 96.34 %, as presented in (Table 

3.2 Major land use land cover types used and their descriptions). 

Table 3.3.Accuracy assessment of land cover from 1998, 2007, 2013, and 2020. 

1998 LULCC 

Types 

Wooded 

savannah 

Shrub 

savannah 

Cropland Fallow Settlement Row 

total 

 Wooded 

savannah 

41 2 3 0 0 46 

Shrub 

savannah 

0 37 2 1 0 40 

Cropland 0 0 35 1 0 36 

Fallow 0 0 0 32 0 32 

Settlement 0 0 1 0 30 31 

Column total 41 39 41 34 30 185 

PA (%) 100 90.0 64.8 46.3 100  
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UA(%)    89.1 92.5 97.2 100. 96.8  

 O A= 91.00%; OK= 0.8430 

2007 LU/LC 

types 

Wooded 

savannah 

  Shrub 

savannah 

Croplan

d 

 Fallow  Settlement Row 

total 

      Wooded savanah 42 3 0     0    0 45  

 Shrub savannah 2 37 2     0     0 40  

 Cropland 0 0 34     1     0 35  

 Fallow 0 2 1    28     2 33  

 Settlement 0 0 1     1     29 31  

 Column total 44 42 38    30   31 185  

 PA (%) 96.6 89.9 64.2   92.3   79.6   

 UA (%) 93.3 90.2 97.1    84.8 93.6  

O A= 92.16%; OK= 0.8561 

201

3 

LU/LC 

types 

Wooded 

savannah 

Shrub 

savanna

h 

Cropland Fallo

w 

Settlemen

t 

Row 

total 

 Wooded 

savannah 

42 2 2 0 0 46 

 Shrub savannah 0 38 2 0 0 40 

 Cropland 0 0 34 2 0 36 

 Fallow 0 0 0 30 2 32 

 Settlement 0 0 0 0 31 31 

 Column total 42 40 38 32 33 185 

 PA (%) 100 94.96 63.9 66.2 94.1  

 AU (%) 91.3 95 94.4 93.8 100  

O A = 93.20%; OK = 0.8868 

202

0 

LU/LC 

types 

Wooded 

savannah 

Shrub 

savanna

h 

Croplan

d 

Fallo

w 

Settlemen

t 

Row 

total 

 Wooded 

savannah 

44 1 0 0 0 45 

 Shrub savannah 1 40 0 0 0 41 

 Cropland 2 0 33 1 0 36 

 Fallow 0 0 4 29 0 33 

 Settlement 1 0 0 0 29 30 

 Column total 48 41 37 30 29 185 

 PA (%) 94.6 97.9 98.8 74.4 100  

 UA (%) 97.8 97.6 91.6 87.8 96.6  

OA= 96.34%; OK = 0.9443  

UA: User's Accuracy, PA: Producer's Accuracy, K: Kappa Statistics, OA: Overall 

Accuracy. 
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3.3.2. Land use and land cover maps in 1998, 2007, 2013 and 2020 

In the Riverine area of Pendjari Reserve, the dominant land use type in 1998 was 

Wooded savannah, covering 61.2 % of the total area. However, this Wooded savannah 

area experienced a decline of 4.7% between 1998 and 2007, that continued to decrease 

by 8 % and 11.5 % during 2007 - 2013 and 2013-2020, respectively. Shrub Savannah 

accounted for 27.45% of the total coverage area. The area of shrub savannah increased 

by 10.5 % from 1998, 2007 and 3.88 % during 2007-2013. However, there was a slight 

decline of 1.17 % in the shrub savannah area. Cropland constituted of the total 

coverage. Between 1998 and 2007, there was a decrease in cropland by 6.66 %, 

followed by an increase of 4.33 % and 11.1 % during 2007-2013 and 2013-2020, 

respectively. Fallow land decreased by 0.77 % from 1998 to 2007 but then experienced 

a decrease of 0.7 % and an increase of 0.83 % during 2007-2013 and 2013-2020, 

respectively. As for settlement, there was an apparent increase of 0.009 %, 0.5 %, and 

0.28 % from 1998-2007, 2007-2013, and 2013-2020, respectively. 

Table 3.4.Land use land cover change from 1998 to 2020 

 Years 1998 2007 2013 2020 

LULCC types Area (ha) (%) Area (ha) (%) Area (ha)   

(%) 

Area (ha) (%) 

Wooded 

savannah 

103,366.8 61.2 95,423.6 56.5 81,904.5 48.5 632,47.6 37.5 

Shrub 

savannah 

46,368.2 27.5 64,090.7 37.9 70,643.5 41.8 68,672.5 40.6 

Cropland 17,208.5 10.2 5,963.9 3.5 13,268.2 7.9 32,029.5 19 

Fallow 1,410.8 0.8 2,725.7 1.6 1,539.1 0.9 2,936.1 1.7 

Settlement 538.1 0.3 688.5 0.4 1537.1 0.9 2,006.7 1.2 

Total 168,892.4 100 168,892.4 100 168,892.4 100 168,892.4   

100 
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Figure 3.5.Dynamic of LULCC change in the riverine area of Pendjari reserve from 

1998 to 2020 
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Table 3.5 .Change in land use and rate of change in the riverine area of Pendjari from 1998 -2020 

Years Land use change 1998-2007 Land use change 2007-2013 Land use change 2013-2020 Land use change 1998-2020 

LULCC ha % Rate of 

change 

(Ha/year) 

Ha % Rate of 

change 

(Ha/year

) 

Ha % Rate of 

change 

(Ha/year

) 

Ha % Rate of  

change  

(Ha/year) 

Wooded 

savannah 

-7943.2 -7.7 -882.6 -

13,519.1 

-14.2 -2253.2 -18,656.9 -22.8 -2,665.2 -

40119.2 

 -38.8 -1,823.6 

Shrub 

savannah 

17,722.

5 

38.2 1969.2    

6,552.8 

10.2 1092.2       -

197.0 

  -2.8      -89.6 22,304.3   48.1   1013.8 

Cropland -

11,244.

5 

-65.3 -1249.4     

7,304.2 

122.

5 

1217.4    

18,761.3 

141.

4 

 2,680.2 14,821.0 -131.8      673.7 

Fallow   

1,314.8 

 93.2    146.1    -

1,186.6 

-43.5 -197.8      

1,397.0 

  

90.8 

    199.6   1,525.2  108.1        69.3 

Settlement     150.4  28.0      16.7         

848.6 

123.

3 

121.2         

469.6 

 30.6        67.1   1,468.6   272.9        66.8 
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Figure 3.6.Gain and loss area of LULCC classes in 1998-2007; 2007-2013, 2013-2020, 

and 1998-2020 

3.3.4. Validation of the model 

The Validation Module measured the agreement between the two categorical maps. To 

evaluate the accuracy, it is essential to validate the model. Validation is a crucial step 

in determining the accuracy of the predicted land cover map compared to the actual 

map. A comparison of the actual and simulated LULC maps for 2020 was made in 

order to validate the projected map. The validation results represent an overview of the 

contrast between the simulated and actuel LULC (Table 3.6). 
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Table 3.6.Table 3. 6. LULCC prediction validation based on the actual and projected 

LULCC of 2020 

Years       LULCC 2020 simulated  LULCC 2020 classified  

LULCC    ha   % ha %  

Wooded savannah   81,905.2 48.5 63,247.6 37.45  

Shrub savannah   70,657.6 41.8 68,672.5 40.66  

Cropland   13,246.6   7.8 32,029.5 18.96  

Fallow      1,541.6    0.9    2,936.1 1.74  

Settlement      1,541.3    0.9    2,006.7 1.19  

Total   168,892.4 100.0 168,892.4   100   

 

The agreement's Kno index and the common Kappa index were used to evaluate the 

prediction model based on the CA-Markov model's overall accuracy. The model's 

location prediction accuracy was verified using the Klocation index. Table 3.7 contains 

the agreement indices. The average value achieved was 0.78, meaning there was a 75 

% or more similarity between the LULC categories in the actuel and simulated 

classification. In Table 3.7, the compiled k-indices are presented. Idrisi software's 

validation module was used to compare the simulated and categorized maps of 2020. 

The Klocality index analyzed the model's ability to pinpoint suitable locations, while 

the Kno index assessed the model's overall accuracy. The results indicated a Kno of 

0.80, a Klocality of 0.79, a KlocationStrata of 0.79, and a Kstandard of 0.72.  

Table 3.7. The k-index values of the simulated LULC map of 2020 

 

 

 

The agreement between the two classification was measured using the Kappa index of 

agreement in order to shed light on the findings. Less than 0 indicates agreement that 

is less than chance, while a range of 0.01-0.40 denotes poor agreement. A range of 

0.41-0.60 indicates moderate agreement, 0.61-0.80 denotes substantial agreement, and 

0.81-1.00 denotes practically perfect agreement. These ranges are used to evaluate the 

Index P value 

Kno   0.8087 

Klocation  0.7944 

KlocationStrata  0.7944 

Kstandard  0.7274 
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Kappa coefficient value. These statistics assessed the accuracy of the model's 

prediction in relation to reality while accounting for accuracy that has been corrected 

for chance (Mukherjee, 2009). 

Using the LCM module of TerrSet 18.21 software, the agreement/disagreement 

component validation analysis was included of the model evaluation. Table 3.8, which 

further deconstructs the components into an error due to quantity/disagree quantity of 

0.0494 and an error due to allocation/disagree gridcell of 0.1101. As a result, it can be 

effective that the CA-Markov model was effective in forecasting future LULC for the 

research site. 

Furthermore, the data table shows that, when contrasting the simulated and actual 2020 

LULC images, the main discrepancy between the two maps resulted from an allocation 

error rather than a quantity error. In Table 3.8, the analysis of the validation findings 

and the component values for agreement and disagreement are compiled. 

Table 3.8:Validation result analysis (agreement/disagreement component values). 

Agreement Disagreement                   value  (%) 

Agreement Chance                0.1667 16.67 

Agreement Quantity             0.2485 24.85 

Agreement Gridcell 0.4254 42.54 

Disagree Gridcell                  0.1101 11.01 

Disagree Quantity                  0.0494 4.94 
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Figure 3.7: LULCC validation based on the actual and simulated LULCC of 2020 

 

3.3.4. Future LULC dynamics 

In order to align with the fifteenth goal of the Sustainable Development Goals (SDG) 

which focuses on conserving and restoring terrestrial ecosystems, the projections of 

land use and land cover change (LULCC) for 2035 and 2050 were chosen. The SDG 

aims to achieve this goal by 2030 (UN, 2017). 

The results of the LULC projection are presented in Figure 3.7 and Tables 9 and 10. 

According to these results, in the riverine area of Pendjari Reserve, the fallow land is 

projected to increase by 35.28 hectares in 2035, with a rate of change of 2.352 hectares 

per year. The cropland is also expected to increase by 12.06 hectares, with a rate of 

change of 0.80 hectares per year. Additionally, the shrub savannah is projected to 

expand by 3.3 hectares, with a rate of change of 0.22 hectares per year. On the other 

hand, during the same period, the settlement area is anticipated to decrease by 48.96 

hectares, with a rate of change of -3.26 hectares per year. Furthermore, the wooded 
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savannah is projected to decrease by 1.71 hectares, with a rate of change of -0.114 

hectares per year. 

Looking ahead to 2050, the LULC projection reveals that the fallow land in the riverine 

area of Pendjari Reserve is expected to decrease by -1,078.1 hectares, with a rate of 

change of -35.94 hectares per year. Similarly, the cropland is projected to decrease by 

-18,299 hectares, with a rate of change of -609.96 hectares per year. In contrast, the 

shrub savannah is anticipated to increase by 1917 hectares, with a rate of change of 

63.9 hectares per year. The settlement area is projected to decrease by -46.71 hectares, 

with a rate of change of -1.56 hectares per year. Additionally, the wooded savannah is 

expected to expand by 17,506.7 hectares, with a rate of change of 583.56 hectares per 

year. These projections provide insights into the potential changes in land use and land 

cover in the riverine area of Pendjari Reserve up to 2035 and 2050. 

Table 3.9:Percentage and rate of changes in the riverine area of Pendjari from 2020-

2035 

 2020 2050 2020-2050 

Land use types Area (ha) % Area (ha) % Area (ha) Percentage of 

change 

Rate of 

change 

Wooded savannah   63,247.6  37.5   80,754.3 47.8 17,506.7 0.3 583.6 

Shrub savannah   68,672.5  40.6   70,589.5 41.8 1,917.0 0.03 63.9 

Cropland   32,029.5  19.0   13,730.6   8.1    -18,3 -0.6 -610.0 

Fallow     2,936.1    1.7     1,857.9   1.1   -1,078.1 -0.4    -35.9 

Settlement     1,957.7    1.2     1,957.7    1.2 -46.71 -0.02    -1.6 

Total 168,892.4 100.0 168,892.4 100.0      0 0  
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Table 3.10: Percentage and rate of changes in the riverine area of Pendjari from 

2020-2050 

 2020 2050 2020-2050 

Land use types Area (ha) % Area (ha) % Area (ha) Percentage of 

change 

Rate of 

change 

Wooded savannah   63,247.6  37.5   80,754.3 47.8  17,506.7 0.3 583.6 

Shrub savannah   68,672.5  40.6   70,589.5 41.8  1,917.0 0.03 63.9 

Cropland   32,029.5  19.0   13,730.6   8.1 -18,300.0 -0.6 -610.0 

Fallow     2,936.1    1.7     1,857.9   1.1   -1,078.1 -0.4    -35.9 

Settlement     1,957.7    1.2     1,957.7    1.2        -46.7 -0.02    -1.6 

Total 168,892.4 100.0 168,892.4 100.0           0.0 0  

 

 

Figure 3.8:Projected LULC 2035 in the riverine area of Pendjari reserve 
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Figure 3.9: Gain and loss area of LULCC classes in 2020-2035 

 

 

 

 

 

 

 

 

3.4 Discussion 

This study focused on analyzing the dynamics of land use and land cover change 

(LULCC) in the riverine area of Pendjari Reserve from 1998 to 2020 using satellite 

image and projecting some for 2035 and 2050. The research used five categories of 

Land Use and Land Cover Change (LULCC): wooded savannah, shrub savannah, 

cropland, fallow, and settlement, leading to the creation of four distinct maps. The 
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analysis of overall accuracy for 1998, 2007, 2013, and 2020 indicated that the overall 

kappa exceeded 80 %, and the overall accuracy surpassed 90 %. These results suggest 

reasonably good overall accuracy and provide a reliable foundation for subsequent 

analysis and change detection (De Fioravante et al., 2021). 

Notably, the more recent LULC map accuracy results exhibited higher values, 

potentially attributed to the utilization of satellite images with enhanced spatial 

resolution. The findings revealed that the 2020 map had more misclassifications than 

2013, 2007, and 1998 maps. However, the most significant confusion occurred 

between cropland and fallow land. This could be attributed to farmers spontaneously 

cultivating the land due to its environmentally friendly characteristics (Wuyun et al., 

2022). This finding aligns with the research by Yangouliba et al., (2022), which 

highlighted confusion between cropland and natural vegetation classification in 

Burkina Faso resulting from selective trees present in croplands. 

The wooded savannah and cropland were identified as the most vulnerable land cover 

types to land use and land cover change (LULCC) in the study area. The wooded 

savannah area experienced a reduction of 24.2% from 1998 to 2020, and further 

decline is projected by 2035. This decline in wooded savannah has potential 

implications for biodiversity in the Pendjari Reserve, which is renowned for its role in 

conserving biodiversity in West Africa. Similar findings were reported by Zhang et al., 

(2022) in Ethiopia, where a decreasing trend in wooded savannah land was observed 

from 2019 to 2035. The changes in land use primarily resulted from human activities. 

Based on our observations and interviews in the study area, the significant changes in 

the wooded savannah were linked to infrastructure development, population growth, 

agricultural expansion, shifting cultivation, landowner logging, encroachment for 
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hunting and fishing, and wood harvesting for fuel. Additionally, the arrival of Mossi, 

Bamana, and Hasonké populations from Burkina Faso and Mali in the past decade 

contributed to dynamic migration patterns (Sow et al., 2014).  

The wooded savannah land cover alterations have also intensified conflicts between 

wildlife and humans. Efio et al., (2022) noted that disputes between humans and nature 

have escalated in various African countries in recent decades due to rapid population 

growth and economic activities. Furthermore, the study indicated a decrease in 

cropland from 1998 to 2007, followed by an increase from 2007 to 2035. Overall, the 

changes in wooded savannah and cropland underscore the complex interactions 

between human activities, biodiversity conservation, and conflicts between humans 

and wildlife in the study area. 

The decline in cropland between 1998 and 2007 can be attributed to policy decision 

with evection of people from their farmland. These conditions led to decreased 

agricultural productivity and subsequently contributed to the expansion of fallow land. 

Cheruto et al., (2022) also noted that the growth of one land use and land cover change 

(LULCC) type often comes at the expense of other LULC classes. Additionally, the 

Atacora region, where the study area is located, experiences significant emigration, 

particularly among younger individuals who migrate to the Save region (Saïdou et al., 

2004). Push factors such as rising living costs, challenging climatic conditions, 

depleting natural resources, population growth, poverty, and unemployment have 

contributed to the high outmigration rates in the study area (Sow et al., 2014). 

On the other hand, the shrub savannah witnessed an increase of 15.55% from 1998 to 

2020 and is projected to continue rising, indicating land degradation in the study area. 

These findings align with the research by Hu & Nacun (2018), which identified shrub 
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savannah as a significant terrestrial ecosystem covering a substantial portion of China's 

land area and ranking as the third largest in the world. Other studies have also 

highlighted the fragmentation of grazing lands, resulting in higher stocking rates and 

increased land degradation in areas accessible to pastoralists (McLeman, 2017). 

The fallow land experienced an initial increase from 1998 to 2007 and 2013 to 2020 

but decreased from 2007 to 2013. The reduction in fallow land can be attributed to the 

population growth resulting from immigration from Burkina Faso and Mali in the past 

decade due to political instability and crisis, particularly in the Sahel region (generally 

in these two countries specifically). 

The LULCC projection revealed an apparent decrease of 1.71 hectares in wooded 

savannah land from 2020 to 2035. According to the predictions, if the degradation 

continues, the settlement class will experience the most significant net loss in the study 

area. The slight decline in wooded savannah land from 2020 to 2035 can be attributed 

to the implementation of a policy to preserve the hunting zone, which involves 

relocating farmers from the area. The projection for wooded savannah land in 2050 

could be associated with a decline in the rural population and more vigorous 

government enforcement of deforestation regulations and management policies. 

In recent years, African Parks have taken significant steps to control deforestation and 

enhance surveillance in rural areas through real-time monitoring, rural patrols, and 

imposing substantial fines. The effectiveness of public policies in reducing 

deforestation has been recognized as a critical factor in protecting the study area 

(Janssens et al., 2022). The rural population is expected to decrease significantly by 

46.71 hectares between 2020 and 2050. This finding aligns with the research by Souza 

et al., (2020), who reported a 50% decrease in the rural population in Brazil between 
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1986 and 2015 due to the large-scale migration of family farmers to urban centers in 

search of better job opportunities and improved living conditions. 

This management approach may contribute to land abandonment (Atsri et al., 2020). 

As a result, 48 hectares of settlement land would be converted into cropland, serving 

as a vital source of livelihood. Changes influence the conversion of settlements into 

agricultural areas in management and policies. Extensive agricultural policy 

approaches have been found to have a significant impact on wooded savannahs, as 

confirmed by several studies (Oestreicher et al., 2014). Unfortunately, cropland, fallow 

land, and shrub savannah experienced an increase. It is important to note that these 

results should be considered general information due to the complex nature of the 

drivers (population increasing, agriculture and climate change) be hind LULCC. 

3.5 Conclusions 

The present study employed digital image processing techniques to assess change 

detection and land use land cover change (LULCC). Four historical LULC maps from 

1998, 2007, 2013, and 2020 were generated, and future maps for 2035 and 2050 were 

created to analyze the trends of LULCC. The findings revealed a continuous decrease 

in wooded savannah land from 1998 to 2020, accompanied by significant increases in 

cropland, fallow, shrub savannah, and settlement areas. The conversion of wooded 

savannahs to settlements due to population growth had a detrimental impact on 

environmental degradation. The projected results indicated a slight reduction in the 

wooded savannah area, with a more substantial decrease observed in settlement areas.  

  



49 

CHAPTER 4: FARMERS’ PREFERENCE FOR TREE AND CROP 

ASSOCIATION IN AGROFORESTRY SYSTEMS AS ADAPTATION 

STRATEGY TO CLIMATE CHANGE 

 

Abstract 

Agriculture remains the primary source of livelihood for the West African rural 

populace, but the sector is confronted with challenges related to climate change. In the 

Pendjari Biosphere Reserve, Benin, this study evaluated farmers' choice for tree and 

crop association as a climate change adaptation approach. Data were collected in two 

districts, Tanguieta and Materi, from 361 farmers on households’ socio-demographic 

characteristics and benefits of the tree using a semi-structured interview guide. In 

contrast, the trees on farmlands were inventoried. Farm size, landholding, and District 

effects on tree diversity, tree species richness, tree abundance, and their interactive 

effects were analyzed by a General Linear Model (GLM) using R statistical software. 

To assess farmers’ preferences, hierarchical classification was performed with factorial 

analysis of mixed data. The results showed that the mean of tree species diameter at 

breast height (dbh) and height ranged between 20.32 - 36.01 cm) and 6.92 - 9.74 m, 

respectively. Parkia biglobosa obtained the highest mean dbh (Tanguieta 36.01±2.9 

cm; Materi-32.18±2.98 cm) and height (Tanguieta 8.0±0.74 m; Materi 9.0 ±1.1 m), 

but Vitellaria paradoxa had the highest height in both Districts. The most important 

crops were Gossipium hirsutum and Zea mays. Tree importances were the essential 

criteria in selecting trees for the agroforestry systems with provisioning, followed by 

supporting services as the most common ecosystem benefit derived by local 

communities. Tree-crop associations varied among the farmers. Some Farmer Groups 

prefered Afzelia Africana, Leptadernia hastata, Diospyros mespiliformis, Leptadernia 
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hastata, Dichrostachys cinera with Zea mays and Glycine max, Zea mays with Vigna 

unguiculata and Oryza sativa. Whereas others associated Balanites aegyptiaca, 

Combretum aculeatum, Balanites aegyptica, Trichilia emetica, Pseudocedrela 

kotschyi with Zea mays and Glycine max, and Sesamum indicum with Vigna 

unguiculata  

Keywords: Sustainable agriculture, farmers' practices, Ecosystem services, and 

intercropping system.  

3.2.. Introduction 

In Sub-Saharan Africa, agriculture is still the primary source of income for rural 

households. It is critical to economic growth and contributes considerably to Sub-

Saharan African countries' Gross Domestic Product (GDP). Population expansion, on 

the other hand, is accompanied by land degradation  (Tscharntke et al., 2012). Farmers 

generally practice shifting cultivation whereby they shift to the virgin forests when 

yield decrease is experienced due to soil nutrient depletion, resulting in deforestation. 

Improving agricultural output through extension is no longer feasible due the need for 

stability in providing ecosystem services (Hardaker et al., 2022). Aside  declining soil 

fertility and land degradation, climate change pocesses the most danger to agriculture 

and the sustainability of rural families' livelihoods in West Africa, with possible 

adverse effects on crop output and food security (Belew et al., 2022). 

Natural catastrophes have kept the West African people in chronic food insecurity for 

decades (Atanga & Tankpa, 2021). Food and energy scarcity has compelled people to 

fell trees even on sloping led, resulting in substantial deforestation and forest 

degradation, which has resulted in soil erosion and the loss of biodiversity and 

livelihood options (Asuoha et al., 2019). To address this issue, a new tree-planting 

strategy has been devised to promote reforestation by planting the most beneficial tree 
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species. The selection procedure, on the other hand, has received little attention. 

Species are selected based on economic or environmental benefits, resulting in a 

concentration on fast-growing wood species (Sacande & Berrahmouni, 2016). 

A lot of research has demonstrated the value of trees in agroforestry systems (Belew 

et al., 2022). The incorporation of trees into agricultural landscapes is being pushed to 

reduce deforestation and land degradation while improving agricultural sustainability 

in poor nations (Bensel, 2008). The predicament is particularly relevant in Benin, a 

Sub-Saharan country where low-income individuals heavily rely on agriculture and 

natural resources to mitigate the consequences of increased production, marketing, and 

adverse effects of climate change (Jost et al., 2016). Because it stores atmospheric 

carbon dioxide (CO2) over extended periods, integrating trees into agricultural 

landscapes can offer a feasible chance to address climate change challenges (Lorenz 

& Lal, 2014). Therefore, it should be thought of as a way to lessen the effects of climate 

change to have woody vegetation and crops coexist on the same piece of land as part 

of climate-smart multifunctional land-use systems (Bett et al., 2017). To prevent 

croplands in China by eroded, trees and bushes have been employed as windbreakers 

(Gao et al., 2017). Increased agroforestry adoption has been shown to offer scientific 

benefits in several studies. In contrast, Kuyah et al., (2016) observed that farms with 

trees had higher soil water content than those without them. Daba (2016) reported that 

the moringa tree absorbs 50 times more carbon dioxide (CO2), than the Japanese cedar 

tree and 20 times more than wild flora. In Kenya, trees have been shown to enhance 

infiltration rate, decrease soil evaporation, and increase transpiration (Prasannakumar 

et al., 2012). 

 According to research conducted in Benin, trees in agroforestry systems offer a variety 

of benefits to the farmstead, including shade, shelter, food, fodder, and many other 
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commodities and services (Gnonlonfoun et al., 2019). Therefore, agroforestry systems 

have the best chances to address climate change challenges since they have the 

capacity to store atmospheric CO2 for a long period of time (Lorenz & Lal, 2014). 

Other known benefits of agroforestry systems include environmental functions (Castle 

et al., 2022) with biodiversity conservation (Ouinsavi & Sokpon, 2008), regulation of 

fluxes in ecosystems, and mitigation of pollution (Gbedomon et al., 2017).  

According to (Fandohan et al., 2010), smallholder farmers are known ledgeable 

various ecosystem services, including those offered by tree and agroforestry systems 

(Paudel & Shrestha, 2022). Despite these advantages, challanges must be resolved 

before tree-based farming can be adopted and sustained. Farmers seldom use local 

environmental knowledge when selectif and planting trees because of their limited 

resources, making it difficult to find species that can satisfy socio-ecological demands 

(Yasin et al., 2021). The foundation of the agroforestry system is the selection of 

desirable tree species. The indigenous parkland farming method comprises alternating 

cycles of agriculture and fallows in which the natural regeneration of woody plants 

occurs around conserved trees, such as shea trees (Vitellaria paradoxa). As a result, 

tree species beneficial to the local population dominate phytodiversity in parklands 

and old fallows. This study is to (i) assess tree diversity in agroforestry systems and 

(ii) evaluate farmers' criteria for selecting preferred trees on their farms. 

4.2.Methods 

4.2.1. Site characteristics 

The research was carried out in the Pendjari Biosphere Reserve's riverine area, located 

in the northwestern part of the Republic of Benin (10.30 to 11.30 oN; 0.50 to 2.00 oE). 

The research was conducted in two zones: the Zone of Controlled Occupation, which 

allows settlements and all agricultural operations, and the Hunting Zone, which allows 



53 

medium-impact activities. The climate in this Sudan area habitat is defined by a dry 

season from October to May and a wet season from June to September, with annual 

rainfall ranging from 800 to 1000 mm. Open grass and tree savannahs, intermingled 

with dry and gallery forests, make up the vegetation. This area is home to several 

wildlife species, especially large carnivores (Sogbohossou et al., 2014). The mean 

annual is 27°C temperature. The primary highways through the Reserve are Tanguieta 

Porga and Tanguieta Batia. The three largest ethnic groups in the nation are Berba, 

Gourmantche, and Wama. Most communities are populated by Fulani pastoralists in 

addition to the native farmers with each town have one to eight camps.  

4.2.2. Sampling procedures and data collection  

Following a pre-survey of all agroforestry sites, a random sample (West, 2016) was 

utilized to choose pilot sites based on community distribution. The snowball purposive 

sampling was used to select farmers from each pilot location. The research focused on 

the major communities of Berba, Gourmantche, and Wama, forming 55 %, 35 %, and 

10 % of the entire study region, respectively. The proportionality technique was used 

to pick eight sites: four in Berba communities (Porga, Dassari, Kani, and Sepounga), 

two in Gourmantche communities (Sangou and Batia), and two (Tchanwassaga and 

Nanebou) in mixed communities areas Gourmantche and Wama Using the Normal 

approximation of the Binomial distribution (Dagnelie et al., 1998), the sampling size 

n was determined using Equation 4.1. 

𝑛 =
𝑝𝑖(1−𝑝𝑖)𝑈1−𝛼/2

2

𝑑²
         [1] 

where n is the estimated sample size for the research area, 𝑈1−𝛼/2
2  is the value of the 

normal random variable (1.96 for =0.05), and d is the estimation's margin of error, 

which was set at 5 % to allow for the sampling of more farmers and a wider range of 
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local residents' perspectives. Three hundred and sixty-one (361) farmers were 

randomly selected for the assessment of tree and crop species in the agroforestry 

system. The key factor in farmer selection was the tree cover on the farmland of the 

farmer. A semi-structured interview questionnaire was used to solicit data on tree and 

crop species from the farmers. In addition, the tree and crop species on each farm were 

inventorised. The tree species were identified with the help of experts who knew the 

names of the trees in the local language. The taxonomic identification of the tree 

species was based on the analytical flora of Benin (Akouègninou et al., 2006). Species 

not immediately recognized in the field were later identified in the National Herbarium 

of the Faculty of Science and Technology of the University of Abomey-Calavi. 

The identification process involved identifying the scientific name and the family of 

each tree. Complementary sources for conservation status included the West Africa 

Biodiversity Atlas  (Sinsin & Kampmann, 2010), the IUCN online database  (Trull et 

al., 2018), the Benin Red List of Threatened Plant Species (Neuenschwander & 

Adomou, 2017) and the online database of The Plant Resources of Tropical Africa 

(Castle et al., 2022). The field observation approach was used to identify types, 

cropping systems, management, and yield of crops on the agroforestry farmlands and 

varietal diversity cropping system. A standard pre-tested structured questionnaire 

collected information on home characteristics, occupational characteristics, tree 

species growing on the farms, and their purposes. To better understand the different 

cropping systems, a questionnaire was used to assess farmers' knowledge of crop 

management systems (monoculture or intercropping), trees (cultivated and wild 

crops), current cropping systems, and intent to introduce different cropping systems. 

To ensure that the questions were clear, the questionnaire was pre-tested with 10 

farmers (who did not participate in this study). To ensure that the participants 
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understood the Likert scale, the response scale was defined using an example before 

each interview. 

The study utilized a questionnaire consisting of five sections to gather qualitative data. 

These sections covered various aspects including: (i) the presence of trees and 

agricultural land use on farms, as perceived by farmers; (ii) the motivations and factors 

that influence farmers' decisions to integrate trees into their farming practices; (iii) 

questions related to the environment and attitudes towards tree integration; (iv) the 

ecosystem services provided by on-farm trees within agroforestry systems; and (v) 

socio-demographic information of the farmers. The questionnaire was administered 

through a household survey conducted in the local language, both in the morning and 

evening, at the participants' homes. Socio-economic factors such as household size, 

landholding size, ethnic group, age, gender, and education level were collected. The 

interviews were conducted with the head of the household, regardless of gender, as 

long as they were above the age of 30. To ensure accurate recording of the services 

identified by each group, a facilitator provided feedback and participants were 

encouraged to express their agreement or disagreement regarding the ecosystem 

services mentioned. Once consensus was reached on the identified services, 

participants were asked to rate the importance of each service (referred to as 

"perception") on a scale of 1 to 4, with 1 indicating low importance and 4 indicating 

high importance. Additionally, participants were asked about the trends of these 

identified ecosystem services over the past 30 years. The survey aimed to understand 

farmers' perceptions of tree species in agroforestry as strategies for climate change 

adaptation.  

Tree structural traits, ecosystem services, and diversity were evaluated using an 

integrated approach (i.e., a combination of qualitative and quantitative 
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methodologies). Quantitative information was measured for each farm, including tree 

height (H) and diameter at breast height (dbh), which are dendrometric dimensions. A 

clinometer was used to measure tree height and a diameter tape to gauge the dbh of 

several tree species on the selected farms were used to gather densitometric data. Using 

the GPS receiver (Garmin 76CSx), the size of each participating farmer's farmland was 

calculated.  

To examine the preferences of farmers for tree crop association in agroforestry, the 

number of services derived from each tree selected in an agroforestry system was listed 

according to ethnicity group, and the cropping systems that were related were also 

recorded. 

4.2.3. Data analysis 

Descriptive statistics were used to examine the acquired data, including percentages, 

tables, and graphs. The socio-demographic attribute (Ethnicity, Age, Gender, and 

Education level) of the farmers in each district was evaluated by their relative 

frequencies. The age of the respondents was classified into less than 30 years (< 30 

years), between 30 and 60 years (30 – 60 years),, and above 60 years (> 60 years) as 

young, adult,, and old, respectively (Minicuci et al., 2014). Microsoft Excel was used 

to examine the total number of crops in the agroforestry system and the percentage of 

each crop. 

 Taxonomic diversity and observed species richness, diversity indices (Shannon and 

Simpson), and associated data were developed for each studied district. Taxonomic 

diversity considers the number of species, genera, and families. The Shannon diversity 

index (H) was used to analyze the diversity of woody species as a measure of species 
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abundance and richness. This index takes into account both species abundance and 

species richness (Equation 4.2): 

  𝐻 = − ∑ piln𝑆
𝑘=1 𝑝𝑖′         [4.2] 

where 𝑠 is the number of species and 𝑝𝑖 is the ratio of individuals of species 𝑖 to the 

total number of individuals of all species 𝑁.  

The Simpson's diversity index (D), which assesses community diversity, was used to 

assess biodiversity. It can also evaluate population diversity variations in plant 

communities and other environments. The power of the index resides in its capacity to 

calculate and compare two sets of data to ascertain which is more diversified. The 

range is 0 to 1, with high scores (almost 1) denoting high diversity and low scores 

(nearly 0) characterizing low diversity. The formula for the index is Equation 4.3: 

D = 1 −
Σn(n−1)

N(N−1)
        [4.3] 

Where: n is the number of individuals of each species and N is the total number of 

individuals of all species. Further, a linear model was used to test the effect of the farm 

area, landholding and district on the tree diversity, richness and generalized linear 

model on species abundance. 

The ideal model for the tree species diversity indices was chosen using the Akaike 

information criterion (AIC). A mathematical technique for assessing how well a model 

matches the data it was developed from is the AIC. The best-fit model, according to 

AIC, is the one that explains the most variation with the fewest number of independent 

variables. It is used to assess various potential models and determine which is best 

suited for the data. 
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To describe preferences of communities to tree species, hierarchical classification 

(Ward, 1963) with factorial of mixed data was performed using the FactoMineR of the 

R software package  (Lê et al., 2008). To describe each homogeneous class through 

the most discriminant variables, the v-test statistics was computed (Josse & Husson, 

2016). The most discriminant variables of each were those for which the absolute value 

of v-test was greater than 2. All the statistical analyses were performed with the R 

software package (Version 4.1). 

4.3.Results 

4.3.1. Socio-demographic characteristics of households 

From a total of 361 households interviewed in this study, the dominant ethnic group 

was Berba (49.86 %), followed by Gourmantche (45.15 %), while Wama was the least 

(4.98 %) (Table 4.1). Males constituted 82.0 7% as heads of households, while females 

constituted only 17.93 %. From the total respondents of age range,14.65 % of 

households were young, 79.31 were adults, and 6.04 % were old. For the education 

level, 53.46 % of households had no formal education, 34.90 % were up to primary 

school, 11.35 % were up to secondary school, and 0.35 % had obtained tertiary level 

education. The average farm size in the study area was 1.19±0.33ha-1. Concerning 

ownership of land in possession, 32.40 % of households were landowners, while 67.59 

% of households were tenants. 
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Table 4.1.Socio-demographic characteristics of households in the two studied 

districts 

Variables Levels Materi (%) Tanguieta (%) 

Ethnic group 

Berba 73 (100) 107 (37.15) 

Gourmantche 0 163 (56.6) 

Wama 0 18 (6.25) 

Age group 

Young 12 (16.44) 37 (12.85) 

Adult 57 (78.08) 232 (80.56) 

Older 4 (5.48) 19 (6.6) 

Education level 

Informal 33 (45.21) 160 (55.56) 

Primary 29 (39.73) 97 (55.56) 

Secondary 11 (15.07) 30 (10.42) 

Tertiary 0 1 (0.35) 

Gender 
F 14 (19.18) 48 (16.67) 

M 59 (80.82) 240 (83.33) 

Landholding 
Yes 26 (35.62) 91 (31.60) 

No 47 (64.38) 197 (68.40) 

Average farm size (ha)  1.18 (47.66) 1.20 (62.15) 

  

4.3.2 Inventory of tree and crop species in the agroforestry systems 

4.3.2.1. Crops cultivated in the agroforestry systems 

A total of 10 different crops were grown on the sampled parcels of croplands. The most 

important crops were upland cotton (Gossipium hirsutum) and maize (Zea mays), 

constituting 31.23 % and 27.12 % of the total surveyed area. Other crops of medium 

importance: sorghum (Sorghum bicolor) and millet (Panicum miliaceum), sesame 

(Sesamum indicum), rice (oryza sativa) cowpea (Vigna unguiculata) and soybean 

(Glycine max) forming 11.92%, 11.46%, 5.4 %, 4.92 % and 3.86 % of the surveyed 

area, respectively. The remaining minor crops noted in farming systems are 

groundnuts/peanuts (Arachis hypogea), bambara groundnuts (Vigna subterranea), 

pigeon pea (Cajanus cajan) forming 2.1 %, 1.2 %, 0.79 %, respectively. Some crops 

association observed were: maize (Zea mays) and cowpea (Vigna unguiculata); cotton 

(Gossipium hirsutum) and cowpea (Vigna unguiculata); Sesame (Sesamum indicum) 

and cowpea (Vigna unguiculata); sesame (Sesamum indicum) and maize (Zea mays), 

sorghum (Sorghum bicolor) and sesame (Sesamum indicum), sorghum (Sorghum 
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bicolor) and cowpea (Vigna unguiculata) and sesame (Sesamum indicum) and pigeon 

pea (Cajanus cajan) 

4.3.2.2. Tree species inventoried in the agroforestry systems 

A total of 38 tree species belonging to 19 families were enumerated in the farmlands 

of the study area (Table 4.2). Among the families, Fabaceae was the family with the 

most diverse species (12), followed by Moraceae (4) (Table 3). The indigenous trees 

were more represented (84.21 %) than exotic ones. For conservation status, 47.36 % 

of trees were Least Concerned (LC), 39.47 % were Not Evaluated (NE), 7.89 % were 

Vulnerable (VU), and 2.64% respectively were Near Threatened (NT) and Endangered 

(EN). 

Table 4.2. Tree species inventoried in the agroforestry systems, Pendjari Biosphere 

Reserve 

Number Scientific 

name 
Family Services                            

Indigenous 

(I)    

Exotic 

(E) 

Conservation 

status  

       

1 Acacia 

macrostachya 
Fabaceae 

Food, 

medicinal                        
I 

  
LC 

2 Acacia 

auriculiformis 
Fabaceae 

Timber, 

energy                         
  E LC 

3 Adansoni 

digitata 
Bombacaceae 

Food, 

medicinal, 
I 

  
NE 

4 Afzelia 

Africana 
Fabaceae 

Timber, 

energy                          
I 

  
VU 

5 Anarcadium 

occidentale 
Anacardiaceae 

Food, 

energy                             
  E NE 

6 Anogeissus 

leiocarpa 
Combretaceae Timber                             I 

  
LC 

7 
Azadirachta 

indica 
Meliaceae 

Food, 

medicinal, 

energy 

  E NE 
8 

 
9  Balanites 

aegyptiaca 

Zygophyllacea

e 

Food, 

medicinal                          
I 

  
NE  

10 Bombax 

constatum 
Malvaceae 

Food, 

medicinal                          
I 

  
NE  

11 Burkea 

Africana 
Fabaceae 

Timber, 

energy                           
I 

  
LC  

12 Combretum 

aculeatum 
Combretaceae 

Medicinal, 

energy                      
I 

  
LC  
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13 Combretum 

collinum 
Combretaceae 

Medicinal, 

energy                         
I 

  
LC  

14 
Daniellia 

oliveri 
Fabaceae 

Medicinal, 

energy, 

beehive      

I 

  

LC  

15 Dichrostachys 

cinerea 
Fabaceae  medicinal                              I 

  
LC  

16 Diospros 

mespiliformis 
Ebenaceae 

Timber, 

food                       
I 

  
NE  

17 Erythrina 

senegalensis 
Fabaceae,  Energy               I 

  
LC  

17 Eucalyptus 

camadulensis 
Myrtaceae 

Energy, 

timber             

  
E NE  

18 
Ficus glumosa Moraceae 

Fodder, 

energy               
I 

  
LC  

19 Ficus 

platyphylla 
Moraceae,  

Food, 

medicinal               
I 

  
LC  

20 Ficus vallis-

choudae 
Moraceae,  

food, 

medicinal                         
I 

  
NE  

21 Gmelina 

arborea 
Verbenaceae 

Energy, soil 

protection      

  
E NE  

22  Gymnosporia 

senegalensis 
Celastraceae 

Energy, 

fodder                        
I 

  
LC  

23 Khaya 

senegalensis 
Meliaceae,  

Timber, 

medicinal                 
I 

  
VU  

24 
Lannea 

microcarpa 

Anacardiaceae

,  

Food, 

fodder, 

energy                

I 

  

LC  

25 Leptadernia 

hastata 
Apocynaceae 

Medicinal, 

fodder                 
I 

  
NE  

26 Lonchocarpus 

laxiflorus 
Fabaceae 

Medicinal, 

energy                 
I 

  
NE  

27 
Mangifera 

indica 
Anacardiaceae 

Food, 

medicinal, 

energy  

  E NE 

 

28 

 
29 

Milicia 

excelsa 
Moraceae 

Soil 

fertility, 

timber 

energy  

I 

  

NT  

30 

Parinari 

congensis 

Chrysobalanac

eae 

Food, 

timber, 

energy, 

fodder       

I 

  

LC  

31 
 Parkia 

biglobosa 
Fabaceae 

Timber, 

medicinal, 

food  

I 

  

LC  

31 
Prosopis 

Africana 
Fabaceae 

Fodder, 

timber, 

energy  

I 

  

NE  
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32 Pseudocedrela 

kotschyi 
Meliaceae 

Medicinal, 

energy                       
I 

  
LC  

33 
Pterocarpus 

erinaceus 
Fabaceae 

Food, 

timber, 

energy               

I 

  

EN  

34 Sarcocephalus 

latifolus 
Rubiaceae Medicinal                I 

  
NE  

35 Tamarindus 

indica 
Fabaceae 

Food, 

energy               
I 

  
LC  

36 Trichilia 

emetica 
Meliaceae 

Energy, 

medicinal                
I 

  
LC  

37 
Vitellaria 

paradoxa 
Sapotaceae 

Food, 

fodder, 

energy                 

I 

  

VU  

38 
Vitex doniana  Lamiaceae 

Food, 

energy  
I 

  
NE  

 

4.3.3. Identification of common tree species and their important ecosystem 

services  

4.3.3.1. Population structure of tree species in the agroforestry systems 

To evaluate the tree species structural characteristics of ecosystem services provided 

by different tree species, it is necessary to investigate their structural characteristics. 

The three most important tree species are Vitellaria paradoxa, Parkia biglobosa and 

Lannea macrocarpa. 

Results of analysis of variance (ANOVA) of the dendrometric parameters (dbh and 

height) of agroforestry tree species is presented in Table 4.3. Tree height varied 

significantly among the studied districts (p = 0.000), tree species (p = 0.014) and 

interaction between the districts and tree species (p = 0.021). Diameter (dbh) only 

varied significantly among the tree species (p = 0.000). As presented in Figure 3, The 

mean dbh ranged between 20.32 ± 1.89 cm and 36.01 ± 2.9 cm in Tanguieta and 

between 26.26 ± 3.2cm and 32.18 ± 2.98 cm in Materi. P. biglobosa had the highest 

mean dbh in both districts with mean dbh of 36.01 ±2.9 cm in Tanguieta and 32.18 ± 

2.98 cm in Materi. However, the mean dbh values of L. macrocarpa (26.26 ± 3.25cm) 
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and Vitellaria paradoxa (29.27 ± 1.0 cm) in Materi were higher than the species mean 

dbh values observed in Tanguieta (20.32 ± 1.89 cm and 28.22± 0.51cm, respectively). 

Apart from L. macrocarpa, the lowest mean height was observed in Tanguieta 

(6.92±0.44 m) and the highest mean height was observed in Materi district (7.75±1.01 

m). About 50% of population of Lannea macrocarpa, P. biglobosa and V. paradoxa 

had dbh of 28.65 cm, 34.06 cm and 28.01 cm, respectively in Materi. However, in 

Tanguieta, 50% of population of L. macrocarpa, P. biglobosa and V. paradoxa had 

diameters of 16.71 cm, 31.51 cm and 26.42 cm, respectively. 

Effects of district and tree species (P. biglobosa, V. paradoxa and Lannea microcarpa) 

of structural parameters 

 Table 4. 3: Effects of district and tree species (Parkia biglobosa, Vitellaria. 

paradoxa and Lannea microcarpa) of structural parameters 

Source of variation 
  Diameter (dbh) Height 

  F value Pr(>F) F value Pr(>F) 

District   3.42 0.065 42.73 0.000 

Tree species  19.63 0.000 4.35 0.014 

District x Tree species   2.96 0.053 3.89 0.021 

 

 

Figure 4.1.A) Diameter (dbh) and (B) height of tree species enumerated in agroforestry 

farmlands from the two studied districts (Materi and Tanguieta 

BA
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Table 4.3.Structural characteristics of tree species enumerated in agroforestry 

farmlands from the two studied districts. 

District Tree species Diameter 

(DBH) 

  
Height 

  

  
Me Se Med Ske Me Se Med Ske 

Materi L. microcarpa 26.26 3.25 28.65 -0.34 7.75 1.01 7.5 0.11  
P. biglobosa 32.18 2.98 34.06 -0.41 9.67 1.19 8 0.85  
V. paradoxa 29.27 1 28.01 0.85 9.74 0.36 9 1.1 

Tanguieta L. 

microcarpa 

20.32 1.89 16.71 0.72 6.92 0.44 6.5 1.44 

 
P. biglobosa 36.01 2.9 31.51 1.6 9.14 0.42 8 0.74  
V. paradoxa 28.22 0.51 26.42 0.73 6.98 0.15 7 1.04 

Me: mean; Se: standard deviation; Med: median; Ske: Skewness 

4.3.3.2. Ecosystem services derived from tree in agroforestry systems 

The criteria of tree selection in agroforestry including particular tree species were 

supported by many reasons specific to farmers. Four main services were derived from 

the tree on farmlands by the local community members (Figure 4.3). This was followed 

in a decreasing order by regulatory ecosystem service with the proportion being 17.1% 

and 14.4 %, and supporting function with the proportion being 15.9 % and 4.3 %, and 

with the least Cultural benefits with the proportion of 8.67 % and 3.6 % for Tanguieta 

and Materi Districts, respectively. 

 

Figure 4.2.Important ecosystem services used by famers for tree selection 
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4.3.3.3. Determination of tree diversity indices in agroforestry systems 

The best model for the tree species abundance (AIC=2427.97) and the tree species 

richness (AIC=1352.70) was the additive model, while the multiplicative model was 

the best for tree species diversity (AIC=1118.99). The results of analysis of variance 

showed that the Tanguieta District (p < 0.006) and interaction between farm area size 

and landowners (p < 0.030) were positively and significantly affected by farmers’ 

decision for tree selection (Table 4.5). However, area size, landownership, and their 

interactions with District had no significant effect on farmers’ decision for tree 

selection. For tree species richness, the district (p < 0.001) was positively and 

significantly affected by farmers’ decision for tree selection (Table 4. 6). For tree 

species abundance, area size (p < 0.001) and District (p < 0.001) were positively and 

significantly affected by farmers’ decision (Table 4.7). This indicated that as farm size 

increase the tree species abundance correspondingly increase (Figure 4.3). The Figure 

showed that the Shannon diversity index was more relevant for landowners’ farmers 

than tenant or non-landowner farmers (Figure 4.4). This means that as the farm sizes 

increase, the tree diversity also increases for landowners. However, the diversity index 

for tenants decreased for increasing farming size. With respect to the studied districts, 

the (Figure 4.5) species richness was greater in the Materi District than Tanguieta 

District implying that the agroforestry units in Materi have diverse tree species.  

Table 4.4. Effect of the farm area, landowner and district on the tree species 

diversity: parameters of the fitted model 

  Estimate Std. Error t-value Prob 

Intercept 3.59 0.42 8.61 < 0.001 

Area -0.61 0.37 -1.66    0.098 

Landowner -1.18 0.87 -1.35    0.177 

District -1.24 0.45 -2.75    0.006 

AreaxLandowner 1.37 0.63 2.18    0.030 

AreaxDistrict 0.41 0.41 1.00    0.319 

Landowner xDistrict 0.54 0.99 0.55    0.583 

AreaxLandownerxDistrict -0.86 0.69 -1.25    0.212 
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Table 4.5. Effect of the farm area, landowner and district on the tree species richness: 

parameters of the fitted model 

 Variables Estimate Std. Error z-value Prob. 

Intercept 1.37 0.08 16.60 < 0.001 

Area 0.02 0.06 0.37    0.715 

Landowner 0.13 0.07 1.74    0.082 

District  -0.30 0.07 -4.48 < 0.001 

 

 

Figure 4.3. Relationship between species abundance and area of agroforestry species 

 

Figure 4.4. Effect of farm area on biodiversity including landholding 
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Figure 4.5. Boxplot of species richness according to district 

 

4.3.4. Farmers’ preferences for tree and crops association in the agroforestry 

systems  

To assess the preference of farmers for tree and crops associations, the hierarchical 

cluster analysis (HCA) (Ward, 1963) of farmers was done using their socio-

demographic characteristics, ecosystem services, crops and tree abundance. The HCA 

classified farmers in three different agroforestry system groups as shown by the 

dendrograms in Figure 4.8. The red color of dendrogram represented the first group 

(Group1) with 37.50%, the second group (Group 2) is represented by the black color 

with 50.50% and the third group (Group 3) is represented by the green color of 

dendrogram with 12% of farmers. Results of the discriminants variables showed that 

factors such as ethnicity, tree species and crop species were positively and significantly 

influenced by farmers preferences in all the three groups (Tables 4. 8 and 4.9; 

Appendix 1 and 2). The combination of HCA with the V-test showed that Group1, 

represented mainly by Gourmantche ethnic group namely Gourmantche cereal-
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leguminosae traditional agroforestry had preferred tree species such as: Afzelia 

africana, Combretum aculeatum, Diospyros mespiliformis, Balanites aegyptica 

(V.test>2, P <0.05) than Leptadernia hastata, Sarcocephalus latifolus, Dichrostachys 

cinera,Trichilia emetica, Pseudocedrela kotschyi and Daniellia oliveri associated with 

Zea mays and Glycine max, Zea mays and Vigna unguiculata, Zea mays and Vigna 

subterranea, sorghum bicolor and Vignaunguiculata and monoculture of Vigna 

unguiculata and Gossypium hirsutum (V. test ≤ -2, Prob <0.05). However, the second 

group (Group 2) represented by the Berba ethnic group namely Berba cereal-

leguminosea mixed agroforestry systems preferred tree species such as: Dichrostachys 

cinera, Daniellia oliveri, Leptadernia hastata, Diospros mespiliformis, Afzelia 

africana, Pterocarpus erinaceus, P. biglobosa and Lannea microcarpa with Zea mays 

and Glycine max; Sesamum indicum and cajanus cajan, Zea mays and Glycine max, 

Sesamum indicum and Arachis hypogea (V. test ≥ 2; Prob <0.05). The third group 

(Group 3) namely Wama’s monocropping agroforestry system preferred 

Pseudocedrela kotschyi, Trichilia emetica, Sarcocephalus latifolus, Daniellia oliveri, 

Balanites aegyptica, Combretum aculeatum, Combretum collinum (V. test ≥ 2; Prob 

<0.05) in association with Oryza sativa and sorghum bicolor monoculture (V. test ≥ 2; 

Prob <0.05). They had less preference for V. paradoxa (V. test ≤ -2, Prob <0,05) and 

this group was represented by Wama ethnic group. 
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Figure 4.6. Cluster analysis showing different groups of farmers 

 

Table 4.6.Discriminant analysis of tree species enumerated in the Agroforestry 

systems 

Variables discriminants Chi-2 P-value 

Pseudocedrela kotschyi 0.83 0.000 

Dichrostachys cinera 0.83 0.000 

Daniellia oliveri 0.83 0.000 

Trichilia emetica 0.82 0.000 

Sarcocephalus latifolus 0.34 0.000 

Leptadernia hastata 0.26 0.000 

Balanites aegyptica 0.11 0.000 

Diospros mespiliformis 0.08 0.000 

Afzelia Africana 0.04 0.001 

Combretum aculeatum 0.04 0.001 

Parkia biglobosa 0.02 0.026 
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Table 4.7.Discriminant groups and analysis on crops types, ethnic tree benefits 

 

 

 

 

 

 

4.4.Discussion 

The dominant ethnic groups had social and cultural values that determined their land 

use practices. Thus, the social and cultural values of the ethnic groups affect their 

choices of food, staple crops and varieties, and cropping systems. As noted by Clark 

et al., (2022) , different ethnic groups have their own religious beliefs, values and 

resources that influence their attitude, social norms, and behavioral controls toward 

agricultural innovation. Similar results have been reported in Indonesia, where the 

largest ethnic group greatly influenced agricultural practices (Ananta et al., 2016). For 

instance, in one study, older male people tended to be the majority of landowners with 

sizable farms. Due to their historically assigned roles in the home, among other things, 

the women had restricted access to property and showed less interest in tree farming 

or even joining community organizations. Maskey et al. (2006) reported similar 

findings that customary circumstances define and affect men's and women's behavior, 

which provide barriers to participation in resource management initiatives. Men are 

perceived in social and cultural contexts to be in charge of village development and 

Variable discriminants Df Prob 

Zea mays Glycine max 4 0.000 

Oryza sativa 2 0.000 

Supporting services 2 0.000 

Zea mays Vigna unguiculata 2 0.000 

Sesamum indicum Vigna unguiculata 4 0.000 

Regulation services 2 0.000 

Ethnic 4 0.035 
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governance, which reduces women to domestic responsibilities and further restricts 

them. 

The tree species enumerated in the agroforestry systems were mainly of the family 

Fabaceae, which had 12 different species (Table 4. 2). This might be due to the 

households' preference being inclined towards the growing of leguminosae and 

medicinal tree species in their farmlands. Retaining and planting treess in the farming 

systems were largely determined by space availability and compatibility with 

agricultural crops and household needs (Lemage & Legesse, 2018). However, farmers 

in the study area planted or retained different plant species to fulfill the household 

demand for various products and services such as construction material, food, shade, 

bee hive, soil fertility and improvement, fuel wood, medicine, income source and 

fruits. Similar to the findings by (Sood & Mitchell, 2009), the total size of households’ 

landowners had a positive influence on the number tree species grown or retained on 

farmlands. This was easy to understand because large land will have more space where 

tree can be grown. As noted by Dhanya et al., (2014), households with large land tend 

to be better off economically and can therefore focus less on optimizing total farm crop 

output by retaining more tree that can provide environmental benefits. This indicates 

that as farmers access to land increases, they tend to have greater capacity to adopt 

different agroforestry systems as adaptation measures to climate change. This situation 

could be explained by the fact that land is an indispensable asset as far as the practice 

of different agroforestry systems is concerned. The results however, contrasted with a 

study from Rwanda, which reported an inverse relation between availability of land 

and adoption of agroforestry system as climate change adaptation strategy 

(Ndayambaje, 2013).  
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Generally, for tree species such as Anarcadium occidentale, Acacia auriculiformis, 

Azadirachta indica, Eucalyptus camadulensis, Gmelina arborea and Mangifera indica 

planted in parks or plantations, the number of tree per hectare (ha) was not important 

because these tree species are not accessible. However, for natural regeneration parks 

with important species such as Vitellaria paradoxa and Parkia biglobosa, the number 

of trees per hectare is important. According to respondents by the study participants, 

landowners of land may set a precondition that land tenants plant tree in the fields 

rented to them and tenants are required to leave the land when the tree mature. 

Landowners usually also allow tenants to plant tree for personal uses. But currently, 

the land is given to tenants only for a limited time leaving the tenants with little right 

to tree. The effect was that newcomers may never get the same possibilities for income 

generation from the tree component of tree-crops integration. This was a major 

concern raised by the smallholder tenant farmers in the study area which might have 

greatly accounted for the low tree species diversity in agroforestry farmlands of tenant 

farmers (Figure 4.5). 

Farmers can better adapt to climate change by practicing either silvipastoral or 

agrosilvicultural system of agroforestry. However, only the agrosilvicultural system 

was observed with mostly fruit tree intercropped with food crops. In the face of climate 

variability and change, smallholder farmers adopted agrosilvicultural systems as a 

strategy to enhance their resilience and diversify production. By integrating diverse 

crop and tree species, farmers aimed to mitigate the impacts of climate change. These 

findings align with a study conducted by Gnonlonfoun et al., (2019), which 

highlighted the perception of farmers regarding the resilience of agroforestry systems, 

specifically parks consisting of Vitellaria paradoxa, Anacardium occidentale, and 

mixed parks of Vitellaria paradoxa-Parkia biglobosa, in the context of climate change.  
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As length of fallow periods have declined, tree and annual crops associations have 

become a suitable alternatives to shifting cultivation system (Staver et al., 2009). 

According to Daoui & Fatemi, (2014), tree and crops associations permit increase in 

yield per unit area, promote species diversity and decrease household’s feeding cost. 

The association also helps to increase the economic efficiency of land and promote 

rehabilitation of marginal land while improving biodiversity conservation. The farmers 

reported that the tree and crops integration reduced soil erosion and impacts of strong 

wind, and increased soil fertility and water efficiency on their farmlands thereby 

increasing their capacity to adapt to the potential negative impacts of climate change 

on their livelihoods. Some farmers also revealed that inter crops may benefit from 

shade which reduced evaporation. Several previous studies have reported similar 

findings. For instance, Prevedello et al., (2018) found that tree in agricultural 

landscapes increased yields by reducing risks associated with erosion and temperature 

fluctuations, while Wolff et al., (2019) reported maintenance of biodiversity and 

improvement on human health. 

The farmers perception that this association of tree and food crops reduces negative 

impact of rainfall variation depending on the species and their growth cycles. This is 

consonance with the demonstration that agroforestry has the advantages of 

diversification of ecosystems, which can preserve and enhance biodiversity, carbon 

sequestration and efficient use of inputs including land, fertilizer and water. For 

instance the agroforestry system has been found to reduce soil erosion by up to 65% 

and nitrogen leaching by about 28% (Palma et al., 2007). According to Nasrullahzadeh 

et al., (2007), it enhanced grain yield of crops by enhancing their reproductive cycle, 

while the cultivation of crops in association with perennial tree increased farmers’ 
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income (Thakur et al., 2018). Tree species that could be more suitable to be associated 

as inter rows crop should therefore be investigated. 

4.5. Conclusions 

Climate change is a major factor affecting the agriculture sector and threatening the 

livelihood of farmers and therefore it is necessary to develop strategies to help farmers 

adapt to adverse effects of climate change. As shown in this study, farmers’ choice of 

tree and crops integration in agroforestry system as adaption strategy to climate change 

was influenced by a number of factors. These included land accessibility (landowner, 

tenants), farm size, location and interaction between landholding and farm size. The 

most important agroforestry system was agrosilvicultural which promoted the 

association of local tree species with staple food crops.  

Tree benefits were the most important criteria in selection of tree for the agroforestry 

systems with provisioning followed by supporting services as the most common 

ecosystem benefit derived by local communities. Tree-crops associations varied 

among the ethnic groups. Gourmantche preferred Afzelia africana, Combretum 

aculeatum, Diospros mespiliformis, Balanites aegyptiaca, Leptadernia hastata, 

Sarcocephalus latifolus, Dichrostachys cinera, Trichilia emetica, Pseudocedrela 

kotschyi and Daniellia oliveri associated with Zea mays and Glycine max, Zea mays 

with Vigna unguiculata and Oryza sativa in a monoculture. Berba had preference for 

Dichrostachys cinera, Daniellia oliveri, Leptadernia hastata, Diospros mespiliformis, 

Afzelia africana, Pterocarpus erinaceus, Parkia biglobosa associated with Zea mays 

and Glycine max; and sesamum indicum with Vigna unguiculata. These preferences 

served to diversify farmers’ cropping options to adapt to climate change. 
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CHAPTER 5:  CLIMATE CHANGE AND TREES CONSERVATION 

IMPACTS ON CROP YIELD IN AGROFORESTRY SYSTEM IN 

RIVERINE AREA OF PENDJARI RESERVE IN BENIN 

Abstract 

Agriculture in the Republic of Benin generates around 70% of employment and 30% 

of GDP, but it is rainfed and vulnerable to climate change.  Crop yield gap valuation 

and clarification can help to identify problems and challenges and to provide solutions 

with the aim of increasing crop production. This study aimed to (i) assess the impact 

of climate trends on major crop yield and (ii) evaluate the impact of tree conservation 

on crop yield in agroforestry systems. Temperature and rainfall data for forty years 

were obtained from Tanguieta Meteorological station in Benin. The annual crop yield 

of major crops was obtained from Direction Départementale de l’Agriculture de 

l’Elevage et de la Pêche of Benin, from 1990 to 2020.  Crop yield from the field in 

2020 was collected at a distance of 2 m, 4 m and 6 m away from standing trees on the 

farms. RClimDex was used for the quality control assessment of climate data. 

Exponential regression model was performed to select parameters that influenced crop 

yield. There was a general positive warming trend between 1981 and 2020. The 

findings showed that the minimum temperature and relative humidity positively and 

considerably impacted maize, but rainfall negatively and strongly (P 0.005Radj2 =32.3) 

influenced maize. The minimum temperature and relative humidity had a positive 

impact on sorghum (P 0.02, R2 = 9.68). The maximum temperature and relative 

humidity had negatively and significantly impacted on cotton yield, whereas the 

rainfall had positively adverse and significant effects (P0.000, Radj2 = 36.91). 

Maximum and minimum temperature had positively significantly (P 0.05, R2 = 54) 

impacted on cowpea yield. The Exponential regression model's findings indicated that 
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soil physico-chemical characteristics and tree proximity to crop are the primary 

variables determining crop yields in agroforestry system. 

Keywords: Food security, productivity, climate trends, and Pendjari reserve 

5.1.Introduction 

Over two decades, climate change has been considered a severe threat to humanity by 

affecting agricultural productivity (Abbas, 2022). Agriculture is the primary sector in 

the world that employs 53 % of the rural population, and contributes 25 % of the Gross 

Domestic Product (GDP) (Imran et al., 2018). A decline in per capita food availability 

is projected in most African countries (Oluwatayo & Ojo, 2016), and this is aggravated 

by land degradation (Smethurst et al., 2017). At the same time, average land holdings 

decrease due to population growth and climate change, and farmers cannot afford to 

allocate separate areas to grow crops and trees. Yields of main crops in Africa remain 

lower than those of other continents when compared with potential need that can be 

obtained with better water and nutrient management (Mueller et al., 2012). More 

efficient use of resources could reduce this difference between actual and potential 

yield. Agroforestry is increasingly promoted as the most important tool in addressing 

African soil fertility issues (Jha et al., 2021). Tree crop integration can often reduce 

soil erosion, improve water and nutrient cycling, and increase soil organic carbon and 

the abundance and activity of beneficial soil organisms (Barrios et al., 2012). Despite 

this sustainability of crops in the long term, the most important challenge is the 

influence of trees on crop yield due to aboveground competition for light and 

belowground competition for water and nutrients between crops and trees (van 

Noordwijk et al., 2021). The net effect of agroforestry on crop yields over time will 

depend on attributes and interactions of the trees species, canopy cover, diameter, 

height, crop species, the radial distance of trees on the under crops, soil, climate, and 
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management (Bayala et al., 2012). However, tree crop integration does not always 

provide a solution, as negative interactions may occur due to competition with adjacent 

crops (Siriri et al., 2009; Bayala et al., 2012; Craine & Dybzinski, 2013). It is necessary 

to adopt effective strategies to minimize adverse tree crop interactions. Schreiber et al. 

(2015) suggested two characteristics of trees that can be managed to minimize the 

adverse competition and limit competition. These characteristics are canopy and root 

architecture. Root and shoot pruning may be used to control the competitive impact of 

trees (Siriri et al., 2009). Despite the well documentation of the importance of tree 

crop integration, less is known about tree’s influence on crop yield with regard to tree 

cover and proximity to crops. This study sought to determine the impacts of climate 

change and tree conservation on crop yield in the riverine area of Pendjari Reserve in 

Benin. Specifically, the study aimed to: (i) assess the impacts of temperature and 

precipitation trends on major crop yields; and (ii) evaluate the impact of tree 

conservation on major crop yields in an agroforestry system in the Riverine area of 

Pendjari Reserve in Benin. The study hypothesized that: (i) crop yields do not change 

with temperature and precipitation trends; and (ii) crop yields in agroforestry system 

vary according to crop proximity to trees, soil nutrients depending upon the crop 

species, and tree (species, and canopy cover). 

5.3.1. Materials and methods 

5.2.1. Climate data 

Temperature (maximum and minimum) and rainfall datasets for 1981 – 2020 were 

obtained from the Tanguieta Meteorological station in Benin in 2022. Gridded datasets 

were extracted to the coordinates of the meteorological station using nearest neighbor 

method (NNM) across North Western Benin and covering the period from 1981 to 

2020 (Akinsanola et al., 2017). The 1981 – 2020 dataset was used for its consistency, 
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accuracy, and reliability. Non-growing season climatic conditions do not directly 

influence yields and may contribute to uncertainty in our study (Moreno Cadena & 

Gourdji, 2015).   

5.2.2. Crop yield data 

The four major crops assessed in this study are Sorghum bicolor, Zea mays, Gossypium 

and Vigna unguiculate. Records of the annual crop yields were acquired from the 

Direction Départementale de l’Agriculture de l’Elevage et de la Pêche 

(DDAEP/Atacora), a subdivision under the Ministry of Agriculture, Livestock and 

Fisheries of the Republic of Benin for the same period of the climate dataset (1981 – 

2020). 

5.2.3. Sampling Design and Methods of field data Collection 

Farmers who cultivate Zea maize, Sorghum bicolor, Gossypium bicolor and Vigna 

unguiculata and were not applying inorganic fertilizers were randomly selected per 

site for the study. Within each crop field, all measurements were performed along a 

transect of 100 m long on the longest diagonal of the field starting from the 

northwestern vertex. The choice of field edge was mostly driven by convenience with 

agroforestry practices (associated trees and crops) and the absence of widening 

practices. However, peculiar locations, such as adjacency with woodland, were 

avoided. Three equidistant sampling plots of 30 m×30 m were set along the diagonal 

line. Tree geometric characteristics, crop yield per plot, and distance from tree trunk 

and crop at 2 m, 4 m and 6 m were measured. Parkia biglobosa, Vitellaria paradoxa 

and Lannea microcarpa were considered, and under each tree species one meter by 

one-meter square quadrat (1 m×1 m) from inside to outside was made at a distance of 

2 m, 4 m and 6 m away from tree trunk in four compass directions (North, South, East 

and West) (see Figure 5.1). Quadrat from the same radial distance in the four campass 
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directions were regarded as replicates. All the grain plants within each quadra were 

harvested, and the grains separated from the stalk. The grains within each quadrat were 

weighed with a sensitive weighing balance. 

 

 

 

 

 

 

 

 

x=10m                                                           100m  

From each 30 m×30 m plot, soil samples were collected at 2 m, 4 m and 6 m away 

from the tree trunk four different depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm) 

using a core sampler measuring 9 cm in height and 5.5 cm in width. Each sample was 

placed in labeled zip-lock bags. This sampling procedure was conducted twice in each 

quadrat to determine bulk density and perform nutritional analyses. While the samples 

for bulk density were collected individually, the fertility studies from the three quadrats 

were combined (pooled) into a single composite sample for each depth per plot.  

 

X 

Figure 5.1. Plot sampling are distributed on the field 
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5.2.4. Data Analysis 

5.2.4.1. Climate Analysis 

To ensure data quality, a quality control check was conducted using RClimDex, and 

stations with more than 5% of missing data and outliers were eliminated from the 

dataset. Furthermore, a homogeneity test was performed using the RHtest package in 

R software (R Core Team, 2019) to assess fluctuations in the data. Various climate 

parameters, including rainfall, minimum temperature (Tmin), maximum temperature 

(Tmax), mean temperature (Tmean), Standardized Precipitation Index (SPI), and 

Standardized Precipitation Evapotranspiration Index (SPEI), were analyzed to 

determine their trends. Additionally, the correlation between crop yield and these 

parameters was established using RClimDex. These parameters were considered as 

influential factors on crop yields, as they are included in ClimPACT2, which 

incorporates the Standardized Precipitation Index (SPI) proposed by McKee et al. 

(1993) and accepted by the World Meteorological Organization (WMO) as the 

standard drought index for effective drought monitoring and climate risk management 

(WMO, 2012). Additionally, the Standardized Precipitation Evapotranspiration Index 

(SPEI) proposed by Vicente-Serrano et al. (2010) was used, which combines 

sensitivity to changes in evaporative demand caused by temperature fluctuations and 

trends, with the simplicity of calculation and the multi-temporal nature of SPI. The 

RClimDex tool was utilized to explore the correlation between crop yield and climate, 

providing insights into the positive or negative associations that aid in understanding 

the regression results. 
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5.2.4.2. Effect of Climate on crop yield 

Correlation coefficient (r) was used to estimate the impact of climate variables on the 

yields of the selected staple food crops over a 30-year period (1990-2020), indicating 

the sensitivity of the crop yields to climate variability. This method has been used 

extensively in analyzing the effect of climate variability on food production (Rowhani 

et al., 2011). 

5.2.4.3. Effect of tree conservation characteristics on crop yield 

Soil sampling was analyzed in the Laboratory (Laboratoire Sciences du sols) at the 

University of Abomey-Calavi The soil samples underwent the following processes: 

air-drying, passing through a 2-mm screen, and subsequent laboratory analysis to 

assess various characteristics. Soil organic carbon (SOC) was measured using the 

modified Walkley-Black dichromate oxidation technique (Nelson and Sommers, 

1982). Total nitrogen (TN) was calculated using the Kjeldahl digestion and distillation 

method (Mulvaney, 1982). The easily acid-soluble forms of phosphorus (P) were 

extracted using an HCl: NH4 Mixture (Bray's No. 1 extract), and their calorimetric 

values were obtained through ascorbic reduction (Bray and Kurtz, 1945; Sommers, 

1982). Sieving was employed to remove roots and stones larger than 2 mm from the 

soil samples used to determine bulk density. Subsequently, the samples were dried in 

an oven at 105°C for 48 hours. The oven-dried soil samples were used to estimate soil 

bulk density based on their dried weight and volume. Soil C stock was estimated 

according to (Adu Bredu et al., 2021) using Equation (5.3) 

SCS =SOC*BD*DP…………………………………………………………….[5.3] 

Where SCS is soil carbon stocks (Mg C ha-1), SOC is soil organic carbon content (%), 

BD is bulk density of soil (g cm-3) and Dp is soil depth (m). The total SCS up to 40 
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cm depth was finally estimated by summing up the C content of all layers (Pearson, 

2005). An Exponential regression model was used to investigate the relationship 

between the yield of plants and several predictor variables, including tree species, 

distance, phosphorus, bulk density, nitrogen, carbon. 

 

Modeling Exponential Regression 

A list of unique species-crop combinations was generated. For each species-crop com

bination, the data were filtered to include only observations for that specific combinat

ion. The nlsLM function was used to fit an exponential model of the form Yield ~ A * 

exp (B * Distance) to the filtered data. The model parameters A and B were initialize

d as A = 1000 and B = -0.1. The fitted models were stored in separate lists (exponenti

al_models1 and exponential_models2). The summary of each fitted model was printe

d to examine the fitted parameters, standard errors, and significance. 

Empty vectors (rsquared_values and adjusted_rsquared_values) were initialized to sto

re R-squared and adjusted R-squared values. For each species-crop combination, the 

R- squared value was calculated using the formula 1 - (rss / tss), where rss is the resid

ual sum of squares and tss is the total sum of squares. The adjusted R-squared value w

as calculated using the formula 1 - ((1 - R-squared) * (n - 1)) / (n - k - 1), where n is t

he number of data points and k is the number of independent variables. The calculate

d R-squared and adjusted R-squared values were stored in the respective vectors." 
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5.3.Resultsclimate variability and crop yield 

5.3.1.1. Trend analysis of climatic variables 

Table 5.1 reveals a notable increase in average Tmin and Tmax across the study area 

from 1981 to 2020, indicating a significant positive warming trend. The monthly 

hottest daily trend has increased, indicating a positive value of Sen’s slope (0.002) with 

a significant value (0.013). This positive trend in the hottest daily signifies that the 

study area is experiencing increased incidents in the maximum temperature extremes. 

The monthly mean daily minimum temperature showed a significant positive trend. 

However, the mean annual difference between daily Tmax and Tmin showed a 

significant negative trend. There was significant increasing (positive) trend of annual 

rainfall (annual sum of daily precipitation ≥1.mm), evidenced by the positive Sen’s 

slope of 4.28 (Table 5.1). Growing degree days change indicated a positive value of 

Sen’s slope (3.49) with a significant value (0.003). Table 5.1 presents the Standardized 

Precipitation Index (SPI3, 6, and 12), which indicates a significant positive trend. The 

validity of this trend is further confirmed by the Standardized Precipitation 

Evapotranspiration Index (SPEI 3, 6, and 12), which exhibits significant positive 

values for Sen's slope (0.002, 0.03, and 0.04) respectively. In the Sudanian zone of 

Benin, where evaporation rates are high, the SPEI provides a more comprehensive 

assessment of drought evolution by considering both temperatures and rainfall, thus 

capturing the influence of global warming. 
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Table 5.1.Rainfall and temperature patterns from 1981 to 2020 

Number Index  Frequences Start 

year 

End 

year 

Slope P value 

1 SPEI3: Standardised Precipitation 

Evapotranspiration Index of 3 

month 

Monthly 1981 2020 0.002 0 

2 SPI3: Standardised Precipitation 

Index of 3month 

Monthly 1981 2020 0.001 0 

3 SPEI6: Standardised Precipitation 

Evapotranspiration Index of 6 

month 

Annually 1981 2020 0.003 0 

4 SPI6: Standardised Precipitation 

Index of 6 month 

Annually 1981 2020 0.002 0 

5 SPEI12: Standardised 

Precipitation Evapotranspiration 

Index of 12 month 

Annually 1981 2020 0.004 0 

6 SPI12: Standardised Precipitation 

Index of 12 month 

Annually 1981 2020 0.003 0 

7 CSDI: Cold spell duration 

indicator  

Annually 1981 2020 -0.188 0.019 

8 dtr: Mean annual difference 

between daily maximum 

temperature (TX) and minimum 

temperature (TN) 

Annually 1981 2020 -0.023 0.037 

9 gddgrow20: Growing Degree 

Days 

Annually 1981 2020 3.49 0.003 

10 hddheat28: Heating Degree Days 

Annual sum of 28 TM 

Annually 1981 2020 -1.893 0.019 

11 prcptot: Annual sum of daily 

precipitation≥1.mm 

Annually 1981 2020 4.28 0.005 

12 r 10mm: Annual number of days 

when precipitation ≥10mm 

Annually 1981 2020 0.279 0.014 

13 tmm: Annual mean daly mean 

temperature 0.01 

Annually 1981 2020  0.005 

14 tnm: Annual mean daly minimum 

temperature  

Annually 1981 2020 0.022 0 

15 tnm: Monthly mean daily 

minimum temperature (TN) 

Monthly 1981 2020 0.002 0.009 

16 tnx: Monthly warmest daily 

minimum temperature (TN) 

Monthly 1981 2020 0.002 0.013 

 

5.3.1.2. .Impact of historical climate trends on yields 

In order to assess the extent to which changes in climate trends explain variations in 

yield, a linear regression model was utilized. The model estimated the R2 adj value, 
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representing the correlation between detrended yields and climate variables. The 

analysis of the results, as presented in Table 5.2, indicate a significant association 

between changes in temperature and relative humidity and the yield of Zea mays (R2 

adj = 32.3; P =0.005). Specifically, minimum temperature, rainfall, and relative 

humidity were identified as influential factors in explaining the yield changes. 

However, this study revealed that changes in maximum, rainfall and relative humidity 

significantly affected Gossypium hirsutum yield (R2 = 36.91, P <0.05). Moreover, 

changes in maximum and minimum temperature had a significant influence on Vigna 

unguiculata yield (R2 = 49.35 P = 0.000). Additionally, the analysis of the results in 

Table 5.2 revealed that changes in temperature accounted for (R2 =9.68) of the 

variation in Sorghum bicolor yield (P=0.02), with minimum temperature and relative 

humidity identified as the driving factor. 

Table 5.2.Influence of climate parameters on crop yields. 

 

Cowpea (Vigna unguiculata)      

Models Estimate Std Error P value  R2 R2 Adj 

Intercept     -4745.36 1128.11   0.000*** 53.57 49.35  

Maximum temperature     114.07       25.44       

Minimum temperature        25.68          5.74    

Cotton (Gossypium hirsutum)      

Models   Estimate Std Error P value R2 R2 Adj 

Intercept      9402.87     2091.81    0.000 *** 44.80 36.91 

Maximum temperature  -158.63      46.10      

Rainfall         37.08       23.73     

Relative humidity        -45.93       12.39      

Maize (Zea mays)      

Models Estimate Std Error P value R2 R2  Adj 

Intercept -12467.33 4009.47   0.005 ** 40.76 32.3 

Minimum temperature  459.11    154.73       

Rainfall       -59.51       32.24    

Relative humidity        53.83       15.79      

Sorghum(Sorghum bicolor)      

Models    Estimate     Std Error P value  R2 R2  Adj 

Intercept    -1663.72        1267.60   0.2   17.21 9.68 

Minimum temperature  92.10            50.41      

Relative humidity           7.23               4.11       
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5.3.1.3. Correlation of climate parameters on crop yields 

The impact of rainfall and temperature on Zea mays yield was illustrated in Figure 5.2. 

The analysis revealed that temperature predictors exerted a greater influence on Zea 

mays yield compared to rainfall predictors. Specifically, Tropical nights and coldest 

daily temperatures positively influenced Zea mays yield, while Hottest day, Cold spell 

duration indicator, Maximum amount of rain that falls in three consecutive days, and 

coldest daily temperatures showed a negative influence (Figure 5.2). In terms of 

rainfall predictors, consecutive wet days exhibited a positive influence on Zea mays 

yield with an r-value of 0.56. However, the Maximum amount of rain that falls in five 

consecutive days and daily precipitation had a negative influence on Zea mays yield, 

respectively. (Figure 5.2). 

 

Figure 5.2.Influence of rainfall and temperature on Zea mays yield. 
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The findings demonstrate that temperature predictors have a stronger positive impact 

on Sorghum bicolor yield compared to rainfall predictors. For instance, the growing 

season length, days with an average temperature of at least 10°C, and the number of 

cold nights positively influence Sorghum bicolor yield. Conversely, tropical nights, 

warmest daily temperature, mean daily mean temperature, mean daily minimum 

temperature, and coldest daily temperature negatively affect Sorghum bicolor yield 

(Figure 5.3). As for the rainfall predictors, consecutive dry days, the maximum amount 

of rain that falls in three consecutive days, the number of heavy rain days, daily 

precipitation intensity, and the maximum amount of rain that falls in five consecutive 

days showed a very low positive influence on Sorghum bicolor yield. However, the 

number of very heavy rain days, contribution from very wet days, consecutive wet 

days, and total annual precipitation from heavy rain days negatively impacted Sorghum 

bicolor yield (Figure 5.3). 

 

Figure 5.3.: Influence of temperature and rainfall on Sorghum bicolor yield 
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The impact of rainfall and temperature on Gossypium hirsutum yield was illustrated in 

Figure 5.4. The results indicate that temperature predictors exert a stronger influence 

on Gossypium hirsutum yield compared to rainfall predictors. For instance, summer 

days, tropical nights, growing season length, and the number of days with maximum 

temperature (TX >=30°C) positively influence Gossypium hirsutum yield. However, 

the warmest daily temperature and cold spell duration indicator have a negative impact 

on Gossypium hirsutum yield. Regarding the rainfall predictors, consecutive dry days, 

the maximum amount of rain that falls in three consecutive days, and the number of 

heavy rain days positively influence Gossypium hirsutum yield. Conversely, 

consecutive wet days have a negative impact on Gossypium hirsutum yield 

(Figure5.4). 

 

Figure 5.4. Influence of temperature and rainfall on Vigna unguiculata yield. 
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The influence of rainfall and temperature on Vigna unguiculata yield was presented in 

Figure 5.5 The results indicate that temperature predictors have a stronger impact on 

Vigna unguiculata yield compared to rainfall predictors. For instance, the number of 

hot days, mean daily maximum temperature, coldest daily temperature, and the 

percentage of days where the temperature reaches the maximal (TX >50th) percentile 

positively influence Vigna unguiculata yield. Conversely, the warmest daily 

temperature, amount of cool days, coldest daily temperature, and tropical nights 

negatively affect Vigna unguiculata yield (Figure 5.5). In terms of rainfall predictors, 

consecutive wet days positively influence Vigna unguiculata yield. However, the 

maximum amount of rain that falls in five consecutive days, total annual precipitation 

from heavy rain days, daily precipitation intensity, the number of days with 

precipitation (P >= 30mm), the number of days with precipitation (P >= 20 mm), 

contribution from very wet days, and the maximum amount of rain that falls in three 

consecutive days negatively influence Vigna unguiculata yield (Figure 5.5). 

 

Figure 5.5.Influence of temperature and rainfall on Gossypium hirsutum yield 
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5.3.2. Factors influence crop yields in the agroforestry system 

The analysis of Exponential Regression demonstrated that the grain yield of Zea mays 

exhibited significant variations depending on the tree species and distance (Figure 5.6). 

Specifically, the highest yield of Zea mays was observed at 2 m under Vitellaria 

paradoxa and 6 m under Lannea microcarpa. Conversely, the lowest yield was 

recorded under Parkia biglobosa. Similarly, the yield of Vigna unguiculata showed 

distinct patterns, with an increase from inside to outside under Parkia biglobosa. The 

highest yield of Vigna unguiculata was found at 6 m under the same tree. Sorghum 

bicolor displayed contrasting results, with the highest yield at 6 m and the lowest yield 

at 2 m under Vitellaria paradoxa. Lastly, Gossypium hirsutum exhibited an increasing 

trend from inside to outside, with the highest yield recorded at 6 m under Vitellaria 

paradoxa and the lowest yield under Parkia biglobosa 

 

Figure 5.6: Crop yield variation in agroforestry system 

From the results, different models were elaborated to predict crops yield under trees 

species according to distance, carbon, nitrogen and bulk density. 
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Table 5.3.Crop yield prediction in agroforestry system 

Combination of variable  Models R2 R2 A

dj 

Vitellaria paradoxa – Sorghum bicolor Yield = 0.96781*exp(0.18379) 

* Distance * Carbon * N * P * 

BD  

92.0 91.4 

Parkia biglobosa – Sorghum bicolor Yield = 1.08628*exp(0.15002) 

* Distance * Carbon * N * P * 

BD 

80.7 79.3 

Lannea microcarpa – Sorghum bicolor Yield = 1.01463* exp(0.11896)

* Distance * Carbon * N * P * 

BD 

75.6 73.7 

Lannea microcarpa –Vigna unguiculata Yield = 0.99166* exp(0.13118)

* Distance) * Carbon * N * P *

BD 

99.1 99.1 

Parkia biglobosa – Vigna unguiculata Yield = 2.78653*exp(0.15339)* 

Distance * Carbon * N * P * B

D 

88.8 87.9 

Vitellaria paradoxa –Vigna unguiculata Yield = 0.6555*exp(0.1910)* 

 Distance * Carbon * N * P * B

D 

95.8 95.5 

Lannea microcarpa – Zea mays Yield = 0.96648*exp(0.14466)* 

Distance * Carbon * N * P * B

D 

99.1 99.0  

Vitellaria paradoxa – Zea mays Yield = 5.6627*exp(-0.1445)*  

Distance * Carbon * N * P * B

D  

33.7 28.8 

Parkia biglobosa – Zea mays yield = 0.7144exp (0.1321)*  

Distance * Carbon * N * P * B

D 

92.0 91.4 

Lannea microcarpa – Gossypium hirsutu

m 

Yield = 1.39536exp (0.13619)* 

Distance * Carbon * N * P * B

D 

88.3 87.4 

Parkia biglobosa – Gossypium hirsutum Yield = 2.32953exp(0.10313)*  

Distance) * Carbon * N * P *B

D 

96.4 96.2 

Vitellaria paradoxa – Gossypium hirsutu

m 

Yield = 1.37923exp(0.08657)*  

Distance * Carbon * N * P * B

D  

99.9 99.9 

 

5.4.Discussion 

The analysis of temperature trends in the study area from 1981 to 2020 reveals a 

significant positive warming trend, with notable increases in average Tmin and Tmax. 

This finding aligns with the Fifth Assessment Report of the Intergovernmental Panel 
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on Climate Change (IPCC, 2013), which reported a global warming trend of 0.85 

(0.65–1.06) °C from 1880 to 2012. However, there is a significant negative trend in 

the mean annual difference between daily Tmax and Tmin. Sen's negative value 

indicates that the increase in minimum temperature is greater than the increase in 

maximum temperature, which is consistent with global observations from 1981 to 

2020 (IPCC, 2013). These results are also in agreement with a study by Ajetomobi et 

al., (2011) in Nigeria from 1971 to 2000. In addition to temperature trends, other 

studies have shown a general tendency of decreased annual total rainfall and maximum 

number of consecutive wet days. However, certain indices indicate an increase in the 

frequency of extreme rainfall events during the last decade (Mouhamed et al., 2013). 

These findings suggest that while overall rainfall has decreased, there is an 

intensification of extreme rainfall events. 

During the cropping season, the Standardized Precipitation Evapotranspiration Index 

(SPEI) at 3, 6, and 12-month lags demonstrates an increasing trend, reflecting 

alternating periods of dryness and rainfall. This trend characterizes the severity, extent, 

and duration of drought (Jabbi et al., 2021). The results of the study indicate an upward 

trend in SPEI across the study area. These findings align with recent studies conducted 

in Africa and other regions, which emphasize the occurrence of fluctuating wet and 

drought episodes and the increasing frequency of extreme events based on long-term 

observed data (Jabbi et al., 2021). 

The study identifies minimum temperature, rainfall, and relative humidity as 

influential factors in explaining changes in crop yield. Previous research by Baudron 

et al., (2019) reported a 45% reduction in maize yield in Ghana in 2017 due to an 

attack by fall armyworm. However, the study reveals that changes in maximum 

temperature, rainfall, and relative humidity significantly affect Gossypium hirsutum 
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yield (R2 = 36.91, P < 0.05). This finding is consistent with Dossou-Aminon et al. 

(2016), who identified four levels of climate change impacts on crop production: 

reduced productivity (30.7%), loss or abandonment of landraces (22%), increased 

damage by storage insect pests (19.3%), early drying of crops (18.7%), and seed rot in 

the soil due to excessive heat (9.3%). 

Changes in maximum and minimum temperature have a significant influence on Vigna 

unguiculata yield (R2 = 49.35, P = 0.000). These results align with previous studies 

conducted in cowpea (Ajetomobi et al., 2011) as well as studies in Kenya (Bryan et 

al., 2013), Ghana (Etwire et al., 2013), Mali (Traore et al., 2014), and Burkina Faso 

(Sultan et al., 2013). Furthermore, the results in Table 5.2 indicate that changes in 

temperature account for R2 = 9.68 of the variation in Sorghum bicolor yield (P = 0.02), 

with minimum temperature and relative humidity identified as the driving factors. 

Prasad and Snyder (2006) reported similar findings, providing further evidence of the 

detrimental effect of high temperatures on sorghum productivity. In the case of Zea 

mays, Tropical nights and coldest daily temperatures have a positive influence on 

yield, while factors such as Hottest day, Cold spell duration indicator, Maximum 

amount of rain that falls in three consecutive days, and coldest daily temperatures 

negatively impact yield. These findings are consistent with the results reported by 

Yirga et al., (2022) across different regions of Ethiopia. 

The study demonstrates that temperature predictors have a stronger positive impact on 

Sorghum bicolor yield compared to rainfall predictors. For example, factors such as 

growing season length, days with an average temperature of at least 10°C, and the 

number of cold nights positively influence Sorghum bicolor yield. On the other hand, 

temperature predictors have a stronger influence on Gossypium hirsutum yield 
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compared to rainfall predictors. Among the rainfall predictors, consecutive dry days, 

the maximum amount of rain that falls in three consecutive days, and the number of 

heavy rain days positively influence Gossypium hirsutum yield, while consecutive wet 

days have a negative impact. 

Furthermore, the results indicate that certain temperature factors, including the number 

of hot days, mean daily maximum temperature, coldest daily temperature, and the 

percentage of days where the temperature reaches the maximal (TX >50th) percentile, 

positively influence Vigna unguiculata yield. Conversely, factors such as the warmest 

daily temperature, number of cool days, coldest daily temperature, and tropical nights 

negatively affect Vigna unguiculata yield. It is important to note that increases in 

extreme temperatures can lead to significant yield reductions and have a negative 

impact on the reproductive stage of many crops (Hatfield & Prueger, 2015). 

The analysis of Exponential Regression revealed that the grain yield of Zea mays was 

highest at a distance of 2 m under Vitellaria paradoxa and 6 m under Lannea 

microcarpa. Conversely, the lowest values were observed under Parkia biglobosa, 

which exhibited the largest canopy cover. This larger canopy negatively impacted soil 

nutrients, light availability, and water infiltration. This result aligns with the findings 

of Chauhan et al., (2012), who reported a decrease in the growth and yield of Triticum 

aestivum with increasing poplar canopy size. The results indicated that the yield of 

Vigna unguiculata increased from the inside to the outside under Parkia biglobosa, 

with the highest yield recorded at a distance of 6 m from the tree. Sorghum bicolor 

demonstrated the highest yield at 6 m, while the lowest yield was recorded at 2 m. 

Similar trends were observed by Bayala et al., (2012), who reported a decrease in 

sorghum bicolor yield from the open area to the trunk of néré trees due to shade effects. 

Regarding Gossypium hirsutum, the results indicated an increasing trend in yield from 



95 

the inside to the outside. The highest yield was recorded at 6 m under Vitellaria 

paradoxa, while the lowest yield was observed under Parkia biglobosa. This trend of 

increasing grain yield with distance from the tree trunks was consistent with the 

findings of Ogwok et al., (2019), who highlighted the responsiveness of Gossypium 

hirsutum to light intensity and temperature. Microfaunal activities, water availability 

and the incidence of solar radiation were the three main factors that explained the 

observed variation of soil nutrients abundance under the tree species canopy in 

agroforestry system (Gnanglè et al., 2013). 

5.5.Conclusions 

Climate variability's impact on crop yield mainly depends on the crop species. The 

findings showed that cool-season species would be more affected because of an 

increase in average temperature. The Hottest and monthly mean daily minimum 

temperature trends significantly influence crop yield. However, the mean annual 

difference between daily maximum and minimum temperature negatively and 

significantly affects crop yield. Results showed an increasing pattern of yearly rainfall 

and growing degree days. Maximum and minimum temperatures influenced cereal 

crops like Zea mays and Sorghum bicolor. Climate variability remains as crucial as 

soil management, diseases and pest control, seed quality, and technology in influencing 

crop yield variation. 

The results of the Exponential regression model indicate that tree species proximity 

and soil nutrients influencing the yield of maize, cotton, cowpea, and sorghum in 

agroforestry systems. 
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CHAPTER 6: CARBON SEQUESTRATION IN AGROFORESTRY SYSTEM 

Abstract 

Carbon storage and sequestration are among the most crucial services provided by 

forest ecosystems, making them highly effective tools for mitigating and adapting to 

climate change. People often take these ecological services for granted and do not fully 

recognize or cherish them. This study looks at the carbon stored and valuation and 

assesses carbon credit around the riverine area of Pendjari Reserve. Specifically, this 

study wants to (i) assesses LULC from 1998 to 2020, (ii) evaluate land use change 

impact on carbon storage, and (iii) predict the future trend of carbon sequestration and 

valuation for 2035 and 2050. The results show that the maximum carbon is stored by 

wooded savannah (494,198.1 Mg C ha-1) in 2050, and decreased in 2020 and 2035 

respectively (387,059.4 Mg C ha-1) and (387,047.2 Mg C ha-1). The greatest carbon 

projected to be sequestered from the period 2020-2050 and 2035-2050 with their 

values being 50,950.97 Mg ha-1 and 50,893.4 Mg ha-1 respectively. The lowest 

projected value of 798.12 Mg ha-1 was for the period 2020-2035 over fifteen years. 

The projected highest gain and loss of sequestered carbon was found for the period 

2020-2050 and 2035-2550 with the values of 108947 Mg and -57996 Mg ha-1 and 

108878 Mg ha-1 and -57984.6 Mg ha-1, respectively. However, the lowest gain and loss 

were observed from period 2020-2035 with the values 845.56 Mg ha-1 and -47.52 Mg 

ha-1, respectively. However, projected economic gain indicates a positive value in net 

present value (NPV) of €171,067 to €90,431, and €90,431 to €285,121 for the same 

period. The total economic value of carbon sequestration within riverine area of 

Pendjari reserve was estimated at US$ 3,352,104 for 15 years (2020-2035), US$ 

213,994.1 for 30 years (2020 – 2050), and US$ 213,752.3 for 15 years (2035-2050).  

For the same period, the economic value of carbon sequestration loss was estimated at 
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US$ 199,584, US$ 243,583.20 and US$ 243,535.3 for the period 2020-2035, 2020-

2050 and 2035-2050, respectively.  

Keywords: Economic value, aboveground, belowground, carbon sequestration, and 

wood density.  

6.1. Introduction  

The world’s ecosystem services are declining, affecting forest-dependent communities 

(Kyere-Boateng & Marek, 2021). The pressure result from changes in land use 

practices, infrastructure development, unsustainable tourism, fragmentation of 

habitats, and climate change (Prokopová et al., 2019). Climate and land use change 

are recognized as international environmental issues (Mendoza-Ponce et al., 2021). 

However, the origin and sinks of carbon from land use land cover change are 

fundamentals in the global carbon budget  (Chabi et al., 2016a). Carbon storage is the 

cumulative amount of carbon stored in a terrestrial ecosystem (He et al., 2016). Carbon 

storage includes four components, according to Liu et al., (2022), which are 

aboveground carbon storage (AGC), belowground carbon storage (BGC), soil organic 

carbon storage (SOC), and dead organic matter carbon storage (DOC). Carbon storage 

is a crucial indicator of ecosystem services as it is closely linked to the productivity 

and climate regulation of terrestrial ecosystems. The type, volume, and spatial 

distribution of LULC are regularly changing as the world's economic growth and 

resource exploitation progress, resulting in more than 30% of carbon output (Alawamy 

et al., 2020). Policymakers must evaluate historical, current, and future LULC changes 

and the link between LULC changes and carbon storage changes. According to 

Houghton & Nassikas, (2017), Africa accounts for more than 17% of global carbon 

emissions from land use change. However, land use change contributes to 48% of total 

carbon emissions, increasing the atmospheric concentration of carbon dioxide to 400 
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ppm (Anokye et al., 2021). This expected level has not been achieved (Siegert et al., 

2020) and continues to increase (Roser & Rodés-Guirao, 2013). Ecosystem services 

for tropical areas are considered sources rather than sinks of CO2 since the timber in 

the savanna is harvested for energy and coal production (Tinlot, 2010). Therefore, it is 

most important to understand and quantify the dynamics of vegetation and carbon 

exchange. Several studies have addressed the topic of forest carbon stock assessments 

(Aabeyir et al., 2020; Jucker et al., 2022; Malhi et al., 2021).    

  In Benin, researchers have conducted numerous studies on biomass models to 

quantify stock spatial distribution and historical emissions from deforestation, such as 

the works by Goussanou et al., (2018), Houssoukpèvi et al., (2022), Kora et al., (2019), 

Soufouane et al., (2022), and Chabi et al., (2016). The impact of land use land cover 

(LULC) change on ecosystem services, including carbon stocks, is recognized as a 

significant threat to mountain areas, as stated by Moutouama et al., (2020). However, 

the dynamics of LULC in the riverine area of Pendjari Reserve and the underlying 

change mechanisms among different LULC categories remain unclear, and there is a 

lack of long-term quantitative data for carbon storage valuation (Aitali et al., 2022). 

Accurate assessment of carbon budgets requires information on the spatial distribution 

of biomass and carbon stock, with aboveground biomass playing a crucial role (Balima 

et al., 2020; Vahedi et al., 2016). To assist low-carbon development, it is critical to 

anticipate future LULC changes under various development scenarios and assess 

related carbon storages based on credible data and techniques relevant to the Riverine 

region of Pendjari Reserve (Liu et al., 2022). Various approaches and tools are 

employed for LULC modelling and carbon storage assessment, including LULC 

prediction models for simulating future scenarios (Muhammad et al., 2022). Carbon 
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storage assessment methods can be based on geophysical and chemical processes or 

geophysical methods of carbon density and land use land cover change. 

The Integrated Valuation of Ecosystem Services (InVEST) model, developed by the 

Natural Capital Project of Stanford University, has demonstrated excellent 

performance in assessing large-scale carbon storage evaluations (Avtar et al., 2022). 

This study aims to monitor and evaluate the carbon potential sequestration using the 

Markov-Chain and Invest model in the Riverine area of Pendjari Reserve. Specifically, 

the objective is to (i) assess land use land cover change from 1998 to 2020, (ii) evaluate 

land use change impact on carbon storage, and (iii) project carbon sequestration for 

the years 2035 and 2050.  

6.2.Methods 

6.2.1. Data collection 

6.2.1.1, Land use land cover classification and projection 

For this section, the methodology of Chapter 1 (Landsat images classification for 

the years 1998, 2007, 2013, and 2020 and land use projection for 2035 and 2050) 

was used.  

6.2.1.2. Carbon pool sampling 

Following a pre-survey in the study area, a random sample (West, 2016) was utilized 

to choose pilot sites based on community distribution. The snowball purposive 

sampling approach was used to select each pilot location. The research focused on the 

major communities of Berba, Gourmantche, and Wama, forming 55 %, 35 %, and 10 

% of the entire study region, respectively. The proportionality technique was used to 

pick eight sites: four in Berba communities (Porga, Dassari, Kani, and Sepounga), two 

in Gourmantche communities (Sangou and Batia), and two mixed areas in 

Gourmantche and Wama communities. Five land use classes, namely wooded 
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savannah, shrub savannah, cropland, fallow, and settlement, were selected for each 

site. Above ground, below ground, soil carbon, and dead wood were assessed. At each 

sampling location in the areas, a randomly selected 30 m x 30 m plot size was created 

to collect herbaceous plants, shrubs, seedlings, litter samples, and soil samples, and 

the Geographical Positioning System (GPS, WGS 84) coordinates of the plot's center 

and corners, as well as its elevation, was recorded. Because trees (including dead-

standing trees) were sparsely dispersed across the research locations, a census of all 

trees in the pilot plots was conducted to eliminate mistakes in assessing tree biomass. 

With GPS, the complete pilot plot where the sample plot was placed was located. All 

of the trees in the tracked stories were recognized down to the species level, with a 

diameter tape and a Laser Rangefinder (TruPulse, 200) hypsometer (Measurement 

Devices Ltd. UK) used to measure height and the diameter at breast height (dbh) of 

1.3 m above ground, respectively. 

Similarly, in each of the 30 m ×30 m sample plots size, the diameter at 0.50 m (d0.50) 

aboveground and the height of shrubs were measured using a diameter tape or digital 

caliper and metal measuring tape, respectively. Three 1m2 (1.0 m by 1.0 m) quadrats 

were laid out diagonally in the sample plot, one each close to the opposite corners and 

one at the centre of each plot. All the non-tree vegetation within the 1m2 quadrat were 

severed at the base and immediately weighed with electronic weighing scale for fresh 

weight. Surface litter was also removed and weighed. Soil and roots samples were 

collected in a 1m2 pit. Soil samples were taken at the following depths: 0–10 cm; 10–

20 cm; 20–30 cm and 30-40 cm. The soil samples from same soil depth within a plot 

was thoroughly mixed in a large basin and subsamples of about 500 g collected for 

nutrient analysis. Corresponding soil samples were collected from the various soil 
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depths with soil core samplers of known volume for bulk density determination. Only 

one set of bulk density samples will be taken per plot. All samples will be air dried. 

6.2.2. Data analysis 

6.2.2.1. Carbon estimation 

The mean values of wood density (ρ) were extracted from the global wood density 

database by Zanne et al. (2009) using the R package 'BIOMASS' developed by Réjou-

(Méchain et al., 2017). The assigned values were at the species or genus level. The 

volumes were combined using a Microsoft (MS) Excel Pivot Table based on different 

tree species. The average density of all the samples for each tree species was calculated 

as their wood density (ρ). We multiplied the wood density by the volume to determine 

the dry mass. Consequently, the sum of the masses of the individual logs was used to 

calculate the overall mass of each tree. Aboveground mass (AGM) of the individual 

trees was obtained from the dbh, height and wood density of the various tree species 

by the model of Aabeyir et al. (2020) as:  

ABM = 0.0580ρ((dbh)2H)0.999   …………………………………………………………………………… [6. 1] 

6.2.2.2. Laboratory methods 

The soil samples were be air-dried, processed to remove visible plant residue and then 

sieved through 2mm mesh for chemical and physical analyses. Soil texture 

measurements were be performed on soil from one pit per site on the various soil 

depths. Soil bulk density (SBD) was be determined by the volumetric ring method 

(Hounkpatin et al., 2022a). Bulk density measurements were be performed by oven-

drying the soil samples at 105 oC for 48 hours, and then reweighed for dry weight 

determination (Hounkpatin et al., 2022b). Total soil C concentration was determined 

by dry combustion (Nottingham et al., 2020) in a CH Shimadzu analyser. The sieved 

soil samples were soaked in 10% HCl to remove any carbonates from the soil and then 
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oven-dried at 45 oC to constant eight. The soils were then ground and analyzed for 

carbon content using a Carlo Erba elemental analyzer. The elemental analysis was 

repeated three times and the average C values used in the analysis. Soil carbon stock 

(SCS, Mg C ha-1) was estimated as (e.g., Adu-Bredu et al., 2021) as (Equation 6.2); 

SCS = SOC x BD x DP       (6.2) 

Where SOC is soil carbon content (%), BD is soil bulk density (g cm-3) and DP is soil 

depth (m) was calculated by multiplying the soil concentrations by the bulk density. 

The biomass of the non-tree vegetation (Hb) and ground litter (Lb) carbon stock (Mg C 

ha-1) per plot was estimated (Adu-Bredu et al., 2021) as (Equation 6.3); 

 𝐻𝑏 𝑜𝑟 𝐿𝑏 =
1

𝑛
∑ 𝐷𝑚 ×

𝑛
1

10000

𝐴
× 𝐶𝐹𝑟      (6.3) 

Where n is number of quadrats per plot, Dm is dry mass of non-tree vegetation or litter, 

A is area of the quadrat (m2) and CFr is carbon fraction of the litter or non-tree 

vegetation. 

6.2.2.3. Assessment of carbon storage InVEST model 

According to (Pechanec et al., 2018), the initial data necessary for running the InVEST 

carbon storage and sequestration model were LULC data from the research region and 

carbon density data from each LULC. 

The carbon sequestration map in the InVEST model was created using the LULC map 

for the current year (2020) and the projected years (2035 and 2050). A carbon pool 

table was created using the FSI report and IPCC 2006 criteria and a literature analysis 

to indicate the carbon pool in aboveground biomass, belowground biomass, soil 

organic carbon, and deadwood carbon in different classes of LULC maps. The InVEST 

carbon model simply tracks the carbon cycle, estimating the total amount of carbon 
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stored in the whole research region by aggregating carbon pool values assigned to each 

LULC type (Kim et al., 2018). 

According to the model, the carbon density of each LULC type (i) is as shown in 

Equation (6.4): 

Ci = Ci (above) + Ci (below) + Ci (dead) + Ci (soil)        (6.4) 

Where Ci (above), Ci (below), Ci (dead) and Ci (soil) are the carbon density of 

aboveground biomass, belowground biomass, dead organic materials and soil carbon 

density (Mg C ha-1), in the ith LULC type, respectively. The total carbon dioxide 

storage equivalent (CO2e) of the study area is then calculated by the model software 

based on Equation 6.5 as; 

𝐶𝑂2e = ∑ (𝐶𝑖 × 𝐴𝑖 ×
44

12

𝑛

𝑖
)          (6.5) 

where n is the number of LULC types in the study area, and Ai (ha) is the area of each 

LULC types. The value of the carbon benefit (REDD+ revenue) is obtained by 

multiplying the CO2e from the computation by unit price from REDD+ projects in the 

voluntary carbon markets. The unit price, which is US$ 4.20, was calculated from the 

average of the unit price of REDD+ project types transaction in the voluntary carbon 

market for three years of 2019, 2020 and 2021 at US$3.90, US$4.30 and US$4.40 

(Donofrio et al., 2021). The value was discounted by 10% using the Market discount 

price (Gittinger, 1982,  Bank World 1996). 
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Figure 6.1. Methodology steps followed for carbon store and monetary evaluation. 
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6.3. Results 

6.3.1. Prediction of carbon sequestration and valuation  

6.3.1.1. Carbon pools table 

One of the most crucial inputs to the Invest model is data from the carbon pools 

table. Tables (6.1) and (6.2) show the findings of wood density per tree species and 

carbon pool per land use types. From the Table 6.2, the highest estimated 

aboveground carbon pool value was found in wooded savannah (595,15 Mg C ha-

1) followed by fallow (161.152 Mg C ha-1), shrub savannah (146.42 Mg C ha-1), 

cropland (138.57 Mg C ha-1), and settlement (17 Mg C ha-1). The estimated 

belowground carbon values of wooded savannah was 98.146 (Mg C ha-1), and the 

corresponding value for shrub savannah, fallow and settlement was 50.00. 30.94, 

27.08 and 4.25 Mg C ha-1, respectively. However, fallow and settlement have the 

highest value of carbon stored in the soil was found in the fallow, followed in a 

decreasing order by settlement, forest, shrub savannah and cropland, with the value 

of 69.14, 68.76, 65.11, 64.26 and 62.72 Mg C ha-1, respectively. The highest 

estimated carbon stock of dead wood was observed in the wooded savannah, 

followed by cropland, shrub savannah, fallow and settlement with the value of 

0.57, 0.49, 0.46, 0.40, and 0.32 Mg C ha-1, respectively. 

Table 6.1Average wood density per tree species. 

Number Genus Wood 

density 

Number 

of tree 

1  Adansonia digitata 0.276 1 

2  Gymnospora senegalinsis 0.578 45 

3 Vitellaria paradoxa 0.578 45 

4 Acacia gourmaensis 0.749 1 

5 Acacia macrostachya 0.749 1 

6 Afzelia africana 0.693 14 

7 Albizia lebbeck 0.554 11 

8 Anarcadium occidentale 0.578 45 
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9 Anogeisus leiocarpus 0.578 45 

10 Azadirachta indica 0.578 45 

11 Balanites aegyptiaca 0.667 2 

12 Bligia sapida 0.578 45 

13 Bombax costatum 0.374 3 

14 Brewia bicolor 0.578 45 

14 Bridelia ferruginea 0.528 3 

15 Burkea africana 0.647 3 

16 Cassia siberiana 0.738 2 

17 Ceiba pentadra 0.281 1 

18 Combretum collinum 0.915 2 

19 Combretum molle 0.915 2 

20 Combretum nigricans 0.915 2 

21 Commiphora pedunculata 0.578 45 

22 Crotalaria retusa 0.578 45 

23 Delonix regia 0.534 2 

24 Detarium macroscapium 0.71 1 

25 Dichrostachys cinera 0.578 45 

26 Diospyros mespiliformis 0.702 3 

27 Dombeya quinqueseta 0.482 1 

28 Elaeis guineensis 0.578 45 

29 Entada africana 0.578 45 

30 Erythrina senegalensis 0.479 2 

31 Eucalyptus camadulensis 0.578 45 

32 Fadogia agrestis 0.578 45 

33 Ficus glumosa 0.45 4 

34 Ficus trichopoda 0.45 4 

35 Ficus villis 0.45 4 

36 Gardenia aquala 0.578 45 

37 Gmelina arborea 0.423 6 

38 Grewia bicolor 0.426 2 

39 Gymnospora senegalensis 0.578 45 

40 Iphanea  tebeica 0.578 45 

41 Isoberlinia doka 0.627 2 

42 Jatrpha curcas 0.578 45 

43 Kaya senegalensis 0.578 45 

44 Lannea accida 0.405 1 

45 Lannea microcarpa 0.405 1 

46 Leptadenia hasta 0.578 45 

47 Lonchocarpus laxiflorus 0.578 45 

48 Manguifera indica 0.578 45 

49 Moringa oleifera 0.578 45 

50 Opillia celtidifolia 0.578 45 

51 Parinari congensis 0.74 4 

52 Parkia biglobosa 0.525 1 
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Table 6.2.Carbon pools for different land use types 

LULC name C_above C_below C_soil       C_dead                   

Wooded savannah 595.15         98.146 65.11           0.57                    

Shrub savannah 146.42         50.80 64.26           0.46     

Cropland 138.57         27.076 62.72           0.49      

Fallow 161.152         30.94 69.14           0.4                        

Settlement 17.00    4.25     68.76           0.32                     

 

6.3.1.2. Carbon stored in 2020 and projected 2035 and 2050 land use 

The total carbon stored in current land and projected future land use is shown in 

Figures 6.4 to 6.6. Analyzing these figures reveals that the carbon store per land-use 

class remains constant from the current year, 2020, to the projected years, 2035 and 

2050. The carbon stock in each grid cell aligns with the map for 2020 and years 2035 

and 2050. Negative values show carbon emitted into the atmosphere and positive 

values signify carbon sequestration. Notably, the wooded savannah area contains the 

highest carbon value (ranging from 23.468 to 68.308 Mg C) per grid cell, followed by 

the shrub savannah area (20.400-23.468 Mg C). Cropland contains 8.1288 to 20.400 

Mg C of carbon, while settlements exhibit a lesser amount of carbon, with 8.12288 Mg 

C per grid cell. 

53 Prosopis africana 0.879 2 

54 Pseudocedrela kotschyi 0.621 1 

55 Ptelopsis suberosa 0.578 45 

56 Pterocarpus erinaceus 0.74 1 

57 Rourea coccinea 0.578 45 

58 Sarcocephalus latifolius 0.578 45 

60 Strychnos spinosa 0.718 2 

61 Tamarindus indica 0.854 3 

62 Tectona grandis 0.601 33 

63 Terminalia superba 0.459 57 

64 Trichilia emetica 0.498 1 

65 Vitex doniana 0.4 1 
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The spatial distribution of current and future carbon sequestration in the riverine area 

of Pendjari Reserve is influenced by the existing landscape. The sequestration raster 

(Figures 3.5 and 3.7) illustrates the difference in stored carbon between future and 

current land cover. The results of the sequestration raster (Figure 6.5) indicate negative 

values (-60.18 Mg C to -44.95 Mg C and -44.95 Mg C to 2.86 Mg C) in the significant 

parts of the study area (wooded savannah and settlement), while some areas (shrub 

savannah, cropland, and fallow) display positive values (2.86 Mg C to 15.13 Mg C and 

15.13 Mg C to 47.71 Mg C). Conversely, the sequestration raster results (Figure 6.7) 

indicate positive values (15.34 Mg C to 60.17 Mg C and 2.6 Mg C to 15.34 Mg C) in 

the predominant parts of the study area (wooded savannah and shrub savannah), while 

a few areas (cropland, fallow, and settlement) show negative values (-60.18 Mg C, -

60.18 Mg C to -45.08 Mg C, and -45.08 Mg C to 2.86 Mg C). 

The results highlight that wooded savannah and shrub savannah classes store the 

highest amount of carbon. The statistics (Table 6.3) demonstrate that wooded savannah 

exhibits the maximum carbon storage in 2050 (494,198.1 Mg C), with a decrease in 

2020 and 2035 with the value of (387,059.4 Mg C and 387,047.2 Mg C, respectively). 

For shrub savannah, the lowest value (154,658.2 Mg C) is observed in 2020, the 

highest value (156,466.1 Mg C) in 2050, and the medium value (154,740.2 Mg C) in 

2035. Conversely, cropland, fallow, and settlement display the lowest stored carbon 

values. 

In terms of carbon sequestration, the total results (Table 6.4) indicate that the most 

significant carbon sequestration (50,893.4 Mg) occurs from 2035-2050, while the 

lowest value (798.12 Mg) is observed from 2020-2035 over fifteen years. The highest 

gain and loss of carbon sequestration occur from 2035-2050, with 108,878 Mg and -
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57,984.6 Mg, respectively. Conversely, the lowest gain and loss are observed from 

2020-2035, with 845.56 Mg and -47.52 Mg, respectively. 

Table 6.3.Carbon stored (Mg) in different LULC types for 2020, 2035 and 2050. 

Land use 

type 

 Carbon

/ pixel 

Area 

(ha) 

2020 

Total  

carbon 

2020 

Area 

(ha) 

2035 

Total 

carbon 

2035 

Area 

(ha) 

2050 

Total   

carbon 

2050 

Wooded 

savannah  

 68 63245 387059.

4 

63243 387047.

2 

80751.3

3 

494198.

1 

Shrub 

savannah 

 24 71601 154658.2  

7163

9 

154740.

2 

72438.0

3 

156466.

1 

 

Cropland 

 

Fallow 

 21 

 

21 

32026 

 

2936.0

7 

60529.1

4 

 

61657.4

7 

32038 

 

2971.3

5 

60551.8

2 

 

62398.3

5 

13729.3

1 

 

1857.96 

25948.3

9 

 

39017.1

6 

 

settlemen

t 

 8 2007 1445.04 1958 1409.76 1959.74

6 

1411.01

7 

 

Total    665349.

2 

 666147.

4 

 678023.

6 

 

Table 6.4.Carbon sequestration (Mg) in different LULC types for 2020 -2035 and 

2035-2050 

Land use type 
 

Carbon sequestered 

2020-2035 Mg 

          Carbon sequestered 

          2035-2050 

Wooded savannah  -12.24 
  

1,725.9 

Shrub savannah 82.08 
  

107,150.9 

Cropland 
 

22.68 
  

-34,603.4 

Fallow 
 

740.88 
  

-23,381.2 

Settlement -35.28 
  

          1.2 

Total  
 

798.12 
  

50,893.4 
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Figure 6.2.Total carbon storage in 2020 

 

 

Figure 6.3.Total carbon stored in future (2035) 
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Figure 6.4. Change in carbon stored in 2020 – 2035 

 

 

Figure 6.5.Total carbon stored in 2050 
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Figure 6.6.Changes in carbon stored in 2020-2050 

 

6.3.1.3. Monetary Valuation of Carbon Storage and Sequestration 

Using economic data, the simulation produced a raster representing the economic 

value per pixel of sequestered carbon in the future scenarios (see Figures 6.7 and 6.8). 

Analyzing the spatial distribution of the economic value, it is evident that certain areas 

in the study region exhibit negative values, indicating a lack of carbon sequestration 

capacity. Consequently, the projected results indicate an economic loss, reflected in a 

negative Net Present Value (NPV) in US$. However, the smallest part of the study area 

can clump with positive values with the highest capacity of sequestering carbon. This 

is shown by the projected economic gain indicating a positive value in Net Present 

value (NPV) US$ 17.1067 to 90.431; and US$ 90.431 to 285.121 US$ for the same 

period (Figure 6.7). According to Figure (6.8) the most important of the area study is 

grouped with positive values with the highest capacity of sequestering carbon, 

indicating the economic gain which was projected in Net Present Value (NPV) US$ 

7.785 to 46.006 and US$ 46.006 to 180.485. In contrast, the smallest part is grouped 
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with negative values with the negative capacity of carbon sequestering, showing the 

economic loss which was projected in Net Present Value (NPV) US$ -180.485; US$-

180.485 to -135.187 and -135.187 to – 7.785. The total monetary value of carbon 

sequestration within the riverine area of Pendjari reserve was estimated at 3,352.104 

US$ per 15 years (2020-2035) and 213,752.3 US$ per 15 years (2035-2050).  For the 

same period, the economic value of carbon sequestration loss was estimated at 199.584 

US$ and 243535.3 US$.  

 

Figure 6.7.Monetary value of carbon sequestered in 2035 
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Figure 6.8.Monetary value of carbon sequestered in 2050 

 

6.4. Discussion 

The analysis of carbon pool results in Table 6.2 reveals notable differences in 

aboveground and belowground carbon among various land-use and land-cover 

(LULC) types, while soil carbon exhibits comparatively less variation. The highest 

estimated aboveground carbon pool is observed in wooded savannah (595.15 Mg ha-

1), followed by fallow (161.152 Mg ha-1) and shrub savannah (146.4 Mg ha-1). 

Cropland (138.57 Mg ha-1) and settlement (17 Mg ha-1) exhibit the lowest carbon 

densities. Similar findings were reported by Kumarasiri et al. (2022), who noted lower 

carbon density in industrial and agricultural areas, as well as home gardens. The 

aboveground carbon pool values reflect the direct relationship between woody 

materials and aboveground carbon storage in the study area (Damnyag et al., 2011). 

Likewise, belowground carbon values exhibit a similar pattern to aboveground carbon, 
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with significant variation among different LULC types. In contrast, soil and litter 

carbon show less pronounced variations. Due to the unavailability of dead wood data, 

this study only considers litter carbon. Similar challenges were faced by Paquit and 

Mindana (2017), who also focused solely on litter carbon due to difficulties in 

accurately assessing deadwood carbon in the field. This challenge arises from 

uncertainties in carbon transport between litter, deadwood, and soil. Detecting changes 

in ecosystem services (ES) associated with LULC change is crucial for understanding 

how the quality and quantity of services are affected by human activities. Local and 

regional assessments are urgently needed to inform appropriate policies that enhance 

human well-being, as adverse LULC change can have severe impacts on ecological 

processes and community livelihoods (Tolessa et al., 2017). Consequently, effective 

land management and implementation of ES schemes to support biodiversity 

conservation and community livelihoods should be based on accurate assessments of 

ES within the area. 

Invest model is used to simulate carbon sequestration for three scenarios present 

(2020), future (2035), and (2050) land use land cover change classes. The spatial 

distribution of carbon stocks, assessed with Invest model, indicated values ranging 

from 8.12 to -68.308 Mg C per pixel, depending on the different LULC types. As 

shown in the results in Table 6.3, with a land area of 168892.38 ha, the riverine area 

of Pendjari reserve currently stores 2,009,520 Mg C, whereas carbon storage varies 

with land use types. The wooded savannah obtained the most considerable Carbon 

stored, 387,059.4 Mg C in 2020 decreased to 12.4 Mg C in 2035 and increased to 

107,151.1 Mg C in 2050, comprising 58.17%, 58.10%, and 68.92%. Furthermore, it is 

indicated that shrub savannah has captured a considerable amount of carbon, 154,658.2 

Mg C in 2020, and increased by 81.8 Mg C and 1726.1 Mg C respectively, in 2035 
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and 2050, which comprise 23.24%, 23.22%, and 21.82%. However, fallow land 

accounted for 61,657.47 Mg C in 2020 and increased by 740.93 Mg C in 2035 with 

9.266% and 9.367%, but the carbon stored decreased to 23381.24 Mg C with 

3.925648%.  Moreover, it is revealed that cropland held 60529.14 Mg C in 2020, 

increased by 22.66 Mg C in 2035, and decreased to 34603.41 Mg C in 2050 with 

respectively 9.097%, 9.089%, and 3.618%. The settlement captured the lowest amount 

of carbon with 1445.05 Mg C in 2020, and it decreased to 35.29 Mg C in 2035 and 

increased by 1.26 Mg C in 2050. This result is confirmed by (Chacko et al., 2018; 

Kumarasiri et al., 2022) in Sri Lanka Uva Province, who found that vegetative land 

use types stored relatively more carbon than other land use types.  

The total monetary value of carbon sequestration within the riverine area of Pendjari 

reserve was estimated at 2.234.736 US$ per year from (2020-2035); and 14,250.15 

US$ per year from (2035-2050).  For the same period, the economic value of carbon 

loss was estimated at 13.3056 US$; and 16,235.69 US$. The fallow recorded the most 

important economic value of 3,111.696 US$, followed by shrub land 344.736 US$, 

and cropland obtained 95.256 US$. Still, the settlement recorded the most important 

loss of value of 148.176 US$ and wooded savannah loss of 51.408 US$ from (2020-

2035). Moreover, the lowest economic value of carbon sequestration has recorded in 

the settlement area of 5.04 US$, the highest value has found in shrub savannah 

450,033.8 US$, followed by wooded savannahs 7,248.78 US$. At the same time, the 

cropland and fallow lost the most important value respectively with 145,334 US$ and 

98,201 US$. The discount rate and social value parameters have considered in order 

to understand the net present value of carbon sequestered in each period (2020-2035), 

and (2035-2050). The same approach was used by (Boyland, 2006) who used discount 
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rate to elaborate the time value for carbon sequestration to calculate its net present 

value. 

6.5. Conclusions 

This study investigates LULC effects on carbon storage and valuation in riverine 

area of Pendjari in Benin. The Invest model was found to be suitable for carbon 

storage and sequestration assessment and can be used as an important tool to 

evaluate the total carbon storage in different types of LULC. Moreover, this model 

can be used in the detection of carbon potential for area REED+ or mapping spatial 

distribution of carbon storage. The most important land use, which stores the 

highest amount of carbon is the wooded savannah, followed by the fallow land-

use. The carbon stock mapping in different LULC highlights the effectiveness of 

vegetation pattern in land use types, and how much carbon lost over the time due 

to anthropogenic activities causes changes in land use. Carbon sequestration and 

valuation are considered as the main tool for decision making process, such as 

environmental planning and policies regarding ecosystems services management. 

Provision of information about carbon stock can therefore contribute to 

development through carbon credit promotion and help to better understand 

climate change at country level.  
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CHAPTER 7:  CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

This chapter presents the conclusions and recommendations based on the main 

findings of the study and discussions from the previous chapters.  

What is the county-level LULC patterns in the riverine area of Pendjari Reserve 

from 1998 to 2020?  

Land use is the main factor which contributed to ecosystem services degradation and 

affected negatively human wellbeing. The research shows that land use is changing 

and affecting mainly Wooded savannah which is decreased by 4.7 % during 1998-

2007, while continuous declines of 8 % and 11.5 % occurred respectively during 2007-

2013 and 2013-2020. The area of shrub savannah increased by 10.5 % from 1998-2007 

and 3.88 % during 2007-2013, while an apparent decline in the shrub savannah was 

observed by 1.17 %. The two main factors negatively affecting ecosystems of the study 

area are human activities and climate change. From 1998-2007, the decline in cropland 

was documented by 6.66 %, while an evident increase was observed by 4.33% and 

11.1 % respectively from 2007-2013 and 2013-2020. Specifically, the fallow land is 

released by 0.77 % from 1998-2007, before decreasing by 0.7 % and increasing by 

0.83 % respectively from 2007-2013 and 2013-2020. The results of predicted and 

simulation showed small reduction of wooded savannah area, however the most 

important reduction would be observed in settlement.  

Why do farmers use the preferred tree species in the agroforestry system?  

As shown in this study, farmers’ choice for tree and crops association in agroforestry 

system as an adaption strategy to climate change was influenced by and accessibility 

(landownership), farm size, district and interaction between landholding and farm size. 

The most important agroforestry system was agrosilvicultural which promoted the 
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association of local tree species with staple food crops. The main agroforestry trees are 

Vitellaria paradoxa, Parkia biglobosa and Lannea microcarpa. Farmers in the study 

area prefer a combination of crops and trees in their agroforestry systems to adapt to 

climate change, and the inclusion of trees has a positive impact on crop production by 

reducing the negative effects of climate variability. However, tree-crops associations 

were mostly influenced by ethnic group. This study showed that the agroforestry 

system conserved endangered species (Pterocarpus erinaceus) and vulnerable species 

(Khaya senegalensis, Afzelia africana and Vitellaria paradoxa).  

Do climate change and tree conservation affect Crop yield in agroforestry 

systems? 

Climate variability impact on crop yield is mainly dependent on the crop species. The 

findings showed that cool season species will be more affected because of increase in 

average temperature. The hottest daily and monthly mean daily minimum temperature 

trend have significant influence on crop yield. However, the mean annual difference 

between daily maximum and minimum temperature influence negatively and 

significantly crop yield. Results showed increasing pattern of annual rainfall and 

growing degree days. Results indicate that the lowest temperature positively and 

considerably impacted maize, while maximum temperature and relative humidity 

adversely affected maize. The minimum temperature had a positive and substantial 

impact on sorghum. The lowest temperature positively impacted cotton yield but was 

negatively affected by mean temperature and relative humidity. Maximum temperature 

and relative humidity positively and significantly impacted cowpea growth. The 

results indicated that crop yield was influenced by tree species and tree proximities. 

The crop yield variation observed under agroforestry species was related to soil 

nutrients availability.  
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How does carbon potential sequestration vary in agroforestry systems? 

The study shows LULC impacts on carbon storage and valuation in riverine area of 

Pendjari in Benin. The study indicates that Invest model is suitable for carbon storage 

and sequestration assessment and can be used as an important tool to evaluate the total 

carbon storage in different types of LULC. The study shows that the most important 

land which embraces the effectiveness amount of carbon stored is wooded savannah. 

Shrub savannah had the highest and fallow had the second-highest stored carbon. A 

significant concern to the sustainable supply of ES and to the reduction of trade-offs 

in land use decision making is the rapid alteration of the land system in the study area. 

The modelling of the potential of carbon sequestration in agroforestry systems 

indicates that they have a significant potential for mitigating climate change by 

sequestering carbon. Therefore, promoting agroforestry systems in the area can 

provide a sustainable solution for enhancing agroecosystem services provisioning and 

mitigating climate change. 

7.2. Recommendations 

For Policy 

✓ Existing efforts for conservation and restoration should be maintained 

✓ Given the importance of agroforestry systems for farmers livelihoods, 

this practice should be promoted  

✓ Policy helps farmers to adopt tolerant crops to high temperature and 

early-maturing crop varieties 

For Researchers 

Furthermore, researchers should work to improve carbon eestimation models 

by incorporating additional variables such as soil type, land management 

practices, and climate variability. 
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APPENDICES 

Appendice 1: Discriminants analysis and V test on crops and trees species and 

services with ethnic 

Variables discriminants V test 
category Overall  

Prob Me Sd Me Sd  

 1 

Afzelia africana 2.07 0.10 0.56 0.11 0.61  0.038 

Combretum aculeatum 2.72 0.01 0.09 0.01 0.10  0.007 

Diospros mespiliformis 2.97 0.12 0.48 0.13 0.50  0.003 

Balanites aegyptica 4.53 0.12 0.51 0.14 0.54  0.000 

Leptadernia hastata -5.86 0.07 0.49 0.10 0.60  0.000 

Sarcocephalus latifolus -8.39 0.01 0.14 0.03 0.18  0.000 

Dichrostachys cinera -10.82 0.00 0.05 0.05 0.46  0.000 

Trichilia emetica -13.14 0.11 0.54 0.29 1.51  0.000 

Pseudocedrela kotschyi -13.32 0.00 0.00 0.01 0.12  0.000 

Daniellia oliveri -16.64 0.01 0.11 0,05 0,28  0.000 

 2 

Dichrostachys cinera 17.28 4.00 1.73 0.05 0.46  0.000 

Vitellaria paradoxa 14.04 2.00 0.00 0.05 0.28  0.000 

Lannea microcarpa 9.69 3.00 1.73 0.10 0.60  0.000 

Diospros mespiliformis 5.45 1.50 0.87 0.13 0.50  0.000 

Afzelia.africana1 3.78 1.25 2.17 0.11 0.61  0.000 

Pterocarpus erinaceus 2.26 0.75 0.43 0.16 0.53  0.024 

Parkia biglobosa 2.14 6.00 3.46 2.34 3.44  0.032 

Lannea microcarpa 2.1 4.00 3.75 2.56 0.92  0.005 

 3 

Pseudocedrela kotschyi 17.30 0.83 0.37 0.01 0.12  0.000 

Trichilia emetica 17.18 10.83 2.79 0.29 1.51  0.000 

Sarcocephalus latifolus 11.03 0.83 0.37 0.03 0.18  0.000 

Daniellia oliveri 9.87 1.17 0.37 0.05 0.28  0.000 

Balanites aegyptica 6.25 1.50 0.50 0.14 0.54  0.000 

Combretum aculeatum 3.67 0.17 0.37 0.01 0.10  0.000 

Combretum collinum 2.04 0.50 0.50 0.10 0.48  0.041 

Vitellaria Paradoxa -2.13 1.67 0.47 11.59 11.50  0.033 
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Variables discriminants 

Cla/Mo

d 

Mod/Cl

a 

Globa

l 

V 

test 

P 

value 

1 

Ethnie=Gourmantche 100.00 46.44 45.15 3.06 0.002 

ZeamaysVignaungunlata=yes 98.15 90.88 90.03 2.49 0.013 

ZeamaysGlycine max=yes 97.74 98.58 98.06 2.46 0.014 

Zea maysVignasubterranea =yes 97.73 98.29 97.78 2.35 0.019 

SorghumbicolorVignaunguiculata=

yes 97.50 100.00 99.72 2.20 0.028 

Gossypiumhirsutumvignahirsutum 0.00 0.00 0.28 -2.20 0.028 

Sorghum bicolor=no 0.00 0.00 0.28 -2.20 0.028 

Zeamays =no 75.00 1.71 2.22 -2.35 0.019 

Vigna unguiculata = yes 88.89 9.12 9.97 -2.49 0.013 

Gossypium hirsutum=yes 94.44 48.43 49.86 -3.34 0.001 

2 

Ethnie = Berba 11.11 100.00 9.97 3.93 0.000 

Gossypium hirsutum = yes 6.06 100.00 18.28 3.28 0.001 

ZeamaysGlycine max=yes 100.00 25.00 0.28 2.54 0.011 

Sesamumindicumcajanuscajan=yes 33.33 25.00 0.83 2.13 0.033 

Zea maysGlycine max=yes 0.56 50.00 98.06 -3.10 0.002 

SesamumindicumArachishypogea=

yes 0.00 0.00 81.72 -3.28 0.001 

ArachishypogeaZeamays=No 0.00 0.00 90.03 -3.93 0.000 

3 

Ethnie =Wama 25.00 33.33 2.22 2.73 0.006 

Sorghum bicolor = yes 3.33 100.00 49.86 2.44 0.015 

Oryza sativa = yes 100.00 16.67 0.28 2.39 0.017 

Zea mays..Vignaungulata=no 0.00 0.00 45.15 -2.22 0.026 

Gossypium hirsutum..Vignasubte 

=No 1.39 83.33 99.72 -2.39 0.017 

Zea mays..Glycine max =No 1.13 66.67 97.78 -2.73 0.006 
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Appendice 2. Trends in SPI and SPEI 

 

Figure1. Standardized precipitation Evapotranspiration (SPEI3) 

 

Figure2. Standardised precipitation (SPI3) 
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Figure3. Standardised precipitation Evapotranspiration (SPEI6) 

 

 

Figure4. Standardised precipitation (SPI6) 
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Figure5. Standardised Evapotranspiration (SPEI12) 

 

Figure6. Standardised precipitation (SPI12) 
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Appendix 3. Questionnaire 

Name of village: 

Household (HH) information 

Household head name:                                                                             profession: 

Single [ ] 2. Married [ ] 3. Separated [ ] 4. Divorced [ ] 5. Widowed [ ] 6. Co-

habitation [ ] 

Sex:  M       F          c) Age > 30            30-45          45-60          < 60 

Household Size 

 

 

 

Have you always been cultivating in the same region? 

Y yes                                          No 

If no, is the reason due to: 

Change in climate                                              Government policy 

Ease access to land                                            Others………………… 

Are you a 1. Native [ ] or 2. Settler [ ] 

How long have you lived in this community? ………………………(years) 

Education level: Islamic school        primary      secondary      tertiary   analphabet 

Total farm size (acres/hectares):                  g) Land tenure: Freehold          Leasehold 

Major source of livelihood: 

What are different services do you get from the area?..................................................? 

Do you think the services are increasing or decreasing………………………………? 

Why?............................................................................................................................... 

Sex 0-10 

old 

11-20 

old 

21-30 

old 

31-40 old >50 old Total 

M       

F       
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Have you dropped some varieties since you started the farming? Yes □   No □ 

If Yes, which one? 

a. List 

Why did you drop those varieties? 

Varieties reasons Varieties reasons 

    

    

    

    

    

What was agricultural calendar 

What are your observations about the following climatic parameters for the past 20 

years? 

i Rainfall amount Increased [ 

] 

Decreased [ 

] 

Same [ ] Don’t know [ 

] 

ii Onset (starting) of 

rainfall 

Early onset 

[ ] 

Late onset [ 

] 

Normal [ ] Don’t know [ 

] 

iii Cessation (end) of 

rainfall 

Early [ ] Late [ ] Normal [ ] 

 

Don’t know [ 

] 

iv Length of growing 

season 

Increased [ 

] 

Decreased [ 

] 

Same [ ] 

 

Don’t know [ 

] 

v Temperature Increased [ 

] 

Decreased [ 

] 

 

Same [ ] Don’t know [ 

] 

vi Duration of dry 

season 

 

Increased [ 

] 

Decreased [ 

] 

 

Normal [ ] 

 

Don’t know [ 

] 

vii Frequency of 

prolonged dry spells 

(no rains in some days 

during rainfall season) 

Increased [ 

] 

 

Decreased [ 

] 

Normal [ ] Don’t know [ 

] 

Livestock 

Type Number Source of 

fodder/feed 

prize   

Cattle 

(betail) 

     

Sheep 

(mouton) 

     

Chicken 

(poulets) 
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Duck 

(canard) 

     

Another      

 

Crop production 

 

Presence of tree/vegetative species on farm and surroundings 

Loca

l 

nam

e 

Scientifi

c 

name 

ag

e 

diamete

r 

heigh

t 

crow

n 

Practices 

manage

mt 

indigeno

us 

exogeno

us 

         

         

         

Trees importance in farming system 

 

SECTION B: LANDUSE AND DRIVERS OF LANDUSE CHANGE 

What type(s) of farming systems do you practice? 

Shifting cultivation [ ] 2. Crop rotation on same land [ ] 3. Fallow system (leaves 

land for min 3 yrs before farming it again) [ ] 4. Perennial crops farming like cocoa, 

cashew [ ] 5. Other, specify ……….. 

What cover was on the land before you farmed on it for the first time? 

Crop types Previous 

year 

Cropland(ha) Inorganic 

fertilizer 

per ha in 

kg 

Organic 

fertilizer 

per ha in 

kg 

Yield of 

crops in kg 

per ha 

 

1.      

2.      

3.      

4.      

5.      

Scien

tific 

name 

Clima

te 

regula

tion 

Eros

ion 

cont

rol 

Pollin

ation 

Or 

honey

bee 

Ca

sh 

cr

op 

Crop 

as 

subsist

ence 

fod

der 

Bio

mass 

For 

fuel 

Timber

/ 

constru

ction 

Fre

sh-

wat

er 

Cult

ural 

servi

ces 
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Forest [ ] 3. Open vegetation (shrubs and sparse trees) [ ] 3. Grass [ ] 4. Fallow 

(farmed before and left to regrow [ ] 5. Agroforestry [ ] 6. Tree Plantation [ ] 7. Cash 

crop  [ ] 8. Other, Specify……… 

What type of farming (kind of crop cultivation) did you practice for the first time on 

the land? 

Mixed Cropping [ ] 2. Mono cropping [ ] 3. Tree plantation [ ] 4. Agroforestry [ ] 5. 

Other, specify………………………….. 

What is your current farming practice (kind of crop cultivation)? 

Mixed Cropping [ ] 2. Mono cropping [ ] 3. Tree plantation [ ] 4. Agroforestry [ ] 5. 

Other, specify………………………….. 

What kind(s) of crop(s) have you grown over the last 5 – 10 years? 

Tree crops [ ] 2. Cereal like maize [ ] 3. Tubers [ ] 4. Fruits [ ] 5. Vegetables [ ] 6. 

Other (specify)………… 

. What is your current farm size: ……………………… acres 

Has your farm size changed (increased or decreased) over the past 5 years? 

Yes [ ] 2. No [ ] 

If yes what is th 

If no, why? ………………………………………………………………………… 

Do you have plans to expand in future? 

Yes [ ] 2. No [ ] 3. Not Sure [ ] 

On a scale of 1 – 10, what is the potential of clearing forest if you want to expand 

your farmland in the future? ……………………….. [1 – not likely and 10 – most 

likely or very sure] 

On a scale of 1 – 10, what is the potential of clearing open vegetation (includes 

shrubs, grassland) if you want to expand your farmland in the future? …………… 
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On a scale of 1 – 10, what is the potential of going into Agroforestry (mixing trees 

and your crops on your farm) or leaving a minimum of 10 trees in an acre of 

farmland in the future? ………………………… 

. If no, why ……………………………………………………………… 

. Do you have plans to change what you are currently planting/cultivating? 

Yes [ ] 2. No [ ] 

If yes to which type? 

. Mixed cropping [ ] 2. Mono Cropping [ ] 3. Agroforestry [ ] 4. Tree Plantation [ ] 

Other, specify…………………………………… 

How long have you been farming? ……………(years) 

Do you plant trees in your farm?  yes              No 

If yes 

why?................................................................................................................................ 

List them……………………………………………………………………………… 

If no why? 

Do you leave tree in your farm? Yes                  No 

If yes 

why?................................................................................................................................ 

List them:……………………………………………………………………………… 

If no 

why?……………………………………………………………………………………

…… Is the tree density or number of trees available on the farm important? 

yes.......... No.... ............ 

Why?............................................................................................................................... 

How about the historical development of woodlots or agroforestry? 
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Are trees on the farm level increasing or decreasing? Any preferred tree/vegetative 

species and preferred arrangement/pattern (e.g. hedgerows, woodlot) and location 

and why? 

Which tree species would - you prefer? Why? 

Herbicide, insecticide, pesticide and chemical fertilizer 

Do you use herbicide, insecticide, pesticide or/ and chemical fertilizer? yes  No 

If yes, list 

them……………………………………………………………………………………. 

Name Herbicide Insecticide pesticide Chemical 

fertilizer 

Quantite 

/ha 

Frequences 

using 

remanence Other 

information 

         

         

         

         

         

         

         

 

 

 

 

 

 

 

 


