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ABSTRACT 

The problem of bus scheduling involves determining the optimal route structure, span 

of service, and service frequencies for the transit agency and assigning vehicles to the 

routes. This involves considering cycle times, number of vehicles, timed transfers, 

layover time and locations, recovery time, and any difference in weekday and 

weekend services (Wren and Rousseau, 1995).  

The problem is common due to its direct application to problems arising in industry 

for example, vehicle routing and vehicle assignment and also for their contribution to 

the solution methods for integer programming problems. Several exact algorithms 

based on branch and bound, dynamic programming and heuristics have been proposed 

to solve the Scheduling Problems. 

 

This study formulates and solves the scheduling problem of the Metro Mass Transit 

unit in the Ashanti region with respect to how scheduling should be managed for the 

intra city, inter urban/rural urban and intercity routes. The use of integer linear 

programming, specifically the branch and bound method is incorporated in this study. 

The objective is to find an optimal bus schedule for the routes plied by Metro Mass 

Transit buses.  
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CHAPTER ONE 

INTRODUCTION 

Public transportation planning covers a very wide research area. From the design of 

networks to the scheduling of vehicles and rostering of crews, the process of 

generating a public transportation system has been approached from many sides. 

 

In Ghana, road transport is easily accessible and affordable yet not enough to satisfy 

all customers at a given time, hence the long queues at most bus stops in urban areas 

and even rural areas where few vehicles operate. Though buses are able to convey a 

large number of the passengers at a time, the issue of efficiency matters a lot to the 

passenger. 

 

One major problem of transportation is the nature of our roads. Drivers have to 

choose a suitable route whenever there is traffic jam or poor road condition. 

In order to ensure that both passengers and transport owners are fairly served, 

transport companies may engage in intensive planning so as to consider all the 

potential problems and find solutions to them. 

 

An urban public transit system planning involves making decisions on number of 

buses, routes, and passenger demand rate as well as time table for the transports.  

Confronted by traffic congestion, urban parking problems and increasing pollution, 

car drivers might consider switching to public transit if they had an affordable and 

good quality system at their disposal. It is the duty and goal of transit agencies to 

provide such conditions, by adequately adjusting their systems, so as to maximize the 

quality of service to users while minimizing the costs. 
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1.1         BACKGROUND OF THE STUDY 

The bus transit system has become an essential part of our daily life, especially in 

large developed urban cities. It has been a supporting industry for the nation to meet 

the goals of improving mobility, protecting the environment and saving energy (Qiao, 

2008). 

 

Considering the ever increasing demand for public transport, most bus operators and 

their customers encounter inconvenient situations which may sometimes provide 

unsatisfactory services.  In practice, the bus operators would consider their desire to 

provide a good overall level of service as well as maximizing their profit. Therefore 

they do not decide the routes directly from the customers’ demand.  Most buses also 

do not have a fixed arrival and departure time, causing passengers to be stranded at 

bus stations. Also drivers may be indisposed when they are supposed to be at post. 

This situation has offered the opportunity for investigating one of the solutions to the 

discussed problem. 

 

The Metro Mass Transit Limited (M.M.T.) is a local bus company which is identified 

to explore the practices of scheduling. Established in October 2003, the MMT, held 

by both the government of Ghana and private investors had a mission to provide an 

efficient urban mass transport system in Ghana through the use of buses 

(www.metromass.com). The company’s aim was to operate an effective and 

affordable transport system in an economical sustainable way in Ghana and with this, 

was able to implement three bus service systems. 

 

Currently, these three bus services are run by the company, namely; 

 Bus Rapid Transit System - designed only for the congested roads in Ghana; 

these are presently the main corridors of Accra and Kumasi. 
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 Urban Service - operates in any greater urban area connecting central bus 

terminals with city outskirts and provides upon that medium-distance 

transportation to villages in the surrounding of a regional capital. 

 Rural Bus services - This long distance rural bus service of MMT operate mainly 

on rough roads. Because of the long journey, the rural service has a low but solid 

frequency. 

 

The company’s bus depot in Kumasi has eight DAF buses, forty-six VDL Neoplan 

City buses, thirty-two VDL Commuter buses and fourteen VDL Jonckheere buses that 

operate on six intercity routes; twelve inter urban / rural urban routes and thirteen 

intra city routes. 

 

1.1.1 ROAD TRANSPORT 

Transportation involves the conveyance of people and goods from one place (source) 

to another place (destination) by means of air, land, sea, among others. Transport on 

roads can be roughly grouped into two categories: transportation of goods and 

transportation of people (Wikimedia foundation, 2010). For instance, when 

transporting goods, factors such as type of goods, weight and volume of individual 

shipment, and the coverage distance are considered. This helps to identify the 

appropriate vehicle to use. 

 

While a van or pickup truck may be used for short distances, light and small 

shipments, a truck is believed to be more appropriate for large shipments. However, 

people are transported on roads either in individual cars or automobiles or in mass 

transit/public transport by bus. 
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Road transport in Ghana may be grouped into four main segments, namely urban, 

express, rural-urban and rural services. The demand for urban passenger transport is 

mainly by residents commuting to work, school and other economic, social and 

leisure activities (www.mrt.gov.gh). 

 

1.1.2 HISTORY OF ROAD TRANSPORT 

Modern roads tend to follow the structure established by previous roads, as it was the 

case for the modern European road network (especially in Italy, France and Britain) 

that follows the structure established by the Roman road network centuries before 

(Jean-Paul and Slack, 1998). 

 

Before wheeled vehicles emerged, trails were used to move from one hunting territory 

to another. The need for the construction of better roads arose as a result of the 

emergence of wheeled vehicles in order to support additional weight. The first major 

road system was established by The Roman Empire from 300 BC and onwards, 

mainly for economic, military and administrative reasons. It relied on solid road 

engineering methods, including the laying of foundations and the construction of 

bridges (Jean-Paul and Slack, 1998). 

 

Following the fall of the Roman Empire in the 5th century, integrated road 

transportation fell out of favor as most roads were locally constructed and maintained. 

Because of the lack of maintenance of many road segments, land transport became a 

very hazardous activity. It is not until the creation of modern nation-states in the 17th 

century that national road transportation systems were formally established by John 

Loudon McAdam, (1756-1836). 

Road development accelerated in the first half of the 20th century. By the 1920s, the 

first all-weather transcontinental highway, the Lincoln Highway, spanned over 5,300 
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km between New York and San Francisco. All road transport modes have limited 

potential to achieve economies of scale. This is due to size and weight constraints 

imposed by governments and also by the technical and economic limits of engines. In 

most jurisdictions, trucks and buses have specific weight and length restrictions which 

are imposed for safety reasons. 

 

In addition, there are serious limits on the traction capacities of cars, buses and trucks 

because of the considerable increases in energy consumption that accompany increase 

in the vehicle weight. For these reasons the carrying capacities of individual road 

vehicles are limited (Jean-Paul and Slack, 1998). 

 

1.1.3 ADVANTAGES OF ROAD TRANSPORT 

Road transport has significant advantages over the other transports. Some of the 

advantages are: 

 Drivers are not restricted in making route choices once a network of roads is 

provided. 

 The capital cost of vehicles is relatively small. For instance, the cost of an 

aeroplane is more expensive than a car. It is obvious that very few wealthy people 

can own a train or a ship. 

 The speed of vehicles is relatively high, but the major constraint is speed limits 

imposed by government. 

 Road transport provides door to door service for both passengers and freight. 

 

1.1.4 SCHEDULING 

In our everyday activities, one may encounter situations where too many tasks or 

events have to be undertaken simultaneously. In such situation it is quite difficult to 
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know which tasks to implement first and at what time. It is therefore prudent to assign 

specific resource to tasks so as to achieve optimal result. Identifying a sequence of 

tasks to be performed and subsequently allocating optimal specific resources to the 

tasks is termed as scheduling. 

 

According to Belletti et al.(1985) and Hagberg (1985) the objective of scheduling is 

to achieve trade-offs between conflicting goals which minimize costs and time such as 

waiting time, process time and inventory cost . 

 

1.1.5 APPLICATION OF SCHEDULING 

Scheduling is applied in many real life situations such as transportation, library, and 

hospital staff among others. Some of the applications of scheduling have been briefly 

explained below: 

 

Airline Scheduling 

Airline scheduling involves the planning of various destinations, assigning duties to 

crew, determining fares and so on. Unlike road transport, airlines do not encounter 

any traffic jams or bad roads, rather one of their major problems in unfavourable 

climatic conditions. 

 

One objective of the airline scheduling problem is to decide for each flight, how to 

develop the route to follow and cancellation, if any, according to company priorities. 

The problem restrictions are due to capacities of departures and arrivals in airports 

and the number of flights that may fly within a sector, at a given time. 

 

Vehicle Scheduling 

The vehicle scheduling problem, arising in public transport bus companies, addresses 

the task of assigning buses to cover a given set of timetabled trips taking into 
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consideration the various depots, vehicle types and other factors. This problem which 

could also be called the routing problem is such that each bus is allocated to a route to 

serve and a schedule is set for each vehicle starting and returning to the depot after 

serving a sequence of trips (Joubert, 2007). 

 

Usually, the goal of bus scheduling is to find the minimum number of buses needed to 

meet the level of service required. Developing a convenient bus system depends 

heavily on an efficient and fast scheduling process of the bus system (Qiao, 2008). 

 

Crew Scheduling 

This scheduling process involves assigning tasks to bus drivers. This process is both 

labor intensive and time consuming since it includes collecting the data, and 

scheduling vehicles and crews. It takes the schedulers a significant amount of time to 

come up with a new schedule and it is impossible to change the current schedule on a 

short notice. 

 

1.2 PROBLEM STATEMENT 

Metro Mass Transit Limited (MMT) is a bus company whose service is highly 

patronized by people in and outside the Kumasi metropolis. Most people prefer the 

services of MMT because of relatively cheaper fares compared to other transport 

services. 

 

Although a fixed number of buses are assigned to the various routes, it is the aim of 

the company to satisfy all customers as and when they arrive. However, it is observed 

that there are seasons when buses on particular routes are either highly patronized or 

less patronized. In the former situation, some passengers may have to wait long hours 
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until bus returns from trip, whereas in the latter situation buses have to wait for long 

hours until they are full. 

When this happens the Company may not be able to realize its expected daily revenue 

from the affected buses. Passengers on the other hand may be frustrated as a result

There is therefore the need to optimize the number of buses operating in a day in 

order to provide efficient and effective service to customers. 

 

1.3 OBJECTIVES 

The main objective of the study is to develop a bus schedule for Metro Mass Transit 

Limited, specifically: 

i) To formulate an Integer Programming approach to schedule buses to routes. 

ii) To find an optimal bus schedule for the inter city, inter urban/rural urban and 

intra city routes. 

 

1.4 METHODOLOGY 

This study will employ the following methods: 

a) Data collection and survey: Data on bus types, capacity, various routes and 

number of buses will be obtained from the statistics department of the 

company through questioning and observation. 

b) Integer programming method: The Branch and Bound algorithm which best 

solves scheduling problems, will be employed. This algorithm applies the 

Simplex method to solve for feasible solution to determining the minimum 

number of buses to operate on a route whilst ensuring minimum number of 

daily buses in operation. 

c) Computer programming: The problem will be solved using Quantitative 

Manager for windows. 
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d) Related literature will be obtained through search on the internet. Other 

references will be made at the KNUST library and the Mathematics 

Department’s library. 

 

1.5 SIGNIFICANCE OF THE STUDY 

 The inadequate number of public transport buses in Ghana, coupled with the nature 

of some of our road networks poses a lot of problems to passengers. In most bus 

stations, passengers have to wait in queues for very long hours during certain periods 

of the day before they get to their destinations. 

 

Meanwhile some buses are less utilized due to the routes they ply and the demand for 

buses during certain periods. Although the operations of Metro Mass Transit Limited 

(MMT) buses are mostly based on passenger demand, the solution of the bus 

scheduling problem by the use of integer programming method will assist MMT and 

other Transport Service Providers to provide a better schedule for the buses in order to 

benefit both the customers and the companies involved. 

 

1.6  ORGANIZATION OF THE THESIS 

Chapter one gives an introduction on the research work by giving a brief background 

study to the problem under study. It also states the main objectives of the work. 

 

Chapter two discusses the various literature and research works which make use of 

integer programming and are relevant to this work. 

 

Chapter three deals with the methodology used for the entire study whereas chapter 

four discusses the results of the analysis and the model used. 

 

Findings, conclusions and recommendations are discussed in Chapter five. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter reviews the existing literature about scheduling of vehicles for public 

transportation systems.  

 

Salzborn (1972) proposed a mathematical model for the bus scheduling problem. For 

a given passenger arrival rate, the problem was to determinate the bus departure rate 

as a function of time. The primary objective of the study was to minimize the number 

of buses and a secondary criterion was the minimization of the passenger waiting 

time. The results showed that during the peak period loads represented actual 

passengers, but at off-peak times the actual loading was much lower. Thus, it was 

often desirable to reduce the number of buses that was in operation during off-peak 

periods. 

 

Park (2005) applied Genetic algorithms and simulation in optimizing bus schedules in 

an urban transit network. Based on the mode of arrival of buses, two different 

algorithms were considered. First, a simple Genetic algorithm combined with problem 

with specific operators was used to determine optimized headways in a case where 

buses arrive following a deterministic process. On the other hand, a simulation based 

Genetic algorithm was used to optimize both headways and slack times in cases 

where buses arrive stochastically. Problem of specific genetic algorithm operators 

include coordinated headway generator, crossover and mutation. 

 

Salzborn (1980) investigated some rules for scheduling a bus system consisting of an 

inter-town route linking a string of interchanges each of which was the center of a set 

of feeder routes. He presented the requirements for the inter-town route and feeder 

route scheduling under pre-determined parameters. 
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Hall (1985) developed a model for scheduling vehicle arrivals at transportation 

terminals where vehicles were randomly delayed en route and evaluated the optimal 

slack time when vehicles were delayed according to an exponential probability 

distribution. The results showed that coordinating arrivals with departures was most 

important when the headway was large relative to average vehicle delay. 

 

White (1972) studied the class of dynamic transshipment problems. These are 

transportation problems that are characterized by the movement of vehicles and goods 

from location to location over time. Such movements can be represented by a 

network. The author states that if no directed cycles exist in this network, then an 

inductive algorithm can be used to optimize the flow of a homogeneous commodity 

for a linear cost function. The inductive algorithm employs dynamic programming 

within an out-of-kilter framework. This algorithm can be modified to handle networks 

in which there are directed cycles. 

 

The problem was formulated as an asymmetric traveling salesman problem. Chen and 

Kallsen (1988) considered a school bus routing and scheduling problem. The routing 

aspect of the problem is concerned with the determination of a stop-to-stop route to be 

traversed to each school by each bus. The scheduling aspect is concerned with the 

determination of times at all bus stops for each bus. The objective is to minimize the 

number of buses required in operation, fleet travel time, and to balance the bus loads. 

The authors developed an expert system approach which was programmed in Turbo 

PROLOG for use on an IBM/XT and was applied to rural county school system in 

Alabama. 

 

Yan (1988) presented a heuristic method for scheduling of trucks from many 

warehouses to many delivery points subject to constraints on truck capacity, traveling 
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time, and loading and unloading time. He considered the truck scheduling problem 

faced by STARLINK, a warehousing and Distribution Company based in Hong Kong. 

This heuristic method was used to build a complete schedule. In each step of the 

method, two things can happen, a delivery point may be inserted into the set of partial 

routes, or a delivery point may be moved in the partial solution to another position in 

the set of routes. 

 

Ferland and Fortin (1989) investigated the problem of scheduling vehicles with 

sliding time windows. They used a heuristic approach to tackle this problem. The 

approach was based on the identification of pairs of tasks offering good opportunity 

costs for reducing the overall cost, and searching for ways to modify the starting times 

in order to permit them to be linked. This method was first developed for the vehicle 

scheduling with time windows problem, and then modified to deal with the sliding 

time windows.  

 

Balakrishnan (1993) described three heuristics for designing an efficient (cost 

effective) route for the vehicle routing problem with soft time windows. Appropriate 

penalties are incurred for violated time windows. Upper limits are imposed on the 

penalty and the waiting time permitted at any customer location. A number of 

assumptions were considered:  

 the fleet considered is homogenous and stationed at a single depot and  

  the penalty is assumed to be a linear function of the amount of time window  

violation 

The author concluded that the results obtained from a number of benchmark problems 

showed that by permitting violations of certain customer time window constraints, it 
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could be possible to considerably reduce both the number of vehicles required and/or 

the total route distances while controlling both customer penalties and waiting times. 

 

Baaj and Mahmassani (1995) described a hybrid route generation heuristic algorithm 

for network route design. The route generation algorithm (RGA) determines a set of 

routes that correspond to different trade-offs between user and operative costs. It 

starts by determining initial set of skeletons and expands them to form transit routes. 

This process of expansion continues until a pre-specified minimum percentage of total 

demand can be satisfied. Once a set of routes is generated, the routes are analyzed 

taking into account the assignment of demand to the transit network. 

 

Gao, Sun and Shan (2003) proposed a continuous equilibrium network design model 

where the attention was mainly on setting optimal transit line frequencies. A bi-level 

programming technique with an upper-level problem and a lower-level problem has 

been used for this transit network design problem. In the upper-level problem the 

objective function is to minimize the total deterrence of the transit system and cost 

caused by frequency setting. The lower-level model is a transit equilibrium 

assignment model that is used to describe the path alternative activities to transit 

users. A heuristic solution based on sensitivity analysis is designed to solve this model 

to obtain optimal frequencies that optimize the systems performance. 

 

Haghani and Banihashemi (2002) proposed a heuristics approach for solving a large-

scale vehicle-scheduling problem with route time constraints. In this work a new 

formulation for multi depot vehicle scheduling (MDVS) and multi depot vehicle 

scheduling problem with route time constraints (MDVSRTC) have been proposed.  

To solve a medium size MDVSRTC problem it provides an exact and heuristic 

solution procedure that cannot solve a real time problem.  
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Hence for a real-world application, they have proposed a solution procedure that 

reduces the size of a large-scale problem by decreasing the number of trips and by 

decreasing the number of variables. It is shown that the solution obtained from 

proposed strategy has decreased the number of vehicles required and also the 

operating costs. 

 

Wren and Wren (1995) proposed a genetic algorithm for solving a public transport 

driver-scheduling problem. The genetic algorithm proposed in this work uses a new 

crossover operator. It is shown that the algorithm would produce more efficient 

results than the presented existing method in terms of quality of result and time taken 

to obtain the schedule.  

 

Beasley and Cao (1996) presented an algorithm for crew scheduling problem based 

upon the lagrangean relaxation of a linear integer-programming problem, together 

with a sub-gradient optimization and tree search procedure. The problem faced by 

many schedulers, is how to set departure times in the transition segments between 

adjacent time periods. Using the common average headway rule may result in over-

crowding.  

 

Palma and Lindsey (2001) analyzed optimal timetables for a given number of vehicles 

on a single transit line. In this method it is assumed that the preferred travel times and 

unit schedule delay costs vary from person to person. Here two models are 

considered: line model and the circle model.  

In the line model, preferred travel times of the individuals are distributed over a 

segment of the day and rescheduling trips between days is impossible. But in the circle 

model the preferred travel times are distributed round the clock and rescheduling trips 
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between days is possible. The analysis for both the models proceeds in two steps. The 

first step is to determine for an arbitrary timetable of vehicles, which individuals will 

travel on which vehicles. The second step is to determine the timetable that minimizes 

total schedule delay costs given the behavior of individuals identified in step one. This 

model can be best applied to create timetables when the objective of the transit 

planners is to reduce the riders delay costs. 

 

Yan and Chen (2002) developed a solution algorithm to produce timetables and bus 

routes/schedules for inter-city bus carriers. Urban bus and inter-city bus operations 

differ in terms of their scheduling practices and demand arrival patterns, mainly due 

to the fixed time schedule set for the latter, and the rough service frequency set for the 

former.  

 

In this research they developed a model for inter-city carriers with given passenger 

trip demand, bus fleet size and related cost data. The model demanded the optimal 

management of both bus and passenger movements in the network through the 

systematic manipulation of direct bus trips, multi-stop bus trips, and passenger 

transfer operations, utilize data as the projected passenger trip demand, the available 

fleet size, the bus operating speed, the station turn-around time, the passenger trip 

ticket fare, and the related cost data.  

 

Mathematically, the model is formulated as a mixed integer multiple commodity 

network flow problem. This method of constructing timetables can be better applied 

when the objective is to maximize the system profits. 

 

In a follow-up study Ceder (2002), three different procedures are proposed and 

analyzed for better matching the passenger demand with a given timetable while 
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attempting to minimize the number of departures. Procedure 1 produces departure 

times with evenly spaced headways while considering smooth transition between 

adjacent hours. Procedure 2 determines departure times such that, in average sense, 

vehicles will carry on even loads (equal to desired occupancy) at hourly maximum 

load points.  

 

Procedure 3 derives the departure times such that, in average sense, the on-board 

passenger load will not exceed desired occupancy, and will be equal to desired 

occupancy at each individual vehicle max load point. All these three procedures are 

applicable to situations when the transit planners want to have balanced loads on all 

the buses to prevent over crowding. 

 

According to Ceder et al. (2001), the importance of transfers in public transport 

service is motivated by several operational considerations. In a large public transport 

network, all the origins and destinations are not connected by a single route and have 

a number of transfer points. In this case passengers who want to travel between 

different routes have to change routes at transfer points. If there are a large numbers 

of such transfer points a “perfect” timetable can be achieved only if the waiting time 

between the transfer points is minimized. 

 

In a research to create timetables for off period operations by incorporating the 

waiting times at each transfer point, they defined simultaneous arrivals as the arrival 

of two buses at the transfer node at the same time. However, their solution seemed to 

be applicable to only peak period. For non-peak period transit operation, the 

frequency of buses is generally low and the system is characterized with a certain 

waiting time.  
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Unfortunately, transfers involve certain inconveniences connected with discomfort of 

boarding a new vehicle (necessity of passenger orientation and walking between 

vehicles on feeder and receiving lines), negative perception of waiting for arrival of a 

vehicle and existence of some delay during a trip. The elimination of these 

inconveniences by schedule synchronization to provide an attractive service level with 

easy access and transfer possibilities is continuously a challenging problem in 

timetable construction. 

 

Bookbinder and Désilets (1992) proposed transfer optimization in a transit network to 

minimize the overall inconvenience to passengers. Bus trips are scheduled to depart 

from their terminal so as to minimize some objective function measuring that 

inconvenience. A mean disutility function is defined here which is used to evaluate 

the inconvenience under random bus travel times of a transfer connection. This 

disutility function g (w) is some function of waiting time, which gives the desirability 

of a waiting time w, as perceived by the user.  

To obtain a heuristic solution, an iterative improvement procedure is used. This 

procedure starts with an initial solution and looks for improvements by changing the 

departure times for each route from a set of possible starting times, until no further 

improvement can be obtained. 

 

Schwartz (1968) considered the problem of determining the routing and timing of 

movements of barges and towboats to fulfill agreed upon freight movements at 

minimum fleet expense. The problem was modeled as a linear discrete programming 

problem. A solution of the model provided the numbers of barges and towboats of 

each size needed to render the service.  
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Conley et al. (1968) presented a linear programming formulation for the transport of a 

homogeneous product from an overseas port through United States ports to over 400 

inland destinations. The fleet considered was composed of 50 ships of six types to be 

assigned to routes between a group of overseas ports and up to seven United States 

ports. The objective was to minimize the total cost of transporting the product. The 

linear programming solution indicated that fewer ports should be used.  

 

Stochastic aspects of ship scheduling were addressed by Koenigsberg and Lam 

(1976). In their model, they studied queueing aspects in a small system of liquid gas 

tankers operating in closed routes between a small number of terminals. For any 

particular system, the model could provide the expected number of ships in each 

stage, the expected number waiting in each stage, and most importantly the expected 

waiting time in port. Exponential service time distributions were used; however, a 

series of parallel simulation computations were used to analyze the impact of other 

distributions. 

 

Schechter (1976) considered a ship routing problem which resembles the vehicle 

routing problem. The cargoes were collected from various ports to a central 

transshipment point. The author employed a heuristic that was reverse to that of Clark 

and Wright (1964), in which the model initially commenced with one ship making all 

the pickups and added ships until a solution was obtained. The total distance traveled 

by the ships was minimized. 

 

Ronen (1982) developed basic models for the determination of the optimal speed of 

one ship for three kinds of legs: income generating leg, positioning (empty) leg, and a 

leg for which income is related to the speed. The results of this model were applicable 

to tramp and industrial operators.  
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Boykin and Levary (1985) developed a simulation based interactive decision support 

system that could be used for scheduling one chemical tanker. This system was used 

to evaluate different voyage itineraries, including various steaming speeds. 

 

Miller (1987) investigated the problem of fleet scheduling and inventory resupply 

encountered by an international chemical company. The company had a fleet of small 

ocean-going tankers to transport bulk fluid to warehouses worldwide. The author 

developed an interactive computer model, which was successfully employed to deal 

with daily scheduling concerns as well as longer range planning problems. A network 

flow model and a mixed-integer programming model were used to analyze the 

underlying decision problem. 

  

Perakis and Papadakis (1989) considered the two dimensional minimal time routing 

problem for a ship traveling from a single origin to a number of ordered destination 

points. They emphasized that knowing the departure time beforehand could ease the 

problem tremendously. They derived an optimal bound for the optimal state evolution 

which significantly reduced the dimensionality of the problem. Finally, they presented 

numerical examples to validate their methodologies. 

 

Cline et al. (1992) considered the problem of routing and scheduling of buoy 

maintenance by the United States Cost Guard. They used a best-schedule heuristic for 

solving a large class of real-world routing and scheduling problems to approach the 

buoy routing and scheduling problem. For a routing and scheduling problem, the 

objective is to minimize the cost of the distance traveled as well as the cost of being 

either early or late at each destination.  
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This model was used to determine the optimum arrival times for the locations (the 

best schedule) for any given set of locations to be traversed (that is, for any route), 

and then it employed this information to locate an optimum route. 

 

Schardy and Wadsworth (1991) developed a computerized system to evaluate (among 

other things) fuel consumption of naval combat ships. Good estimates of fuel 

consumption can be utilized to obtain a proper scheduling of resupply activities. This 

computerized system had been examined and implemented in US naval fleet 

exercises. 

 

Newell (1971) analyzed the dispatching policies for a transit route which a given 

number of vehicles might be dispatched at any times and the arrival rate of passengers 

was a given smooth function of time, typically having one or more peaks. He showed 

that if the capacity of vehicles was sufficiently large to serve all waiting passengers 

and the number of vehicles was large, then the optimal flow rate of vehicles and the 

number of passengers served per vehicle, both varied with time approximately as the 

square root of the arrival rate of passengers. If the vehicles had limited capacity, their 

dispatch schedule would be distorted so that certain vehicles were dispatched as soon 

as they were full.  

 

Abkowitz et al. (1986) proposed headway control strategies as methods for correcting 

transit service irregularities and reducing passenger wait times at stops and addressed 

a particular strategy which could be implemented on high frequency route (headways 

under 10-12 minutes), in which buses were held at a control stop to a threshold 

headway. They developed an algorithm which yielded the optimal control stop 

location and optimal threshold headway with respect to a system wait function. They 

concluded that the headway variation did not increase linearly along a route and that 
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the location of the optimal control stop and threshold value was sensitive to the 

passenger boarding profile. 

 

Özekici (1987) formulated an analytic model for analyzing and exploiting the relation 

between the arrival and service processes, with emphasis on the impact of this relation 

on average waiting times.  

 

The results showed that, when a timetable of the scheduled services is available, the 

arrival pattern of passengers was not stationary and passengers chose an optimal time 

to arrive at the bus stop based on the information they had about the timetable and 

their observation on the service performance. 

 

Banks (1990) studied multi-route transit systems to determine net-benefit maximizing 

headways, which were subjected to constraints on vehicle capacity, subsidy, and fleet 

size. Conditions of optimality were derived for the unconstrained case and the various 

constrained cases.  

 

The relation between optimality conditions based on the assumption of fixed demand 

and those based on the assumption of variable demand was expressed with terms 

incorporating the elasticity of demand with respect to frequency of service. The 

results showed that the magnitude of discrepancies between the true conditions of 

optimality and their fixed-demand approximations depended on the elasticity of 

demand and on the distribution of ridership and cycle times among the various routes 

of the system. 

 

Lee and Schonfeld (1991) developed a numerical model for optimizing slack times for 

simple systems with transfers between one bus route and one rail line which could 

work with arrival distributions. Some analytic results were derived for empirical 
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discrete and Gumbel distributions of bus arrival times.  Relations between the optimal 

slack times and headways, transfer volumes, passenger times values, bus operating 

cost, and standard deviations of bus and train arrivals were also developed 

numerically using normally distributed arrivals.  The results provided some guidelines 

on desirable slack times and showed that schedule coordination between the two 

routes was not worth attempting when standard deviations of arrivals exceeded certain 

levels. 
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CHAPTER THREE 

METHODOLOGY 

There are several methods for solving the scheduling problem. One of such methods 

(specifically the branch and bound) will be used to solve the MMT bus scheduling 

problem. Before solving the problem, it is important to discuss the linear 

programming, integer programming problems and solution methods such as dynamic 

programming and branch and bound in detail.   

 

3.1 LINEAR PROGRAMMING 

Linear Programming (LP) is a Mathematical program which involves the 

maximization or minimization of a linear function subject to linear constraints. It 

could also be viewed as a quantitative technique for selecting an optimum plan, and is 

efficient for finding the best solution to a problem that contains many decision 

variables. Linear Programming is used to solve many problems in vehicle scheduling, 

job assignment as well as transportation problem. 

 

In solving linear programming problem the desired objective is to maximize some 

function such as profit, or to minimize some function such as costs. Determination of 

the optimum objective is usually subject to various constraints or restrictions on 

possible alternatives. These constraints describe availabilities, limitations, and 

relationships of resources to alternatives.  

 

3.1.1 DEFINITIONS 

Before one can formulate a good linear programming problem, the various 

components of the model should be identified.  
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Minimize  cTx  (objective function) 

Subject to Ax ≥ b (constraint) 

                          xj   ≥ 0 , j  J  (non-negativity constraint) 

Decision variables: These are variables that represent a number of related quantifiable 

decisions to be made and their respective values are to be determined. For instance, in 

the model above, the decision variable is x and its value is to be determined. 

Objective function: This is a function that can be expressed as a mathematical 

function of some decision variables. In the preceding model, cTx is the 

objective function and is expressed as c1x1 + c2x2 + c3x3 +…+ cnxn, where c is 

the coefficient of the decision variables. 

Constraints: They are mathematical expressions for the restrictions assigned to 

decision variables by means of inequalities or equations. They are usually 

equated to constants at the right-hand side. That is, Ax ≥ b. 

Parameters: These consist of the coefficients of the objective function and constraints 

as well as constants at the right-hand side of the constraints. The parameters in 

the model are c, A, and b. 

 

3.1.2 CONVEX SET 

Definitions:  

1. A Line Segment defined by vectors x and y is the set of points of the form  

µx + (1- µ) y for µ [0, 1]. 

                     

         x      µx + (1- µ)y                  y 

 

          Figure 3.1: A line segment 

 

 

2. A point on the line segment for which 0 ≤ µ ≤ 1 is called Interior Point of the line 

segment. 
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3. A subset C of Rn is said to be Convex if for any two elements x, y in C, the line 

segment [x,y] is contained in C. Thus x and y in C imply 

   if C is convex. 

                                        C  

 

 

 

Figure 3.2: Convex set 

Sets in Rn are convex if they contain no “hole”, “indentation” or “protrusion” and are 

non-convex otherwise (Amponsah, 2007). 

4. A point u in a non – empty convex set C is said to be an Extreme Point of C if it is 

not an interior point of any line segment in C. Thus if u = αx+ (1-α) y for x, y in C 

and 0 ≤ α ≤ 1, then x = y = u. For example in a triangle with vertices say EFG the 

only extreme points are the vertices E, F and G. 

Some examples of convex sets are: 

i. The intersection of any family of convex sets in Rn. 

ii. A closed half-space or open half-space in Rn  

 

3.2 INTEGER PROGRAMMING 

This is a special case of linear programming in which all variables are required to take 

on integer values only (Weisstein, 2010). Whereas some solution methods yield 

continuous solution, integer programming solution methods implement a systematic 

procedure that restricts continuous solutions sequentially until an integer solution is 

attained.  

 

x 

                          y 
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3.2.1 TYPES OF INTEGER PROGRAMMING  

Integer Programming (IP) problems could be classified as either Binary, Mixed or 

Pure integer programming, depending on the nature of values the decision variables 

are required to take.  

 

Pure Integer Programming: An Integer Programming problem is said to be pure when 

all decision variables are required to be integers. 

 

Binary Integer Programming: One area of application of integer programming is 

problems involving a number of interrelated “yes-or-no decisions”. For example, 

there are only two choices to be made when deciding on locating a facility in a 

particular site.  Such decisions could be represented by decision variables that are 

restricted to just two values, say 0 and 1(binary variables). Thus binary integer 

programming (BIP) problems (or 0–1 integer programming problems) are IP 

problems that contain only binary variables. 

 

Example:  Minimize z = ∑n
j=1 cjxj 

                Subject to:  ∑n
k=1 aijxj ≤ bi (i = 1, 2, 3... m)       

                         xj = binary (0 or 1) 

 

Mixed Integer Programming (MIP): Another type of integer programming is the 

Mixed Integer Programming problem in which some, but not all decision variables are 

restricted to be integers. A Mixed Integer Programming problem results when some of 

the variables are real-valued (can take on fractional values) and some are integer–

valued (Chinneck, 2004). MIP can be used to create a model to schedule the 

production of products in order to reduce cost. 
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3.2.2 THE SIMPLEX METHOD 

Developed by George Dantzig in 1947 and first published in 1951, the simplex 

method is an iterative procedure that provides a structured method for moving from 

one basic feasible solution to another, always maintaining or improving the objective 

function until the optimal solution is obtained. The iteration process helps to reduce 

the distance (mathematically and graphically) from the objective function. The 

method can be used to solve any linear programming problem provided it is in 

canonical form.  

 

3.2.3 Initial Basic Feasible Solution 

A basic feasible solution is a solution with non – negative basic variables (n ≥ 0). 

Given a set of m equations in n variables (n > m) the basic solution is obtained by 

setting (n-m) variables equal to zero and solving the resulting system of m equations 

in m variables. Thus, the number of non-basic variables equals the total number of 

variables minus the number of functional constraints (n-m). The remaining m 

variables are referred to as the basic variables. The number of basic variables equals 

the number of functional constraints (equations) (Amponsah, 2007).  

 

A solution is said to be feasible when all the constraints in a given model are satisfied. 

A non-degenerate basic feasible solution is a basic solution with m > 0. An optimal 

solution is a feasible solution that has the most favorable value of the objective 

function where the most favorable value is the largest value for a maximization 

problem, and the smallest value for a minimization problem.  
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3.2.4 THE INITIAL SIMPLEX TABLEAU  

The simplex tableau is made up of rows and columns with the components defined as 

follows: 

The top (objective row) contains the coefficients of the objective function for 

variables j, represented by cj. The next row (variable row) contains the variables of 

the problem, including slack variables. The problem row (also known as the aij row) 

contains coefficient of variable j in constraint i, with one row for each constraint. 

Variables which are not in a constraint are assigned zero coefficients.  

 

During each iteration, new problem rows are computed. The right side column of the 

table bi represents the right-handside values for constraints i. The left-handside 

column (cB) contains the coefficients of the basic variables.  The values in the zj row 

are calculated by multiplying the elements in the cB column by the corresponding 

elements in the columns of the matrix and summing them. It is observed that all the zj 

values in the initial tableau are zeros but may change in subsequent iterations. 

 

The last row, known as the index row (cj-zj) indicates the net contribution per unit of 

the jth variable.  It contains values which indicate whether an optimum solution has 

been reached. The values are determined by subtracting the appropriate zj value from 

the corresponding objective function coefficient cj for that column. The table below 

represents the format of the initial simplex tableau.  
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Table 3.1: Format of the Initial Simplex Tableau 

 cj c1 c2 … cn 0 0 … 0  

cB Basic 

Variable 

xI x2 … xn s1 s2 … sm Solution 

0 s1 a11 a12 … a1n 1 0 … 0 b1 

0 s2 a21 a22 … a2n 0 1 … 0 b2 

. 

. 

. 

0 

. 

. 

. 

sm 

. 

. 

. 

am1 

. 

. 

. 

am2 

 . 

. 

. 

amn 

. 

. 

. 

0 

. 

. 

. 

0 

… 

… 

… 

. 

. 

. 

1 

. 

. 

. 

bm 

 Zj 0 0 … 0 0 0 … 0 0 

 cj-zj c1-0 c2-0 … cn-0 0 0 … 0  

 

In the initial tableau, the coefficients of the basic variables form an identity matrix at 

the constraint column.  

Thus, the basis matrix B, formed by Si’s is given by; 

 s1       s2          s3        s4 

1        0        0        0 

0        1        0        0     = I     

0        0         1       0      

0        0         0       1 

Figure 3.3: Identity matrix formed by basic variable coefficients 

 

3.2.5 MAJOR STEPS IN THE SIMPLEX ALGORITHM 

The major steps in the Simplex algorithm are as follows: 

Step 1   

Given the problem formulation with m equations in n variables, select the set of m 

variables that yields an initial basic feasible solution. 
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Maximize z = c1x1 + c2x2+ c3x3+ …+cnxn + 0s1+ 0s2 + …+ 0sm 

Subject to  a11x1+a12x2 + … + a1nxn + S1 ≤ b1 

             a21x2+a22x2+…+a2nxn +s2 ≤ b2 

  . .         . 

  . .         . 

  . .                   . 

                am1x1+am2x2 + …+ amnxn + sm≤ bm  

               x1, x2, x3…xn,s1,s2,…sm ≥ 0  

Step 2 

Analyse the objective function to see if there is a non – basic variable that is equal to 

zero in the initial basic feasible solution, but that would improve the value of the 

objective function if made positive.  

If no such variable can be found, the current basic feasible solution is optimal, and the 

simplex algorithm stops. 

If however, such a variable can be found, the simplex algorithm continues. 

Step 3 

Using the non – basic variable selected in step 2, determine how large it can become 

before one of the m variables in the current basic feasible solution becomes zero. The 

current solution can be improved by replacing a variable in the basis with a current 

non-basic variable. 

The variable entry criterion is based on the values of the cj-zj row. At this stage it is 

expected that the iteration terminates if all the cj-zj values are zeros and negatives (for 

minimization problem) and zeros and positives (for maximization problem).  
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Suppose the initial tableau below represents a minimization problem, then the variable 

corresponding to the most positive (largest) cj-zj value is selected for entry 

(Amponsah, 2007).  

 

Table 3.2: Non-basic variable entering the basis 

 cj 50     40  0 0   0    

cB Basic 

Variable 

xI     x2  s1 s2   s3   Solution 

0   s1 3     5  1 0   0   150 

0     s2 0     1  0 1   0   20 

0            s3    8     5  0 0   1   300 

 Zj 0     0  0 0   0   0 

 cj-zj [50]      40  0 0    0    

  

It is observed that 50 is the largest cj-zj value and its corresponding variable is x1, 

therefore x1 enters the basis. 

  

The variable leaving the basis is determined by: 

1)  dividing the right hand side values by the coefficients of x1 in the constraint 

column respectively. That is; b1/ a11, b2/ a21, …,bm / am1. 

2) selecting the minimum ratio. If b1/ a11< b2/ a21< …<bm / am1 then select b1/ a11. 

3) removing the basic variable corresponding to the minimum ratio. Remove s1 

since it corresponds to b1/ a11. For example, in Table 3.3, s3 is removed since it 

corresponds to b3/ a3. 
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Table 3.3: Removal of basic variable 

 cj 50     40  0 0   0     

cB Basic 

Variable 

xI     x2  s1 s2   s3   Solution Ratio 

0  s1 (3)     5  1 0   0   150 150/3=50 

0           s2 0     1  0 1   0   20 - 

0           s3 (8)     5  0 0   1   300 300/8=37.5 

 Zj 0     0  0 0   0   0  

 cj-zj 50    40  0 0    0     

  

We note that, aij values that are zeros or negatives are ignored when computing the 

ratios. Comparing the two remaining ratios, it is observed that the minimum is 37.5 

and it corresponds to s3 in the basis, therefore s3 and its coefficient are removed and 

replaced by x1 and its coefficient. 

 

Step 4 

Perform Gauss-Jordan elimination procedure on the rows to solve the system of 

equations in the constraints in terms of the new basic variables.  

 

The first step is to locate the pivot element as the number that represents the 

intersection of the pivot row and the pivot column.  

In table 3.4, it is observed that the arrowed number (8) is chosen as the pivot element. 
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Table 3.4: Selection of the pivot element 

 cj 50     40  0 0   0     

cB Basic 

Variable 

xI     x2  s1 s2   s3   Solution Ratio 

0   s1 3     5  1 0   0   150 150/3=50 

0            s2 0     1  0 1   0   20 - 

0            s3 (8)     5  0 0   1   300 300/8=37.5 

 Zj 0     0  0 0   0   0  

                 cj-zj   50      40  0 0    0     

 

The following are the row elements of Table 3.4. 

R1: {3, 5, 1, 0, 0, 150} 

R2: {0, 1, 0, 1, 0, 20} 

R3: {8, 5, 0, 0, 1, 300} 

The next step is to apply row reduction method these elements to obtain new elements 

as shown in Table 3.5. 

 

Table 3.5: Row reduction method 

 

 

 

 

 

 

 

 

                        Cj 50       40       0            0             0  

cB         Basic Variable x1        x2        s1         s2             s3 Solution 

0                s1 

0                s2 

50              x1                                           

0        25/8     1           0            -3/8                    

0          1        0           1               0 

1        5/8       0           0              1/8 

75/2 

20 

75/2 

                     Zj 50    125/4      0          0             25/4 1875 

                     cj-zj 0     [35/4]      0           0            -25/4  
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In Table 3.4, eight (8) is chosen as the pivot element and is reduced to one (1) as 

shown in Table 3.5, with its corresponding column and row elements reduced.  

The new row elements in Table 3.5 are obtained as follows;  

R1* = R1 – 3(R3*)   

       = {3, 5, 1, 0, 0, 150} – {3 × (1, 5/8, 0, 0, 1/8, 75/2)}  

       = {0, 25/8, 1, 0, -3/8, 75/2}   

R2* = R2 

       = {0, 1, 0, 1, 0, and 20}                  

R3* = 1/8 (R3) 

        =1/8 × {8, 5, 0, 0, 1, 300} = {1, 5/8, 0, 0, 1/8, 75/2} 

 

Given that a feasible solution exists and that the optimal value of the objective 

function is finite, the simplex algorithm as outlined in the preceding steps will lead to 

an optimal solution in a finite number of iterations.   

 

Table 3.6: The final tableau showing optimal solution 

                        cj 50       40       0            0             0  

cB         Basic Variable x1        x2        s1          s2            s3 Solution 

40                   x2 

0                     s2 

50                   x1                                           

0          1        8/25        0       -3/25                    

0         0       -8/25        1        3/25   

1         0       -1/5          0         1/5 

     12 

      8 

     30 

                 Zj 50       40      14/5         0        26/5 1980 

                 cj-zj 0         0      -14/5         0       -26/5  

 

In the final tableau, all the cj-zj values are now zeros and negatives which means that 

the optimal solution has been obtained with (x1, x2,  s1, s2, s3)=( 30, 12, 0, 8, 0) and  

z =1980. 
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3.2.6 SOME COMPLICATIONS IN APPLYING THE SIMPLEX METHOD 

In applying the simplex method to solve an LP problem, there are some complications 

that may be encountered. Some of those complications are discussed as follows: 

 

Tie for Entering Variables 

In the application of the simplex method to solve LP problem, we may encounter a 

situation in which there is a tie between two or more entering variables. This occurs 

when two or more variables have the same cj–zj values. When this happens any of the 

variables are selected arbitrarily for entry into the basis. 

 

Tie for Leaving Variables – Degeneracy 

Another situation that can be encountered during solution process is degeneracy. 

Since the leaving variable is determined by minimum ratio the variable corresponding 

to the minimum non-negative ratio is selected. However, when there is more than one 

variable having the same minimum non-negative ratios, one of them is selected 

arbitrarily to leave the basis. When this happens the pivoting process drives that 

variable to zero. Other variables may be driven to zero but will remain in the basis. 

Thus a solution with one or more basic variables equal to zero is known as a 

degenerate solution. An example is found in Table 3.5 above. 

 

Non positive right – hand side values 

In case one or more values at the right hand side of a constraint are non - positive, 

selecting a slack variable to the basis may result in a negative initial basic variable. 

The best way of solving such complication is to multiply both sides of the constraint 

by negative (-) and reverse the inequality sign. The new inequality may be changed to 

equality by adding slack or artificial variables. 
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Unconstrained variables 

One important point about the simplex method is that all the decision variables must 

be positive at every iteration. However, in a situation where one or more of the 

variables are unconstrained in sign (that is, either positive or negative), we may 

express each of the unconstrained variables as the difference of two positive variables 

and replace the unconstrained variables.  

 

For example, for xj (unconstrained) we define the new variable xj’ ≥ 0 and xj’’ ≥ 0 and 

let xj = xj’- xj’’. This means that xj is replaced with xj’- xj’’ in the objective function 

and the constraints of the model. 

 

3.2.7 TERMINATION OF THE SIMPLEX METHOD 

The simplex method will always terminate in a finite number of steps with an 

indication that a unique optimal solution has been obtained or that one of the 

following special cases has occurred. These special cases are; 

 

Alternate optimal solution  

All basic variables have zero cj-zj values. If there is a variable whose cj-zj is 0 but is 

not a basic variable, then that 0 can be treated as the most positive and use that 

variable as the entering variable. When this happens the basic variables will change 

but the total zj will remain the same. 

 

Infeasible solution  

 In finding the optimal solution by the simplex method infeasibility occurs when at the 

optimal solution the right-hand side values are all zeros and negatives. The indication 

that no feasible solution is possible will be given by the fact that at least one of the 

artificial  variables will be positive at the basis, instead of zero. 
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Unbounded solution 

If at any iteration no departing variable can be found corresponding to entering 

variable, the value of the objective function can be increased indefinitely, i.e., the 

solution is unbounded. 

 

An unbounded solution occurs in a situation such as solving a maximization problem, 

where a simplex tableau contains a non-basic variable xj with cj-zj row value strictly 

greater than zero (i.e cj-zj > 0) and all of the aij elements in its column being zeros or 

negatives. When this happens, the ratio test for the variable removal criterion will 

indicate that the denominators of the ratios are negatives and zeros resulting in only 

zeros and negative ratios. In such situation the simplex method will only terminate 

with the indication that the entering basic variable is allowed to assume a value of 

infinity. 

 

Multiple (infinite) solutions 

If in the final tableau, one of the non-basic variables has a coefficient 0 in the z-row; it 

indicates that an alternative solution exists. This non-basic variable can be 

incorporated in the basis to obtain another optimal solution. Once two such optimal 

solutions are obtained, infinite number of optimal solutions can be obtained by taking 

a weighted sum of the two optimal solutions. 

 

3.3 DYNAMIC PROGRAMMING 

 Dynamic programming is an extension of the basic linear programming technique 

and involves breaking the problem into a set of smaller problems and then 

reassembling the results of the analysis.  It is a useful mathematical technique for 

making a sequence of interrelated decisions i.e. decisions that must be made in 

sequence and that influence future decisions in the sequence. 
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In contrast to linear programming, there is no standard mathematical formulation of 

dynamic programming problem. Rather, dynamic programming is a general type of 

approach to problem solving, and the particular equations used must be developed to 

fit each situation. It starts with a small portion of the original problem and finds the 

optimal solution for this smaller problem. It then gradually enlarges the problem, 

finding the current optimal solution from the preceding one, until the original problem 

is solved in its entirety. 

 

The procedure involves partial optimization of a portion of the sequence and then 

connection of the optimized portion to the next in line until the entire sequence is 

optimized. Thus, the final result is the sum of the result of the immediate decision 

plus the optimal result from all future decisions. 

 

Dynamic programming can be categorized into two main approaches: 

 Deterministic problems, where the state at the next stage is completely 

determined by the state and policy decision at the current stage. 

 Probabilistic problems where the state at the next stage is not completely 

determined by the state and policy decision at the current stage. Rather, there 

is a probability distribution for what the next state will be. However, this 

probability distribution still is completely determined by the state and policy 

decision at the current stage. 

 

3.4 BRANCH AND BOUND METHOD 

The branch and bound method is a basic technique for solving integer and discrete 

programming problems where a larger problem is divided into smaller sub problems 

that can be solved independently. Described as a systematic refinement of the feasible 
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space that will lead to a feasible optimal integer solution, the method is based on the 

observation that the enumeration of integer solutions has a tree structure (Al-Salamah, 

2008).  The main idea in branch and bound is to grow the tree in stages, ensuring that 

only the most promising nodes are grown at any stage. 

 

3.4.1 DEFINITIONS IN THE BRANCH AND BOUND METHOD 

As we discuss the Branch and Bound method we must first know the meanings of 

some of the terms that may be encountered in the discussion. Some of the terms are 

defined in the context of the Branch and Bound method and hence may have a 

different meaning elsewhere. 

Node:  A node is any partial or complete solution.  

Leaf (leaf node): It is a complete solution in which all of the variable values are 

known. The leaf nodes have objective function values, which are actual values rather 

than estimates. 

Bud (bud node):  It is a feasible or infeasible partial solution.  

Bounding function: It is the method of estimating the best value of the objective 

function that is obtained by growing a bud node further. Only bud nodes have 

associated bounding function values. The bounding function must underestimate the 

actual best achievable objective function value for a minimization problem and 

overestimate the best achievable objective function value for a maximizing problem.  

Incumbent:  This is the best complete feasible solution found so far. There may not 

be an incumbent when the solution process begins. In that case, the first complete 

feasible solution found during the solution process becomes the first incumbent. 

Branching:  This involves the division of a LP feasible region into two sub regions. 

The term could be likened to what happens when a bud node is selected for further 
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growth and the next generation of children of that node is created. For each possible 

value of the next variable one child node is created.  

Pruning or fathoming: Is a term applied in the branch and bound method to mean 

the process of cutting off and permanently discarding sub problems and all their 

potential children which could never be either feasible or optimal from the branch and 

bound tree. The subproblems that cannot contain the optimal solution are discarded, 

thereby decreasing the size of the solution space. 

Bounding: The bounding comes in when the bound on the best value attained by 

growing a node is estimated. 

 

 

3.4.2 STRUCTURE OF THE BRANCH AND BOUND ALGORITHM 

The structure of the Branch and Bound algorithm was first developed by Dakin 

(1965) based on a pioneering branch and bound algorithm by Land and Doig (1960). 

This algorithm is a class of exact algorithms for various optimization problems, 

especially integer programming problems and combinatorial optimization problems. 

The Branch and Bound algorithm is represented in a tree like structure with the 

various nodes and sub nodes as shown in figure 3.2. 
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    x2 ≤ m   x2 ≥ n 

 

 

      Node 2       Node 3 

 

 

           x1≤ m           x1 ≥ n 

 

 

    

 Node 4         Node 5                                                            

   

  Figure 3.4:  Formulation of nodes and sub nodes 

 

3.4.3 STEPS IN THE BRANCH AND BOUND METHOD  

Given the Integer Programming problem; 

Maximize   z = ∑n
k=1 ckxk    (1) 

Subject to:  ∑n
k=1 aikxk ≤ bi (i = 1, 2, 3... m)  (2)       

        xk  0 (k = 1, 2... n)   (3) 

         xk integer (for some or all k=1, 2… n)  (4) 

 

The branch and bound solution method is outlined as follows 

Step 1:  Relaxation 

 Relax the integrality condition xk, integer (for some or all k=1, 2… n). The LP 

obtained by deleting the constraints x Zn (or x  {0, 1} n) is called the LP relaxation. 

The relaxed LP obtained represents the first node in the branch and bound tree. 

 The optimal value of the objective function is the initial upper bound of the objective 

function value. Stop when the relaxed LP is infeasible (IP problem is infeasible). 
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Step 2:  Finding optimal solution 

To guarantee that we have reached optimality, compare the upper bound values for 

any currently defined nodes. If the solution at the node with the highest upper bound 

value is integer, stop the solution is optimal.  

 

When the incumbent solution’s objective function value is better than or equal to the 

bounding function value associated with all of the bud nodes, stop the process.  

This means that none of the bud nodes could possibly develop into a better solution 

than the complete feasible solution.  

In other words when there are no remaining sub-nodes, the current incumbent 

becomes the optimal solution and so we stop the process. Otherwise the solution 

continues until optimality is attained. If the optimal solution yields values that are not 

all integers but better than the incumbent, then divide this sub problem further and 

repeat. 

For each sub problem, an upper bound on the objective value is calculated which must 

be greater than or equal to the optimal solution. Upper bounds for a sub problem can 

be obtained by optimizing the sub problem’s LP relaxation.  

 

Step 3:  Branching (node expansion)  

 Among the integer-restricted variables that have a non-integer value in the optimal 

solution for the LP relaxation of the sub-problem, select the non-integer variable. Let 

xj be this variable and xj* its value.  Branch from the node or the subproblem to create 

two new subproblems by adding the respective constraints xj ≤ [xj*] and xj  ≥ [xj*] + 1 

The node selection policy governs how to choose the next bud node for expansion.  
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There are three popular policies for node selection:  

 Best-first: choose the bud node that has the best value of the bounding function 

anywhere on the branch and bound tree. If we are minimizing, this means 

choosing the bud node with the smallest value of the bounding function; if 

maximizing choose the bud node with the largest value of the bounding 

function.  

 Breadth-first: expand bud nodes in the same order in which they were created. 

 Depth-first: choose only from among the set of bud nodes just created. Choose 

the bud node with the best value of the bounding function. Depth-first node 

selection takes you one step deeper into the branch and bound tree at each 

iteration, so it reaches the leaf nodes quickly.  

 

Step 4: Bounding 

To obtain the bound for each new subproblem, the simplex method (or the dual 

simplex method when re-optimizing) is applied to its LP relaxation and the value of Z 

is used for the resulting optimal solution.  

 

 

3.4.4 SOME FATHOMING RULES 

A subproblem could be fathomed (dismissed from further consideration) if either of 

the following conditions is encountered; 

1. The bud node bounding function (optimistic estimator) value is worse than the 

objective function value for the incumbent. That is, the bound on the 

subproblem ≤ Z*, where Z* is the current optimal solution (value of Z for the 

current incumbent).  

2. Its LP relaxation has no feasible solutions (If there is no incumbent). When a 

feasible solution (i.e., no fractional variables remaining) is found, all sub 
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problems whose upper bounds are lower than this solution’s objective value 

can be discarded. The best known feasible solution represents a lower bound 

for all sub problems, and only sub problems with an upper bound greater than 

the global lower bound have to be considered. 

 

3. The optimal solution for its LP relaxation (values for the integer restricted 

variables) is integer. If this solution is better than the incumbent, it becomes 

the new incumbent and step one is reapplied to all unfathomed subproblems 

with the new larger Z*. 
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3.5 FLOWCHART OF THE BRANCH AND BOUND ALGORITHM 

The stages in the Branch and Bound solution method are represented on a flowchart 

as shown in figure 3.5 below 
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Figure 3.5:  Flowchart of the Branch and Bound Algorithm 
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CHAPTER FOUR 

MODEL APPLICATION AND DISCUSSION OF RESULTS 

This chapter tackles the modeling of the scheduling problem of the Metro Mass 

Transit (MMT) section of the Ashanti Region. An integer programming method is 

applied to develop a schedule system for the company’s buses. The computer program 

will solve and display a new schedule for buses plying each of the three types of 

routes namely; 

i) the inter city routes 

ii) the inter urban/rural urban routes 

iii) the intra city routes 

 

With one-hundred (100) buses at the depot, twenty-two (22) are allocated for 

operation on all the inter city with four (4) buses expected to be off duty everyday. 

Fifty (50) buses are allocated for inter urban / rural urban routes with five (5) buses 

expected to be off duty everyday. Twenty-eight (28) buses are allocated intra city 

routes with three (3) expected to be off duty everyday. 

4.1 ASSUMPTIONS 

The following assumptions were made for the modeling of data for an optimal 

scheduling of the number of buses needed for operation. 

i) There must be at least one bus on each route, whether intercity, inter 

urban/rural urban or intra city routes. 

ii) Each bus is assigned to only one route and cannot be plying more than a single 

route. 

iii) The number of buses on a route should meet the passenger demand on that 

route. 
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4.2 DEFINITION OF VARIABLES FOR THE THREE MAJOR ROUTES 

COMBINED 

In modelling the scheduling problem of MMT, the following decision variables are 

defined as follows: 

1) Let Xi (i = 1, 2, 3, 4, 5) be the number of buses needed for the various assignments 

      X1 :  inter city routes 

      X2 :   inter urban/rural urban routes 

      X3 :   intra city routes 

      X4 :   off road/inspection 

      X5 :   maintenance 

2) Let (a, b, c, d and e) represent the respective number of buses available for the 

various duties 

a (inter city routes)   :  (22- 4) =18 

      b (inter urban/rural urban routes) :  (50-5) = 45 

      c (intra city routes)   :  (28-3) = 25  

      d (off road/inspection)  :  6 

      e ( maintenance)    :  6 

3) Let Z be the total number buses operating on all the routes. 

 

4.2.1 MATHEMATICAL FORMULATION FOR THE THREE MAJOR   

 ROUTES COMBINED 

Using the variables defined above the linear programming formulation for the three 

types of routes combined is: 

Minimize Z =X1+X2+X3+X4+X5 

Subject to  

X1 ≥ a, for the inter city route 
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X2 ≥ b, for inter urban/rural urban route 

X3 ≥ c, for the intra city route 

X4 ≤ d, off road/inspection 

X5 ≤ e, maintenance 

X1, X2, X3, X4, X5≥1 and integer 

Assigning respective values to the original formulation, the new model becomes: 

Minimize Z = X1+X2+X3+X4+X5 

Subject to  

X1+X2+X3+X4+X5 ≤ 100 

X1 ≥18 

X2 ≥ 45 

X3 ≥ 25 

X4 ≤ 6 

X5 ≤ 6 

X1, X2, X3, X4, X5≥1 and integer 

The iteration results displayed at appendix yields the optimal results for the 

scheduling problem involving the three major routes as shown in Table 4.1. 

 

4.2.2  THE SOLUTION TABLEAU FOR THE THREE MAJOR ROUTES 

COMBINED 

Table 4.1: Optimal Schedule of buses for the three major routes combined 

Optimal Scheduling of Buses 

  X1 X2 X3 X4 X5   RHS 

Minimize 1. 1. 1. 1. 1.   
 

Solution-> 19. 45. 27. 0. 0. Optimal Z-> 91. 
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Inter city route   : 19  

Inter urban/rural urban route : 45 

Intra city route   : 27 

Off road   : 0  

Maintenance   : 0  

 

4.3 DEFINITION OF VARIABLES FOR THE INTER CITY ROUTES 

The main aim of the research is to develop a proper schedule for the buses plying the 

individual inter city routes. 

The formulation of the model for the inter city routes transportation of MMT unit is as 

follows: 

Let: 

1) Xi (i =1, 2, 3, 4, 5, 6, 7) be the number of buses assigned for the inter city 

routes. 

          X1:  Aflao route 

         X2:  Hohoe route 

         X3:  Yeji route 

         X4:  Sefwi - Juaboso route 

         X5:  Sefwi - Asanwinso route 

         X6:  Sefwi - Wiawso route 

         X7:  off road/maintenance 

2) (a, b, c, d, e, f, g) be the number of buses needed for the inter city routes. 

            a:  Aflao  : 2   

            b:  Hohoe   : 2 

            c:  Yeji    : 1 

            d:  Sefwi – Juaboso  : 2 
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            e:  Sefwi – Asanwinso : 1 

  f:  Sefwi – Wiawso : 10 

           g:  for maintenance : 4 

3) Z is the total number of buses available for assignment at the depot. 

 

4.3.1 FORMULATION OF THE MODEL FOR THE INTER CITY ROUTES 

The objective function and constraints of the model are given written as: 

Minimize Z = X1+X2+X3+X4+X5 +X6+X7 

Subject to  

X1+X2+X3+X4+X5 + X6 + X7 ≤ 22 

X1 ≥ a, for Aflao route 

X2 ≥ b, for Hohoe route 

X3 ≥ c, for Yeji route 

X4 ≥ d, for Sefwi - Juaboso route 

X5 ≥ e, for Sefwi - Asanwinso route 

X6 ≥ f, for Sefwi - Wiawso route 

X7 ≤ g, for Maintenance 

X1, X2, X3 ,X4 , X5 , X6 , X7 ≥ 1 and integers 

 

After applying the data, the model becomes; 

Minimize Z = X1+X2+X3+X4+X5+X6+X7 

Subject to  

X1+X2+X3+X4+X5 +X6+X7 ≤ 22 

X1 ≥2 

X2 ≥ 2 

X3 ≥ 1 
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X4 ≥ 2 

X5 ≥ 1 

X6 ≥ 10 

X7 ≤ 4 

X1, X2, X3 ,X4 , X5 , X6 , X7 ≥ 1 and integers 

 

4.3.2  THE SOLUTION TABLEAU FOR INTER CITY ROUTES PROBLEM 

The intercity routes allocation problem gives an optimal scheduling as shown in Table 

 4.2 below: 

 

Table 4.2:  Optimal Scheduling of buses for Inter City Routes 

Optimal Scheduling of Buses 

  X1 X2 X3 X4 X5 X6 X7 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 
  

Solution-> 2. 2. 1. 2. 2. 10. 0. Optimal Z-> 19. 

 

  The new allocation of the buses from Kumasi to the individual inter city routes is; 

Aflao route :   2  

Hohoe route :   2  

Yeji route :   1  

Sefwi Juaboso route :  2  

Sefwi Asanwinso route : 2  

            Sefwi Wiawso route :  10 

Off road/maintenance  : 0  
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4.4 DEFINITION OF VARIABLES FOR INTER URBAN/RURAL URBAN    

ROUTES 

The formulation for the inter- urban/rural urban routes of MMT has the following 

definition of variables: 

1) Let  , (i =1, 2, 3,…13) be the number of buses needed for the individual 

inter urban routes assignment;  

            X1:  Sefwi Bekwai route 

            X2:  Techiman route 

            X3:  Dunkwa Offin route 

            X4:  Bibiani route 

            X5:  New Edubiase route 

            X6:  Bomfa Ofoasi route 

            X7:  Bomfa Anyinasi route 

            X8:  Bomfa Anumso route 

             X9:  Bomfa Brofoyedu route 

            X10:  Kumawu Woraso route 

            X11:  Obuasi route 

            X12:  Kyekyewere route 

            X13:  off road/maintenance under the inter urban/rural urban routes 

 

2) Let (a, b, c, d,…,m) be the number of buses available for rural urban routes 

a (Sefwi Bekwai)         :  1 

            b (Techiman)   :  6                 

           c (Dunkwa Offin)  :  8        

           d (Bibiani)   :  7                    

           e (New Edubiase)  :  1          
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            f (Bomfa Ofoasi)  :  1            

           g (Bomfa Anyinasi)  :  1         

           h (Bomfa Anumso)  :  1          

            i (Bomfa Brofoyedu)  :  1        

            j (Kumawu Woraso)  :  1        

            k (Obuasi)   :  16                        

            l (Kyekyewere )  :  1                    

            m (off road/maintenance)  : 5 

3) Let Z be the total number of buses for the inter urban route 

 

4.4.1  FORMULATION OF THE MODEL FOR THE INTER URBAN/RURAL 

URBAN ROUTES 

Minimize Z=X1+X2+X3+X4+X5+X6+X7+X8+X9+X10 +X11+X12+X13  

Subject to 

X1+X2+X3+X4+X5+X6+X7+X8+X9+X10 +X11+X12+X13 ≤ 50 

X1 ≥ a, Sefwi Bekwai 

X2 ≥ b, Techiman 

X3 ≥ c, Dunkwa Offin 

X4 ≥ d, Bibiani 

X5 ≥ e, New Edubiase 

X6 ≥ f, Bomfa Ofoasi 

X7 ≥ g, Bomfa Anyinasi 

X8 ≥ h, Bomfa Anumso 

X9 ≥ i, Bomfa Brofoyedu 

X10 ≥ j, Kumawu Woraso 

X11 ≥ k, Obuasi 
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X12≥ l, Kyekyewere 

X13 ≤ m, off road/maintenance 

X1, X2, X3… X13 ≥ 1 and integers 

 

After applying the data, the model becomes; 

Minimize Z = X1+X2+X3+X4+X5+ X6+X7+X8+X9+X10 +X11+X12+X13 

Subject to  

X1+X2+X3+X4+X5+ X6+X7+X8+X9+X10 +X11+X12+X13 ≤ 50 

X1 ≥1 

X2 ≥ 6 

X3 ≥ 8 

X4 ≥ 7 

X5 ≥ 1 

X6 ≥ 1 

X7 ≥ 1 

X8 ≥ 1 

X9 ≥ 1 

X10 ≥ 1 

X11≥ 16 

X12 ≥ 1 

X13 ≤ 5 

X1, X2, X3…, X13 ≥ 1 and integers 
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4.4.2 THE SOLUTION TABLEAU FOR INTER URBAN/RURAL URBAN 

ROUTES  

Table 4.3: Optimal Scheduling for Urban/Rural Urban Routes 

Optimal Scheduling of Buses 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
  

Solution-> 1. 6. 8. 7. 1. 1. 1. 1. 1. 1. 16. 1. 0. 
Optimal 

Z-> 
45. 

 

Kumasi – Sefwi Bekwai route : 1 

Kumasi -Techiman route  : 6  

Kumasi – Dunkwa on Offin route : 8 

Kumasi - Bibiani route  : 7  

Kumasi - New Edubiase route : 1 

Kumasi – Bomfa Ofoasi route : 1 

Kumasi –Bomfa Anyinasi route : 1  

Kumasi – Bomfa Anumso route : 1  

Kumasi – Bomfa Brofoyedru  : 1  

Kumasi – Kumawu Woraso route : 1  

Kumasi - Obuasi route  :  16 

Kumasi – Kyekyewere  :  1 

 Maintenance/ off- road  :  0 

 

4.5 DEFINITION OF VARIABLES FOR THE INTRA CITY ROUTES 

1) Let , (i =1, 2, 3,…14) be the number of buses needed for the individual intra 

city routes assignment; 

          X1: Bronwire route 

          X2: Mamponteng route 
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          X3:  Buoho route 

          X4:  Kromoase route 

          X5:  Abuakwa route 

          X6:  Asuofua route 

          X7:  Kronum route 

          X8:  Ejisu route 

          X9:  Bekwai route 

          X10:  Kuntanasi route 

          X11:  Tetrem route 

          X12:  Esuowin route 

          X13:  Effiduase route 

          X14: off road/maintenance 

 

2) Let (a, b, c, d,…,n) be the number of buses available for rural urban routes 

a (Bonwire)          : 3 

            b (Mamponteng) : 3 

            c (Buoho)            : 2 

            d (Kromoase)      :  2 

            e (Abuakwa)        :       3 

            f (Asuofua)         :        3  

            g (Kronum)          :         1 

            h (Ejisu)             :         2 

            i (Bekwai)           :         2 

            j (Kuntanasi)       :         1 

  k (Tetrem)           :         1 

            l (Esuowin)         :          1  
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           m (Effiduase)        :         1 

 n (maintenance) :       3 

3) Let Z be the total number of buses for the intra city routes 

 

 

4.5.1 FORMULATION OF MODEL FOR INTRA CITY ROUTES 

Minimize Z = X1+ X2+ X3+ X4+ X5+ X6 +X7 +X8 +X9 +X10 +X11+ X12+ X13+ 

X14  

Subject to  

X1+X2+X3+X4+X5+ X6+X7+X8+X9+X10 +X11+X12+X13+X14 ≤ 28 

X1 ≥ a, for Bonwire 

X2 ≥ b, for Mamponteng 

X3 ≥ c, for Buoho 

X4 ≥ d, for Kromoase 

X5 ≥ e, for Abuakwa 

X6 ≥ f, for Asuofua 

X7 ≥ g, for Kronum 

X8 ≥ h, for Ejisu 

X9 ≥ i, for Bekwai 

X10 ≥ j, for Kuntanasi 

X11 ≥ k, for Tetrem 

X12 ≥ l, for Esuowin  

X13 ≥ m, for Effiduase 

X14 ≤ n, for maintenance 

 

Introducing the data yields the following model; 

Minimize Z = X1+X2+X3+X4+X5+ X6+X7+X8+X9+X10 +X11+X12+X13+X14 
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Subject to  

X1+X2+X3+X4+X5+ X6+X7+X8+X9+X10 +X11+X12+X13+X14 ≤ 28 

X1 ≥3 

X2 ≥ 3 

X3 ≥ 2 

X4 ≥ 2 

X5 ≥ 3 

X6 ≥ 3 

X7 ≥ 1 

X8 ≥ 2 

X9 ≥ 2 

X10 ≥ 1 

X11 ≥ 1 

X12 ≥ 1 

X13 ≥ 1 

X14 ≤ 3 

X1, X2, X3… X14 ≥ 1 and integers 

  

 

4.5.2  THE SOLUTION TABLEAU FOR INTRA CITY ROUTES PROBLEM 

Table 4.4: Optimal Schedule of Intra City Routes 

Optimal Scheduling Solution 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
  

Solution-

> 
3. 3. 2. 2. 3. 3. 2. 2. 2. 1. 1. 2. 1. 0. 

Optimal 

Z-> 
27. 
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After the computation the optimal schedule of the buses is as follows: 

Kumasi-Bonwire          : 3 

            Kumasi-Mamponteng  : 3 

            Kumasi-Buoho             : 2 

            Kumasi-Kromoase      :  2 

            Kumasi-Abuakwa        :       3 

            Kumasi-Asuofua          :        3  

            Kumasi-Kronum          :         2 

            Kumasi-Ejisu               :         2 

            Kumasi-Bekwai           :         2 

            Kumasi-Kuntanasi       :         1 

  Kumasi-Tetrem            :         1 

            Kumasi-Esuowin          :          2  

           Kumasi-Effiduase         :         1 

 

 

 

4.6 DISCUSSION 

The computational results in Table 4.2 show that the total number of buses on 

assignment has been decreased from one-hundred (100) to ninety-one (91).  This 

reduction in number of buses results from the removal of all the twelve (12) buses on 

maintenance and off road and adding three more buses to the eighty-eight (88) buses 

that were strictly assigned to the three major routes.  

 

 Due to the business activities that go on in some of the towns, demand for the buses 

may increase during market seasons. Therefore only one bus assigned to a route such 

as Sefwi-Asanwinso would be inadequate for such seasons, hence an addition of one 
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bus making two buses. There total number of buses has thus reduced from twenty-two 

(22) to nineteen (19). 

According to results in Table 4.3 it is observed that the schedule of buses for the 

individual inter urban routes however remains the same as what was provided in 

Appendix A (Table a (2)) but no bus is kept for maintenance and off road.  This 

means the fifty (50) buses have reduced to forty-five (45). 

 

 The result for the intra city route schedule shows that the number of buses has 

reduced from 28 to 27 but there is also an increase in the number of buses along the 

Kronum and Effiduase routes. These two additional buses come from the buses for 

maintenance.    

 

Since the results obtained for all the routes indicate that no bus should be left for 

maintenance and off road, the nine (9) buses remaining after re-scheduling should 

support the routes which are identified to experience unexpected shortage.  

 

Finally, comparing the way buses are assigned to routes at MMT and the 

computational results obtained, it could be deduced that the Branch and Bound 

method is the best alternative method for scheduling the buses.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

This chapter discusses the conclusion of the study as well as the needed 

recommendation for an improvement of the general delivery of service of MMT-

Kumasi depot as far as bus scheduling is concerned. 

 

5.1 CONCLUSION 

The MMT-Kumasi depot’s bus scheduling problem for the three major routes 

combined as well as the individual routes is formulated as an integer programming 

problem. The study concludes with an optimal number of 91 buses; a minimum of 

nineteen (19) buses are needed to operate on the intercity routes, 45 buses to operate 

on the interurban/rural urban routes and twenty seven (27) buses for the intra city 

routes. 

It is observed that, out of the optimal number of buses (19) available for the intercity 

routes, only a bus is needed for Kumasi-Yeji route whereas 2 buses are needed for 

each of the routes namely; Kumasi - Sefwi Asanwinso, Kumasi -Hohoe, Kumasi - 

Sefwi Juaboso, and Kumasi – Aflao. However, 10 buses are needed for the Kumasi-

Sefwi Wiawso route. This result may be due to the high demand for buses on that 

route. 

The computational result for the inter urban/rural urban routes reveals that, for 

optimality, 16 buses should be assigned to the Kumasi-Obuasi route, 8 buses to the 

Kumasi-Dunkwa on Offin route, 7 buses to the Kumasi-Bibiani route and 6 buses to 

the Kumasi-Techiman route with a bus each allocated to the rest of the routes in the 

inter urban/rural urban category. 

The study also concludes with an optimal bus schedule of 3 buses each for the 

Bonwire, Mamponteng, Abuakwa, and Asuofua routes. The Buoho, Kromoase, 
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Kronum, Ejisu, Bekwai, and Esuowin routes in the intra city category are allocated 2 

buses each whereas a bus each is assigned to Kuntanasi, Tetrem and Effiduase routes. 

 

The study shows that, urban bus and inter-city bus operations differ in terms of their 

scheduling practices and demand arrival patterns, mainly due to the seemingly fixed 

time schedule set for the latter, and the rough service frequency set for the former as 

indicated by Yan and Chen (2002). But the model as proposed in this research only 

demanded the optimal management of buses and not considering passenger 

movements. 

 

5.2 RECOMMENDATION 

This work considers only one depot, specifically Kumasi depot. It is therefore 

recommended that further research work should be carried out on other depots of 

MMT using all available routes as basis for a multi depot bus scheduling approach. 

While the focus of our research is on assigning buses to distinct routes, we provide an 

overview on bus assignment to multiple routes for future research. 

 

Another line of future research concerning this thesis is the investigation of the 

applicability of the solution alternatives to the bi-level formulation including transfer 

and bus capacity constraints; in particular, the special structure of the bi-level 

formulation may be exploited in order to improve the efficiency of the solution 

methods. 

 

Finally, since the bus operations at MMT is basically demand based, the management 

in the long term has to devise a computerised system to collect data on the daily 

demand for their services, so as to generate proper scheduling procedure to reduce 

inconsistencies in bus assignment. 
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APPENDICES 

APPENDIX A 

Table a (1): The intercity routes and their number of allocated buses  

NO. INTER CITY ROUTES 

         From                      To 

NUMBER OF BUSES 

 

1 Kumasi Aflao 2 

2 Kumasi Hohoe 2 

3 Kumasi Yeji 1 

4 Kumasi Sefwi Juaboso 2 

5 Kumasi Sefwi Asanwinso 1 

6 Kumasi Sefwi Wiawso 10 

 

Table a (2): The inter urban routes and their number of allocated buses  

NO. INTER URBAN / RURAL URBAN ROUTE NUMBER OF BUSES 

1 Kumasi Sefwi Bekwai 1 

2 Kumasi Techiman 6 

3 Kumasi Dunkwa Offin 8 

4 Kumasi Bibiani 7 

5 Kumasi New Edubiase 1 

6 Kumasi Bomfa Ofoase 1 

7 Kumasi Bomfa Anyinasi 1 

8 Kumasi Bomfa Anumso 1 

9 Kumasi Bomfa Brofoyedu 1 

10 Kumasi Kumawu Woraso 1 

11 Kumasi Obuasi 16 

12 Kumasi Kyekyewere 1 
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Table a(3): The intra city routes and their number of allocated buses  

NO. INTRA CITY ROUTES 

       From                               To 

NUMBER OF BUSES 

1 Kumasi Bonwire 3 

2 Kumasi Mamponteng 3 

3 Kumasi Buoho 2 

4 Kumasi Kromoase 2 

5 Kumasi Abuakwa 3 

6 Kumasi Asuofua 3 

7 Kumasi Kronum 1 

8 Kumasi Ejisu Oduom 2 

9 Kumasi Bekwai 2 

10 Kumasi Kuntanasi 1 

11 Kumasi Tetrem 1 

12 Kumasi Esuowin 1 

13 Kumasi Effiduase 1 

 

APPENDIX B 

Table b(1): Bus types and their capacities  

BUS TYPES NO. OF BUSES BUS CAPACITY 

DAF 8 63 

VDL Neoplan City 

(1st generation) 

(2nd generation) 

 

17 

 

37 

29 47 

VDL Commuter 32 63 

VDL Jonckeere 14 62 
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Table b(2):  Time(coverage and departure) and Current fares per distance for the 

routes of MMT buses 

 NO. ROUTE ONE WAY 

DISTANCE 

(KM) 

COVERAGE 

TIME/HR 

FARES 

(GH ¢) 

FIRST 

DEPARTURE 

IN
T

E
R

 C
IT

Y
 R

O
U

T
E

S
 

1 Aflao 455 8 11.00 9pm 

2 Hohoe 397 4 8.00 8am 

3 Yeji 226 3 4.20 8am 

4 Sefwi Juaboso 225 3 4.00 5am 

5 Sefwi Asanwinso 197 3 3.50 5am 

6 Sefwi Wiawso 155 2.5 3.00 5am 

IN
T

E
R

 U
R

B
A

N
/R

U
R

A
L

 U
R

B
A

N
 R

O
U

T
E

S
 

1 Sefwi Bekwai 132 2 2.50 5am 

2 Techiman 120 2 2.50 5am 

3 Dunkwa Offin 96 2 2.00 5am 

4 Bibiani 93 1.4 1.50 5am 

5 New Edubiase 90 2 1.50 5am 

6 Bomfa Ofoase 76 2 1.70 5am 

7 Bomfa Anyinasi 69 2 1.20 5am 

8 Bomfa Anumso 67 2 1.20 5am 

9 Bomfa Brofoyedu 67 2 1.30 5am 

10 Kumawu Woraso 61 2 1.00 5am 

11 Obuasi 61 1.4 1.30 5am 

12 Kyekyewere 53 1 1.00 5am 

All the routes provided start from Kumasi.  
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APPENDIX C 

Table c(1): Initial tableau for the scheduling of Buses for the three Major Routes 

Optimal Scheduling of Buses 

  X1 X2 X3 X4 X5   RHS 

Minimize 1. 1. 1. 1. 1.   
 

Constraint 1 1. 1. 1. 1. 1. <= 100. 

Constraint 2 1. 0. 0. 0. 0. >= 18. 

Constraint 3 0. 1. 0. 0. 0. >= 45. 

Constraint 4 0. 0. 1. 0. 0. >= 25. 

Constraint 5 0. 0. 0. 1. 0. <= 6. 

Constraint 6 0. 0. 0. 0. 1. <= 6. 

Constraint 7 1. 1. 1. -1. -1. >= 0. 

Constraint 8 -1. 0. 1. 0. 0. >= 0. 

 

 

Table c(2): Initial tableau for the scheduling of Buses for Inter City Route 

Initial Scheduling of Buses 

  X1 X2 X3 X4 X5 X6 X7 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 
  

Constraint 1 1. 1. 1. 1. 1. 1. 1. <= 22. 

Constraint 2 1. 0. 0. 0. 0. 0. 0. >= 2. 

Constraint 3 0. 1. 0. 0. 0. 0. 0. >= 2. 

Constraint 4 0. 0. 1. 0. 0. 0. 0. >= 1. 

Constraint 5 0. 0. 0. 1. 0. 0. 0. >= 2. 

Constraint 6 0. 0. 0. 0. 1. 0. 0. >= 1. 

Constraint 7 0. 0. 0. 0. 0. 1. 0. >= 10. 
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Constraint 8 0. 0. 0. 0. 0. 0. 1. <= 4 

Constraint 9 1. 1. 1. 1. 1. 1. -1. >= 0. 

 

 

Table c(3): Initial Tableau for scheduling of Buses for Inter Urban/Rural Urban 

Routes 

Initial Scheduling Solution 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
  

Constraint 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. <= 50. 

Constraint 2 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 1. 

Constraint 3 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 6. 

Constraint 4 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 8. 

Constraint 5 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 7. 

Constraint 6 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. >= 1. 

Constraint 7 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. >= 1. 

Constraint 8 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. >= 1. 

Constraint 9 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. >= 1. 

Constraint 10 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. >= 1. 

Constraint 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. >= 1. 

Constraint 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. >= 16. 

Constraint 13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. >= 1. 

Constraint 14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. <= 5. 

Constraint 15 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. >= 0. 
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Table c(4):  Initial Tableau for scheduling of Buses for Intra City Routes 

Initial Scheduling Solution 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 
 

RHS 

Minimize 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
  

Const 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. <= 28. 

Const 2 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 3. 

Const 3 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 3. 

Const 4 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 2. 

Const 5 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 2. 

Const 6 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. >= 3. 

Const 7 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. >= 3. 

Const 8 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. >= 1. 

Const 9 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. >= 2. 

Const 10 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. >= 2. 

Const 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. >= 1. 

Const 12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. >= 1. 

Const 13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. >= 1. 

Const 14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. >= 1. 

Const 15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. <= 3. 

Const 16 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. >= 0. 

 


