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Abstract

This study demonstrates actuarial applications that can be performed on the

Health insurance claims in the country. To achieve this, data from the CPC

scheme in Accra of the NHIA in the year 2013 was employed for the study. this

consisted of facility type, number of claims submitted(in-patient and out-patient)

and amount submitted (in-patient,out-patient,drugs and services charges). A hi-

erarchical model allowing for frequency, claim type and severity amount to be

jointly modeled was used. Based on this hierarchical model, we proceeded to

estimate premium values under various conditions, however due to lack of infor-

mation from the insurer most of these estimates could not be stated categorically.

Applications of the study was also made to the Value-at-Risk theory. This fact not

withstanding, a case has been made for the consideration of the hierarchical mod-

eling approach to be considered as the means of analyzing health insurance claims

since this model takes into consideration not only the loss (severity) amount sub-

mitted but also considers most especially factors integral to the planning and

budgeting of the insurer, and these are, the frequency and type of claim. The

hierarchical modeling approach thus provided further insight which previously

was overlooked.

iii



Acknowledgements

Firstly, my gratitude goes to the God Almighty, for His mercy and love that He

has showered my path during the period of writing this thesis. To my supervisor,

Dr. A. Y. Omari Sasu for his guidance, patience and constructive criticisms.

Also, to Mr. David Adedia and Mr. George Neurtey, you really came through

for me, thank you. Pharm. Regina Esinam Abotsi, your thoughtful words of

encouragement during the writing of this thesis can not be underestimated, Thank

you. To all my course mates and friends for being there for me during this period.

I really appreciate every help.

iv



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of study . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Justification of Work . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Source of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Limitations of Study . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Health Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Health Insurance In Africa . . . . . . . . . . . . . . . . . . 7

2.1.2 Health Insurance In Ghana . . . . . . . . . . . . . . . . . 13

2.2 Challenges of the Scheme . . . . . . . . . . . . . . . . . . . . . . . 17

v



2.2.1 Actuarial Concern . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Actuarial techniques and applications . . . . . . . . . . . . . . . . 21

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Negative Binomial Regression . . . . . . . . . . . . . . . . . . . . 25

3.3 Negative Binomial Distribution . . . . . . . . . . . . . . . . . . . 27

3.3.1 Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Formulating as a compound Poisson distribution . . . . . . 34

3.3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Estimation of Parameters . . . . . . . . . . . . . . . . . . 37

3.4 Multinomial logistic regression . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Multinomial Logit. Assumptions . . . . . . . . . . . . . . 38

3.4.2 The Multinomial Logit Model . . . . . . . . . . . . . . . . 39

3.4.3 Intercept Estimation . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Natural language processing application of Multinomial Logit. 50

3.5 General Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Axioms of Probability Theory . . . . . . . . . . . . . . . . 51

3.5.2 Some other Useful Probability laws . . . . . . . . . . . . . 52

3.5.3 Some Useful Definitions . . . . . . . . . . . . . . . . . . . 54

3.6 Generalized Pareto Distribution . . . . . . . . . . . . . . . . . . . 54

3.7 Distribution Selection Test . . . . . . . . . . . . . . . . . . . . . . 56

3.7.1 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . 56

3.7.2 Anderson-Darling test . . . . . . . . . . . . . . . . . . . . 59

3.7.3 Chi-squared test . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.4 Akaike information criterion, AIC . . . . . . . . . . . . . . 63

3.7.5 AICc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.6 Comparisons with other model selection methods . . . . . 65

3.7.7 Bayesian Information Criterion, BIC . . . . . . . . . . . . 66

3.8 Premium Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Original dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Correlation between Claim groups . . . . . . . . . . . . . . . . . . 73

4.4 Covariancce between claim groups . . . . . . . . . . . . . . . . . . 74

4.5 Hierarchical Health insurance Claims data . . . . . . . . . . . . . 74

4.5.1 Frequency Component . . . . . . . . . . . . . . . . . . . . 75

4.6 The Negative Binomial regression model . . . . . . . . . . . . . . 78

4.7 Multinomial claim type . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.1 Distribution of Claims . . . . . . . . . . . . . . . . . . . . 81

4.8 Severity Component . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Actuarial Applications of study . . . . . . . . . . . . . . . . . . . 90

4.9.1 Net Premium . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9.2 Expected Value Premium Principle . . . . . . . . . . . . . 92

4.9.3 Variance Premium Principle . . . . . . . . . . . . . . . . . 93

4.9.4 Standard Deviation Premium Principle . . . . . . . . . . . 94

4.10 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Findings and Conclusions . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



List of Tables

4.1 Correlation between variables . . . . . . . . . . . . . . . . . . . . 74

4.2 Covariance between variables . . . . . . . . . . . . . . . . . . . . 74

4.3 Summary Statistics frequency parameters . . . . . . . . . . . . . . 75

4.4 Statistics of Poisson regression . . . . . . . . . . . . . . . . . . . . 76

4.5 Measures of Fit of Poisson model . . . . . . . . . . . . . . . . . . 76

4.6 Negative Binomial parameters . . . . . . . . . . . . . . . . . . . . 77

4.7 Continuation of Negative Binomial parameters . . . . . . . . . . . 77

4.8 Negative Binomial Regression Measures of Fit . . . . . . . . . . . 78

4.9 Multinomial Regression Parameters . . . . . . . . . . . . . . . . . 82

4.10 Claim Type Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Claim Type Probability . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Randomly Generated Claim Numbers, Claim Type and Severity

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 Model Fitness- Kolmogorov-Smirnov . . . . . . . . . . . . . . . . 90

4.14 Model Fitness- Anderson-Darling . . . . . . . . . . . . . . . . . . 91

4.15 Model Fitness- Chi-Squared . . . . . . . . . . . . . . . . . . . . . 91

viii



List of Figures

1.1 Framework of the Hierarchical Model . . . . . . . . . . . . . . . . 4

2.1 Summary Statistics of Health Insurance subscribers in Ghana . . 20

4.1 Frequency of Claims . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Claim Amounts Submitted . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Claim amounts submitted against Deductibles . . . . . . . . . . . 73

4.4 Hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Negative Binomial regression Density Function . . . . . . . . . . . 79

4.6 Cum. Dist. of Negative Binomial . . . . . . . . . . . . . . . . . . 80

4.7 Negative Binomial P-P plot . . . . . . . . . . . . . . . . . . . . . 81

4.8 Negative Binomial Survival Func. Plot . . . . . . . . . . . . . . . 81

4.9 Density Func. of Severity model . . . . . . . . . . . . . . . . . . . 84

4.10 Cumulative Density Func. of Severity model . . . . . . . . . . . . 84

4.11 P-P Plot of Severity Component . . . . . . . . . . . . . . . . . . . 85

4.12 Q-Q Plot of Severity model . . . . . . . . . . . . . . . . . . . . . 86

4.13 Density Func. Joint Hierarchical model . . . . . . . . . . . . . . . 89

ix



Chapter 1

Introduction

With the current trend of insurance claims, more precisely the National Health

Insurance Scheme challenges of making true its promise to health care providers

in terms of payment of rendered services, it is incumbent that a more objective

look is given to the scheme. It is the responsibility of actuaries to take advantage

of modern statistical and computing advances to analyze claims made to the

insurance authority, come up with estimates and forecasts which will better equip

the insurer to face its financial demands even before they raise their heads.

1.1 Problem Statement

According to Mr. Sylvester Mensah, CEO of the National Health Authority

(NHIA), Health care facilities across the country admits more than 85% of their

internally generated funds come from payments from the NHIA. The health in-

surance scheme is the cash cow to sustaining the health care industry and the

pharmaceutical supply chain in Ghana. They also confirm that about 90% of

patients are health insurance subscribers. This also implies that the NHIS bares

an overwhelming proportion of the cost burden of patient care in the country

(todayghananews.com, 2015) From this it can be gathered that claims payment

is the lifeline for service operators and any form of delay in the payment almost

surely cripples services. However here is the case that payments can be delayed

as long as five to six months with isolated cases of eight months (DailyGuide,

2015)

From the above, it is clearly shown how important the national insurer is to the

insured, and the service providers and all needs to be done by all who matter and

play a role in sustaining this social health invention. Due to this delay in payment
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of claims, it has become a popular happening in recent times to hear banter, ac-

cusations and counter-accusations being traded by key stakeholders both in the

electronic and print media. A recent occurrence of this unfortunate banter of

accusations and counter accusation was that between the minister of finance and

the CEO of the NHIA. The issue then was how many months have claims pay-

ment not being outstanding. A key stakeholder who is very much missing in

this whole cloud of confusion but plays a very vital role in the sustaining of the

insurance program is the actuary. The actuary possesses peculiar skills that can

help develop estimates to quantify possible claim values even before a financial

year begins and hence equip the national insurer for claims ahead.

1.2 Objectives of study

The overarching objective of the study is to come up with probability distribution

function for claims and claim types presented to a Ghanaian health insurer.

1.2.1 Specific objectives

The overarching objective of this study can be realized through the following

specific objectives:

• Claims Frequency: Claims submitted by the various service providers (phar-

macies, clinics and hospitals) form a count or discrete variable and hence

can be fitted to a probability distribution. This can be used to model future

claims and hence equip the NHIA in its decisions.

• Claim Type: Claims submitted to the national insurer is normally a com-

bination of various service charges by the health care provider. This aspect

of claims need to be looked into and assessed for its bearing on claim pay-

ments.

• Severity (loss) component: A probability distribution of the loss/claim

amount submitted is then estimated.

2



1.2.2 Methodology

The study will combine the various probability distributions to develop a desired

model which can be used as a general model for assessing claims submitted to

the insurer. The Negative Binomial regression model estimates the r− th success

upon which claim frequency is distributed. With this model the general probabil-

ity of claims submitted being submitted and processed for payment is developed.

Progressing,Claims types is modeled with the property of conditional probability

theory and finally, the generalized Pareto distribution with three (3)parameters

is employed.

Secondary data was obtained for NHIA in the Claims Processing and Payment

Report for CPC Scheme, Accra. Data obtained comprised of various variables,

however, the variables of interest to this study included Number of Claims sub-

mitted, Inpatient(Ghc), Outpatient (Ghc), Drugs(Ghc), Services(Ghc) and Total

Amount Submitted(Ghc). Total amount submitted is actually a sum of all the

other money amount variables. Data analysis was done with the aid of R, STATA

(version 12) and Easyfit. Equation 1.1 is a mathematical sentence of the model

description.

f(N,M, y) = f(N)× f(M |N)× f(y|N,M) (1.1)

Distribution function = Frequency × Claim type× Severity

where N represents frequency of claims (no.claims)

M represents Kind of Claim

y signifies loss amount

Below is a graphical display of the statistical model

3



Figure 1.1: Framework of the Hierarchical Model
Source: Author’s Construction

1.3 Justification of Work

At the end of this study, probability estimates of claim frequency, type and loss

will be made available.These estimates will go a long way to keep the national

insurer prepared for future claims submitted as this will determine their capital

and Value at risk assessment. Results of this study can also go a long way to influ-

ence premiums charged and levels of coverage and other coverage modifications,

should there be the need for such modifications to be introduced.

1.4 Source of Data

Secondary data was sourced from the Claims processing and payment report for

CPC scheme, Accra branch of the National Health Insurance Authority for the

year 2013. The decision to choose this insurer amongst the many other health

insurance schemes out here in Ghana was mainly due to the level of availability

and popularity of the scheme compared to the others. The National Health

Insurance is a Ghana Government initiative with the aim of improving health

care access to the majority of the populace. Information sourced from current

literature on the subject will be used in guiding the directions and sphere of this
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study.

1.5 Organization of Thesis

The Chapter one of this study contains Background of study, Problem statement,

Objectives of study, Methodology, Justification of the study, and Organization

of thesis. Chapter two contains the review of literature, where studies already

carried out which are related to this study, methods and application of hierarchi-

cal data application and modeling were looked into. Some probability methods

of interest for hierarchical modeling and application was considered under chap-

ter three. Chapter four contains results of the data analysis, where the claims

submitted to the NHIA datasets were analyzed using the methods outlined in

chapter three. Finally, various findings from the analysis were discussed in Chap-

ter five to check if the goals of this study are achieved. Recommendations are

given with respect to the results obtained that are based on the methods used in

the analysis.

1.6 Limitations of Study

Actuarial projections and estimates made under this study does not encompass

all unforeseen occurrences or all other relevant instances; due to these reasons and

also due to the fact that the analysis is not tailored for any particular insurance

provider or health scheme, results as pertaining to the reality on the ground are

likely to vary from that presented at the end of this study. Also, other researchers

investigating the same field may come up with estimates that vary from those

presented in this work due to the fact that, these researchers may operate with

assumptions totally different from that utilized in this study, different data or

developing models for entirely different purposes.
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Chapter 2

Literature Review

In this section of the study, review of studies which had been conducted and are

valid to our work are conducted. The review will be done in the areas of actuarial

application to insurance data. Particular emphasis will be made on hierarchical

data and loss distributions developed.

2.1 Health Insurance

According to the online investing glossary, InvestorWords.com (2015b), generally

an insurance can be considered as an assurance of remuneration for a particular

likely future misfortunes in return for an intermittent installment or considera-

tion as it is called in the legal terms. Insurance in their design, are structured

to protect the financial well-being of a company, an individual, or other entity

in the event of an unexpected loss. Due to the nature of insurance, it may be

mandatory (required by law) or optional (left at the discretion of the individual).

An insurance contract is deemed entered into only upon all parties (Proposer

and Acceptor) involved have gone through the various demands and are satisfied,

then it is considered to be the existence between the parties, now are from that

moment referred to as the insured and the insurer, respectively. The insurer takes

upon itself the risk of compensating the insured for a predetermined event. This

transferred liability or risk is only concluded on and remains a valid agreement

upon exchange for periodic monetary payments, known as premiums to the in-

surer by the insured. Standard periods for payment of premiums are monthly,

quarterly or annually. Due to the general nature of insurance, it can be used as a

social protection tool from which health insurance is derived. Health insurance is

hence defined as insuring oneself against the risk of incurring medical expenses,
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thus, transferring this risk to a desired insurer. An insurer, mitigates its risk

amongst a group or more precisely, a desired population of potential insureds by

estimating the general health care risk and historic health expenditure amongst

this group. By so doing, the insurer equips itself will the required information to

develop the appropriate financial structure to sustain such a risk should it accept

the risk of insuring the targeted population. Estimates developed with such an

information will guide decisions on premiums and benefits or coverage limits of a

health insurance policy. Health insurance contracts may also offer scope for visits

to the doctor, medicine, hospital stays and any other medical expenses which

may be desired and stated in the insurance contract. Various medical or health

insurance policies are in existence, they however, differ in extent or inclusions

of coverage, the co-payment and/or deductible size (the threshold amount below

which the insurer is not liable to make payment), coverage limits (the threshold

amount above which the insurer is not liable to make payment) and the treat-

ment options accessible to the policyholder. A health insurance policy could be

acquired specifically by a person as an individual, or through the procurements

of an employer (InvestorWords.com, 2015a).

2.1.1 Health Insurance In Africa

Social Health Insurance (SHI) has been considered as having the potential of be-

ing a financing system in low-and average wage nations over the last two decades.

SHI schemes are in existence in many Latin America countries and in recent years,

have also been introduced across Asia. Despite this chalk of success, only a hand-

ful of African countries have SHI’s implemented (McIntyre et al., 2003). As early

as the 1930’s, majority of European nations had some type of SHI introduced,

and thereafter, had it implemented in various other high-wage nations (Roemer,

1991), with the same Africa expected to do same. A couple of West African

nations have implemented one type or the other of social security cover aimed at

improving health care services. Until recently in Southern or East Africa, it was

7



only Kenya which had started a type of compulsory health insurance ( Kraushaar

D., 1997). Some reasons given for the implementing or better still considering

SHI include,it being used as a tool raking in extra income to adjust for reduction

in tax-financed spending on health services (Ensor, 1999). Also, its deemed as an

avenue for enhancing equity and effectiveness of health care resource use, this is

done by enhancing access to health care for a broader spectrum of people. SHI

is also acts as an avenue of controlling the rate of development in health care

expenses.

McIntyre et al (2003), captured lessons that drawn from the creating and adjust-

ing the SHI design in South African. This was done in connection with evidence

recently acquired from other low- and average-wage nations, it was observed that

a vital design prerequisite to advance value and maintainability is a common con-

tribution and also, the risk pool over the SHI and any current private insurers.

Furthermore, given the complex nature of SHI changes and the way that SHI is

normally a stand out part of a more extensive bundle of health sector changes,

the proper sequencing of execution of the SHI and related organizational and fi-

nancing changes is key. As SHI advances in a nation, it is essential to benchmark

the evolving way of its configuration against pre-determined targets keeping in

mind the ultimate integrity of the policy (McIntyre et al., 2003).

Ekman (2004) in a review systematically assessing the evidence of the degree

to which community-based health insurance is a reasonable choice for low-wage

nations in organizing assets and offering financial security, the review contributes

to the literary stock on health funding by developing and qualifying existing in-

formation, expressed that in general, the evidence base is restricted in degree and

sketchy in quality. Also, there is strong proof that community-based health insur-

ance provides some financial coverage by minimizing out-of-pocket expenditure.

There is proof of moderate quality that such plans enhance cost-recuperation.

There is feeble or no confirmation that plans have an impact on the nature of

8



consideration or the proficiency with which care is delivered. In supreme terms,

the impacts are little and plans serve just a constrained area of the populace.

The principal policy ramification of the review is that these forms of commu-

nity financing plans are, in best case scenario, reciprocal to other more powerful

frameworks of health financing. To enhance reliability and legitimacy of the proof

base, analysts should concur on a more sound arrangement of result pointers and

a more steady evaluation of these markers. Policy drafters should be adequately

educated as to both the expenses and the advantages of actualizing different

financing alternatives. The present proof base on community-based health in-

surance is quiet in light of this point. Another factor to be considered when

contemplating Health Insurance scheme is, it’s political nature. Health reform as

per its characteristics, is political.

Sound technical investigation is never adequate to ensure the reception of the

policy and hence financing reforms geared at advancing value are particularly

prone to test personal stakes and generate resistance (Thomas and Gilson, 2004).

The outline and execution of policies is about designating assets, conveying power

and choosing whose needs require immediate attention (Barker, 1996). Due to its

political nature, large-scale financing reforms, an example being the evolving of

social health insurance (SHI), are particularly contentious since they straightfor-

wardly impact who pays for, and who profits from the health care system. Though

proponents such as these can overlooked by frontiers of reform, it is these worries

that frequently bother the minds of political leaders.

Some health reforms tend to be high politically contention than others. In Ol-

son (1965) and Nelson (1989), both authors conceded that it is redistribution to

the underprivileged that is normally confronted with the most resistance. Most

middle- and low-wage nations have the urban middle-class more structured with

a louder voice, than the other different people-groups. As a contradiction , the

rural populace are often more scattered and without the financial means to im-

pact various policy strategies. Hence, the worries of the rich and powerful are not
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hastily brushed aside (Grindle and Thomas, 1992). In a review of the Health In-

surance policy development implemented in South Africa between 1994 and 1999,

notwithstanding, over 10 years of debate, assessment and design, no set of Social

Health Insurance (SHI) recommendations had by 1999 secured sufficient backing

to end up as the premise for an execution plan. Conversely, calls to re-control

the health insurance industry were quickly formulated and executed toward the

end of this period. The procedures of actor engagement and administration, set

against policy objectives and design details, have been fundamental to this expe-

rience (Thomas and Gilson, 2004).

An evaluation of the effect of health insurance on asset mobilization, financial

security, administration use, nature of care, social incorporation and community

empowerment in low-and lower-middle-wage nations in Africa and Asia by Spaan

et al (2012) comprised of 159 studies- 68 in Africa and 91 in Asia. It was observed

that majority of African country’s studies covered on Community-Based Health

Insurance (CBHI) and these were generally of greater quality; SHI studies were

for the most part Asian and of mid-range quality. Of the Asian studies only one

Asian study tackled Private Health Insurance (PHI). Subjects such as social in-

clusion, utilization and financial protection and were of prominence as compared

to subjects like resource care quality, mobilization and community empowerment.

There exist immense evidence which points out that CBHI and SHI offers finan-

cial protection to members by cutting down members out-of-pocket expenditure,

enhances service utilization. Also CBHI further enhances resource mobilization.

Despite the aforementioned, evidence also exist, though minimal, indicates a pos-

itive impact of both CBHI and SHI on social inclusion and quality of care. Hence

rendering the discussion on SHI and CBHI effect on community empowerment

inconclusive. Also due to insufficient studies,the discussions about PHI have also

ended inconclusively in all regards. The conclusion was health insurance provides

some indemnity against the detrimental impacts of client charges and a promising

avenue towards general health care services coverage.
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Ndiaye et al. (2007), authored an overview of the progression of Community

Health Insurance (CHI) in subSaharan Africa. The study pointed out that in

2003, almost 600 CHI initiatives were enlisted in twelve nations of francophone

West Africa alone. On a regional stage, systems to promote coordination have

been developed in Africa which aims to bolster and maintain regular surveillance

on the advancements of this commendable model for financing medical services.

Also on the national stage, governments are also making ready the required legal

structures and statues for the CHI implementation. CHI is also progressively seen

as a procedure to meet other development objectives than just health. It consists

of an intriguing model to fund health care, to pool finanacial assets fairly and to

improve on the healthcare of clients. Despite the many pros, CHI development

however still encounter numerous difficulties. The pertinence of more expert con-

tribution in the administration of CHI and the requirement of vital subsidy for

CHI schemes are constantly noticed. There is the additionally need to improve

the relationship of CHI with alternate players in the healthcare industry and to

scale-up CHI in order to pick up in viability and productivity. The blast in the

quantity of schemes in Africa over recent years is a pointer of the expanding

attractiveness of the model. However, in practice, enrollment rates per scheme

stay low or are just increased gradually. Setting up context-specific research is

required on the reasons that keep individuals from enlisting in great numbers.

On that premise, adequate moves needed to be made locally can be recognized.

Allegri et al (2009)accented to the above findings and contributed further stat-

ing that CHI expand access to care and provide monetary security against the

expense related to sickness for needy individuals barred from formal insurance

schemes. In SubSaharan Africa (SSA), experience on the field, however, shows

that a sequence of operational challenges still impede the fruitful advancement of

CHI, yielding negative consequences for potential advancement towards expanded

access to enhanced monetary security and mind. With the aim to offer policy

drafters the vital knowledge on the issues in question and with policy recom-
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mendations to counter such issues, reinforcing CHI and improving its role inside

SSA health schemes, Allegri et al (2009) reviewed literature which reveal that

the significant challenges at present confronted by CHI in SSA are operational in

nature and center around five cardinal points:

• absence of clear legislative and administrative structure;

• low enlistment rates;

• inadequate hazard management process;

• weak administrative capacity; and

• high overhead expenses.

From the review, Allegri et al (2009) calls for suitable policy interventions,

particularly:

– More commitment towards the advancement of sufficient legislation in

backing of CHI;

– Expanding uptake of measures to grow evenhanded enlistment;

– The acceptance and implementation of sufficient hazard management

measures in all schemes;

– Significant investments from host nations and also from supporting

agencies to enhance administrative capacity; and

– Collective measures to control overhead expenses

Again, Private health insurance is also assuming an increasing responsibility in

both high-and low-wage nations, yet is ineffectively comprehended by both policy-

makers and researchers (Sekhri and Savedoff, 2005). An observation from (Sekhri

and Savedoff, 2005) indicates that the variance in the public and private medical

insurance is most of the time overstated since well managed private insurance

markets share numerous components with the public health insurance. In their

closing comments made arguments that developing countries cannot overlook
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private health insurance in that, it can be saddled to serve the general public

interest if governments execute viable regulations and concentrate on programs

for the individuals who are vulnerable and poor. Moreover, (Sekhri and Savedoff,

2005) further argued that private health insurance can be utilized as a transitional

type of medical coverage to create involvement with the insurance establishments

while the general public sector builds its capacity to oversee and fund coverage

for health care.

2.1.2 Health Insurance In Ghana

Ghana, a middle low-income nation in sub-Saharan Africa, set out on a policy

nationwide of supplanting the then out-of-pocket expenses at point of service

with national health insurance module in 2003. According to Agyepong and Ad-

jei (2008), moves at significant change need to consider and address these issues

alongside moves to give confirmation to content decision-making. Without an

investigation and comprehension of the legislative issues of reform and how to

function inside of it, researchers and other technical players may discover their

findings to bolster change might not be implemented adequately. Likewise, with-

out an appreciation about the need for specialized or technical analysis to affirm

decision making as opposed to an unpredictable utilization of political methodolo-

gies, political players may find that even with the best of motives, the desired pol-

icy targets may not be accomplished. On the perception households in held about

the national health insurance scheme, it has been proven that perceptions related

to plan components have the most grounded relationship with retention and vol-

untary enrollment choices in the National Health Insurance Scheme (NHIS). Par-

ticularly these identify with advantages, cost and convenience of NHIS. In the

meantime, while household had positive perceptions with respect to the technical

nature of care, advantages of NHIS, had adequate community health convictions

and ease of access to NHIS management, perceptions were negative about the

cost of NHIS, insurer’s dispositions and peer pressure. Perception levels among
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the uninsured were greatly negative than the insured concerning issues such as

advantages, convenience and cost of NHIS. Perceptions linked with providers,

plans and community traits assume an essential part, yet to a differing degree

in household choices to voluntarily enlist and remain enlisted in insurance plans.

Plan components are of key significance. Policy drafters need to identify house-

hold perceptions as potential hindrances or empowering agents to enlistment and

put resources into comprehending them in their design of policies to encourage

enlistment (Jehu-Appiah et al., 2012).

With regards to financing sources, (Witter, S. and Garshong, B., 2009) carried

out a preliminary assessment of the NHIS up till that point in time. They ob-

served that, the NHIS is intensely dependent on tax financing for 70-75% of its

income. This has allowed speedy extension of scope, partially through the incor-

poration of huge exempted population subgroups. Card holders expanded from

7% of the populace in 2005 to 45% in 2008. On the other hand, just around

a third of these are contributing to the plan monetarily. This brings to the

fore a sustainability challenge, in that income is decoupled from the expanding

enrollment numbers. Furthermore, the NHIS provides a wide range of benefits

package, with no co-payments and constrained gate-keeping. The scheme also

confronts cost acceleration identified with its new payment structure and the in-

creasing access of individuals. These elements added to an increase in troubled

plans and an inability to honor outstanding office claims in 2008. The NHIS has

had an extensive effect on the health care all in all, assuming an increasing role

in financing curative care. In 2009, it is relied upon to contribute 41% of the

general resources envelope. However there is confirmation that this financing is

not extra but rather has been taken from other financing channels. There are

some legitimate worries about this, as the new financing source (a VAT-based

duty) may be more backward. Moreover, enrollment of the NHIS at present has

a skewness towards the rich, and also, a pro-urban predisposition in connection

to renewals. Just a small fraction are enlisted as impoverished, and there is evi-
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dence of confirmation of ’squeezing out’ of non plan participants from health care

usage. At last, significant hindrances remain in connection to reinforcing the pur-

chasing aspect of the NHIS, additionally settling level headed discussions about

its accountability and structure. In concluding the assessment, Witter, S. and

Garshong, B. (2009), remarked that certain trade-offs will be essential between

the current wide range of benefits package of the NHIS and the excellent desire

to achieve an all-inclusive scope. The general resource envelope for health care is

prone to be steady as opposed to expanding over the medium-term. In the more

drawn out term, the investments costs in the NHIS may be defended on the off

chance that it has the capacity to enhance the expense viability of purchasing

and the plan’s responsiveness in general.

A principal component of social health insurance, is the financial protection it

offers members of the scheme, most especially, the poor and the vulnerable. A

study to access this impact on the Ghanaian populace was carried out by Nguyen

et al. (2011) in Nkoranza and Offinso as case studies in 2007,two years after the

start of Ghana’s National Health Insurance Scheme. It was observed that during

the period of the study, insurance penetration was 35 percent. Despite the fact

that the benefit package of insurance is liberal, the insured individuals still suf-

fer out-of-pocket payment for services from other informal alternate sources and

for medications and tests at healthcare providers which are not covered by the

scheme. In any case, they paid amounts which were substantially less than that

which was paid by the uninsured. Insurance has been proven to have a protective

impact against the financial weight placed on healthcare, decreasing substantially

the probability of suffering calamitous claim payments. The impact is especially

astounding among the poorest quintile of the sample. In conclusion, Nguyen

et al (2011) concluded that results emanating from the research confirmed the

positive money protection impact of health insurance coverage in Ghana. The

impact is more grounded among the poor community than among the general
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populace. The outcomes are empowering some low wage nations who are consid-

ering a similar strategy to extend SHI. Ghana’s experience likewise demonstrates

that initiating insurance in itself is not sufficient to eradicate completely the out-

of-pocket system of payment for medical services. Further research are required

to address the quality of care and supply side’s incentives, so that the insured

can appreciate the full advantages of insurance (Nguyen et al., 2011).

Ultimately, the greatest stumbling block being kicked out of whenever a social

health insurance is put in place is, barrier to utilization of health care. Blanchet

et al. (2012) found that after implementation of the scheme,by and large people

enlisted in the insurance plan are fundamentally more inclined to receive pre-

scriptions, visit health facilities and look for orthodox medical services when ill

and therefore recommended that the government’s target to expand access to

the formal healthcare through medical insurance has on the minimal level been

partially accomplished.

With the aim to examine the relation between health insurance registration to

the Ghana National Health Insurance Scheme (NHIS) and socio-economic status

(SES) of inhabitants of the Asante Akim North district of the Ashanti Region,

Ghana, Sarpong et al (2010) utilized information on asset variables such as lodg-

ing conditions, electricity and other variables, and on NHIS registration obtained

from households in 99 villages during the span of the community survey. Princi-

pal components analysis was deployed in the survey. Households forming part of

the survey were assembled into three groups according to their SES (20% high,

40% low and 40% middle). Odds ratios of NHIS registration were estimated for

all SES categories, with the low category used as the benchmark group. It was

brought to the fore that of the 7223 households involved in the survey, 38% reg-

istered with the NHIS, out of this, 43% middle, 21% were low and 60% high

SES households. SES correlation to the NHIS registration (middle SES: OR 2.5,

95% CI 2.2-2.9; high SES: OR 4.9, 95% CI 4.3-5.7; low SES: OR 1, reference
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group) was recognized to be significant. Hence the conclusion was drawn that

after four years of the health insurance scheme’s inception, it (the scheme) has

attained registration levels of 38% within the study area. To reach this target of

granting universal health care access to health facilities for the entire citizenry,

especially for people who fall below average in socio-economic constraints, in-

creasing subscription levels is a necessity (Sarpong N. et. al, 2010). Also, a study

to examine the Scheme’s impact on access to and usage of insurance provisions

and services in the Akatsi District of the Volta region of Ghana. Both quanti-

tative and qualitative information was gathered through vis-Ã -vis meeting with

320 people and three service suppliers utilizing organized surveys. The outcome

demonstrate that level of education, age and occupation are real determinants

of participation in the plan. The plan has a significant outcome on health seek-

ing conduct and usage of health insurance provisions by eradicating the crucial

financial obstructions to seeking healthcare. Absence of medical insurance serves

as a noteworthy hindrance to access to advanced medical services. Expanding

scope and enrollment combined with change in geographical access will enhance

better and general healthcare results for the general population of Ghana (Goba

and Liang, 2011).

2.2 Challenges of the Scheme

In the view of Millennium Development Goal aims for poverty reduction and

health gains, there is a developing driving force towards giving all inclusive scope

of medical care (World Health Organization Group, 2006), implying that the

greater part of the populace has access to proper medical services when required,

and at a reasonable expense. One critical move to improve affordability is to

lessen the out-of-pocket payment which clients make for medical services. These

are broadly perceived as a hindrance to access, particularly in developing nations,

and as pushing families further into impoverishment (Xu et al., 2003).
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SHI is viewed as one of the financing methodologies of healthcare with a concrete

potential to spread the risk crosswise over the entire populace and time (Wit-

ter and Garshong, 2009). For this reason,it was prudent to establish the NHIS

in Ghana was instituted by the National Health Insurance Act,2003 (Act 650)

and National Health Insurance Regulations, 2004 (L.I. 1809) with the perspec-

tive of enhancing monetary access of Ghanaians, particularly the vulnerable and

poor people, to quality essential medical insurance services and to restrict out-of-

pocket payments at the point of conveying the service (Goba and Liang, 2011).

Many low-and middle-wage nations depend vigorously on patients’ out-of-pocket

healthcare service payments to fund their medical services structure (Xu et al.,

2007). According to the World Health Organisation (WHO), empirical evidence

shows that out-of-pocket medical payment is the least adequate and most inequit-

table method for funding health insurance and keeps individuals from looking for

medical care and may compound destitution (World Health Organization, 2000);

(Xu et al., 2003). Health insurance plans are progressively perceived as a de-

vice to back medical services procurement in developing nations and can possibly

expand use and better secure individuals against calamitous medical costs and

tackle issues of equity (World Health Organization, 2000). The main features

of the NHIS was developed as a required medical insurance structure, having a

risk pool which draws from across regional schemes, financed from participants’

contribution and a levy on the Value-Added Tax (VAT) charged on services and

products, from which a wide package of benefits could be subsidized. In Ghana,

the NHIA is overwhelmingly funded by taxation, which accounts for 70-75% of

aggregate income, with an additional 20-25% originating from the formal sector

contributions and just about 5% from the informal sector premia (as indicated

by NHIA reports). This makes it less desired as the conventional subsidizing

instruments (government spending plans, donor financing and client charges), at

least as far as income accruing is concerned. This scenario may be exacerbated

if, as guaranteed amid its election manifesto, the present government switches
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to a ’one-time premium’ providing lifelong enrollment (apparently just for the

informal sector). This will further disintegrate the thought that the NHIS is a

contribution tied insurance framework.

In Figure 2.1 is displayed a brief pictorial summary of clients of the national

insurer, (Witter and Garshong, 2009)

However, regardless of the profound benefits of the scheme, the National insurer

is riddled with a lot of challenges of the most paramount is claims payments.

This sterning revelation carried out in a news publication in the electronic media

by Daily Guide on March 6, 2015 with the caption ”NHIA IS BROKE”. In

this publication among the many others cited the NHIA boss, Mr. Slyvester

Mensah admitting to this fact. An implication of this nonpayment of claims by

the insurer is,health centers nationwide are said to be in a condition of bankruptcy

as an aftereffect of obligations owed them by the Authority. This led the Ghana

Medical Association (GMA) hinting the much feared cash-and-carry directive was

reintroduced and NHIS card bearing patients were being dismissed (DailyGuide,

2015)

2.2.1 Actuarial Concern

Actuarial assessment is, by its inclination, a science by which uncertainty is de-

pendably an element. Without uncertainty there is need for an actuary. Actuarial

investigation is, in any case, taking into account thoroughly, exploratory routines

and procedures. An essential objective, as with all science, is to give the best

conceivable comprehension of reality, notwithstanding those uncertainties. Actu-

arial science is a branch of applied science. Consequently, the profession ought to

be bothered with communicating to both within the profession and to an outside

gathering of people with shifted and somewhat clashing ideologies. It is frequently

important to gauge likelihood distribution to depict the loss procedures catered

by the insurance contracts (Patrik, 1981). From this, the actuarial concern in the

solving the challenges faced by the NHIA will be in estimating a distribution for
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Figure 2.1: Summary Statistics of Health Insurance subscribers in Ghana
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the claims submitted to it by the health care providers. Traditionally, it will be

expected that this estimation should be based on total claims submitted, however,

this study will seek to develop a distribution compromised of number of claims

submitted, type of claim submitted and the money amount of claim submitted.

to do this, number of claims will be modeled with a negative binomial distribu-

tion, conditional probability theory used to estimate type of claims submitted

and finally the severity (loss)is estimated with generalized pareto distribution.

2.3 Actuarial techniques and applications

Hierarchical models

There has been considerable interest in statistical demonstration of claims recur-

rence, Boucher and Denuit (2006) is an illustration. However, the literature on

modeling claims amounts, particularly in conjunction with claims recurrence, is

less extensive. One conceivable clarification, noted by Coutts, S.M (1984), is that

the majority of the variability in general experienced may be ascribed to claim

recurrence (at least when inflation was minimal) (Boucher and Denuit, 2006).

Coutts, S.M, (1984) also remarks that the first paper to analyze claim frequency

and severity seems to be Kahane, Y. and Levy, H. (1975), these facts are traced

from Boucher and Denuit (2006). Probability models based on the hierarchical

approach are mostly applied to treelike structured data and with Bayesian theory.

A paramount feature of such hierarchical models is the incorporation of proba-

bility law at certain stages in the classification which is actually conditional on

the results at previous stages (Dutang et al., 2008b).

Frees et al. (2009) incorporated hierarchical modeling to micro-level records of an

insurance company’s database from 1993-2001. The claims submitted comprised

of detailed information concerning the claim type, such details included whether

nature of claim was as a result of harm or damage to a third party property
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or whether the claims were due to damage of the insured, corresponding claim

amount relating to these information were recorded accordingly. A hierarchical

model consisting of three components,namely frequency, claim type and claims

severity was adopted. The frequency component was estimated with the aid of

a negative binomial regression. Other variables of interest in the study were

driver’s gender (driver due to the fact that the database was non-life insurance-

Vehicular to be precise), age, and no discount- no claim;being enjoyed by the in-

sured as well as vehicle age and type. These variables were deemed to be relevant

for predicting the event of having claim. The Claim type was developed with a

multinomial logit model, this method was significant regardless of the claim being

a injury to third party, property damage to third party or an insureds own dam-

age or a combination of the aforementioned. A revelation from the method was

that year, vehicle age and type, were significant predictors for this establishing a

claim type. In estimating the severity component, generalized beta of the second

kind was utilized for the various claim amounts. The above mentioned were put

together to build the hierarchical model which proves adequate for assessing the

importance of a including all available information in the data analysis. Thus

the combined model enables the actuary in predicting automobile claims more

appropriately and efficiently than more established traditional methods. As an

application, Frees et al. (2009) demonstrated the importance of the hierarchi-

cal model by developing predictive distributions and estimating premiums under

available reinsurance coverages.

The hierarchical model can also be used together with other mathematical tools

to perform varied estimations. Scheel et al. (2013) assessed the impact of cli-

mate change on the industry using a Bayesian hierarchical statistical method to

expatiate and forecast insurance losses because of climatic events on a local ge-

ographic scale. The quantity of climate-related insurance cases is demonstrated

by combining linear models with spatially smoothed variable selection. Utilizing
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Gibbs sampling and reversible jump Markov chain Monte Carlo procedures, the

model is fitted on day by day climate and insurance information from each of the

319 districts which constitute central and southern Norway for the period 1997-

2006. Exact out-of-sample forecasts accept the model. Scheel et al. (2013) results

bring to fore intriguing provincial trends in the impact of distinctive climatic co-

variates. Notwithstanding being valuable for insurance pricing, the model can

be utilized for transient forecasts in light of climate gauges and for long haul

forecasts in view of downscaled climate models.

Also Yu (2015) proposed a statistical model for health insurance total claim

amounts classified by age group, region of residence and time horizon of the

insured population under Bayesian framework. The model can be used to predict

future total claim amounts and thus to facilitate premium determination. The

prediction is based on the past observed information and prior beliefs about

the insured population, number of claims and amount of claims. The insured

population growth is modeled by a generalized exponential growth model, which

takes into account the random effects in age, region and time classifications.

The number of claims for each classified group is assumed Poisson distributed

and independent of the size of the individual claims. A simulation study was

conducted to test the effectiveness of modeling and estimation, and Markov chain

Monte Carlo (MCMC) used for parameter estimation. Based on the predicted

values, the premiums are estimated using four premium principles and two risk

measures.

Armed with the R statistical software, Dutang et al. (2008a), defined a hierarchi-

cal model as one which satisfies meet the listed criteria below:

• Unsophisticated and easily understood from the mathematical theory of the

model to the R derivation and vice versa

• Unlimited to any number of stages and nodes;
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A hierarchical model is fully defined by the quantity of nodes at each stage

(I, J1, . . . , JI and n11, . . . , nIJ , above) and by the likelihood laws at each stage.

An example of a hierarchical model is given by:

Xt | ∧Θ ∼ Poisson(∧)

∧ | Θ ∼ Gamma(3,Θ)

Θ ∼ Gamma(2, 2)

According to Guszcza (2010), hierarchical modeling offers a ”third way” modeling

grouped data. In this model parameters reflecting group enrollment enter one’s

model through properly determined likelihood sub-models. An essential special

instance of hierarchical models includes different perceptions through time of

each unit. An earlier overview of how statistical modeling of claims and severity

can be helpful for pricing automobile coverage was discussed by Brockman and

Wright (1992). An integral part of hierarchical modeling is statistical software, as

frees et al, current computing hardware, researchers can promptly get access to

information at the individual policyholder level that is term ”micro-level”. This

essentially because actuaries use statistical models to abridge smaller micro-level

information that subsequently should be translated appropriately for monetary

decision-making. (Frees et al., 2009) The actuar project Dutang et al. (2008a)

is a package of Actuarial Science function for the R statistical. Albeit different

packages on CRAN which offer functions that may be useful to statisticians,

actuar expects to serve as a focal area for all the more particularly actuarial use

and information sets. The task was formally outdoored in 2005 and is under

dynamic advancement. The variant of actuar accessible on CRAN is 0.9-3. The

list of capabilities of the package could be categorized into three primary classes:

loss appropriations modeling, risk hypothesis and credibility hypothesis. This

and many more statistical programs out there help the actuary to confidently

analyze and develop appropriate estimates for given loss datasets.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, the various components of the hierarchical statistical model is

outlined and discussed. Attention will be on the model methods considered in

this study and their properties. It explains in details the steps that were utilized

in the modeling process which includes the data processing and data analysis that

were used.

3.2 Negative Binomial Regression

The frequency component of the statistical method employed is estimated with

Negative Binomial Regression. The negative Binomial model is written by Zwill-

ing (2013) as:

lnµ = βo + β1x1 + β2x2 + ...+ βpxp (3.1)

with the indicator variables x1, x2...xp provided, and the population of regression

coefficients β0, β1, β2...βp are estimated. Negative binomial regression is a kind of

generalized linear model in which the dependent variable is the count of times an

occasion happens. A helpful parametrization of the negative binomial distribution

is formulated as Hilbe (2011):

p(y) = P (Y = y) =
Γ(y + 1/α)

Γ(y + 1)Γ(1/α)

(
1

1 + αµ

)1/α(
αµ

1 + αµ

)y
(3.2)

where µ > 0 represents the mean of Y and α > 0 is the heterogeneity parameter.

Hilbe (2011) in the above equation derives this parameterization as a Poisson-
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gamma mixture, then again on the other hand as the quantity of failures before

the (1/α)th success, however one does not require 1/α to be an integer. Given a

random sample made up of n elements, for element i the dependent variable yi

and the predictor variablesx1i, x2i...xpi. Employing matrix and vector notation,

denote β = (β0, β1, β2...βp)
T , and assemble the explanatory variable data into

the matrix X as follows:

X =

(
1 x11 x12 ... x1p
1 x21 x22 ... x2p
; : : ... :
. . . ... .
1 xn1 xn2 ... xnp

)
(3.3)

Assigning the ith row of X to be xi and exponentiating (3.1) then write the

distribution (3.2)

p(yi) =
Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(
1

1 + αexiβ

)1/α(
αexiβ

1 + αexiβ

)yi
(3.4)

Then estimate α and β using maximum likelihood estimation. The likelihood

function is given by

l(α, β) =
n∏
i=1

p(yi) =
n∏
i=1

Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(
1

1 + αexiβ

)1/α(
αexiβ

1 + αexiβ

)yi
(3.5)

and the log-likelihood function is

lnL(α, β) =
n∑
i=1

(yilnα + yi(xiβ)− (yi +
1

α
)ln(1 + αexiβ) + lnΓ

(
yi +

1

α

)
− lnΓ (yi + 1)− lnΓ

(
1

α

)
)

(3.6)

The values of α and β that maximize lnL(α, β) will be the maximum likelihood

estimates sought after, and the estimate variance-covariance matrix of the esti-

mators is
∑

= −H−1 where H is the Hessian matrix of second derivatives of

the log-likelihood function. At that point, the variance-covariance matrix can be

utilized to locate the standard Wald confidence interval and p − values of the

coefficient estimates.
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3.3 Negative Binomial Distribution

For a given sequence of Bernoulli trials which are independent of each other,

with every trial having outcomes of a ”success” or ”failure”. The chances or

likelihood of success is represented by p and failure (1−p). The sequence is allowed

to continue till a number r denoting failures occur. r is predetermined before

the start of the experiment. Thus, the random number of successes observed

denoted by X, is said to have negative binomial distribution. An example is the

probability of having to fail a professional exam three times before passing it on

the fourth try. Rationale for the choice of negative binomial distribution is the

correction for over-dispersion in the other count distribution (Poisson) which was

initially employed in the analysis used in this research. The negative binomial

distribution under probability theory and in statistics theory, is classified as a

discrete likelihood distribution based on the quantity of success in a sequence of

independent and identically distributed (iid) Bernoulli trials before a predefined

(non-random) count of failures (denoted r) occurs. X ∼ NB(r; p) The negative

binomial distribution is mathematically represented by mass function as:

Pr(X = k) =

(
k + r − 1

k

)
pk(1− p)r for k = 0, 1, 2, . . . (3.7)

The parameters in the brackets depicts a binomial coefficient, and is represented

by:

(
k + r − 1

k

)
=

(k + r − 1)!

k! (r − 1)!
=

(k + r − 1)(k + r − 2) · · · (r)
k!

. (3.8)

This can then again be represented in the form below when the term ”negative

binomial” is taken into account,

(k + r − 1) · · · (r)
k!

= (−1)k
(−r)(−r − 1)(−r − 2) · · · (−r − k + 1)

k!
= (−1)k

(
−r
k

)
.

(3.9)
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To better appreciate the equation above, consider the chances that for every given

sequence of r failures and k successes denoted by (1 − p)rpk, since all results of

the k+ r trials are independent,that is, their occurrence is not contingent on any

other. This reasoning is attributable to the fact that the rth failure is the last to

come, and as it stands the k trials containing the successes is from the remaining

k + r − 1 trials. Due to the combinatorial interpretation for the above binomial

coefficient, offers exactly the count of all these sequences of length k + r − 1.

Recurrence relation

{(k + 1) Pr(k + 1)− pPr(k)(k + r) = 0,Pr(0) = (1− p)r} (3.10)

The Negative Binomial Expectation

The negative binomial distribution with parameters (r, p) has its average number

of trials k + r as:

pr

1− p
(3.11)

Extension to real-valued r

In this subsection of the discussion, consider r as a real, positive number. Using

a multiplicative formula, the binomial coefficient is then defined and rewritten

with the gamma function as:

(
k + r − 1

k

)
=

(k + r − 1)(k + r − 2) · · · (r)
k!

=
Γ(k + r)

k! Γ(r)
. (3.12)

By the binomial series and (3.8) above, for every 0 ≤ p < 1

(1− p)−r =
∞∑
k=0

(
−r
k

)
(−p)k =

∞∑
k=0

(
k + r − 1

k

)
pk, (3.13)

and thus, the various components of the probability mass function actually amounts

to one.
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Other formulations

• X can be defined as the aggregate count of trials required to obtain r

failures, and not just the count of successes. This is so because the aggregate

count of trials is equivalent to the count of successes with the count of

failures added, this definition varies from the initial definition used in this

discuss, by including a constant r. To convert formulations having this new

definition into the definition utilized in this study, one can replace every

”k” with ”k− r” wherever it occurs in the material, and further reduce the

median, mean, and mode by r. Likewise to reformulate the formulas in this

research to this new definition, one should supplant ”k” with ”k+ r” and r

added to the median, mean and mode. Doing these changes will essentially

imply using a probability mass function of the kind below:

f(k; r, p) ≡ Pr(X = k) =

(
k − 1

k − r

)
(1− p)rpk−r for k = r, r + 1, r + 2, . . . ,

(3.14)

this distribution probably mimics the binomial distribution more closely

than the definition used above. A point worth noting is, the parameters

forming the binomial coefficient are decremented with respect to order,that

is: the last ”failure” occurs last, and thus the other events are one position

short when potential orderings are being counted. Again this description of

negative binomial distribution, however doesn’t readily approach a positive

real parameter r.

• With regards to p denoting the chances of failure and not of a success, is

another alternate definition. To convert formulations between this defini-

tion and that already established, as in the initial definition this study, one

ought to replace ”p” with ”1− p” everywhere it appears in the text.

• Another definition is where the support X refers to the count of fail-

ures,instead of the count of successes. In the definition in which X numbers
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failures and p being the chances of success- has just the same formulations

as in the situation where X denotes successes and p represents the proba-

bility of failure. That notwithstanding, the contributory text still contain

the wording ”failure” and ”success” interchanged when compared with the

previous case.

• The two definitions discussed previously can be employed simultaneously,

that is, p depicts the probability of failure and X depicts or numbers total

trials.

• With regards to negative binomial regression, the mean, m of the distribu-

tion is specified, it is then related to explanatory variables just like that of

linear regression or any other generalized linear models Hilbe (2011). Thus,

the likelihood mass function then is formulated as

Pr(X = k) =

(
r

r +m

)r
Γ(r + k)

k! Γ(r)

(
m

r +m

)k
for k = 0, 1, 2, . . . . (3.15)

m + m2

r
represents the variance, the parameter r denotes the ”shape pa-

rameter”, ”dispersion parameter” or ”clustering coefficient” Lloyd-Smith

(2007) or ”heterogeneity” Hilbe (2011) or ”aggregation” parameter Crawley

(2012). The ”aggregation” term is mostly employed in ecology when tallies

of individual species are being described. When the aggregation parameter

r decreases towards zero results in an increase in organisms aggregation;

when r approaches infinity there is a corresponding absence of aggregation,

this could be demonstrated by Poisson regression. The reciprocal of r, in

some applications of the negative binomial regression is referred to as the

”dispersion parameter”

• Sometimes the distribution is parameterized in terms of its mean µ and

variance σ2. In that case,
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p =
σ2 − µ
σ2

r =
µ2

σ2 − µ
andPr(X = k) =

(
k + µ2

σ2−µ − 1

k

)( µ
σ2

)( µ2

σ2−µ

)(
σ2 − µ
σ2

)k
.

(3.16)

3.3.1 Occurrence

Waiting time in a Bernoulli process

Given a situation in which r is an integer, then the negative binomial distribu-

tion can be referred to as the Pascal distribution. The Pascal Distribution is a

likelihood distribution which consists of a series with a certain count of failures

and successes which are iid Bernoulli trials. The Bernoulli distribution has k + r

trials, probability of success denoted by p, the negative binomial has the likeli-

hood of failures as r and k successes, with the last trial ending in a failure. Stated

differently, the negative binomial distribution describes the likelihood distribu-

tion with the count of successes occurring before the rth failure in a Bernoulli

sequence of events, with a likelihood p of successes on each trial. A Bernoulli

process by nature being a discrete time process, and thus having integers for the

count of trials, failures, and successes are integers.

As an Alternative for overdispersed Poisson

The negative binomial distribution, given its optional reformulation discussed

early on, can be a substitute to the Poisson distribution. This use of the Nega-

tive Binomial distribution is most useful in discrete data analysis whose sample

variance exceeds the sample mean over an unbounded positive range. In such

scenarios, the observed outcomes are said to be overdispersed in regards to the

Poisson distribution whose mean is commensurate to its variance. Therefore such

a Poisson distribution is considered as an inappropriate model. However,the neg-

ative binomial distribution possess an extra parameter more than the Poisson,

this parameter can act as a means of adjusting the variance independent of the

mean.

31



Relation to other probability distributions

• A geometric distribution with sequence ( 0, 1, 2, 3, . . . ) is deemed an excep-

tional instance of the negative binomial distribution, Geom(p) = NB(1, 1−

p).

• Also as a special case, is the discrete phase-type distribution.

• Discrete Compound Poisson distribution also has the negative binomial

distribution as an exceptional case.

Relation to Poisson distribution

Given a negative binomial distributions sequence in which the terminating param-

eter r approaches infinity, where p denotes the success probability within atrial,

approaches zero in a manner so that the distribution’s mean remains constant.

Representing the mean with λ, then p is given by p = λ/(λ+ r)

λ = r p
1−p ⇒ p = λ

r+λ
. Under this formulation the probability function is

represented by

f(k; r, p) = Γ(k+r)
k!·Γ(r)

pk(1− p)r = λk

k!
· Γ(r+k)

Γ(r) (r+λ)k
· 1

(1+λ
r )
r

In the case where the limit r −→∞, the second parameter converges to one, and

the third converges to the exponent function:

limr→∞ f(k; r, p) = λk

k!
· 1 · 1

eλ
, which is the mass function of a Poisson-distributed

random variable with expected value λ. Stated differently, the optional parame-

terized negative binomial distribution approaches the Poisson distribution and r

controls the deviation from the Poisson. This makes the negative binomial distri-

bution suitable as a strong option for the Poisson, which converges to the Poisson

for large r, however which has bigger fluctuation than the Poisson for less large

r. Poisson(λ) = limr→∞NB
(
r, λ

λ+r

)
.
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Relation to Gamma-Poisson mixture

The negative binomial distribution also is a compound probability distribution

formulated as a product of a continuous mixture of Poisson distributions where

the combination of the Poisson distribution rate is a gamma distribution. That

is, the negative binomial can be viewed as a Poisson(λ) distribution, in which

λ is considered a random variable,with a gamma distribution with parameters

defined by; scale σ = p/(1 − p) or correspondingly a rate β = (1 − p)/p and

shape, r. Formally stated, this interprets as the negative binomial distribution’s

probability mass function is written as

f(k; r, p) =

∫ ∞
0

fPoisson(λ)(k) · fGamma(r, 1−pp )(λ) dλ (3.17)

=

∫ ∞
0

λk

k!
e−λ · λr−1 e−λ(1−p)/p(

p
1−p

)r
Γ(r)

dλ (3.18)

=
(1− p)rp−r

k! Γ(r)

∫ ∞
0

λr+k−1e−λ/p dλ (3.19)

=
(1− p)rp−r

k! Γ(r)
pr+k Γ(r + k) (3.20)

=
Γ(r + k)

k! Γ(r)
pk(1− p)r. (3.21)

Hence the negative binomial distribution can be termed as a Gamma-Poisson

(mixture) distribution.

Relation to a Geometric distribution sum

Given Yr, a random variable which follows the negative binomial distribution,

having parameters p and r, and domain 0, 1, 2,. . . , then Yr is said to be a

summation of r non-dependent variables which follows the geometric distribution

(on 0, 1, 2,. . . ) with parameter 1 − p. Due to the central limit theorem, Yr

(shifted and scaled) for large r, is approximately normal. Hence for a random

variable Bs+r, which is binomial distributed with parameters 1−p and s+r, then
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Pr(Yr ≤ s) = 1− Ip(s+ 1, r) (3.22)

= 1− Ip((s+ r)− (r − 1), (r − 1) + 1) (3.23)

= 1− Pr(Bs+r ≤ r − 1) (3.24)

= Pr(Bs+r ≥ r) (3.25)

= Pr(after s+ r trials, there are in the least eventr successes).

(3.26)

With this case, the negative binomial distribution acts as an ”inverse” of the

binomial distribution. When independent and identical negative-binomially dis-

tributed random va,,riables r1 and r2 having their parameter p to be of equal value

is summed, the result also has a negative-binomial distribution with the same p

however, the ”r-value” of the result is a sum of the r-values of the initial random

variables, ie., r1 + r2. With regards to divisibility, the negative binomial distribu-

tion is infinitely divisible, that is, given Y has a negative binomially distributed,

for a positive integer n, there exist Y1, . . . , Yn which are independent and identi-

cally distributed random variables with their sum having the same distribution

as that of Y .

3.3.2 Formulating as a compound Poisson distribution

A negative binomial distribution NB(r, p), could be presented inn the form of

a compound Poisson distribution:Yn, n ∈ N0 represents an iid random variables,

where each variable depicts a logarithmic distribution Log(p), having the accom-

panying probability mass function:

f(k; r, p) = −pk
k ln(1−p) , k ∈ N. Let N be a random variable, which is not depen-

dent on the sequence, and assume that N is distributed by a Poisson distribution

having mean λ = −rln(1 − p). Hence NB(r, p) represents the distribution of

the random sum given by: X =
∑N

n=1 Yn. To ascertain this, the probability
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generating function GX of X is derived, which makes up the constituents of the

probability generating functions GN and GY 1. Using

GN(z) = exp(λ(z − 1)), z ∈ R, and

GY1(z) =
ln(1− pz)

ln(1− p)
, |z| < 1

p
, (3.27)

Resulting in

GX(z) = GN(GY1(z)) (3.28)

= exp

(
λ

(
ln(1− pz)

ln(1− p)
− 1

))
(3.29)

= exp
(
−r(ln(1− pz)− ln(1− p))

)
(3.30)

=

(
1− p
1− pz

)r
, |z| < 1

p
, (3.31)

this, which serves as the probability generating function of the NB (r, p) distri-

bution.

3.3.3 Features

Cumulative distribution function

The cumulative function of the Neg. Binom. is expressed in the regularized form

as the incomplete beta function.

f(k; r, p) ≡ Pr(X ≤ k) = 1− Ip(k + 1, r) = I1−p(r, k + 1). (3.32)

Sampling and point estimation of p

Assume p is not unknown and a trial is carried out in which it is chosen at the

onset that testing will proceed until r successes are obtained. An adequate statis-

tic for the trial is k, the count of failures. In evaluating p, the minimum variance

which is not a biased estimator is
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p̂ =
r − 1

r + k − 1
. (3.33)

The maximum likelihood estimate of p is

p̃ =
r

r + k
, (3.34)

however, this estimate is a one-sided or stated differently, biased one. The inverse

(r + k)/r, is the unbiased estimate of 1/p, however Haldane (1945).

Linkage between Binomial theorem & the Negative Binomial

Consider a random variable Y , which is binomially distributed with parameters

p and n. Assuming p+q = 1, having q, p ≥ 0. Implies that the binomial theorem is

1 = 1n = (p+ q)n =
n∑
k=0

(
n

k

)
pkqn−k. (3.35)

Employing the Newton’s binomial theorem, the above equation is equally written

as:

(p+ q)n =
∞∑
k=0

(
n

k

)
pkqn−k, (3.36)

with the upper bound of the summation being infinite. Thus, the binomial coef-

ficient (
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
. (3.37)

instead of just a positive integer, the binomial coefficient is defined when n is a

real number. However in this case of the binomial distribution, has a value of

zero if k > n. Assume r > 0 and utilize a negative exponent:

1 = pr · p−r = pr(1− q)−r = pr
∞∑
k=0

(
−r
k

)
(−q)k. (3.38)

The terms are positive at that point, and the term

pr
(−r
k

)
(−q)k is only the likelihood that the count of failures before the rth success
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is equivalent to k, if r is an integer. (Should it be the case that r is a negative

non-integer, so that the exponent is a positive non-integer, then some of the terms

in the summation above are negative, hence not having a likelihood distribution

on the set for all non-negative integers.) Additionally, it is permissible for non-

integer estimations of r. At that point one has a legitimate negative binomial

distribution, which generally is a Pascal distribution, which harmonizes with the

Pascal distribution when r happens to be a positive integer.

3.3.4 Estimation of Parameters

The maximum likelihood estimation approach

Given iid observations (k1, . . . , kN), the likelihood function is given by

L(r, p) =
N∏
i=1

f(ki; r, p) (3.39)

the log-likelihood function is then calculated as

`(r, p) =
N∑
i=1

ln (Γ(ki + r))−
N∑
i=1

ln(ki!)−N ln (Γ(r)) +
N∑
i=1

ki ln (p) +Nr ln(1−p).

(3.40)

To obtain the maximum, partial derivatives in terms of p and r are taken and

equated to zero:

∂`(r, p)

∂p
=

N∑
i=1

ki
1

p
−Nr 1

1− p
= 0 (3.41)

∂`(r, p)

∂r
=

N∑
i=1

ψ(ki + r)−Nψ(r) +N ln (1− p) = 0 (3.42)

where

ψ(k) = Γ′(k)
Γ(k)

is known as the di-gamma function. Solving for p in the first equation

gives:

p =

∑N
i=1 ki

Nr +
∑N

i=1 ki
(3.43)
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Placing this result in the second equation gives:

∂`(r, p)

∂r
=

N∑
i=1

ψ(ki + r)−Nψ(r) +N ln

(
r

r +
∑N

i=1 ki/N

)
= 0 (3.44)

In a closed form, r in this equation cannot be solved for. An iterative method,

such as Newton’s can be used if a numerical solution is required.

3.4 Multinomial logistic regression

In statistics, multinomial logistic regression is a classification method that gener-

alizes logistic regression to multiclass problems, i.e. with more than two possible

discrete outcomes (Greene, 1993). That is, it is a model that is used to predict the

probabilities of the different possible outcomes of a categorically distributed de-

pendent variable, given a set of independent variables (which may be real-valued,

binary-valued, categorical-valued, etc.). Multinomial logistic regression is used

when the dependent variable in question is nominal (equivalently categorical,

meaning that it falls into any one of a set of categories which cannot be ordered

in any meaningful way) and for which there are more than two categories. The

multinomial logit regression acts as a unique classification problem solution which

presumes a linear combination for the observed parameters in which some other

case-specific features could be utilized in determining the dependent variables

probability in each unique outcome.

3.4.1 Multinomial Logit. Assumptions

An assumption of the multinomial logit model is, data are specified according to

cases; that is, for each case possess a unique value for each independent variable.

Again multinomial logit model also makes the assumption that, for any case, the

given independent variables cannot perfectly predicted the dependent variable.

Like the other types of regression models, there is not a need for statistically in-

dependence among the independent variable. That notwithstanding, collinearity
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is presumed to be comparatively low, since due to high correlation, there is a

difficulty in differentiating between the influence of several variables.

When the multinomial logit is utilized in modeling choices, it depends on the

Independence Irrelevant Alternatives (IIA) assumption, although this is not what

may be deemed desirable always. The IIA assumption specifies that, the odds of

desiring a state or class over another does not rely on the absence or presence of

other ”non-relevant” options.

When the multinomial logit is employed to formulate choices in some situations,

tend to impose a lot of constraint on the relative preferences between the various

options. This fact especially is important to consider if the analysis aims to fore-

cast how choices would differ if one option was to disappear. Other models such

as the nested logit or the multinomial probit may be resorted to in such scenarios

since these do not violate the IIA, (Baltas and Doyle, 2001).

3.4.2 The Multinomial Logit Model

Various descriptions for the mathematical model underlying multinomial logistic

regression are in existence, although they are all equivalent. Hence, there exist

some difficulty in comparing the various treatments of the subject under vari-

ous texts. The underlying principle behind all of these, just like any statistical

grouping technique is to, linearly develop a predictor function that builds a score

from a given collection of weights that are combined linearly with the explanatory

features of a given observation using a dot product:

score(Xi, k) = βk ·Xi, (3.45)

Xi indicates the illustrative variables vector which depicts perception i, k rep-

resents a vector of regression coefficients ascribed to the outcome k and (Xi, k)

speaks to the score connected with coordinating perception i to classification k.
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As per discrete decision hypothesis, where perceptions signify individuals and re-

sults with regards to decisions, the score is regarded to be the utility joined with

individual i deciding on the k elective. The most elevated score demonstrates the

anticipated result. That which changes between the multinomial logit and alter-

nate systems, with the same central theme, is the procedure in deciding the best

coefficients and the way in which scores are deciphered. Under the multinomial

logit model, it is conceivable to straightforwardly change a score to a likelihood

estimate, subsequently expressing the likelihood of perception i deciding on re-

sult k. This goes about as a key point for including multinomial logit model into

different strategies that may incorporate different techniques in an examinations

methodology. Not having such a method, have a tendency to expand blunder in

results.

Basically, the setup of the multinomial logit has the same setup as any other

logistic regression model. The categorical other than binary nature of dependent

variables is the only difference in the setups.

The beginning presumption is that there is a progression of N observed infor-

mation focuses with every information point i (1, · · · , N) comprised of M illus-

trative variables x1,i . . . xM,i and an accompanying categorical outcome Yi, which

explains one of the K conceivable values. The K conceivable values denotes

unique groupings. Multinomial logit is intended for building a model that clari-

fies the relationship existing between the illustrative variables and the result. It

seeks to do this such that the turnouts of other trials with the same underlying

principles can be predicted accurately predicted when new data point are made

available.

Like alternate regressions of the linear type, multinomial logistic regression uti-

lizes a straight line function in predicting the likelihood that perception i has
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result k. It does this using the formulation below:

f(k, i) = β0,k + β1,kx1,i + β2,kx2,i + · · ·+ βM,kxM,i, (3.46)

where βm,k represents the regression coefficient linking the mth explanatory vari-

able with the kth outcome. The regression coefficients and explanatory variables

normally,can be written as a vector of size M + 1, so that the function above can

be written as:

f(k, i) = βk · xi, (3.47)

where βk is the collection of regression coefficients associated with the k − th

outcome, and xi (which is a row vector) is the collection of explanatory variables

linked with the i− th observation.

To build a multinomial logit model, one way of doing this,is assume that, for

K conceivable turnouts, running K − 1 autonomous binary logistic regression

models, one of these possible turnouts is selected to act as a fulcrum on which

the other K − 1 outcomes are separately regressed. Below is how this how this

process is done.

ln
Pr(Yi = 1)

Pr(Yi = K)
= β1 ·Xi (3.48)

ln
Pr(Yi = 2)

Pr(Yi = K)
= β2 ·Xi (3.49)

· · · · · · (3.50)

ln
Pr(Yi = K − 1)

Pr(Yi = K)
= βK−1 ·Xi (3.51)

(3.52)

Different sets of coefficients were introduced. One representing each possible

outcome. Exponentiating both sides, and solving for the probabilities, the result
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is:

Pr(Yi = 1) = Pr(Yi = K)eβ1·Xi (3.53)

Pr(Yi = 2) = Pr(Yi = K)eβ2·Xi (3.54)

· · · · · · (3.55)

Pr(Yi = K − 1) = Pr(Yi = K)eβK−1·Xi (3.56)

(3.57)

Considering the way that the total of the probabilities must accumulate to one,

the probability of a K outcome is then given by:

Pr(Yi = K) =
1

1 +
∑K−1

k=1 e
βk·Xi

(3.58)

And the other probabilities:

Pr(Yi = 1) =
eβ1·Xi

1 +
∑K−1

k=1 e
βk·Xi

(3.59)

Pr(Yi = 2) =
eβ2·Xi

1 +
∑K−1

k=1 e
βk·Xi

(3.60)

· · · · · · (3.61)

Pr(Yi = K − 1) =
eβK−1·Xi

1 +
∑K−1

k=1 e
βk·Xi

(3.62)

(3.63)

Considering the fact that regressions are multiplied uncovers why the model is

built on the presumption of IIA.

The βk parameters (though known) in every vector are mutually evaluated by

maximum a posteriori (MAP) estimation, an augmentation of maximum like-

lihood. This is done by regularization of the weights to avoid obsessive ar-

rangements. An iterative strategy, for example, the generalized iterative scaling
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(Darroch and Ratcliff, 1972) or the iteratively reweighted least squares (IRLS)

(Bishop, 2006),or by means of gradient-based optimization algorithms such as L-

BFGS (Malouf, 2002), or by specialized coordinate descent algorithms (Yu et al.,

2011) are employed.

The multi-way regression can directly be inferred from the binary logistic re-

gression formulated as a log-linear model. The logarithm of the likelihood of

observing a given turnout utilizing the linear predictor in conjuction with addi-

tional normalization factor:

ln Pr(Yi = 1) = β1 ·Xi − lnZ (3.64)

ln Pr(Yi = 2) = β2 ·Xi − lnZ (3.65)

· · · · · · (3.66)

ln Pr(Yi = K) = βK ·Xi − lnZ (3.67)

(3.68)

Like it is in the binary case, an additional term − lnZ is introduced to make

sure that the entire probabilities set structures a likelihood distribution, that is,

ensure the set sums up to 1:

K∑
k=1

Pr(Yi = k) = 1 (3.69)

The extra term is added to guarantee standardization, other than multiply as

usual, mainly because the logarithm of the likelihood was taken. Exponentiating

both sides converts the additive term to a multiplicative variable, and as such
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simultaneously additional term was written in the form − lnZ other than +Z:

Pr(Yi = 1) =
1

Z
eβ1·Xi (3.70)

Pr(Yi = 2) =
1

Z
eβ2·Xi (3.71)

· · · · · · (3.72)

Pr(Yi = K) =
1

Z
eβK ·Xi (3.73)

The value of Z can be computed by applying the above limitation which requires

that all likelihoods ought to total to 1:

1 =
K∑
k=1

Pr(Yi = k) =
K∑
k=1

1

Z
eβk·Xi (3.74)

=
1

Z

K∑
k=1

eβk·Xi (3.75)

Therefore:

Z =
K∑
k=1

eβk·Xi (3.76)

The factor is considered as ”constant” since it is not a component of Yi, the vari-

able over which the likelihood dissemination is characterized. In relation to the

explanatory variables it is absolutely not constant, most especially, with regards

to the unknown coefficients βk, will be determined through some optimization

procedure. The resulting probabilities equations are given as:
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Pr(Yi = 1) =
eβ1·Xi∑K
k=1 e

βk·Xi

(3.77)

Pr(Yi = 2) =
eβ2·Xi∑K
k=1 e

βk·Xi

(3.78)

· · · · · · (3.79)

Pr(Yi = K) =
eβK ·Xi∑K
k=1 e

βk·Xi

(3.80)

(3.81)

Or generally:

Pr(Yi = c) =
eβc·Xi∑K
k=1 e

βk·Xi

(3.82)

The following function: softmax(k, x1, . . . , xn) = exk∑n
i=1 e

xi
is alluded to as the

softmax function. The impact serves as the reason for exponentiating the values

x1, . . . , xn since it exaggerates the contrasts between them. Therefore, softmax(k, x1, . . . , xn)

returns a value approaching 0 anytime xk is fundamentally not exactly the most

extreme of all the values, and returns a value approaching 1 whenever it is used

on the max value, however, the result may not be so when it is very close to the

next-max value. Therefore, the softmax function is utilized in the construction of

weighted average which acts as a smooth function and approximates the indicator

function as: f(k) =


1 if k = arg max(x1, . . . , xn),

0 otherwise.

Hence the probability equations can be written as

Pr(Yi = c) = softmax(c,β1 ·Xi, . . . ,βK ·Xi) (3.83)

Therefore in binary logistic regression, the softmax function serves as the equiv-

alent of the logistic function. A fact worth noting is the fact that, since all

probabilities ought to sum up to 1, not all the vector of coefficients, βk, are par-

ticularly identifiable, hence making one completely determined when all the other
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coefficients are known. Due to this reason, only k−1 separately identifiable prob-

abilities are in existence, implying k − 1 specific vectors of coefficients. At the

point when a constant vector is introduced to all of the coefficient vectors, the

comparison of the equations are indistinguishable. By this the point discussed

above is demonstrated:

e(βc+C)·Xi∑K
k=1 e

(βk+C)·Xi

=
eβc·XieC·Xi∑K
k=1 e

βk·XieC·Xi

(3.84)

=
eC·Xieβc·Xi

eC·Xi
∑K

k=1 e
βk·Xi

(3.85)

=
eβc·Xi∑K
k=1 e

βk·Xi

(3.86)

Sterning from the above, traditionally C is set as, C = −βK . Basically,

the constant is set in a manner which so as to convert one vector to 0, the other

vectors are converted to the distinction between these vectors and the vector

converted to 0. This process is the same as choosing one of the K options and

pivoting on it, and assessing how much the other K − 1 options fare (this can

either be better or worse). Mathematically, transformation of the coefficients as

below:

β′1 = β1 − βK (3.87)

· · · · · · (3.88)

β′K−1 = βK−1 − βK (3.89)

β′K = 0 (3.90)

Leading to:
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Pr(Yi = 1) =
eβ
′
1·Xi

1 +
∑K−1

k=1 e
β′k·Xi

(3.91)

· · · · · · (3.92)

Pr(Yi = K − 1) =
eβ
′
K−1·Xi

1 +
∑K−1

k=1 e
β′k·Xi

(3.93)

Pr(Yi = K) =
1

1 +
∑K−1

k=1 e
β′k·Xi

(3.94)

(3.95)

This has the same form as that of the model above, as far as K−1 non-dependent

two-way regressions, notwithstanding the (’) on the coefficients.

Taking after the two-way latent variable model formulated for binary logistic

regression, the multinomial logistic regression can also be defined as a latent

variable model. The latent variable definition is mostly found in the hypothesis

of discrete choice models, this makes it fairly easy for comparing the multinomial

logit to the multinomial probit model, and by extension to more complicated

models. Consider that, for each given information point i with a probable result

k, there exist an unobserved random variable(continuous latent variable Yi,k∗-)

with distribution:

Y ∗i,1 = β1 ·Xi + ε1 (3.96)

Y ∗i,2 = β2 ·Xi + ε2 (3.97)

· · · (3.98)

Y ∗i,K = βK ·Xi + εK (3.99)

(3.100)

47



where εk ∼ EV1(0, 1), -standard type-1 extreme value distribution. A non-

random procedure developed from the latent variables is employed in determin-

ing the value of variable Yi (i.e. this signifies that the observed outcomes have

randomness taken from it and into the latent variables), whereby result k is con-

sidered picked if and if only the accompanying utility (Y ∗i,k) exceeds the utilities

of all available options. Due to the continuous nature of the latent variables, the

probability that two latent variables wi;; have the same value is 0, hence no need

worrying about such a situation occurring. Stated differently:

Pr(Yi = 1) = Pr(Y ∗i,1 > Y ∗i,2 and Y ∗i,1 > Y ∗i,3 and · · · and Y ∗i,1 > Y ∗i,K) (3.101)

Pr(Yi = 2) = Pr(Y ∗i,2 > Y ∗i,1 and Y ∗i,2 > Y ∗i,3 and · · · and Y ∗i,2 > Y ∗i,K) (3.102)

· · · (3.103)

Pr(Yi = K) = Pr(Y ∗i,K > Y ∗i,1 and Y ∗i,K > Y ∗i,2 and · · · and Y ∗i,K > Y ∗i,K−1)

(3.104)

Or equivalently:

Pr(Yi = 1) = Pr(max(Y ∗i,1, Y
∗
i,2, . . . , Y

∗
i,K) = Y ∗i,1) (3.105)

Pr(Yi = 2) = Pr(max(Y ∗i,1, Y
∗
i,2, . . . , Y

∗
i,K) = Y ∗i,2) (3.106)

· · · (3.107)

Pr(Yi = K) = Pr(max(Y ∗i,1, Y
∗
i,2, . . . , Y

∗
i,K) = Y ∗i,K) (3.108)

(3.109)
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A more careful look at the first equation reveals that it can be re-written as:

Pr(Yi = 1) = Pr(Y ∗i,1 > Y ∗i,k ∀ k = 2, . . . , K) (3.110)

= Pr(Y ∗i,1 − Y ∗i,k > 0 ∀ k = 2, . . . , K) (3.111)

= Pr(β1 ·Xi + ε1 − (βk ·Xi + εk) > 0 ∀ k = 2, . . . , K) (3.112)

= Pr((β1 − βk) ·Xi > εk − ε1 ∀ k = 2, . . . , K) (3.113)

Some notes worth considering:

• Generally, givenX ∼ EV1(a, b) and Y ∼ EV1(a, b) thenX−Y ∼ Logistic(0, b).

This implication of this is that the difference between two iid extreme-value-

distributed variables takes after the logistic distribution, given that the first

variable is considered irrelevant. Considering that the first parameter is a

location parameter,in that the mean is varied by a fixed amount by it, more-

over when two variables are varied by the same amount, their difference does

not change. It still remains the same. Therefore all statements related to

the basic likelihood of a said decision incorporate the logistic distribution,

thereby making the decision of extreme-value distribution seem subjective.

• The second parameter (scale) in the extreme-value or logistic distribution is

such that when X ∼ Logistic(0, 1) then bX ∼ Logistic(0, b). This interprets

as replacing scale 1 with an error variable having an arbitrary scale param-

eter’s effect can be augmented easily by multiplying the regression vectors

with the same scale. From these (preceding point with that just made), it

is gathered that, using a standard extreme-value distribution (with param-

eters; scale 1, location 0) for error variables results in no loss of generality

as against the use of an arbitrary extreme-value distribution. Stated more

profoundly, the model is non-identifiable that is, has no unique collection

of ideal coefficients, when the more broad distribution is utilized.

• Including any subjective constant to the coefficient vectors imposes no bear-
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ing on the model. This is attributable to the fact that the differences in

regression coefficients vectors are utilized. This implies that, like the log-

linear model scenario, just K − 1 of the coefficient vectors are unique, and

the K − th set to an arbitrary value.

3.4.3 Intercept Estimation

In multinomial logistic regression, a dependent variable is made the benchmark

category. Odds ratios for the various non-dependent variables with respect to

the dependent variable category are determined. However, the exception of the

reference category is made during the analysis. The exponential beta coefficient

depicts changes in the dependent variable odds of being in a particular category

with regards to the reference category, as in the change linked with a unit change

inf the relating variable.

3.4.4 Natural language processing application of Multino-

mial Logit.

Multinomial LR classifiers are usually employed as an option to Naive Bayes clas-

sifiers in natural language processing. This is due to the fact that, no assumption

of statistical independence of the random variables which plays the role of predic-

tors, are made. Despite this, the Multinomial logit not be appropriate as learning

in such a model, relatively to a naive Bayes classifier is slower and hence not be

considered as proper given an expansive number of classes to learn.

3.5 General Probability

Many are the events bound to occur at one point or the other, however of rele-

vant importance to have a realistic or near-actual measures of the time of such

an event happening. To this reasoning is the concept of the probability theory

founded. The probability concept estimates the likeliness of an event occurring
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under circumstances purely random. Classic examples include number popping

up on a die throw, side of a coin facing upwards after a toss, horse winning a race,

to-mention-but-a few. Probability of events occurring or vice-versa is quantified

as a numerical value between 0 and 1(the endpoints inclusive), with 0 signifying

an impossible outcome and certainty of an outcome signified by 1 Stuart and Ord

(2009). From this it can be concluded that the closer the probability of an event

is to 1, the higher the level of certainty that the said event will occur. Probability

theory hinges on some guiding principles or axioms which acts as the benchmark

for the discipline.

3.5.1 Axioms of Probability Theory

These probability axioms are also known as the Kolmogorov axioms. Given the

following parameters Ω, F, P these together form a measure space denoted by

(Ω, F, P ) with P (Ω) = 1, where Ω is the sample space, F the event space and P

is the probability measure.

Axiom 1

The likelihood of an event is a non-negative real number:

P (E) ∈ R, P (E) ≥ 0 ∀E ∈ F

However there are theories in which there exist negative probability. In such

theories, this first axiom is relaxed.

Axiom 2

This axiom is the Unit measure assumption. This assumption states that the

likelihood of a rudimentary event in the whole sample space will happen is 1.

Stated all the more particularly, no elementary events are outside the sample

space.

P (Ω) = 1.
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Hence should a calculation of an event results in a value greater than 1 indicates

that the probability calculation is erroneous. Most of such errors is due to the

inability of one performing the calculation to clearly define the entire sample

space.

Axiom 3

The supposition of σ-additivity. That is for any countable sequence of mutually

exclusive events E1, E2, ... satisfies the condition below

P (
⋃∞
i=1Ei) =

∑∞
i=1 P (Ei).

3.5.2 Some other Useful Probability laws

Based on the Kolmogorov axioms, some other useful laws governing the Proba-

bility theory can be derived. These are:

• Monotonicity

if A ⊆ B then P (A) ≤ P (B).

• Numeric bound

this property sterns directly from the above and quite intuitive too.

0 ≤ P (E) ≤ 1 ∀E ∈ F .

• Null set probability

This is given as:

P (∅) = 0.

• The Probability Addition law.

P (A ∪B) = P (A) + P (B)− P (A ∩B) (3.114)
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This law is also known as the sum rule. The proof of which is as follows.

P (A∪B) = P (A)+P (B \ (A∩B)) (by Axiom 3) now, P (B) = P (B \ (A∩

B)) +P (A∩B). Eliminating P (B \ (A∩B)) from both equations provides

the desired result.

Proof of Properties

Proofs for the above axioms exist to both provide insightful and insightful open-

ings and supplications. Most especially is the connection made between the nu-

meric bound and the other two axioms.

Starting with the monotonicity axiom, let E1 = A, E2 = B\A, given that

A ⊆ B and Ei = ∅ such that i ≥ 3,making it obvious that the Ei are pair-

wise disjoint. Hence, E1 ∪ E2 ∪ . . . = B. Therefore,

P (A) + P (B\A) +
∞∑
i=3

P (∅) = P (B) (3.115)

, which satisfies the numeric bound axiom. This is so because a series of non-

negative numbers are formed by the left hand side of the equation which even-

tually converges P (B), which actually is limited and hence P (A) ≤ P (B) and

P (∅) = 0. Moving further, by contradiction if P (∅) = a , then the left hand side

of the is not less than

∞∑
i=3

P (Ei) =
∞∑
i=3

P (∅) =
∞∑
i=3

a =


0 if a = 0,

∞ if a > 0.

(3.116)

Should a > 0, then a contradiction occurs, since the aggregate does not surpass

the finite P (B). And thus, a = 0. Hence as a side effect of the monotonicity

axiom Proof, its been proved that P (∅) = 0.
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3.5.3 Some Useful Definitions

• Independent Events: Events A and B are said to be autonomous if their

joint likelihood is given by:

P (A and B) = P (A ∩B) = P (A)P (B), (3.117)

• Mutually exclusive events: Given that either of events A or B happens in

a trial is termed as the union of the the events A and B and is denoted

by P (A ∪B). However when two events are mutually exclusive, then their

likelihood of occurring is;

P (A or B) = P (A ∪B) = P (A) + P (B). (3.118)

• Conditional probability; This is the likelihood that some event B occurs

given that some other event event A has occurred. Conditional probability

is denoted by P (A | B). P (A | B) is defined as;

P (A | B) =
P (A ∩B)

P (B)
. (3.119)

The conditional probability is undefined if the event serving as the denom-

inator or the precursor equals 0, that is, P (B) = 0

3.6 Generalized Pareto Distribution

The generalized Pareto distribution belongs to the family of continuous proba-

bility distributions. It’s main application is in the modeling the tails of other

distributions. The GPD is characterized by three parameters: scale σ ,location

µ, and shape ξ (Coles, 2001), (Dargahi-Noubary, 1989). However, it is sometimes

defined by only scale and shape (Hosking and Wallis, 1987) and on other occa-

sions only by the shape parameter. In some other literature, the shape parameter
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is denoted as κ = −ξ (Davison, 1984). The cumulative density function of the

generalized distribution is given by (Embrechts et al., 1997):

Fξ(z) =


1− (1 + ξz)−1/ξ for ξ 6= 0,

1− e−z for ξ = 0.

(3.120)

where z =
x− µ
σ

. z ≥ 0 for ξ ≥ 0 and 0 ≤ z ≤ −1/ξ for ξ < 0. ξ ∈ R and the

probability density function (pdf) is also given by:

{
f(ξ,µ,σ)(x) = 1

σ

(
1 + ξ(x−µ)

σ

)(− 1
ξ
−1)

(3.121)

or equivalently

f(ξ,µ,σ)(x) =
σ

1
ξ

(σ + ξ(x− µ))
1
ξ

+1
(3.122)

The GPD actually has its cdf as a solution of the following differential equation: (ξz + 1)f ′ξ(z) + (ξ + 1)fξ(z) = 0,

fξ(0) = 1


for x > µ when ξ > 0, and µ 6 x 6 µ− σ/ξ when ξ < 0. And its pdf is

also a solution of the differential equation below:


f ′(x)(−µξ + σ + ξx) + (ξ + 1)f(x) = 0,

f(0) =
(1−µξ

σ )
− 1
ξ
−1

σ

 (3.123)

Given that the shape ξ and location µ are both zero, then the GPD is identical

to the exponential distribution. Also if the shape ξ > 0 and location µ = σ/ξ,

then GPD is identical to the Pareto distribution with scale xm = σ/ξ and shape

α = 1/ξ.

If U is uniformly distributed on (0, 1], then

X = µ+ σ(U−ξ−1)
ξ

∼ GPD(µ, σ, ξ 6= 0)

and
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X = µ− σ ln(U) ∼ GPD(µ, σ, ξ = 0).

The cdf’s inversion resulted in the above formulation. The generalized Pareto

distribution permits a continuous scope of conceivable shapes that incorporates

both the exponential and Pareto distributions as uncommon cases. The gener-

alized Pareto distribution permits one to let the available information ”decide”

which distribution is proper. The generalized Pareto distribution has three essen-

tial structures, each corresponding to a constraining distribution of exceedence

information from an alternate class of basic distributions.

• Distributions whose tails diminish exponentially, for example the normal,

lead to a generalized Pareto shape parameter of zero.

• Distributions whose tails diminish as a polynomial, for example the Stu-

dent’s t, lead to a positive shape parameter.

• Distributions whose tails are limited, for example the beta, lead to a nega-

tive shape parameter.

3.7 Distribution Selection Test

in this section, various model selection test on which models and distributions

were selected or deemed appropriate for given dataset are discussed.

3.7.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test also called K-S test or KS test, is a nonparametric

test employed in the assessing the equality of continuous, one-dimensional like-

lihood distributions which can be utilized to contrast a sample with a reference

likelihood distribution such as one-sample K-S test, or also compare to two sam-

ples such as two-sample K-S test. The distance from the empirical distribution

of the sample to the aggregate of the reference distribution is estimated by the

K-S statistic. For two given samples, the K-S statistic estimates the separation
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between their empirical distribution. The null hypothesis under which the null

distribution is calculated, does this on the premise that samples(ie. two-sample

case) are coming from the same distribution or in the one-sample case,the sample

is drawn from the benchmark distribution (in the one-sample case). Whatever

the scenario maybe, only continuous distributions treated under the null hypoth-

esis, however in the situations other than the null hypothesis, there are no such

restrictions in place. Due to the sensitive nature of the two-sample K-S, that

is, much attention is paid to both the difference in shape and location of the

empirical CDF of the two samples, this renders the two-sample K-S of great

use amongst the the general non-parametric methods for comparing two samples.

The K-S test can be changed to function as a goodness of fit test, after some ad-

justments though. In assessing for normality of the distribution (a special case),

samples ought to be standardized and then contrasted with a standard normal

distribution. This procedure is the same as having the reference distribution’s

mean and variance set equal to that of the sample estimates. It is known that

implementing these adjustments in defining the particular reference distribution

alters the test statistic null distribution.

The K − S statistic

Fn denoting the empirical distribution function for n iid observations Xi, is given

as:

Fn(x) =
1

n

n∑
i=1

I[−∞,x](Xi) (3.124)

where I[−∞,x](Xi) denotes the indicator function. The indicator function equal 1

if Xi ≤ x and equals 0 otherwise. The K − S statistic for a given CDF, F (x) is:

Dn = sup
x
|Fn(x)− F (x)| (3.125)

where supx represents the supremum of the set of distances.
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Kolmogorov distribution

The Kolmogorov distribution is defined by the random variable

K = sup
t∈[0,1]

|B(t)| (3.126)

where B(t) denotes the Brownian bridge. The CDF of K defined as:

Pr(K ≤ x) = 1− 2
∞∑
k=1

(−1)k−1e−2k2x2 =

√
2π

x

∞∑
k=1

e−(2k−1)2π2/(8x2). (3.127)

As indicated above, under the null hypothesis the sample originates from the hy-

pothesized distribution F (x),
√
nDn

n→∞−−−→ supt |B(F (t))| in distribution, where

B(t) is the Brownian bridge. If F is continuous then under the null hypothesis

√
nDn converges to the Kolmogorov distribution, which does not rely on F . This

outcome might likewise be known as the Kolmogorov theorem. The goodness-of-

fit test or the Kolmogorov-Smirnov test is developed by utilizing critical values

of the Kolmogorov distribution. The null hypothesis is rejected at level α if

√
nDn > Kα, where Kα is found from Pr(K ≤ Kα) = 1 − α. . The asymptotic

power of this test is 1.

Discrete null distribution

The K − S test in order for it to be used on discrete variables calls for some

alteration, however the test statistic form is exactly as it was as in the contin-

uous case, the calculation of its value is the only area of slight change as it is

more subtle. This can be noticed when the test statistic is computed between a

continuous distribution f(x) and a step function g(x) which has a discontinuity

at point xi. Stated differently, no such limit such as limx→xi g(x). Therefore the

statistic is computed as:

sup
x
|g(x)− f(x)| = max

i

[
max

(
|g(xi)− f(xi)|, lim

x→xi
|g(x)− f(xi−1)

)]
, (3.128)
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Unless the limiting value of the underlying distribution is known, it is going to

be unclear how the limit will be replaced.

Two-sample K − S test

The Kolmogorov-Smirnov test may additionally be utilized to test whether two

underlying one-dimensional likelihood distributions contrast. For this situation,

the K-S statistic is:

Dn,n′ = sup
x
|F1,n(x)− F2,n′(x)|, (3.129)

where F1,n and F2,n′ are the empirical distribution functions of the first and

the second sample respectively, and sup is the supremum function. The null

hypothesis is rejected at level α if: Dn,n′ > c(α)
√

n+n′

nn′
.

While the K − S test can also be used to assess if a given F (x) is the underlying

likelihood distribution of Fn(x), this process can also be rearranged to provide

confidence limits for F (x) itself. Given a critical value for test statistic Dα such

that P (DnDα) = α, then a bandwidth of ±Dα around Fn(x) will totally contain

F (x) with likelihood 1− α.

3.7.2 Anderson-Darling test

The Anderson-Darling test is a statistical test of whether a given sample of data

is drawn from a given likelihood distribution. In its fundamental frame, the test

supposes that there are no parameters to be assessed in the distribution being

tested, in which case the test and its collection of critical values is distribution-

free. On the other hand, the test is regularly utilized as a part of settings where a

group of distributions is being tested, in which case the parameters of that family

need to be estimated and account must be taken of this in adjusting either the

test-statistic or its critical values. At the point of testing if a normal distribution

satisfactorily portrays a collection of data, it is a standout amongst the most

effective statistical tools for detecting most variations from normality. K-sample

Anderson-Darling tests are accessible for testing whether several collections of

59



observations can be modeled as originating from a solitary populace, where the

distribution function does not have to be specified. Notwithstanding its utiliza-

tion as a test of fit for distributions, it can be utilized in parameter estimation as

the premise for a type of least separation estimation methodology.

Single-sample test

The Anderson-Darling test is part of the category of quadratic EDF statistics,

that is, empirical distribution function based test. Given F is the hypothesized

distribution, and the empirical CDF denoted by Fn, then the distance from F and

Fn is estimated by the quadratic EDF statistics. This is done by the formulation

below

n

∫ ∞
−∞

(Fn(x)− F (x))2w(x) dF (x), (3.130)

w(x) represents a loading function. When w(x) = 1, the statistic becomes what

is known as the Cramèr-von Mises statistic. Anderson-Darling (1954) hinges on

the distance

A = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x) (1− F (x))
dF (x), (3.131)

this is acquired when w(x) = [F (x) (1 − F (x))]−1. in this manner, when con-

trasted against the Cramér-von Mises distance, the Anderson-Darling distance

pays more attention to observations in the tails of the distribution. For a given

sample, the Anderson-Darling test assess if the sample is coming from a speci-

fied distribution. The Anderson-Darling test uses the fact that, when presented

a hypothesized underlying distribution and with the assumption that the data

originates from this distribution, transforming the data into a Uniform distribu-

tion is possible. The test statistic A to examine if sample data {Y1 < · · · < Yn}

(the data ought to be in order) originates from a distribution having the CDF,

Φ, is formulated as: ‘

A2 = −n− S (3.132)
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where

S =
n∑
i=1

2i− 1

n
[ln(Φ(Yi)) + ln (1− Φ(Yn+1−i))] (3.133)

The theoretical distribution’s critical values can be contrasted against that of the

test statistic. It must be noted that, in this situation no parameters are evaluated

in connection to the distribution function Φ. The test statistic can also be utilized

in the test of fit of a family of distributions, however when doing this, the statistic

ought to be compared against the critical values akin to the family of theoretical

distributions in question and also dependent on the parameter estimation used.

The Anderson-Darling test has some shortcomings which casts a dent

on its relevance. Both literature and testing has found that A2 is a standout

amongst the most efficient EDF statistics in spotting deviations from normality.

The difference in the computation is attributed to information available about

the distribution.Such information include:

• 1: The mean µ and variance σ2 defined.

• 2: The variance σ2 finite, however mean µ is not.

• 3: The variance σ2 is undefined but mean µ is known.

• 4: Both the variance σ2 and the mean µ are unknown.

The observations Xi, for i = 1, . . . n, of the variable X that are to be assessed are

ordered from lowest to the highest and the assumption is made to indicate the

ordered observations. The formulation below is used to represent that Xi. Let

µ̂ =


µ, if the mean is defined.

X̄,= 1
n

∑n
i=1Xi otherwise.
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σ̂2 =


σ2, if the variance is defined.

1
n

∑n
i=1(Xi − µ)2, if the variance is undefined, but the mean is.

1
n−1

∑n
i=1(Xi − X̄)2, otherwise.

The Xi values are standardized to get new values Yi, which is denoted by Yi =

Xi−µ̂
σ̂

. The standard normal CDF Φ, A2 is formulated as

A2 = −n− 1

n

n∑
i=1

(2i− 1)(ln Φ(Yi) + ln(1− Φ(Yn+1−i))) (3.134)

An optional formulation in which just one observation is considered at each stage

in the summation is

A2 = −n− 1

n

n∑
i=1

[(2i− 1) ln Φ(Yi) + (2(n− i) + 1) ln(1− Φ(Yi))] . (3.135)

An altered statistic can be formulated by:

A∗2 =


A2
(
1 + 4

n
− 25

n2

)
, the case where both variance and mean are unknown.

A2, otherwise.

Should A∗2 surpass the given critical value, it implies the hypothesis of normality

is to be rejected with some level of significance.

• Note: If σ̂ = 0 or any Φ(Yi)=(0 or 1) then A2 is undefined

3.7.3 Chi-squared test

An alternative notation for the chi-squared test is χ2. The chi-square test refers

to any statistical hypothesis test whose sampling distribution of the test statistic

is hinged on a chi-squared distribution given the null hypothesis is true. Alterna-

tively, a chi-squared test is a test in which this assertion is asymptotically true,

implying that the sampling distribution could be approximated to a chi-squared

distribution closely to that which is required through increasing the sample size

enough. An application of the chi-squared test is the determining whether there

exist a significant variance between the anticipated frequencies and the observed
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frequencies in one or more classifications.

3.7.4 Akaike information criterion, AIC

The AIC represents a measure of the relative adequacy of a statistical model for

a collection of data points, that is, for a given set of models for the data, AIC

assess the adequacy or appropriateness of every one of the models, in contrast to

the other models under consideration. Therefore the AIC serves as a means by

which model selection is made. AIC has the information theory as its foundation:

providing a comparative assessment on the data unaccounted for when a given

model represents the process generating the data. Thus, it tends to focus on the

trade-off between the goodness of fit of model and the many-sided nature of the

model. However, the AIC lacks to test of a model under the null hypothesis; i.e.

AIC cannot provide any information on the adequacy of the model in an exact

nature. In a scenario where all models under consideration are inappropriate,

AIC does not indicate in no sense of it.

Given a statistical model with accompanying data. Let L denotes the model’s

optimized value from the probability function; let k represent the estimated count

of parameters in the model. Therefore the value of the AIC model formulated as:

AIC = 2k − 2 ln(L) (3.136)

For a collection of possible models for the data, the model of choice is the model

having thr least AIC value. Based on the assessment of the likelihood function,

the AIC appreciates goodness of fit however, it includes also a penalty which

actually is an increasing function of the number of estimated parameters. This

penalty discourages overfitting.
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3.7.5 AICc

AICc serves as an amendment for the AIC with a limited sample sizes. The

formulation for the AICc is contingent on the statistical model. Supposing the

given model is linear, univariate and the residuals normally-distribute, however

its conditioned on the regressors. AICc is formulated as:

AICc = AIC +
2k(k + 1)

n− k − 1
(3.137)

where n represents the drawn population size and k, the count of parameters.

Should the univariate linear model with normal residuals assumption be contra-

vened, it implies then that the formulation for the AICc will normally change.

AICc is fundamentally an AIC with more penalty for the extra parameters. Em-

ploying AIC, in the stead of AICc in the scenario where n is not greater than k2,

builds up the likelihood of choosing models that have a lot of parameters, that is,

overfitting. Its substantial to note that the likelihood of AIC overfitting is very

considerable, sometimes.

The AICc is used rather than AIC, in the case where n is small or in the case

where k is large. However due to the fact that AICc approaches the AIC when

n becomes vast, AICc ought to be used generally in any case. Should all models

under consideration possess identical k, then both the AICc and AIC will have

same valuations; therefore, no disadvantage will exist in utilizing the AIC in

place of the AICc. Moreover, should n be much more than k2, at that point the

amendment will be immaterial; thereby making negligible the disadvantage in

using AIC in the place of the AICc.
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3.7.6 Comparisons with other model selection methods

Comparing with Bayesian Information Criterion

The Bayesian Information Criterion (BIC) unlike the AIC, does penalize more

effectively for the parameters number than the AIC does. Burnham and Ander-

son (2002) did a comparison on the AIC/AICc and BIC and it was shown that

the AIC and AICc could be formulated exactly in the Bayesian structure as the

BIC, simply by varying the prior employed in the Bayesian framework. Also it

an argument was made that the AIC/AICc possess a theoretical advantages over

the BIC. The first of these was that, since the AIC/AICc is formulated from the

information principles; though the name of the BIC suggest otherwise was not

appropriate. Also, due to the fact that the Bayesian-structure formulation of

BIC has a prior represented by 1/R (where R denotes the count of models under

consideration), this is considered as not being ”prudent”, because the prior ought

to be a diminishing function of k. Moreover, these present a couple of simulation

studies in literature that tend to recommend that the AICc tends to possess re-

alistic advantages ahead of the BIC.

Given the context of regression, comparison between AIC and BIC, reveals that

the AIC is asymptotically ideal in selecting the model whose mean squared er-

ror is minimum, on premise that the assumption of same ”true” model is not

amongst the set of models under consideration; in relation to this assumption,

the BIC is not asymptotically optimal. The author further revealed that the

rate of convergence of the AIC to the optimum is to certain extents, the best

conceivable.

Comparing with the Chi-squared test

Most at times when presented with a set of models where all the likelihood func-

tions are assumed to be normally distributed (i.e. have mean to be zero) and
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independent. This assumption results in the chi-squared tests, hinged upon the

χ2 distribution. Employing the chi-squared test is related to using the AIC test.

Under this presumption, the maximum likelihood is represented as:

L =
∏n

i=1

(
1

2πσ2
i

)1/2

exp

(
−
∑n

i=1

(yi − f(xi;σ))2

2σ2
i

)
∴ ln(L) = ln

(∏n
i=1

(
1

2πσ2
i

)1/2
)
− 1

2

∑n
i=1

(yi − f(xi;σ))2

σ2
i

∴ ln(L) = C − χ2/2

C represents a constant which is not dependent on the model in use, however only

dependent on the particular data points in use, that is, the test does not alter if the

information points does not alter. Thus AIC = 2k−2 ln(L) = 2k−2 (C − χ2/2) =

2k− 2C+χ2, since the contrasts in AIC are significant, C the constant, could be

overlooked permitting the AIC to be taken as= 2k+χ2 when comparing models.

3.7.7 Bayesian Information Criterion, BIC

The Bayesian information criterion (BIC) also referred to as Schwarz criterion

(denoted SBC, SBIC) is a model selection criterion with a limited collection of

models; the model of choice is the model whose BIC value is the lowest. BIC is

built partly on the likelihood function and also bears a close relation to the AIC.

During models fitting, the likelihood can be increased by adding extra parameters,

however by so doing it may result in overfitting. The issue of overfitting is resolved

by both AIC and BIC with the introduction of a penalty term which compensates

for the count of parameters contained in the model; the BIC penalty term or value

is greater than of the AIC. BIC is formally characterized as

BIC = −2 · ln L̂+ k · ln(n). (3.138)

where

x= represents observed data

θ= represents model parameter

n = data points contained in x, or simply put the drawn populace
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k = the free parameters to be evaluated.

If the given model is a linear regression, then k refers to the count of regressors,

which includes the intercept; P(x|M) = the model’s marginal likelihood of the

observed data M

L̂ = the value of maximized value of the likelihood function of the model M,

i.e. L̂=P(x| θ̂,M), where θ̂ represents the likelihood function maximization pa-

rameter values. The BIC can also be viewed as an asymptotic result based on

assumptions that the data under consideration has a distribution belonging to

the exponential family. Stated differently,this implies that when the the integral

of the likelihood function p(x| θ,M) multiplied by the prior probability distribu-

tion,denoted P(θ |M), over the parameters θ of the model M for fixed observed

data x is formulated as

−2 · ln p(x |M) ≈ BIC = −2 · ln L̂+ k · (ln(n)− ln(2π)). (3.139)

Given the assumption that the model errors otherwise referred to as disturbances

are independent and identically distributed as stated or required by normal dis-

tribution and the limiting state of the derivative of the log probability regarding

the actual variance is zero, results in:

BIC = n · ln(σ̂2
e) + k · ln(n) (3.140)

σ̂2
e represents the error variance; and this situation is characterized as

σ̂2
e =

1

n

n∑
i=1

(xi − x̂i)2. (3.141)
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and is a one-sided estimator for the real variance. The residual sum of squares

(RSS) of the BIC given by

BIC = n · ln(RSS/n) + k · ln(n) (3.142)

During the testing of numerous linear models against a saturated model, the BIC

can be formulated in regards of the deviance χ2 as

BIC = χ2 + df · ln(n) (3.143)

the df represents the count of degrees of freedom in the test. When selecting from

numerous models, the model having the least BIC is the model of choice. BIC is an

increasing function of the error variance σ2
e and an increasing function of k. That

is, unexplained variation in the dependent variable and the count of explanatory

variables increase the value of BIC. Subsequently, lower BIC suggests either less

explanatory variables, better fit, or both. The BIC by and large penalizes free

parameters all the more firmly than the AIC, despite the fact that it relies on

upon the extent of n and relative size of n and k. It is essential to remember that

the BIC can be utilized to compare estimated models only when the numerical

estimations of the dependent variable are indistinguishable for all evaluations

being analyzed. The models being looked at need not be nested, dissimilar to

the scenario when models are being contrasted by the utilization of an F-test or

a likelihood ratio test.

Attributes of the Bayesian information criterion

1. It is not dependent on the prior or the prior is ”obscure” (a constant).

2. It can gauge the proficiency of the parameterized model in terms of pre-

dicting the data.

3. It penalizes the multifaceted nature of the model where multifaceted nature
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refers to the quantity of parameters in the model.

4. It is approximately equivalent to the minimum description length measure

however with negative sign.

5. It can be utilized to pick the quantity of groups as indicated by the inherent

multifaceted nature present in a specific dataset.

6. It is closely identified with other penalized likelihood criteria such as BIC

and the AIC.

3.8 Premium Principle

Speaking of it loosely, a premium principle is a guideline for matching a pre-

mium value to an insurance risk. It’s these principle actuaries use to come up

with insurance premiums. According to (Young, 2004), χ signify the collection of

nonnegative random variables on the likelihood space (Ω, F, P); this is the accu-

mulation of insurance-loss random variables- likewise known as insurance risks.

Let X, Y, Z, etc. signify typical members of χ. Concluding, let H signify the

premium function, from χ to the set of (expanded) non-negative real numbers.

Along these lines, it is conceivable that H[X] takes the value ∞.

Independence

H[X] depends just on the aggregate distribution function of X, in particular Sχ,

in which Sχ(t)= Pω ∈ Ω : X(ω) > t. That is, the premium of X relies just on

the tail probabilities of X. This property expresses that the premium relies just

on the money related loss of the insurable event and the likelihood that a said

financial misfortune happens, not the reason of the financial loss.

Risk loading

H[X] ≥ EX for every X ∈ χ. Stacking for risk is attractive on the grounds that

one for the most part obliges a premium rule to charge at least the normal payout
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of the risk X, in particular EX, in return for guaranteeing the risk. Otherwise,

the guarantor will lose money on average.

70



Chapter 4

Analysis

4.1 Introduction

This chapter contains the results of the study on actuarial applications of a hierar-

chical health insurance claim data. Estimates for the Frequency, Claim Type and

Severity models were developed. The analysis was carried out with Total num-

ber of claims (noofclaims) as the response variable (ie Frequency component)

and two independent variables: In-patient (inpat) and Out-patient (outpat). For

the severity component, the response variable was total amount submitted (tota-

lamtsub.ghc) and the independent variables: In-patient (inpat.ghc), Out-patient

(outpat.ghc), Service (service.ghc) and Drugs (drugs.ghc) charges were chosen.

The results were presented in a series of tables.

4.2 Original dataset

Table 4.1 contains the summary statistics of the original dataset. This includes

Mean, Maximum and minimum values of the dataset. From the table, it is

pointed out that out-patient number and out-patient amount in Ghana cedis is

the topmost variable affecting health insurance claims. This can be explained or

attributed to the fact that with country situation in the tropics disease conditions

such malaria and other ailments which are rampant but does not require in-patient

services will be on the high. With values being as high as 9295 and Ghc. 222854

depicting frequency and amount submitted, respectively.
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Figure 4.1: Frequency of Claims

From the diagram above it with many observations hovering about the mean,

there were six(6) observations that were far off from the mean, with the farthest

being seventieth (70th) data point which had an observation of nine thousand

seven hundred and twenty-seven (9727) an observation such as this gives reason

for such deviations off the mean.

Figure 4.2: Claim Amounts Submitted

When amounts of for the various services charged by providers is plotted the

outcome is no different from that of the number of claims submitted. Points of

interest which were 180, 205, 271 and 300, at these point it was observed that the
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various money amounts submitted for Inpatient charges were higher than that of

outpatient charges.

Figure 4.3: Claim amounts submitted against Deductibles

Total money amounts submitted to the NHIA as claims requesting payments

were found to be subjected to some payment deductions (information regarding

the composition deductions were not made available).From the graphical point,

it suggested that amounts (claims) size submitted are far more greater than the

deductions and deductions seemed not to be even or lacked respect for claim size.

Correlation between Claim groups4.3

Table 4.1 brings to the fore correlation values amongst the independent variables 

affecting the total amount of claim charges. Its evident that services charges are 

strongly correlated to with all the other independent variables. From this could 

it be asked if a walk into any health facility will automatically register a billable 

charge for the insurer? From intuition, one can deduce that since an inpatient 

call requires patient being on admission, definitely services which wouldn’t be

ordinarily offered, such as feeding, bed, etc will be made available, hence the
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strong correlation between services amount and inpatient charges.

Table 4.1: Correlation between variables
IN.PAT OUT.PAT NO.CLAIMS IN.PAT.GHc OUT.PAT.GHc DRUGS.GHc SERVICES.GH TOTALAMTSUB.GHc DEDUCT.GHc

IN.PAT 1.00
OUT.PAT 0.58 1.00
NO.CLAIMS 0.64 1.00 1.00
IN.PAT.GHc 0.99 0.51 0.57 1.00
OUT.PAT.GHc 0.67 0.97 0.98 0.60 1.00
DRUGS.GHc 0.76 0.96 0.97 0.69 0.97 1.00
SERVICES.GH 0.92 0.80 0.83 0.90 0.88 0.90 1.00
TOTALAMTSUB.GHc 0.89 0.87 0.90 0.85 0.93 0.95 0.99 1.00
DEDUCT.GHc 0.48 0.50 0.51 0.53 0.62 0.51 0.69 0.65 1.00

4.4 Covariancce between claim groups

Table 4.2: Covariance between variables
IN.PAT.GHc OUT.PAT.GHc DRUGS.GHc SERVICES.GH TOTALAMTSUB.GHc

IN.PAT.GHc 177651856.6
OUT.PAT.GHc 154917457.9 370060476.7
DRUGS.GHc 87731071.63 179165644.6 91522715.84
SERVICES.GH 244838242.8 345812289.9 175374000.4 415276532.4
TOTALAMTSUB.GHc 332569314.5 524977934.5 266896716.2 590650532.8 857547249

A brief comment on the covariance table is that, the high covariance between

services and inpatient amounts is due to frequency. It was evident from the

dataset, inpatient were but a few.

4.5 Hierarchical Health insurance Claims data

The overall analysis plan of this study is shown below in a model description

table below

Figure 4.4: Hierarchical model
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The statistical model as shown above is a joint distribution made up of a fre-

quency, Claim type and severity components. Mathematically, this is:

f (N,M, y) = f (N)× f (M |N)× f (y|N,M) (4.1)

Jointfunction = frequency × ConditionalClaimtype × ConditionalSeverity

Value of M —– numeric notation for claim type

Yi −−−−−−−−−−−−ClaimTypefiledi = 1, 2, ..., 14

Y1−−−−−−−IN.PAT.GHc(In−patient amount submitted in Ghana Cedis)

Y2−−−−−−−OUT.PAT.GHc(Out−patient amount submitted inGhanacedis)

Y3 −−−−−−−DRUGS.GHc (Drugs amount submitted in Ghana Cedis)

Y4−−−−−−−SERV ICES.GHc(Service charges amount submitted in Ghana Cedis)

These four were the main categories by which all other combinations were made.

4.5.1 Frequency Component

Modeled by Negative Binomial Regression. The general Negative binomial distri-

bution is defined as a random variable k signifying the number of failures observed

in a series of Bernoulli trails until r successes have occurred. The general distri-

bution is given below

f(k; r, p) ≡ Pr(X = k) =

(
k + r − 1

k

)
pr(1− p)k for k = 0, 1, 2, . . . (4.2)

Table 4.3: Summary Statistics frequency parameters

Variable Obs Mean Std. Dev. Min Max
noclaims 301 483.9801 791.3498 4 9727
Inpat 301 13.35216 66.31452 0 432
Outpat 301 470.6279 750.8928 0 9295

These denote the conditional means and variances. These distinctions recommend

that over-dispersion is available and that a count model would be suitable. A
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Poisson model is initially fitted to the data. Below is the outcome of the model

estimation

Table 4.4: Statistics of Poisson regression
Poisson regression

Number of obs 301
LR chi2(2) 106813.3
Prob >chi2 0
Log likelihood -31381.138
Pseudo R2 0.6299
No. Of Claims Coef. Std. Err. z P > |z| [95% Conf. Interval]
Inpat .0014276 3.84E-05 37.15 0.000 .0013523 0.001503
Outpat .0003474 2.14E-06 162.6 0.000 .0003432 0.000352
cons 5.843828 0.003038 1923.92 0.000 5.837875 5.849782

Table 4.5: Measures of Fit of Poisson model
Measures of Fit for poison of noclaims

Log-Lik Intercept Only: -84787.768 Log-Lik Full Model: -31381.138
D(298): 62762.275 LR(2): 106813.261

Prob >LR: 0
McFadden’s R2: 0.630 McFadden’s Adj R2: 0.63
Maximum Likelihood R2: 1.000 Cragg & Uhler’s R2: 1
AIC: 208.532 AIC*n: 62768.275
BIC: 61061.556 BIC’: -106801.846
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Estimating the Negative Binomial

Fitting Poisson model:

Table 4.6: Negative Binomial parameters
Negative binomial regression

Number of obs 301
LR chi2(2) 324.25
Dispersion = mean Prob >chi2 = 0.0000

Table 4.7: Continuation of Negative Binomial parameters
Log likelihood = -1999.7736 Pseudo R2 = 0.0750
Noclaims Coef. Std. Err. z P > |z| [95% Conf. Interval]
inpat -0.0002112 0.0005686 -0.37 0.71 -.0013256 .0009031
Outpat 0.0015218 0.0001095 13.9 0 .0013072 .0017364
cons 5.128114 0.064243 79.82 0 5.0022 5.254028

/lnalpha -0.967968 0.0787552 -1.122325 -.8136107
Alpha 0.3798541 0.0299155 .325522 .4432547
Likelihood-ratio test of alpha=0: chibar2(01) = 5.9e+04 Prob>=chibar2 = 0.000

The output begins with an iteration log. The model fitting starts off by first

fitting a Poisson model, then a null model (intercept only model) and lastly the

negative binomial model. Since it employs maximum likelihood estimate, itera-

tions are made until the adjustment in the log likelihood is adequately little. The

last value in the iteration log is the last estimation of the log likelihood for the

full model. The log likelihood can be utilized as a tool for contrasting models.

The header data is next to be displayed. On the right-hand side, the count of

observations utilized as a part of the investigation (301) is given, alongside the

Wald chi-square statistic with three degrees of freedom for the full model, trailed

by the p-value for the chi-square. This is a test of the model all in all. From

the p-value, it can see that the model is factually relevant. The header likewise

incorporates a pseudo-R2, which is 0.075. Below the header, the negative bino-

mial regression coefficients for each of the variables, alongside standard errors,

z-scores, p-values and 95% confidence intervals for the coefficients. The variable

inpat has a coefficient of -.0002112, which is statistically insignificant, however,
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the variable outpat is. This implies that for each one-unit increment on inpat,

the anticipatory log count of the noclaims diminishes by -0.0002112, however

the model increased by 0.0015218 per one unit increase in outpat. Furthermore,

the log-transformed over-dispersion parameter (/lnalpha) is evaluated and shown

alongside the untransformed value. A Poisson model is a model in which the

value of alpha is restricted to zero. Stata finds the maximum likelihood estimate

of the log of alpha and after that ascertains alpha from this. This implies that

alpha is constantly more than zero and that Stata’s nbreg takes into account

over dispersion, that is, the mean being lesser than the variance. Beneath the

coefficients table, a likelihood ratio test that alpha is equal to zero–the likelihood

ratio test contrasting this model to a Poisson model. In this model the related

chi-squared value is 5.9e+04 having a single degree of freedom. This unequiv-

ocally recommends that alpha is non-zero and the negative binomial model is

more adequate for the analysis than the Poisson model. Again the measures of

fit values indicate that the negative binomial regression model is superior to the

poisson model.

Additional information about the fitted model is provided below

Table 4.8: Negative Binomial Regression Measures of Fit
Measures of Fit for nbreg of noclaims

Log-Lik Intercept Only: 2161.899 Log-Lik Full Model: -1999.774
D(297): 3999.547 LR(2): 324.252 Prob >LR: 0.000
McFadden’s R2: 0.075 McFadden’s Adj R2: 0.073
Maximum Likelihood R2: 0.659 Cragg & Uhler’s R2: 0.659
AIC: 13.314 AIC*n: 4007.547
BIC: 2304.535 BIC’: -312.837

4.6 The Negative Binomial regression model

This therefore implies that

78



lognoclaims = 5.128114− 0.0002inpat + 0.00152outpat (4.3)

This therefore implies that

r = 2.632579 ≈ 3

From analysis, it is gathered from the original dataset that Pr(Success) is 0.006.

Figure 4.5: Negative Binomial regression Density Function
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Figure 4.6: Cum. Dist. of Negative Binomial

80



Figure 4.7: Negative Binomial P-P plot

Figure 4.8: Negative Binomial Survival Func. Plot

From the above model, an estimate of claim frequency given random values of

in-patient frequency and outpatient frequency can be made. Hence:

(
k + 3− 1

k

)
(0.006)3(0.994)k (4.4)

4.7 Multinomial claim type

4.7.1 Distribution of Claims

We now proceed to perform the multinomial logistic regression to ascertain to

impact of the various claims types influence on number of claims submitted.
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Multinomial logistic regression

Table 4.9: Multinomial Regression Parameters
Log likelihood= -28.865643 Number of obs 301

LR chi2(3) 125.67
Prob >chi2 0.0000
Pseudo R2 0.6852

cla Coef. Std. Err. z P > |z| [95% Conf. Interval]
Y2+Y3
noclaims
cons

-1.946208
42.99249

196.4911
4819.785

-0.01
0.01

0.992
0.993

-387.0617 383.1693
-9403.612 9489.597

Y1+Y3+Y4
,noclaims,
cons

-.0011831
-3.431665

.001643

.6583364
-0.72
-5.21

0.471
0.000

-.0044033 .0020371
-4.72198 -2.141349

Y2+Y3+Y4 (base outcome)
Y1, Y2, Y3, Y4

noclaims,
cons

-.0011831
-3.431665

.001643

.6583364
-0.72
-5.21

0.471
0.000

-.0044033 .0020371
-591267.7 591072.6

After fourteen (14) iterations,the iteration number tells how quick the model

converged. One role of the log likelihood of -28.865 is that, it is also employed

as means of comparing with other models. The likelihood ratio chi-square of

48.23 with a p-value¡0.0001 signifies that the model in its entirety better fits

significantly than an empty model (that is, a no-predictor model) The model

estimates are displayed in the table able. Thus it can be stated that a unit

increment in the variable noclaims is linked with a -1.946208 decrement in the

relative log odds of being in claim type Y2, Y3 against Y2, Y3, Y4. Likewise a -

.0011831 decrease in relative log odds of being in Claim type Y1, Y3, Y4 against

Y2, Y3, Y4, however there was a positive change of .052674 Y1, Y2, Y3, Y4 against

Y2, Y3, Y4. Also evident from the table are P > |z| values which suggest s that the

developed model parameters are highly insignificant and hence not adequate to

be utilized for the desired intentions. in view of this development one tends to fall

onto conditional probability theory to aid in estimating probabilities associated

with Claim types submitted to the insurer.

With the above observations, Probability of Observing a particular claim type is

82



Table 4.10: Claim Type Statistics
Claim Type (M=m)

Type of Facility Y2, Y3 Y1, Y3, Y4 Y2, Y3, Y4 Y1, Y2, Y3, Y4 Total
Pharmacy 5 0 0 0 5
Clinic/ Health Centre 2 6 282 6 296
Total 7 6 282 6 301

estimated by:

Pr(M = m) =
Vm∑14
s=1 Vs

(4.5)

The table below gives the values of Various m and their corresponding Probability

values

Table 4.11: Claim Type Probability
Claim Type V(M=m)
Y2, Y3 0.023
Y1, Y3, Y4 0.020
Y1, Y2, Y3, Y4 0.020
Y2, Y3, Y4 0.937

4.8 Severity Component

This is modelled by the Generalized Pareto distribution with three (3) parame-

ters which is given by:

From analysis k = 0.70324, σ = 2712.3 and µ = 187.54. Below is the graphical

display of the fitted model.
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Figure 4.9: Density Func. of Severity model

Figure 4.10: Cumulative Density Func. of Severity model
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Figure 4.11: P-P Plot of Severity Component
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Figure 4.12: Q-Q Plot of Severity model

From the above analysis, its now convenient to finally give the distribution of the

statistical model, which now is,

f(N,M, y) = f(N)× f(M |N)× f(y|M,N)

f(N,M, y =

(
k + 3− 1

k

)
(0.006)3(0.994)k × Vm∑14

s=1 Vs
× 1

σ

(
1 + k

(x− µ)

σ

)−1− 1
k

(4.6)
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f(N,M, y =

(
k + 3− 1

k

)
(0.006)3(0.994)k× Vm∑14

s=1 Vs
× 1

2712.3

(
1 + 0.70324

(x− 187.54)

2712.3

)−1− 1
0.70324

(4.7)

We then proceeded to randomly generate some values for k, m and y. Below

is a table displaying the results of this randomly generated data to the model

developed,
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Table 4.12: Randomly Generated Claim Numbers, Claim Type and Severity levels
N=k,M=m,y f(N=k,M=m,y)
5,8,46 4.08623E-05
936,12,11393 9.24113E-06
248,12,1812 0.000475728
301,12,1956 0.000477388
327,12,2462 0.000390786
460,13,11958.2 0.001683328
7,8,137.9 6.52344E-06
600,13,100000 1.2592E-05
750,13,7900 0.001614373
900,14,600 0.000224866
1000,13,900 0.006042416
2000,12,5982.79 2.04976E-07
204,12,2834.64 0.000277889
661,13,3163.75 0.007673949
686,12,5688.01 7.08686E-05
919,8,11066.69 1.19673E-05
802,8,689.45 0.000352359
911,8,2497.36 0.000101773
235,13,568.19 0.040390854
950,12,3863.69 4.68644E-05
934,13,1619.46 0.005504136
976,8,260.47 0.000235209
380,14,1531.91 0.000570665
461,13,736.92 0.036065991
144,8,1657.32 0.000372876
482,14,1786.63 0.000441882
738,14,702.51 0.000378719
797,12,2200.73 0.000151644
828,13,3574.72 0.00382272
204,8,4479.62 0.000185111
745,14,2462 0.000163094
726,14,4816.31 7.90472E-05
106,14,10096.9 2.23119E-05
479,8,392.29 0.001044407
196,14,1514.04 0.000466709
154,14,661.25 0.000575735
915,13,3452.94 0.002880403
851,13,621.1 0.012501779
166,12,179.97 0.0008267
238,8,960.7 0.00080575
365,14,480.98 0.000995781
997,12,789.78 0.00013849
788,8,1687.6 0.000224603
322,13,8018.19 0.003835572
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Figure 4.13: Density Func. Joint Hierarchical model

The above graph is very reflective of the distribution expected of a loss data.

Again it is very descriptive of the general trend line of the number of claims

variable. The developed model was tested to find an established model which

is used in modeling loss data and the findings made was very interesting. It

was established that the developed model sits perfectly with the Pareto (Second

Kind) Distribution with parameters α=0.69265 and β=2.0489E-4, Pearson Type

6 Distribution with parameters α1=0.64174,α2=0.82053,β=5.6707E-4 and γ=0

and the Burr Distribution with parameters k=1.4019, α=0.70705, β=7.3546E-

4 and γ=0. The Pareto distribution for the most part is utilized as a part of

the depiction of social, scientific, geophysical, actuarial, and different sorts of

noticeable phenomena. The density function and cumulative density function of

the Pareto (Second Kind) Distribution is given by

f(x) =
αβα

(x+ β)α+1
(4.8)

F (x) = 1−
(

β

x+ β

)α
(4.9)

The Pearson system was derived as an effort to model visibly skewed observations.

The Type 6 Distribution of Pearson is also known as a beta prime distribution
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or the F -distribution. It has for its density and cumulative density;

f(x) =
((x− γ)/β)α1−1

βB(α1, α2)(1 + (x− γ)/β)α1+α2
(4.10)

F (x) = I(x−γ)/(x−γ+β)(α1, α(2)) (4.11)

where where B indicates the Beta Function, Izand is the Regularized Incomplete

Beta Function. Also in statistics, econometrics and probability theory, the Burr

Type XII distribution or simply the Burr distribution is defined as a continuous

probability distribution for a non-negative random variable. The Burr distri-

bution is also referred to as the Singh-Maddala distribution and also a variant

of the distributions sometimes called the ”generalized log-logistic distribution”.

The distribution is mostly employed in modeling household income. However for

consistency with the research and literature, the decision is to select the Pareto

(Second Kind) Distribution with parameters α=0.69265 and β=2.0489E-4 Hence

the research can be concluded that the estimated distribution model is appropri-

ate for modeling loss distribution The acceptance criteria for the model fit was

the Kolmogorov Smirnov, Anderson Darling and Chi-Squared. The table below

displays other information concerning the model fit.

Table 4.13: Model Fitness- Kolmogorov-Smirnov
Kolmogorov-Smirnov

Sample Size 44
Statistic 0.07317
P-Value 0.95887
Rank 1
α 0.2 0.1 0.05 0.02 0.01
Critical Value 0.15796 0.18053 0.20056 0.22426 0.2406
Reject? No No No No No

4.9 Actuarial Applications of study

Insurance is rapidly becoming more of a commodity, with customers often choos-

ing their insurer purely on the basis of price. As a result, accurate ratemaking
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Table 4.14: Model Fitness- Anderson-Darling
Anderson-Darling

Sample Size 44
Statistic 0.39416
α 0.2
Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074
Reject? No No No No No

Table 4.15: Model Fitness- Chi-Squared
Chi-Squared

Deg. of freedom 5
Statistic 2.3117
P-Value 0.80455
α 0.2 0.1 0.05 0.02 0.01
Critical Value 7.2893 9.2364 11.07 13.388 15.086
Reject? No No No No No

has become more important than ever (SAS Institute Inc, 2011). By this, an im-

portant application of the distribution developed by the hierarchical model is the

pricing of the insurance (premium). Stated differently, Rate making (insurance

pricing) is the determination of what rates, or premiums, to charge for insurance.

A rate is the price per unit of insurance for each exposure unit, which is a unit

of liability or property with similar characteristics (Spaulding C. W, 2014).

4.9.1 Net Premium

According to Yu (2015), amongst the many premium principles, the net premium

principle is one of the commonly applied principles in the literature. It is feasible

and simple in application and satisfies many preferred properties. The underly-

ing principle is that the risk is eventually eliminated after selling a great many

identical and independently distributed policies. Thus the premium would just

to cover the claims only. It does not encompass any load for expenses or profit.

This principle is defined as:

P (X) = E(X) (4.12)
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Applying this to the results (the expected loss amount will be 661992.3446).That

is E(X) = 661992.3446. To obtain the actual premium per head client one divides

the total loss expected by the expected number of clients (mean) who accessed

the various health care providers. This premium calculation can be described as

the pure premium.

P (X) =
E(X)

ExpectedNumberofClients
(4.13)

P (X) =
9327

484
= 19.27 (4.14)

The advantage of the net premium principle is that it requires the least amount

of information from the predicted posterior distribution with a handy calculation

process. It is a crude method of providing estimation when there is no sophis-

ticated analysis of the predicted variables. At the same time the disadvantages

are too remarkable to be neglected. In reality it is almost impossible to sell in-

finitely many independent and identical policies. Bearing no risk loading makes

the premiums exposed to extreme events and fluctuations such as very large claim

amounts. Hence it is not recommended to apply the net premium principle in

practice, but to treat it as an estimated measure (Yu, 2015).

4.9.2 Expected Value Premium Principle

The expected value premium principle, often regarded as the extension of the net

premium principle, expresses as

P (X) = (1 + ξ)E(X); ξ > 0; (4.15)

where ξ is the loading factor. If ξ = 0, it is the same as the net premium principle.

Clearly the premium under this principle is larger than the expected loss. The

difference between the expected loss and the premium can be referred as the

premium loading which provides protection against unexpected losses. Loading is
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an extra cost incorporated into the insurance strategy to cover misfortunes which

are high above the expected for the organization originating as a result of insuring

a person who is inclined to a type of risk. It can also be defined as a sum that is

incorporated into the insurance cost (Sanjeev Sinha, 2013). This sum takes care of

the working expense of the insurer, and additionally the chance that the insurer’s

misfortunes for the duration will be greater than expected, and the adjustments

in the interest earned from the insurer’s ventures. This is added to the sum

needed to cover losses, known as the pure insurance cost (BusinessDictionary.com,

2015). Various factors influence the loading factor, some of which are the insurer’s

administrative costs, costs of capital,and the ability of the insurer to pass along

higher premiums to the employer (in this case the government) and the consumer

(client or risk exposure unit). The loading factor can be determined based on

the risk tolerance level of the insurers. A big value of ξ produces large protection

margin while less attraction to the potential buyers. Therefore, it is suggested

to pay attention to the loading factor and do constant testing to ensure that the

factor is set at a right level Yu (2015).

4.9.3 Variance Premium Principle

The variance premium principle can be expressed as:

P (X) = E(X) + ωV (X), ω > 0 (4.16)

If ω = 0,Variance Premium Principle is the same as the net premium principle.

The premium depends not only on the expected value but also the variance of

the loss. Unlike the other premium principles, the variance premium principle

considers the the variability of the loss; the more variability the loss, the higher

the premium. In contrast to the previous case that the risk loading is proportional

to the expected loss, here it is proportional to the variance of the loss Yu (2015).

From the results the variance of the randomly generated dataset is 1114320680.
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Hence per the variance premium principle, the premiums will be pegged per head

(risk unit/ clients) at:

P (X) =
9327 + ω(1114320680)

484
(4.17)

In this principle, just like the methods stipulated above, the insurer has the sole

right in determining the risk load to the premium and again, it is strictly linked to

the risk tolerance of the insurer. However there is some ambiguity with regards to

the interpretation of the empirical indication of the variance and the expectation

since both parameters different units.

4.9.4 Standard Deviation Premium Principle

This is expressed as:

P (X) = E(X) + v
√
V (X), v > 0 (4.18)

From the equation above, it can be said that the structure of the standard devia-

tion premium is the same as variance principle.As the standard deviation and the

expectation of the loss share the same unit, it is more convenient to interpret the

underlying reasoning of the principle. Each of the aforementioned principles have

its pros and cons, however as this does not have any linkage to the objectives of

this research, it would not be discussed.

4.10 Value-at-Risk

In finance,be it mathematics or risk administration, value at risk (VaR) is an

application mostly employed as a risk measure of loss on a particular portfolio

of money related resources. Given a probabilityp, time horizon and portfolio, at

this point 100p% VaR can be explained as the threshold loss value, such that

the likelihood that the loss on the portfolio over the given time period surpasses
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this value is p. In the insurance and banking industry,VaR is also known as

the quantile risk measure or quantile premium principle Yu (2015). Given a

confidence level α ∈ (0, 1), the VaR of the portfolio at the confidence level α is

defined by the least number l such that the likelihood that the loss L surpasses

l is at maximum (1 − α). Mathematically, given L is the loss of a portfolio, at

that point VaRα(L) is the level α-quantile, i.e.

VaRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}. (4.19)

where l represent the loss
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Chapter 5

Conclusion

5.1 Introduction

In this study, actuarial applications were applied to insurance claims data sub-

mitted by of three hundred and one (301) heath facilities to the NHIA. Claims

submitted was total charges for service rendered to people who called upon the

various health facilities. Claims submitted consisted of number of inpatient and

outpatient visits, inpatient, outpatient, drugs and other services rendered charges.

We sought out to develop a probability distribution for claims submitted to the

national insurer. In the quest to establish this, the analysis designed so that a

hierarchical model approach was feasible. We proceeded by breaking the estima-

tion procedure into frequency component, claim type and severity(loss or claim

amount) submitted. Frequency or number of claims submitted was modeled by

the a negative binomial distribution. The negative binomial model was deemed

appropriate after having various measures of fit gave enough proof of its appro-

priateness. Furthermore, with the aid of conditional probability the type of claim

submitted was also estimated. Then finally, the claim amount was estimated with

the generalized pareto distribution with three parameters. Softwares used in the

analysis, consisted of Stata (version 12), R and EasyFit. Stata were used in the

actual estimation estimation procedure whereas EasyFit was used to assess the

model developed by comparing actual data distributions against that which was

estimated or developed.
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5.2 Findings and Conclusions

The results reported in chapter four showed that hierarchical modeling was effi-

cient in developing claim distribution just as traditional loss distributions. The

number of inpatient visits to the health care provider was proven by the negative

binomial model to be insignificant in determining the number of claims submitted

to the national insurer. Also it was found that though the number of number of

claims submitted is a count variable, the negative binomial regression model was

a superior model at estimating the claim frequency than the Poisson regression

model.

5.3 Recommendations

In respect of the findings, the following recommendations are given on the use

and application of hierarchical methods. Interestingly, another finding of this

study was the fact that the estimated probability distribution was in perfect

alignment with the traditionally more accepted distribution models such as the

General Pareto (II) Distribution which is also accepted to which are distributions

normally used to estimate severity.

• We recommend the use of hierarchical methods because of the effects of

truly bringing to bear all aspects of a claim submitted to the national.

Hierarchical methods help to uncover variables which may be relevant in

the determining claim distribution but are not taken into consideration by

more traditional severity estimation distributions.

• The central limit theorem hinges on large population drawn theory and it is

not in all situations that this law holds, therefore it is advisable to use hier-

archical methods, since it does not impose strict distributional assumptions

on the datasets.

• Finally, many statisticians and actuaries do not use hierarchical methods
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because, they believe these methods are computationally complex with less

information on how they are used. However, the research recommends the

use of these methods because,there are statistical packages which now have

functions for the application of robust methods
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