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ABSTRACT 

 
It is becoming difficult for emergence services to find the best route especially in Kumasi to 

any destination in order to save lives in real time. This study deals with the problem of 

finding shortest paths in traversing some locations within the Kumasi Metropolis in the 
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Ashanti Region of Ghana. Dijkstra‘s Algorithm was selected to determine the shortest 

distances from any location to any destination within the Kumasi metropolis.  

The objective of thesis is to use Dijkstra‘s algorithm in constructing the minimum spanning 

tree considering the dual carriage ways in the road network of Kumasi metropolis within the 

shortest possible time for emergence services. The distance between 51 locations of the towns 

with the major roads was measured and a legend and a matrix were formulated. A visual 

basic program was prepared using Dijkstra‘s algorithm. The distances were used to prepare 

an input deck for the visual program.The methodology employed included review of relevant 

literature of the types of Dijkstra‘s algorithm and methods employed in the solution of the 

Dijkstra‘s algorithm and to develop computer solutions – ArcGIS and VB.net for faster 

computation of Dijkstra‘s algorithm. The result shows a remarkable reduction in the actual 

distance as compared with the ordinary routing. These results indicate, clearly the importance 

of this type of algorithms in the optimization of network flows.  Hence the shortest distance 

from any area in Kumasi metropolis to another can easily be calculated using this thesis so as 

to minimize the average lost of lives in case emergences.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1   BACKGROUND OF THE STUDY 

Kumasi is the capital city of the Ashanti Region, a very important and historical centre for 

Ghana. It is located about 250 km (by road) northwest of Accra. Kumasi is approximately 

300 miles north of the equator and 100miles north of the Gulf of Guinea. It is the second 

largest city of Ghana with a population of 1,517,000. The metropolis is made up of 119 sub 

metros. There are five ambulances currently located in Ashanti Region, and one is in the 

Kumasi metropolis. The one in Kumasi is located at the Komfo Anokye Teaching Hospital 

(KATH) and the other four ambulances are located at Mamponten, Ejisu, Konongo and 

Ahwia Nkwanta. All except the KATH and Ahwia Nkwanta services are located at ―fire 

stations‖. Cases handled by the Regional Ambulance Service (RAS) range from Gynecology 

to road accidents. The RAS is housed in a separate building at the KATH polyclinic. The 

EMTs here run two shifts; day and night. Communication is the key to running of the 

ambulance service. 

 

1.1.1  DYNAMIC TRAFFIC ROUTING 

In recent decades, road transportation systems have become increasingly complex and 

congested. Traffic congestion is a serious problem that affects people both economically as 

well as mentally. Moreover, finding an optimal route in an unknown city can be very difficult 

even with a map. These issues have given rise to the field of Intelligent Transport System 

(ITS), with the goal of applying and merging advanced technology to make transportation 
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safer and more efficient by reducing traffic accidents, congestion, air pollution and 

environmental impact (Ahuja,1993). In working towards this goal, traffic routing is required 

since the traffic conditions change overtime. Up-to-date, real-time information about traffic 

conditions can be collected through surveillance systems.  

However, the utilization of such information to provide efficient services such as real-time en 

route guidance still lags behind. The objective of this research is to solve the dynamic routing 

problem, which guides motor vehicles through the urban road network using the quickest 

path taking into account the traffic conditions on the roads. 

 

1.1.2 THE ROLE OF GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND 

LOCATION BASED SERVICE (LBS) 

Geographic Information Systems (GIS) represent a new paradigm for the organization and 

design of information systems, the essential aspect of which is the use of location as the basis 

for structuring the information systems. Transportation is inherently geographic and therefore 

the application of GIS has relevance to transportation due to the spatially distributed nature of 

transportation related data, and the need for various types of network level analysis, statistical 

analysis and spatial analysis. GIS possesses a technology with considerable potential for 

achieving dramatic gains in efficiency and productivity for a multitude of traditional 

transportation applications. The impact of GIS technology in the development of 

transportation information systems is profound. It completely revolutionizes the decision 

making process in transportation engineering. This allows the user to understand the logic 

behind the routing design. With the expansion and proliferation of Location Base Services 

(LBS) or road map, location awareness and personal location tracking become important 

attributes of the mobile communication infrastructure and begin to provide invaluable 

benefits to business, consumer and government sectors. How to establish low-cost, reliable, 
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and high-quality services is the most important challenge in the LBS area. Navigation is 

perhaps the most well known function of LBS and Geographic Information Systems for 

Transportation (GIS-T). It is applied in many land-based transportation applications to 

revolutionize human lives, such as the Intelligent Vehicles Navigation System (IVNS),which 

is currently a must-have feature especially in the high-end car market. 

 

1.1.3  THE ARCHITECTURE OF NAVIGATION SERVICE 

Navigation guidance can be discriminated between decentralized and centralized route 

guidance. In the former, drives derive their own paths using on-board computers, based on 

either static road maps on paper, or real-time traffic information provided via airwaves 

(radio) network. However, transportation networks have high costs, limited access, and low 

connection stability making it expensive to deliver detailed traffic information to all map 

users. Therefore, it may take a long time to find the destination locally or may even be 

impossible in some cases. On the other hand, navigation services are often used in time-

critical circumstances (e.g. 191 Emergency Service) which require near real-time query 

response and concise route guidance information to facilitate decision making. 

Centralized route guidance relies on Traffic Management Centres (TMC) such some FM 

stations to answer path queries submitted by drivers. In this case, the Client/Server 

architecture is employed in order to reduce query response time. A centralized GIS server is 

used to perform the geo-processing task and return query results instead of providing the 

entire dataset. The service can provide users turn-by-turn navigation instructions about 

optimal routes to their desired destinations through text or a map display. It can also alert the 

driver about problems ahead, such as traffic jams or accidents. To deliver query results to 

mobile clients within a tolerable latency time, it demands an efficient algorithm to retrieve 

desired navigation information quickly. Thus, it is able to accommodate large numbers of 
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road users. This thesis, discusses the algorithms that are feasible for centralized route 

guidance. 

1.2   STATEMENT OF THE PROBLEM 

Travelling is a part of daily life. The majority of people (especially in large cities or 

developing countries) rely heavily on emergences services in the case of accident such as 

road accident, fire and any disaster event people will rely on these emergence services instead 

of their own vehicles. In a metropolis with a complicated transport network, people often do 

not know how to reach their destination except where they often visit. In addition, people 

may want to plan for the fastest or the most economical method to their destinations. Such 

tasks require a sophisticated knowledge about public transport network. Further, we need a 

multi-modal route finding system, because a transport network comprises many modes of 

transportation, including railway, bus, mini-bus, and so on, within a large metropolis such as 

Kumasi. When a user asks for a path from one place to another, the system can generate 

routes, in multi-modal or single modal mode, according to input criteria, such as cost, time, or 

transportation mode. 

Transportation model is but one of the many problems that can be represented and solved as a 

network problem. To be specific consider the following situations: 

(i). Determination of the minimum- cost flow schedule from oil fields to refineries and 

finally to distribution centre this can be transported through tracks, trains etc. 

(ii). Determination of the shortest route joining two cities in an existing network of roads.  

(iii).  Collection, transporting and dumping of garbage. 

(iv). Business, scheduling deliveries and installations while including time window 

restrictions, or a calculating drive time to determine customer base, taking into 

account rush hour versus midday traffic volumes. 
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(v). Education, generating school bus routes honouring curb approach and no U-turn rules. 

(vi). Environmental Health, determining effective routes for county health inspectors. 

(vii). Public Safety, routing emergency response crews to incidents, or calculating drive 

time for first responder planning. 

(viii). Public Works, determining the optimal route for point-to-point pickups of massive 

trash items or routing of repair crews. 

(ix). Retail, finding the closest store based on a customer's location including the ability to 

return the closest ranked by distance. 

(x). Transportation, calculating accessibility for mass transit systems by using a complex 

network data set. 

A study of this representative list reviews that;  

Situation a) is a minimal spanning tree model  

 Situation b) is a shortest route model  

Situation c) is a minimum-cost capacitated network model  

The examples cited above deal with the determination of distances and material flow in a 

literal sense, the network models listed can be represented, and in principle, solve as linear 

programs. However the tremendous number of variables and constraints that normally 

accompanies a typical network model makes it inadvisable to solve network problems 

directly by the simplex method. The nature and/or structure of these problems allow the 

development of highly efficient algorithms, which in most cases are based on linear 

programming theory. 
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1.3  OBJECTIVES OF THE STUDY 

The objective of this thesis is to create a formation movement shortest path finding algorithm 

for emergences services vehicles to implement tactical movement within a large metropolis 

such as Kumasi and optimization scheme for transportation planning and analysis to provide 

a major advantage in its ability to take into account a range of different, often unrelated 

criteria, even if these criteria cannot be directly related to quantitative outcome measures.  

 

1.4   METHODOLOGY 

Generally, methodology consists of the study major routes, sampling procedure, sample size 

and how the data is analyzed. Kumasi Metropolis, however, has been selected as the 

reference region The methodology employed included review of relevant literature of the 

types of Dijkstra‘s algorithm and methods employed in the solution of the Dijkstra‘s 

algorithm and to develop computer solutions – ArcGIS and VB.net for faster computation of 

Dijkstra‘s algorithm 

 

1.5  JUSTIFICATION 

With the development of geographic information systems (GIS) technology, network and 

transportation analyses within a GIS environment have become a common practice in many 

application areas. A key problem in network and transportation analyses is the computation 

of shortest paths between different locations on a network. Sometimes this computation has 

to be done in real time. For the sake of illustration, let us have a look at the case of a 911 call 

requesting an ambulance to rush a patient to a hospital. Today it is possible to determine the 

fastest route and dispatch an ambulance with the assistance of GIS. Because a link on a real 

road network in a city tends to possess different levels of congestion during different time 

periods of a day, and because a patient's location cannot be expected to be known in advance, 
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it is practically impossible to determine the fastest route before a 191 call is received. Hence, 

the fastest route can only be determined in real time. In some cases the fastest route has to be 

determined in a few seconds in order to ensure the safety of a patient. Moreover, when large 

real road networks are involved in an application, the determination of shortest paths on a 

large network can be computationally very intensive. Because many applications involve real 

road networks and because the computation of a fastest route (shortest path) requires an 

answer in real time, a natural question to ask is: Which shortest path algorithm runs fastest on 

real road networks? Although considerable empirical studies on the performance of shortest 

path algorithms have been reported in the literature (Dijkstra 1959; Dial et al,. 1979; Glover 

et al., 1985;Gallo and Pallottino 1988; Hung and Divoky 1988; Ahuja et al., 1990; Mondou et 

al.,1991; Cherkassky et al., 1993; Goldberg and Radzik 1993), there is no clear answer as to 

which algorithm, or a set of algorithms runs fastest on real road networks. In a recent study 

conducted by Zhan and Noon (1996), a set of three shortest path algorithms that run fastest 

on real road networks has been identified. These three algorithms are:  

(i). the graph growth algorithm implemented with two queues,  

(ii). the Dijkstra‘s algorithm implemented with approximate buckets, and 

(iii). the Dijkstra‘s algorithm implemented with double buckets.  

Dijkstra's algorithm was then used on the node graph, but modified to run faster using 

this extra data. However this optimization changes Dijkstra's Algorithm so that it only 

finds a path, rather than the shortest path. Other applications of Dijkstra are 

(i). Routing of postal workers 

(ii). Routing robots through a warehouse 

(iii). Drilling holes on printed circuit board 

 A network consists of a set of points and a set of lines connecting certain pair of the points. 

These points are called nodes and are linked by arcs, edges or branches. Associated with each 
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arc is the flow of some type. In a transportation network, cities represent nodes and highways 

represent edges or arc, with traffic representing arc flow. The standard notation for describing 

network G= (N,A) where N is the set of nodes and A is the set of edges or arcs.  

Today it is possible to determine the faster route and dispatch the immediate assistance or 

with the help of the assistance of Geological Information System {G.I.S). With the advance 

development in technology, the analyses of networking and transportation within the 

technological environment have become a common practice in many applicable areas. The 

key problem in network and transportation is the computation of the SHORTEST PATHS 

between different locations on a network Sometimes this computation has to be done in real 

times. For the sake of illustration, let us have a look at the case of an emergency call, 

requesting an ambulance to rush a patient from a very remote area to a hospital. Because a 

link on a real road network in the city tends to posse different levels of congestion during 

different time period of a day and because a Patient‘s location cannot be expected to be 

known in advance, it is practically impossible to determine the fastest route before a call is 

received. Hence the fastest route can only be determined in real time.  

In some cases the fastest route has to be determined in a few second in order to ensure the 

safety of a patient. Moreover when large real road network are involved in an application, the 

determination of SHORTEST PATHS on a large network can be computationally very 

intensively. The collection, transport and disposal of solid waste, which is a highly visible 

and important municipal service, involves a large expenditure but receives, scant attention. 

This problem is even more crucial for large cities in developing countries due to the hot 

weather. A constructive heuristic, which takes into account the environmental aspect as well 

as the cost, is proposed to solve the routing aspect of garbage collection. This is based on a 

look-ahead strategy, which is enhanced by this additional mechanism: 
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The problem and its impact on the environment collection of household refuse/industrial 

waste is one of the most difficult operational problems faced by local authorities in any large 

city. The collection problem is especially crucial for cities in developing countries. Solid 

wastes generated from urban and industrial sources also contain a large number of 

ingredients, some of which are toxic. 

 

1.6   LIMITATIONS 

Among several variants of the SP algorithms there is a group of algorithms, which could be 

applied to solve the present issue, but the solution would not be efficient. An obvious group 

of algorithms is the one that gives a more general solution than needed and their solution 

would be redundant. A good example of a group giving a redundant solution is the ‗all pairs‘ 

group of the SP algorithms: only one pair of nodes would be used from the set of all pairs. 

Matrix algorithms are not of a good use for sparse networks. Matrix algorithms are memory 

consuming and for sparse networks time consuming. The implementation of the Dijkstra‘s 

algorithm based on a matrix is inefficient for road networks. Therefore the matrix algorithms 

are abandoned from this point for the rest of the report. 

Determining the ―best‖ route or set of routes for linear utilities such as highways, pipelines, 

and power transmission lines, through a landscape has been the subject of much research in 

geographic information systems (GIS) and spatial decision making. Specifying an optimal 

corridor that connects an origin and destination is analogous to identifying a least-cost-path 

through a varying space. Extensive research efforts have been executed to solve the problems 

for many years (Tomlin, 1990; Eastman, 1989; Douglas, 1994; Berry 2004). Tomlin‘s (1990) 

Spread algorithm generates an accumulated-cost-surface iteratively and delineates the 

weighted shortest path from any location to a destination by tracing back along slope lines. 

Eastman (1989) implemented a similar, but more efficient, push broom algorithm, which is 

able to produce an accumulated cost surface within three iterations. Many of the existing 
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least-cost-path algorithms in GIS are derived from the Dijkstra‘s shortest path algorithm and 

intend to generate a global optimal solution. 

 

1.7   ORGANIZATION OF THE THESIS 

The thesis is organized in five chapters 

Chapter one consists of the introduction to the shortest path and the use of Dijstra‘s over 

other shortest path algorithm. The background, problem statement, objective, methodology, 

justification and the limitations are discussed. In chapter two we shall put forward pertinent 

literature in field of shortest path algorithm and its application. Chapter three presents and 

gives a detailed explanation of the shortest path algorithm with Dijkstra‘s algorithms in 

detailed. Chapter four consist of the data collection, analysis and results. Chapter five, which 

is final chapter, focus on conclusion and recommendations. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1   INTRODUCTION 

Shortest path problems are the most fundamental and the most commonly encountered 

problems in the study of transportation and communication networks (Syslo 1983).  

There are many types of shortest path problems. For example, we may be interested in 

deterring the shortest path (i.e the most economic path or fastest path or minimum – fuel 

consumption path) from one specified node in the network to another specified node; or may 

need to find shortest paths from a specified node to all other nodes. 

Arrival time dependent shortest path finding is an important function in the field of traffic 

information systems or telematics. However, large number of mobile objects on the road 

network results in a scalability problem for frequently updating and handling their real-time 

location. Kim (2005) proposed a query processing method in MANET (Mobile Ad-hoc 

Network) environment to find an arrival time dependent shortest path with a consideration of 

both traffic flow and location in real time. Since their traffic flow method does not need a 

centralized server, time dependent shortest path query is processed by in-network way. In 

order to reduce the number of messages to forward and nodes to relay, the control introduce 

an on-road routing, where messages are forwarded to neighbouring nodes on the same or 

adjacent road segments. This routing method allows the collection of traffic information in 

real time and the reduction of the number of routing messages. 
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Experiments show that the number of forwarded messages is reduced in an order of 

magnitude with our on-road routing method compared to LAR-like method. At best, our 

method reduces about fifty seven (57) times less messages. 

The Integrated Transport Information System (ITIS) project for the Klang Valley was 

initiated by the Federal Government in early 2001 and deployed on a design – build basis in 

3Q 2002. With the City Hall, Kuala Lumpur as the implementing agency, the project was 

successfully completed and handed over in June 2005. Using a spectrum of different 

technologies and equipment, the ITIS has since been gainfully used by City Hall as well as 

the police for management of road network operations and particular for management of 

incidents over a network comprising of over 200kms of roadways. Omar (1994) discussed the 

technologies used in the IT IS network operations, in particular in the detection and 

management of incidents, lesson learnt – to – date as well as the roadmap for future 

operations and ITS related deployment. Optimization of forest road network is an important 

part of logging planning. Matthews (1942) was first to introduce a method for optimization of 

road spacing based on minimization of road and skidding cost. Ghaffarian (2000), found the 

best road network for a district harvested by skidder. The skidding model developed by 

stepwise regression model was used to predict the cost skidding per cubic meter for the thirty 

nine (39) nodes, which were planned in the district map.  

The harvesting volume and road cost per each node were computed. The data were entered 

into network 2000 and the shortest path algorithm; simulated annealing and great deluge 

algorithms were run to find the best solution to optimise logging cost of the district. The 

result showed which roads can be eliminated from the existing forest road network. Due to 

the reduction of travel time between regions in recent years by the development of 

transportation networks in Japan, the opportunities for anyone living in both urban and rural 

areas to meet people and to use urban facilities have increased. However, the various 

functions of smaller cities will be absorbed into these larger metropolises, since the sphere of 
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urban influence from big cities spreads to greater areas. In these backgrounds, the impacts of 

developments of expressway networks are analyzed by using the increment in 

interchangeable population and the changes in trade and recreation areas. Problems rural 

cities will have to bear in the near future are also discussed. It can be said that one result of 

this is the sphere of urban influence from big cities will spread to the retailing industry in 

rural areas in the near future. In order to utilize the expressway improvements effectively in 

rural cities, new and creative development policies are required which are dissimilar to those 

of major cities (Hirose, 1994). 

Setoguchi et al., (1994) analyzed the influence of network extension and the revised toll on 

the traffic of urban expressways in Fukuoka, Kita-Kyushu, and Nagoya, and, in estimating 

the traffic of these urban expressways, based on their maintenance and management, the 

author of this paper straightened out the relationships between the toll, a factor that 

determines the conversion amount of traffic, and the value of time to examine what traffic 

allocation calculations should be at a practical application level. Hiroshi et al., (1994) 

proposed to determine the groups of road sections to be simultaneously constructed and the 

priority between them, considering the disutility of road construction and the priority and 

simultaneity of construction between road sections. Dynamic programming is utilized for an 

optimization procedure. The mathematical modelling of the problem and its solution 

technique are emphasized. An example problem is included and illustrated for showing the 

applicability of the model. The results indicate that the proposed method is useful for multi-

stage determination problem such as in the road network planning. Talib et al., (1994) 

described a method, which determines a plan for improving a road network taking into 

consideration the impact of increasing number of trip generation.  

In this method, the increasing number of trip generation in study area is distributed to other 

unflourished residential zones, and the groups of road segments to be simultaneously 

constructed as well as their priority are determined so that the limited budget will be 



31 

 

effectively used. The dynamic programming is utilized for the optimization procedure. In the 

recent years, with the development of social economy in China, the public urban 

transportation has greatly changed. In Beijing city, taxi traffic system has become a new kind 

of public transit means for resident trips. Takeshi et al., (1994) first introduced the 

development history of taxi traffic system of Beijing city, which includes three stages of taxi 

service trades from original to now. Through the introduction, the historical reasons that taxi 

traffic development of Beijing city is increasingly expanding can be known. The second part 

analyses the interior and exterior circumstances and impact factors of taxi traffic system, and 

describes the improvement of relative traffic installation and the change of transportation 

policy of Beijing city. Further, they preliminarily study the developing strategies of Beijing 

taxi traffic system through the discussion on the change of passenger flow and the estimation 

of corresponding factors, and comparison with other big cities such as Taipei, Mexico city 

etc. The new Young-Jong island international airport (NYIA) and the related hinder land 

development is expected to be a catalyser, which stimulates even further Korea's economic 

power and participation of a global market. The basis of the development plan is 

characterized by following aspects: backup for the Northeast Asian hub due to the 

globalization trends, urgency of the social overhead capital building, rapid increasing of 

aviation demand and shortage of the existing facilities. According to this basis, the plan 

includes international business centre, community development and free trade zone. The 

main impacts of NYIA plan can be separated into the reinforcement of international 

competitiveness, the boosting of regional development and the opening of a window on 

cultural exchange. Also, it is necessary to participate the private sectors and to control 

different opinions within various government departments (Lee , 1994). Chikashi et al., 

(1994) described the characteristics of traffic behaviours such as traffic purposes at holidays 

and week days, selection of transportation modes, walking and selection of parking place to 

the central area of a local city. Data are obtained from response to questionnaires for people 
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in Miyazaki City. The choice behaviour of parking places is analyzed by using Aggregated 

Logit Model. The analyses results and answers show that it is necessary to decrease the traffic 

resistance on walking by such method as pedestrian and vehicular segmentation to keep 

traffic safe for pedestrian. 

Aminu, (2007) put forward the problem of finding shortest paths in traversing some location 

within the Sokoto Metropolis. In particular, it explores the use of Dijskra‘s alogrithm in 

constructing the minnimum spanning tree considering the dual carriage ways in some of the 

road in Kumasi Metropolis. The results shows that a reduction in the actual distance as 

compared with ordinary routing. These results indicate , clearly the importance of this type of 

algorithms in the optimisation of network flows. Lehr- und Forschungsgebiet Operations 

Research und Logistik Management (RWTH) Aachen, Templergraben 64, 52056 Aachen, 

Germany The elementary shortest path problem with resource constraints (ESPPRC) is a 

widely used modelling tool in formulating vehicle routing and crew scheduling applications. 

The ESPPRC consists of finding shortest paths from a source to all other nodes of a network 

that do not contain any cycles, i.e. duplicate nodes. The ESPPRC occurs as a sub problem of 

an enclosing problem and is used to implicitly generate the set of all feasible routes or 

schedules, as in the column generation formulation of the vehicle routing problem with time 

windows (VRPTW). The ESPPRC problem being NP-hard in the strong sense, classical 

solution approaches are based on the corresponding non-elementary shortest path problem 

with resource constraints (SPPRC), which can be solved using a pseudo-polynomial labelling 

algorithm. While solving the enclosing master problem by branch-and-price, this sub problem 

relaxation leads to weak lower bounds and sometimes impractically large branch-and-bound 

trees. A compromise between solving ESPPRC and SPPRC is to forbid cycles of small 

lengths. In the SPPRC with k-cycle elimination (SPPRC-k-cyc) only paths with cycles of 

length at least (k + 1) are allowed. The case k = 2 which forbids sequences of the form i to (j 

– i) is well known, and has been used successfully to reduce integrality gaps for the VRPTW 
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propose a new definition of the dominance rule among labels for dealing with arbitrary values 

of k ≥ 2. The numerical experiments on the linear relaxation of some hard VRPTW instances 

from Solomon's benchmark set show that k-cycle elimination with k ≥ 3 can substantially 

improve the lower bounds. Using well-known techniques for branching and cutting, the new 

algorithm has proven to be a key ingredient for getting exact integer solutions of knowingly 

hard problems from the literature. Eklund, et al., (1994) discussed the implementation of 

Dijkstra‘s classic double bucket algorithm for path finding in connected networks.  

The work reports on a modification of the algorithm embracing both static and dynamic 

heuristic components and multiple source nodes. The modified algorithm is applied in 3D 

Spatial Information System (SIS) for routing emergency service vehicles. The algorithm has 

been implemented as a suite of modules and integrated into a commercial SIS software 

environment. Genuine 3Dspatial data is used to test the algorithm on the problem of vehicle 

routing and rerouting under simulated earthquake conditions in the Japanese city of 

Okayama. Coverage graphs were also produced giving contour lines joining points with 

identical travel times. Shortest Path problems are inevitable in road network applications such 

as city emergency handling and drive guiding system, in situations where the optimal 

routings have to be found. As the traffic condition among a city changes from time to time 

and there are usually huge amounts of requests that occur at any moment, needs to quickly 

find the solution. Therefore, the efficiency of the algorithm is very important. Some 

approaches take advantage of pre-processing that compute results before demanding. 

These results are saved in memory and could be used directly when a new request comes up. 

This can be inapplicable if the devices have limited memory and external storage. Liang 

(2005) aimed only at investigating the single source shortest path problems and intended to 

obtain some general conclusions by examining three approaches: Dijkstra‘s shortest path 

algorithm, Restricted search algorithm and A*algorithm. To verify the three algorithms, a 

program was developed under Microsoft Visual Basic .Net environment. The three 
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algorithms were implemented and visually demonstrated. The road network example is a 

graph data file containing partial transportation data of the Ottawa city. 

Since the aftermath of typhoon Herb in 1996, all sort of flood and drought followed in 2002 

have claimed lives and countless property, which have imposed serious economic damage on 

the country. The collection of flood information is the basis for established prevention 

system. It is anticipated that flood information management system will include flood 

insurance, flood warning, damage notification and incorporation with GIS in the future to 

provide further capabilities. The use of the ArcGIS and mathematical programming, in 

accordance to the properties of the disaster, aims pragmatically at a balance between the 

reliefs of a disaster and the shortest time for conveying the equipments, and to construct the 

optimal model of the equipment‘s transportation and mobilisation of the emergency. The 

system could trace and manage more efficiently, the equipments in urgent need of repair, and 

reconstruct the state of the recovery. 

Humblet (1988) employed a distributed algorithm to compute shortest paths in a network 

with changing topology. It does not suffer from the routing table looping behaviour 

associated with the Ford-Bellman t-distributed shortest path algorithm although it uses truly 

distributed processing. Its time and message complexities are evaluated. 

Saunders and Takaoka presented new algorithms for computing shortest paths in a nearly 

acyclic directed graph G = (V, E). The new algorithms improve on the worst-case running 

time of previous algorithms. Such algorithms use the concept of a 1-dominator set. 

A 1-dominator set divides a graph into a unique collection of acyclic sub graphs, where each 

acyclic sub graph is dominated by a single associated trigger vertex. The previous time for 

computing a 1- dominator set is improved from O(mn) to O(m), where m =│E│  and n = 

│V│. Efficient shortest path algorithms only spend delete-min operations on trigger vertices, 

thereby making the computation of shortest paths through nontrigger vertices easier. Under 

this framework, the time complexity for the all-pairs shortest path (APSP) problem is 
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improved from O(mn + nr log r) to O(mn + r2 log r), where r is the number of triggers. Here 

the second term in the complexity results from delete-min operations in a heap of size r. The 

time complexity of the APSP problem on the broader class of nearly acyclic graphs, where 

trigger vertices correspond to any precomputed feedback vertex set, is similarly improved 

from O(mn + nr2) to O(mn + r3). The paper also mentioned that the 1-dominator set concept 

can be generalised to define a bidirectional 1-dominator set and k-dominator sets. When you 

drive to somewhere ‗far away‘, you will leave your current location via one of only a few 

‗important‘ traffic junctions. Starting from this informal observation, develop an algorithmic 

approach—transit node routing— that allows us to reduce quickest-path queries in road 

networks to a small number of table lookups. Present two implementations of this idea, one 

based on a simple grid data structure and one based on highway hierarchies. For the road map 

of the United States, our best query times improve over the best previously published figures 

by two orders of magnitude. Our results exhibit various trade-offs between average query 

time (5 μs to 63 μs), preprocessing time (59 min to 1200 min), and storage overhead (21 

bytes/node to 244 bytes/node) Bast et al., (2006). On the basis of analyzing the advantages 

and disadvantages of the shortest path algorithm and the problem solving based on 

knowledge method, it is clearly showed that neither the algorithm, which provides the precise 

solution nor the common method, which is totally suitable to people‘s usual finding activities 

and based on the common sense, can provide us with a satisfactory solution. However, they 

can be complementary to each other, and this has made the combined use of the two to 

become a necessity. Rong, WENG Min, DU QingYun, and CAI ZhongLiang put forward the 

combination use of knowledge and algorithm for way-finding. In this combined method, the 

knowledge is used for retrieving the case and isolating the searching area while algorithm is 

used for finding out the best solution in the isolated areas. The study shows that although the 

new approach cannot always ensure a most accurate solution, it not only prunes off a lot of 

search space but also produces routes that meet people‘s preference of travelling on familiar 
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and major roads. Yu et al., (1995) proposed a hierarchical algorithm for approximating all 

pairs of shortest paths in a large scale network. The algorithm begins by extracting a high 

level sub network of relatively long links (and their associated nodes) where routing 

decisions are most crucial. This high level network partitions the shorter links and their nodes 

into a set of lower level sub networks. By fixing gateway nodes within the high level network 

for entering and exiting these sub networks, a computational savings is achieved at the 

expense of optimality. They explore the magnitude of this trade off between computational 

savings and associated error both analytically and empirically with a case study of the South-

eastern Michigan traffic network. An order of magnitude drop in computational times was 

achieved with an on – line route guidance simulation at the expense of a five percent (5%) 

increase in expected trip times. A lot of the related work on shortest paths in stochastic 

networks has focused on the notion of shortest paths in expectation, e.g., (Bertsekas and 

Tsitsiklis 1991). Other models have added costs on the edges in addition to travel times 

(Chabini 2002), (Miller-Hooks and Mahmassani 2000) where the costs depend on the 

realized travel times and in this way can capture a measure of uncertainty. 

Finding the path of smallest expected length trivially reduces to deterministic shortest path 

problems and does not take into account risk in predicting the optimal route. Since most real 

world applications care about a trade off between risk and expectation, we consider nonlinear 

objectives that capture more information about the edge distributions. Closest to this model, 

Loui (Loui, 1983) considered a decision analytic framework for optimal paths under 

uncertainty, however, he only studied monotone increasing cost functions and his algorithm 

has running time O (nn) in the worst case. Mirchandani and Soroush (Mirchandani and 

Soroush, 1985) extended his work to a quadratic cost function of the path length, however 

their algorithm is also an exhaustive search over all potentially optimal paths, and thus 

exponential in the worst case. 
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Another branch of the stochastic shortest path literature has focused on adaptive algorithms 

(Fan, Kalaba and Moore 2000), (Gao and Chabini, 2002), (Boyan and Mitzenmacher, 2001), 

which compute the optimal next edge in light of lengths or travel times already realized en 

route to the current node. Another direction has been to give approximations and heuristics 

for expected shortest paths in stochastic networks with nonstationary (time-varying) edge 

length distributions (Miller-Hooks and Mahmassani,2000), (Fu and Rilett, 1998), (Hall, 

1986), to list a few. In this proposal, we only consider stationary edge length distributions 

that do not change with time; time-varying distributions will be the subject of future work. 

Delava et al., (2008) show that accomplishing an effective routing of emergency vehicle will 

minimize its response time and will thus improve the response performance. Traffic 

congestion is a critical problem in urban area that influences the travel time of vehicles.The 

aim of this study is developing a spatial decision support system (SDSS) for emergency 

vehicle routing. The proposed system is based on integration of geospatial information 

system (GIS) and real-time traffic conditions. In this system dynamic shortest path is used for 

emergency vehicle routing. This study investigates the dynamic shortest path algorithms and 

offers an applicable solution for emergency routing. The shortest path applied is based on the 

Dijkstra algorithm in which specific rules have been used to intelligently update the proposed 

path during driving. Results of this study, illustrate that dynamic vehicle routing is an 

efficient solution for the reduction of travel time in emergency routing. Finally, it is shown 

that using GIS in emergency routing offers a powerful capability for network analysis, 

visualization and management of urban traffic network. Spatial analysis capabilities of GIS 

are used to find the shortest or fastest route through a network. These capabilities of GIS for 

analyzing spatial networks enable them to be used as decision support systems (DSSs) for 

dispatching and routing of emergency vehicles. In agent based traffic simulations which use 

systematic relaxation to reach a steady state of the Scenario, the performance of the routing 

algorithm used for finding a path from a start node to an end node in the network is crucial 
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for the overall performance. For example, a systematic relaxation process for a large scale 

scenario with about 7.5 million inhabitants (roughly the population of Switzerland) 

performing approximately three trips per day on average requires about 2.25 million route 

calculations, assuming that 10% of the trips are adapted per iteration. Expecting about 100 

iterations to reach a stable state, 225 million routes have to be delivered in total. Lefebvre and 

Balmer (2008) focus on routing algorithms and acceleration methods for point-to-point 

shortest path computations in directed graphs that are time-dependent, i.e. link weights vary 

during time. The work is done using MATSim-T (Multi-Agent Traffic Simulation Toolkit) 

which is used for large-scale agent-based traffic simulations. The algorithms under 

investigation are both variations of Dijkstra‘s algorithm and the A*-algorithm. Extensive 

performance tests are conducted on different traffic networks of Switzerland. The fastest 

algorithm is the A*algorithm with an enhanced heuristic estimate: While it is up to 400 times 

faster than Dijkstra‘s original algorithm on short routes, the speed compared to Dijkstra‘s 

diminishes with the length of the route to be calculated. The waste collection problem can 

also be modelled as the Capacitated Arc Routing Problem (CARP).  As this problem cannot 

be solved by optimal (exact) methods in practice, heuristics are used for this purpose. One 

possible approach is first to find a giant tour and then decompose it into a set of routes that 

are feasible with regard to the vehicle capacity.  

More importantly in the inspection of distributed systems such as electric poles, gas pipeline 

telephone line and a whole lot more so as   faults to be rectify as soon as possible.  Because 

many applications involves real networks and also because the computation of a fastest route 

(shortest path) requires an answer in real time a natural question to ask is which shortest path 

runs fastest on real road networks?  
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Although there are a number of shortest path algorithms such as: 

Djikstra‘s  

Floyd‘s  

Glover et al Goldberg and  Radzik etc.  

But there is no clear answer as to which algorithm, or a set of algorithms runs faster on a real 

road network.  
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CHAPTER THREE 

 

METHODOLOGY 

 

3.0   METHODOLOGY 

The methodology employed included review of relevant literature of the types of Dijkstra 

algorithm and methods employed in the solution of the Dijkstra algorithm and to develop 

computer solutions – ArcGIS and VB.net for faster computation of Dijkstra algorithm 

 

3.1   BACKGROUND OF GRAPH THEORY 

In this chapter, some fundamental concepts of graph theory are introduced and will be 

referred to in subsequent discussions. 

 

3.2   DEFINITION OF A GRAPH 

In mathematics and computer science, graph theory deals with the properties of graphs. 

Informally, a graph is a set of objects, known as nodes or vertices, connected by links, known 

as edges or arcs, which can be undirected or directed (assigned a direction). It is often 

depicted as a set of points (nodes, vertices) joined by links (the edges). Precisely, a graph is a 

pair, G = (V; E), of sets satisfying E∈ [V]; thus, the elements of E are 2-element subsets of V. 

The elements of V are the nodes (or vertices) of the graph G, the elements of E are its links 

(or edges). In this case, E is a subset of the cross product V *V which is denoted by E ∈ [V]. 

To avoid notational ambiguities, we shall always assume that V ∩E =∅. 

A connected graph is a non-empty graph G with paths from all nodes to all other nodes in the 

graph. The order of a graph G is determined by the number of nodes. Graphs are finite or 

infinite according to their order. In this thesis, the graphs are all finite and connected. 

Furthermore, a graph having a weight, or number, associated with each link is called a 

weighted graph, denoted by G = (V; E; W). An example of a weighted graph is shown in  
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Figure 3.1: A diagram of a weighted graph with 6 nodes and 7 links. 

 

3.2.1   DEGREE OF A VERTEX (NODE) 

A node v is incident with a link e if v ∈ e; then e is a link at v. The two nodes incidents with a 

link are its end nodes. The set of neighbours of a node v in G is denoted by N (v).The degree 

d (v) of a node v is the number |E (v)| of links incident on v. This is equal to the number of 

neighbours of v. A node of degree 0 is isolated. The number δ (G) = min {d (v) | v∈V} is the 

minimum degree of G, while the number Δ (G) = max {d (v) | v∈V} is the maximum degree. 

The average degree of G is given by the number 

            

 

Clearly, 

δ (G) ≤ d (G) ≤ Δ (G)                                

The average degree globally quantifies what is measured locally by the node degrees: the 

number of links of G per node. Sometimes it is convenient to express this ratio directly, as ε 

(G) = |E|/|V|. The quantities d and ε are intimately related. Indeed, if we sum up all of the 

node degrees in G, we count every link exactly twice: once from each of its ends.  

 

Thus,  
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and therefore 

          

                  

Graphs with a number of links that are roughly quadratic in their order are usually called 

dense graphs. Graphs with a number of links that are approximately linear in their order are 

called sparse graphs. Obviously, the average degree d (G) for a dense graph will be much 

greater than that of a sparse graph. 

In a graph, a path, from a source node s to a destination node d, is defined as a sequence of 

nodes  (v0, v1, v2, ..., vk) where s = v0, d = vk, and the links (v0, v1), (v1, v2), ..., (vk−1,vk) 

are present in E. The cardinality of a path is determined by the number of links. The cost of a 

path is the sum of the link costs that make up the path. 

 

An optimal path from node u to node v is the path with minimum cost, denoted by (u, v). The 

cost can take many forms including travel time, travel distance, or total toll. In my research, 

the cost or weight of a path stands for the travel time which is needed to go through the path. 

 

 3.2.2   TRANSPORTATION NETWORK DATA MODEL 

A transportation network is a type of directed, weighted graph. The use of GIS for 

transportation applications is widespread and a fundamental requirement for most 

transportation GIS is a structured road network. In developing a transportation network 

model, the street system is represented by a series of nodes and links with associated weights. 

This representation is an attempt to quantify the street system for use in a mathematical 

model. Inherent in the modeling effort is a simplification of the actual street system. The 

network nodes represent the intersections within the street system and the network links 

represent the streets. The weights represent travel time between the nodes. 

As a specialized type of graph, a transportation network has characteristics that differ from 

the general graph. A suitable data structure is required to represent the transportation 

network. Comparing the three data structures, an adjacency list representation of the graph 

occupies less space because it does not require space to represent links which are not present. 

The space complexity of an adjacency list is O(|E|+|V|), where |E| and |V | are the number of 

links and nodes respectively. In contrast, incidence matrix and adjacency matrix 

representations contain too many 0s which are useless and redundant in storage. The space 
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complexity of incidence matrices and adjacency matrices are O (|E| × |V|) and O (|V|2) 

respectively. In the following discussion, we shall take a more detailed look at the three data 

models in terms of storage space and suitable operations. Using a naive linked list 

implementation on a 32-bit computer, an adjacency list for an undirected graph requires 

approximately 16 × (|E|+ |V|) bytes of storage space. On the other hand, because each entry in 

the adjacency matrix requires only one bit, they can be represented in a very compact way, 

occupying only    |V |2 /8 bytes of contiguous space. First, we assume that the adjacency list 

occupies more memory space than that of an adjacency matrix. Then 

  

Based on equation (3.1.2) in section 3.1, we have, 

 

 

where d (G) is the average degree of G. 

 

This means that the adjacency list representation occupies more space when equation (3.5) 

holds. In reality, most transportation networks are large scale sparse graphs with many nodes 

but relatively few links as compared with the maximum number possible (|V| × (|V| −1) for 

maximum).That That is, there are no more than 5 links (Δ (G) ≈ 5) connected to each node. In 

most cases there are usually 2, 3 or 4 (δ (G) = 2) links, although the maximum links is |V|-1 

for each node. Also, road networks often have regular network structures and a normal 

layout, especially for well planned modern cities. Again most transportation networks are 

near connected graphs, in which any pair of points is traversable through a route. Assuming 

the average degree of a road network is 5, equation 3.5 holds only if |V | ≤448.  

However, most road networks contains thousands of nodes where |V | >> 448. As a result, 

equation 3.2 cannot hold. Thus, the adjacency list representation occupies less storage space 

than that of an adjacency matrix. For example, consider a road network containing 10000 

nodes. If an adjacency matrix is employed to store the network, at least 10 megabytes of 

memory space is required. It will most likely take more 

computational power and time to manipulate such a large array, and then it is impossible to 

conduct routing searches in some mobile data terminals, such as smart phones and Personal 

Digital Assistance (PDAs).The comparison between the adjacency matrix and incidence 
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matrix can give the same result. Assuming an adjacency matrix occupies more storage space 

than that of an incidence matrix,  

then 

|V|
2
 ≥ |E|×|V| 

From equation 3.2, we obtain, 

d (G) ≤ 2  (3.6) 

This means that the adjacency matrix representation occupies more space if and only if 

equation 3.6 holds. Since the minimum degree of transportation network is 2 (δ (G) = 2), then 

equation 3.6 is invalid. As a result, the adjacency matrix occupies less storage space than that 

of the incidence matrix. Since the adjacency matrix cannot compete with the adjacency list in 

terms of storage space (i.e., requires more space), it follows that the incidence matrix will 

also not be able to compete. 

Other than the space trade off, the different data structures also facilitate different operations. 

It is easy to find all nodes adjacent to a given node in an adjacency list representation by 

simply reading its adjacency list. With an adjacency matrix, we must scan over an entire row, 

taking O (|V|) time, since all |V | entries in row v of the matrix must be examined in order to 

see which links exist. This is inefficient for sparse graphs since the number of outgoing links 

j may be much less than |V |. Although the adjacency matrix is inefficient for sparse graphs, it 

does have an advantage when checking for the existence of a link u → v, since this can be 

completed in O (1) time by simply looking up the array entry [u; v]. In contrast, the same 

operation using an adjacency list data structure requires O (j) time since each of the j links in 

the node list for u must be examined to see if the target is node v. However, the main 

operation in a route search is to find the successors of a given node and the main concern is to 

determine all of its adjacent nodes. The adjacency list is more feasible for this operation. 

The above discussions demonstrate that the adjacency list is most suitable for representing a 

transportation network since it not only reduces the storage space in the main memory, but it 

also facilitates the routing computation. 

 

Since transportation networks are a specialized type of graph, some fundamental knowledge 

of graph theory is required. Some basic concepts, such as the definition of a graph, degree of 

a graph, and the definition of a path, were introduced at the beginning of this chapter. In the 

discussion of the degree of a graph, the dense graph and sparse graph have been defined and 

used in data model discussion. In the data model discussion, three types of data models for 

graph representation were given: the incidence matrix, adjacency matrix and adjacency list. 
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The discussion includes a description of each model, an analysis of the space complexity, 

storage space requirements and an examination of suitable operations for each model. Based 

on the discussion, an adjacency list is regarded as the best representation of the transportation 

network considering its own characteristics. My research, will utilize an adjacency list to 

construct topology of the experimental road network in order to implement my routing 

computations. 

 

3.3   TYPICAL ROUTING QUERIES 

There are various types of routing queries that may be submitted to the centralized GIS 

server. To answer the queries, many algorithms have been developed to satisfy the conditions 

and requirements of these queries. The research for generalizing this document is focused on 

two typical routing queries. The first query deals with finding the optimal route from the 

current location to a known destination. The other query allows users to locate the closest 

facility of a certain category (hotel, hospital, gas station, etc.), in terms of travel distance 

(time), without knowing the destination explicitly. 

 

3.3.1   ROUTING QUERY FOR KNOWN DESTINATION 

For this query, the mobile client or driver has a definite destination in mind and desires to 

acquire the optimal route leading to the destination. Since the traffic condition changes 

continually over time, the optimal route will change during travel whenever up-to-date traffic 

conditions are provided. For example, when we want to drive from the airport to the KMA 

office, we can plan the entire optimal route prior to departure according to the current 

condition of the transportation network. However, it may not be the final optimal route due to 

frequent changes in the traffic conditions. So, we have to modify our route midway and plan 

a new path from the current location to the destination based on real-time traffic conditions. 

This case is more complicated than the conventional dynamic concept because both the 

traffic conditions and the query point (location of the driver) are dynamic. This type of query 

is also defined as an en route query since it is submitted while the client is moving. 

 

3.3.2   ROUTING QUERY FOR UNKNOWN DESTINATION 

For this query, drivers may inquire about the location of the closest facility, such as the 

nearest hotel, hospital or gas station, without knowing the destination in advance. In this case, 

the closest facility is defined in terms of travel distance (time) within the road network as 

opposed to travel distance. This query can be classified as the Nearest Neighbor problem. 
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Both the closest destination and an associated optimal route need to be found based on travel 

time within the road network. Similarly, the optimal route also has to be recalculated 

whenever up-to-date traffic conditions are provided. In extreme circumstances, the closest 

destination may also change. For example, in an unknown city, we may want to find the 

location of the closest post office after we check into a hotel. From the query result, we are 

aware of the position and optimal route to the closest post office. In this case, we expect the 

navigation service not only to provide the adaptive route leading to it, but also to confirm the 

validity of the closest post office while traveling. If the traffic conditions do not change 

significantly, the optimal route may only need to be slightly modified. If the traffic conditions 

change considerably or there are serious traffic congestions around the anticipated post office 

destination, this post office may no longer be the closest one in terms of traveling time. A 

new post office location and optimal route must then be determined dynamically based on the 

current location and traffic conditions. In this scenario, the query is an en route query. To 

solve this problem, a dynamic nearest neighbor and route searching algorithm is required. 

 

3.4   INTRODUCTION TO THE SHORTEST PATH ALGORITHMS 

The shortest path (SP) algorithms are among fundamental network analysis problems. Since 

1957 a considerable progress has been made in the SP algorithms after Minty published his 

paper (1957). Minty succinctly described the basic SP problem for symmetrical networks (a 

network is symmetrical if for every pair of nodes the cost of a link between the two nodes is 

independent of their starting node). To state the problem beyond doubt, he suggested 

constructing a model of the given network. The model is made of strings, each string of the 

length proportional to the costs of the modelled link. 

Finally, to find the links of the SP one has to pull the source node and the destination node of 

the journey as far away as possible. The tight strings are the links of the SP. Since 1957 there 

has been a number of major papers published, the most important were published by Bellman 

(1959), Dijkstra (1959) and Moore (1959). These articles were formative and most of the 

traffic research has used their results (for example Clercq (1972) and Cooke and Halsey 

(1966)). These articles are now included in references by most other publications. 

There are a number of review papers. One of the utmost importance has been published by 

Dreyfus (1969). The review gives a comprehensive summary of the research, which has been 

carried out up to 1969. The article surveys over ten years of research, discussing the most 

crucial stages and pointing out the wrong and inefficient solutions. The paper also gives a 

brief solution of the SP problem for time varying costs of links, Which is the basis of this 
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report. The shortest path algorithms are currently widely used. They are the basis of the 

network flow problems, tree problems and many related other problems. They determine the 

smallest cost of travel, of a production cycle, the shortest path in an electric circuit or the 

most reliable path. In the book by Ahuja ,(1993) one can realize that the SP problem is an 

underlying problem of the network optimization and that it is closely related to network flows 

or tree building issues. Internet is a large field where the shortest path algorithms can be 

applied. The Internet problems involve data packages transmission with the minimal time or 

by the most reliable path. An example of the SP algorithms in the Internet is given by Cai, 

(1997). This paper proposes three SP algorithms. The devised algorithms are well explained. 

The article is closely related to the problem. The same algorithms can be used without 

fundamental changes to the urban traffic issues. The use of the proposed algorithms for 

public transportation networks will be studied in the section ‗Shortest path and the 

environment issues‘. Algorithms to be discussed here have a thirty-year old history and 

solutions to the fundamental problems are well known. The contemporary research is directed 

toward parallel computing as the method for further lowering of the time complexity bound 

of the shortest path algorithms. The report is not interested in the parallel approach. The 

article by Klein and Subramanian (1997) is an example of the shortest path parallel 

algorithm. 

 

3.5   SOME NETWORK DEFINITIONS 

 

TYPES OF NETWORKS 

There are several types of networks of special interest to the project: sparse, planar and road 

networks. Other types of networks (as grid or dense) are not taken into account. 

 

3.5.1   SPARSE NETWORKS 

Sparse networks are those which have the number of links only a few times bigger than the 

number of nodes. A network of one hundred (100) nodes and four hundred (400) links would 

be considered sparse but a network with one hundred (100) nodes and five thousand (5000) 

links would be classified as dense. 

Public transportation networks are sparse. From node approximately four links leave. If a 

sparse network was presented in a matrix form, then in each row of the matrix about only 

four places would be used, the rest would be left idle. For matrix network representation there 

are algorithms, which handle efficiently the sparse networks. However, it is recommended 
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not to use matrix-based algorithms since the matrix representation of a sparse network is 

highly inefficient. Instead of the matrix algorithms the tree building algorithms can be used as 

they store the sparse network information in an efficient way (usually using lists). In this 

thesis, the Dijkstra algorithm which is a basic tree building algorithm has been used. The 

matrix in figure 1.3 is an example of the inefficient matrix representation of a sparse network 

since there are more places unused than used. 

  

3.5.2   PLANAR NETWORKS 

There are a number of SP algorithms for planar graphs. Methods characteristic to planar 

graphs (as separators) lower the computational bound of the SP algorithms. Since the road 

network and transport network are mostly planar, application of the algorithms from this 

group could bring more efficient solutions to our problem. However, not all road networks 

are planar, there are viaducts and bridges, which can destroy planarity and thus unable, limit 

or complicate the application of these algorithms. For this reason the methods for the planar 

graphs will not be considered. The article by Monika R. Henzinger etal., (1997) proposes 

three new algorithms for planar graphs. 

 

3.6   ROAD NETWORKS 

In the representation of a road network a link represents a road and a node represents a 

crossroad. The ratio of the number of links to the number of nodes is approximately 3.  

(Steenbrink, year 1958), gives an example of a road network with about 2000 nodes and 6000 

links). The link costs are always non-negative. The road networks are usually planar and 

sparse. The number of nodes is big, usually expressed in thousands. Road networks contain 

loops, which are allowed since they may be only of a non-negative cost (the link costs are 

only non-negative). The road networks are of a special interest in this thesis. The 

characteristic feature of the road networks is their nonnegative link lengths property. Dijkstra 

year made a good use of nonnegative lengths to design his algorithm. Because of this close 

relation between Dijkstra, algorithm and road characteristic, it should not be surprising that 

this report suffers constant ‗Dijkstra‘ referring. The project‘s road network of the Kumasi 

City had about seven hundred and eighteen (718) nodes and one thousand one hundred and 

eighty – seven (1187) links. The network represents the link connections between nodes and 

the distances between them. 
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3.7   A GENERAL CLASSIFICATION OF THE ALGORITHMS 

The Shortest Path algorithms are either matrix algorithms or tree building algorithms (tree 

algorithms are also called labelling algorithms). 

 

3.7.1   MATRIX ALGORITHMS 

Matrix algorithms store the network information in the matrix form and carry out the 

computations using basic matrix operations (as addition and multiplication of matrices or 

matrix‘s elements). In dense networks is for all pair problems. The disadvantage of the matrix 

algorithms is the imposed matrix representation. The first disadvantage is the imposed 

inefficient matrix representation of a sparse network. The more significant disadvantage is 

that the matrix representation allows one directed link between two nodes (there can be at 

most two links between two nodes, but they have to be of distinct directions). 

                                          

Figure  3. 2 :  A sample network that can be represented in a matrix form 

 

                                  

Figure 3.3: A sample network that can be not represented in a matrix form 
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Figure 3.4: Matrix representation of the network of Figure 3.1 

 

The network from Figure 3.1 is specified by a matrix in Figure 3.4. Not every network can be 

represented in such a way. If a network has more than one directed link from a single node to 

some other node, then it cannot be represented in a regular matrix since it can store only one 

directed link going from a specific link to some other node. A sample network capable of 

being represented as a matrix is depicted in Figure 3.1.The network has two links connecting 

the 1st node to the 3rd node. The link from the 1
st
 node to the 3rd node is ascribed the cost of, 

which is stored in the M matrix in Figure 3.4. As a13 = 2. The link which goes in the reverse 

direction (from the 3rd node to the 1
st
 node) is ascribed the cost of 3, this is stored as a31=3.If 

there was a need to represent the three links between the 1st and 3rd nodes from the        

Figure 3.4 then we realise we have run out of places in the matrix and the network cannot be 

fully represented by a matrix. There can be some improvements of the matrix representation 

envisaged for coping with such an extended network. One improvement is a matrix of lists. 

An entry in this matrix of lists would not characterise only one directed link from one node to 

another but a list of directed links from this node to another node. However, this is not 

classified anymore as the matrix approach to the SP problem because computations of most 

matrix algorithms would not be performed anymore using basic matrix operations. 

 

3.7.2   THE TREE BUILDING ALGORITHMS 

The thesis algorithms are tree building algorithms. A tree building algorithm builds a tree 

with the root in the source node of the trip. Each node of the network can be either a leaf or a 

fork of the tree. A fork leads to another forks or leaves. There are certain true statements 

about the tree. The first is that there are p leaves then these leaves are p nodes of the biggest 

cost to reach among all nodes. The second says that each fork node (a node that is a fork in 

the tree) is of the cost smaller than a cost of any leaf node (a node that is a leaf in the 

tree).Building such a tree is a dynamic programming task since the result of a node just 

reached can be used to calculate the cost of the node which can be reached immediately after 
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this node. An example of building a tree for a simple network is presented in the Figure 1.4. 

To build this tree we use the Dijkstra algorithm. 

 

a) Network 

                             

 

      b) Tree 

                                 

Figure  3. 5: A network and its shortest path tree. 

 

3.8 THE INPUT AND THE OUTPUT TO THE SHORTEST PATH ALGORITHMS 

Depending where we are and where we want to go an algorithm can find as many SP‘s as it is 

necessary to satisfy us. The SP algorithms can be divided into groups that differ by the given 

input and the desired output. The groups are: one pair algorithms, one to many, many to one, 

and all pairs algorithms. 

 

3.8.1   ONE PAIR 

There are two nodes given: the source node and the destination node. A SP algorithm finds 

only one SP (if it exists) from the given source node to the given destination node. The tree 

algorithms are going to build an incomplete tree with the root in the source node. The tree 

will be complete up to the moment the destination node has been reached. The Dijkstra 

algorithm (1959) and the Bellman (1958) algorithm are examples are one pair algorithms. 
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3.8.2   ONE-- TO -- MANY 

Only the source node is specified. All shortest paths from this source node to all other nodes 

will be calculated. If there is a path from the source node to every other node, then there will 

be (n-1) SP‘s evaluated (n is the number of nodes is the network). A tree building algorithm 

will create a complete shortest path tree. The Dijkstra algorithm and the Bellman algorithm 

are also examples of one to many algorithms. 

 

3.8.3   MANY – TO- ONE 

This problem is given many source nodes and one destination node. To each source node 

there is time ascribed saying what time the journey starts from this node. The solution to the 

problem is to find the shortest path from any source node to the destination node that will 

result in reaching the destination node at the minimal time of arrival (not cost of the journey).  

This type of a problem is easy to solve having the Dijkstra algorithm. The solution doesn‘t 

differ significantly from the Dijkstra algorithm. Only at the beginning one has to put all the 

source nodes into the priority queue with appropriate costs. 

 

3.8.4   ALL PAIRS 

For this algorithm group there is neither a necessity for source node nor for the destination 

node. An algorithm from this group calculates all the possible     

SP‘s, i.e. the algorithm is to find the shortest path for every pair of nodes. The number of 

paths is therefore (the paths form one and the same node is 0 and doesn‘t require calculation). 

The computations are mostly done on matrices. The Floyd algorithm (1962) is an example 

from the all pairs algorithm group. 

The project makes use of ‗one to many‘ algorithm and ‗many to one‘ algorithm only. The ‗all 

pairs‘ algorithm is not essential for the project and will not be discussed. 

 

 

 

 

 

 

 



53 

 

3.9   ALL – PAIRS SHORTEST PATH PROBLEM 

The shortest path between two nodes might not be a direct edge between them, but instead 

involve a detour through other nodes. The all- pairs shortest path problem requires that we 

determine shortest path distances between every pair of nodes in a network. 

Shortest path problems are the most fundamental and the most commonly encountered 

problem in the study of transportation and communication networks (syslo et al., 1983). 

There are many types of shortest-path problem. For example, we may be interested in 

determining the shortest path (i.e., the most economical path or fastest path, or minimum-

fuel-consumption path) from one specified node in the network to another specified node; or 

we may need to find shortest paths from a specified node to all other nodes. Shortest paths 

between all pairs of nodes in a network are required in some problems.  Sometimes, one 

wishes to find the shortest path from one given node to another given node that passes 

through certain specified intermediate nodes.  

In some application, one requires not only the shortest path but also the second and third 

shortest path. There are instances when the actual shortest path is not required, but only the 

shortest distance is required. 

Next, we shall confine ourselves to two most important shortest-path problems; How to 

determine shortest distance (a short path) from a specified node to another specified node t, 

and ~how to determine shortest distances (all paths) from every node to every other in the 

network. Shortest path route problem deals with determining the connected arcs In a 

transportation network that collectively comprise the shortest distance.  

Between a source and a destination. The shortest path problem involves a weighted, possibly 

directed graph described by the set of edges and vertices shortest path deals with two 

algorithms for finding the shortest route.  
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SHORTEST PATH PROBLEMS 

The computation of shortest paths has been extensively researched since it is a fundamental 

issue in the analysis of transportation networks. There are many factors associated with 

shortest path algorithms. First, there is the type of graph on which an algorithm works - 

directed or undirected, real-valued or integer link costs, and possibly negative or non-

negative link-costs. Furthermore, there is the family of graphs on which an algorithm works - 

acyclic, planar, and connected. All of the shortest path algorithms presented in this thesis 

assume directed graphs with non-negative real-valued link costs. 

 

3.10 CLASSIFICATION OF SHORTEST PATH (SP) PROBLEMS 

Even though different researchers tend to group the types of shortest path problems in slightly 

different ways, one can discern, in general, between shortest paths that are calculated as one-

to-one, one-to-all, or all-to-all. Given a graph, one may need to find the shortest paths from a 

single starting node v to all other nodes in the graph. This is known as the single-source 

shortest path problem. 

As a result, all of the shortest paths from v to all other nodes form a shortest path tree 

covering every node in the graph. Another problem is to find all of the shortest paths between 

all pairs of nodes in the graph. This is known as the all-pairs shortest path problem. One way 

to solve the all-pairs shortest path problem is by solving the single source shortest path 

problem from all possible source nodes in the graph. Dijkstra's 

algorithm is an efficient approach to solving the single-source shortest path problem on 

positively weighted directed graphs with real-valued link costs. Many of today's shortest path 

algorithms are based on Dijkstra's approach. There is also the relatively simple single-pair 

shortest path problem, where the shortest. path between a starting node and a destination node 
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must be determined. In the worst case, this kind of problem is as difficult to solve as single-

source. 

3.11   CLASSICAL SHORTEST PATH ALGORITHMS FOR STATIC NETWORKS 

Path finding is applicable to many kinds of networks, such as roads, utilities, water, 

electricity, telecommunications and computer networks, the total number of algorithms that 

have been developed over the years is immense, depending only on the type of network 

involved. Labeling algorithms are the most popular and efficient algorithms for solving the 

SP problem. These algorithms utilize a label for each node that corresponds to the tentative 

shortest path length pk to that node. The algorithm proceeds in such away that these labels are 

updated until the shortest path is found. 

Labeling algorithms can be divided into two sets: the label setting (LS) algorithms and label 

correcting (LC) algorithms. For each number of iteration, the LS algorithm permanently sets 

the label of a node as the actual shortest path from itself to the start node, thus increasing the 

shortest path vector by one component at each step. The LC algorithm does not permanently 

set any labels. All of the components of the shortest path vector are obtained simultaneously; 

a label is set to an estimate of the shortest path from a given at each iteration. Once the 

algorithm terminates, a predecessor label is stored for each node, which represents the 

previous node in the shortest path to the current node. As a result, it only determines the path 

set, Pk= {p1,…, pk}, in the last step of the algorithm. Backtracking is then used to construct 

the shortest paths to each node. Typical label setting algorithms include Dijkstra‘s algorithm 

and the A* algorithm. The Floyd-Warshall algorithm is an example of a label correcting 

algorithms. 
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3.12   FLOYD WARSHALL ALGORITHM 

The Floyd –Warshall algorithm obtains a matrix of shortest path distances within 0{n3} 

computations. The algorithm is based on inductive arguments developed by an application of 

a dynamic programming technique. Let d
k
 (I, j) represent the length of the shortest path from 

node I to node j subject to the condition that this path uses the nodes 1,2,…,k – 1 as internal 

nodes. Clearly, and +1 (I, j) for all node pairs I and j, when it terminates. Given d
k
(I, j), the 

algorithm computes dk+1 (using dk+1(I, j,) = min k {I, k,) ,d
k
 (k,j,)}. The Floyd Warshall 

algorithm remains of interest because it handles negative weight edges correctly (Ahuja et al., 

1993).Floyd Warshall algorithm or Floyd's algorithm is also known as the all pairs shortest 

path algorithm. It will compute the shortest path between all possible pairs of vertices in a 

(possibly weighted) graph or digraph simultaneously in time (where n is the number of 

vertices in the graph) In this problem we want the minimum routes (m.r.) between all the 

pairs of peaks.  As an example of a path problem, the fire-brigade keeps a map of the city 

marked with the locations of especially hazardous sites, such as chemical stores. They wish to 

know the shortest route from the fire-station to each site. Note the "length" of a road might be 

either its physical length or the estimated driving time on it, which are not necessarily 

proportional to each other. The Floyd algorithm solves this problem. This algorithm is an 

expansion of another algorithm, the Warshall algorithm, which was first defined for the 

solution of another problem:  

In a digraph G (whether there are costs or not, is of no importance) find whether there is a 

route from V(i) to V(j),for all pairs of (i,j) , i<>j. To solve this problem we find an array A. 

The elements of this array are A(i,j)=1 if there is a route from i to otherwise                      

A(i,j) = 0.Because the cost is not important we define the Adjoining Array as if all the costs 

were 1 that means C(i,j)=1 if there is eij belonging to E and otherwise C(i,j)=0.The requested 

array A is called transitive closure of the Adjoining Array.  



57 

 

We notice that the elements of the A array are Boolean variables (0 or 1), which means that 

the operations AND and OR are valid. The Warshall algorithm initializes the A array at the 

value of C: A (i,j) = C(i,j), i , j = 1,...,n. At this point the A array shows only the direct 

connections as existing routes. Then the algorithm goes through the A array n times, one time 

for every node k=1... n. For every node V (k) the main thinking is: Is there a route from V(i) 

to V(j) ,if it has already been found {that is A(i,j)=1] or if a route is found through V(k),that 

is if the routes from V(i) to V(k) and from V(k) to V(j)[that is if A(i,k)=1 and A(k,j) = 1.  

If the BOOLEAN characteristics of the elements of A are taken under consideration, then the 

rule in the k pass is: A(i,j) = A(i,j) OR {A(i,k) AND A(k,j)}. 

We now come back to the m.r. problem for all pairs. This time we are talking about a graph, 

and the Adjoining Array is defined by the costs C (i,j)=c(eij).The A array will finally consist 

of all the costs of the minimum routes. During the k pass the following formula is valid:  

A(i,j) = min{A(i,j),A(i,k)+A(k,j)}. Which means t hat if the route through V(k) is cheaper 

will be the winner. That gives us the Floyd algorithm. The complexity of the Floyd 

Algorithm is (in the worst case): O (n
3
).The weight of an edge in a directed graph is often 

thought of as its length. The length of a path <v0, v1, ..., vn> is the sum of the lengths of all 

component edges <vi, vi+1>. Finding the shortest paths between vertices in a graph is an 

important class of problem. Single Source Shortest Paths in a Directed Graph. 

 It turns out that it as easy to find the shortest paths from a single source to all other vertices 

as it is to find the shortest path between any two vertices. Usually the source is taken to be 

v1. Dijkstra's algorithm solves this single-source shortest paths problem in O(|V|2) time. It 

operates by enlarging the set of vertices `done' for which the shortest paths from the source 

are known. Initially done contain just the source v1. At an intermediate stage, the vertex not 

in the set done that is closest to the source is found and added to done. This allows our 

knowledge of the shortest paths to the remaining vertices in   V - done   to be updated. This is 

repeated until done contain all vertices.  
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The algorithm follows what is known as a greedy strategy. It adds vertices to done as cheaply 

as possible. The strategy is often a good heuristic; in this problem it also gives a correct 

algorithm. As given, the algorithm calculates the lengths of the shortest paths from the source 

to each other vertex. If it is necessary to find the paths themselves, note that the algorithm 

traces a rooted tree with the source as the root. When the vector of path lengths is updated, if 

P(j) is reduced by the `min' then `closest' can be associated with j in another vector. This 

allows the paths to be recovered, in a reverse direction.  

Floyd's algorithm calculates the costs of the shortest path between each pair of vertices in O 

(|V|3) time. It consists of three nested loops. The invariant of the outer loop is the key to the 

algorithm. At the start of iteration, P holds the optimal path length from vi to vj, for each i 

and j, considering only paths that go direct or via vertices vn for n < k. This is certainly true 

initially when k=1 and P holds only direct paths. At each iteration the next value of k is 

considered. There may now be a better path possible from vi to vj via this new vk, but note 

that it will visit vk at most once. This means it is sufficient to consider paths from vi to vk 

possibly via {v1, ..., vk-1} and then on from vk to vj also possibly via {v1, ..., vk-1}. Thus 

the Invariant is maintained. Finally P holds optimal path lengths for unrestricted paths.  

In simple terms, the Floyd Warshall algorithm obtains a matrix of shortest path distances 

within 0{n
3
} computations. The algorithm is based on inductive arguments developed by an 

application of a dynamic programming technique. 

Let d
k
(I,j) represent the lengths of the shortest path from i to node j  subject to the condition 

that this path uses the nodes 1,2,….k-1 as internal nodes.Clearly,d
n+1

(I,j) represents the actual 

shortest path distance from node i to j. The algorithm first computes d
1
(I,j) for all node pairs i 

and j. using d
1
(i,j) it then computes d

2
(I,j) for all node pairs i and j. It repeats this process 

until it obtain d
n+1

(i,j) for all node pairs i and j, when it terminates. Given d
k
(I,j), the 

algorithm computes d 
k+1

(I,j )= min{d
k
(I,k),d

k
(k,j)}.The Floyd Warshall algorithm remains of 
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interest because it handles negative weight edges correctly (Ahuja et al., 1993) and 

(Boffey,1982) 

 

3.13   DIJKSTRA’S ALGORITHM 

Dijkstra's algorithm, named after its inventor, has been influential in path computation 

research. It works by visiting nodes in the network starting with the object's start node and 

then iteratively examining the closest not-yet-examined node. It adds its successors to the set 

of nodes to be examined and thus divides the graph into two sets: S, the nodes whose shortest 

path to the start node is known and S’, the nodes whose shortest path to the start node is 

unknown. Initially, S’ contains all of the nodes. Nodes are then moved from S’ to S after 

examination and thus the node set, S, ―grows‖. At each step of the algorithm, the next node 

added to S is determined by a priority queue. The queue contains the nodes S’, prioritized by 

their distance label, which is the cost of the current shortest path to the start node. This 

distance is also known as the start distance. The node, u, at the top of the priority queue is 

then examined, added to S, and its out- links are relaxed. If the distance label of u plus the 

cost of the out- link (u, v) is less than the distance label for v, the estimated distance for node 

v is updated with this value. The algorithm then loops back and processes the next node at the 

top of the priority queue. The algorithm terminates when the goal is reached or the priority 

queue is empty. Dijkstra's algorithm can solve single source SP problems by computing the 

one-to-all shortest path trees from a source node to all other nodes.  

The pseudo-code of Dijkstra's algorithm is described below. 

Function Dijkstra (G, start) 

1) d [start] = 0 

2) S = ∅ 

3) S’ = V ∈ G 

4) while S’ ≠ ∅ 
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5) do u = Min (S’) 

6) S = S U {u} 

7) for each link (u, v) outgoing from u 

8) do if d[v] > d[u] + w (u, v) // Relax (u, v) 

9) then d[v] = d[u] + w (u, v) 

10) Previous[v] = u 

 

3.14    A* ALGORITHM 

It is not feasible to use Dijkstra's algorithm to compute the shortest path from a single start 

node to a single destination since this algorithm does not apply any heuristics. It searches by 

expanding out equally in every direction and exploring a too large and unnecessary search 

area before the goal is found. Dijkstra's algorithm is a version of a BFS and although this 

algorithm is guaranteed to find the optimal path., it is not extensively applied due to its 

relatively high computing cost. This has led to the development of heuristic searches. In 

terms of heuristic searches, the A* algorithm is widely regarded as the most efficient method. 

The A* algorithm is a heuristic variant of Dijkstra's algorithm, which applies the principle of 

artificial intelligence. Like Dijkstra's algorithm, the search space is divided into two sets: S, 

the nodes whose shortest path to the start node is known and S’, the nodes whose shortest 

path to the start node is unknown. It differs from Dijkstra's algorithm in that it does not only 

consider the distance between the examined node and the start node, but it also considers the 

distance between the examined node and the goal node. 

In the A* algorithm, g (n) is called the start distance, which represents the cost of the path 

from the start node to any node n, and h(n) is estimated as the goal distance, which represents 

the heuristic estimated cost from node n to the goal. Because the path is not yet complete, we 

cannot actually know this value, and h (n) has to be ―guessed‖. This is where the heuristic 

method is applied. In general, a search algorithm is called admissible if it is guaranteed to 
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always find the shortest path from a start node to a goal node. If the heuristic employed by 

the A* algorithm never overestimates the cost, or distance, to the goal, it can be shown that 

the A* algorithm is admissible. The heuristic is called an admissible heuristic since it makes 

the A* search admissible. If the heuristic estimate is given as zero, this algorithm will 

perform the same as Dijkstra's algorithm. Although it is often impractical to compute, the best 

possible heuristic is the actual minimal distance to the goal. An example of a practical 

admissible heuristic is the straight-line distance from the examined node to the goal in order 

to estimate how close it is to the goal. The A* algorithm estimates two distances g(n) and 

h(n) in the search, ranks each node with the equation: f(n) = g(n) + h(n), and always expands 

the node n that has the lowest f(n).Therefore, A* avoids considering directions with non-

favourable results and the search direction can efficiently lead to the goal. In this way, the 

computation time is reduced. Thus, the A* algorithm is faster than Dijkstra's algorithm for 

finding the shortest path between single pair nodes. The algorithm is an example of a best-

first search 

 

3.15 COMPARISON OF ALGORITHMS BASED ON DISTANCE (TIME) 

COMPLEXITY 

The efficiency of a search algorithm is a critical issue in route planning since it relates to the 

practicality and effectiveness of the search algorithm. Since a time consuming search 

algorithm is inapplicable in real world applications, it is necessary to conduct a complexity 

analysis for different algorithms. The complexity analysis involves two aspects: time and 

space complexity. Algorithm requirements for time and space are often contradictory with a 

saving on space often being the result of an increase in processing time, and vice versa. 

However, advances in computer hardware have made it possible to provide sufficient 

memory in most computational environments and the main concern is now the time 
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complexity of the algorithm. In shortest path computation, there are two essential operations: 

one is the additive computation which gives the start distance of the current node based on 

previous nodes and the link weight between them; the other is the comparison operation 

which gives a possible shorter path to the start node. We assume the time cost for these two 

operations is equivalent. The time complexity is measured by the frequency of the most used 

operations in the above algorithms. Observing the pseudo-code of Dijkstra's algorithm in 

section 3.5.1, the main loop from steps 5 to 10 takes the most computational time. In step 5, 

the algorithm finds the node with a minimum start distance. It requires |V | times comparison 

at first time, |V | −1 times at second time and so on. Therefore the time complexity of the 

node search is  |V|+ (|V| −1) + ... +1 =O (|V| 2). In steps 8 to 10, the algorithm examines all 

links that are connected to the current node for the additive and comparison operations. From 

the view of the entire search, it will examine all of the links in the network, which takes | E | 

time. Therefore the final time complexity of Dijkstra's algorithm is O (|V|2+|E|)=O (|V|2) .For 

the A* algorithm, its time complexity is calculated in a different way since it only computes 

the shortest path between a single pair of nodes. If the average degree of a network is denoted 

as d, and the search depth (i.e., the levels traversed in searching the  tree until the goal is 

found) is denoted as h, then the time complexity of the A*algorithm is O (dh) . The time 

complexity comparison between these two algorithms is shown in Table 3.1. 

 

                       

Table 3.1 Time Complexity Comparison between Classical Algorithms 

In this section, I suggest that the shortest path from the current location to a known 

destination is a typical query for navigation services. Based on the above time complexity 

comparison, A* is an efficient algorithm to solve the SP problem, because d and h are much 
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smaller than |V |. Thus, the distance (time) complexity of the Dijkstra algorithms is far greater 

than A* in that they involve redundant computation for solving the single pair SP problem. 

Since they are more applicable to other shortest path problems, they may be employed in 

other discussed later in the thesis. Although A* can answer the first type of query proposed in 

section 1.4, it is not the optimal solution as it is a static approach. In a dynamic environment, 

A* has to recompute the shortest path from scratch every time there is a change in traffic 

conditions. From this point of view, it must be improved in order to be adaptable to a 

dynamic environment. 

 

3.16   DYNAMIC TRAFFIC ROUTING 

 

3.16.1   DYNAMIC TRANSPORTATION NETWORK 

Time is an essential part of today‘s world. While long distance travel time seems to be getting 

shorter each year, daily commuters have to spend more and more time just getting to their 

offices. A major reason for this situation is traffic congestion, which results from high traffic 

flow, incidents, events or road construction. Traffic congestion is perhaps the most 

conspicuous problem in the transportation network and has become a crucial issue that needs 

immediate attention. In the past, when drivers encountered traffic congestion, they had to 

queue up and wait until the congestion cleared. Analysts were content with just studying the 

queuing times and predicting waiting times, without making any attempt to actually solve the 

problem. Current countermeasures for traffic congestion are oriented toward a "local" 

optimum, i.e., a point-to-point diversion by using sign boards to divert traffic flow around the 

point of congestion. The emergence of LBS gives a new paradigm for applying GIS to 

transportation issues. As a key component, navigation services are regarded as the most 

promising solution for solving this problem. 
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In transportation network representations, the weight of the links can be assigned as the cost 

of travel time, along the links. Changes in traffic conditions are considered as changes in 

link-weights, where the congestion occurs. Since traffic conditions always change over time, 

the centralized navigation service has to monitor the traffic fluctuations over a day-long 

interval and detect any congestion upstream in order to allow drivers to take preventive 

action. By using dynamic shortest path algorithms, navigation services can also help mobile 

clients to plan an alternative optimal route to their destination based on the updated traffic 

conditions. In this sense, the solution provided by the navigation service is closer to a 

"global" optimum. This feature also encourages the possibility of deploying these algorithms 

in real-time traffic routing software. 

 

3.16.2   RELATED RESEARCH FOR DYNAMIC TRAFFIC ROUTING 

Recent developments in LBS reflect a propensity for increased use of dynamic algorithms for 

routing. Most of these algorithms have already been applied successfully for routing in 

computer networks. As well, these algorithms can be applied to transportation network 

management, especially in the context of the centralized architecture of navigation services, 

where traffic flow would exhibit a behaviour close to that of ―packets‖ in computer networks. 

Motivated by theoretical as well as practical applications, many studies have examined the 

dynamic maintenance of shortest paths in networks with positive link weights, aiming at 

bridging the gap between theoretical algorithm results and their implementation and practical 

evaluation. In dynamic transportation networks, weight changes can be classified as either 

deterministic or stochastic time-dependent. In the deterministic time-dependent shortest path 

(TDSP) problem, the link-weight functions are deterministically dependent on arrival times at 

the tail node of the link, i.e., with a probability of one. In the stochastic TDSP problem, the 

link-weight is a time-dependent random variable and is modelled using probability density 

functions and time-dependency. Here, link weights take on time-dependent values based on 
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finite probability values. Cooke and Halsey first proposed a TDSP algorithm in 1958. The 

algorithm they suggested is a modified form of Bellman's label correcting the shortest path 

algorithm. Hall worked on the stochastic TDSP problem and showed that one cannot simply 

set each link-weight random variable to its expected value at each time interval and solve an 

equivalent TDSP problem. Frank derived a closed form solution for the probability 

distribution function of the minimum path travel time through a stochastic time-variant 

network. There were also a number of other works addressing similar problems. All of these 

are based on the model of a time dependent network where link length or link travel time is 

dependent on the time interval. All of the research discussed above attempts to use 

probabilistic and statistical approaches to determine the random change of link-weights and 

then derive the most promising shortest path. To simplify the dynamic shortest path (DSP) 

problem, my thesis research assumes that the link-weight changes are collected and updated 

by a centralized navigation service. Based on the given link-weights for each time interval, 

my research focuses on the DSP algorithm itself. The DSP algorithm utilizes current traffic 

conditions to dynamically maintain the optimal path en route. With a single weight change, 

usually only a small portion of the graph is affected. For this reason, it is sensible to avoid 

computing the shortest path from scratch, but only to update the portion of the graph that is 

affected by the link-weight change. Incremental search methods are used to solve dynamic 

shortest path problems, where shortest paths have to be determined repeatedly as the topology 

of a graph or its link costs change. A number of incremental search methods have been 

suggested in the literature for algorithm, which differ in their assumptions: whether they 

solve single source or all-pairs shortest path problems; which performance measure they use, 

when they update the shortest paths; which kinds of graph topology and link costs they apply 

to; and how the graph topology and link costs are allowed to change over time. An algorithm 

is referred to as fully-dynamic if both the weight increment and decrement are supported and 

semi-dynamic if only the weight increment (or decrement) is supported. 
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Among the algorithms proposed for the DSP problem, the algorithm of Ramalingam and 

Reps (RR for short, also referred to as the Dynamic SWSF-FX algorithm) seems to be the 

most used. It is a fully-dynamic DSP algorithm which updates the shortest paths 

incrementally. In their work on algorithms for the DSP problem. Proposed a fully dynamic 

algorithm, which is a specialization of the RR algorithm for updating a shortest path tree. It is 

a modification of their previous work on a semi-dynamic incremental algorithm. This chapter 

shows that the RR algorithm is an efficient approach for solving the DSP problem. One of its 

main advantages is that the algorithm performs efficiently in most situations. First of all, it 

updates a shortest path graph instead of a shortest path tree, although it can be easily 

specialized for updating a tree. Even and Shiloach proposed a semi-dynamic incremental 

algorithm that works in cascades, which can be computationally expensive for large link-

weight increments. RR has good performance independent of weight increments. For 

updating a shortest path tree, Demetrescu's semidynamic incremental algorithm performs 

well only if most of the affected nodes have no alternative shortest paths. However, the RR 

algorithm performs well even when there are alternative paths available. Even the algorithm 

of Frigioni et al., (1996) which is theoretically better than RR, was usually outperformed by 

RR in computational testing. Many theoretical studies of DSP algorithms have been carried 

out but few experimental results are known. Frigioni et al., (1998) compared the RR 

algorithm with the algorithm proposed by Frigioni et al., for updating a single-source shortest 

path graph. They concluded that the RR algorithm is usually better in practice, with respect to 

running times, but their algorithm has a better worst case time complexity. In this chapter, the 

shortest path problem is well discussed. The chapter started with the classification of the 

shortest path problem, which divided the shortest paths into one-toone, one-to-all, or all-to-

all. Commonly used search strategies, such as the breadth-first, depth-first and best-first 

searches, were then introduced. Based on the search strategy analysis, two classical shortest 

path algorithms are described as typical solutions to the shortest path problems defined by the 
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classification. They are Dijkstra's and the A* algorithms, which are devised for static 

environments. Although the time complexity comparison demonstrates that the A* algorithm 

is most suitable for calculating the shortest path between single pair nodes due to its static 

property. The algorithm is inefficient in dynamic transportation networks. To satisfy the 

requirement of applications for real-world traffic networks, the dynamic shortest path (DSP) 

problem is addressed. Firstly, the scenario of the dynamic traffic network is provided to 

illustrate the past and present solutions in the real-world and demonstrate the importance of 

DSP research. Secondly, some related research on the time-dependent shortest path (TDSP) 

problem is briefly introduced in order to identify the research area in this thesis, which 

assumes the link-weight changes have been given. Based on this assumption, some previous 

algorithms are explored. Among them, the RR algorithm is shown to be the efficient 

approach in most dynamic environments. It plays a major role in my solution to the DSP 

problem. Nevertheless, all of the dynamic approaches discussed in this chapter are still not 

capable of answering the first query type proposed at the beginning of this thesis, i.e., trying 

to find the adaptive route from the current location to a known destination. These algorithms 

can only calculate the dynamic shortest path between fixed start and goal nodes for different 

time intervals. This means that they are not able to deal with changes in the position of the 

start node as a mobile user moves along the initial optimal path and makes an en route query 

for a new shortest path in accordance with traffic condition changes. 

 

3.17   SHORTEST PATH AND THE ENVIRONMENT ISSUES 

Suppose there is a need to find a path, which implies the smallest usage of fuel. This case is 

similar as the money cost of the travel, but it differs since the bus money cost (the money for 

a bus ticket, for example) is higher than (and not linear to) the fuel used. The shortest path in 

terms of used fuel needs to be evaluated from the environment point of view. The simplest 

approach to the problem is to ascribe a cost to every link costs that express the impact on the 
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environment. A higher cost will be attached to a car link, and a smaller cost will be attached 

to the bus link. The cost of a link should be dependent on the length of s link. According to 

the criteria of cost, the algorithm searches for the shortest path and at the same time computes 

the time cost. The time cost of a shortest path generated with the help of such an algorithm 

will not be optimised. We can conceive the case where there is the shortest path found in 

terms of the lowest fuel cost, but the time cost is not acceptable. This may happen is we 

waited a long time to save not a significant amount of fuel. 

A number of constraining criteria for such a shortest route finding can be given. First, we can 

fix a certain amount of time which can be taken at most for waiting at a bus stop. Among the 

links that fulfil this condition, the link of the smallest fuel cost is chosen. Another constraint 

can be that the overall travel time cannot be greater than a fixed amount T. In the article by 

Cai at el., (1997) one can find three algorithms for the internet data packages routing among, 

which one algorithm is very well suited to our needs. The algorithm searches a specific type 

of networks. Each link in the network has two numbers ascribed: cost and time. For us the 

cost can be the fuel cost and time is the time cost. The proposed algorithm is going to find the 

shortest route according to fuel cost and with the overall time cost not exceeding a specific 

amount of time T. The main ideas of the project are involved in the adaptation of the 

algorithm proposed by Dreyfus (1969) for bus networks which is based on the Dijkstra‘s 

algorithm. The main ideas have been used to adopt the algorithm described by Dreyfus 

(1969) to the public transportation networks, to describe it mathematically. 

 

3.18   INTRODUCTION TO THE BUS ROUTING ALGORITHM DESCRIPTION 

The algorithm can be used for any public transportation network based on timetables. In any 

public transports means that the project takes into account, the root for the public transport 

which must based on timetables in which the driver reports the bus routing algorithm. 
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3.18.1 THE BUS ROUTING ALGORITHM 

To understand the problem clearly, it is useful to visualise a traveller who wants to get from 

one bus stop to another in a city using buses only. The input data to the algorithm consists of 

a description of the bus transportation network (timetables, description of connections 

between bus stops), the bus stop where the journey begins (the source node) and the bus stop 

at which the journey ends (the destination node). The objective is to find the shortest path 

between the two specified nodes, namely the path that requires the 

minimal amount of time. The algorithm presented here was designed to solve the problem 

described above. The new algorithm had to be designed in order to meet the special needs of 

bus transportation networks such as timetables and the possibility of waiting at bus stops. The 

main difference between the standard shortest path problem and this one is that links vary 

with distance (time) and it is allowed to wait at the nodes as long as it is necessary to obtain 

the minimal time cost. The problem can be classified as the shortest path problem with time 

dependent costs of links and the allowance of waiting at nodes. A time cost of every link may 

differ in any desired way. The solution to the problem is based on Dijkstra‘s algorithm, which 

is the best known algorithm for directed networks with nonnegative link costs. There are 

several principles (as the use of a priority queue or the use of buckets) underlying an efficient 

implementation of the Dijkstra algorithm which can also be applied to implement the bus 

algorithm (the article by Cherkassy et al is a good paper discussing principles for Dijkstra 

algorithm implementation).The Dijkstra algorithm has to be modified because of two 

problems: 

(i) The first modification deals with a problem of fixed times at which a bus leaves the 

bus stop. This new attribute of a link is going to be named the departure time of a 

link. Dijkstra‘s algorithm is not concerned with a departure time of a link; the 

algorithm was designed to work with links, which can be used at any time. In our 
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problem the main constraint is that links cannot be used at any time, the time at 

which a bus link can be used is fixed according to a timetable.  

(ii) The second problem is the actual cost of a bus connection between two nodes. In 

our case the cost of a link is not the criterion to judge the optimality of the link choice 

anymore. In the present problem the actual criterion is the sum of the waiting time and the 

link cost, or, in other words, the time of arrival at the finishing node of a link. In effect, 

we are also concerned with the waiting times at nodes. The need to wait at bus stops is a 

consequence of the departure time attribute (if a link cannot be used right now then it is 

necessary to wait for the departure). Suppose there are buses leaving a specific bus stop at 

1, 2… 10 time units and arriving at the other specific bus stop after the time cost. The 

time costs of the buses differ considerably since the buses may be of different companies 

and they may take different routes. Having the data, the task is to find the cheapest 

connection between two nodes. The task then is to find the link that has the minimum 

sum of the time cost of a link and the waiting time (that is necessary to wait for this link). 

We can phrase the solution to the problem in this way: the sought link is the link of which the 

arrival time is minimal. This formulation of the solution, i.e. finding the minimal arrival time, 

is going to be used as opposed to the summation of a waiting time and the time cost (which is 

the same but complicates the coming formulas). 

 

3.19   THE SHORTEST PATH 

Let P = (s = x1, x2, …, x = xr) be the shortest path from the source node s to the destination 

node x. The nodes of the shortest path are such that they result in the minimal arrival time to 

the xr node. The time of arrival is given by T(xr). The subsequent nodes of the shortest path 

are found by the use of T(xi) function. To find xr-1 we have to find the link which led to xr 

with minimal arrival time. Having the link, we have the starting node of the link. This starting 
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node is the xr-1 node of the shortest path. This method has to be repeated until the source 

node is reached. 

Step description of the algorithm 

The aim of the algorithm is to minimise T(x) (x is the destination node). To minimise it we 

first have to minimise T(xi) for nodes xi which are at the shortest path from s to x. Before we 

get to the algorithm description, there are some definitions to be introduced. We classify all 

the nodes of the graph into three sets, every node can be a member of only one of the 

following sets: 

i. SPN: the Set of Permanent Nodes is the set of nodes which have been completely       

processed; the time of reaching these nodes has been computed and will not change. 

ii. SSN: the Set of Scanned Nodes is the set of nodes which have been reached, but have 

not    been completely processed; the time cost of getting to them is known but may 

change. 

iii. SNRN: the Set of Not Reached Nodes is the set of nodes which have not been reached 

at all. 

 

3.20    DIJKSTRA’S ALGORITHM 

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1959, is a 

graph search algorithm that solves the single-source shortest path problem for a graph with 

non negative edge path costs, outputting a shortest path tree. This algorithm is often used in 

routing. For a given source vertex (node) in the graph, the algorithm finds the path with 

lowest cost (i.e. the shortest path) between that vertex and every other vertex. It can also be 

used for finding costs of shortest paths from a single vertex to a single destination vertex by 

stopping the algorithm once the shortest path to the destination vertex has been determined. 

For example, if the vertices of the graph represent cities and edge path costs represent driving 

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
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distances between pairs of cities connected by a direct road, Dijkstra's algorithm can be used 

to find the shortest route between one city and all other cities.  

ALGORITHM 

Let's call the node we are starting with an initial node. Let a distance of a node X be the 

distance from the initial node to it. Our algorithm will assign some initial distance values and 

will try to improve them step-by-step: 

i. Assign to every node a distance value. Set it to zero for our initial node and to 

infinity for all other nodes.  

ii. Mark all nodes as unvisited. Set initial node as current.  

iii. For current node, consider all its unvisited neighbours and calculate their distance 

(from the initial node). For example, if current node (A) has distance of 6, and an 

edge connecting it with another node (B) is 2, the distance to B through A will be 

6 + 2 = 8. If this distance is less than the previously recorded distance (infinity in 

the beginning, zero for the initial node), overwrite the distance.  

iv. When we are done considering all neighbours of the current node, mark it as 

visited. A visited node will not be checked ever again; its distance recorded now is 

final and minimal.  

v. Set the unvisited node with the smallest distance (from the initial node) as the next 

"current node" and continue from step 3.  

vi. When all nodes are visited, algorithm ends. 

 

DESCRIPTION OF THE ALGORITHM 

Suppose you create a knotted web of strings, with each knot corresponding to a node, and the 

strings corresponding to the edges of the web: the length of each string is proportional to the 

weight of each edge. Now you compress the web into a small pile without making any knots 
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or tangles in it. You then grab your starting knot and pull straight up. As new knots start to 

come up with the original, you can measure the straight up-down distance to these knots: this 

must be the shortest distance from the starting node to the destination node. The acts of 

"pulling up" and "measuring" must be abstracted for the computer, but the general idea of the 

algorithm is the same: you have two sets, one of knots that are on the table, and another of 

knots that are in the air. Every step of the algorithm, you take the closest knot from the table 

and pull it into the air, and mark it with its length. If any knots are left on the table when 

you're done, you mark them with the distance infinity. Or, using a street map, suppose you're 

marking over the streets (tracing the street with a marker) in a certain order, until you have a 

route marked in from the starting point to the destination. The order is conceptually simple: 

from all the street intersections of the already marked routes, find the closest unmarked 

intersection - closest to the starting point (the "greedy" part). It's the whole marked route to 

the intersection, plus the street to the new, unmarked intersection. Mark that street to that 

intersection, draw an arrow with the direction, then repeat. Never mark to any intersection 

twice. When you get to the destination, follow the arrows backwards. There will be only one 

path back against the arrows, the shortest one. 

The Dijkstra‘s algorithm uses two types of labels: temporary and permanent. Both labels 

utilized the same format used with the cycles algorithm: namely, [d, n], where d is the 

shortest distance so far available for a current node, and n is  the immediate predecessor node 

responsible for realizing  the distance d. The algorithm starts with the source node carrying 

the permanent label [0-]. Next we consider all the nodes that can be reached directly from 

source node and then determine their associated labels. The newly created labels are 

designated as temporary.  

The permanent label is selected from among all current temporary labels as the one having 

the smallest distance d in the label [d n] (ties are broken arbitrarily). The process is now 
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repeated for the last node that has been designated permanent. In such a case, a temporary 

label of a node may be changed only if the new label yields a smaller distance d. 

Let us apply the procedure to the network in figure below. a basic assumption of the 

algorithm is that all the distances in the network are non-negative. 

 

 

 

 

 

 

 

Fig 3.6a  : Description of algorithm 

Iteration 0: Node 1 carries the permanent label (0) 

Iteration 1: Nodes 2 and 3, which can be reached directly from node 1 (the last permanently 

labeled node), now carry the temporary labels (0 +100, 1) and (0 + 30,  1) or (100, 1)  and 

(30, 1), respectively. Among the current temporary labels, node 3 has the smallest distance d 

+30   (+ min {100, 30}) thus node 3 is permanently labeled. 

Iteration 3: node 4 and 5 can be reached from the last permanently labeled node (node 3) 

respectively. At this point, we have the three temporary labels [30 + 10, 3] and [30 +60, 3] (or 

[40, 3] and [90, 3] associated with nodes 2,4, and 5, respectively. Temporarily labeled node 4 

has the smallest d = 40 (+ min {100, 40, 90}) and hence its label [40, 3 ]is converted to the 

permanently status. 

Iteration 3: from the node 4, we now label node 2, with the now temporary label                 

[40 +15, 4] =[55, 4], which replace the old temporary label [100, 1]. Next, node include [55, 

4] and [90, 4] associated with nodes 2 and 5, respectively. We thus label node 2 permanently 

with [55, 4] 
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The only remaining node is the sink node 5, which converts its [90, 4] into a permanent label, 

thus completing the procedure. 

 

     

 

                  

             

 

 

 

Fig 3.6b: Description of the algorithm 

Therefore one would realize that the shortest distance in moving from node 1 to node 2 will 

be from node 1(which carries the permanent label (0,1) through node 3 [30,2] through node 4 

[40,3] then finally to node 2 which will have the permanent label [55,4] 

The solution in Figure 1.2 provides the shortest distance to each node in the network together 

with it route.  In summary, Dijkstra‘s algorithm finds the shortest paths from a source node s 

to all other nodes in a network with non-negative arc lengths. Dijkstra‘s algorithm maintains 

a distance label d(i) with each node i, which is upper bound on the shortest path length from 

the source node to each node i. At any immediate step, the algorithm divides the nodes of the 

network under consideration into two groups: those, which it designates as permanently 

labeled (or permanent), and those, which it designates as temporarily labeled (or temporary). 

The distance label to any permanent node represents the shortest distance from the source 

node to that node. The basic idea of the algorithm is to find out from the source node s and 

permanently label node in the order of their distances from the node s. Initially, node s is 

assigned permanent label of zero, and each other node j a temporary label equal to infinity. At 
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each iteration, the label of a node i is the shortest from the source node along a path whose 

internal node (i.e. node other than s or the node i itself) are all permanently label. The 

algorithm selects a node i with the minimum temporary label (breaking ties arbitrary),makes 

it permanent, and reaches out from that node-that, seems all the edges/arcs emanating from 

the node i to update the distance labels of adjacent nodes. The algorithm terminates when it 

has designated all nodes permanent (Ahuja et al, 1993). 

 

THE STEP DESCRIPTION 

STEP 1 

The source node s is initialised as scanned (s   SSN) and every other node xi .   s of the 

graph is initialised as not reached (xi  SNRN). Furthermore, the arrival time of the source 

node is set to t0 (t0 is the time at which the journey starts), i.e. T(s) = t0, and the arrival time 

of every other node xi  s of the graph is set to infinity, i.e. T (xi) = ∞ 

 

STEP 2 

We process only one node during this step. We choose the node to be processed from the 

SSN (Set of Scanned Nodes). If the SSN is empty, this means there is no path between the 

source node and the destination nodes and the algorithm quits. If the SSN is not empty, we 

choose a xi node from the SSN which has minimal T(xi). If there is more than one node with 

the minimal T(xi) then we choose one of them arbitrarily. In formula: 

 Xi    SSN є T (xi) = min T( xj)    Xi   SSN 

Once the xi node is chosen, we proceed to process it. First the node xi is excluded from the 

SSN and becomes a member of SPN (Set of Permanent Nodes). At this stage it is certain that 

the arrival time T(xi) is minimal (it may only get larger since taking another link will increase 

the cost; link costs are always positive) and this is the reason for moving the xi node to SPN. 
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Next the links leaving the xi node are handled. From the set E (the set of links of the graph) 

every link which has the xi node as a starting one is selected. The retrieved set is further 

constrained to links of the departure time greater or equal to T(xi) (only buses that will arrive 

to a bus stop can be taken, not those which have left). 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

4.1   DATA COLLECTION 

Kumasi is the capital city of the Ashanti Region, a very important and historical Centre for 

Ghana. It is located about 250 km (by road) northwest of Accra. Kumasi is approximately 

300 miles north of the equator and 100miles north of the Gulf of Guinea. It is the second 

largest city of Ghana with a population of 1,517,000. The metropolis is made up of 119 sub 

metros. Currently the emergence service for Kumasi Metropolis can all be located in Adum. 

Whereas the Ambulance service in the metropolis is located at the Komfo Anokye Teaching 

Hospital (KATH) and the Fire Service can also be located at Adum near the Kumasi 

metropolitan office. Cases handled by the Metropolis Ambulance Service (MAS) and 

Metropolitan Fire Services (MFS) range from Gynaecology, fire and to road accidents. 

The MAS and MFS are both housed in a separate building at the KATH polyclinic and KMA 

and both runs two shifts systems; day and night. Communication is the key to running of 

these services. 

This thesis offers an application solution for dynamic routing of vehicles in Kumasi. It 

proposes a routing system that users employs historical traffic data to model recurring 

congestion and compute initial shortest path. As unpredicted (nonrecurring) congestion 

occurs and is reported from some FM station or traffic control centre, the system analyses the 

real time data to determine if the planned route needs to be change (modified). It can changed 

the planned route as a function of the current position, destination location, and real time 

traffic condition The proposed routing system has been composed of three subsystems 

including ArcGIS Network Analyst (for the digitized map), Dijkstra's algorithm and VB.Net 

for the software development. The routing optimization problem in traffic management has 
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been already explored with a number of algorithms. Routing algorithms use a standard of 

measurement called a metric (i.e. path length) to determine the optimal route or path to a 

specified destination. Optimal routes are determined by comparing metrics, and these metrics 

can differ depending on the design of the routing algorithm used (Parker, 2001). 

Different kinds of algorithms have been proposed to finding the optimal routes, such as: 

i. Simulated Annealing is a related global optimization technique which 

traverses the search space by generating neighbouring solutions of the current 

solution (Kirkpatrick et al., 1983). 

ii. Tabu Search is similar to Simulated Annealing, in that both traverse the 

solution space by testing mutations of an individual solution. While simulated 

annealing generates only one mutated solution, tabu search generates many 

mutated solutions and moves to the solution with the lowest fitness of those 

generated (Glover et al., 1997). 

iii. Genetic Algorithms (Holland, 1975) use biological methods such as 

reproduction, crossover, and mutation to quickly search for solutions to 

complex problems. Genetic algorithm begins with a random set of possible 

solutions. In each step, a fixed number of the better current solutions are saved 

and they are used to the next step to generate new solutions using genetic 

operators. 

iv. The ant colony optimization algorithm which has been used to produce 

nearoptimal solutions to the travelling salesman problem. They have an 

advantage over simulated annealing and genetic algorithm approaches when 

the graph may change dynamically (Dorigo et al., 1999). 

v. Dijkstra‘s algorithm, used by Network Analyst, is a greedy algorithm that 

solves the single-source shortest path problem for a directed graph with 

nonnegative edge weights (Dijkstra, 1959). 
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However, Network Analyst is still relatively new software, so there is not much published 

material concerning its application traffic management. Miller (2005) compares the 

RouteSmart 4.40, the ArcLogistics Route and the ArcMap Network Analyst extension on the 

ability of either software package to create routes usable by the Drivers in Adum, efficient 

manner for the city of Kumasi in Ashanti Region 

Dijkstra's Algorithm, introduced in 1959 provides one the most efficient algorithms for 

solving the shortest-path problem. In a network, it is frequently desired to find the shortest 

path between two nodes. The weights attached to the edges can be used to represent 

quantities such as distances, costs or times. In general, if we wish to find the minimum 

distance from one given node of a network, called the source node or start node, to all the 

nodes of the network, Dijkstra's algorithm is one of the most efficient techniques to 

implement. In general, the distance along a path is the sum of the weights of that path. The 

minimum distance from node a to b is the minimum of the distance of any path from node a 

to b. 

 

4.2  NETWORK DATA ANALYSIS AND RESULTS 

ArcGIS Network Analyst is a powerful extension that provides network-based spatial 

analysis including routing, travel directions, closest facility, and service area analysis. 

ArcGIS Network Analyst enables users to dynamically model realistic network conditions, 

including turn restrictions, speed limits, height restrictions, and traffic conditions at different 

times of the day (ESRI 2006). The users with Network Analyst extension are able to: 

(i). Find efficient travel routes, 

(ii). Determine which facility or vehicle is closest, 

(iii). Generate travel directions, and 
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(iv). Find a service area around a site. 

In the current work, using Network Analyst, an optimum route for the routine find in 

particular area is generated in the area under study. Network Analyst uses the Dijkstra‘s 

Algorithm (Dijkstra 1959) in order to solve the Routing Problem and it can be generated 

based on two criteria (Lakshumi et al 2006): 

 

(i). Distance criteria: The route is generated taking only into consideration the location 

of the waste large items. The volume of traffic in the roads is not considered in this 

case. 

(ii). Time criteria: The total travel time in each road segment should be considered as the: 

Total travel time in the route = runtime of the vehicle + distance time. The runtime of 

the vehicle is calculated by considering the length of the road and the speed of the 

vehicle in each road. The Network Analyst extension allows the user to perform ‖Find 

Best Route‖, which solves a network problem by finding the least cost impedance 

path on the network from one stop to one or more stops. Network modelling gives the 

opportunity to the user to include the rules relating to the objects, arcs and events in 

association with solving transportation problems (Stewart 2004). 

 

4.2.1   THE PATH FINDING ALGORITHM 

Network Analyst software determines the best route by using an algorithm which finds the 

shortest path, developed by Edgar Dijkstra (1959). Dijkstra‘s algorithm is the simplest path 

finding algorithm, even though these days a lot of other algorithms have been developed. 

Dijkstra‘s algorithm reduces the amount of computational time and power needed to find the 

optimal path. The algorithm strikes a balance by calculating a path which is close to the 

optimal path that is computationally manageable (Olivera, 2002). The algorithm breaks the 

network into nodes (where lines join, start or end) and the paths between such nodes are 
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represented by lines. In addition, each line has an associated cost representing the cost 

(length) of each line in order to reach a node. There are many possible paths between the 

origin and destination, but the path calculated depends on which nodes are visited and in 

which order. The idea is that, each time the node, to be visited next, is selected after a 

sequence of comparative iterations, during which, each candidate-node is compared with 

others in terms of cost (Stewart, 2004). 

The following comprehensible example, which is an application of the algorithm on a case 

of 6 nodes connected by directed lines with assigned costs, explains the number of steps 

between each of the iteration of the algorithm (Figure 5.1). The shortest path from node 1 to 

the other nodes can be found by tracing back predecessors (bold arrows), while the path‘s 

cost is noted above the node. 

                                

   Figure 4:1 An example of Dijkstra‘s algorithm ( Orlin 2003). 

Each node is processed exactly once according to an order that is being specified below. 

Node 1 (i.e. origin node) is processed first. A record of the nodes that were processed is 

kept; call it Queue (Table 1). So initially Queue = {1}. When node k is processed the 

following task is performed: If the path‘s cost from the origin node to j could be improved 

including the vertex (k,j) in the path then, an update follows both of Distance[j] with the new 

cost and Predecessors[j] with k, where j is any of the unprocessed nodes and Distance[] is 

the path‘s cost from the origin node to j. The next node to be processed is the one with the 

minimum Distance [j], in other words is the nearest to the origin node among all the nodes 

that are yet to be processed. The shortest route is found by tracing back predecessors. 
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  Table 4:1 A record, called Queue, with all processed nodes 

Network Analyst can be very useful in a variety of sections (ESRI 2006) in our daily life, 

such as in: 

i. Business, scheduling deliveries and installations while including time window 

restrictions, or calculating drive time to determine customer base, taking into 

account rush hour versus midday traffic volumes. 

ii. Education, generating school bus routes honouring curb approach and no U-

turn rules. 

iii. Environmental Health, determining effective routes for county health 

inspectors. 

iv. Public Safety, routing emergency response crews to incidents, or calculating 

drive time for first responder planning. 

v. Public Works, determining the optimal route for point-to-point pickups of 

massive trash items or routing of repair crews. 

vi. Retail, finding the closest store based on a customer's location including the 

ability to return the closest ranked by distance. 

vii. Transportation, calculating accessibility for mass transit systems by using a 

complex network dataset. 
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4.3  CASE STUDY 

A digital road network in small area of Kumasi (Adum), capital of Ashanti Region, was used 

within the GIS map at a scale of about 1:2000. The road network was represented as 

connections of the nodes and links. Geometric networks are built in the ArcGIS model to 

construct and maintain topological connectivity for the road data in order to allow the path 

finding analysis to be possible. To plan the initial shortest path, use historical data of average 

traffic volume at surface streets or freeway segments within the area under study. The 

segment lengths have been extracted using ESRI‘s ArcGIS software. The average volume of 

each link in the network has been from obtained from KMA Traffic Unit. Summation of the 

travel distance (times) for all the segment of a particular path between origin and destination 

provides the total distance (time), which is minimized by the shortest path algorithm. The 

routing macro uses Dijkstra‘s routing algorithm. 

                        

 

Fig 4.2 map of Kumasi metropolis 
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Figure 4:3 Shows the map of Adum.  

 

 

4.4   PROPOSED SOLUTION 

This thesis describes a study of planning vehicle routes for the shortest path in a district of 

Adum using Network Analyst - a user-friendly extension of ArcGIS and Visual Basis Dot 

Net with Dijkstra‘s algorithm, which provides efficient routing solutions in a simple and 

straightforward manner. In order to simulate the situation in ArcGIS, all the relevant 

information was acquired from KMA. More precisely, when creating a network routing 

solution, specific spatial data are needed for the accurate completion of the network. For 

example, a complete road network, where all the roads within the network are connected, is 

significant because it allows connection throughout the system. 

 

MODEL ASSUMPTIONS 

• Traffic congestion not considered 

• Calculation based on road distance 

• State of the road not considered 

Adum map was taken from the Town and Country Planning Department of KMA. 

Digitized by the Geodetic Department (KNUST) to convert the map into a road network 
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Figure  4.4: Shows the City Centre Road Network of Kumasi 

 

EXTRACT MAP OF ADUM NETWORK 

   

 
Figure 4.5: Shows the Extract Map of Adum Network 
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SOFTWARE DEVELOPMENT 

The proposed routing system has been of three subsystems including: 

• ArcGIS Network Analyst 

• Dijkstra‘s Algorithm 

• VB.Net 

For the software development 

 

FEATURES OF THE INTERFACE 

 

Step one: The first interface of the program. 

 

 

Figure 4.6: Shows the first interface of the program 
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Step two: The user open to select to select the map needed. 

 

 
 

Figure 4.7: Shows the how users select a map 

 

 

 

Step Three: The user selects the needed map from the dialogue box to be open. 

 

 
 

Figure 4.8: Shows how the maps are the display and selected. 
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Figure 4.9: Shows how the selected map been displayed 

 

 

Step Four: The user uses the tool menu to select the Shortest Path Navigator where the user 

selects the Source Street and the Destination. The flash bottom flashes the selected street and 

the Flicker also flicks the selected street. The Go button uses to calculate the shortest distance 

from the Source Street to the Destination Street on the map, and then display the distance on 

the blank space. The Flash Features shows the shortest path on the map. 

 

 
 

Figure 4.10: Shows how the user selects the Source Street and the Destination 
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Step Five: How the streets are been selected. 

 
 

Figure 4.11: Shows how user selects the Source Street. 

 

 

 
 

Figure 4.12: Shows how user selects the Destination Street. 
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4.5 DISCUSSION AND FUTURE WORK 

These interfaces show how legend was loaded and displayed for the software obtained. The 

source node Adum (A) was made fixed and the destination node was to be selected. The 

program was run after loading the data .The computation was done by the program as: 

Adum chosen as the starting node (A) was assigned a permanent label of zero and each other 

node a temporal label. Each node is labelled with a distance from the start and a previous 

node. Each node is held in a queue to be evaluated later. The algorithm select a node with 

minimum temporal label to be evaluated from the queue, makes it permanent and reaches out 

from that node. All nodes adjacent to this vertex that have been visited were labeled and held 

in the queue. 

The process continues until all the nodes in the queue had permanent label and algorithm 

terminated. The shortest path to a given node was labelled on that vertex. The path was found 

by tracking back through the network. The software displayed the source, destination, the 

shortest path and the optimal distance in kilometres. The result attained is able to provide the 

shortest distance from Adum to any location. It also provides the routes to obtain the shortest 

distances. Computation of shortest paths is a famous area of research in Computer Science, 

Operations Research and GIS. There is a great number of ways to calculate shortest paths 

depending on the type of network and problem specification. Network Analyst is not only 

capable of reproducing a satisfying number of scenarios, but also it has the ability to be easily 

adapted to new conditions. 

 

 

 

 

. 



92 

 

CHAPTER FIVE 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1   CONCLUSION 

 In conclusion the shortest distance from any area on Kumasi to another can be calculated, let 

us have a look at the case of an emergence call, requesting an ambulance to rush a patient 

from any of the part of Kumasi  to a KATH  hospital. The shortest distance can easily be 

known using this project, because a link on a real road network in the city tends to posse 

different levels of congestion during different time period of a day and because a Patient‘s 

location cannot be expected to be known in advance, it is practically impossible to determine 

the fastest route before a call is received. The collection, transport and disposal of solid 

waste, which is a highly visible and important municipal service, involves a large expenditure 

but receives, scant attention. This problem is even more crucial for large cities in developing 

countries due to the hot weather  once again the shortest distance can also be calculated using 

this project. This study addresses the problem of determining dynamic shortest path in traffic 

networks, where arc travel times vary over time. This study proposes a dynamic routing 

system which is based on the integration of GIS and real-time traffic conditions. It uses GIS 

for improving the visualization of the urban network map and analysis of car routing. GIS is 

used as a powerful functionality for planning optimal routes based on particular map travel 

time information. The results of this study illustrate that dynamic routing of emergency 

vehicle compared with static solution is much more efficient. This efficiency will be most 

important when unwanted incidents take place in roads and serious traffic congestion occur. 

In this study, the initial planned route is saved since when exist at any distance. The routing 

system analysis real distance data receives only portion of the planned path traffic data and 
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vehicle location to determine if the direction may be a changed. This improves the 

computational planned route need to be modified. 

• This study addresses the problem of determining shortest path in traffic networks, in 

Kumasi Metropolis 

• The study proposes a routing system which is based on the integration of ArcGIS and road 

distance. 

• It uses ArcGIS and VB.NET coding to obtain user friendly interface which allows the 

visualization of the Adum road map and traversal of shortest route between two selected 

junctions. The updated route is send via a dynamic routing system for all vehicles in urban 

(Adum) road communication system to vehicle driver to change his network has some special 

considerations which are the route. This process continues until the mission of subject of our 

future work. 

 

 

5.2  SUGGESSTION 

Sometimes the given algorithms may produce output that is of no use even though it has been 

correctly generated. For example, there can be a path that will require an ambulance and one 

bus only to reach the destination after 30 minutes. However, the algorithm may advise you to 

take a car and three times to take a bus which will take 25 minutes, 5 minutes less than the 

previous path. From the point of view of the defined conditions the second path is better, but 

a more reasonable path is the first one, though 5 minutes shorter. The first path is actually 

better because it is less cumbersome (it is easier to take one bus instead of three), more 

reliable (three buses cause more risk than only one since each bus can break down, changing 

buses is risky as opposed to sitting in the bus) and is cheaper. This example proves the need 

to introduce different conditions for solving the shortest route problem. The future research 
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can go into two directions. First, well known algorithms can be adapted into the public 

transport needs. For example, the algorithm for finding second shortest path, third etc, paths 

for buses can be developed. More can be proposed: finding the shortest path going through 

specific nodes, through specific number of nodes or by the most reliable path. 

The other direction is more interesting: development of new algorithms for traffic issues and 

not just adaptation of existing algorithms. So far there has not been devised (as far as the 

author of this report knows) an algorithm for many public transport means: a train, an 

underground, buses and a car. There would not be anything interesting in this except that the 

buses and metro would be considered in parallel. A user could point out that the path should 

be build up in accordance with the following criteria: 

- The allowed types of changes (for example to change a bus to a train may be disallowed). 

- Transportation, calculating accessibility for mass transit systems by using a complex 

network map. 

- Public works, determining the optimal route for point- to – point pickups of trash items. 

- Public Safety, routing emergency response crew to incidents, or calculating drive distance 

for first responder planning. More than that, user can specify exactly how many changes he 

wants between different types of transportation. For example the user can say that only one 

change between car and bus is allowed but that changing between buses and an underground 

vehicle can be done as many times as necessary. Also, the number of changes can be named 

as at most or exactly.Therefore saying at most 3 changes of vehicle can ban choosing the best 

route with only one change. But still, this is should also be possible to find the path with 

exact number of changes. The flexibility of conditions seems to be very big. 
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APPENDEX 
 

CODES FOR THE SHORTEST PATH USING VB.NET 

 
using System; 

using System.Collections; 

using System.Collections.Generic; 

using System.Text; 

using System.Windows.Forms; 

using ESRI.ArcGIS.PublisherControls; 

using GpsToolsNET; 

namespace ShortestPathLibrary 

{ 

Public# class MapLibrary 

{ 

public static int ProgressValue = 0; 

public MapLibrary() 

{ 

} 

public static bool LoadMap(AxArcReaderControl arcReaderControl) 

{ 

try 

{ 

OpenFileDialog ofd = new OpenFileDialog(); 

ofd.Filter = "Published Map Files(*.pmf)|*.pmf"; 

if (ofd.ShowDialog() == DialogResult.OK) 

{ 

return LoadMap(arcReaderControl, ofd.FileName); 

} 

else 

{ 

throw new Exception(""); 

} 

} 

catch (Exception ex) { return false; } 

} 

public static bool LoadMap(AxArcReaderControl arcReaderControl, 

string mapPath) 

{ 

try 

{ 

if (arcReaderControl.CheckDocument(mapPath)) 

{ 

arcReaderControl.LoadDocument(mapPath); 

return true; 

} 

else 

{ 

throw new Exception(""); 

} 

} 

catch (Exception ex) { return false; } 

} 

public static void CurrentARTool(AxArcReaderControl 

arcReaderControl, MapTool mapTool) 

{ 

try 

{ 

if (mapTool == MapTool.FullExtent) 
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{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) 

arcReaderControl.ARPageLayout.FocusARMap.ZoomToFullExtent(); 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) 

arcReaderControl.ARPageLayout.ZoomToWholePage(); 

} 

if (mapTool == MapTool.MapHyperlink) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapHyperlink; 

} 

if (mapTool == MapTool.MapIdentify) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapIdentify; 

} 

if (mapTool == MapTool.MapIdentifyUsingLayer) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapIdentifyUsingLayer; 

} 

if (mapTool == MapTool.MapMeasure) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapMeasure; 

} 

if (mapTool == MapTool.MapSwipe) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapSwipe; 

} 

if (mapTool == MapTool.MapZoomInOut) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapZoomInOut; 

} 

if (mapTool == MapTool.Pan) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapPan; 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool 

= esriARTool.esriARToolLayoutPan; 

} 

if (mapTool == MapTool.RedoExtent) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) 

arcReaderControl.ARPageLayout.FocusARMap.RedoExtent(); 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) 

arcReaderControl.ARPageLayout.RedoExtent(); 
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} 

if (mapTool == MapTool.UndoExtent) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) 

arcReaderControl.ARPageLayout.FocusARMap.UndoExtent(); 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) 

arcReaderControl.ARPageLayout.UndoExtent(); 

} 

else if (mapTool == MapTool.ZoomIn) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapZoomIn; 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool 

= esriARTool.esriARToolLayoutZoomIn; 

} 

else if (mapTool == MapTool.ZoomOut) 

{ 

if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool = 

esriARTool.esriARToolMapZoomOut; 

else if (arcReaderControl.CurrentViewType == 

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool 

= esriARTool.esriARToolLayoutZoomOut; 

} 

} 

catch (Exception ex) { } 

} 

public static MapField GetMapField(ARLayer layer, string 

fieldName) 

{ 

try 

{ 

if (layer == null) throw new Exception(""); 

MapField mapField = new MapField(); 

ArcReaderSearchDef searchDef = new 

ArcReaderSearchDefClass(); 

ARFeatureCursor featureCursor = 

layer.SearchARFeatures(searchDef); 

ARFeature feature = featureCursor.NextARFeature(); 

for (int i = 0; i < feature.FieldCount; i++) 

{ 

if 

(feature.get_FieldName(i).Trim().Equals(fieldName.Trim().ToUpper(), 

StringComparison.CurrentCultureIgnoreCase)) 

{ 

mapField.FieldIndex = i; 

mapField.FieldName = feature.get_FieldName(i); 

mapField.FieldType = feature.get_FieldType(i); 

break; 

} 

} 

return mapField; 

} 

catch (Exception ex) { return null; } 

} 

public static MapField GetMapField(ARLayer layer, int 

fieldIndex) 
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{ 

try 

{ 

if (layer == null) throw new Exception(""); 

MapField mapField = new MapField(); 

ArcReaderSearchDef searchDef = new 

ArcReaderSearchDefClass(); 

ARFeatureCursor featureCursor = 

layer.SearchARFeatures(searchDef); 

ARFeature feature = featureCursor.NextARFeature(); 

mapField.FieldIndex = fieldIndex; 

mapField.FieldName = feature.get_FieldName(fieldIndex); 

mapField.FieldType = feature.get_FieldType(fieldIndex); 

return mapField; 

} 

catch (Exception ex) { return null; } 

} 

public static bool GetShortestPath(NetworkAnalystInitialiser 

naInit) 

{ 

try 

{ 

if (naInit.InitialiserStatus.Status) 

{ 

ShortestPathNavigator spNavigator = new 

ShortestPathNavigator(naInit); 

if (spNavigator.InitialiserStatus.Status) 

{ 

spNavigator.Show(naInit.OwnerForm); 

} 

else 

{ 

throw new 

Exception(spNavigator.InitialiserStatus.Message); 

} 

} 

else 

{ 

throw new 

Exception(naInit.InitialiserStatus.Message); 

} 

return true; 

} 

catch (Exception ex) { return false; } 

} 

public static void FlashFeatures(ARFeature[] features, int 

milliSecondsTimeout) 

{ 

foreach (ARFeature feature in features) 

{ 

feature.Flash(); 

System.Threading.Thread.Sleep(milliSecondsTimeout); 

} 

} 

public static void FlashAndHighlightFeatures(ARFeature[] 

features, int milliSecondsTimeout) 

{ 

foreach (ARFeature feature in features) 

{ 

feature.Flash(); 

feature.Highlight(true, 15000); 
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System.Threading.Thread.Sleep(milliSecondsTimeout); 

} 

foreach (ARFeature feature in features) 

{ 

feature.Highlight(false, 100000); 

} 

} 

public static void FlashAndSelectFeatures(AxArcReaderControl 

arcReaderControl, ARFeature[] features, int milliSecondsTimeout) 

{ 

ARFeatureSet featureSet; 

foreach (ARFeature feature in features) 

{ 

feature.Flash(); 

System.Threading.Thread.Sleep(milliSecondsTimeout); 

} 

} 

public static void FlashFeatures(ARFeatureSet features, int 

milliSecondsTimeout) 

{ 

for (int i = 0; i < features.ARFeatureCount; i++) 

{ 

features.get_ARFeature(i).Flash(); 

System.Threading.Thread.Sleep(milliSecondsTimeout); 

} 

} 

public static MapShortestPath 

GetShortestPath(NetworkAnalystInitialiser naInit, string sourceNode, 

string destinationNode) 

{ 

try 

{ 

if (!naInit.InitialiserStatus.Status) 

{ 

System.Windows.Forms.MessageBox.Show("Initialiser 

status is not set"); 

return null; 

} 

MapDijkstra md = new MapDijkstra(naInit, sourceNode, 

destinationNode, null, null); 

if (md.Run()) 

{ 

MapShortestPath msp = new 

MapShortestPath(md.ShortestPath, md.PathCost); 

return msp; 

} 

else 

{ 

throw new Exception("There was error solving for 

shortest path"); 

} 

} 

catch (Exception ex) { return null; } 

} 

public static MapShortestPath 

GetShortestPath(NetworkAnalystInitialiser naInit, ARFeature 

sourceFeature, ARFeature destinationFeature) 

{ 

try 

{ 

if (!naInit.InitialiserStatus.Status) 
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{ 

System.Windows.Forms.MessageBox.Show("Initialiser 

status is not set"); 

return null; 

} 

MapDijkstra md = new MapDijkstra(naInit, 

sourceFeature.get_ValueAsString(naInit.FromNodeIndex), 

destinationFeature.get_ValueAsString(naInit.FromNodeIndex), 

sourceFeature, destinationFeature); 

if (md.Run()) 

{ 

MapShortestPath msp = new 

MapShortestPath(md.ShortestPath, md.PathCost); 

return msp; 

} 

else 

{ 

throw new Exception("There was error solving for 

shortest path"); 

} 

} 

catch (Exception ex) { return null; } 

} 

public static MapShortestPath 

GetShortestPath(NetworkAnalystInitialiser naInit, ARFeature 

sourceFeature, string destinationNode) 

{ 

try 

{ 

if (!naInit.InitialiserStatus.Status) 

{ 

System.Windows.Forms.MessageBox.Show("Initialiser 

status is not set"); 

return null; 

} 

MapDijkstra md = new MapDijkstra(naInit, 

sourceFeature.get_ValueAsString(naInit.FromNodeIndex), destinationNode, 

sourceFeature, null); 

if (md.Run()) 

{ 

MapShortestPath msp = new 

MapShortestPath(md.ShortestPath, md.PathCost); 

return msp; 

} 

else 

{ 

throw new Exception("There was error solving for 

shortest path"); 

} 

} 

catch (Exception ex) { return null; } 

} 

public static MapShortestPath 

GetShortestPath(NetworkAnalystInitialiser naInit, string sourceNode, 

ARFeature destinationFeature) 

{ 

try 

{ 

if (!naInit.InitialiserStatus.Status) 

{ 

System.Windows.Forms.MessageBox.Show("Initialiser 
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status is not set"); 

return null; 

} 

MapDijkstra md = new MapDijkstra(naInit, sourceNode, 

destinationFeature.get_ValueAsString(naInit.FromNodeIndex), null, 

destinationFeature); 

if (md.Run()) 

{ 

MapShortestPath msp = new 

MapShortestPath(md.ShortestPath, md.PathCost); 

return msp; 

} 

else 

{ 

throw new Exception("There was error solving for 

shortest path"); 

} 

} 

catch (Exception ex) { return null; } 

} 

} 

public class MapDijkstra 

{ 

private struct Node 

{ 

public string Label; 

public double Distance; 

public bool Visited; 

public Node(string l, double d, bool v) 

{ 

Label = l; 

Distance = d; 

Visited = v; 

} 

} 

public ARFeatureSet Edges; 

private NetworkAnalystInitialiser naInit; 

public ArrayList Nodes; 

private ArrayList[] pathNodes; 

string sourceNodeLabel, destinationNodeLabel; 

ARFeature sourceFeature = null, destinationFeature = null; 

public System.Collections.ArrayList PathNodes = new 

System.Collections.ArrayList(); 

public ARFeature[] ShortestPath; 

public double PathCost = 0; 

public MapDijkstra(NetworkAnalystInitialiser naInit, string 

sourceNodeLabel, string destinationNodeLabel, ARFeature sourceFeature, 

ARFeature destinationFeature) 

{ 

this.naInit = naInit; 

this.sourceNodeLabel = sourceNodeLabel; 

this.destinationNodeLabel = destinationNodeLabel; 

this.sourceFeature = sourceFeature; 

this.destinationFeature = destinationFeature; 

ArcReaderSearchDef searchDef = new 

ArcReaderSearchDefClass(); 

Edges = naInit.ARRouteLayer.QueryARFeatures(searchDef); 

} 

private bool UnvisitedNodeExists() 

{ 

try 
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{ 

foreach (Node node in Nodes) if (!node.Visited) return 

true; 

return false; 

} 

catch (Exception ex) { return false; } 

} 

private Node GetMinimumNode(Node node, int currentNodeIndex) 

{ 

Node minNode = new Node(); minNode.Distance = -1; 

double length; 

Node tNode; 

for (int nodeIndex = 0; nodeIndex < Nodes.Count; 

nodeIndex++) 

{ 

tNode = (Node)Nodes[nodeIndex]; 

if (!tNode.Label.Equals(node.Label) && !tNode.Visited) 

{ 

length = GetEdgeLength(node.Label, tNode.Label); 

if (length > 0) 

{ 

if (tNode.Distance < 0) 

{ 

tNode.Distance = node.Distance + length; 

pathNodes[currentNodeIndex].TrimToSize(); 

pathNodes[nodeIndex] = new 

System.Collections.ArrayList(); 

foreach (int ni in 

pathNodes[currentNodeIndex]) pathNodes[nodeIndex].Add(ni); 

pathNodes[nodeIndex].TrimToSize(); 

} 

else if ((node.Distance + length) < 

tNode.Distance) 

{ 

tNode.Distance = node.Distance + length; 

pathNodes[currentNodeIndex].TrimToSize(); 

pathNodes[nodeIndex] = new 

System.Collections.ArrayList(); 

foreach (int ni in 

pathNodes[currentNodeIndex]) pathNodes[nodeIndex].Add(ni); 

pathNodes[nodeIndex].TrimToSize(); 

} 

} 

Nodes[nodeIndex] = tNode; 

} 

} 

foreach (Node nd in Nodes) 

{ 

if (!nd.Visited && nd.Distance > 0) 

{ 

if (minNode.Distance < 0) 

{ 

minNode = nd; 

} 

else if (minNode.Distance > nd.Distance) 

{ 

minNode = nd; 

} 

} 

} 

return minNode; 
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} 

private double GetEdgeLength(string start, string stop) 

{ 

double length = 0; 

ARFeature tf; 

for (int i = 0; i < Edges.ARFeatureCount; i++) 

{ 

tf = Edges.get_ARFeature(i); 

if 

((tf.get_ValueAsString(naInit.FromNodeIndex).Equals(start) && 

tf.get_ValueAsString(naInit.ToNodeIndex).Equals(stop)) || 

(tf.get_ValueAsString(naInit.FromNodeIndex).Equals(stop) && 

tf.get_ValueAsString(naInit.ToNodeIndex).Equals(start))) 

{ 

length = 

Convert.ToDouble(tf.get_Value(naInit.ShapeLengthIndex)); 

break; 

} 

} 

return length; 

} 

private ARFeature GetEdge(string start, string stop) 

{ 

ARFeature tempFeature = null; 

for (int i = 0; i < Edges.ARFeatureCount; i++) 

{ 

tempFeature = Edges.get_ARFeature(i); 

if 

((tempFeature.get_ValueAsString(naInit.FromNodeIndex).Equals(start) && 

tempFeature.get_ValueAsString(naInit.ToNodeIndex).Equals(stop)) || 

(tempFeature.get_ValueAsString(naInit.FromNodeIndex).Equals(stop) && 

tempFeature.get_ValueAsString(naInit.ToNodeIndex).Equals(start))) 

{ 

break; 

} 

} 

return tempFeature; 

} 

private int SetNodes() 

{ 

int sourceNodeIndex = -1; 

ARFeature tempFeature; 

Nodes = new ArrayList(); 

for (int i = 0; i < Edges.ARFeatureCount; i++) 

{ 

tempFeature = Edges.get_ARFeature(i); 

Node startNode = new 

Node(tempFeature.get_ValueAsString(naInit.FromNodeIndex).Trim(), -1, 

false); 

Node endNode = new 

Node(tempFeature.get_ValueAsString(naInit.ToNodeIndex).Trim(), -1, 

false); 

if (Nodes.IndexOf(startNode) < 0) 

{ 

if (startNode.Label.Equals(sourceNodeLabel) && 

sourceNodeIndex < 0) 

{ 

startNode.Distance = 0; 

sourceNodeIndex = Nodes.Count; 

Nodes.Add(startNode); 

} 
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else if (!endNode.Label.Equals(sourceNodeLabel)) 

{ 

Nodes.Add(startNode); 

} 

} 

if (Nodes.IndexOf(endNode) < 0) 

{ 

if (endNode.Label.Equals(sourceNodeLabel) && 

sourceNodeIndex < 0) 

{ 

endNode.Distance = 0; 

sourceNodeIndex = Nodes.Count; 

Nodes.Add(endNode); 

} 

else if (!endNode.Label.Equals(sourceNodeLabel)) 

{ 

Nodes.Add(endNode); 

} 

} 

} 

Nodes.TrimToSize(); 

pathNodes = new System.Collections.ArrayList[Nodes.Count]; 

return sourceNodeIndex; 

} 

public bool Run() 

{ 

try 

{ 

if (sourceNodeLabel.Equals(destinationNodeLabel)) throw 

new Exception("Source and destination are similar"); 

int nodeIndex = SetNodes(); 

if (nodeIndex < 0) throw new Exception("Nodes could not 

be set"); 

Node currentNode = (Node)Nodes[nodeIndex]; 

pathNodes[nodeIndex] = new 

System.Collections.ArrayList(); 

while (UnvisitedNodeExists()) 

{ 

nodeIndex = Nodes.IndexOf(currentNode); 

currentNode.Visited = true; 

pathNodes[nodeIndex].Add(nodeIndex); 

Nodes[nodeIndex] = currentNode; 

if (currentNode.Label.Equals(destinationNodeLabel)) 

break; 

currentNode = GetMinimumNode(currentNode, 

nodeIndex); 

} 

//Make sure source and destination features are part of 

the collection 

ARFeature tempFeature; 

if (destinationFeature != null) 

{ 

tempFeature = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][pathNodes[nodeIndex].Cou 

nt - 2]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][pathNodes[nodeIndex].Count - 

1]]).Label); 

if 

(destinationFeature.get_ValueAsString(naInit.ObjectIDIndex).Equals(temp 

Feature.get_ValueAsString(naInit.ObjectIDIndex))) 

{ 
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destinationFeature = null; 

} 

} 

if (sourceFeature != null) 

{ 

tempFeature = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][0]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][1]]).Label); 

if 

(sourceFeature.get_ValueAsString(naInit.ObjectIDIndex).Equals(tempFeatu 

re.get_ValueAsString(naInit.ObjectIDIndex))) 

{ 

sourceFeature = null; 

} 

} 

//Fill Path Nodes arraylist 

if (sourceFeature != null && destinationFeature != 

null) 

{ 

ShortestPath = new 

ARFeature[pathNodes[nodeIndex].Count - 1 + 2]; 

ShortestPath[0] = sourceFeature; 

ShortestPath[ShortestPath.Length - 1] = 

destinationFeature; 

for (int i = 0; i < pathNodes[nodeIndex].Count - 1; 

i++) 

{ 

ShortestPath[i + 1] = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label); 

} 

} 

else if (sourceFeature != null) 

{ 

ShortestPath = new 

ARFeature[pathNodes[nodeIndex].Count - 1 + 1]; 

ShortestPath[0] = sourceFeature; 

for (int i = 0; i < pathNodes[nodeIndex].Count - 1; 

i++) 

{ 

ShortestPath[i + 1] = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label); 

} 

} 

else if (destinationFeature != null) 

{ 

ShortestPath = new 

ARFeature[pathNodes[nodeIndex].Count - 1 + 1]; 

ShortestPath[ShortestPath.Length - 1] = 

destinationFeature; 

for (int i = 0; i < pathNodes[nodeIndex].Count - 1; 

i++) 

{ 

ShortestPath[i] = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label); 

} 

} 

else 

{ 
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ShortestPath = new 

ARFeature[pathNodes[nodeIndex].Count - 1]; 

for (int i = 0; i < pathNodes[nodeIndex].Count - 1; 

i++) 

{ 

ShortestPath[i] = 

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label, 

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label); 

} 

} 

//Calculate Path Cost 

PathCost = 0; 

foreach (ARFeature feature in ShortestPath) PathCost += 

Convert.ToDouble(feature.get_Value(naInit.ShapeLengthIndex)); 

return true; 

} 

catch (Exception ex) { return false; } 

} 

} 

public class NetworkAnalystInitialiser 

{ 

private Form ownerForm; 

private AxArcReaderControl arControl; 

private string routeLayerName; 

private ArrayList mapLayers; 

private ARLayer arRouteLayer; 

private ArrayList arLayers; 

private ArrayList routeLinkers = null; 

private string objectIDField, fromNodeField, toNodeField, 

shapeLengthField, linkFieldName; 

private int objectIDIndex, fromNodeIndex, toNodeIndex, 

shapeLengthIndex, linkFieldIndex; 

private bool linkFieldNumeric; 

private ResultObject initStatus = new ResultObject(); 

public NetworkAnalystInitialiser(Form ownerForm, 

AxArcReaderControl arControl, string routeLayerName) 

{ 

this.ownerForm = ownerForm; 

this.arControl = arControl; 

this.routeLayerName = routeLayerName; 

mapLayers = new ArrayList(); 

} 

public NetworkAnalystInitialiser(Form ownerForm, 

AxArcReaderControl arControl, string routeLayerName, string 

nodeLayerName, string objectIDField, string fromNodeField, string 

toNodeField, string shapeLengthField) 

{ 

this.ownerForm = ownerForm; 

this.arControl = arControl; 

this.routeLayerName = routeLayerName; 

this.objectIDField = objectIDField; 

this.fromNodeField = fromNodeField; 

this.toNodeField = toNodeField; 

this.shapeLengthField = shapeLengthField; 

mapLayers = new ArrayList(); 

Initialise(); 

} 

public Form OwnerForm 

{ 

get { return ownerForm; } 

set { ownerForm = value; } 
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} 

public AxArcReaderControl ARControl 

{ 

get { return arControl; } 

set { arControl = value; } 

} 

public string RouteLayer { get { return routeLayerName; } } 

public ARLayer ARRouteLayer { get { return arRouteLayer; } } 

public ArrayList MapLayers { get { return mapLayers; } } 

public ArrayList ARLayers 

{ 

get { return arLayers; } 

} 

public ArrayList RouteLinkers 

{ 

get { return routeLinkers; } 

} 

public string ObjectIDField 

{ 

get { return objectIDField; } 

set { objectIDField = value; } 

} 

public string FromNodeField 

{ 

get { return fromNodeField; } 

set { fromNodeField = value; } 

} 

public string ToNodeField 

{ 

get { return toNodeField; } 

set { toNodeField = value; } 

} 

public string ShapeLengthField 

{ 

get { return shapeLengthField; } 

set { shapeLengthField = value; } 

} 

public string LinkFieldName 

{ 

get { return linkFieldName; } 

set { linkFieldName = value; } 

} 

public int ObjectIDIndex 

{ 

get 

{ 

if (initStatus.Status) return objectIDIndex; 

else throw new Exception("Object ID Index Not Set"); 

} 

} 

public int FromNodeIndex 

{ 

get 

{ 

if (initStatus.Status) return fromNodeIndex; 

else throw new Exception("From Node Index Not Set"); 

} 

} 

public int ToNodeIndex 

{ 

get 
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{ 

if (initStatus.Status) return toNodeIndex; 

else throw new Exception("To Node Index Not Set"); 

} 

} 

public int ShapeLengthIndex 

{ 

get 

{ 

if (initStatus.Status) return shapeLengthIndex; 

else throw new Exception("Shape Length Index Not Set"); 

} 

} 

public int LinkFieldIndex 

{ 

get 

{ 

if (initStatus.Status) return linkFieldIndex; 

else throw new Exception("Link Field Index Not Set"); 

} 

} 

public bool LinkFieldNumeric 

{ 

get { return linkFieldNumeric; } 

} 

public ResultObject InitialiserStatus 

{ 

get { return initStatus; } 

} 

public MapLayer GetMapLayer(string layerName) 

{ 

if (initStatus.Status) 

{ 

foreach (MapLayer mapLayer in mapLayers) 

{ 

if 

(mapLayer.LayerName.Trim().Equals(layerName.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) 

{ 

return mapLayer; 

} 

} 

} 

return null; 

} 

public ARLayer GetARLayer(string layerName) 

{ 

if (initStatus.Status) 

{ 

foreach (ARLayer arLayer in arLayers) 

{ 

if (arLayer.Name.Trim().Equals(layerName.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) 

{ 

return arLayer; 

} 

} 

} 

return null; 

} 

public bool AddRouteLinker(RouteLinker routeLinker) 



 112 

{ 

try 

{ 

if (routeLinkers == null) routeLinkers = new 

ArrayList(); 

routeLinkers.Add(routeLinker); 

routeLinkers.TrimToSize(); 

return true; 

} 

catch (Exception ex) { return false; } 

} 

public bool AddMapLayer(MapLayer mapLayer) 

{ 

try 

{ 

mapLayers.Add(mapLayer); 

return true; 

} 

catch (Exception ex) { return false; } 

} 

private bool AddARLayer(ARLayer arLayer) 

{ 

try 

{ 

if (arLayer.Searchable) 

{ 

if (arLayer.IsGroupLayer) 

{ 

for (int i = 0; i < arLayer.ARLayerCount; i++) 

{ 

AddARLayer(arLayer.get_ChildARLayer(i)); 

} 

} 

else 

{ 

if (GetMapLayer(arLayer.Name.Trim()) != null) 

arLayers.Add(arLayer); 

if 

(arLayer.Name.Trim().Equals(routeLayerName.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) { arRouteLayer = arLayer; } 

} 

} 

return true; 

} 

catch (Exception ex) { return false; } 

} 

public bool Initialise() 

{ 

initStatus.Status = true; 

initStatus.Message = "Initialiser correctly set"; 

try 

{ 

if (this.arControl == null) 

{ 

initStatus.Status = false; 

initStatus.Message = "ArcReaderControl not set"; 

} 

if (this.routeLayerName.Trim().Length == 0) 

{ 

initStatus.Status = false; 

initStatus.Message = "Route layer not set"; 
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} 

arLayers = new ArrayList(); 

arRouteLayer = null; 

for (int i = 0; i < 

arControl.ARPageLayout.FocusARMap.ARLayerCount; i++) 

{ 

if 

(!AddARLayer(arControl.ARPageLayout.FocusARMap.get_ARLayer(i))) 

{ 

initStatus.Status = false; 

initStatus.Message = "Layer could not be 

added"; 

} 

} 

arLayers.TrimToSize(); 

objectIDIndex = fromNodeIndex = toNodeIndex = 

shapeLengthIndex = linkFieldIndex = -1; 

ArcReaderSearchDef searchDef = new 

ArcReaderSearchDefClass(); 

ARFeatureCursor featureCursor = 

arRouteLayer.SearchARFeatures(searchDef); 

ARFeature feature = featureCursor.NextARFeature(); 

for (int i = 0; i < feature.FieldCount; i++) 

{ 

if 

(feature.get_FieldName(i).Trim().Equals(objectIDField.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) objectIDIndex = i; 

if 

(feature.get_FieldName(i).Trim().Equals(fromNodeField.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) fromNodeIndex = i; 

if 

(feature.get_FieldName(i).Trim().Equals(toNodeField.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) toNodeIndex = i; 

if 

(feature.get_FieldName(i).Trim().Equals(shapeLengthField.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) shapeLengthIndex = i; 

if 

(feature.get_FieldName(i).Trim().Equals(linkFieldName.Trim(), 

StringComparison.CurrentCultureIgnoreCase)) { linkFieldIndex = i; 

linkFieldNumeric = (feature.get_FieldType(i) == 

esriARFieldType.esriARFieldTypeInteger || feature.get_FieldType(i) == 

esriARFieldType.esriARFieldTypeSmallInteger) ? true : false; } 

} 

if (objectIDIndex == -1 || fromNodeIndex == -1 || 

toNodeIndex == -1 || shapeLengthIndex == -1 || linkFieldIndex == -1 ) 

initStatus.Status = false; 

} 

catch (Exception ex) 

{ 

initStatus.Status = false; 

initStatus.Message = ex.Message; 

} 

return initStatus.Status; 

} 

} 

public class MapShortestPath 

{ 

private ARFeature[] features; 

private double pathCost; 

public MapShortestPath(ARFeature[] features, double pathCost) 

{ 
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this.pathCost = pathCost; 

this.features = features; 

} 

public ARFeature[] Features 

{ 

get { return features; } 

} 

public double PathCost 

{ 

get { return pathCost; } 

} 

} 

public class ResultObject 

{ 

private bool status = false; 

private string message = ""; 

public ResultObject() 

{ 

} 

public bool Status { get { return status; } set { status = 

value; } } 

public string Message { get { return message; } set { message = 

value; } } 

} 

public class MapLayer 

{ 

private string layerName; 

private ArrayList searchableFields; 

public MapLayer(string layerName) 

{ 

this.layerName = layerName; 

searchableFields = new ArrayList(); 

} 

public string LayerName 

{ 

get { return layerName; } 

set { layerName = value; } 

} 

public ArrayList SearchableFields 

{ 

get { return searchableFields; } 

} 

public bool AddSearchableField(string fieldName) 

{ 

try 

{ 

searchableFields.Add(fieldName); 

searchableFields.TrimToSize(); 

return true; 

} 

catch (Exception ex) { return false; } 

} 

} 

public class MapField 

{ 

private int fieldIndex; 

private string fieldName; 

private bool isNumeric; 

private esriARFieldType fieldType; 

public MapField() 

{ 
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} 

public int FieldIndex 

{ 

get { return fieldIndex; } 

set { fieldIndex = value; } 

} 

public string FieldName 

{ 

get { return fieldName; } 

set { fieldName = value; } 

} 

public bool IsNumeric 

{ 

get { return isNumeric; } 

} 

public esriARFieldType FieldType 

{ 

get { return fieldType; } 

set 

{ 

fieldType = value; 

if (fieldType == esriARFieldType.esriARFieldTypeDouble 

|| fieldType == esriARFieldType.esriARFieldTypeInteger || fieldType == 

esriARFieldType.esriARFieldTypeOID || fieldType == 

esriARFieldType.esriARFieldTypeSingle || fieldType == 

esriARFieldType.esriARFieldTypeSmallInteger) 

{ 

isNumeric = true; 

} 

else 

{ 

isNumeric = false; 

} 

} 

} 

} 

public class RouteLinker 

{ 

private string layerName; 

private string linkField; 

public RouteLinker() 

{ 

} 

public RouteLinker(string layerName, string linkField) 

{ 

this.layerName = layerName; 

this.linkField = linkField; 

} 

public string LayerName 

{ 

get { return layerName; } 

set { layerName = value; } 

} 

public string LinkField 

{ 

get { return linkField; } 

set { linkField = value; } 

} 

} 

public enum MapTool 

{ 
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Pan, 

ZoomIn, 

ZoomOut, 

MapHyperlink, 

MapIdentify, 

MapIdentifyUsingLayer, 

MapMeasure, 

MapSwipe, 

MapZoomInOut, 

FullExtent, 

UndoExtent, 

RedoExtent 

} 

public enum ShortestPathParameterType 

{ 

FeatureToFeature, None 

} 

} 

 
 


