
1

KWAME NKRUMAH UNIVERSITY OF SCIENCE &

TECHNOLOGY

INSTITUTE OF DISTANCE LEARNING

DEPARTMENT OF MATHEMATICS

DETERMINATION OF SHORTEST PATH USING

DIJKSTRA’S ALGORITHM FOR EMERGENCY SERVICE IN

KUMASI METROPOLIS

BY

EDWARD OBENG AMOAKO

(BSC. MATHEMATICS)

IN PARTIAL FULFILMENT FOR THE AWARD OF MASTER OF

SCIENCE (INDUSTRIAL MATHEMATICS)

SUPERVISOR:

DR. S.K. AMPONSAH

KWAME NKRUMAH UNIVERSITY OF SCIENCE & TECHNOLOGY

KUMASI

2

COLLEGE OF SCIENCE

INSTITUTE OF DISTANCE LEARNING

DEPARTMENT OF MATHEMATICS

DETERMINATION OF SHORTEST PATH USING DIJKSTRA’S

ALGORITHM FOR EMERGENCY SERVICE IN KUMASI

METROPOLIS

THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY IN

PARTIAL

FULFILMENT OF THE REQUIREMENTTS FOR THE DEGREE

OF

MASTER OF SCIENCE (INDUSTRIAL MATHEMATICS)

BY

EDWARD OBENG AMOAKO

JULY, 2011

 DECLARATION

3

I hereby declare that this submission is my own work towards the MSc and that, to the best of

my knowledge; it contains no material previously published by another person nor material

which has been accepted for the award of any other degree of the university, except where

due acknowledgement has been made in the text.

EDWARD OBENG AMOAKO (PG1836507) …………...…..

….......……….......

(Student‘s Name & Index No.) Signature Date

Certified by:

DR. S. K. AMPONSAH ………………............

.....……………….

Supervisor‘s Name Signature Date

Certified by:

DR. S. K. AMPONSAH ……...………….............

......……………

Head of Department. Signature Date

DEDICATION

4

I DEDICATE THIS TO MY PARENTS

THE LATE MR. MARTIN OBENG AND MADAM DORA NKANSAH

ACKNOWLEDGMENTS

I will first of all like to thank the Lord Almighty for His Grace and Guidance during my study

and also seeing me through the course. Secondly I thank my parent and my family for their

5

spiritual, financial and moral Support. I am also grateful to Dr. S.K.Amponsah my supervisor

and my mentor Prof. I. K. Dontwi for their immense Contributions towards the preparation of

this thesis. It is my prayer that the blessings of God will be their footstool. Again I want to

thank members of KNUST Geography Department Drawing Room. Their efforts toward this

piece are well note. Finally, I say thank you to all who in one way or the other helped, I am

really grateful.

ABSTRACT

It is becoming difficult for emergence services to find the best route especially in Kumasi to

any destination in order to save lives in real time. This study deals with the problem of

finding shortest paths in traversing some locations within the Kumasi Metropolis in the

6

Ashanti Region of Ghana. Dijkstra‘s Algorithm was selected to determine the shortest

distances from any location to any destination within the Kumasi metropolis.

The objective of thesis is to use Dijkstra‘s algorithm in constructing the minimum spanning

tree considering the dual carriage ways in the road network of Kumasi metropolis within the

shortest possible time for emergence services. The distance between 51 locations of the towns

with the major roads was measured and a legend and a matrix were formulated. A visual

basic program was prepared using Dijkstra‘s algorithm. The distances were used to prepare

an input deck for the visual program.The methodology employed included review of relevant

literature of the types of Dijkstra‘s algorithm and methods employed in the solution of the

Dijkstra‘s algorithm and to develop computer solutions – ArcGIS and VB.net for faster

computation of Dijkstra‘s algorithm. The result shows a remarkable reduction in the actual

distance as compared with the ordinary routing. These results indicate, clearly the importance

of this type of algorithms in the optimization of network flows. Hence the shortest distance

from any area in Kumasi metropolis to another can easily be calculated using this thesis so as

to minimize the average lost of lives in case emergences.

TABLE OF CONTENT

DECLARATION………………………………………………..

...........i

DEDICATION………………………………………………………………………………….

…………..ii

7

ACKNOWLEDGEMENT………………………………………………………………………

………....iii

ABSTRACT……………………………………………………………………………………

…………..iv

TABLE OF

CONTENT………………………………………………………………………...................v

LIST OF

FIGURES………………………………………………………………………………............

vii

LIST OF

TABLES…………………………………………………………………………………….....v

iii

LIST OF ACRONYM /

ABREVIATION…………………………………………..……………………..xi

CHAPTER

ONE……………………………………………………………………………………...........1

INTRODUCTION………………………………………………………………………………

………….1

1.1 BACKGROUND OF THE

STUDY……………………………………………………………………...…1

1.1.1 DYNAMIC TRAFFIC

ROUTING…………………………………………………………...........1

1.1.2 THE ROKE OF GEOGRAPHIC INFORMATION SYSTEM (G.I.S) AND LOCAL

BASED SERVICE

(LBS)……………………………………………………………………………………….......

2

8

1.1.3 THE ARCHITECTURE OF NAVIGATION

SERVICE………………………………………….…3

1.2 STATEMENT OF THE

PROBLEM……………………………………………………………….…4

1.3 OBJECTIVE OF THE

STUDY………………………………………………………………............6

1.4

METHODOLOGY……………………………………………………………………………

…........6

1.5

JUSTIFICATION…………………………………………………………………………….....

........6

1.6

LIMITATIONS………………………………………………………………………………....

........9

1.7 ORGANIZATION OF THE

THESIS………………………………………………………...……...10

CHAPTER

TWO………………………………………………………………………………………...11

LITERATURE

REVIEW……………………………………………………………………….............11

2.0

INTRODUCTION……………………………………………………………………………....

.....11

9

CHAPTER

THREE……………………………………………………………………………………...23

METHODOLOGY……………………………………………………………………………

………....23

3.0

METHODOLOGY……………………………………………………………………………...

.23

3.1 BACKGROUND OF GRAPH

THEORY……………………………………………….............23

3.2 DEFINITION OF

GRAPH…………………………………………………………………........23

3.2.1 DEGREE OF A

VERTEX…………………………………………………………………........24

3.2.2 TRANSPORTATION NETWORK DATA

MODEL……………………………………….......25

3.3 TYPICAL ROUTING

QUERIES………………………………………………………………...28

3.3.1 ROUTING QUERY FOR KNOWN

DESTINATION...28

3.3.2 ROUTING QUERY FOR UNKNOWN

DESTINATION..28

3.4 INTRODUCTION TO THE SHORTEST PATH

ALGORITHM………………………............29

3.5 SOME NETWORK

DEFINITIONS……………………………………………………………...30

10

3.5.1 SPARSE

NETWORKS……………………………………………………………………….….30

3.5.2 PLANAR

NETWORKS……………………………………………………………………........31

3.6 ROAD

NETWORKS…………………………………………………………………….……...31

3.7 A GENERAL CLASSIFICATION OF THE

ALGORITHM…………………………………...32

3.7.1 MATRIX

ALGORITHMS……………………………………………………………………....32

3.7.2 THE TREE BUILDING

ALGORITHMS………………………………………….......33

3.8 THE INPUT AND THE OUTPUT TO THE SHORTEST PATH

ALGORITHMS………........34

3.9.1 ONE

PAIR……………………………………………………………………………………..…34

3.8.2 ONE TO

MANY………………………………………………………………………………....35

3.8.3 MANY – TO-

ONE……………………………………………………………………………....35

3.8.4 ALL

PAIRS……………………………………………………………………………………....35

3.9 ALL - SHORTEST PATH

PROBLEMS……………………………………………………….....36

11

3.10 CLASSIFICATION OF SHORTEST PATH (SP)

PROBLEMS……………………………..…..37

3.11 CLASSICAL SHORTEST PATH ALGORITHMS FOR STATIC

NETWORKS……………….38

3.12 FLODYS WASHALL

ALGORITHMS…………………………………………………………..39

3.13 DIJSKRA‘S

ALGORITHM……………………………………………………………………….42

3.14

A*ALGORITHM………………………………………………………………………………

….43

3.15 COMPARISON OF ALGORITHMS BASED ON DISTANCE (TIME)

COMPLEXITY……….44

3.16 DYNAMIC TRAFFIC

ROUTING……………………………………………………………......46

3.16.1 DYNAMIC TRANSPORTATION

NETWORK………………………………….……………..46

3.16.2 RELATED RESEARCH FOR DYNAMIC TRAFFIC

ROUTING………………………….....47

3.17 SHORTEST PATH AND THE ENVIRONMENT

ISSUE…………………………………….....50

3.18 INTRODUCTION TO THE BUS ROUTING ALGORITHM

DESCRIPTION……………….....51

3.18.1 THE BUS ROUTING

ALGORITHM…………………………………………………………….52

12

3.19 THE SHORTEST

PATH………………………………………………………………………......53

3.20 DIJKSTRA

ALGORITHM……………………………………………………………………......54

CHAPTER

4…………………………………………………………………………………………..….61

DATA COLLECTION AND

ANALYSIS……………………………………………………….....…...61

4.1 DATA

COLLECTION……………………………………………………………………………...61

4.2 NETWORK DATA ANALYSIS AND

RESULTS……………………………………………......62

4.2.1 THE PATH FINDING

ALGORITHM…………………………………………………………...64

4.3 CASE

STUDY…………………………………………………………………………………......67

4.4 PROPOSED

SOLUTION……………………………………………………………………….....68

4.5 DISCUSSION AND FUTURE

WORK……………………………………………………........73

CHAPTER

5............…………………………………………………..75

CONCLUSIONS AND

RECOMMENDATIONS………………………………………………...….....75

13

5.1

CONCLUSION……………………………………………………………………………...…....

..75

5.2

SUGGESSTION……………………………………………………………………………..…...

..76

REFERENCES………………………………………………………………………………….

.………78

APPENDIX……………………………………………………………………………………..

…….....81

LIST OF FIGURES

14

FIGURE 3.1: A DIAGRAM OF A WEIGHTED GRAPH WITH 6 NODES AND 7

LINKS………….24

FIGURE 3. 2: A SAMPLE NETWORK THAT CAN BE REPRESENTED IN A MATRIX

FORM…32

FIGURE 3.3: A SAMPLE NETWORK THAT CAN BE NOT REPRESENTED IN A

MATRIX

FORM…………………………………………………………………………………………

…..........32

FIGURE 3.4: MATRIX REPRESENTATION OF THE NETWORK OF

FIGURE………….............31

FIGURE 3. 5: A NETWORK AND ITS SHORTEST PATH

TREE…………………………………..34

FIG 3.6A: DESCRIPTION OF THE

ALGORITHM…………………………………………………...57

FIG 3.6B: DESCRIPTION OF THE

ALGORITHM…………………………………………………...58

FIGURE4:1: AN EXAMPLE OF DIJKSTRA‘S ALGORITHM (ORLIN

2003)..……………….......65

FIG 4.2: MAP OF KUMASI

METROPOLIS………………………………………………………..…68

FIGURE 4.3: SHOWS THE MAP OF

ADUM………………………………………………………....68

FIGURE 4.4: SHOWS THE CITY CENTRE ROAD NETWORK OF

KUMASI……………………..69

FIGURE 4.5: SHOWS THE EXTRACT MAP OF ADUM

NETWORK……………………………...70

15

FIGURE 4.6: SHOWS THE FIRST INTERFACE OF THE

PROGRAM……………………………..71

FIGURE 4.7: SHOWS THE HOW USERS SELECT A

MAP………………………………………...72

FIGURE 4.9: SHOWS THE HOW SELECTED MAP BEEN

DISPLAY……………………………..73

FIGURE 4.10: SHOWS THE HOW USER SELECTS THE SOURCE STREET AND THE

DESTINATION………………………………………………………………………………

………...73

FIGURE 4.11: SHOWS THE HOW USER SELECTS THE DESTINATION

STREET……………..74

LIST OF TABLES

TABLE 3.1: TIME COMPLEXITY COMPARISON BETWEEN CLASSICAL

ALGORITHMS……..45

TABLE 4.1: A RECORD, CALLED QUEUE, WITH ALL PROCESSED

NODES…………...……….66

16

LIST OF ACRONYM / ABBREVIATION

RAS REGIONAL AMBULANCE SERVICE

KATH KOMFO ANOKYE TECHING HOSPITAL

ITS INTELLIGENT TRANSPORT SYSTEM

GIS GEOGRAPHIC INIFORMATION SYSTEM

LBS LOCATION BASED SERVICE

IVNS INTELLIGENT VEHICLES NAVIGATION SYSTEM

TMC TRAFFIC MANAGEMENT CENTRES

GIS-T GEOGRAPHIC INFORMATION SYSTEMS FOR TRANSPORTATION

NYIA NEW YOUNG-JONG ISLAND INTERNATIONAL AIRPORT

17

ESPPRC ELEMENTARY SHORTEST PATH PROBLEM WITH RESOURCE

CONSTRAITS

VRPTW VECHICLE ROUTING PROBLEM WITH TIME WINDOWS

SPPRC SHORTEST PATH PROBLEM WITH RESOURCE CONSTRAINTS

SDSS SPATIAL DECISION SUPPORT SYSTEM

CARP CAPACITATED ARC ROUTING PROBLEM

MAS METROPOLIS AMBULANCE SERVICE

MFS METROPOLITAN FIRE SERVICE

KMA KUMASI METROPOLITAN ASSEMBLY

18

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Kumasi is the capital city of the Ashanti Region, a very important and historical centre for

Ghana. It is located about 250 km (by road) northwest of Accra. Kumasi is approximately

300 miles north of the equator and 100miles north of the Gulf of Guinea. It is the second

largest city of Ghana with a population of 1,517,000. The metropolis is made up of 119 sub

metros. There are five ambulances currently located in Ashanti Region, and one is in the

Kumasi metropolis. The one in Kumasi is located at the Komfo Anokye Teaching Hospital

(KATH) and the other four ambulances are located at Mamponten, Ejisu, Konongo and

Ahwia Nkwanta. All except the KATH and Ahwia Nkwanta services are located at ―fire

stations‖. Cases handled by the Regional Ambulance Service (RAS) range from Gynecology

to road accidents. The RAS is housed in a separate building at the KATH polyclinic. The

EMTs here run two shifts; day and night. Communication is the key to running of the

ambulance service.

1.1.1 DYNAMIC TRAFFIC ROUTING

In recent decades, road transportation systems have become increasingly complex and

congested. Traffic congestion is a serious problem that affects people both economically as

well as mentally. Moreover, finding an optimal route in an unknown city can be very difficult

even with a map. These issues have given rise to the field of Intelligent Transport System

(ITS), with the goal of applying and merging advanced technology to make transportation

19

safer and more efficient by reducing traffic accidents, congestion, air pollution and

environmental impact (Ahuja,1993). In working towards this goal, traffic routing is required

since the traffic conditions change overtime. Up-to-date, real-time information about traffic

conditions can be collected through surveillance systems.

However, the utilization of such information to provide efficient services such as real-time en

route guidance still lags behind. The objective of this research is to solve the dynamic routing

problem, which guides motor vehicles through the urban road network using the quickest

path taking into account the traffic conditions on the roads.

1.1.2 THE ROLE OF GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND

LOCATION BASED SERVICE (LBS)

Geographic Information Systems (GIS) represent a new paradigm for the organization and

design of information systems, the essential aspect of which is the use of location as the basis

for structuring the information systems. Transportation is inherently geographic and therefore

the application of GIS has relevance to transportation due to the spatially distributed nature of

transportation related data, and the need for various types of network level analysis, statistical

analysis and spatial analysis. GIS possesses a technology with considerable potential for

achieving dramatic gains in efficiency and productivity for a multitude of traditional

transportation applications. The impact of GIS technology in the development of

transportation information systems is profound. It completely revolutionizes the decision

making process in transportation engineering. This allows the user to understand the logic

behind the routing design. With the expansion and proliferation of Location Base Services

(LBS) or road map, location awareness and personal location tracking become important

attributes of the mobile communication infrastructure and begin to provide invaluable

benefits to business, consumer and government sectors. How to establish low-cost, reliable,

20

and high-quality services is the most important challenge in the LBS area. Navigation is

perhaps the most well known function of LBS and Geographic Information Systems for

Transportation (GIS-T). It is applied in many land-based transportation applications to

revolutionize human lives, such as the Intelligent Vehicles Navigation System (IVNS),which

is currently a must-have feature especially in the high-end car market.

1.1.3 THE ARCHITECTURE OF NAVIGATION SERVICE

Navigation guidance can be discriminated between decentralized and centralized route

guidance. In the former, drives derive their own paths using on-board computers, based on

either static road maps on paper, or real-time traffic information provided via airwaves

(radio) network. However, transportation networks have high costs, limited access, and low

connection stability making it expensive to deliver detailed traffic information to all map

users. Therefore, it may take a long time to find the destination locally or may even be

impossible in some cases. On the other hand, navigation services are often used in time-

critical circumstances (e.g. 191 Emergency Service) which require near real-time query

response and concise route guidance information to facilitate decision making.

Centralized route guidance relies on Traffic Management Centres (TMC) such some FM

stations to answer path queries submitted by drivers. In this case, the Client/Server

architecture is employed in order to reduce query response time. A centralized GIS server is

used to perform the geo-processing task and return query results instead of providing the

entire dataset. The service can provide users turn-by-turn navigation instructions about

optimal routes to their desired destinations through text or a map display. It can also alert the

driver about problems ahead, such as traffic jams or accidents. To deliver query results to

mobile clients within a tolerable latency time, it demands an efficient algorithm to retrieve

desired navigation information quickly. Thus, it is able to accommodate large numbers of

21

road users. This thesis, discusses the algorithms that are feasible for centralized route

guidance.

1.2 STATEMENT OF THE PROBLEM

Travelling is a part of daily life. The majority of people (especially in large cities or

developing countries) rely heavily on emergences services in the case of accident such as

road accident, fire and any disaster event people will rely on these emergence services instead

of their own vehicles. In a metropolis with a complicated transport network, people often do

not know how to reach their destination except where they often visit. In addition, people

may want to plan for the fastest or the most economical method to their destinations. Such

tasks require a sophisticated knowledge about public transport network. Further, we need a

multi-modal route finding system, because a transport network comprises many modes of

transportation, including railway, bus, mini-bus, and so on, within a large metropolis such as

Kumasi. When a user asks for a path from one place to another, the system can generate

routes, in multi-modal or single modal mode, according to input criteria, such as cost, time, or

transportation mode.

Transportation model is but one of the many problems that can be represented and solved as a

network problem. To be specific consider the following situations:

(i). Determination of the minimum- cost flow schedule from oil fields to refineries and

finally to distribution centre this can be transported through tracks, trains etc.

(ii). Determination of the shortest route joining two cities in an existing network of roads.

(iii). Collection, transporting and dumping of garbage.

(iv). Business, scheduling deliveries and installations while including time window

restrictions, or a calculating drive time to determine customer base, taking into

account rush hour versus midday traffic volumes.

22

(v). Education, generating school bus routes honouring curb approach and no U-turn rules.

(vi). Environmental Health, determining effective routes for county health inspectors.

(vii). Public Safety, routing emergency response crews to incidents, or calculating drive

time for first responder planning.

(viii). Public Works, determining the optimal route for point-to-point pickups of massive

trash items or routing of repair crews.

(ix). Retail, finding the closest store based on a customer's location including the ability to

return the closest ranked by distance.

(x). Transportation, calculating accessibility for mass transit systems by using a complex

network data set.

A study of this representative list reviews that;

Situation a) is a minimal spanning tree model

 Situation b) is a shortest route model

Situation c) is a minimum-cost capacitated network model

The examples cited above deal with the determination of distances and material flow in a

literal sense, the network models listed can be represented, and in principle, solve as linear

programs. However the tremendous number of variables and constraints that normally

accompanies a typical network model makes it inadvisable to solve network problems

directly by the simplex method. The nature and/or structure of these problems allow the

development of highly efficient algorithms, which in most cases are based on linear

programming theory.

23

1.3 OBJECTIVES OF THE STUDY

The objective of this thesis is to create a formation movement shortest path finding algorithm

for emergences services vehicles to implement tactical movement within a large metropolis

such as Kumasi and optimization scheme for transportation planning and analysis to provide

a major advantage in its ability to take into account a range of different, often unrelated

criteria, even if these criteria cannot be directly related to quantitative outcome measures.

1.4 METHODOLOGY

Generally, methodology consists of the study major routes, sampling procedure, sample size

and how the data is analyzed. Kumasi Metropolis, however, has been selected as the

reference region The methodology employed included review of relevant literature of the

types of Dijkstra‘s algorithm and methods employed in the solution of the Dijkstra‘s

algorithm and to develop computer solutions – ArcGIS and VB.net for faster computation of

Dijkstra‘s algorithm

1.5 JUSTIFICATION

With the development of geographic information systems (GIS) technology, network and

transportation analyses within a GIS environment have become a common practice in many

application areas. A key problem in network and transportation analyses is the computation

of shortest paths between different locations on a network. Sometimes this computation has

to be done in real time. For the sake of illustration, let us have a look at the case of a 911 call

requesting an ambulance to rush a patient to a hospital. Today it is possible to determine the

fastest route and dispatch an ambulance with the assistance of GIS. Because a link on a real

road network in a city tends to possess different levels of congestion during different time

periods of a day, and because a patient's location cannot be expected to be known in advance,

24

it is practically impossible to determine the fastest route before a 191 call is received. Hence,

the fastest route can only be determined in real time. In some cases the fastest route has to be

determined in a few seconds in order to ensure the safety of a patient. Moreover, when large

real road networks are involved in an application, the determination of shortest paths on a

large network can be computationally very intensive. Because many applications involve real

road networks and because the computation of a fastest route (shortest path) requires an

answer in real time, a natural question to ask is: Which shortest path algorithm runs fastest on

real road networks? Although considerable empirical studies on the performance of shortest

path algorithms have been reported in the literature (Dijkstra 1959; Dial et al,. 1979; Glover

et al., 1985;Gallo and Pallottino 1988; Hung and Divoky 1988; Ahuja et al., 1990; Mondou et

al.,1991; Cherkassky et al., 1993; Goldberg and Radzik 1993), there is no clear answer as to

which algorithm, or a set of algorithms runs fastest on real road networks. In a recent study

conducted by Zhan and Noon (1996), a set of three shortest path algorithms that run fastest

on real road networks has been identified. These three algorithms are:

(i). the graph growth algorithm implemented with two queues,

(ii). the Dijkstra‘s algorithm implemented with approximate buckets, and

(iii). the Dijkstra‘s algorithm implemented with double buckets.

Dijkstra's algorithm was then used on the node graph, but modified to run faster using

this extra data. However this optimization changes Dijkstra's Algorithm so that it only

finds a path, rather than the shortest path. Other applications of Dijkstra are

(i). Routing of postal workers

(ii). Routing robots through a warehouse

(iii). Drilling holes on printed circuit board

 A network consists of a set of points and a set of lines connecting certain pair of the points.

These points are called nodes and are linked by arcs, edges or branches. Associated with each

25

arc is the flow of some type. In a transportation network, cities represent nodes and highways

represent edges or arc, with traffic representing arc flow. The standard notation for describing

network G= (N,A) where N is the set of nodes and A is the set of edges or arcs.

Today it is possible to determine the faster route and dispatch the immediate assistance or

with the help of the assistance of Geological Information System {G.I.S). With the advance

development in technology, the analyses of networking and transportation within the

technological environment have become a common practice in many applicable areas. The

key problem in network and transportation is the computation of the SHORTEST PATHS

between different locations on a network Sometimes this computation has to be done in real

times. For the sake of illustration, let us have a look at the case of an emergency call,

requesting an ambulance to rush a patient from a very remote area to a hospital. Because a

link on a real road network in the city tends to posse different levels of congestion during

different time period of a day and because a Patient‘s location cannot be expected to be

known in advance, it is practically impossible to determine the fastest route before a call is

received. Hence the fastest route can only be determined in real time.

In some cases the fastest route has to be determined in a few second in order to ensure the

safety of a patient. Moreover when large real road network are involved in an application, the

determination of SHORTEST PATHS on a large network can be computationally very

intensively. The collection, transport and disposal of solid waste, which is a highly visible

and important municipal service, involves a large expenditure but receives, scant attention.

This problem is even more crucial for large cities in developing countries due to the hot

weather. A constructive heuristic, which takes into account the environmental aspect as well

as the cost, is proposed to solve the routing aspect of garbage collection. This is based on a

look-ahead strategy, which is enhanced by this additional mechanism:

26

The problem and its impact on the environment collection of household refuse/industrial

waste is one of the most difficult operational problems faced by local authorities in any large

city. The collection problem is especially crucial for cities in developing countries. Solid

wastes generated from urban and industrial sources also contain a large number of

ingredients, some of which are toxic.

1.6 LIMITATIONS

Among several variants of the SP algorithms there is a group of algorithms, which could be

applied to solve the present issue, but the solution would not be efficient. An obvious group

of algorithms is the one that gives a more general solution than needed and their solution

would be redundant. A good example of a group giving a redundant solution is the ‗all pairs‘

group of the SP algorithms: only one pair of nodes would be used from the set of all pairs.

Matrix algorithms are not of a good use for sparse networks. Matrix algorithms are memory

consuming and for sparse networks time consuming. The implementation of the Dijkstra‘s

algorithm based on a matrix is inefficient for road networks. Therefore the matrix algorithms

are abandoned from this point for the rest of the report.

Determining the ―best‖ route or set of routes for linear utilities such as highways, pipelines,

and power transmission lines, through a landscape has been the subject of much research in

geographic information systems (GIS) and spatial decision making. Specifying an optimal

corridor that connects an origin and destination is analogous to identifying a least-cost-path

through a varying space. Extensive research efforts have been executed to solve the problems

for many years (Tomlin, 1990; Eastman, 1989; Douglas, 1994; Berry 2004). Tomlin‘s (1990)

Spread algorithm generates an accumulated-cost-surface iteratively and delineates the

weighted shortest path from any location to a destination by tracing back along slope lines.

Eastman (1989) implemented a similar, but more efficient, push broom algorithm, which is

able to produce an accumulated cost surface within three iterations. Many of the existing

27

least-cost-path algorithms in GIS are derived from the Dijkstra‘s shortest path algorithm and

intend to generate a global optimal solution.

1.7 ORGANIZATION OF THE THESIS

The thesis is organized in five chapters

Chapter one consists of the introduction to the shortest path and the use of Dijstra‘s over

other shortest path algorithm. The background, problem statement, objective, methodology,

justification and the limitations are discussed. In chapter two we shall put forward pertinent

literature in field of shortest path algorithm and its application. Chapter three presents and

gives a detailed explanation of the shortest path algorithm with Dijkstra‘s algorithms in

detailed. Chapter four consist of the data collection, analysis and results. Chapter five, which

is final chapter, focus on conclusion and recommendations.

28

CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

Shortest path problems are the most fundamental and the most commonly encountered

problems in the study of transportation and communication networks (Syslo 1983).

There are many types of shortest path problems. For example, we may be interested in

deterring the shortest path (i.e the most economic path or fastest path or minimum – fuel

consumption path) from one specified node in the network to another specified node; or may

need to find shortest paths from a specified node to all other nodes.

Arrival time dependent shortest path finding is an important function in the field of traffic

information systems or telematics. However, large number of mobile objects on the road

network results in a scalability problem for frequently updating and handling their real-time

location. Kim (2005) proposed a query processing method in MANET (Mobile Ad-hoc

Network) environment to find an arrival time dependent shortest path with a consideration of

both traffic flow and location in real time. Since their traffic flow method does not need a

centralized server, time dependent shortest path query is processed by in-network way. In

order to reduce the number of messages to forward and nodes to relay, the control introduce

an on-road routing, where messages are forwarded to neighbouring nodes on the same or

adjacent road segments. This routing method allows the collection of traffic information in

real time and the reduction of the number of routing messages.

29

Experiments show that the number of forwarded messages is reduced in an order of

magnitude with our on-road routing method compared to LAR-like method. At best, our

method reduces about fifty seven (57) times less messages.

The Integrated Transport Information System (ITIS) project for the Klang Valley was

initiated by the Federal Government in early 2001 and deployed on a design – build basis in

3Q 2002. With the City Hall, Kuala Lumpur as the implementing agency, the project was

successfully completed and handed over in June 2005. Using a spectrum of different

technologies and equipment, the ITIS has since been gainfully used by City Hall as well as

the police for management of road network operations and particular for management of

incidents over a network comprising of over 200kms of roadways. Omar (1994) discussed the

technologies used in the IT IS network operations, in particular in the detection and

management of incidents, lesson learnt – to – date as well as the roadmap for future

operations and ITS related deployment. Optimization of forest road network is an important

part of logging planning. Matthews (1942) was first to introduce a method for optimization of

road spacing based on minimization of road and skidding cost. Ghaffarian (2000), found the

best road network for a district harvested by skidder. The skidding model developed by

stepwise regression model was used to predict the cost skidding per cubic meter for the thirty

nine (39) nodes, which were planned in the district map.

The harvesting volume and road cost per each node were computed. The data were entered

into network 2000 and the shortest path algorithm; simulated annealing and great deluge

algorithms were run to find the best solution to optimise logging cost of the district. The

result showed which roads can be eliminated from the existing forest road network. Due to

the reduction of travel time between regions in recent years by the development of

transportation networks in Japan, the opportunities for anyone living in both urban and rural

areas to meet people and to use urban facilities have increased. However, the various

functions of smaller cities will be absorbed into these larger metropolises, since the sphere of

30

urban influence from big cities spreads to greater areas. In these backgrounds, the impacts of

developments of expressway networks are analyzed by using the increment in

interchangeable population and the changes in trade and recreation areas. Problems rural

cities will have to bear in the near future are also discussed. It can be said that one result of

this is the sphere of urban influence from big cities will spread to the retailing industry in

rural areas in the near future. In order to utilize the expressway improvements effectively in

rural cities, new and creative development policies are required which are dissimilar to those

of major cities (Hirose, 1994).

Setoguchi et al., (1994) analyzed the influence of network extension and the revised toll on

the traffic of urban expressways in Fukuoka, Kita-Kyushu, and Nagoya, and, in estimating

the traffic of these urban expressways, based on their maintenance and management, the

author of this paper straightened out the relationships between the toll, a factor that

determines the conversion amount of traffic, and the value of time to examine what traffic

allocation calculations should be at a practical application level. Hiroshi et al., (1994)

proposed to determine the groups of road sections to be simultaneously constructed and the

priority between them, considering the disutility of road construction and the priority and

simultaneity of construction between road sections. Dynamic programming is utilized for an

optimization procedure. The mathematical modelling of the problem and its solution

technique are emphasized. An example problem is included and illustrated for showing the

applicability of the model. The results indicate that the proposed method is useful for multi-

stage determination problem such as in the road network planning. Talib et al., (1994)

described a method, which determines a plan for improving a road network taking into

consideration the impact of increasing number of trip generation.

In this method, the increasing number of trip generation in study area is distributed to other

unflourished residential zones, and the groups of road segments to be simultaneously

constructed as well as their priority are determined so that the limited budget will be

31

effectively used. The dynamic programming is utilized for the optimization procedure. In the

recent years, with the development of social economy in China, the public urban

transportation has greatly changed. In Beijing city, taxi traffic system has become a new kind

of public transit means for resident trips. Takeshi et al., (1994) first introduced the

development history of taxi traffic system of Beijing city, which includes three stages of taxi

service trades from original to now. Through the introduction, the historical reasons that taxi

traffic development of Beijing city is increasingly expanding can be known. The second part

analyses the interior and exterior circumstances and impact factors of taxi traffic system, and

describes the improvement of relative traffic installation and the change of transportation

policy of Beijing city. Further, they preliminarily study the developing strategies of Beijing

taxi traffic system through the discussion on the change of passenger flow and the estimation

of corresponding factors, and comparison with other big cities such as Taipei, Mexico city

etc. The new Young-Jong island international airport (NYIA) and the related hinder land

development is expected to be a catalyser, which stimulates even further Korea's economic

power and participation of a global market. The basis of the development plan is

characterized by following aspects: backup for the Northeast Asian hub due to the

globalization trends, urgency of the social overhead capital building, rapid increasing of

aviation demand and shortage of the existing facilities. According to this basis, the plan

includes international business centre, community development and free trade zone. The

main impacts of NYIA plan can be separated into the reinforcement of international

competitiveness, the boosting of regional development and the opening of a window on

cultural exchange. Also, it is necessary to participate the private sectors and to control

different opinions within various government departments (Lee , 1994). Chikashi et al.,

(1994) described the characteristics of traffic behaviours such as traffic purposes at holidays

and week days, selection of transportation modes, walking and selection of parking place to

the central area of a local city. Data are obtained from response to questionnaires for people

32

in Miyazaki City. The choice behaviour of parking places is analyzed by using Aggregated

Logit Model. The analyses results and answers show that it is necessary to decrease the traffic

resistance on walking by such method as pedestrian and vehicular segmentation to keep

traffic safe for pedestrian.

Aminu, (2007) put forward the problem of finding shortest paths in traversing some location

within the Sokoto Metropolis. In particular, it explores the use of Dijskra‘s alogrithm in

constructing the minnimum spanning tree considering the dual carriage ways in some of the

road in Kumasi Metropolis. The results shows that a reduction in the actual distance as

compared with ordinary routing. These results indicate , clearly the importance of this type of

algorithms in the optimisation of network flows. Lehr- und Forschungsgebiet Operations

Research und Logistik Management (RWTH) Aachen, Templergraben 64, 52056 Aachen,

Germany The elementary shortest path problem with resource constraints (ESPPRC) is a

widely used modelling tool in formulating vehicle routing and crew scheduling applications.

The ESPPRC consists of finding shortest paths from a source to all other nodes of a network

that do not contain any cycles, i.e. duplicate nodes. The ESPPRC occurs as a sub problem of

an enclosing problem and is used to implicitly generate the set of all feasible routes or

schedules, as in the column generation formulation of the vehicle routing problem with time

windows (VRPTW). The ESPPRC problem being NP-hard in the strong sense, classical

solution approaches are based on the corresponding non-elementary shortest path problem

with resource constraints (SPPRC), which can be solved using a pseudo-polynomial labelling

algorithm. While solving the enclosing master problem by branch-and-price, this sub problem

relaxation leads to weak lower bounds and sometimes impractically large branch-and-bound

trees. A compromise between solving ESPPRC and SPPRC is to forbid cycles of small

lengths. In the SPPRC with k-cycle elimination (SPPRC-k-cyc) only paths with cycles of

length at least (k + 1) are allowed. The case k = 2 which forbids sequences of the form i to (j

– i) is well known, and has been used successfully to reduce integrality gaps for the VRPTW

33

propose a new definition of the dominance rule among labels for dealing with arbitrary values

of k ≥ 2. The numerical experiments on the linear relaxation of some hard VRPTW instances

from Solomon's benchmark set show that k-cycle elimination with k ≥ 3 can substantially

improve the lower bounds. Using well-known techniques for branching and cutting, the new

algorithm has proven to be a key ingredient for getting exact integer solutions of knowingly

hard problems from the literature. Eklund, et al., (1994) discussed the implementation of

Dijkstra‘s classic double bucket algorithm for path finding in connected networks.

The work reports on a modification of the algorithm embracing both static and dynamic

heuristic components and multiple source nodes. The modified algorithm is applied in 3D

Spatial Information System (SIS) for routing emergency service vehicles. The algorithm has

been implemented as a suite of modules and integrated into a commercial SIS software

environment. Genuine 3Dspatial data is used to test the algorithm on the problem of vehicle

routing and rerouting under simulated earthquake conditions in the Japanese city of

Okayama. Coverage graphs were also produced giving contour lines joining points with

identical travel times. Shortest Path problems are inevitable in road network applications such

as city emergency handling and drive guiding system, in situations where the optimal

routings have to be found. As the traffic condition among a city changes from time to time

and there are usually huge amounts of requests that occur at any moment, needs to quickly

find the solution. Therefore, the efficiency of the algorithm is very important. Some

approaches take advantage of pre-processing that compute results before demanding.

These results are saved in memory and could be used directly when a new request comes up.

This can be inapplicable if the devices have limited memory and external storage. Liang

(2005) aimed only at investigating the single source shortest path problems and intended to

obtain some general conclusions by examining three approaches: Dijkstra‘s shortest path

algorithm, Restricted search algorithm and A*algorithm. To verify the three algorithms, a

program was developed under Microsoft Visual Basic .Net environment. The three

34

algorithms were implemented and visually demonstrated. The road network example is a

graph data file containing partial transportation data of the Ottawa city.

Since the aftermath of typhoon Herb in 1996, all sort of flood and drought followed in 2002

have claimed lives and countless property, which have imposed serious economic damage on

the country. The collection of flood information is the basis for established prevention

system. It is anticipated that flood information management system will include flood

insurance, flood warning, damage notification and incorporation with GIS in the future to

provide further capabilities. The use of the ArcGIS and mathematical programming, in

accordance to the properties of the disaster, aims pragmatically at a balance between the

reliefs of a disaster and the shortest time for conveying the equipments, and to construct the

optimal model of the equipment‘s transportation and mobilisation of the emergency. The

system could trace and manage more efficiently, the equipments in urgent need of repair, and

reconstruct the state of the recovery.

Humblet (1988) employed a distributed algorithm to compute shortest paths in a network

with changing topology. It does not suffer from the routing table looping behaviour

associated with the Ford-Bellman t-distributed shortest path algorithm although it uses truly

distributed processing. Its time and message complexities are evaluated.

Saunders and Takaoka presented new algorithms for computing shortest paths in a nearly

acyclic directed graph G = (V, E). The new algorithms improve on the worst-case running

time of previous algorithms. Such algorithms use the concept of a 1-dominator set.

A 1-dominator set divides a graph into a unique collection of acyclic sub graphs, where each

acyclic sub graph is dominated by a single associated trigger vertex. The previous time for

computing a 1- dominator set is improved from O(mn) to O(m), where m =│E│ and n =

│V│. Efficient shortest path algorithms only spend delete-min operations on trigger vertices,

thereby making the computation of shortest paths through nontrigger vertices easier. Under

this framework, the time complexity for the all-pairs shortest path (APSP) problem is

35

improved from O(mn + nr log r) to O(mn + r2 log r), where r is the number of triggers. Here

the second term in the complexity results from delete-min operations in a heap of size r. The

time complexity of the APSP problem on the broader class of nearly acyclic graphs, where

trigger vertices correspond to any precomputed feedback vertex set, is similarly improved

from O(mn + nr2) to O(mn + r3). The paper also mentioned that the 1-dominator set concept

can be generalised to define a bidirectional 1-dominator set and k-dominator sets. When you

drive to somewhere ‗far away‘, you will leave your current location via one of only a few

‗important‘ traffic junctions. Starting from this informal observation, develop an algorithmic

approach—transit node routing— that allows us to reduce quickest-path queries in road

networks to a small number of table lookups. Present two implementations of this idea, one

based on a simple grid data structure and one based on highway hierarchies. For the road map

of the United States, our best query times improve over the best previously published figures

by two orders of magnitude. Our results exhibit various trade-offs between average query

time (5 μs to 63 μs), preprocessing time (59 min to 1200 min), and storage overhead (21

bytes/node to 244 bytes/node) Bast et al., (2006). On the basis of analyzing the advantages

and disadvantages of the shortest path algorithm and the problem solving based on

knowledge method, it is clearly showed that neither the algorithm, which provides the precise

solution nor the common method, which is totally suitable to people‘s usual finding activities

and based on the common sense, can provide us with a satisfactory solution. However, they

can be complementary to each other, and this has made the combined use of the two to

become a necessity. Rong, WENG Min, DU QingYun, and CAI ZhongLiang put forward the

combination use of knowledge and algorithm for way-finding. In this combined method, the

knowledge is used for retrieving the case and isolating the searching area while algorithm is

used for finding out the best solution in the isolated areas. The study shows that although the

new approach cannot always ensure a most accurate solution, it not only prunes off a lot of

search space but also produces routes that meet people‘s preference of travelling on familiar

36

and major roads. Yu et al., (1995) proposed a hierarchical algorithm for approximating all

pairs of shortest paths in a large scale network. The algorithm begins by extracting a high

level sub network of relatively long links (and their associated nodes) where routing

decisions are most crucial. This high level network partitions the shorter links and their nodes

into a set of lower level sub networks. By fixing gateway nodes within the high level network

for entering and exiting these sub networks, a computational savings is achieved at the

expense of optimality. They explore the magnitude of this trade off between computational

savings and associated error both analytically and empirically with a case study of the South-

eastern Michigan traffic network. An order of magnitude drop in computational times was

achieved with an on – line route guidance simulation at the expense of a five percent (5%)

increase in expected trip times. A lot of the related work on shortest paths in stochastic

networks has focused on the notion of shortest paths in expectation, e.g., (Bertsekas and

Tsitsiklis 1991). Other models have added costs on the edges in addition to travel times

(Chabini 2002), (Miller-Hooks and Mahmassani 2000) where the costs depend on the

realized travel times and in this way can capture a measure of uncertainty.

Finding the path of smallest expected length trivially reduces to deterministic shortest path

problems and does not take into account risk in predicting the optimal route. Since most real

world applications care about a trade off between risk and expectation, we consider nonlinear

objectives that capture more information about the edge distributions. Closest to this model,

Loui (Loui, 1983) considered a decision analytic framework for optimal paths under

uncertainty, however, he only studied monotone increasing cost functions and his algorithm

has running time O (nn) in the worst case. Mirchandani and Soroush (Mirchandani and

Soroush, 1985) extended his work to a quadratic cost function of the path length, however

their algorithm is also an exhaustive search over all potentially optimal paths, and thus

exponential in the worst case.

37

Another branch of the stochastic shortest path literature has focused on adaptive algorithms

(Fan, Kalaba and Moore 2000), (Gao and Chabini, 2002), (Boyan and Mitzenmacher, 2001),

which compute the optimal next edge in light of lengths or travel times already realized en

route to the current node. Another direction has been to give approximations and heuristics

for expected shortest paths in stochastic networks with nonstationary (time-varying) edge

length distributions (Miller-Hooks and Mahmassani,2000), (Fu and Rilett, 1998), (Hall,

1986), to list a few. In this proposal, we only consider stationary edge length distributions

that do not change with time; time-varying distributions will be the subject of future work.

Delava et al., (2008) show that accomplishing an effective routing of emergency vehicle will

minimize its response time and will thus improve the response performance. Traffic

congestion is a critical problem in urban area that influences the travel time of vehicles.The

aim of this study is developing a spatial decision support system (SDSS) for emergency

vehicle routing. The proposed system is based on integration of geospatial information

system (GIS) and real-time traffic conditions. In this system dynamic shortest path is used for

emergency vehicle routing. This study investigates the dynamic shortest path algorithms and

offers an applicable solution for emergency routing. The shortest path applied is based on the

Dijkstra algorithm in which specific rules have been used to intelligently update the proposed

path during driving. Results of this study, illustrate that dynamic vehicle routing is an

efficient solution for the reduction of travel time in emergency routing. Finally, it is shown

that using GIS in emergency routing offers a powerful capability for network analysis,

visualization and management of urban traffic network. Spatial analysis capabilities of GIS

are used to find the shortest or fastest route through a network. These capabilities of GIS for

analyzing spatial networks enable them to be used as decision support systems (DSSs) for

dispatching and routing of emergency vehicles. In agent based traffic simulations which use

systematic relaxation to reach a steady state of the Scenario, the performance of the routing

algorithm used for finding a path from a start node to an end node in the network is crucial

38

for the overall performance. For example, a systematic relaxation process for a large scale

scenario with about 7.5 million inhabitants (roughly the population of Switzerland)

performing approximately three trips per day on average requires about 2.25 million route

calculations, assuming that 10% of the trips are adapted per iteration. Expecting about 100

iterations to reach a stable state, 225 million routes have to be delivered in total. Lefebvre and

Balmer (2008) focus on routing algorithms and acceleration methods for point-to-point

shortest path computations in directed graphs that are time-dependent, i.e. link weights vary

during time. The work is done using MATSim-T (Multi-Agent Traffic Simulation Toolkit)

which is used for large-scale agent-based traffic simulations. The algorithms under

investigation are both variations of Dijkstra‘s algorithm and the A*-algorithm. Extensive

performance tests are conducted on different traffic networks of Switzerland. The fastest

algorithm is the A*algorithm with an enhanced heuristic estimate: While it is up to 400 times

faster than Dijkstra‘s original algorithm on short routes, the speed compared to Dijkstra‘s

diminishes with the length of the route to be calculated. The waste collection problem can

also be modelled as the Capacitated Arc Routing Problem (CARP). As this problem cannot

be solved by optimal (exact) methods in practice, heuristics are used for this purpose. One

possible approach is first to find a giant tour and then decompose it into a set of routes that

are feasible with regard to the vehicle capacity.

More importantly in the inspection of distributed systems such as electric poles, gas pipeline

telephone line and a whole lot more so as faults to be rectify as soon as possible. Because

many applications involves real networks and also because the computation of a fastest route

(shortest path) requires an answer in real time a natural question to ask is which shortest path

runs fastest on real road networks?

39

Although there are a number of shortest path algorithms such as:

Djikstra‘s

Floyd‘s

Glover et al Goldberg and Radzik etc.

But there is no clear answer as to which algorithm, or a set of algorithms runs faster on a real

road network.

40

CHAPTER THREE

METHODOLOGY

3.0 METHODOLOGY

The methodology employed included review of relevant literature of the types of Dijkstra

algorithm and methods employed in the solution of the Dijkstra algorithm and to develop

computer solutions – ArcGIS and VB.net for faster computation of Dijkstra algorithm

3.1 BACKGROUND OF GRAPH THEORY

In this chapter, some fundamental concepts of graph theory are introduced and will be

referred to in subsequent discussions.

3.2 DEFINITION OF A GRAPH

In mathematics and computer science, graph theory deals with the properties of graphs.

Informally, a graph is a set of objects, known as nodes or vertices, connected by links, known

as edges or arcs, which can be undirected or directed (assigned a direction). It is often

depicted as a set of points (nodes, vertices) joined by links (the edges). Precisely, a graph is a

pair, G = (V; E), of sets satisfying E∈ [V]; thus, the elements of E are 2-element subsets of V.

The elements of V are the nodes (or vertices) of the graph G, the elements of E are its links

(or edges). In this case, E is a subset of the cross product V *V which is denoted by E ∈ [V].

To avoid notational ambiguities, we shall always assume that V ∩E =∅.

A connected graph is a non-empty graph G with paths from all nodes to all other nodes in the

graph. The order of a graph G is determined by the number of nodes. Graphs are finite or

infinite according to their order. In this thesis, the graphs are all finite and connected.

Furthermore, a graph having a weight, or number, associated with each link is called a

weighted graph, denoted by G = (V; E; W). An example of a weighted graph is shown in

41

Figure 3.1: A diagram of a weighted graph with 6 nodes and 7 links.

3.2.1 DEGREE OF A VERTEX (NODE)

A node v is incident with a link e if v ∈ e; then e is a link at v. The two nodes incidents with a

link are its end nodes. The set of neighbours of a node v in G is denoted by N (v).The degree

d (v) of a node v is the number |E (v)| of links incident on v. This is equal to the number of

neighbours of v. A node of degree 0 is isolated. The number δ (G) = min {d (v) | v∈V} is the

minimum degree of G, while the number Δ (G) = max {d (v) | v∈V} is the maximum degree.

The average degree of G is given by the number

Clearly,

δ (G) ≤ d (G) ≤ Δ (G)

The average degree globally quantifies what is measured locally by the node degrees: the

number of links of G per node. Sometimes it is convenient to express this ratio directly, as ε

(G) = |E|/|V|. The quantities d and ε are intimately related. Indeed, if we sum up all of the

node degrees in G, we count every link exactly twice: once from each of its ends.

Thus,

42

and therefore

Graphs with a number of links that are roughly quadratic in their order are usually called

dense graphs. Graphs with a number of links that are approximately linear in their order are

called sparse graphs. Obviously, the average degree d (G) for a dense graph will be much

greater than that of a sparse graph.

In a graph, a path, from a source node s to a destination node d, is defined as a sequence of

nodes (v0, v1, v2, ..., vk) where s = v0, d = vk, and the links (v0, v1), (v1, v2), ..., (vk−1,vk)

are present in E. The cardinality of a path is determined by the number of links. The cost of a

path is the sum of the link costs that make up the path.

An optimal path from node u to node v is the path with minimum cost, denoted by (u, v). The

cost can take many forms including travel time, travel distance, or total toll. In my research,

the cost or weight of a path stands for the travel time which is needed to go through the path.

 3.2.2 TRANSPORTATION NETWORK DATA MODEL

A transportation network is a type of directed, weighted graph. The use of GIS for

transportation applications is widespread and a fundamental requirement for most

transportation GIS is a structured road network. In developing a transportation network

model, the street system is represented by a series of nodes and links with associated weights.

This representation is an attempt to quantify the street system for use in a mathematical

model. Inherent in the modeling effort is a simplification of the actual street system. The

network nodes represent the intersections within the street system and the network links

represent the streets. The weights represent travel time between the nodes.

As a specialized type of graph, a transportation network has characteristics that differ from

the general graph. A suitable data structure is required to represent the transportation

network. Comparing the three data structures, an adjacency list representation of the graph

occupies less space because it does not require space to represent links which are not present.

The space complexity of an adjacency list is O(|E|+|V|), where |E| and |V | are the number of

links and nodes respectively. In contrast, incidence matrix and adjacency matrix

representations contain too many 0s which are useless and redundant in storage. The space

43

complexity of incidence matrices and adjacency matrices are O (|E| × |V|) and O (|V|2)

respectively. In the following discussion, we shall take a more detailed look at the three data

models in terms of storage space and suitable operations. Using a naive linked list

implementation on a 32-bit computer, an adjacency list for an undirected graph requires

approximately 16 × (|E|+ |V|) bytes of storage space. On the other hand, because each entry in

the adjacency matrix requires only one bit, they can be represented in a very compact way,

occupying only |V |2 /8 bytes of contiguous space. First, we assume that the adjacency list

occupies more memory space than that of an adjacency matrix. Then

Based on equation (3.1.2) in section 3.1, we have,

where d (G) is the average degree of G.

This means that the adjacency list representation occupies more space when equation (3.5)

holds. In reality, most transportation networks are large scale sparse graphs with many nodes

but relatively few links as compared with the maximum number possible (|V| × (|V| −1) for

maximum).That That is, there are no more than 5 links (Δ (G) ≈ 5) connected to each node. In

most cases there are usually 2, 3 or 4 (δ (G) = 2) links, although the maximum links is |V|-1

for each node. Also, road networks often have regular network structures and a normal

layout, especially for well planned modern cities. Again most transportation networks are

near connected graphs, in which any pair of points is traversable through a route. Assuming

the average degree of a road network is 5, equation 3.5 holds only if |V | ≤448.

However, most road networks contains thousands of nodes where |V | >> 448. As a result,

equation 3.2 cannot hold. Thus, the adjacency list representation occupies less storage space

than that of an adjacency matrix. For example, consider a road network containing 10000

nodes. If an adjacency matrix is employed to store the network, at least 10 megabytes of

memory space is required. It will most likely take more

computational power and time to manipulate such a large array, and then it is impossible to

conduct routing searches in some mobile data terminals, such as smart phones and Personal

Digital Assistance (PDAs).The comparison between the adjacency matrix and incidence

44

matrix can give the same result. Assuming an adjacency matrix occupies more storage space

than that of an incidence matrix,

then

|V|
2
 ≥ |E|×|V|

From equation 3.2, we obtain,

d (G) ≤ 2 (3.6)

This means that the adjacency matrix representation occupies more space if and only if

equation 3.6 holds. Since the minimum degree of transportation network is 2 (δ (G) = 2), then

equation 3.6 is invalid. As a result, the adjacency matrix occupies less storage space than that

of the incidence matrix. Since the adjacency matrix cannot compete with the adjacency list in

terms of storage space (i.e., requires more space), it follows that the incidence matrix will

also not be able to compete.

Other than the space trade off, the different data structures also facilitate different operations.

It is easy to find all nodes adjacent to a given node in an adjacency list representation by

simply reading its adjacency list. With an adjacency matrix, we must scan over an entire row,

taking O (|V|) time, since all |V | entries in row v of the matrix must be examined in order to

see which links exist. This is inefficient for sparse graphs since the number of outgoing links

j may be much less than |V |. Although the adjacency matrix is inefficient for sparse graphs, it

does have an advantage when checking for the existence of a link u → v, since this can be

completed in O (1) time by simply looking up the array entry [u; v]. In contrast, the same

operation using an adjacency list data structure requires O (j) time since each of the j links in

the node list for u must be examined to see if the target is node v. However, the main

operation in a route search is to find the successors of a given node and the main concern is to

determine all of its adjacent nodes. The adjacency list is more feasible for this operation.

The above discussions demonstrate that the adjacency list is most suitable for representing a

transportation network since it not only reduces the storage space in the main memory, but it

also facilitates the routing computation.

Since transportation networks are a specialized type of graph, some fundamental knowledge

of graph theory is required. Some basic concepts, such as the definition of a graph, degree of

a graph, and the definition of a path, were introduced at the beginning of this chapter. In the

discussion of the degree of a graph, the dense graph and sparse graph have been defined and

used in data model discussion. In the data model discussion, three types of data models for

graph representation were given: the incidence matrix, adjacency matrix and adjacency list.

45

The discussion includes a description of each model, an analysis of the space complexity,

storage space requirements and an examination of suitable operations for each model. Based

on the discussion, an adjacency list is regarded as the best representation of the transportation

network considering its own characteristics. My research, will utilize an adjacency list to

construct topology of the experimental road network in order to implement my routing

computations.

3.3 TYPICAL ROUTING QUERIES

There are various types of routing queries that may be submitted to the centralized GIS

server. To answer the queries, many algorithms have been developed to satisfy the conditions

and requirements of these queries. The research for generalizing this document is focused on

two typical routing queries. The first query deals with finding the optimal route from the

current location to a known destination. The other query allows users to locate the closest

facility of a certain category (hotel, hospital, gas station, etc.), in terms of travel distance

(time), without knowing the destination explicitly.

3.3.1 ROUTING QUERY FOR KNOWN DESTINATION

For this query, the mobile client or driver has a definite destination in mind and desires to

acquire the optimal route leading to the destination. Since the traffic condition changes

continually over time, the optimal route will change during travel whenever up-to-date traffic

conditions are provided. For example, when we want to drive from the airport to the KMA

office, we can plan the entire optimal route prior to departure according to the current

condition of the transportation network. However, it may not be the final optimal route due to

frequent changes in the traffic conditions. So, we have to modify our route midway and plan

a new path from the current location to the destination based on real-time traffic conditions.

This case is more complicated than the conventional dynamic concept because both the

traffic conditions and the query point (location of the driver) are dynamic. This type of query

is also defined as an en route query since it is submitted while the client is moving.

3.3.2 ROUTING QUERY FOR UNKNOWN DESTINATION

For this query, drivers may inquire about the location of the closest facility, such as the

nearest hotel, hospital or gas station, without knowing the destination in advance. In this case,

the closest facility is defined in terms of travel distance (time) within the road network as

opposed to travel distance. This query can be classified as the Nearest Neighbor problem.

46

Both the closest destination and an associated optimal route need to be found based on travel

time within the road network. Similarly, the optimal route also has to be recalculated

whenever up-to-date traffic conditions are provided. In extreme circumstances, the closest

destination may also change. For example, in an unknown city, we may want to find the

location of the closest post office after we check into a hotel. From the query result, we are

aware of the position and optimal route to the closest post office. In this case, we expect the

navigation service not only to provide the adaptive route leading to it, but also to confirm the

validity of the closest post office while traveling. If the traffic conditions do not change

significantly, the optimal route may only need to be slightly modified. If the traffic conditions

change considerably or there are serious traffic congestions around the anticipated post office

destination, this post office may no longer be the closest one in terms of traveling time. A

new post office location and optimal route must then be determined dynamically based on the

current location and traffic conditions. In this scenario, the query is an en route query. To

solve this problem, a dynamic nearest neighbor and route searching algorithm is required.

3.4 INTRODUCTION TO THE SHORTEST PATH ALGORITHMS

The shortest path (SP) algorithms are among fundamental network analysis problems. Since

1957 a considerable progress has been made in the SP algorithms after Minty published his

paper (1957). Minty succinctly described the basic SP problem for symmetrical networks (a

network is symmetrical if for every pair of nodes the cost of a link between the two nodes is

independent of their starting node). To state the problem beyond doubt, he suggested

constructing a model of the given network. The model is made of strings, each string of the

length proportional to the costs of the modelled link.

Finally, to find the links of the SP one has to pull the source node and the destination node of

the journey as far away as possible. The tight strings are the links of the SP. Since 1957 there

has been a number of major papers published, the most important were published by Bellman

(1959), Dijkstra (1959) and Moore (1959). These articles were formative and most of the

traffic research has used their results (for example Clercq (1972) and Cooke and Halsey

(1966)). These articles are now included in references by most other publications.

There are a number of review papers. One of the utmost importance has been published by

Dreyfus (1969). The review gives a comprehensive summary of the research, which has been

carried out up to 1969. The article surveys over ten years of research, discussing the most

crucial stages and pointing out the wrong and inefficient solutions. The paper also gives a

brief solution of the SP problem for time varying costs of links, Which is the basis of this

47

report. The shortest path algorithms are currently widely used. They are the basis of the

network flow problems, tree problems and many related other problems. They determine the

smallest cost of travel, of a production cycle, the shortest path in an electric circuit or the

most reliable path. In the book by Ahuja ,(1993) one can realize that the SP problem is an

underlying problem of the network optimization and that it is closely related to network flows

or tree building issues. Internet is a large field where the shortest path algorithms can be

applied. The Internet problems involve data packages transmission with the minimal time or

by the most reliable path. An example of the SP algorithms in the Internet is given by Cai,

(1997). This paper proposes three SP algorithms. The devised algorithms are well explained.

The article is closely related to the problem. The same algorithms can be used without

fundamental changes to the urban traffic issues. The use of the proposed algorithms for

public transportation networks will be studied in the section ‗Shortest path and the

environment issues‘. Algorithms to be discussed here have a thirty-year old history and

solutions to the fundamental problems are well known. The contemporary research is directed

toward parallel computing as the method for further lowering of the time complexity bound

of the shortest path algorithms. The report is not interested in the parallel approach. The

article by Klein and Subramanian (1997) is an example of the shortest path parallel

algorithm.

3.5 SOME NETWORK DEFINITIONS

TYPES OF NETWORKS

There are several types of networks of special interest to the project: sparse, planar and road

networks. Other types of networks (as grid or dense) are not taken into account.

3.5.1 SPARSE NETWORKS

Sparse networks are those which have the number of links only a few times bigger than the

number of nodes. A network of one hundred (100) nodes and four hundred (400) links would

be considered sparse but a network with one hundred (100) nodes and five thousand (5000)

links would be classified as dense.

Public transportation networks are sparse. From node approximately four links leave. If a

sparse network was presented in a matrix form, then in each row of the matrix about only

four places would be used, the rest would be left idle. For matrix network representation there

are algorithms, which handle efficiently the sparse networks. However, it is recommended

48

not to use matrix-based algorithms since the matrix representation of a sparse network is

highly inefficient. Instead of the matrix algorithms the tree building algorithms can be used as

they store the sparse network information in an efficient way (usually using lists). In this

thesis, the Dijkstra algorithm which is a basic tree building algorithm has been used. The

matrix in figure 1.3 is an example of the inefficient matrix representation of a sparse network

since there are more places unused than used.

3.5.2 PLANAR NETWORKS

There are a number of SP algorithms for planar graphs. Methods characteristic to planar

graphs (as separators) lower the computational bound of the SP algorithms. Since the road

network and transport network are mostly planar, application of the algorithms from this

group could bring more efficient solutions to our problem. However, not all road networks

are planar, there are viaducts and bridges, which can destroy planarity and thus unable, limit

or complicate the application of these algorithms. For this reason the methods for the planar

graphs will not be considered. The article by Monika R. Henzinger etal., (1997) proposes

three new algorithms for planar graphs.

3.6 ROAD NETWORKS

In the representation of a road network a link represents a road and a node represents a

crossroad. The ratio of the number of links to the number of nodes is approximately 3.

(Steenbrink, year 1958), gives an example of a road network with about 2000 nodes and 6000

links). The link costs are always non-negative. The road networks are usually planar and

sparse. The number of nodes is big, usually expressed in thousands. Road networks contain

loops, which are allowed since they may be only of a non-negative cost (the link costs are

only non-negative). The road networks are of a special interest in this thesis. The

characteristic feature of the road networks is their nonnegative link lengths property. Dijkstra

year made a good use of nonnegative lengths to design his algorithm. Because of this close

relation between Dijkstra, algorithm and road characteristic, it should not be surprising that

this report suffers constant ‗Dijkstra‘ referring. The project‘s road network of the Kumasi

City had about seven hundred and eighteen (718) nodes and one thousand one hundred and

eighty – seven (1187) links. The network represents the link connections between nodes and

the distances between them.

49

3.7 A GENERAL CLASSIFICATION OF THE ALGORITHMS

The Shortest Path algorithms are either matrix algorithms or tree building algorithms (tree

algorithms are also called labelling algorithms).

3.7.1 MATRIX ALGORITHMS

Matrix algorithms store the network information in the matrix form and carry out the

computations using basic matrix operations (as addition and multiplication of matrices or

matrix‘s elements). In dense networks is for all pair problems. The disadvantage of the matrix

algorithms is the imposed matrix representation. The first disadvantage is the imposed

inefficient matrix representation of a sparse network. The more significant disadvantage is

that the matrix representation allows one directed link between two nodes (there can be at

most two links between two nodes, but they have to be of distinct directions).

Figure 3. 2 : A sample network that can be represented in a matrix form

Figure 3.3: A sample network that can be not represented in a matrix form

50

Figure 3.4: Matrix representation of the network of Figure 3.1

The network from Figure 3.1 is specified by a matrix in Figure 3.4. Not every network can be

represented in such a way. If a network has more than one directed link from a single node to

some other node, then it cannot be represented in a regular matrix since it can store only one

directed link going from a specific link to some other node. A sample network capable of

being represented as a matrix is depicted in Figure 3.1.The network has two links connecting

the 1st node to the 3rd node. The link from the 1
st
 node to the 3rd node is ascribed the cost of,

which is stored in the M matrix in Figure 3.4. As a13 = 2. The link which goes in the reverse

direction (from the 3rd node to the 1
st
 node) is ascribed the cost of 3, this is stored as a31=3.If

there was a need to represent the three links between the 1st and 3rd nodes from the

Figure 3.4 then we realise we have run out of places in the matrix and the network cannot be

fully represented by a matrix. There can be some improvements of the matrix representation

envisaged for coping with such an extended network. One improvement is a matrix of lists.

An entry in this matrix of lists would not characterise only one directed link from one node to

another but a list of directed links from this node to another node. However, this is not

classified anymore as the matrix approach to the SP problem because computations of most

matrix algorithms would not be performed anymore using basic matrix operations.

3.7.2 THE TREE BUILDING ALGORITHMS

The thesis algorithms are tree building algorithms. A tree building algorithm builds a tree

with the root in the source node of the trip. Each node of the network can be either a leaf or a

fork of the tree. A fork leads to another forks or leaves. There are certain true statements

about the tree. The first is that there are p leaves then these leaves are p nodes of the biggest

cost to reach among all nodes. The second says that each fork node (a node that is a fork in

the tree) is of the cost smaller than a cost of any leaf node (a node that is a leaf in the

tree).Building such a tree is a dynamic programming task since the result of a node just

reached can be used to calculate the cost of the node which can be reached immediately after

51

this node. An example of building a tree for a simple network is presented in the Figure 1.4.

To build this tree we use the Dijkstra algorithm.

a) Network

 b) Tree

Figure 3. 5: A network and its shortest path tree.

3.8 THE INPUT AND THE OUTPUT TO THE SHORTEST PATH ALGORITHMS

Depending where we are and where we want to go an algorithm can find as many SP‘s as it is

necessary to satisfy us. The SP algorithms can be divided into groups that differ by the given

input and the desired output. The groups are: one pair algorithms, one to many, many to one,

and all pairs algorithms.

3.8.1 ONE PAIR

There are two nodes given: the source node and the destination node. A SP algorithm finds

only one SP (if it exists) from the given source node to the given destination node. The tree

algorithms are going to build an incomplete tree with the root in the source node. The tree

will be complete up to the moment the destination node has been reached. The Dijkstra

algorithm (1959) and the Bellman (1958) algorithm are examples are one pair algorithms.

52

3.8.2 ONE-- TO -- MANY

Only the source node is specified. All shortest paths from this source node to all other nodes

will be calculated. If there is a path from the source node to every other node, then there will

be (n-1) SP‘s evaluated (n is the number of nodes is the network). A tree building algorithm

will create a complete shortest path tree. The Dijkstra algorithm and the Bellman algorithm

are also examples of one to many algorithms.

3.8.3 MANY – TO- ONE

This problem is given many source nodes and one destination node. To each source node

there is time ascribed saying what time the journey starts from this node. The solution to the

problem is to find the shortest path from any source node to the destination node that will

result in reaching the destination node at the minimal time of arrival (not cost of the journey).

This type of a problem is easy to solve having the Dijkstra algorithm. The solution doesn‘t

differ significantly from the Dijkstra algorithm. Only at the beginning one has to put all the

source nodes into the priority queue with appropriate costs.

3.8.4 ALL PAIRS

For this algorithm group there is neither a necessity for source node nor for the destination

node. An algorithm from this group calculates all the possible

SP‘s, i.e. the algorithm is to find the shortest path for every pair of nodes. The number of

paths is therefore (the paths form one and the same node is 0 and doesn‘t require calculation).

The computations are mostly done on matrices. The Floyd algorithm (1962) is an example

from the all pairs algorithm group.

The project makes use of ‗one to many‘ algorithm and ‗many to one‘ algorithm only. The ‗all

pairs‘ algorithm is not essential for the project and will not be discussed.

53

3.9 ALL – PAIRS SHORTEST PATH PROBLEM

The shortest path between two nodes might not be a direct edge between them, but instead

involve a detour through other nodes. The all- pairs shortest path problem requires that we

determine shortest path distances between every pair of nodes in a network.

Shortest path problems are the most fundamental and the most commonly encountered

problem in the study of transportation and communication networks (syslo et al., 1983).

There are many types of shortest-path problem. For example, we may be interested in

determining the shortest path (i.e., the most economical path or fastest path, or minimum-

fuel-consumption path) from one specified node in the network to another specified node; or

we may need to find shortest paths from a specified node to all other nodes. Shortest paths

between all pairs of nodes in a network are required in some problems. Sometimes, one

wishes to find the shortest path from one given node to another given node that passes

through certain specified intermediate nodes.

In some application, one requires not only the shortest path but also the second and third

shortest path. There are instances when the actual shortest path is not required, but only the

shortest distance is required.

Next, we shall confine ourselves to two most important shortest-path problems; How to

determine shortest distance (a short path) from a specified node to another specified node t,

and ~how to determine shortest distances (all paths) from every node to every other in the

network. Shortest path route problem deals with determining the connected arcs In a

transportation network that collectively comprise the shortest distance.

Between a source and a destination. The shortest path problem involves a weighted, possibly

directed graph described by the set of edges and vertices shortest path deals with two

algorithms for finding the shortest route.

54

SHORTEST PATH PROBLEMS

The computation of shortest paths has been extensively researched since it is a fundamental

issue in the analysis of transportation networks. There are many factors associated with

shortest path algorithms. First, there is the type of graph on which an algorithm works -

directed or undirected, real-valued or integer link costs, and possibly negative or non-

negative link-costs. Furthermore, there is the family of graphs on which an algorithm works -

acyclic, planar, and connected. All of the shortest path algorithms presented in this thesis

assume directed graphs with non-negative real-valued link costs.

3.10 CLASSIFICATION OF SHORTEST PATH (SP) PROBLEMS

Even though different researchers tend to group the types of shortest path problems in slightly

different ways, one can discern, in general, between shortest paths that are calculated as one-

to-one, one-to-all, or all-to-all. Given a graph, one may need to find the shortest paths from a

single starting node v to all other nodes in the graph. This is known as the single-source

shortest path problem.

As a result, all of the shortest paths from v to all other nodes form a shortest path tree

covering every node in the graph. Another problem is to find all of the shortest paths between

all pairs of nodes in the graph. This is known as the all-pairs shortest path problem. One way

to solve the all-pairs shortest path problem is by solving the single source shortest path

problem from all possible source nodes in the graph. Dijkstra's

algorithm is an efficient approach to solving the single-source shortest path problem on

positively weighted directed graphs with real-valued link costs. Many of today's shortest path

algorithms are based on Dijkstra's approach. There is also the relatively simple single-pair

shortest path problem, where the shortest. path between a starting node and a destination node

55

must be determined. In the worst case, this kind of problem is as difficult to solve as single-

source.

3.11 CLASSICAL SHORTEST PATH ALGORITHMS FOR STATIC NETWORKS

Path finding is applicable to many kinds of networks, such as roads, utilities, water,

electricity, telecommunications and computer networks, the total number of algorithms that

have been developed over the years is immense, depending only on the type of network

involved. Labeling algorithms are the most popular and efficient algorithms for solving the

SP problem. These algorithms utilize a label for each node that corresponds to the tentative

shortest path length pk to that node. The algorithm proceeds in such away that these labels are

updated until the shortest path is found.

Labeling algorithms can be divided into two sets: the label setting (LS) algorithms and label

correcting (LC) algorithms. For each number of iteration, the LS algorithm permanently sets

the label of a node as the actual shortest path from itself to the start node, thus increasing the

shortest path vector by one component at each step. The LC algorithm does not permanently

set any labels. All of the components of the shortest path vector are obtained simultaneously;

a label is set to an estimate of the shortest path from a given at each iteration. Once the

algorithm terminates, a predecessor label is stored for each node, which represents the

previous node in the shortest path to the current node. As a result, it only determines the path

set, Pk= {p1,…, pk}, in the last step of the algorithm. Backtracking is then used to construct

the shortest paths to each node. Typical label setting algorithms include Dijkstra‘s algorithm

and the A* algorithm. The Floyd-Warshall algorithm is an example of a label correcting

algorithms.

56

3.12 FLOYD WARSHALL ALGORITHM

The Floyd –Warshall algorithm obtains a matrix of shortest path distances within 0{n3}

computations. The algorithm is based on inductive arguments developed by an application of

a dynamic programming technique. Let d
k
 (I, j) represent the length of the shortest path from

node I to node j subject to the condition that this path uses the nodes 1,2,…,k – 1 as internal

nodes. Clearly, and +1 (I, j) for all node pairs I and j, when it terminates. Given d
k
(I, j), the

algorithm computes dk+1 (using dk+1(I, j,) = min k {I, k,) ,d
k
 (k,j,)}. The Floyd Warshall

algorithm remains of interest because it handles negative weight edges correctly (Ahuja et al.,

1993).Floyd Warshall algorithm or Floyd's algorithm is also known as the all pairs shortest

path algorithm. It will compute the shortest path between all possible pairs of vertices in a

(possibly weighted) graph or digraph simultaneously in time (where n is the number of

vertices in the graph) In this problem we want the minimum routes (m.r.) between all the

pairs of peaks. As an example of a path problem, the fire-brigade keeps a map of the city

marked with the locations of especially hazardous sites, such as chemical stores. They wish to

know the shortest route from the fire-station to each site. Note the "length" of a road might be

either its physical length or the estimated driving time on it, which are not necessarily

proportional to each other. The Floyd algorithm solves this problem. This algorithm is an

expansion of another algorithm, the Warshall algorithm, which was first defined for the

solution of another problem:

In a digraph G (whether there are costs or not, is of no importance) find whether there is a

route from V(i) to V(j),for all pairs of (i,j) , i<>j. To solve this problem we find an array A.

The elements of this array are A(i,j)=1 if there is a route from i to otherwise

A(i,j) = 0.Because the cost is not important we define the Adjoining Array as if all the costs

were 1 that means C(i,j)=1 if there is eij belonging to E and otherwise C(i,j)=0.The requested

array A is called transitive closure of the Adjoining Array.

57

We notice that the elements of the A array are Boolean variables (0 or 1), which means that

the operations AND and OR are valid. The Warshall algorithm initializes the A array at the

value of C: A (i,j) = C(i,j), i , j = 1,...,n. At this point the A array shows only the direct

connections as existing routes. Then the algorithm goes through the A array n times, one time

for every node k=1... n. For every node V (k) the main thinking is: Is there a route from V(i)

to V(j) ,if it has already been found {that is A(i,j)=1] or if a route is found through V(k),that

is if the routes from V(i) to V(k) and from V(k) to V(j)[that is if A(i,k)=1 and A(k,j) = 1.

If the BOOLEAN characteristics of the elements of A are taken under consideration, then the

rule in the k pass is: A(i,j) = A(i,j) OR {A(i,k) AND A(k,j)}.

We now come back to the m.r. problem for all pairs. This time we are talking about a graph,

and the Adjoining Array is defined by the costs C (i,j)=c(eij).The A array will finally consist

of all the costs of the minimum routes. During the k pass the following formula is valid:

A(i,j) = min{A(i,j),A(i,k)+A(k,j)}. Which means t hat if the route through V(k) is cheaper

will be the winner. That gives us the Floyd algorithm. The complexity of the Floyd

Algorithm is (in the worst case): O (n
3
).The weight of an edge in a directed graph is often

thought of as its length. The length of a path <v0, v1, ..., vn> is the sum of the lengths of all

component edges <vi, vi+1>. Finding the shortest paths between vertices in a graph is an

important class of problem. Single Source Shortest Paths in a Directed Graph.

 It turns out that it as easy to find the shortest paths from a single source to all other vertices

as it is to find the shortest path between any two vertices. Usually the source is taken to be

v1. Dijkstra's algorithm solves this single-source shortest paths problem in O(|V|2) time. It

operates by enlarging the set of vertices `done' for which the shortest paths from the source

are known. Initially done contain just the source v1. At an intermediate stage, the vertex not

in the set done that is closest to the source is found and added to done. This allows our

knowledge of the shortest paths to the remaining vertices in V - done to be updated. This is

repeated until done contain all vertices.

58

The algorithm follows what is known as a greedy strategy. It adds vertices to done as cheaply

as possible. The strategy is often a good heuristic; in this problem it also gives a correct

algorithm. As given, the algorithm calculates the lengths of the shortest paths from the source

to each other vertex. If it is necessary to find the paths themselves, note that the algorithm

traces a rooted tree with the source as the root. When the vector of path lengths is updated, if

P(j) is reduced by the `min' then `closest' can be associated with j in another vector. This

allows the paths to be recovered, in a reverse direction.

Floyd's algorithm calculates the costs of the shortest path between each pair of vertices in O

(|V|3) time. It consists of three nested loops. The invariant of the outer loop is the key to the

algorithm. At the start of iteration, P holds the optimal path length from vi to vj, for each i

and j, considering only paths that go direct or via vertices vn for n < k. This is certainly true

initially when k=1 and P holds only direct paths. At each iteration the next value of k is

considered. There may now be a better path possible from vi to vj via this new vk, but note

that it will visit vk at most once. This means it is sufficient to consider paths from vi to vk

possibly via {v1, ..., vk-1} and then on from vk to vj also possibly via {v1, ..., vk-1}. Thus

the Invariant is maintained. Finally P holds optimal path lengths for unrestricted paths.

In simple terms, the Floyd Warshall algorithm obtains a matrix of shortest path distances

within 0{n
3
} computations. The algorithm is based on inductive arguments developed by an

application of a dynamic programming technique.

Let d
k
(I,j) represent the lengths of the shortest path from i to node j subject to the condition

that this path uses the nodes 1,2,….k-1 as internal nodes.Clearly,d
n+1

(I,j) represents the actual

shortest path distance from node i to j. The algorithm first computes d
1
(I,j) for all node pairs i

and j. using d
1
(i,j) it then computes d

2
(I,j) for all node pairs i and j. It repeats this process

until it obtain d
n+1

(i,j) for all node pairs i and j, when it terminates. Given d
k
(I,j), the

algorithm computes d
k+1

(I,j)= min{d
k
(I,k),d

k
(k,j)}.The Floyd Warshall algorithm remains of

59

interest because it handles negative weight edges correctly (Ahuja et al., 1993) and

(Boffey,1982)

3.13 DIJKSTRA’S ALGORITHM

Dijkstra's algorithm, named after its inventor, has been influential in path computation

research. It works by visiting nodes in the network starting with the object's start node and

then iteratively examining the closest not-yet-examined node. It adds its successors to the set

of nodes to be examined and thus divides the graph into two sets: S, the nodes whose shortest

path to the start node is known and S’, the nodes whose shortest path to the start node is

unknown. Initially, S’ contains all of the nodes. Nodes are then moved from S’ to S after

examination and thus the node set, S, ―grows‖. At each step of the algorithm, the next node

added to S is determined by a priority queue. The queue contains the nodes S’, prioritized by

their distance label, which is the cost of the current shortest path to the start node. This

distance is also known as the start distance. The node, u, at the top of the priority queue is

then examined, added to S, and its out- links are relaxed. If the distance label of u plus the

cost of the out- link (u, v) is less than the distance label for v, the estimated distance for node

v is updated with this value. The algorithm then loops back and processes the next node at the

top of the priority queue. The algorithm terminates when the goal is reached or the priority

queue is empty. Dijkstra's algorithm can solve single source SP problems by computing the

one-to-all shortest path trees from a source node to all other nodes.

The pseudo-code of Dijkstra's algorithm is described below.

Function Dijkstra (G, start)

1) d [start] = 0

2) S = ∅

3) S’ = V ∈ G

4) while S’ ≠ ∅

60

5) do u = Min (S’)

6) S = S U {u}

7) for each link (u, v) outgoing from u

8) do if d[v] > d[u] + w (u, v) // Relax (u, v)

9) then d[v] = d[u] + w (u, v)

10) Previous[v] = u

3.14 A* ALGORITHM

It is not feasible to use Dijkstra's algorithm to compute the shortest path from a single start

node to a single destination since this algorithm does not apply any heuristics. It searches by

expanding out equally in every direction and exploring a too large and unnecessary search

area before the goal is found. Dijkstra's algorithm is a version of a BFS and although this

algorithm is guaranteed to find the optimal path., it is not extensively applied due to its

relatively high computing cost. This has led to the development of heuristic searches. In

terms of heuristic searches, the A* algorithm is widely regarded as the most efficient method.

The A* algorithm is a heuristic variant of Dijkstra's algorithm, which applies the principle of

artificial intelligence. Like Dijkstra's algorithm, the search space is divided into two sets: S,

the nodes whose shortest path to the start node is known and S’, the nodes whose shortest

path to the start node is unknown. It differs from Dijkstra's algorithm in that it does not only

consider the distance between the examined node and the start node, but it also considers the

distance between the examined node and the goal node.

In the A* algorithm, g (n) is called the start distance, which represents the cost of the path

from the start node to any node n, and h(n) is estimated as the goal distance, which represents

the heuristic estimated cost from node n to the goal. Because the path is not yet complete, we

cannot actually know this value, and h (n) has to be ―guessed‖. This is where the heuristic

method is applied. In general, a search algorithm is called admissible if it is guaranteed to

61

always find the shortest path from a start node to a goal node. If the heuristic employed by

the A* algorithm never overestimates the cost, or distance, to the goal, it can be shown that

the A* algorithm is admissible. The heuristic is called an admissible heuristic since it makes

the A* search admissible. If the heuristic estimate is given as zero, this algorithm will

perform the same as Dijkstra's algorithm. Although it is often impractical to compute, the best

possible heuristic is the actual minimal distance to the goal. An example of a practical

admissible heuristic is the straight-line distance from the examined node to the goal in order

to estimate how close it is to the goal. The A* algorithm estimates two distances g(n) and

h(n) in the search, ranks each node with the equation: f(n) = g(n) + h(n), and always expands

the node n that has the lowest f(n).Therefore, A* avoids considering directions with non-

favourable results and the search direction can efficiently lead to the goal. In this way, the

computation time is reduced. Thus, the A* algorithm is faster than Dijkstra's algorithm for

finding the shortest path between single pair nodes. The algorithm is an example of a best-

first search

3.15 COMPARISON OF ALGORITHMS BASED ON DISTANCE (TIME)

COMPLEXITY

The efficiency of a search algorithm is a critical issue in route planning since it relates to the

practicality and effectiveness of the search algorithm. Since a time consuming search

algorithm is inapplicable in real world applications, it is necessary to conduct a complexity

analysis for different algorithms. The complexity analysis involves two aspects: time and

space complexity. Algorithm requirements for time and space are often contradictory with a

saving on space often being the result of an increase in processing time, and vice versa.

However, advances in computer hardware have made it possible to provide sufficient

memory in most computational environments and the main concern is now the time

62

complexity of the algorithm. In shortest path computation, there are two essential operations:

one is the additive computation which gives the start distance of the current node based on

previous nodes and the link weight between them; the other is the comparison operation

which gives a possible shorter path to the start node. We assume the time cost for these two

operations is equivalent. The time complexity is measured by the frequency of the most used

operations in the above algorithms. Observing the pseudo-code of Dijkstra's algorithm in

section 3.5.1, the main loop from steps 5 to 10 takes the most computational time. In step 5,

the algorithm finds the node with a minimum start distance. It requires |V | times comparison

at first time, |V | −1 times at second time and so on. Therefore the time complexity of the

node search is |V|+ (|V| −1) + ... +1 =O (|V| 2). In steps 8 to 10, the algorithm examines all

links that are connected to the current node for the additive and comparison operations. From

the view of the entire search, it will examine all of the links in the network, which takes | E |

time. Therefore the final time complexity of Dijkstra's algorithm is O (|V|2+|E|)=O (|V|2) .For

the A* algorithm, its time complexity is calculated in a different way since it only computes

the shortest path between a single pair of nodes. If the average degree of a network is denoted

as d, and the search depth (i.e., the levels traversed in searching the tree until the goal is

found) is denoted as h, then the time complexity of the A*algorithm is O (dh) . The time

complexity comparison between these two algorithms is shown in Table 3.1.

Table 3.1 Time Complexity Comparison between Classical Algorithms

In this section, I suggest that the shortest path from the current location to a known

destination is a typical query for navigation services. Based on the above time complexity

comparison, A* is an efficient algorithm to solve the SP problem, because d and h are much

63

smaller than |V |. Thus, the distance (time) complexity of the Dijkstra algorithms is far greater

than A* in that they involve redundant computation for solving the single pair SP problem.

Since they are more applicable to other shortest path problems, they may be employed in

other discussed later in the thesis. Although A* can answer the first type of query proposed in

section 1.4, it is not the optimal solution as it is a static approach. In a dynamic environment,

A* has to recompute the shortest path from scratch every time there is a change in traffic

conditions. From this point of view, it must be improved in order to be adaptable to a

dynamic environment.

3.16 DYNAMIC TRAFFIC ROUTING

3.16.1 DYNAMIC TRANSPORTATION NETWORK

Time is an essential part of today‘s world. While long distance travel time seems to be getting

shorter each year, daily commuters have to spend more and more time just getting to their

offices. A major reason for this situation is traffic congestion, which results from high traffic

flow, incidents, events or road construction. Traffic congestion is perhaps the most

conspicuous problem in the transportation network and has become a crucial issue that needs

immediate attention. In the past, when drivers encountered traffic congestion, they had to

queue up and wait until the congestion cleared. Analysts were content with just studying the

queuing times and predicting waiting times, without making any attempt to actually solve the

problem. Current countermeasures for traffic congestion are oriented toward a "local"

optimum, i.e., a point-to-point diversion by using sign boards to divert traffic flow around the

point of congestion. The emergence of LBS gives a new paradigm for applying GIS to

transportation issues. As a key component, navigation services are regarded as the most

promising solution for solving this problem.

64

In transportation network representations, the weight of the links can be assigned as the cost

of travel time, along the links. Changes in traffic conditions are considered as changes in

link-weights, where the congestion occurs. Since traffic conditions always change over time,

the centralized navigation service has to monitor the traffic fluctuations over a day-long

interval and detect any congestion upstream in order to allow drivers to take preventive

action. By using dynamic shortest path algorithms, navigation services can also help mobile

clients to plan an alternative optimal route to their destination based on the updated traffic

conditions. In this sense, the solution provided by the navigation service is closer to a

"global" optimum. This feature also encourages the possibility of deploying these algorithms

in real-time traffic routing software.

3.16.2 RELATED RESEARCH FOR DYNAMIC TRAFFIC ROUTING

Recent developments in LBS reflect a propensity for increased use of dynamic algorithms for

routing. Most of these algorithms have already been applied successfully for routing in

computer networks. As well, these algorithms can be applied to transportation network

management, especially in the context of the centralized architecture of navigation services,

where traffic flow would exhibit a behaviour close to that of ―packets‖ in computer networks.

Motivated by theoretical as well as practical applications, many studies have examined the

dynamic maintenance of shortest paths in networks with positive link weights, aiming at

bridging the gap between theoretical algorithm results and their implementation and practical

evaluation. In dynamic transportation networks, weight changes can be classified as either

deterministic or stochastic time-dependent. In the deterministic time-dependent shortest path

(TDSP) problem, the link-weight functions are deterministically dependent on arrival times at

the tail node of the link, i.e., with a probability of one. In the stochastic TDSP problem, the

link-weight is a time-dependent random variable and is modelled using probability density

functions and time-dependency. Here, link weights take on time-dependent values based on

65

finite probability values. Cooke and Halsey first proposed a TDSP algorithm in 1958. The

algorithm they suggested is a modified form of Bellman's label correcting the shortest path

algorithm. Hall worked on the stochastic TDSP problem and showed that one cannot simply

set each link-weight random variable to its expected value at each time interval and solve an

equivalent TDSP problem. Frank derived a closed form solution for the probability

distribution function of the minimum path travel time through a stochastic time-variant

network. There were also a number of other works addressing similar problems. All of these

are based on the model of a time dependent network where link length or link travel time is

dependent on the time interval. All of the research discussed above attempts to use

probabilistic and statistical approaches to determine the random change of link-weights and

then derive the most promising shortest path. To simplify the dynamic shortest path (DSP)

problem, my thesis research assumes that the link-weight changes are collected and updated

by a centralized navigation service. Based on the given link-weights for each time interval,

my research focuses on the DSP algorithm itself. The DSP algorithm utilizes current traffic

conditions to dynamically maintain the optimal path en route. With a single weight change,

usually only a small portion of the graph is affected. For this reason, it is sensible to avoid

computing the shortest path from scratch, but only to update the portion of the graph that is

affected by the link-weight change. Incremental search methods are used to solve dynamic

shortest path problems, where shortest paths have to be determined repeatedly as the topology

of a graph or its link costs change. A number of incremental search methods have been

suggested in the literature for algorithm, which differ in their assumptions: whether they

solve single source or all-pairs shortest path problems; which performance measure they use,

when they update the shortest paths; which kinds of graph topology and link costs they apply

to; and how the graph topology and link costs are allowed to change over time. An algorithm

is referred to as fully-dynamic if both the weight increment and decrement are supported and

semi-dynamic if only the weight increment (or decrement) is supported.

66

Among the algorithms proposed for the DSP problem, the algorithm of Ramalingam and

Reps (RR for short, also referred to as the Dynamic SWSF-FX algorithm) seems to be the

most used. It is a fully-dynamic DSP algorithm which updates the shortest paths

incrementally. In their work on algorithms for the DSP problem. Proposed a fully dynamic

algorithm, which is a specialization of the RR algorithm for updating a shortest path tree. It is

a modification of their previous work on a semi-dynamic incremental algorithm. This chapter

shows that the RR algorithm is an efficient approach for solving the DSP problem. One of its

main advantages is that the algorithm performs efficiently in most situations. First of all, it

updates a shortest path graph instead of a shortest path tree, although it can be easily

specialized for updating a tree. Even and Shiloach proposed a semi-dynamic incremental

algorithm that works in cascades, which can be computationally expensive for large link-

weight increments. RR has good performance independent of weight increments. For

updating a shortest path tree, Demetrescu's semidynamic incremental algorithm performs

well only if most of the affected nodes have no alternative shortest paths. However, the RR

algorithm performs well even when there are alternative paths available. Even the algorithm

of Frigioni et al., (1996) which is theoretically better than RR, was usually outperformed by

RR in computational testing. Many theoretical studies of DSP algorithms have been carried

out but few experimental results are known. Frigioni et al., (1998) compared the RR

algorithm with the algorithm proposed by Frigioni et al., for updating a single-source shortest

path graph. They concluded that the RR algorithm is usually better in practice, with respect to

running times, but their algorithm has a better worst case time complexity. In this chapter, the

shortest path problem is well discussed. The chapter started with the classification of the

shortest path problem, which divided the shortest paths into one-toone, one-to-all, or all-to-

all. Commonly used search strategies, such as the breadth-first, depth-first and best-first

searches, were then introduced. Based on the search strategy analysis, two classical shortest

path algorithms are described as typical solutions to the shortest path problems defined by the

67

classification. They are Dijkstra's and the A* algorithms, which are devised for static

environments. Although the time complexity comparison demonstrates that the A* algorithm

is most suitable for calculating the shortest path between single pair nodes due to its static

property. The algorithm is inefficient in dynamic transportation networks. To satisfy the

requirement of applications for real-world traffic networks, the dynamic shortest path (DSP)

problem is addressed. Firstly, the scenario of the dynamic traffic network is provided to

illustrate the past and present solutions in the real-world and demonstrate the importance of

DSP research. Secondly, some related research on the time-dependent shortest path (TDSP)

problem is briefly introduced in order to identify the research area in this thesis, which

assumes the link-weight changes have been given. Based on this assumption, some previous

algorithms are explored. Among them, the RR algorithm is shown to be the efficient

approach in most dynamic environments. It plays a major role in my solution to the DSP

problem. Nevertheless, all of the dynamic approaches discussed in this chapter are still not

capable of answering the first query type proposed at the beginning of this thesis, i.e., trying

to find the adaptive route from the current location to a known destination. These algorithms

can only calculate the dynamic shortest path between fixed start and goal nodes for different

time intervals. This means that they are not able to deal with changes in the position of the

start node as a mobile user moves along the initial optimal path and makes an en route query

for a new shortest path in accordance with traffic condition changes.

3.17 SHORTEST PATH AND THE ENVIRONMENT ISSUES

Suppose there is a need to find a path, which implies the smallest usage of fuel. This case is

similar as the money cost of the travel, but it differs since the bus money cost (the money for

a bus ticket, for example) is higher than (and not linear to) the fuel used. The shortest path in

terms of used fuel needs to be evaluated from the environment point of view. The simplest

approach to the problem is to ascribe a cost to every link costs that express the impact on the

68

environment. A higher cost will be attached to a car link, and a smaller cost will be attached

to the bus link. The cost of a link should be dependent on the length of s link. According to

the criteria of cost, the algorithm searches for the shortest path and at the same time computes

the time cost. The time cost of a shortest path generated with the help of such an algorithm

will not be optimised. We can conceive the case where there is the shortest path found in

terms of the lowest fuel cost, but the time cost is not acceptable. This may happen is we

waited a long time to save not a significant amount of fuel.

A number of constraining criteria for such a shortest route finding can be given. First, we can

fix a certain amount of time which can be taken at most for waiting at a bus stop. Among the

links that fulfil this condition, the link of the smallest fuel cost is chosen. Another constraint

can be that the overall travel time cannot be greater than a fixed amount T. In the article by

Cai at el., (1997) one can find three algorithms for the internet data packages routing among,

which one algorithm is very well suited to our needs. The algorithm searches a specific type

of networks. Each link in the network has two numbers ascribed: cost and time. For us the

cost can be the fuel cost and time is the time cost. The proposed algorithm is going to find the

shortest route according to fuel cost and with the overall time cost not exceeding a specific

amount of time T. The main ideas of the project are involved in the adaptation of the

algorithm proposed by Dreyfus (1969) for bus networks which is based on the Dijkstra‘s

algorithm. The main ideas have been used to adopt the algorithm described by Dreyfus

(1969) to the public transportation networks, to describe it mathematically.

3.18 INTRODUCTION TO THE BUS ROUTING ALGORITHM DESCRIPTION

The algorithm can be used for any public transportation network based on timetables. In any

public transports means that the project takes into account, the root for the public transport

which must based on timetables in which the driver reports the bus routing algorithm.

69

3.18.1 THE BUS ROUTING ALGORITHM

To understand the problem clearly, it is useful to visualise a traveller who wants to get from

one bus stop to another in a city using buses only. The input data to the algorithm consists of

a description of the bus transportation network (timetables, description of connections

between bus stops), the bus stop where the journey begins (the source node) and the bus stop

at which the journey ends (the destination node). The objective is to find the shortest path

between the two specified nodes, namely the path that requires the

minimal amount of time. The algorithm presented here was designed to solve the problem

described above. The new algorithm had to be designed in order to meet the special needs of

bus transportation networks such as timetables and the possibility of waiting at bus stops. The

main difference between the standard shortest path problem and this one is that links vary

with distance (time) and it is allowed to wait at the nodes as long as it is necessary to obtain

the minimal time cost. The problem can be classified as the shortest path problem with time

dependent costs of links and the allowance of waiting at nodes. A time cost of every link may

differ in any desired way. The solution to the problem is based on Dijkstra‘s algorithm, which

is the best known algorithm for directed networks with nonnegative link costs. There are

several principles (as the use of a priority queue or the use of buckets) underlying an efficient

implementation of the Dijkstra algorithm which can also be applied to implement the bus

algorithm (the article by Cherkassy et al is a good paper discussing principles for Dijkstra

algorithm implementation).The Dijkstra algorithm has to be modified because of two

problems:

(i) The first modification deals with a problem of fixed times at which a bus leaves the

bus stop. This new attribute of a link is going to be named the departure time of a

link. Dijkstra‘s algorithm is not concerned with a departure time of a link; the

algorithm was designed to work with links, which can be used at any time. In our

70

problem the main constraint is that links cannot be used at any time, the time at

which a bus link can be used is fixed according to a timetable.

(ii) The second problem is the actual cost of a bus connection between two nodes. In

our case the cost of a link is not the criterion to judge the optimality of the link choice

anymore. In the present problem the actual criterion is the sum of the waiting time and the

link cost, or, in other words, the time of arrival at the finishing node of a link. In effect,

we are also concerned with the waiting times at nodes. The need to wait at bus stops is a

consequence of the departure time attribute (if a link cannot be used right now then it is

necessary to wait for the departure). Suppose there are buses leaving a specific bus stop at

1, 2… 10 time units and arriving at the other specific bus stop after the time cost. The

time costs of the buses differ considerably since the buses may be of different companies

and they may take different routes. Having the data, the task is to find the cheapest

connection between two nodes. The task then is to find the link that has the minimum

sum of the time cost of a link and the waiting time (that is necessary to wait for this link).

We can phrase the solution to the problem in this way: the sought link is the link of which the

arrival time is minimal. This formulation of the solution, i.e. finding the minimal arrival time,

is going to be used as opposed to the summation of a waiting time and the time cost (which is

the same but complicates the coming formulas).

3.19 THE SHORTEST PATH

Let P = (s = x1, x2, …, x = xr) be the shortest path from the source node s to the destination

node x. The nodes of the shortest path are such that they result in the minimal arrival time to

the xr node. The time of arrival is given by T(xr). The subsequent nodes of the shortest path

are found by the use of T(xi) function. To find xr-1 we have to find the link which led to xr

with minimal arrival time. Having the link, we have the starting node of the link. This starting

71

node is the xr-1 node of the shortest path. This method has to be repeated until the source

node is reached.

Step description of the algorithm

The aim of the algorithm is to minimise T(x) (x is the destination node). To minimise it we

first have to minimise T(xi) for nodes xi which are at the shortest path from s to x. Before we

get to the algorithm description, there are some definitions to be introduced. We classify all

the nodes of the graph into three sets, every node can be a member of only one of the

following sets:

i. SPN: the Set of Permanent Nodes is the set of nodes which have been completely

processed; the time of reaching these nodes has been computed and will not change.

ii. SSN: the Set of Scanned Nodes is the set of nodes which have been reached, but have

not been completely processed; the time cost of getting to them is known but may

change.

iii. SNRN: the Set of Not Reached Nodes is the set of nodes which have not been reached

at all.

3.20 DIJKSTRA’S ALGORITHM

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1959, is a

graph search algorithm that solves the single-source shortest path problem for a graph with

non negative edge path costs, outputting a shortest path tree. This algorithm is often used in

routing. For a given source vertex (node) in the graph, the algorithm finds the path with

lowest cost (i.e. the shortest path) between that vertex and every other vertex. It can also be

used for finding costs of shortest paths from a single vertex to a single destination vertex by

stopping the algorithm once the shortest path to the destination vertex has been determined.

For example, if the vertices of the graph represent cities and edge path costs represent driving

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing

72

distances between pairs of cities connected by a direct road, Dijkstra's algorithm can be used

to find the shortest route between one city and all other cities.

ALGORITHM

Let's call the node we are starting with an initial node. Let a distance of a node X be the

distance from the initial node to it. Our algorithm will assign some initial distance values and

will try to improve them step-by-step:

i. Assign to every node a distance value. Set it to zero for our initial node and to

infinity for all other nodes.

ii. Mark all nodes as unvisited. Set initial node as current.

iii. For current node, consider all its unvisited neighbours and calculate their distance

(from the initial node). For example, if current node (A) has distance of 6, and an

edge connecting it with another node (B) is 2, the distance to B through A will be

6 + 2 = 8. If this distance is less than the previously recorded distance (infinity in

the beginning, zero for the initial node), overwrite the distance.

iv. When we are done considering all neighbours of the current node, mark it as

visited. A visited node will not be checked ever again; its distance recorded now is

final and minimal.

v. Set the unvisited node with the smallest distance (from the initial node) as the next

"current node" and continue from step 3.

vi. When all nodes are visited, algorithm ends.

DESCRIPTION OF THE ALGORITHM

Suppose you create a knotted web of strings, with each knot corresponding to a node, and the

strings corresponding to the edges of the web: the length of each string is proportional to the

weight of each edge. Now you compress the web into a small pile without making any knots

73

or tangles in it. You then grab your starting knot and pull straight up. As new knots start to

come up with the original, you can measure the straight up-down distance to these knots: this

must be the shortest distance from the starting node to the destination node. The acts of

"pulling up" and "measuring" must be abstracted for the computer, but the general idea of the

algorithm is the same: you have two sets, one of knots that are on the table, and another of

knots that are in the air. Every step of the algorithm, you take the closest knot from the table

and pull it into the air, and mark it with its length. If any knots are left on the table when

you're done, you mark them with the distance infinity. Or, using a street map, suppose you're

marking over the streets (tracing the street with a marker) in a certain order, until you have a

route marked in from the starting point to the destination. The order is conceptually simple:

from all the street intersections of the already marked routes, find the closest unmarked

intersection - closest to the starting point (the "greedy" part). It's the whole marked route to

the intersection, plus the street to the new, unmarked intersection. Mark that street to that

intersection, draw an arrow with the direction, then repeat. Never mark to any intersection

twice. When you get to the destination, follow the arrows backwards. There will be only one

path back against the arrows, the shortest one.

The Dijkstra‘s algorithm uses two types of labels: temporary and permanent. Both labels

utilized the same format used with the cycles algorithm: namely, [d, n], where d is the

shortest distance so far available for a current node, and n is the immediate predecessor node

responsible for realizing the distance d. The algorithm starts with the source node carrying

the permanent label [0-]. Next we consider all the nodes that can be reached directly from

source node and then determine their associated labels. The newly created labels are

designated as temporary.

The permanent label is selected from among all current temporary labels as the one having

the smallest distance d in the label [d n] (ties are broken arbitrarily). The process is now

74

repeated for the last node that has been designated permanent. In such a case, a temporary

label of a node may be changed only if the new label yields a smaller distance d.

Let us apply the procedure to the network in figure below. a basic assumption of the

algorithm is that all the distances in the network are non-negative.

Fig 3.6a : Description of algorithm

Iteration 0: Node 1 carries the permanent label (0)

Iteration 1: Nodes 2 and 3, which can be reached directly from node 1 (the last permanently

labeled node), now carry the temporary labels (0 +100, 1) and (0 + 30, 1) or (100, 1) and

(30, 1), respectively. Among the current temporary labels, node 3 has the smallest distance d

+30 (+ min {100, 30}) thus node 3 is permanently labeled.

Iteration 3: node 4 and 5 can be reached from the last permanently labeled node (node 3)

respectively. At this point, we have the three temporary labels [30 + 10, 3] and [30 +60, 3] (or

[40, 3] and [90, 3] associated with nodes 2,4, and 5, respectively. Temporarily labeled node 4

has the smallest d = 40 (+ min {100, 40, 90}) and hence its label [40, 3]is converted to the

permanently status.

Iteration 3: from the node 4, we now label node 2, with the now temporary label

[40 +15, 4] =[55, 4], which replace the old temporary label [100, 1]. Next, node include [55,

4] and [90, 4] associated with nodes 2 and 5, respectively. We thus label node 2 permanently

with [55, 4]

2

1

3

4

5

100

30

15

10

600

50

20

75

The only remaining node is the sink node 5, which converts its [90, 4] into a permanent label,

thus completing the procedure.

Fig 3.6b: Description of the algorithm

Therefore one would realize that the shortest distance in moving from node 1 to node 2 will

be from node 1(which carries the permanent label (0,1) through node 3 [30,2] through node 4

[40,3] then finally to node 2 which will have the permanent label [55,4]

The solution in Figure 1.2 provides the shortest distance to each node in the network together

with it route. In summary, Dijkstra‘s algorithm finds the shortest paths from a source node s

to all other nodes in a network with non-negative arc lengths. Dijkstra‘s algorithm maintains

a distance label d(i) with each node i, which is upper bound on the shortest path length from

the source node to each node i. At any immediate step, the algorithm divides the nodes of the

network under consideration into two groups: those, which it designates as permanently

labeled (or permanent), and those, which it designates as temporarily labeled (or temporary).

The distance label to any permanent node represents the shortest distance from the source

node to that node. The basic idea of the algorithm is to find out from the source node s and

permanently label node in the order of their distances from the node s. Initially, node s is

assigned permanent label of zero, and each other node j a temporary label equal to infinity. At

2

1

3

4

5

100

30

15

10

600

50

20

76

each iteration, the label of a node i is the shortest from the source node along a path whose

internal node (i.e. node other than s or the node i itself) are all permanently label. The

algorithm selects a node i with the minimum temporary label (breaking ties arbitrary),makes

it permanent, and reaches out from that node-that, seems all the edges/arcs emanating from

the node i to update the distance labels of adjacent nodes. The algorithm terminates when it

has designated all nodes permanent (Ahuja et al, 1993).

THE STEP DESCRIPTION

STEP 1

The source node s is initialised as scanned (s SSN) and every other node xi . s of the

graph is initialised as not reached (xi SNRN). Furthermore, the arrival time of the source

node is set to t0 (t0 is the time at which the journey starts), i.e. T(s) = t0, and the arrival time

of every other node xi s of the graph is set to infinity, i.e. T (xi) = ∞

STEP 2

We process only one node during this step. We choose the node to be processed from the

SSN (Set of Scanned Nodes). If the SSN is empty, this means there is no path between the

source node and the destination nodes and the algorithm quits. If the SSN is not empty, we

choose a xi node from the SSN which has minimal T(xi). If there is more than one node with

the minimal T(xi) then we choose one of them arbitrarily. In formula:

 Xi SSN є T (xi) = min T(xj) Xi SSN

Once the xi node is chosen, we proceed to process it. First the node xi is excluded from the

SSN and becomes a member of SPN (Set of Permanent Nodes). At this stage it is certain that

the arrival time T(xi) is minimal (it may only get larger since taking another link will increase

the cost; link costs are always positive) and this is the reason for moving the xi node to SPN.

77

Next the links leaving the xi node are handled. From the set E (the set of links of the graph)

every link which has the xi node as a starting one is selected. The retrieved set is further

constrained to links of the departure time greater or equal to T(xi) (only buses that will arrive

to a bus stop can be taken, not those which have left).

78

CHAPTER 4

DATA COLLECTION AND ANALYSIS

4.1 DATA COLLECTION

Kumasi is the capital city of the Ashanti Region, a very important and historical Centre for

Ghana. It is located about 250 km (by road) northwest of Accra. Kumasi is approximately

300 miles north of the equator and 100miles north of the Gulf of Guinea. It is the second

largest city of Ghana with a population of 1,517,000. The metropolis is made up of 119 sub

metros. Currently the emergence service for Kumasi Metropolis can all be located in Adum.

Whereas the Ambulance service in the metropolis is located at the Komfo Anokye Teaching

Hospital (KATH) and the Fire Service can also be located at Adum near the Kumasi

metropolitan office. Cases handled by the Metropolis Ambulance Service (MAS) and

Metropolitan Fire Services (MFS) range from Gynaecology, fire and to road accidents.

The MAS and MFS are both housed in a separate building at the KATH polyclinic and KMA

and both runs two shifts systems; day and night. Communication is the key to running of

these services.

This thesis offers an application solution for dynamic routing of vehicles in Kumasi. It

proposes a routing system that users employs historical traffic data to model recurring

congestion and compute initial shortest path. As unpredicted (nonrecurring) congestion

occurs and is reported from some FM station or traffic control centre, the system analyses the

real time data to determine if the planned route needs to be change (modified). It can changed

the planned route as a function of the current position, destination location, and real time

traffic condition The proposed routing system has been composed of three subsystems

including ArcGIS Network Analyst (for the digitized map), Dijkstra's algorithm and VB.Net

for the software development. The routing optimization problem in traffic management has

79

been already explored with a number of algorithms. Routing algorithms use a standard of

measurement called a metric (i.e. path length) to determine the optimal route or path to a

specified destination. Optimal routes are determined by comparing metrics, and these metrics

can differ depending on the design of the routing algorithm used (Parker, 2001).

Different kinds of algorithms have been proposed to finding the optimal routes, such as:

i. Simulated Annealing is a related global optimization technique which

traverses the search space by generating neighbouring solutions of the current

solution (Kirkpatrick et al., 1983).

ii. Tabu Search is similar to Simulated Annealing, in that both traverse the

solution space by testing mutations of an individual solution. While simulated

annealing generates only one mutated solution, tabu search generates many

mutated solutions and moves to the solution with the lowest fitness of those

generated (Glover et al., 1997).

iii. Genetic Algorithms (Holland, 1975) use biological methods such as

reproduction, crossover, and mutation to quickly search for solutions to

complex problems. Genetic algorithm begins with a random set of possible

solutions. In each step, a fixed number of the better current solutions are saved

and they are used to the next step to generate new solutions using genetic

operators.

iv. The ant colony optimization algorithm which has been used to produce

nearoptimal solutions to the travelling salesman problem. They have an

advantage over simulated annealing and genetic algorithm approaches when

the graph may change dynamically (Dorigo et al., 1999).

v. Dijkstra‘s algorithm, used by Network Analyst, is a greedy algorithm that

solves the single-source shortest path problem for a directed graph with

nonnegative edge weights (Dijkstra, 1959).

80

However, Network Analyst is still relatively new software, so there is not much published

material concerning its application traffic management. Miller (2005) compares the

RouteSmart 4.40, the ArcLogistics Route and the ArcMap Network Analyst extension on the

ability of either software package to create routes usable by the Drivers in Adum, efficient

manner for the city of Kumasi in Ashanti Region

Dijkstra's Algorithm, introduced in 1959 provides one the most efficient algorithms for

solving the shortest-path problem. In a network, it is frequently desired to find the shortest

path between two nodes. The weights attached to the edges can be used to represent

quantities such as distances, costs or times. In general, if we wish to find the minimum

distance from one given node of a network, called the source node or start node, to all the

nodes of the network, Dijkstra's algorithm is one of the most efficient techniques to

implement. In general, the distance along a path is the sum of the weights of that path. The

minimum distance from node a to b is the minimum of the distance of any path from node a

to b.

4.2 NETWORK DATA ANALYSIS AND RESULTS

ArcGIS Network Analyst is a powerful extension that provides network-based spatial

analysis including routing, travel directions, closest facility, and service area analysis.

ArcGIS Network Analyst enables users to dynamically model realistic network conditions,

including turn restrictions, speed limits, height restrictions, and traffic conditions at different

times of the day (ESRI 2006). The users with Network Analyst extension are able to:

(i). Find efficient travel routes,

(ii). Determine which facility or vehicle is closest,

(iii). Generate travel directions, and

81

(iv). Find a service area around a site.

In the current work, using Network Analyst, an optimum route for the routine find in

particular area is generated in the area under study. Network Analyst uses the Dijkstra‘s

Algorithm (Dijkstra 1959) in order to solve the Routing Problem and it can be generated

based on two criteria (Lakshumi et al 2006):

(i). Distance criteria: The route is generated taking only into consideration the location

of the waste large items. The volume of traffic in the roads is not considered in this

case.

(ii). Time criteria: The total travel time in each road segment should be considered as the:

Total travel time in the route = runtime of the vehicle + distance time. The runtime of

the vehicle is calculated by considering the length of the road and the speed of the

vehicle in each road. The Network Analyst extension allows the user to perform ‖Find

Best Route‖, which solves a network problem by finding the least cost impedance

path on the network from one stop to one or more stops. Network modelling gives the

opportunity to the user to include the rules relating to the objects, arcs and events in

association with solving transportation problems (Stewart 2004).

4.2.1 THE PATH FINDING ALGORITHM

Network Analyst software determines the best route by using an algorithm which finds the

shortest path, developed by Edgar Dijkstra (1959). Dijkstra‘s algorithm is the simplest path

finding algorithm, even though these days a lot of other algorithms have been developed.

Dijkstra‘s algorithm reduces the amount of computational time and power needed to find the

optimal path. The algorithm strikes a balance by calculating a path which is close to the

optimal path that is computationally manageable (Olivera, 2002). The algorithm breaks the

network into nodes (where lines join, start or end) and the paths between such nodes are

82

represented by lines. In addition, each line has an associated cost representing the cost

(length) of each line in order to reach a node. There are many possible paths between the

origin and destination, but the path calculated depends on which nodes are visited and in

which order. The idea is that, each time the node, to be visited next, is selected after a

sequence of comparative iterations, during which, each candidate-node is compared with

others in terms of cost (Stewart, 2004).

The following comprehensible example, which is an application of the algorithm on a case

of 6 nodes connected by directed lines with assigned costs, explains the number of steps

between each of the iteration of the algorithm (Figure 5.1). The shortest path from node 1 to

the other nodes can be found by tracing back predecessors (bold arrows), while the path‘s

cost is noted above the node.

 Figure 4:1 An example of Dijkstra‘s algorithm (Orlin 2003).

Each node is processed exactly once according to an order that is being specified below.

Node 1 (i.e. origin node) is processed first. A record of the nodes that were processed is

kept; call it Queue (Table 1). So initially Queue = {1}. When node k is processed the

following task is performed: If the path‘s cost from the origin node to j could be improved

including the vertex (k,j) in the path then, an update follows both of Distance[j] with the new

cost and Predecessors[j] with k, where j is any of the unprocessed nodes and Distance[] is

the path‘s cost from the origin node to j. The next node to be processed is the one with the

minimum Distance [j], in other words is the nearest to the origin node among all the nodes

that are yet to be processed. The shortest route is found by tracing back predecessors.

83

 Table 4:1 A record, called Queue, with all processed nodes

Network Analyst can be very useful in a variety of sections (ESRI 2006) in our daily life,

such as in:

i. Business, scheduling deliveries and installations while including time window

restrictions, or calculating drive time to determine customer base, taking into

account rush hour versus midday traffic volumes.

ii. Education, generating school bus routes honouring curb approach and no U-

turn rules.

iii. Environmental Health, determining effective routes for county health

inspectors.

iv. Public Safety, routing emergency response crews to incidents, or calculating

drive time for first responder planning.

v. Public Works, determining the optimal route for point-to-point pickups of

massive trash items or routing of repair crews.

vi. Retail, finding the closest store based on a customer's location including the

ability to return the closest ranked by distance.

vii. Transportation, calculating accessibility for mass transit systems by using a

complex network dataset.

84

4.3 CASE STUDY

A digital road network in small area of Kumasi (Adum), capital of Ashanti Region, was used

within the GIS map at a scale of about 1:2000. The road network was represented as

connections of the nodes and links. Geometric networks are built in the ArcGIS model to

construct and maintain topological connectivity for the road data in order to allow the path

finding analysis to be possible. To plan the initial shortest path, use historical data of average

traffic volume at surface streets or freeway segments within the area under study. The

segment lengths have been extracted using ESRI‘s ArcGIS software. The average volume of

each link in the network has been from obtained from KMA Traffic Unit. Summation of the

travel distance (times) for all the segment of a particular path between origin and destination

provides the total distance (time), which is minimized by the shortest path algorithm. The

routing macro uses Dijkstra‘s routing algorithm.

Fig 4.2 map of Kumasi metropolis

85

Figure 4:3 Shows the map of Adum.

4.4 PROPOSED SOLUTION

This thesis describes a study of planning vehicle routes for the shortest path in a district of

Adum using Network Analyst - a user-friendly extension of ArcGIS and Visual Basis Dot

Net with Dijkstra‘s algorithm, which provides efficient routing solutions in a simple and

straightforward manner. In order to simulate the situation in ArcGIS, all the relevant

information was acquired from KMA. More precisely, when creating a network routing

solution, specific spatial data are needed for the accurate completion of the network. For

example, a complete road network, where all the roads within the network are connected, is

significant because it allows connection throughout the system.

MODEL ASSUMPTIONS

• Traffic congestion not considered

• Calculation based on road distance

• State of the road not considered

Adum map was taken from the Town and Country Planning Department of KMA.

Digitized by the Geodetic Department (KNUST) to convert the map into a road network

86

Figure 4.4: Shows the City Centre Road Network of Kumasi

EXTRACT MAP OF ADUM NETWORK

Figure 4.5: Shows the Extract Map of Adum Network

87

SOFTWARE DEVELOPMENT

The proposed routing system has been of three subsystems including:

• ArcGIS Network Analyst

• Dijkstra‘s Algorithm

• VB.Net

For the software development

FEATURES OF THE INTERFACE

Step one: The first interface of the program.

Figure 4.6: Shows the first interface of the program

88

Step two: The user open to select to select the map needed.

Figure 4.7: Shows the how users select a map

Step Three: The user selects the needed map from the dialogue box to be open.

Figure 4.8: Shows how the maps are the display and selected.

89

Figure 4.9: Shows how the selected map been displayed

Step Four: The user uses the tool menu to select the Shortest Path Navigator where the user

selects the Source Street and the Destination. The flash bottom flashes the selected street and

the Flicker also flicks the selected street. The Go button uses to calculate the shortest distance

from the Source Street to the Destination Street on the map, and then display the distance on

the blank space. The Flash Features shows the shortest path on the map.

Figure 4.10: Shows how the user selects the Source Street and the Destination

90

Step Five: How the streets are been selected.

Figure 4.11: Shows how user selects the Source Street.

Figure 4.12: Shows how user selects the Destination Street.

91

4.5 DISCUSSION AND FUTURE WORK

These interfaces show how legend was loaded and displayed for the software obtained. The

source node Adum (A) was made fixed and the destination node was to be selected. The

program was run after loading the data .The computation was done by the program as:

Adum chosen as the starting node (A) was assigned a permanent label of zero and each other

node a temporal label. Each node is labelled with a distance from the start and a previous

node. Each node is held in a queue to be evaluated later. The algorithm select a node with

minimum temporal label to be evaluated from the queue, makes it permanent and reaches out

from that node. All nodes adjacent to this vertex that have been visited were labeled and held

in the queue.

The process continues until all the nodes in the queue had permanent label and algorithm

terminated. The shortest path to a given node was labelled on that vertex. The path was found

by tracking back through the network. The software displayed the source, destination, the

shortest path and the optimal distance in kilometres. The result attained is able to provide the

shortest distance from Adum to any location. It also provides the routes to obtain the shortest

distances. Computation of shortest paths is a famous area of research in Computer Science,

Operations Research and GIS. There is a great number of ways to calculate shortest paths

depending on the type of network and problem specification. Network Analyst is not only

capable of reproducing a satisfying number of scenarios, but also it has the ability to be easily

adapted to new conditions.

.

92

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSION

 In conclusion the shortest distance from any area on Kumasi to another can be calculated, let

us have a look at the case of an emergence call, requesting an ambulance to rush a patient

from any of the part of Kumasi to a KATH hospital. The shortest distance can easily be

known using this project, because a link on a real road network in the city tends to posse

different levels of congestion during different time period of a day and because a Patient‘s

location cannot be expected to be known in advance, it is practically impossible to determine

the fastest route before a call is received. The collection, transport and disposal of solid

waste, which is a highly visible and important municipal service, involves a large expenditure

but receives, scant attention. This problem is even more crucial for large cities in developing

countries due to the hot weather once again the shortest distance can also be calculated using

this project. This study addresses the problem of determining dynamic shortest path in traffic

networks, where arc travel times vary over time. This study proposes a dynamic routing

system which is based on the integration of GIS and real-time traffic conditions. It uses GIS

for improving the visualization of the urban network map and analysis of car routing. GIS is

used as a powerful functionality for planning optimal routes based on particular map travel

time information. The results of this study illustrate that dynamic routing of emergency

vehicle compared with static solution is much more efficient. This efficiency will be most

important when unwanted incidents take place in roads and serious traffic congestion occur.

In this study, the initial planned route is saved since when exist at any distance. The routing

system analysis real distance data receives only portion of the planned path traffic data and

93

vehicle location to determine if the direction may be a changed. This improves the

computational planned route need to be modified.

• This study addresses the problem of determining shortest path in traffic networks, in

Kumasi Metropolis

• The study proposes a routing system which is based on the integration of ArcGIS and road

distance.

• It uses ArcGIS and VB.NET coding to obtain user friendly interface which allows the

visualization of the Adum road map and traversal of shortest route between two selected

junctions. The updated route is send via a dynamic routing system for all vehicles in urban

(Adum) road communication system to vehicle driver to change his network has some special

considerations which are the route. This process continues until the mission of subject of our

future work.

5.2 SUGGESSTION

Sometimes the given algorithms may produce output that is of no use even though it has been

correctly generated. For example, there can be a path that will require an ambulance and one

bus only to reach the destination after 30 minutes. However, the algorithm may advise you to

take a car and three times to take a bus which will take 25 minutes, 5 minutes less than the

previous path. From the point of view of the defined conditions the second path is better, but

a more reasonable path is the first one, though 5 minutes shorter. The first path is actually

better because it is less cumbersome (it is easier to take one bus instead of three), more

reliable (three buses cause more risk than only one since each bus can break down, changing

buses is risky as opposed to sitting in the bus) and is cheaper. This example proves the need

to introduce different conditions for solving the shortest route problem. The future research

94

can go into two directions. First, well known algorithms can be adapted into the public

transport needs. For example, the algorithm for finding second shortest path, third etc, paths

for buses can be developed. More can be proposed: finding the shortest path going through

specific nodes, through specific number of nodes or by the most reliable path.

The other direction is more interesting: development of new algorithms for traffic issues and

not just adaptation of existing algorithms. So far there has not been devised (as far as the

author of this report knows) an algorithm for many public transport means: a train, an

underground, buses and a car. There would not be anything interesting in this except that the

buses and metro would be considered in parallel. A user could point out that the path should

be build up in accordance with the following criteria:

- The allowed types of changes (for example to change a bus to a train may be disallowed).

- Transportation, calculating accessibility for mass transit systems by using a complex

network map.

- Public works, determining the optimal route for point- to – point pickups of trash items.

- Public Safety, routing emergency response crew to incidents, or calculating drive distance

for first responder planning. More than that, user can specify exactly how many changes he

wants between different types of transportation. For example the user can say that only one

change between car and bus is allowed but that changing between buses and an underground

vehicle can be done as many times as necessary. Also, the number of changes can be named

as at most or exactly.Therefore saying at most 3 changes of vehicle can ban choosing the best

route with only one change. But still, this is should also be possible to find the path with

exact number of changes. The flexibility of conditions seems to be very big.

 95

REFERENCES

1. Ahuja, R. K., Magnanti, T. L., Orlin, J. B., (1993).

Network Flows: Theory, Algorithms and Applications, Prentice Hall, Englewood Cliffs,

NJ

2. Amponsah, S.K., (2008). Lecture notes, Operations Research, Kwame Nkrumah

University of Science and Technology, Kumasi.

3. Arrival Time Dependent Shortest Path by On – Road Routing in Mobile Ad – Hoc

Network (2005)

4. Bellman, R., (1958) On a Routing Problem, Quart. Appl. Math. 16, 87-90

5. Cherkassky, B. V., Goldberg, A. V., Radzik, T., 1996, Shortest path algorithms: Theory

and experimental evaluation, Mathematical Programming 73, 129-174 Cai, X., Klocks,

T., Wong, C.K., (1997)

6. CHISHAKI, Guoquan Li and Wen-Chih Huang (1994) The Developing Trend of

Taxi Traffic in Beijing Metropolitan Region Zhongying Dong, Takeshi

7. Dijkstra, E.W., 1959. ―A note on two problems in connexion with graphs‖. Numerische

Mathematik, 1, 269-271.

8. Dreyfus, S. E., An Appraisal of Some Shortest-Path Algorithms, Operations Research

1969, 395-412

9. Hart, P. E., Nilsson, N. J., Raphael, B. (1972). Correction to "A Formal Basis for the

Heuristic Determination of Minimum Cost Paths", SIGART Newsletter, 37,

pages. 28-29.

10. Husdal, J. (2000). Fastest Path Problems in Dynamic Transportation Networks,

http://www.husdal.com/mscgis/research.htm, last accessed November 22, 2005.

11. Network Flows: Theory, Algorithms and Applications, Prentice Hall, Englewood Cliffs,

NJ

 96

12. Minty, G., A comment on the shortest route problem. Operations Research. 5, 724, 1957

13. Moore, E.F., The shortest path through a maze. Proceeding of an International

Symposium on the theory of Switching, Part II, April 2-5, 1957, The Annals of the

Computation Laboratory of Harvard University 30, Harvard University Press, and

Cambridge Mass.

14. Open GIS - A Request for Technology - In Support of an Open Location Service

(OpenLSTM) Testbed, 2000.

15. Optimisation of an Existing Forest Road Network Using Network 2000

16. Optimisation of Yoshitaka AOYAMA & Yoshinobu HIROSE (1994)) The Impact of the

Development of High Mobility Transportation Networks on Rural Cities, Related

Problems and Countermeasures.

17. Peter W. Eklund, Steve Kirkby1, Simon Pollitt (2001) A Dynamic Multi-source

Dijkstra‘s Algorithm for Vehicle Routing

18. Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics and Graph

19. Steenbrink, P. A., Optimisation of transport networks, John Wiley & Sons Ltd, 1974

20. Stewart, L.A., 2004. ―The Application of Route Network Analysis to Commercial

ForestryTransportation‖. (Accessed on February 10, 2007).

21. Syslo ,M.M., Deo ,N., and Kowalk ,J.S. (1983). Optimization on Networks. In

Greenblah , A., editor , Discrete Optimization Algorithms with Pascal Programs ,

Pages 221-392.Prentice _ Hall ,Inc., Eaglewood Cliffs, New Jessey.

22. Tadaomi SETOGUCHI (1994), Observation on the Characteristics of Converted

Traffic,Viewed from the Available Forms of Urban Express ways.Hiroshi TANOUE,

Takashi

23. Vonderohe, A. P., Travis, L., Smith, R. L. and Tasai, V. (1993). NCHRP Report 359,

Adoption of Geographic Information System for Transportation, Transport Research

 97

Board, National Research Council, Washington, DC.

24. Young-Hwan Lee (1994) .A Study on the Development Plan of the New Yong-Jong

Island International Airport

 98

APPENDEX

CODES FOR THE SHORTEST PATH USING VB.NET

using System;

using System.Collections;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

using ESRI.ArcGIS.PublisherControls;

using GpsToolsNET;

namespace ShortestPathLibrary

{

Public# class MapLibrary

{

public static int ProgressValue = 0;

public MapLibrary()

{

}

public static bool LoadMap(AxArcReaderControl arcReaderControl)

{

try

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = "Published Map Files(*.pmf)|*.pmf";

if (ofd.ShowDialog() == DialogResult.OK)

{

return LoadMap(arcReaderControl, ofd.FileName);

}

else

{

throw new Exception("");

}

}

catch (Exception ex) { return false; }

}

public static bool LoadMap(AxArcReaderControl arcReaderControl,

string mapPath)

{

try

{

if (arcReaderControl.CheckDocument(mapPath))

{

arcReaderControl.LoadDocument(mapPath);

return true;

}

else

{

throw new Exception("");

}

}

catch (Exception ex) { return false; }

}

public static void CurrentARTool(AxArcReaderControl

arcReaderControl, MapTool mapTool)

{

try

{

if (mapTool == MapTool.FullExtent)

 99

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap)

arcReaderControl.ARPageLayout.FocusARMap.ZoomToFullExtent();

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout)

arcReaderControl.ARPageLayout.ZoomToWholePage();

}

if (mapTool == MapTool.MapHyperlink)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapHyperlink;

}

if (mapTool == MapTool.MapIdentify)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapIdentify;

}

if (mapTool == MapTool.MapIdentifyUsingLayer)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapIdentifyUsingLayer;

}

if (mapTool == MapTool.MapMeasure)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapMeasure;

}

if (mapTool == MapTool.MapSwipe)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapSwipe;

}

if (mapTool == MapTool.MapZoomInOut)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapZoomInOut;

}

if (mapTool == MapTool.Pan)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapPan;

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool

= esriARTool.esriARToolLayoutPan;

}

if (mapTool == MapTool.RedoExtent)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap)

arcReaderControl.ARPageLayout.FocusARMap.RedoExtent();

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout)

arcReaderControl.ARPageLayout.RedoExtent();

 100

}

if (mapTool == MapTool.UndoExtent)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap)

arcReaderControl.ARPageLayout.FocusARMap.UndoExtent();

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout)

arcReaderControl.ARPageLayout.UndoExtent();

}

else if (mapTool == MapTool.ZoomIn)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapZoomIn;

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool

= esriARTool.esriARToolLayoutZoomIn;

}

else if (mapTool == MapTool.ZoomOut)

{

if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypeMap) arcReaderControl.CurrentARTool =

esriARTool.esriARToolMapZoomOut;

else if (arcReaderControl.CurrentViewType ==

esriARViewType.esriARViewTypePageLayout) arcReaderControl.CurrentARTool

= esriARTool.esriARToolLayoutZoomOut;

}

}

catch (Exception ex) { }

}

public static MapField GetMapField(ARLayer layer, string

fieldName)

{

try

{

if (layer == null) throw new Exception("");

MapField mapField = new MapField();

ArcReaderSearchDef searchDef = new

ArcReaderSearchDefClass();

ARFeatureCursor featureCursor =

layer.SearchARFeatures(searchDef);

ARFeature feature = featureCursor.NextARFeature();

for (int i = 0; i < feature.FieldCount; i++)

{

if

(feature.get_FieldName(i).Trim().Equals(fieldName.Trim().ToUpper(),

StringComparison.CurrentCultureIgnoreCase))

{

mapField.FieldIndex = i;

mapField.FieldName = feature.get_FieldName(i);

mapField.FieldType = feature.get_FieldType(i);

break;

}

}

return mapField;

}

catch (Exception ex) { return null; }

}

public static MapField GetMapField(ARLayer layer, int

fieldIndex)

 101

{

try

{

if (layer == null) throw new Exception("");

MapField mapField = new MapField();

ArcReaderSearchDef searchDef = new

ArcReaderSearchDefClass();

ARFeatureCursor featureCursor =

layer.SearchARFeatures(searchDef);

ARFeature feature = featureCursor.NextARFeature();

mapField.FieldIndex = fieldIndex;

mapField.FieldName = feature.get_FieldName(fieldIndex);

mapField.FieldType = feature.get_FieldType(fieldIndex);

return mapField;

}

catch (Exception ex) { return null; }

}

public static bool GetShortestPath(NetworkAnalystInitialiser

naInit)

{

try

{

if (naInit.InitialiserStatus.Status)

{

ShortestPathNavigator spNavigator = new

ShortestPathNavigator(naInit);

if (spNavigator.InitialiserStatus.Status)

{

spNavigator.Show(naInit.OwnerForm);

}

else

{

throw new

Exception(spNavigator.InitialiserStatus.Message);

}

}

else

{

throw new

Exception(naInit.InitialiserStatus.Message);

}

return true;

}

catch (Exception ex) { return false; }

}

public static void FlashFeatures(ARFeature[] features, int

milliSecondsTimeout)

{

foreach (ARFeature feature in features)

{

feature.Flash();

System.Threading.Thread.Sleep(milliSecondsTimeout);

}

}

public static void FlashAndHighlightFeatures(ARFeature[]

features, int milliSecondsTimeout)

{

foreach (ARFeature feature in features)

{

feature.Flash();

feature.Highlight(true, 15000);

 102

System.Threading.Thread.Sleep(milliSecondsTimeout);

}

foreach (ARFeature feature in features)

{

feature.Highlight(false, 100000);

}

}

public static void FlashAndSelectFeatures(AxArcReaderControl

arcReaderControl, ARFeature[] features, int milliSecondsTimeout)

{

ARFeatureSet featureSet;

foreach (ARFeature feature in features)

{

feature.Flash();

System.Threading.Thread.Sleep(milliSecondsTimeout);

}

}

public static void FlashFeatures(ARFeatureSet features, int

milliSecondsTimeout)

{

for (int i = 0; i < features.ARFeatureCount; i++)

{

features.get_ARFeature(i).Flash();

System.Threading.Thread.Sleep(milliSecondsTimeout);

}

}

public static MapShortestPath

GetShortestPath(NetworkAnalystInitialiser naInit, string sourceNode,

string destinationNode)

{

try

{

if (!naInit.InitialiserStatus.Status)

{

System.Windows.Forms.MessageBox.Show("Initialiser

status is not set");

return null;

}

MapDijkstra md = new MapDijkstra(naInit, sourceNode,

destinationNode, null, null);

if (md.Run())

{

MapShortestPath msp = new

MapShortestPath(md.ShortestPath, md.PathCost);

return msp;

}

else

{

throw new Exception("There was error solving for

shortest path");

}

}

catch (Exception ex) { return null; }

}

public static MapShortestPath

GetShortestPath(NetworkAnalystInitialiser naInit, ARFeature

sourceFeature, ARFeature destinationFeature)

{

try

{

if (!naInit.InitialiserStatus.Status)

 103

{

System.Windows.Forms.MessageBox.Show("Initialiser

status is not set");

return null;

}

MapDijkstra md = new MapDijkstra(naInit,

sourceFeature.get_ValueAsString(naInit.FromNodeIndex),

destinationFeature.get_ValueAsString(naInit.FromNodeIndex),

sourceFeature, destinationFeature);

if (md.Run())

{

MapShortestPath msp = new

MapShortestPath(md.ShortestPath, md.PathCost);

return msp;

}

else

{

throw new Exception("There was error solving for

shortest path");

}

}

catch (Exception ex) { return null; }

}

public static MapShortestPath

GetShortestPath(NetworkAnalystInitialiser naInit, ARFeature

sourceFeature, string destinationNode)

{

try

{

if (!naInit.InitialiserStatus.Status)

{

System.Windows.Forms.MessageBox.Show("Initialiser

status is not set");

return null;

}

MapDijkstra md = new MapDijkstra(naInit,

sourceFeature.get_ValueAsString(naInit.FromNodeIndex), destinationNode,

sourceFeature, null);

if (md.Run())

{

MapShortestPath msp = new

MapShortestPath(md.ShortestPath, md.PathCost);

return msp;

}

else

{

throw new Exception("There was error solving for

shortest path");

}

}

catch (Exception ex) { return null; }

}

public static MapShortestPath

GetShortestPath(NetworkAnalystInitialiser naInit, string sourceNode,

ARFeature destinationFeature)

{

try

{

if (!naInit.InitialiserStatus.Status)

{

System.Windows.Forms.MessageBox.Show("Initialiser

 104

status is not set");

return null;

}

MapDijkstra md = new MapDijkstra(naInit, sourceNode,

destinationFeature.get_ValueAsString(naInit.FromNodeIndex), null,

destinationFeature);

if (md.Run())

{

MapShortestPath msp = new

MapShortestPath(md.ShortestPath, md.PathCost);

return msp;

}

else

{

throw new Exception("There was error solving for

shortest path");

}

}

catch (Exception ex) { return null; }

}

}

public class MapDijkstra

{

private struct Node

{

public string Label;

public double Distance;

public bool Visited;

public Node(string l, double d, bool v)

{

Label = l;

Distance = d;

Visited = v;

}

}

public ARFeatureSet Edges;

private NetworkAnalystInitialiser naInit;

public ArrayList Nodes;

private ArrayList[] pathNodes;

string sourceNodeLabel, destinationNodeLabel;

ARFeature sourceFeature = null, destinationFeature = null;

public System.Collections.ArrayList PathNodes = new

System.Collections.ArrayList();

public ARFeature[] ShortestPath;

public double PathCost = 0;

public MapDijkstra(NetworkAnalystInitialiser naInit, string

sourceNodeLabel, string destinationNodeLabel, ARFeature sourceFeature,

ARFeature destinationFeature)

{

this.naInit = naInit;

this.sourceNodeLabel = sourceNodeLabel;

this.destinationNodeLabel = destinationNodeLabel;

this.sourceFeature = sourceFeature;

this.destinationFeature = destinationFeature;

ArcReaderSearchDef searchDef = new

ArcReaderSearchDefClass();

Edges = naInit.ARRouteLayer.QueryARFeatures(searchDef);

}

private bool UnvisitedNodeExists()

{

try

 105

{

foreach (Node node in Nodes) if (!node.Visited) return

true;

return false;

}

catch (Exception ex) { return false; }

}

private Node GetMinimumNode(Node node, int currentNodeIndex)

{

Node minNode = new Node(); minNode.Distance = -1;

double length;

Node tNode;

for (int nodeIndex = 0; nodeIndex < Nodes.Count;

nodeIndex++)

{

tNode = (Node)Nodes[nodeIndex];

if (!tNode.Label.Equals(node.Label) && !tNode.Visited)

{

length = GetEdgeLength(node.Label, tNode.Label);

if (length > 0)

{

if (tNode.Distance < 0)

{

tNode.Distance = node.Distance + length;

pathNodes[currentNodeIndex].TrimToSize();

pathNodes[nodeIndex] = new

System.Collections.ArrayList();

foreach (int ni in

pathNodes[currentNodeIndex]) pathNodes[nodeIndex].Add(ni);

pathNodes[nodeIndex].TrimToSize();

}

else if ((node.Distance + length) <

tNode.Distance)

{

tNode.Distance = node.Distance + length;

pathNodes[currentNodeIndex].TrimToSize();

pathNodes[nodeIndex] = new

System.Collections.ArrayList();

foreach (int ni in

pathNodes[currentNodeIndex]) pathNodes[nodeIndex].Add(ni);

pathNodes[nodeIndex].TrimToSize();

}

}

Nodes[nodeIndex] = tNode;

}

}

foreach (Node nd in Nodes)

{

if (!nd.Visited && nd.Distance > 0)

{

if (minNode.Distance < 0)

{

minNode = nd;

}

else if (minNode.Distance > nd.Distance)

{

minNode = nd;

}

}

}

return minNode;

 106

}

private double GetEdgeLength(string start, string stop)

{

double length = 0;

ARFeature tf;

for (int i = 0; i < Edges.ARFeatureCount; i++)

{

tf = Edges.get_ARFeature(i);

if

((tf.get_ValueAsString(naInit.FromNodeIndex).Equals(start) &&

tf.get_ValueAsString(naInit.ToNodeIndex).Equals(stop)) ||

(tf.get_ValueAsString(naInit.FromNodeIndex).Equals(stop) &&

tf.get_ValueAsString(naInit.ToNodeIndex).Equals(start)))

{

length =

Convert.ToDouble(tf.get_Value(naInit.ShapeLengthIndex));

break;

}

}

return length;

}

private ARFeature GetEdge(string start, string stop)

{

ARFeature tempFeature = null;

for (int i = 0; i < Edges.ARFeatureCount; i++)

{

tempFeature = Edges.get_ARFeature(i);

if

((tempFeature.get_ValueAsString(naInit.FromNodeIndex).Equals(start) &&

tempFeature.get_ValueAsString(naInit.ToNodeIndex).Equals(stop)) ||

(tempFeature.get_ValueAsString(naInit.FromNodeIndex).Equals(stop) &&

tempFeature.get_ValueAsString(naInit.ToNodeIndex).Equals(start)))

{

break;

}

}

return tempFeature;

}

private int SetNodes()

{

int sourceNodeIndex = -1;

ARFeature tempFeature;

Nodes = new ArrayList();

for (int i = 0; i < Edges.ARFeatureCount; i++)

{

tempFeature = Edges.get_ARFeature(i);

Node startNode = new

Node(tempFeature.get_ValueAsString(naInit.FromNodeIndex).Trim(), -1,

false);

Node endNode = new

Node(tempFeature.get_ValueAsString(naInit.ToNodeIndex).Trim(), -1,

false);

if (Nodes.IndexOf(startNode) < 0)

{

if (startNode.Label.Equals(sourceNodeLabel) &&

sourceNodeIndex < 0)

{

startNode.Distance = 0;

sourceNodeIndex = Nodes.Count;

Nodes.Add(startNode);

}

 107

else if (!endNode.Label.Equals(sourceNodeLabel))

{

Nodes.Add(startNode);

}

}

if (Nodes.IndexOf(endNode) < 0)

{

if (endNode.Label.Equals(sourceNodeLabel) &&

sourceNodeIndex < 0)

{

endNode.Distance = 0;

sourceNodeIndex = Nodes.Count;

Nodes.Add(endNode);

}

else if (!endNode.Label.Equals(sourceNodeLabel))

{

Nodes.Add(endNode);

}

}

}

Nodes.TrimToSize();

pathNodes = new System.Collections.ArrayList[Nodes.Count];

return sourceNodeIndex;

}

public bool Run()

{

try

{

if (sourceNodeLabel.Equals(destinationNodeLabel)) throw

new Exception("Source and destination are similar");

int nodeIndex = SetNodes();

if (nodeIndex < 0) throw new Exception("Nodes could not

be set");

Node currentNode = (Node)Nodes[nodeIndex];

pathNodes[nodeIndex] = new

System.Collections.ArrayList();

while (UnvisitedNodeExists())

{

nodeIndex = Nodes.IndexOf(currentNode);

currentNode.Visited = true;

pathNodes[nodeIndex].Add(nodeIndex);

Nodes[nodeIndex] = currentNode;

if (currentNode.Label.Equals(destinationNodeLabel))

break;

currentNode = GetMinimumNode(currentNode,

nodeIndex);

}

//Make sure source and destination features are part of

the collection

ARFeature tempFeature;

if (destinationFeature != null)

{

tempFeature =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][pathNodes[nodeIndex].Cou

nt - 2]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][pathNodes[nodeIndex].Count -

1]]).Label);

if

(destinationFeature.get_ValueAsString(naInit.ObjectIDIndex).Equals(temp

Feature.get_ValueAsString(naInit.ObjectIDIndex)))

{

 108

destinationFeature = null;

}

}

if (sourceFeature != null)

{

tempFeature =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][0]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][1]]).Label);

if

(sourceFeature.get_ValueAsString(naInit.ObjectIDIndex).Equals(tempFeatu

re.get_ValueAsString(naInit.ObjectIDIndex)))

{

sourceFeature = null;

}

}

//Fill Path Nodes arraylist

if (sourceFeature != null && destinationFeature !=

null)

{

ShortestPath = new

ARFeature[pathNodes[nodeIndex].Count - 1 + 2];

ShortestPath[0] = sourceFeature;

ShortestPath[ShortestPath.Length - 1] =

destinationFeature;

for (int i = 0; i < pathNodes[nodeIndex].Count - 1;

i++)

{

ShortestPath[i + 1] =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label);

}

}

else if (sourceFeature != null)

{

ShortestPath = new

ARFeature[pathNodes[nodeIndex].Count - 1 + 1];

ShortestPath[0] = sourceFeature;

for (int i = 0; i < pathNodes[nodeIndex].Count - 1;

i++)

{

ShortestPath[i + 1] =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label);

}

}

else if (destinationFeature != null)

{

ShortestPath = new

ARFeature[pathNodes[nodeIndex].Count - 1 + 1];

ShortestPath[ShortestPath.Length - 1] =

destinationFeature;

for (int i = 0; i < pathNodes[nodeIndex].Count - 1;

i++)

{

ShortestPath[i] =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label);

}

}

else

{

 109

ShortestPath = new

ARFeature[pathNodes[nodeIndex].Count - 1];

for (int i = 0; i < pathNodes[nodeIndex].Count - 1;

i++)

{

ShortestPath[i] =

GetEdge(((Node)Nodes[(int)pathNodes[nodeIndex][i]]).Label,

((Node)Nodes[(int)pathNodes[nodeIndex][i + 1]]).Label);

}

}

//Calculate Path Cost

PathCost = 0;

foreach (ARFeature feature in ShortestPath) PathCost +=

Convert.ToDouble(feature.get_Value(naInit.ShapeLengthIndex));

return true;

}

catch (Exception ex) { return false; }

}

}

public class NetworkAnalystInitialiser

{

private Form ownerForm;

private AxArcReaderControl arControl;

private string routeLayerName;

private ArrayList mapLayers;

private ARLayer arRouteLayer;

private ArrayList arLayers;

private ArrayList routeLinkers = null;

private string objectIDField, fromNodeField, toNodeField,

shapeLengthField, linkFieldName;

private int objectIDIndex, fromNodeIndex, toNodeIndex,

shapeLengthIndex, linkFieldIndex;

private bool linkFieldNumeric;

private ResultObject initStatus = new ResultObject();

public NetworkAnalystInitialiser(Form ownerForm,

AxArcReaderControl arControl, string routeLayerName)

{

this.ownerForm = ownerForm;

this.arControl = arControl;

this.routeLayerName = routeLayerName;

mapLayers = new ArrayList();

}

public NetworkAnalystInitialiser(Form ownerForm,

AxArcReaderControl arControl, string routeLayerName, string

nodeLayerName, string objectIDField, string fromNodeField, string

toNodeField, string shapeLengthField)

{

this.ownerForm = ownerForm;

this.arControl = arControl;

this.routeLayerName = routeLayerName;

this.objectIDField = objectIDField;

this.fromNodeField = fromNodeField;

this.toNodeField = toNodeField;

this.shapeLengthField = shapeLengthField;

mapLayers = new ArrayList();

Initialise();

}

public Form OwnerForm

{

get { return ownerForm; }

set { ownerForm = value; }

 110

}

public AxArcReaderControl ARControl

{

get { return arControl; }

set { arControl = value; }

}

public string RouteLayer { get { return routeLayerName; } }

public ARLayer ARRouteLayer { get { return arRouteLayer; } }

public ArrayList MapLayers { get { return mapLayers; } }

public ArrayList ARLayers

{

get { return arLayers; }

}

public ArrayList RouteLinkers

{

get { return routeLinkers; }

}

public string ObjectIDField

{

get { return objectIDField; }

set { objectIDField = value; }

}

public string FromNodeField

{

get { return fromNodeField; }

set { fromNodeField = value; }

}

public string ToNodeField

{

get { return toNodeField; }

set { toNodeField = value; }

}

public string ShapeLengthField

{

get { return shapeLengthField; }

set { shapeLengthField = value; }

}

public string LinkFieldName

{

get { return linkFieldName; }

set { linkFieldName = value; }

}

public int ObjectIDIndex

{

get

{

if (initStatus.Status) return objectIDIndex;

else throw new Exception("Object ID Index Not Set");

}

}

public int FromNodeIndex

{

get

{

if (initStatus.Status) return fromNodeIndex;

else throw new Exception("From Node Index Not Set");

}

}

public int ToNodeIndex

{

get

 111

{

if (initStatus.Status) return toNodeIndex;

else throw new Exception("To Node Index Not Set");

}

}

public int ShapeLengthIndex

{

get

{

if (initStatus.Status) return shapeLengthIndex;

else throw new Exception("Shape Length Index Not Set");

}

}

public int LinkFieldIndex

{

get

{

if (initStatus.Status) return linkFieldIndex;

else throw new Exception("Link Field Index Not Set");

}

}

public bool LinkFieldNumeric

{

get { return linkFieldNumeric; }

}

public ResultObject InitialiserStatus

{

get { return initStatus; }

}

public MapLayer GetMapLayer(string layerName)

{

if (initStatus.Status)

{

foreach (MapLayer mapLayer in mapLayers)

{

if

(mapLayer.LayerName.Trim().Equals(layerName.Trim(),

StringComparison.CurrentCultureIgnoreCase))

{

return mapLayer;

}

}

}

return null;

}

public ARLayer GetARLayer(string layerName)

{

if (initStatus.Status)

{

foreach (ARLayer arLayer in arLayers)

{

if (arLayer.Name.Trim().Equals(layerName.Trim(),

StringComparison.CurrentCultureIgnoreCase))

{

return arLayer;

}

}

}

return null;

}

public bool AddRouteLinker(RouteLinker routeLinker)

 112

{

try

{

if (routeLinkers == null) routeLinkers = new

ArrayList();

routeLinkers.Add(routeLinker);

routeLinkers.TrimToSize();

return true;

}

catch (Exception ex) { return false; }

}

public bool AddMapLayer(MapLayer mapLayer)

{

try

{

mapLayers.Add(mapLayer);

return true;

}

catch (Exception ex) { return false; }

}

private bool AddARLayer(ARLayer arLayer)

{

try

{

if (arLayer.Searchable)

{

if (arLayer.IsGroupLayer)

{

for (int i = 0; i < arLayer.ARLayerCount; i++)

{

AddARLayer(arLayer.get_ChildARLayer(i));

}

}

else

{

if (GetMapLayer(arLayer.Name.Trim()) != null)

arLayers.Add(arLayer);

if

(arLayer.Name.Trim().Equals(routeLayerName.Trim(),

StringComparison.CurrentCultureIgnoreCase)) { arRouteLayer = arLayer; }

}

}

return true;

}

catch (Exception ex) { return false; }

}

public bool Initialise()

{

initStatus.Status = true;

initStatus.Message = "Initialiser correctly set";

try

{

if (this.arControl == null)

{

initStatus.Status = false;

initStatus.Message = "ArcReaderControl not set";

}

if (this.routeLayerName.Trim().Length == 0)

{

initStatus.Status = false;

initStatus.Message = "Route layer not set";

 113

}

arLayers = new ArrayList();

arRouteLayer = null;

for (int i = 0; i <

arControl.ARPageLayout.FocusARMap.ARLayerCount; i++)

{

if

(!AddARLayer(arControl.ARPageLayout.FocusARMap.get_ARLayer(i)))

{

initStatus.Status = false;

initStatus.Message = "Layer could not be

added";

}

}

arLayers.TrimToSize();

objectIDIndex = fromNodeIndex = toNodeIndex =

shapeLengthIndex = linkFieldIndex = -1;

ArcReaderSearchDef searchDef = new

ArcReaderSearchDefClass();

ARFeatureCursor featureCursor =

arRouteLayer.SearchARFeatures(searchDef);

ARFeature feature = featureCursor.NextARFeature();

for (int i = 0; i < feature.FieldCount; i++)

{

if

(feature.get_FieldName(i).Trim().Equals(objectIDField.Trim(),

StringComparison.CurrentCultureIgnoreCase)) objectIDIndex = i;

if

(feature.get_FieldName(i).Trim().Equals(fromNodeField.Trim(),

StringComparison.CurrentCultureIgnoreCase)) fromNodeIndex = i;

if

(feature.get_FieldName(i).Trim().Equals(toNodeField.Trim(),

StringComparison.CurrentCultureIgnoreCase)) toNodeIndex = i;

if

(feature.get_FieldName(i).Trim().Equals(shapeLengthField.Trim(),

StringComparison.CurrentCultureIgnoreCase)) shapeLengthIndex = i;

if

(feature.get_FieldName(i).Trim().Equals(linkFieldName.Trim(),

StringComparison.CurrentCultureIgnoreCase)) { linkFieldIndex = i;

linkFieldNumeric = (feature.get_FieldType(i) ==

esriARFieldType.esriARFieldTypeInteger || feature.get_FieldType(i) ==

esriARFieldType.esriARFieldTypeSmallInteger) ? true : false; }

}

if (objectIDIndex == -1 || fromNodeIndex == -1 ||

toNodeIndex == -1 || shapeLengthIndex == -1 || linkFieldIndex == -1)

initStatus.Status = false;

}

catch (Exception ex)

{

initStatus.Status = false;

initStatus.Message = ex.Message;

}

return initStatus.Status;

}

}

public class MapShortestPath

{

private ARFeature[] features;

private double pathCost;

public MapShortestPath(ARFeature[] features, double pathCost)

{

 114

this.pathCost = pathCost;

this.features = features;

}

public ARFeature[] Features

{

get { return features; }

}

public double PathCost

{

get { return pathCost; }

}

}

public class ResultObject

{

private bool status = false;

private string message = "";

public ResultObject()

{

}

public bool Status { get { return status; } set { status =

value; } }

public string Message { get { return message; } set { message =

value; } }

}

public class MapLayer

{

private string layerName;

private ArrayList searchableFields;

public MapLayer(string layerName)

{

this.layerName = layerName;

searchableFields = new ArrayList();

}

public string LayerName

{

get { return layerName; }

set { layerName = value; }

}

public ArrayList SearchableFields

{

get { return searchableFields; }

}

public bool AddSearchableField(string fieldName)

{

try

{

searchableFields.Add(fieldName);

searchableFields.TrimToSize();

return true;

}

catch (Exception ex) { return false; }

}

}

public class MapField

{

private int fieldIndex;

private string fieldName;

private bool isNumeric;

private esriARFieldType fieldType;

public MapField()

{

 115

}

public int FieldIndex

{

get { return fieldIndex; }

set { fieldIndex = value; }

}

public string FieldName

{

get { return fieldName; }

set { fieldName = value; }

}

public bool IsNumeric

{

get { return isNumeric; }

}

public esriARFieldType FieldType

{

get { return fieldType; }

set

{

fieldType = value;

if (fieldType == esriARFieldType.esriARFieldTypeDouble

|| fieldType == esriARFieldType.esriARFieldTypeInteger || fieldType ==

esriARFieldType.esriARFieldTypeOID || fieldType ==

esriARFieldType.esriARFieldTypeSingle || fieldType ==

esriARFieldType.esriARFieldTypeSmallInteger)

{

isNumeric = true;

}

else

{

isNumeric = false;

}

}

}

}

public class RouteLinker

{

private string layerName;

private string linkField;

public RouteLinker()

{

}

public RouteLinker(string layerName, string linkField)

{

this.layerName = layerName;

this.linkField = linkField;

}

public string LayerName

{

get { return layerName; }

set { layerName = value; }

}

public string LinkField

{

get { return linkField; }

set { linkField = value; }

}

}

public enum MapTool

{

 116

Pan,

ZoomIn,

ZoomOut,

MapHyperlink,

MapIdentify,

MapIdentifyUsingLayer,

MapMeasure,

MapSwipe,

MapZoomInOut,

FullExtent,

UndoExtent,

RedoExtent

}

public enum ShortestPathParameterType

{

FeatureToFeature, None

}

}

