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Abstract

This thesis defines the Sobolev Space and provides certain properties using concepts from

functional analysis and real analysis. These theories and properties are applied to solu-

tions of some partial differential equations. The concepts used here in finding solutions to

differential equation involve analytical properties like continuity, infinite differentiability,

continuous derivatives, e.t.c. Specific examples of partial differential equations are taken

where the Existence and Uniqueness of their weak solutions are studied together with

their Regularity and Recovery of their classical or strong solutions.
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Chapter 1

INTRODUCTION AND INITIAL

DEFINITIONS

This thesis presents a study of the properties of certain Banach Spaces of weakly differen-

tiable functions of several real variables that arise in connection with numerous problems

in partial differential equations and other areas of pure and applied mathematics.

These spaces have been associated with a Russian mathematician Sergei Lvovich Sobolev,

who worked in mathematical analysis and partial differential equations.

In many problems of mathematical physics and variational calculus,it is not sufficient

to deal with classical solutions of differential equations.It is also necessary to introduce

the idea of weak derivatives to work in the so-called Sobolev space.

What we seek to achieve is to explore the Sobolev Space and apply its properties to the

solutions of partial deferential equations. The beginning chapters gives us the functional

analytic tools and elements of real analysis needed to achieve our aim. Chapter 3 discusses

the Sobolev Space and Chapter 4 gives examples of partial differential equations where

the concept of Sobolev space is applied. We summarize in Chapter 5.

Consider the Dirichlet problem for the Laplace equation in a bounded domain Ω ⊂ Rn

∆u = 0 x ∈ Ω

u(x) = φ(x) x ∈ δΩ

where φ(x) is a given function on the boundary δΩ and ∆u =
n∑
i=1

∂2u

∂x2
i

is the Laplacian

of u. We have

l(u) =

∫
Ω

n∑
j=1

| ∂u
∂xj
|2dx
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To find the minimum of l(u) on the set of functions satisfying the condition u|δΩ = φ, it

is much easier to minimize this functional not in C1
(
Ω
)
, but in a larger class - W 1

2 (Ω)

- consisting of all functions u ∈ L2 (Ω) having the weak derivatives ∂ju ∈ L2 (Ω) j =

1, . . . , n. If the boundary δΩ is smooth, then the trace of u(x) on δΩ is well defined and

the relation u|δΩ = φ makes sense.

The concepts of Sobolev space enables us to look at the weak solution of this problem.

The classical (or strong) solution can always be recovered by showing that any weak

solution is a classical solution.
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1.1 Concepts from Functional Analysis

Functional analysis play a major role in the study of Sobolev Spaces. Sobolev Spaces

allow the use of functional analysis saving us the trouble of developing a new branch

of analysis to solve pdes. This section provides definitions and important results in

functional analysis.

1.1.1 Linear Space

Definition 1.1. Let X 6= ∅ be a nonempty set and K a scalar field. Then X is said to

be a linear/vector space if the functions

X ×X → X and K ×X → X

known as the addition and scalar multiplication are continuous, i.e.

∀ x, y ∈ X and c ∈ K

(x, y)→ x+ y ∈ X and (c, x)→ cx ∈ X

are continuous.

The following properties also holds;

i x+ y = y + x and (x+ y) + z = x+ (y + z) ∀x, y, z ∈ X
Also

∃0 ∈ X such that x+ 0 = x ∀ x ∈ X

∃ − x such that x+ (−x) = 0 ∀ x ∈ X

ii λ · (x+ y) = λ · x+ λ · y ∀x, y ∈ X, ∀λ ∈ K

iii (α + β) · x = α · x+ β · y ∀ x, y ∈ X and ∀ α, β ∈ K

iv (αβ)x = α(β · x) ∀ x ∈ X,λ ∈ K

We call X a linear space over the field K.

Unless otherwise stated it is assumed throughout this thesis that all vector spaces

referred to are taken from the field of Complex numbers.

1.1.2 Normed Linear Space

Definition 1.2. Let X be a linear space over a field K. A norm on X is a real-valued

function ‖ · ‖, where ‖ · ‖ : X → [0,+∞) such that for any x, y ∈ X,λ ∈ K the following
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conditions are satisfied;

N1:

‖x‖ ≥ 0 and ‖x‖ = 0 if, and only if, x = 0

N2:

‖λx‖ = |λ|‖x‖

N3:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Any nonempty linear space X equipped with a norm(i.e. satisfying these conditions) is

known as a Normed Linear Space

Example 1.1. Let X = R2. For any x = (x1, x2). Define ‖ · ‖2 : X = R → [0,∞) by

‖x‖2 =
√
x2

1 + x2
2

N1: ‖x‖2 =
√
x2

1 + x2
2 ≥ 0

Assume that x = (x1, x2) = 0 =⇒ x1 = 0 x2 = 0

‖x‖2 =
(
x2

1 + x2
2

) 1
2

Conversely, assume ‖x‖2 = 0

‖x‖2 := (x2
1 + x2

2)
1
2 = 0

=⇒ x1 = 0 = x2 ∴ x = 0

N2: For any scalar α

‖αx‖2 = ‖α (x1, x2) ‖2 = ‖ (αx1, αx2) ‖2

=
[
(αx1)2 + (αx2)

] 1
2

= [α2 (x2
1 + x2

2)]
1
2

= |α| (x2
1 + x2

2)
1
2

= |α|‖x‖2

4



N3: Let x, y ∈ X x = (x1, x2) y = (y1, y2)

‖x+ y‖2 := ‖ (x1 + y1, x2 + y2) ‖2 =

[
2∑
i=1

(xi + yi)
2

] 1
2

‖x+ y‖2
2

=
2∑
i=1

(xi + yi)
2

=
2∑
i=1

(x2
i + 2xiyi + y2

i )

≤
2∑
i=1

(x2
i + 2|xiyi|+ y2

i )

=
2∑
i=1

x2
i + 2

2∑
i=1

|xiyi|+
2∑
i=1

y2
i

2∑
i=1

|xiyi| ≤
(

2∑
i=1

x2
i

) 1
2

+

(
2∑
i=1

y2
i

) 1
2

: Cauchy-Schwatz inequality

∴ ‖x+ y‖2
2
≤

2∑
i=1

x2
i + 2

(
2∑
i=1

x2
i

) 1
2
(

2∑
i=1

y2
i

) 1
2

+
2∑
i=1

y2
i

= (‖x‖2 + ‖y‖2)2

since both sides are non-negative, we have

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2

Hence (R2, ‖ · ‖) is a normed linear space.

1.1.3 Banach Space

Definition 1.3. A sequence {xn} in a normed linear space X is called a Cauchy Sequence

if ∀ε > 0 there exists an integer N such that ρ(x, y) = ‖xm − xn‖ < ε holds whenever

m,n > N .

X is thus complete.

We call X a Banach space if every Cauchy sequence in X converges to a limit in X.

Any complete normed linear space is called a Banach space.

1.1.4 Inner Product Space

Definition 1.4. Let E be a linear space. An inner product on E is a scalar-valued

function 〈·, ·〉 : E × E → C such that the following conditions are satisfied:

For any x, y, z ∈ E and λ, µ ∈ C
I1:

〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0

5



I2:

〈x, y〉 = 〈y, x〉

I3:

〈λx+ µy, z〉 = λ 〈x, z〉+ µ 〈y, z〉

A linear space E equipped with a function(or metric) satisfying these is called anInner

Product Space.

1.1.5 Hilbert Space

Definition 1.5. An inner product space E is complete if every Cauchy sequence in E

converges to an element in E.

Thus, a complete inner product space is called a Hilbert Space.

The norm on a normed linear space E is induced by an inner product if, and only if

the norm satisfies the parallelogram law,

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
∀x, y ∈ E

This theorem is known as the Jordan-Von Neumann Theorem.

1.1.6 Topological Space

Definition 1.6. If X is a nonempty set, a topology on X is a collection T of subsets of

X which satisfies

i. ∅ ∈ T

ii. X ∈ T

iii.
n⋂
j=1

Gj ∈ T for any finite collection G1, . . . , Gn of elements of T

iv.
⋃
γ∈Γ

Gγ ∈ T for any collection {Gγ|γ ∈ Γ} of elements of T .

(X,T ) is thus called a topological space.

A topological space (X,T ) is said to be Hausdorff if every pair of distinct points

x, y ∈ X have disjoint neighbourhoods, i.e

Ux ∩ Uy = ∅

where Ux and Uy are the neighbourhoods of x and y respectively.

6



A topological vector space (TVS) is a Hausdorff topological space for which the

vector space operations of addition and scalar multiplication are continuous.

Definition 1.7 (Functional). A scalar-valued function defined on a vector space X is

called a functional.

The functional f is said to be linear provided

f(ax+ by) = af(x) + bf(y) ∀x, y ∈ X and ∀a, b ∈ C

Definition 1.8 (Continuous functions). Let (X,Tx) and (Y, Ty) be two topological spaces.

A function f : X → Y is said to be continuous if the preimage f−1(0) = {x ∈ X : f(x) ∈ O}
belongs to Tx for every O ∈ Ty.
The stronger the topology on X or the weaker the topology on Y , the more such contin-

uous functions f there will be.

1.1.7 The Dual Space

Definition 1.9. The set of all continuous, linear functionals on a topological vector space

X is called the dual of X, denoted by X ′.

X ′ is itself a vector space.

Definition 1.10 (Bounded Linear Functionals). Let X be a normed linear space over

the field K. Let f : X → K be a linear functional. Then f is said to bounded if there

exists some non-negative constant real number M such that ∀x ∈ X, ‖f(x)‖ ≤M‖x‖.
M is called the bound for f .

A linear map f : X → Y is continuous if, and only if it is bounded - thus making

continuity and boundedness equivalent as far as linear maps/functionals are concerned.

The elements of the dual X ′ are actually bounded linear functionals, defined by

‖f‖ = sup|f(x)| ∀f ∈ X ′,∀x ∈ X.

Theorem 1.1 (Riesz Representation Theorem). Let H be a Hilbert space and f a bounded

linear functional on H. Then there exists a unique vector w ∈ H such that

f(u) =< u,w > ∀u ∈ H and ‖f‖ = ‖w‖

This theorem shows that any bounded linear functional on a Hilbert space can be rep-

resented as an inner product with a unique vector in H.

7



Definition 1.11 (Operators). Let X be a normed space. An operator f defined on X

into a topological space Y is continuous if and only if

f(xn)→ f(x) in Y whenever xn → x in X.

Definition 1.12 (Imbeddings). We say the normed space X is imbedded in the normed

space Y denoted by X → Y if

i. X is a vector subspace of Y

ii. the identity operator I defined on X into Y by Ix = x ∀x ∈ X is continuous.

Definition 1.13 (Support). Let G ⊂ Rn be a nonempty set. If u is a function defined

on G, we define the support of u to be the set

supp(u) = {x ∈ G : u(x) 6= 0}

We say that u has compact support in Ω if

i. supp(u) ⊂ Ω

ii. supp(u) is compact (closed and bounded)

where the bar refers to the closure. We shall write G b Ω if G ⊂ Ω and G is compact.

Thus u has a compact support in Ω if supp(u) b Ω

1.2 Distributions and Weak Derivatives

Since the concept of weak derivatives is very essential in the study of Sobolev Spaces, a

notation for this derivative is introduced here in this section. Other necessary notations

are included.

Definition 1.14. A multiindex α is an n-tuple α = (α1, α2, . . . , αn) used to denote the

partial derivative operator

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

where |α| = α1 + α2 + . . .+ αn is interpreted as the degree of α

Useful Notations Let Ω be a domain in R. For any nonnegative integer m let Cm(Ω)

denote the vector space consisting of functions u which, together with all their partial

derivatives Dαu of orders |α| ≤ m, are continuous on Ω.

C0(Ω) ≡ C(Ω) and C∞(Ω) denote functions that are infinitely differentiable (functions

that are differentiable are also continuous.

We represent C0(Ω) and C∞0 (Ω) as functions in C(Ω) and C∞ that have compact support

in Ω.

8



Let φ ∈ C∞0 (Ω), an infinitely differentaible function with compact support and u ∈
Cm(Ω). Then the weak derivative of u ∈ Cm(Ω) is defined by integrating against φ ∈
C∞0 (Ω) by parts. Since u has a continuous derivative, we obtain∫

Ω

u
∂φ

∂xi
dx = uφ|∂Ω −

∫
Ω

φ
∂u

∂xi
dx = −

∫
Ω

φ
∂u

∂xi
dx

We do this several times,and obtain finally;∫
Ω

uDαφ dx = (−1)|α|
∫

Ω

φDαu dx, |α| ≤ m (1.1)

where

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

This equation is valid if u ∈ Cm(Ω) for every φ ∈ C∞0 (Ω).

Definition 1.15 (Test Functions). Let Ω be a domain in R. A sequence {φj} of functions

belonging to C∞0 (Ω) is said to converge (in the sense of the space D(Ω)) to the function

φ ∈ C∞0 (Ω) provided the following are satisfied:

i. there exists K b Ω such that supp (φj − φ) ⊂ K for every j, and

ii. lim
j→∞

Dαφj(x) = Dαφ(x) uniformly on K for each α.

Equipped with a locally convex topology, C∞0 (Ω) becomes a topological vector space

called D(Ω). The elements of D(Ω) are called test functions.

Definition 1.16 (Schwartz Distributions). The dual space D′(Ω) of D(Ω) is called the

space of Schwartz distributions on Ω.

Definition 1.17 (Locally Integrable Functions). A function u defined almost everywhere

on Ω is said to be locally integrable on Ω if u ∈ L1(U) for every open set U b Ω. We

write u ∈ L1
loc(Ω).

To every u ∈ L1
loc(Ω) there corresponds a distribution Tu ∈ D′(Ω) defined

Tu(φ) =

∫
Ω

u(x)φ(x) dx, φ ∈ D(Ω)

1.2.1 Weak Derivative

Finally,let u ∈ L1
loc(Ω). If there exists a locally integrable function v such that Tv = DαTu

in D′(Ω), then it is uniquely defined almost everywhere (i.e unique up to sets of measure

zero) and equation (1.1) becomes∫
Ω

uDαφ dx = (−1)|α|
∫

Ω

φv dx

9



for all φ ∈ C∞0 (Ω). We call v = Dαu the weak-αth partial derivative of u.

1.3 Lebesgue Measure and Integration

Since most of our results are restricted to the Euclidean space R, the Lebesgue measure

and other useful properties in Measure and Integration are introduced in this section.

1.3.1 Sigma Algebra

Definition 1.18. Let X be a nonempty set. A collection M of subsets of X is said to

be σ-algebra if

i. ∅ ∈M

ii. if A ∈M, then its complement Ac ∈M

iii. If {Aj}∞j=1 ∈M then
∞⋃
j=1

∈M.

It follows that

i. If {Aj}∞j=1 ∈M then
∞⋂
j=1

∈M

ii. If A,B ∈M, then A−B ∈M. (recall A−B = A ∩Bc)

(X,M) is called a measurable space.

Definition 1.19 (Borel Set). A Borel set,denoted by B(R), is the smallest σ-algebra

generated from the set of open sets in R.

1.3.2 Measure

Let M⊂ P (X) be a σ- algebra on a nonempty set X. A measure is a function

m :M→ [0,∞]

such that

i. m(∅) = 0

ii. If {Aj}j≥1 ⊂M and Aj are pairwise disjoint then

m

(⋃
j≥1

Aj

)
=
∑
j≥1

m(Aj)

10



We call (X,M,m) a measure space. Any set in M satisfying these conditions is said to

be measurable. If A is measurable, we write A ∈M.

Definition 1.20 (Outer measure). Let m∗ : P (R) → [0,+∞) and for any A ⊆ R, we

define

m∗(A) = inf
∞∑
n=1

l(In)

as the outer measure of A.

where {In}∞n=1 is a sequence of open intervals such that A ⊆
∞⋃
n=1

In.

We then have the following observations

i. m∗(∅) = 0

ii. m∗(A+ x) = m∗(A) : translation invariant

iii. m∗(x) = 0

iv. If A ⊂ B then m∗(A) ⊆ m∗(B)

v. If I is any interval then m∗(I) = l(I): length of I.

vi. If {An}∞n=1 is a countable collection of sets in P (R) then

m∗(
∞⋃
n=1

An) ≤
∞∑
n=1

l(An): countably subadditivity

Definition 1.21. A set A ∈ P (R) is said to be m∗ - measurable if for every E ∈ P (R)

m∗(E) = m∗(E ∩ A) +m∗(E ∩ Ac)

Definition 1.22 (Lebesgue measure). We denote m := m∗|M as the outer measure

restricted to measurable sets.

Thus, if A ∈M then we write m(A) instead of m∗(A). We call m the Lebesgue measure

having the following properties:

i. m(I) = l(I), where I is any interval on R.

ii. it is countably additive, i.e m∗(
∞⋃
n=1

An) =
∞∑
n=1

l(An)

iii. it is translation invariant

Also if {Aj}∞j=1 ∈M such that A1 ⊂ A2 ⊂ . . . then

∞⋃
j=1

Aj = lim
j→∞

m(Aj)

11



1.3.3 Measurable functions

Definition 1.23. Let A be a measurable set, let f : A → R, R = R ∪ {−∞,+∞}
be an extended real-valued function, then f is Lebesgue measurable if the set f > t :=

{x ∈ A : f(x) > t} ∀t ∈ R is measurable.

Proposition 1.1. The following statements are equivalent:

i. {f > t} ∈ M

ii. {f ≥ t} ∈ M

iii. {f < t} ∈ M

iv. {f ≤ t} ∈ M

Moreover {f = t} ∈ M

Proposition 1.2. The following are deduced from the definition of measurable functions

i. If f is measurable,so is |f |

ii. If f and g are measurable and real-valued, so are f + g and fg.

iii. f is measurable if, and only if f−1(I) := {x ∈ D(f) : f(x) ∈ I} ∈ M is measurable

for all open intervals I.

Theorem 1.2. If f is a measurable function and B ∈ B(R),a Borel set, then f−1(B) is

a measurable set.

Definition 1.24 (Borel function). A function f : A → R is called a Borel function if

A ∈ B(R) and {f > t} ∈ M ∀t ∈ R.

Definition 1.25 (Characteristic function). Let A ⊂ Rn be any given set. The charac-

teristic function of A,denoted by 1A or χA, is defined by

χA(x) =

{
1 x ∈ A
0 x /∈ A

Definition 1.26 (Simple function). A simple function f is a real-valued function with

prescribed scalars a1, a2, . . . , ak such that

s :=
k∑
i=1

aiχAi
(x)

where Ai ∈M ai ∈ R and χAi
is the characteristic function.

s is measurable ⇐⇒ Ais are all measurable.

12



Definition 1.27 (Almost Everywhere). A property is said to hold almost everywhere

(a.e) if the set of points it fails is a set of measure zero.

Theorem 1.3 (Egoroff). Let A ∈M,m(A) < +∞, let {fn}∞n=1 be a sequence of measur-

able functions and fn → f pointwise, then ∃E ∈M with m(E) < +∞ such that fn → f

uniformly on A|E.

That is, pointwise convergence (almost everywhere) on a set of finite measure implies

uniform convergence on a slightly smaller set.

Theorem 1.4 (Lusin). Let f : [a, b] → R be a finite-valued measurable function. Then

∀ε > 0 ∃A ⊂ [a, b],measurable, m(A) < ε such that f is continuous on [a, b]|A.

Moreover ∀ε > 0 ∃ a continuous function g ∈ Co ([a, b]) such that g(x) = f(x) ∀x ∈
[a, b]|A or m({g(x) 6= f(x)}) < ε

Definition 1.28 (Pointwise and Uniform Convergence). Let D ⊂ R and {fn} be a

sequence defined on D.

We say {fn} converges pointwise to f on D if

lim
n→∞

fn(x) = f(x) ∀x ∈ D

. However, we say {fn} converges uniformly to f on D if

lim sup
n→∞

{|fn(x)− f(x)| : x ∈ D} = 0

1.3.4 The Lebesgue Integral

If s is a simple function on a measurable set E with finite measure and {a1, a2, . . . , an} is

the set of nonzero values of s, then s =
n∑
i=1

aiχAi
such that Ai = {x : s(x) = ai} ∈ M.

This representation is called canonical representation if the ais are distinct and not

equal to zero and Ais are disjoint.

Definition 1.29. Let Ai ⊂ E, we define∫
E

s(x) dx =
n∑
i=1

aim(Ai)

Let s, p be simple functions on E. If f is a measurable nonnegative-valued function on

E,we define∫
E

f(x) dx = sup

∫
E

s(x) dx = inf

∫
E

p(x) dx s.t s(x) ≤ f(x) ≤ p(x)

as the Lebesgue integral of f over E.
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We say f is Lebesgue integrable on E if the integral is finite. The class of integrable

functions on A is denoted by L1(A)

Proposition 1.3. Let s, p be simple functions on E and c ∈ R. Then

i.
∫
E

(s+ p) =
∫
E

s+
∫
E

p

ii.
∫
E

cs = c
∫
E

s

iii. If s ≤ p then
∫
E

s ≤
∫
E

p

1.3.5 Bounded Convergence Theorem

Theorem 1.5. Let E be measurable,m(E) < +∞ and let {fn}∞n=1 be a sequence of

measurable functions such that fn → f pointwise a.e on E. Assume ∃ a positive real

number M such that |f | ≤M a.e on E. Then

lim
n→∞

∫
E

fn =

∫
E

f

Example 1.2. Let E = [0, 1] and fn = n1[0, 1n ].

14



This diagram shows a sequence of functions (not uniformly bounded).

fn
a.e−−−−−→

pointwise
f =

{
0 x ∈

(
0, 1

n

]
∞ x = 0∫

E

fn =

∫
n1[0,1] = n · 1

n
= 1∫

E

f =

∫ 1
n

0

f +

∫ 1

1
n

0 = 0 (for n very large)

0 =

∫
E

f 6=
∫
E

fn = 1

Hence the Bounded Convergence Theorem fails.

This is because {fn}∞n=1 is NOT uniformly bounded

Lemma 1.1 (Fatou’s Lemma). Let fn : E → [0,+∞], E ∈ M be a sequence of non-

negative measurable functions and suppose fn
a.e−−−−−→

pointwise
f on E. Then

∫
E

f ≤ lim inf
n→∞

∫
E

fn

Example 1.3. Let E = [0, 1] and fn = n1[0, 1n ].
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This produces a sequence of (negative) measurable functions (not uniformly bounded).

fn
a.e−−−−−→

pointwise
f =

{
0 : x ∈

(
0, 1

n

]
−∞ : x = 0∫

E

fn =

∫
−n1[0, 1n ] =

∫ 1
n

0

dn = −n× 1

n
= −1∫

E

f =

∫ 1
n

0

f +

∫ 1

1
n

0 = 0 (for n very large)

0 =

∫
E

f � lim inf
n→∞

∫
E

fn = −1

Hence the Fatou’s lemma fails since the given sequence is NOT non-negative.

Theorem 1.6 (Monotone Convergence Theorem). Let fn : E → [0,+∞], E ∈ M be a

sequence of non-negative measurable functions and fn ≤ fn+1 a.e and let fn
pointwise−−−−−→ f

a.e. Then

lim
n→∞

∫
E

f =

∫
E

lim
n→∞

f

Theorem 1.7 (Dominated Convergence Theorem). Let fn : E → [0,+∞], E ∈ M be a

sequence of measurable functions on E such that fn
pointwise−−−−−→ f a.e on E. If ∃ a Lebesgue

integrable function g such that |fn(x)| ≤ g(x) ∀x ∈ E, then

lim
n→∞

∫
E

f =

∫
E

lim
n→∞

f
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Chapter 2

Lp(Ω) SPACES

2.1 Definition and Properties

2.1.1 The Space Lp(Ω)

Definition 2.1. Let Ω, measurable, be a domain in R and let p ∈ R, 1 ≤ p <∞. Then

Lp(Ω) denotes the class of all measurable functions f on Ω for which∫
Ω

|f(x)|p dx <∞ (2.1)

This means that for a function f ∈ Lp(Ω)

i. f must be measurable and

ii.

∫
Ω

|f(x)|p dx <∞

The space Lp(Ω) is a vector space and elements of Lp(Ω) are equivalence classes of mea-

surable satisfying (2.1)

Lemma 2.1. If 1 ≤ p <∞ and a, b ≥ 0, then

(a+ b)p ≤ 2p−1 (ap + bp) (2.2)

Proof If p = 1, then (2.2) is trivial. For p > 1, the function φ : x→ xp is convex, that

is φ (λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) ∀λ ∈ [0, 1].

For λ = 1
2
, we have

φ
(

1
2
x+ 1

2
y
)
≤ 1

2
φ(x) + 1

2
φ(y)(

x
2

+ y
2

)p ≤ xp

2
+ yp

2

(x+ y)p = 2p
(
xp

2
+ yp

2

)p ≤ 2p
(
xp

2
+ yp

2

)
= 2p−1 (xp + yp)
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This completes the proof.

If f, g ∈ Lp(Ω), then

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p ≤ 2p−1 (|f(x)|p + |g(x)|p)

confirming that f + g ∈ Lp(Ω) since

∫
Ω

|f(x) + g(x)|p dx <∞.

f = g a.e is an equivalence relation on Lp(Ω). By f ∈ Lp(Ω), we mean [f ] ∈ Lp(Ω)

such that

[f ] := {g ∈ Lp(Ω) : f = g a.e}

2.1.2 Lp Norm

Definition 2.2. A norm on an Lp(Ω) space is a function ‖ · ‖ defined by

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|p dx
) 1

p

such that 1 ≤ p <∞ and f ∈ Lp(Ω).

Unless otherwise started, we may write ‖f‖p instead of ‖f‖Lp(Ω)

Example 2.1. Let f ∈ Lp(Ω)

N1:‖f‖p :=
(∫

Ω
|f(x)|p dx

) 1
p ≥ 0 since

∫
Ω

|f(x)|p dx <∞

Assume ‖f‖p = 0 =⇒
∫

Ω

|f(x)|p dx = 0⇒ |f | = 0 a.e then f = 0

Conversely if f = 0, then ‖f‖p = 0

N2: Let f ∈ Lp(Ω) and c ∈ C

‖cf‖p :=

(∫
Ω

|cf(x)|p dx
) 1

p

= |c|‖f‖p

N3: f, g ∈ Lp(Ω)

‖f + g‖p ≤ ‖f‖p + ‖g‖p, known as Minkowki’s inequality

Hence ‖ · ‖ is a norm on Lp(Ω).

2.1.3 Cauchy’s Inequality

Theorem 2.1. If 1 < p <∞, 1 < q <∞ such that
1

p
+

1

q
= 1, then

ab ≤ ap

p
+
bq

q

18



p and q are called the conjugate pair.

Proof For p = q = 2. Let a, b ≥ 0

Then (a− b)2 ≥ 0⇒ a2 − 2ab+ b2 ≥ 0

⇒ 2ab ≤ a2 + b2

∴ ab ≤ a2

2
+
b2

2

For other values of p and q which are conjugate pair,

Let α = ap, β = bq,we show that α
1
pβ

1
q ≤ α

p
+ β

q

Using the logarithm function which is concave, that is,

φ (λx+ (1− λ)y) ≥ λφ(x) + (1− λ)φ(y) ∀λ ∈ [0, 1]

then for the case
1

p
+

1

q
= 1, we have

log
(

1
p
α + 1

q
β
)
≥ 1

p
logα + 1

q
log β

logα
1
p + log β

1
q ≤ log

(
α
p

+ β
q

)
logα

1
pβ

1
q ≤ log

(
α
p

+ β
q

)
since the log function is increasing,

α
1
pβ

1
q ≤ α

p
+
β

q
⇒ ab ≤ ap

p
+
bq

q

2.1.4 Hölder’s Inequality

Theorem 2.2. If 1 < p < ∞, 1 < q < ∞ such that
1

p
+

1

q
= 1. If f ∈ Lp(Ω) and

g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∫
Ω

|f(x)g(x)| dx ≤
(∫

Ω

|f(x)|p dx
) 1

p
(∫

Ω

|g(x)|q dx
) 1

q

(2.3)

where L1(Ω) is the space of Lebesgue integrable function.

Proof Recall Cauchy’s inequality: ab ≤ ap

p
+ bq

q
with equality occurring if and only if

ap = bq.

If ‖f‖p = 0 or ‖g‖q = 0, then f(x)g(x) = 0 a.e in Ω, and (2.3) is satisfied.

Otherwise substitute

a =
|f(x)|
‖f‖p

and b =
|g(x)|
‖g‖q

19



in the above inequality and integrating over Ω, we have;

∫
Ω
|f(x)||g(x)
‖f‖p‖g‖q dx ≤ 1

p

∫
Ω

(
|f(x)|
‖f‖p

)p
+ 1

q

∫
Ω

(
|g(x)|
‖g‖q

)q
= 1

p
+ 1

q
= 1∫

Ω
|f(x)g(x)| dx ≤ ‖f‖p‖g‖q

Hence ∫
Ω

|f(x)g(x)| dx ≤
(∫

Ω

|f(x)|p dx
) 1

p
(∫

Ω

|g(x)|q dx
) 1

q

Corollary 2.1. If p > 0, q > 0 and r > 0 satisfy 1
p

+ 1
q

= 1
r
, and if f ∈ Lp(Ω) and

g ∈ Lq(Ω), then

fg ∈ Lr(Ω) and ‖fg‖r ≤ ‖f‖p‖g‖q

2.1.5 Minkowski’s Inequality

Theorem 2.3. If 1 ≤ p <∞, then

‖f + g‖p ≤ ‖f‖p + ‖f‖p (2.4)

Proof For p = 1, the inequality holds since∫
Ω

|f(x) + g(x)| dx ≤
∫

Ω

|f(x)| dx+

∫
Ω

|g(x)| dx

For 1 < p <∞, let w ≥ 0 then ‖w‖q ≤ 1. By Hölder’s inequality;∫
Ω

(|f(x)|+ |g(x)|)w(x) dx ≤
∫

Ω
|f(x)|w(x) dx+

∫
Ω
|g(x)|w(x) dx

≤ ‖f‖p‖w‖q + ‖g‖p‖w‖q = (‖f‖p + ‖g‖p) ‖w‖q
≤ ‖f‖p + ‖g‖p

It follows that

‖f + g‖p ≤ ‖f‖p + ‖f‖p

2.2 L∞(Ω) Space

Here, we look at the case p =∞. The space L∞(Ω) are such that Ω ∈M(R),which is, the

space of all bounded measurable functions on Ω or the space of all measurable functions

which are bounded except possibly on a subset of measure zero.

Definition 2.3. A function f that is measurable is said to be essentially bounded on Ω

if there is a constant t such that |f(x)| ≤ t a.e on Ω.

The greatest lower bound of all such t is called the essential supremum of |f | on Ω, and
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is denoted by ess supΩ |f(x)|.
L∞(Ω) is the space of all measurable functions f that are essentially bounded on Ω; and

functions equal a.e on Ω.

ess sup
Ω
|f | = inf {t : f ≤ t a.e in Ω}

Proposition 2.1. L∞(Ω) is a vector space

Proof (a) Let f ∈ L∞(Ω), c ∈ C,c 6= 0. Thus f is measurable and ess supΩ |f(x)| <∞
Since af is measurable and

ess supΩ |af | = inf {t : |cf | ≤ t a.e in Ω}
= |c| inf {t : |f | ≤ t′ a.e in Ω} t′ = t/c

= |c|ess supΩ |f |

∴ cf ∈ L∞(Ω)

(b) Let f, g ∈ L∞(Ω). Then f + g is measurable and ess supΩ |f | <∞, ess supΩ |g| <∞
From the definition of essential supremum;

|f | ≤ ess sup
Ω
|f | and |g| ≤ ess sup

Ω
|g|

2.2.1 L∞(Ω) Norm

Definition 2.4. The functional ‖ · ‖∞ defined by

‖f‖∞ = ess sup
Ω
|f(x)|

is the norm on L∞(Ω).

Example 2.2. Let f ∈ L∞(Ω)

N1:‖f‖∞ = ess supΩ |f(x)| ≥ 0 since |f | ≥ 0

Assume ‖f‖p = 0, then |f(x)| ≤ 0 a.e on Ω ⇒ |f(x)| = 0 a.e ⇔ f = 0 a.e

Conversely if f = 0 a.e, then ‖f‖∞ = ess supΩ |f(x)| = 0

N2: Let f ∈ L∞(Ω) and c ∈ C
‖cf‖∞ = |c|‖f‖∞

N3: f, g ∈ L∞(Ω), then f + g is measurable and |f | ≤ ‖f‖∞ a.e and |g| ≤ ‖g‖∞ a.e

|f + g| ≤ |f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ <∞ a.e

‖f + g‖∞ − ε < |f + g| ≤ ‖f‖∞ + ‖g‖∞ <∞ a.e ∀ε > 0
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As ε→ 0,

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

Hence L∞(Ω) is a normed linear space.

Proposition 2.2. If f ∈ L∞(Ω) then f ∈ Lp(Ω) and

‖f‖∞ = lim
p→∞
‖f‖p

2.3 The Completeness of Lp(Ω)

Theorem 2.4. Lp(Ω) is a Banach space if 1 ≤ p ≤ ∞

Proof First assume 1 ≤ p <∞ and let {fn} be a Cauchy sequence in Lp(Ω).

There is a subsequence
{
fnj
}

of {fn} such that

‖fnj+1
− fnj‖ ≤

1

2j
, j = 1, 2, . . .

Let gm(x) =
m∑
j=1

|fnj+1
(x)− fnj(x)|. Then

‖gm‖ ≤
m∑
j=1

1

2j
< 1, m = 1, 2, . . .

Putting g(x) = lim
m→∞

gm(x), we obtain by Monotone Convergence Theorem;

∫
Ω

|g(x)|p dx = lim
m→∞

∫
Ω

|gm(x)|p dx ≤ 1.

Hence g(x) <∞ a.e on Ω and the series

fn1(x) +
∞∑
j=1

(
fnj+1

(x)− fnj(x)
)
−→ f(x) (2.5)

a.e on Ω by Dominated Convergence Theorem.

Since (2.5) telescopes, we have

lim
m→∞

fnm(x) = f(x) a.e in Ω.
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For any ε > 0 there exists N such that if n,m ≥ N , then ‖fm − fn‖p < ε. Hence by

Fatou’s Lemma∫
Ω
|f(x)− fn(x)|p dx =

∫
Ω

lim
j→∞
|fnj(x)− fn(x)|p dx

≤ lim inf
j→∞

∫
Ω
|fnj(x)− fn(x)|p dx ≤ εp

if n ≥ N . Hence f = (f − fn) + fn ∈ Lp(Ω) and ‖f − fn‖p → 0 as n→∞.

Therefore Lp(Ω) is complete and so, Banach.

For the case p = ∞. Let {fn} be a Cauchy sequence in L∞(Ω), then ∃ a set A ⊂ Ω,

m(A) = 0 such that if x /∈ A, then for every n,m = 1, 2, . . .

|fn(x)| ≤ ‖fn‖∞, |fn(x)− fm(x)| ≤ ‖fn − fm‖∞.

Therefore,{fn} converges uniformly on Ω|A to a bounded function f . Thus f ∈ L∞(Ω)

and ‖f − fn‖∞ → 0 as n→∞.

Hence L∞(Ω) is also complete and a Banach space.

Corollary 2.2. L2(Ω) is the Hilbert space with respect to the inner product

< f, g >=

∫
Ω

f(x)g(x) dx.

Hölder’s inequality for L2(Ω) is simply the Cauchy-Schwartz inequality

| < f, g > | ≤ ‖f‖2‖g‖2.

Definition 2.5 (Mollifiers). Let J be a nonnegative, real-valued function such that J ∈
C∞0 (Rn) and

i. J(x) = 0 if |x| ≥ 1, and

ii.
∫
Rn J(x) dx = 1

We shall take for any k > 0,

J(x) =

{
k exp

(
−1

1−|x|2

)
|x| < 1

0 |x| ≥ 1

If ε > 0, the function

Jε(x) = ε−nJ(x/ε)
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satisfying the properties above, is called a mollifier. The convolution

Jε ∗ u(x) =

∫
Rn
Jε(x− y)u(y) dy

is called a mollification of u.

Theorem 2.5 (Properties of Mollification). Let u be a function which is defined on Rn

and vanishes identically outside Ω.

(a) If u ∈ L1
loc(Rn), then Jε ∗ u ∈ C∞(Rn).

(b) If u ∈ L1
loc(Ω) and supp(u) b Ω, then Jε ∗ u ∈ C∞0 (Ω) provided

ε < dist (supp(u), bdry(Ω))

(c) If u ∈ Lp(Ω) where 1 ≤ p <∞, then Jε ∗ u ∈ Lp(Ω). Also

‖Jε ∗ u‖p ≤ ‖u‖p and lim
ε→0+

‖Jε ∗ u− u‖p = 0

(d) If u ∈ C(Ω) and if G b Ω, then lim
ε→0+

Jε ∗ u(x) = u(x) uniformly on G.

(e) If u ∈ C(Ω), then lim
ε→0+

Jε ∗ u(x) = u(x) uniformly on Ω.
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Chapter 3

THE SOBOLEV SPACE Wm,p(Ω)

Sobolev space is a vector space of functions equipped with a norm that is a combination

of Lp-norms of the function itself as well as its derivatives up to a given order.

Definition 3.1 (The Sobolev Norms). For any function u and m a positive integer, we

define a functional ‖ · ‖m,p as

‖u‖m,p =

 ∑
0≤|α≤m

‖Dαu‖pp

 1
p

if 1 ≤ p <∞

‖u‖m,∞ = max
0≤|α≤m

‖Dαu‖∞

where ‖ · ‖p is the norm in Lp(Ω). Equivalently ‖u‖m,p = ‖u‖p +
∑

0≤|α|≤m

‖Dαu‖p.

Definition 3.2 (Sobolev Spaces). Let m any positive integer and 1 ≤ p ≤ ∞

(a) Hm,p(Ω) ≡ the completion of {u ∈ Cm(Ω) : ‖u‖m,p <∞} wrt the norm ‖ · ‖m,p

(b) Wm,p(Ω) ≡ {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m}

(c) Wm,p
0 (Ω) ≡ the closure of C∞0 (Ω) in Wm,p(Ω) where C∞0 (Ω) is the vector space of

infinitely differentiable functions with compact support.

(d) u ∈ Wm,p(Ω) if, and only, if∫
Ω

uDα(φ) dx = (−1)|α|
∫

Ω

φDαu dx ∀φ ∈ C∞0 (Ω)

Specifically, the Sobolev Space consists of all functions u : Ω → R, u ∈ Lp(Ω) such that

each weak derivative Dαu for |α| ≤ m exists and belongs to Lp(Ω).
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Remark

i. W 0,p(Ω) = Lp(Ω)

ii. If 1 ≤ p <∞, W 0,p
0 (Ω) = Lp(Ω) because C∞0 (Ω) is dense in Lp(Ω)

iii. For any m, the following chain of imbeddings hold

Wm,p
0 (Ω)→Wm,p(Ω)→ Lp(Ω)

iv. For each λ, µ ∈ R and u, v ∈ Wm,p(Ω), λu + µv ∈ Wm,p(Ω) and Dα(u + v) =

Dαu+Dαv. Thus Wm,p(Ω) is a vector space over R

Theorem 3.1. Wm,p(Ω) is a Banach Space.

Proof Let un be a Cauchy sequence in Wm,p(Ω). Then since the Sobolev norm is defined

in terms of the norm on Lp(Ω), Dαun is a Cauchy sequence in Lp(Ω) for |α| ≤ m. Since

Lp(Ω) is complete there exist functions u such that un → u and uα such that Dαun → uα

in Lp(Ω) as n→∞. Lp(Ω) ⊂ L1
loc(Ω) and so to every un ∈ L1

loc(Ω), there is a distribution

Tun ∈ D′(Ω) defined by

|Tun(φ)− Tu(φ)| ≤
∫

Ω

|un(x)− u(x)||φ(x)| dx φ ∈ D(Ω)

≤ ‖φ‖q‖un − n‖p by Holder’s inequality

where (p, q) are the exponent conjugate pair.

As n → ∞ Tun(φ) → Tu(φ) for every φ ∈ D(Ω). Similarly TDαun(φ) → Tuα(φ) for every

φ ∈ D(Ω).

⇒ Tuα(φ) = lim
n→∞

TDαun(φ) = lim
n→∞

(−1)|α|Tun(Dαφ) = (−1)|α|Tu(D
αφ)

Thus uα = Dαu in the weak (distribution) sense on Ω for |α| ≤ m; from which we get

u ∈ Wm,p(Ω). Since lim
n→∞

‖un − u‖m,p = 0, the space Wm,p(Ω) is complete.

Corollary 3.1. The space H1(Ω) = W 1,2(Ω) is a Hilbert Space with inner product

〈u, v〉 =

∫
Ω

uv dx

Corollary 3.2. In general Hm,p(Ω) ⊂Wm,p(Ω)

3.1 Approximation by Smooth Functions on Ω

In this section we wish to establish the fact that any element inWm,P can be approximated

by functions smooth on Ω. In other words the set {φ ∈ C∞(Ω) : ‖φ‖m,p <∞} is dense in
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Wm,p(Ω). We require the notion of infinitely differentiable partitions of unity. We then

this theorem without proof.

Theorem 3.2 (Partitions of Unity). Let A be an arbitrary subset of R and let O be

a collection of open sets in Rn which cover A, i.e A ⊂
⋃
U∈O U . Then there exists a

collection Ψ of functions Ψ ∈ C∞0 (Rn) having the following properties:

(i) For every ψ ∈ Ψ and every x ∈ Rn, 0 ≤ ψ(x) ≤ 1.

(ii) If K b A, all but finitely many ψ ∈ Ψ vanishes identically on K.

(iii) For every ψ ∈ Ψ there exists U ∈ O such that supp(ψ) ⊂ U .

(iv) For every x ∈ A, we have
∑

ψ∈Ψ ψ(x) = 1.

Such a collection Ψ is called a C∞ - partition of unity for A subordinate to O.

Lemma 3.1 (Mollification in Wm,p(Ω)). Recall the definition of a mollifier ”for any

k > 0,

J(x) =

{
k exp

(
−1

1−|x|2

)
|x| < 1

0 |x| ≥ 1

Jε(x) = ε−nJ(x/ε) ε > 0”

Let Jε be so defined and let 1 ≤ p < ∞ and u ∈ Wm,p(Ω). If Ω′ is a subdomain with

compact closure in Ω, then

lim
ε→0+

Jε ∗ u = u in Wm,p(Ω′)

Thus,

Jε ∗ u→ u in Wm,p(Ω′)

Proof Let ε < d (Ω′, ∂Ω)) and ũ be the zero extension of u outside Ω. That is, ũ(x) =

u(x) if x ∈ Ω and 0 otherwise. If φ ∈ D(Ω′),∫
Ω′
Jε ∗ u(x)Dαφ(x) dx =

∫
Rn

∫
Rn
ũ(x− y)Jε(y)Dαφ(x) dx dy

= (−1)|α|
∫
Rn

∫
Ω′
Dα
xu(x− y)Jε(y) dx dy

= (−1)|α|
∫

Ω′
Jε ∗Dαu(x)φ(x) dx

Thus, the derivative of the mollification is equal to the mollification of the derivative,i.e

DαJε ∗ u = JεD
α ∗ u
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in the distributional sense in Ω′. Since Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m we have by property

(3) of mollifications:

lim
ε→0+

‖DαJε ∗ u−Dαu‖p,Ω′ = lim
ε→0+

‖Jε ∗Dαu−Dαu‖p,Ω′ = 0

It follows that limε→0+ ‖Jεu− u‖m.p,Ω′ = 0

Theorem 3.3. If 1 ≤ p <∞, then

Hm,p(Ω) = Wm,p(Ω)

Proof By Corollary 3.2, Hm,p(Ω) ⊂Wm,p(Ω). We show that Wm,p(Ω) ⊂ Hm,p(Ω), that

is, the set {φ ∈ Cm(Ω) : ‖φ‖m,p <∞} is dense in Wm,p(Ω). It suffices to show that for

every u ∈ Wm,p(Ω) and ε > 0, there exists φ ∈ C∞(Ω) such that ‖φ − u‖m,p < ε. For

k = 1, 2, . . . define

Ωk = {x ∈ Ω : |x| < k and dist(x, bdryΩ) > 1/k}

and let Ω0 = Ω−1 = ∅. Then

O =
{
Uk : Uk = Ωk+1 ∩

(
Ωk−1

)c
, k = 1, 2, . . .

}
is a collection of open subsets of Ω that covers Ω. Let Ψ be a C∞ - partitions of unity

for Ω subordinate to O. Let ψk ∈ C∞0 (Uk) and
∑∞

k=1 ψk(x) = 1 on Ω.

If 0 < ε < 1/(k + 1)(k + 2) , then Jε ∗ (ψku) has support in the intersection Vk =

Ωk+2 ∩ (Ωk−2)c b Ω. Since ψku ∈ Wm,p(Ω) choose εk with 0 < εk <
1

(k+1)(k+2)
, such that

‖Jεk ∗ (ψku)− ψku‖m,p,Ω = ‖Jεk ∗ (ψku)− ψku‖m,p,Vk < ε/2k

Let φ =
∞∑
k=1

Jεk ∗ (ψku). On any Ω′ b Ω only finitely many terms in the sum can be

nonzero. Thus φ ∈ C∞(Ω). For x ∈ Ωk, we have

u(x) =
k+2∑
j=1

ψj(x)u(x), and φ(x) =
k+2∑
j=1

Jεj ∗ (ψju)(x).

Thus

‖u− φ‖m,p,Ωk ≤
k+2∑
j=1

‖Jεj ∗ (ψju)− ψju‖m,p,Ω < ε

Hence by MCT ‖u− φ‖m,p,Ω < ε.

28



3.2 Approximation by Smooth Functions on Rn

Having shown that any u ∈ Wm,p can be approximated by smooth functions on Ω, we

proceed to check if they can be approximated by functions smooth on Rn.

Lemma 3.2. Given u ∈ Wm,p(Ω) and v ∈ C∞0 (Ω), then uv ∈ Wm,p(Ω)

Proof To show that uv is in the Sobolev Space, we have to compute its weak derivative

and have ∫
Ω

uvDα(φ) dx = (−1)|α|
∫

Ω

φDα(uv) dx

for any φ ∈ C∞0 (Ω). Note that

Dα(uv) =
∑
β≤α

(
α

β

)
DβvDα−βu.

We prove by induction. Fix φ ∈ C∞0 (Ω). Then for |α| = 1,∫
Ω

uvDα(φ) dx =

∫
Ω

uD(vφ)− uφDαv dx

= −
∫

Ω

(uDαv + vDαu)φ dx

Since Dαu and Dαv exists for any u ∈ Wm,p(Ω) and v ∈ C∞0 (Ω), the above relation is

true.

Assume the relations holds for |α| ≤ l for any l < m and all v ∈ C∞0 (Ω). Choose α such

that |α| = l + 1. Then we write |α| = |β| + |γ| where |β| = l and |γ| = 1. Then for any

v, φ ∈ C∞0 (Ω)∫
Ω

uvDα(φ) dx =

∫
Ω

uvDβ (Dγφ) dx

= (−1)|β|
∫

Ω

∑
σ≤β

(
β

σ

)
DσvDβ−σuDγφ dx

= (−1)|β|+|γ|
∫

Ω

∑
σ≤γ

(
β

σ

)
Dγ
(
DσvDβ−σu

)
φ dx

= (−1)|α|
∫

Ω

∑
σ≤α

(
α

σ

)
DσvDα−σ(u)φ dx

= (−1)|α|
∫

Ω

φDα(uv) dx

Theorem 3.4. Assume Ω ⊂ Rn is bounded and that u ∈ Wm,p(Ω) for 1 < p < ∞.Then

there exists functions um ∈ C∞0 (Ω) such that

um → u in Wm,p(Ω)
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Proof Decompose Ω into the following sets;

Ωi := {x ∈ Ω | d(x, ∂Ω) > 1/i} , i ∈ N\0

and define Vi = Ωi+3 − Ω̄i+1. Choose any V0 ⊂⊂ Ω such that U =
⋃∞
i=0 Vi. Let φ∞i=0(Vi)

can be defined as a partition of unity(Theorem 3.2) for U such that{
0 ≤ φi ≤ 1 φi ∈ C∞0 (Ω)∑∞

i=0 φi = 1 on Ω

By Lemma 3.2, we know that for each i, φiu ∈ Wm,p(Ω) and φiu has support contained in

Vi. We then proceed using the mollification concept to show that the sequence ui ∈ C∞0 (Ω)

is dense in φiu ∈ Wm,p(Ω). Let Jε be our mollifier function and choose δ > 0. Then given

εi > 0 such that ui := Ji ∗ (φiu), the following relations are satisfied. For Wi := Ωi+4− Ω̄i,

i = 1, 2, . . . {
‖ui − φu‖m,p,Ω ≤ δ

2i+1 i = 0, 1, 2, . . .

supp(ui) ⊂ Wi i = 1, 2, . . .

Define v(x) :=
∑∞

i=0 u
i(x) ∈ C∞0 (Ω) since ui ∈ C∞0 (Ω) and ui(x) can be nonzero for only

a finite number of i. Let u =
∑∞

i=0 φu, we have

‖v − u‖ ≤
∞∑
i=0

‖ui − φu‖m,p,Ω

≤
∞∑
i=0

δ

2i+1

= δ

for each open set V ⊂⊂ U .

Taking the supremum of all such V gives ‖v−u‖m,p,Ω ≤ δ. Thus C∞0 (Ω) is a dense subset

of Wm,p(Ω).
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Chapter 4

APPLICATION TO

DIFFERENTIAL EQUATION

The aim of this thesis was to explore the properties of Sobolev Spaces and apply them to

solving differential equations. In this chapter, certain examples of differential equations

(e.g. boundary value problems) are provided.

4.1 Some Examples of Boundary Value Problems

Let Ω = [a, b] and given any f ∈ C(Ω). Consider the boundary value problem{
−u′′ + u = f in Ω

u = 0 on ∂Ω
(4.1)

We wish to use Sobolev spaces to find a weak solution that satisfies this pde. The following

steps are adapted in approaching any pde using the concept of Sobolev space.

A. Defining the weak solutions.

B. Establishing the existence and uniqueness of a weak solution.

C. Regularity of a weak solution.

D. Recovery of the classical solution.

Note. A classical solution is a function u ∈ C2(Ω) that satisfies 4.1 in the usual sense.

The concept of weak derivatives is used here to define a weak solution of 4.1 by multiplying

by φ ∈ C1(Ω) and integrating by parts.i.e

φf = −φu′′ + φu∫
Ω

fφ = −φu′|Ω +

∫
Ω

u′φ′ +

∫
Ω

uφ =

∫
Ω

u′φ′ +

∫
Ω

uφ since φ = 0 on ∂Ω
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Thus a weak solution of 4.1 is a function u ∈ H1
0 (Ω) satisfying∫

Ω

fφ =

∫
Ω

u′φ′ +

∫
Ω

uφ φ ∈ H1
0 (Ω) (4.2)

Moreover, given any f ∈ L2(Ω) there exists a unique u ∈ H1
0 (Ω) to equation 4.2. We

obtain u by

min
φ∈H1

0

{
1

2

∫
Ω

(φ′2 + φ2)−
∫

Ω

fφ

}
We call this the Dirichlet’s Principle

We state the Lax - Milgram Theorem, which is key in establishing the existence and

uniqueness of a weak solution.

Theorem 4.1 (Lax-Milgram). Let H be a Hilbert space and B : H×H → R be a bilinear

mapping satisfying the following inequalities

i. there exists α > 0 such that |B(u, v)| ≤ α‖u‖‖v‖ for all u, v ∈ H,

ii. there exists β > 0 such that β‖u‖2 ≤ B(u, u) for all u ∈ H .

Then if f : H → R is a bounded linear functional on H, there exists a unique element

u ∈ H such that

B(u, v) = 〈f, v〉 ∀v ∈ H

Proof For any u ∈ H, the mapping v 7→ B(u, v) is a bounded linear functional on H.

Then by Riesz Representation Theorem, there exists a unique element w ∈ H such that

for any u ∈ H
B(u, v) = 〈w, v〉 ∀v ∈ H

Define a mapping A : H → H by u 7→ w, where w fits the above definition. Thus

B(u, v) = 〈Au, v〉 v ∈ H. We have

(i) A is linear. For any t, u, v ∈ H and λ ∈ R;

〈A(λt+ u), v〉 = B(λt+u, v) = λB(t, v)+B(u, v) = 〈λAt, v〉+〈A, v〉 = 〈λAt+ Au, v〉

(ii) A is bounded. We apply the first inequality;

‖Au‖2 = 〈Au,Au〉 = B(u,Au) ≤ α‖u‖‖Au‖

. Hence, ‖Au‖ ≤ α‖u‖ for all u ∈ H.
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(iii) A is bijective. By the second inequality;

β‖u‖2 ≤ B(u, u) = 〈Au, u〉 ≤ ‖Au‖‖u‖.

Hence β‖u‖ ≤ ‖Au‖ which holds iff Au = 0 ⇒ u = 0. Thus A is injective. By

definition, A is onto since to every w ∈ H there corresponds an element u ∈ H such

that Au = w.

Since A is a bounded linear functional, we can apply the Riesz Representation Theorem

and obtain

B(u, v) = 〈Au, v〉 = 〈w, v〉 = 〈f, v〉

To show that u is unique, suppose both t, u ∈ H satisfy the above equation. Then

B(u, v) = 〈f, v〉 = B(t, v)

〈Au, v〉 = 〈At, v〉

So, Au = At and since A is bijective, we have u = t.

In STEPS C and D, note that if f ∈ L2 and u ∈ H1
0 is the weak solution of (4.1). Then

from 4.2; ∫
Ω

u′φ′ =

∫
Ω

(f − u)φ φ ∈ C1
0(Ω)

and from the definition of Sobolev Spaces, u′ ∈ H1 for f − u ∈ L2. Thus u ∈ H2 and

finally, if f ∈ C(Ω), we have the weak solution u ∈ C2(Ω).

Example 4.1. Let Ω = (0, 1). Consider the problem{
−(pu′)′ + qu = f in Ω

u = 0 on ∂Ω
(4.3)

where p ∈ C1(Ω̄), q ∈ C(Ω̄), and f ∈ L2(Ω) with p, q ≥ 0 on Ω

STEP A: Every classical solution is a weak solution.

If u is the classical solution of (4.3), we have∫
Ω

(pu′)φ′ +

∫
Ω

(qu)φ =

∫
Ω

fφ φ ∈ H1
0 (Ω)

This is achieved by multiplying through by φ ∈ H1
0 (Ω) and integrating by parts. Thus

any u that satisfies this equation is a weak solution of (4.3).

STEP B: Establish the existence and uniqueness of a weak solution.

Define a symmetric continuous bilinear form on H1
0 (Ω) such that

B(u, φ) =

∫
Ω

(pu′)φ′ +

∫
Ω

(qu)φ
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Then by Lax-Milgram’s Theorem, there exists a unique element u ∈ H1
0 (Ω) such that

B(u, φ) = 〈f, φ〉 =

∫
Ω

fφ φ ∈ H1
0 (Ω)

and obtain u by the Dirichlet’s principle

min
φ∈H1

0

{
1

2

∫
Ω

(pφ′2 + qφ2)−
∫

Ω

fφ

}
STEP C: The weak solution is proved to be of class C2.

We have; ∫
Ω

(pu′)φ′ =

∫
Ω

(f − qu)φ φ ∈ H1
0 (Ω)

Thus pu′ ∈ H1, and so u′ ∈ H ⇒ u ∈ H2. Also, if f ∈ C(Ω̄) then pu′ ∈ C1(Ω̄) ⇒ u′ ∈
C1(Ω̄), and so u ∈ C2(Ω̄).

STEP D: Show that any weak solution that is C2 is a classical solution.∫
Ω

fφ =

∫
Ω

(pu′)φ′ +

∫
Ω

(qu)φ φ ∈ C1(Ω̄)∫
Ω

fφ = (pu′)φ|Ω −
∫

Ω

(pu′)′φ+

∫
Ω

(qu)φ∫
Ω

fφ = −
∫

Ω

(pu′)′φ+

∫
Ω

(qu)φ φ = 0 on ∂Ω

Thus

0 =

∫
Ω

(−(pu′)′ + qu− f)φ

⇒ −(pu′)′ + qu− f = 0 a.e

−(pu′)′ + qu = f a.e on Ω\∂Ω

Finally

⇒ −(pu′)′ + qu = f on Ω

Hence u is a classical solution of (4.3).

4.2 Elliptic PDE of Second Order

Example 4.2. Let Ω ⊂ Rn be an open bounded set. Consider the Dirichlet problem for

the Laplacian {
−∆u+ u = f in Ω

u = 0 on ∂Ω
(4.4)
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where ∆u =
n∑
i=1

∂2u

∂x2
i

is the Laplacian of u.

STEP A: Every classical solution is a weak solution.

Note that a weak solution of (4.4) is a function u ∈ H1
0 (Ω) which satisfies∫

Ω

∇u · ∇φ+

∫
Ω

uφ =

∫
Ω

fφ φ ∈ H1
0 (Ω)

where ∇u · ∇φ =
n∑
i=1

∂u

∂xi

∂φ

∂xi

If u ∈ C2(Ω̄) is a classical solution of (4.4) then u ∈ H1
0 (Ω) is its weak solution since

C2(Ω̄) is dense in H1
0 (Ω) and by the same results in the earlier example.

STEP B: Establish the existence and uniqueness of a weak solution.

Theorem 4.2. Given any f ∈ L2(Ω), there exists a unique weak solution u ∈ H1
0 (Ω) of

(4.4)

Proof Let

B(u, φ) =

∫
Ω

(∇u · ∇φ+ uφ)

be a symmetric continuous bilinear form on H1
0 (Ω) and the mapping φ 7→

∫
Ω
fφ be a

bounded linear functional on H1
0 (Ω). Then by the Lax-Milgram’s Theorem, there exist a

unique element u ∈ H1
0 (Ω) such that

B(u, φ) =

∫
Ω

(∇u · ∇φ+ uφ) =

∫
Ω

fφ

which satisfies the definition of a weak solution of (4.4). Similarly u is obtained by the

Dirichlet’s principle

min
φ∈H1

0

{
1

2

∫
Ω

(
|∆φ|2 + |φ|2

)
−
∫

Ω

fφ

}
STEP C: Regularity of the weak solution. If f ∈ L2(Ω) and u ∈ H1

0 (Ω) then

∀φ ∈ H1
0 (Ω) ∫

Ω

∇u · ∇φ+

∫
Ω

uφ =

∫
Ω

fφ∫
Ω

∇u · ∇φ =

∫
Ω

(f − u)φ

Then u ∈ H2.

STEP D: Show that any weak solution that is C2 is a classical solution. Let
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u ∈ H1
0 (Ω) be a weak solution of (4.4).∫

Ω

fφ =

∫
Ω

∇u · ∇φ+

∫
Ω

uφ∫
Ω

fφ =

∫
Ω

(−∆u+ u)φ

0 =

∫
Ω

(−∆u+ u− f)φ

⇒ −∆u+ u− f = 0 a.e

Thus −∆u+ u = f on Ω. Hence u ∈ C2(Ω̄) is a classical solution of (4.4)
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Chapter 5

SUMMARY,CONCLUSIONS AND

RECOMMENDATIONS

The main point of this work was to explore the Sobolev Spaces and it’s involvement in

solving differential equations. Their importance comes from the fact that solutions of

partial differential equations are naturally found in Sobolev spaces, rather than in spaces

of continuous functions and with the derivatives understood in the classical sense.

Consider this boundary value problem with Ω = (0, 1){
−u′′(x) + b(x)u′(x) + c(x)u(x) = f(x)

u(0) = u(1) = 0
(5.1)

Let b, c and f be given continuous functions. Assume that a classical solution exists,

i.e. a twice continuously differentiable function u satisfying (5.1). Then for an arbitrary

function v we have ∫
Ω

(−u′′ + bu′ + cu) v dx =

∫
Ω

fv dx (5.2)

If v ∈ C1(Ω), then by integrating 5.2 by parts, we obtain

−uv′|x = 01 +

∫
Ω

u′v′ dx+

∫
Ω

(bu′ + cu) v dx =

∫
Ω

fv dx

Under the initial conditions of v(0) = v(1) = 0, this reduces to∫
Ω

u′v′ dx+

∫
Ω

(bu′ + cu) v dx =

∫
Ω

fv dx (5.3)

Unlike (5.1) or (5.2), equation (5.3) still makes sense if we know only that u ∈ C1(Ω).

But we have not yet specified a topological space in which mappings implicitly defined by

a weak form of (5.1) such as (5.3) have desirable properties like continuity, boundedness,

etc. It turns out that Sobolev spaces,which generalize Lp spaces to spaces of functions

whose generalized derivatives also lie in Lp, are the correct setting in which to examine
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weak formulations of differential equations.

We conclude that the use of Sobolev Spaces in solving differential equations appears to

be more reliable than the well-known classical solutions and even the numerical approach

since continuity and ’many’ derivatives are possible.

The recommendation for this work is simply mathematician should use more of the

method of Sobolev Spaces in solving certain types of differential equations - one whose

solutions do not have continuity and/or differentiability of higher orders.
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