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Abstract

This thesis defines the Sobolev Space and provides certain properties using concepts from
functional analysis and real analysis. These theories and properties are applied to solu-
tions of some partial differential e o co s used here in finding solutions to
differential equation involve analyqKMU:g(m‘, infinite differentiability,
continuous derivatives, e.t.c. Specific examples of partial differential equations are taken

where the Existence and Uniqueness of their weak solutions are studied together with

their Regularity and Recovery of their ¢l strong solutions.
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Chapter 1

INTRODUCTION AND INITIAL
DEFINITIONS

This thesis presents a study of the properties of certain Banach Spaces of weakly differen-
tiable functions of several real variables that arise in connection with numerous problems
in partial differential equations and other areas of pure and applied mathematics.

These spaces have been associated with a Russian mathematician Sergei Lvovich Sobolev,

who worked in mathematical analysis and partial differential equations.

In many problems of mathematical physics and variational calculus,it is not sufficient
to deal with classical solutions of differential equations.It is also necessary to introduce

the idea of weak derivatives to work in the so-called Sobelev space.

What we seek to achieve is to explore the Sebolev Space and apply its properties to the
solutions of partial deferential equations. The beginning chapters gives us the functional
analytic tools and elements of real analysis needed to achieve our aim. Chapter 3 discusses
the Sobolev Space and Chapter 4 gives examples of partial differential equations where

the concept of Sobolev space-is applied. We summarize in Chapter 5.

Consider the Dirichlet problem for the Laplace equation in a bounded domain €2 C R"

Au =0 z€Q
u(z) =oé(r) x €60

where ¢(x) is a given function on the boundary §§2 and Au = E 8_1; is the Laplacian
14
i=1 "1

of u. We have

o
ta) = [ 3 P
o =t



To find the minimum of [(u) on the set of functions satisfying the condition u|sq = ¢, it
is much easier to minimize this functional not in C* (2), but in a larger class - Wy (Q)
- consisting of all functions u € Lo (€2) having the weak derivatives Oju € Ly () j =
1,...,n. If the boundary 6€2 is smooth, then the trace of u(z) on 6 is well defined and

the relation u|sq = ¢ makes sense.

The concepts of Sobolev space enables us to look at the weak solution of this problem.
The classical (or strong) solution can always be recovered by showing that any weak

solution is a classical solution.



1.1 Concepts from Functional Analysis

Functional analysis play a major role in the study of Sobolev Spaces. Sobolev Spaces
allow the use of functional analysis saving us the trouble of developing a new branch
of analysis to solve pdes. This section provides definitions and important results in

functional analysis.

1.1.1 Linear Space

Definition 1.1. Let X # @ be a nonempty set and K a scalar field. Then X is said to

be a linear /vector space if the functions
XxX 33X and KxX—3X
known as the addition and scalar multiplication are continuous, i.e.
V oz, ybciX and Nele, K

(x,y) > +y€X and (¢x)— crecX
are continuous.
The following properties also helds;

iz+y=y+zand (z4 y) = T+(y F2) Vapy, 2.eX
Also
30 € X such that 2 +0=2 VYze X

1= SN thal s s g X
HA(z4+y) =\t A gy Vrye X, Vxek
i (a+8)-z=a-x+ [ -y 2V oy € XandVa,pec K
v (af)r=a(f-x) Vee X, e K

We call X a linear space over the field K.

Unless otherwise stated it is assumed throughout this thesis that all vector spaces

referred to are taken from the field of Complex numbers.

1.1.2 Normed Linear Space

Definition 1.2. Let X be a linear space over a field K. A norm on X is a real-valued

function || - ||, where || - || : X — [0, +00) such that for any z,y € X, A € K the following

3



conditions are satisfied;

N1:
|z]| >0 and ||z|| =0 if, and only if, x =0
N2:
Az} = [A[l]
N3:

[+ yll < ]l + [lyll

Any nonempty linear space X equipped with a norm(i.e. satisfying these conditions) is

known as a Normed Linear Space

Example 1.1. Let X =R~ ForKerlxgl gn o X =R — [0,00) by

zlla = &
N1: ||ac||2 = \/xl —I—a:% >0

Assume that x = (21, 29) =0 = 2, =0

Conversely, assume

N2: For any scalar o

hl./(z \Wl : Wz ’J|
1

I 2 2\2

for| (z1 + 23)




N3: Let z,y € X == (x1,22) vy = (y1,92)

1
2 2
- (21 + g1, 22 + 2) 12 = [z (i + y»?]

=1

I
Ml\’)

2
I+l (i + 9:)”

s
Il
i

I
M[\J

(22 + 2zy; + y2)

@
Il
—

IA
MN}

(:E + 2|xzyz| + yz)

@
I
—

I
Ml\’)

?"‘22 || +Zyi2
=1 1=1

.

VAN
1
™o -

5
=0

2 2 2 5
DREZT ) T <Z yf) : Cauchy-Schwatz inequality
i=1 i=1

2 % 2 % 2
x%+2(z:r?) (zyz) Yy
3 =1 =1

2
|zll2 4 [1yl]2)

Il
_

IN
e

@
I
—

. 2
A+l

—~

since both sides are non-negative, we have
e glle < {2+ llyllz

Hence (R?, || - ||) is a normed linear space.

1.1.3 Banach Space

Definition 1.3. A sequence {#,} in a normed linear space X is called a Cauchy Sequence
if Ve > 0 there exists an integer N such that p(#,y) = ||, — z,|| < ¢ holds whenever
m,n > N.

X is thus complete.

We call X a Banach space if every-Cauchy sequencedin X eonverges to a limit in X.

Any complete normed linear space is-ealled-a-Banach space.

1.1.4 Inner Product Space

Definition 1.4. Let E be a linear space. An inner product on E is a scalar-valued
function (-,-) : £ x E'— C such that the following conditions are satisfied:
For any z,y,z € E and \,u € C
I1:
(x,z) >0 and (z,z)=0<2=0
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(z,y) = (y,z)

I3:
(A + py, z) = Az, 2) + py, 2)

A linear space E equipped with a function(or metric) satisfying these is called anlnner

Product Space.

1.1.5 Hilbert Space

Definition 1.5. An inner product space E_is_complete if every Cauchy sequence in F
converges to an element in F.

Thus, a complete inner product spacesis' called a=Hilbert" Space.

The norm on a normed linear space F is induced by an inner product if, and only if

the norm satisfies the parallelogram law,
lz + ylI* + llz @l =2(ei*+ lly*) vz.ycE

This theorem is known as the Jordan-Von Newmann Theorem.

1.1.6 Topological Space

Definition 1.6. If X is a nonempty set, a topology on X is a collection T of subsets of
X which satisfies

i ogeT
i. XeT

iii. () G; € T for any finite-collection G, . . ., G,-of elements of T
j=1

iv. |J G, €T for any collection {G,|y € I'} of elements of 7.
vyel

(X, T) is thus called a topological space.

A topological space (X,T) is said to be Hausdorff if every pair of distinct points
x,y € X have disjoint neighbourhoods, i.e

U,NU, =@

where U, and U, are the neighbourhoods of x and y respectively.



A topological vector space (TVS) is a Hausdorff topological space for which the

vector space operations of addition and scalar multiplication are continuous.

Definition 1.7 (Functional). A scalar-valued function defined on a vector space X is
called a functional.

The functional f is said to be linear provided
flaz +by) =af(x) +bf(y) Vr,y € X and Va,be C

Definition 1.8 (Continuous functions). Let (X, T},) and (Y, T},) be two topological spaces.
A function f : X — Y issaid to be continuous if the preimage f~1(0) = {z € X : f(z) € O}
belongs to T}, for every O € T),.

The stronger the topology on X or the weaker the topology on Y, the more such contin-

uous functions f there will be.

1.1.7 The Dual Space

Definition 1.9. The set of all continuous, linear functionals on a topological vector space
X is called the dual of X, denoted by X".

X' is itself a veetor space.

Definition 1.10 (Bounded Linear Functionals). Let X be a normed linear space over
the field K. Let f : X — K be alinear functional. Then f 1s said to bounded if there
exists some non-negative constant real number M such that Vo € X, || f(z)| < M||z|.
M is called the bound for f.

A linear map f+ X — Y is continuous if, and only if it is bounded - thus making
continuity and boundedness equivalent as far as linear maps/funetionals are concerned.

The elements of the dual X’ are actually bounded linear-functionals, defined by
| FI"="suplf @)| Vi X" Vo< X.

Theorem 1.1 (Riesz Representation Theorem). Let H be a Hilbert space and f a bounded

linear functional on H. Then there exists a unique vector w € H such that
flu)=<u,w> VYueH and Ifll = [|wl]]

This theorem shows that any bounded linear functional on a Hilbert space can be rep-

resented as an inner product with a unique vector in H.



Definition 1.11 (Operators). Let X be a normed space. An operator f defined on X

into a topological space Y is continuous if and only if
f(z,) = f(x) in Y whenever =z, —z in X.

Definition 1.12 (Imbeddings). We say the normed space X is imbedded in the normed
space Y denoted by X — Y if

i. X is a vector subspace of Y

ii. the identity operator I defined on X into Y by I, = x Vz € X is continuous.

Definition 1.13 (Support). Let ¢ € R" be a nonempty set.. If v is a function defined
on G, we define the support of u totbe theyset

supp(u) = {z € G : u(x) # 0}

We say that v has compact support in € if
i. supp(u) C Q
ii. supp(u) is compact (closed and bounded)

where the bar refers to-the closure.. We shall write G € Q.if G C Q and G is compact.
Thus u has a compact support in Q- if supp(u) € Q

1.2 Distributions and Weak Derivatives

Since the concept of weak derivatives is very essential in the study of Sobolev Spaces, a
notation for this derivative is introduced here in this section. Other necessary notations

are included.

Definition 1.14. A multiindex « is an n-tuple o« = (e, ;- . .;v,) used to denote the

partial derivative operator

dll

D()/f — - f -
oxit ... 0xon

where |a] = a3 + as + ... + a,, is interpreted as the degree of «

Useful Notations Let Q be a domain in R. For any nonnegative integer m let C"™(£2)
denote the vector space consisting of functions u which, together with all their partial
derivatives D*u of orders |a| < m, are continuous on 2.

C’Q) = C(Q) and C*(Q) denote functions that are infinitely differentiable (functions
that are differentiable are also continuous.

We represent Cy(2) and C§°(2) as functions in C'(§2) and C*° that have compact support
in ).



Let ¢ € C§°(R2), an infinitely differentaible function with compact support and u €
C™(2). Then the weak derivative of u € C™(2) is defined by integrating against ¢ €

C$°(2) by parts. Since u has a continuous derivative, we obtain

do ou B ou
/Quaxidx—uqﬂ@g—/gqﬁamidx— /QQSaxidx

We do this several times,and obtain finally;

/uDo‘¢dzp = (—1)'“'/¢Daudx, la] <m (1.1)
Q Q

where L .
Daf o | 0 f

T 9% ;
OM' NIo%

This equation is valid if u € C™(Q)) for every ¢ € C5°(2).

Definition 1.15 (Test Functions). Let (2 be a domain in R. A sequence {¢;} of functions
belonging to C§°(£2) is said to converge (in the sense of the space D((2)) to the function
¢ € C§°(Q2) provided the following are satisfied:

i. there exists K & Q such that supp(¢; —¢) € K for every j, and

ii. lim D%p;(z) = D*¢(z) uniformly on K for cach .
Jj—oo
Equipped with a locally convex topology, C52(€2) becomes a topological vector space
called D(€2). The elements of D(§2) are called test functions.

Definition 1.16 (Schwartz Distributions). The dual space D'(2) of D() is called the

space of Schwartz distributions on 2.

Definition 1.17 (Locally Integrable Functions). A function wdefined almost everywhere
on Q is said to be locallyintegrable on  if u € L'(U)forevery open set U € . We
write u € L}, ().

To every u € L}, () there corresponds-a distribution T, € D'(Q) defined

loc

T.(9) = / u(x)p(x)dr, € D)

1.2.1 Weak Derivative

Finally,let u € L} (). If there exists a locally integrable function v such that T, = DT,

loc

in D'(Q2), then it is uniquely defined almost everywhere (i.e unique up to sets of measure

zero) and equation ((1.1)) becomes

/QuDaqﬁdx: (—1)a|/ﬂgbvdx

9



for all ¢ € C§°(2). We call v = D*u the weak-ath partial derivative of w.

1.3 Lebesgue Measure and Integration

Since most of our results are restricted to the Euclidean space R, the Lebesgue measure

and other useful properties in Measure and Integration are introduced in this section.

1.3.1 Sigma Algebra

Definition 1.18. Let X be a nonempty set. A collection M of subsets of X is said to
be o-algebra if

i geM

ii. if A € M, then its complement A° € M

ii. If {A;}2, € M then |J € M.
i=1

J

It follows that

LIf {4,372, € Methen () € M
=1

J

ii. If A, B € M, then. A —B€ M. (recall A — B =ANB°)
(X, M) is called a measurable space.

Definition 1.19 (Borel Set). A Borel set,denoted by B(R), is the smallest o-algebra

generated from the set of open sets in R.

1.3.2 Measure

Let M C P(X) be a o- algebra on a-nonempty set~X . A -measure is a function

m: M — [0, 0]
such that
i. m(@) =0
ii. If {A;},5, € M and A; are pairwise disjoint then

m (U A]) = m(4)

j=1 j21

10



We call (X, M, m) a measure space. Any set in M satisfying these conditions is said to

be measurable. If A is measurable, we write A € M.

Definition 1.20 (Outer measure). Let m* : P(R) — [0,4+00) and for any A C R, we

define -
=inf» I(I,)
n=1

as the outer measure of A.

where {I,} 7 | is a sequence of open intervals such that A C U I.
n=1
We then have the following observations

i. m*(@)=0
ii. m*(A+x) =m*(A) : translationsnvariant
iii. m*(x) =0
iv. If A C B then m*(A) € m*(B)
v. If I is any interval then m*(1) = I(Z): length of I.
vi. If {A,} 7 is.a_countable collection of sets in P(IR) then

o0 O
m*(U A% Zl(An): countably subadditivity

n=1 o1

Definition 1.21. A set A € P(R) is said to be m* - measurable if for every E € P(R)
m () =m" (LA 4+ m(ENAY)

Definition 1.22 (Lebesgue measure). We denote m = m*|M as the outer measure
restricted to measurable sets.
Thus, if A € M then we write m(A) instead of m*(A). We call m the Lebesgue measure

having the following properties:

i. m(I) =1(I), where [ is any interval on R.

ii. it is countably additive, i.e m*(|J A4,) = > l(Ay)
n=1

iii. it is translation invariant
Also if {A;}77, € M such that Ay C Ay C ... then
UA = lim m(A4,)
j—o0

11



1.3.3 Measurable functions

Definition 1.23. Let A be a measurable set, let f : A — R, R = R U {—o00, +o0}
be an extended real-valued function, then f is Lebesgue measurable if the set f >t :=
{r e A: f(x) >t} Vt € R is measurable.

Proposition 1.1. The following statements are equivalent:
i. {f>t}eM
i. {f>t}eM
ii. {f <t} e M
. {f <t} eM
Moreover {f =t} € M
Proposition 1.2. The following are deduced from the definition of measurable functions
i. If f is measurable,so is |f|
u. If f and g are measurable and real-valued, so are f + g and fg.

. f is measurable if, and-onlyf f=(I):i={x e D(f) f(x) € I} €M is measurable

for all open intervals 1.

Theorem 1.2. If f is a measurable function and B € B(R),a Borel set, then f~1(B) is

a measurable set.

Definition 1.24 (Borel function). A function f : A — R is called a Borel function if
A€ B(R) and {f>the MVteR.

Definition 1.25 (Characteristie function). Lett A € R" be any given set. The charac-
teristic function of A,denoted by Iy or X ,, is defined by

(2) = 1 re A
Xalz) = 0 2¢A

Definition 1.26 (Simple function). A simple function f is a real-valued function with

prescribed scalars aq, as, ..., ay such that

k
5= ZaiXAi(x)

where A; € M a; € R and X, is the characteristic function.

s is measurable <= A;s are all measurable.

12



Definition 1.27 (Almost Everywhere). A property is said to hold almost everywhere

(a.e) if the set of points it fails is a set of measure zero.

Theorem 1.3 (Egoroff). Let A € M,m(A) < +o0, let {f,},—, be a sequence of measur-
able functions and f, — f pointwise, then IE € M with m(E) < 400 such that f, — f
uniformly on A|E.

That is, pointwise convergence (almost everywhere) on a set of finite measure implies

uniform convergence on a slightly smaller set.

Theorem 1.4 (Lusin). Let f : [a,b] — R be a finite-valued measurable function. Then
Ve > 0 3A C [a, b],measurable, m(A) < e such that f is continuous on [a, b]|A.
Moreover Ye > 0 3 a continuous| function ¢ € C%([a,b]) such that g(x) = f(x) Va €

[a, BI| A or m({g () # [(x)}) <€

Definition 1.28 (Pointwise and Uniform Cenvergence). Let D C R and {f,} be a
sequence defined on D.

We say {f.} converges pointwise to _fion D if

lim fn(z) = f(z) Vze D

n—0oQ

. However, we say-{f,} eonverges uniformly to f on D if

limsup{|fu(z) = f(x)|: z€ D} =0

N—r0Q0,

1.3.4 The Lebesgue Integral

If s is a simple function on a measurable set £ with finite measure and {aq, as,...,a,} is
n

the set of nonzero values of s, then s = Z a; Xy Such that Ay=Aw:s(r) = a;} € M.
i=1
This representation is.called. canonical representation if the a;s are distinct and not

equal to zero and A;s are disjoint.

Definition 1.29. Let A; C E, we define

/Es(x) dr = gaimmé)

Let s, p be simple functions on F. If f is a measurable nonnegative-valued function on
FE . we define

/E flaydo =sup [ slz)do = int /E ple)dz .t 5(x) < f(z) < pla)

s
E
as the Lebesgue integral of f over F.

13



We say f is Lebesgue integrable on F if the integral is finite. The class of integrable
functions on A is denoted by L'(A)

Proposition 1.3. Let s,p be simple functions on E and ¢ € R. Then
i. [(s+p)=[s+[p
E E E
ii. [es=c[s
E E
iwi. If s <pthen [s< [p
E E
1.3.5 Bounded ConverK T i:IST
Theorem 1.5. Let E be measurable,m( let {f.},, be a sequence of
measurable functions such that f, — [ pointwise a.e on FE. Assume 3 a positive real

number M such that |f| < M a.e on E. Th

Example 1.2. Let

Fa

1/n 1/3 1/2 1

14



This diagram shows a sequence of functions (not uniformly bounded).

ae f_{ 0 xe(0,4]

pointwise

1
/fn—/n]101]= —=1
n
1
/f:/ f—l—/ 0=0 (for n very large)
E 0 L
0=/f%/h=1
E E
Hence the Bounded Convergence fails.
This is because {f,},—, is NOT

Lemma 1.1 (Fatou’s Lemma). Let f, : 5> [0, +00], E € M be a sequence of non-

negative measurable functions and suppose 5 f on E. Then

Example 1.3.

e

15



This produces a sequence of (negative) measurable functions (not uniformly bounded).

f ae f:{O :xG(O,ﬂ

pointwise —o0 =20

n 1
/fn—/—nﬂ[ol]—/ dn=-nx —=-—1
E n 0 n
1 1
/f:/ f-|-/ 0=0 (for n very large)
E 0 1

Ozéfgliﬂgféfn:—l

Hence the Fatou’s lemma fails singesthe given sequenge is NOT non-negative.

Theorem 1.6 (Monotone Convergence Theoreni). Lel f, : £ — [0,+o], E € M be a

. . pointwise,
sequence of non-negative measurable functions and f, < f,i1 a.e and let f, f

lim/fz/limf
n—o0 n—roo
E

E

a.e. Then

Theorem 1.7 (Dominated Convergence Theorem). Let f,, : ' — [0,+00], E € M be a
fa.eonkE. If3 a Lebesgue

. pointwise
sequence of measurable functions.on B such that f,

integrable function g sueh that | fn(r)| <.g(x) Vr € E; then

L [ —= / lim. f
n—o0 n—>00

E b

16



Chapter 2

LP(Q) SPACES

2.1 Definition and Properties

2.1.1 The Space L'(Q)

Definition 2.1. Let 2, measurable, be a domain in R and let p € R, 1 < p < co. Then

LP(§2) denotes the class of all measurable functions f on 2 for which

/Q|f($)|p i, < T (2.1)

This means that for a function f.& LP())
i. f must be measurable and
ii. / |f(z)]P de < 00
Q

The space LP(£2) is a veetor space and elements of LP(€)) are equivalence classes of mea-

surable satisfying ([2.1))

Lemma 2.1. [f1 < p < oo and a,b >0, then
(a+b)? <2071 (af +bF) (2.2)

Proof If p =1, then ({2.2)) is trivial. For p > 1, the function ¢ : x — P is convex, that
is ¢ (Az + (1= A)y) < Ad(z) + (1= A)d(y) VA € [0,1].

For \ = %, we have

o (3e+5v) < 50(a) + 50()
(5+8)" <%+%
vy =2(5Hg) <2(5+%) =27 (7 +y)

17



This completes the proof.
If f,g € LP(§2), then

[f (@) + g(@)I” < (|f(@)] + lg@)]) <227 (If (@) + [g(=) )
confirming that f + g € LP(£2) since /Q |f(z) + g(x)|P do < 0.

f = g a.e is an equivalence relation on LP(2). By f € LP(Q2), we mean [f] € LP(Q)
such that

[f]={9€lP(Q): f=9g ae}

2.1.2 [P Norm

Definition 2.2. A norm on an LP(2) space is a function || - || defined by

T ( / If(x)l”d:r:> ”

such that 1 < p < oo and f € LP(Q).

Unless otherwisesstarted, weumnay write | f|l, instead of || f{|z»()

Example 2.1. Let f € LP(Q)
N1 fllp = ([fg |/ ()] dz)»= 0 since / |f(z)pdx < 00
Q

Assume Hpr:O:>/ | fEREE = Br—> b | g iE N ()

Q
Conversely if f = 0, then || f|, =0
N2: Let f € LP(Q).and c € C

leb=( | ch(:v)\”dsvf el

N3: f,g € LP(Q))
Wf+all, < IIfllp + llgllp known as Minkowki’s inequality

Hence || - || is a norm on LP(£2).

2.1.3 Cauchy’s Inequality

1 1
Theorem 2.1. If1 <p < oo, 1 <q < o0 such that — 4+ — =1, then
p q

a? bl
ab < — + —
p q

18



p and q are called the conjugate pair.

Proof Forp=q=2. Let a,b >0
Then (a —b)? > 0= a® — 2ab+ b* > 0

= 2ab < a® + b?
2 b2

<
Ww=5ty

For other values of p and ¢ which are conjugate pair,
Let a = aP, § = b%,we show that (w%ﬂ% < % + g

Using the logarithm function which is concave, that is,
6 (a+ (1- Ay) = A6(@) + (- Noly) A€ [0,1

1 1
then for the case — + — = 1, we have
rp q

(1 1 1 1100
log (5& + Eﬁ) > ]—)loga 5 glog I6]
1 1
logar +logfa <log (242
loga%B% <log

since the log function is inereasing,

st
aiﬁéégﬁ-ééabﬁa—-kb—
P (. p q

2.1.4 Holder’s Inequality

1 il

Theorem 2.2. If I.< p <.ocoml < q < oo such that —+ —=1. If f € LP(Q) and
D o853

g € LYQ), then fg € L'(Q) and

st < (| If(x)l”dxy (f |g<x>|wx>‘l’ (23)

where L*(S)) is the space of Lebesque integrable function.

Proof Recall Cauchy’s inequality: ab < % + %q with equality occurring if and only if
al = b9.
If ||fll, =0 or ||g]l, =0, then f(z)g(z) =0 a.e in Q, and ([2.3)) is satisfied.
Otherwise substitute
|/ ()]

9()]
a = b
11l

and =
9l
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in the above inequality and integrating over {2, we have;

|f(2)]g(z) 1 lF@N\Y |1 lg(a) \?
Jo Moldls 92 <3 Jo ( ¥il ) T3 Jo ( ugnq)
1 1 _
— 5 —|- a —

Jo lf@)g(@)ldz < [Ifllpllgllq

[1s@seiar< ([ | f(x”pdx)i ( |g(x)|qu>;

Corollary 2.1. If p > 0,q > 0 and r > 0 satisfy 1—17 —i—% = %, and if f € LP(Q)) and
g € LU(R2), then

=

Hence

fge L8 and {[ foll- =< W19l

2.1.5 Minkowski’s Inequality

Theorem 2.3. [f1 < p < oo, then

If £ g“p = Hf”p L Hf”p (2.4)

Proof For p =1, the.inequality holds since

Tty vaar = il i+ f Jojds
Q Q Q
For 1 < p < oo, let w >0 then |jw||, <1. By Hélder’s inequality;

Jo (IF @) + lg(2))) w(@) das < fo @@y de s fo 19 () w(z) dz
< IF il +Hglipllwll, = Ut + 1lglls) lwllg
<Al tllglls

It follows that
| 2 PR i

2.2 L>(Q)) Space

Here, we look at the case p = co. The space L>(2) are such that Q € 9(R),which is, the
space of all bounded measurable functions on €2 or the space of all measurable functions

which are bounded except possibly on a subset of measure zero.

Definition 2.3. A function f that is measurable is said to be essentially bounded on 2
if there is a constant ¢ such that |f(z)| <t a.e on Q.

The greatest lower bound of all such ¢ is called the essential supremum of |f| on 2, and

20



is denoted by esssupg, | f(z)].
L>(Q) is the space of all measurable functions f that are essentially bounded on €; and

functions equal a.e on (2.

esssup|f| =inf{t: f <t a.e in Q}
0
Proposition 2.1. L>®(Q) is a vector space

Proof (a) Let f € L>*(Q2), c € C,c # 0. Thus f is measurable and esssupg, | f(z)| < o0

Since af is measurable and

esssupg |af| =if{t || £t a.e G Q}
= |o| inf{k : |f]| St ewin O} ' =t/c

= |c|ess supg | £]
. cfie £2(Qy)

(b) Let f,g € L>(2). Then f + ¢ is measurable and esssup, | f| < oo, esssupg, |g| < 0o

From the definition of essential supremum;

s cssSupif) “and Mgl < esssup lg
Q Q

2.2.1 L*(Q2) Norm

Definition 2.4. The functional || - || defined by
[ = csssuptr (@)

is the norm on L>(€Q).

Example 2.2. Let [ € L>™(Q)

N1:||flloo = esssupg | f(x)| > 0 sinee-{f}:>0

Assume ||f]|, =0, then |f(z)| <0 aeon Q= [f(z)]=0ae< f=0ae
Conversely if f =0 a.e, then || f]|. = esssupg |f(z)| =0

N2: Let f € L>*(Q) and c € C

leflloo = lelll flloo

N3: f,g € L>®(Q), then f + g is measurable and |f| < ||f]|s a.e and |g| < ||g]/« a-€

[f gl < 1A+ gl < U fllee + llglloe <00 ace

Nf+ gl —e<|f+39| <|flle +119llc <00 a.e Ye>0
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As e — 0,
1+ glloe < N1 lloc + 19l

Hence L>(€2) is a normed linear space.

Proposition 2.2. If f € L>*(Q2) then f € LP(Q2) and

1/l = i |11,

2.3 The Completeness of L”((2)

Theorem 2.4. L7(Q)) is a Banach spadeyif L <p < o0

Proof First assume 1 < p < oo and let {f,} be a Cauchy sequence in LP(€2).
There is a subsequence { fn/} of {f.} such that

1 3
||fn7+l_fng” SZ’ j:1727

m

Let gn(@) = > [fur.. (2) — fu, ()] Then

J=1

Putting g(x) = lim g,,(z), we obtain by Monotone Convergence Theorem;
m—0o0

[ lotoPds < gl do < 1
Q m—oo fo

Hence g(z) < 0o a.e on"Q ands the series

o0

fm (17) + Z (f’nj+1(x) - fnj (27)) — f(x) (2'5)

a.e on ) by Dominated Convergence Theorem.
Since ([2.5)) telescopes, we have

lim f, (x)=f(x) a.e in Q.

m—00
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For any € > 0 there exists N such that if n,m > N, then ||f, — f.ll, < e. Hence by

Fatou’s Lemma

Jo l£@) = ful@lPdz = o lim |fa, () = fule) P do

< liminf [, |fi, (@) ~ fu(o)Pdo < &
j—00

if n > N. Hence f = (f — fu) + fn € LP(2) and ||f — full, = 0 as n — oo.

Therefore LP(f2) is complete and so, Banach.

For the case p = oo. Let {f,} be a Cauchy sequence in L>(Q), then 3 a set A C Q,
m(A) = 0 such that if x ¢ A, thengforevery m,gn =5 120 =

Therefore,{ f,} converges uniformly on Q|A to a bounded function f. Thus f € L*(Q)
and || f — fulloo — 0 as n — oc.

Hence L>(Q) is also complete and a Banach space.

Corollary 2.2. L*(Q)) is the Hilbert space with respect to the inner product

<fy>=gﬁ@mmwm
Holder’s inequality for L*(Q) issimply the Cauehy-Schwaitz inequality

| < fr9>1 Z [l fll2llglla-

Definition 2.5 (Mollifiers). Let .J be a nonnegative, real-valued function such that J €
C°(R™) and

i. J(z)=0if |z| > 1, and
i, [pn J(z)de =1

We shall take for any k& > 0,

K@Z{MWQi@ o) <1

0 |z] > 1

If € > 0, the function
J(x) =€ "J(z/e)
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satisfying the properties above, is called a mollifier. The convolution

Joxuta) = [ o=yt dy
is called a mollification of w.

Theorem 2.5 (Properties of Mollification). Let u be a function which is defined on R"
and vanishes identically outside 2.

(a) If u € L}, .(R"), then J.xu € C®(R").

(b) If u € L}, (Q) and supp(u KN U QTzded

(c) If u € LP(Q) where 1 < p < oo, then J,

(). Also

”JE*UHPS [|u Je*u_qu:O

(d) If u e C(Q) and if G € 2, then ﬂ x) uniformly on G.

(e) If u € C(Q), then lim J.* ; T @ = '5:
- ==
~

-
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Chapter 3

THE SOBOLEV SPACE W"-?(Q)

Sobolev space is a vector space of functionsiequipped. with a norm that is a combination

of LP-norms of the function itself as well as its derivatives up to a given order.

Definition 3.1 (The Sobolev Norms). EFor any function u and m a positive integer, we

define a functional || - ||,,, as
o
p
|ullmy = Z D%l if 1<p<x
0<|a<m
[0S 8% LD % o
0<|la<m

where || - ||, is the norm in LP(€). Equivalently ||w/|mp = |lu|l, + Z | D%ul|p.

0<|a|<m

Definition 3.2 (Sobolev Spaces). Let m any positive integer and 1 < p < oo
(a) H™P(Q)) = the completion of {w.e C"(Q)w|ulls,, < oo} wrtthe norm || - ||,
(b) WmP(Q) = {u € [R(Q)wD*uwe LP(Q) for 0 <|ef < m}

(c) Wi™P(Q2) = the closure of G§2() W7 (Q) where C5°(12) is the vector space of

infinitely differentiable functions with compact support.

(d) uw e W™P(Q) if, and only, if
/uDa(¢) dr = (—1)“|/¢D°‘ud:1; Vo € C5°(Q)
Q Q

Specifically, the Sobolev Space consists of all functions u :  — R,u € LP(€2) such that

each weak derivative D%u for |o| < m exists and belongs to LP(f2).
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Remark
i. Wor(Q) = LP(Q)
ii. If 1 < p < 0o, WgP(Q) = LP(Q) because C5°(Q) is dense in LP(Q)

iii. For any m, the following chain of imbeddings hold

WP(Q) — W™P(Q) — LP(Q)

iv. For each A, € R and u,v € W™P(Q), \u + pv € W™P(Q) and D*(u + v) =
D*u + D*v. Thus W™P(Q) is a vector space over R

Theorem 3.1. W"?(Q)) is a Banaeh Space!

Proof Let u, be a Cauchy sequence in WP (€2). Then since the Sobolev norm is defined
in terms of the norm on L?(Q), D%u, is a Cauchy sequence in LP(Q) for |a| < m. Since
LP(Q2) is complete there exist functions w such that «, — v and u, such that D%u,, — u,
in LP(Q) as n — oco. LP(Q2) C L} () and so to every u,, € L} (), there is a distribution
T., € D'(Q) defined by

T8 =T < / () ) |002) | da & < DY
< ol lun, —n|, by Holder’s imequality

where (p, ¢) are the exponent conjugate pair.
Asn — oo T, (¢) — T,.(¢) for every ¢ € D(Q). Similarly Tpe,, (¢) — Tu,(¢) for every

¢ € D).

= T, (8)= Ihm Tpe,, ()= tm (—1)'T, (D*¢) =(-1'U7T,(D*¢)

n—> 00 n—oo

Thus u, = D*u in the weak (distribution) sense on {2 for |} < m; from which we get
u € Wm™P(Q). Since lim ||u,, =ullm , =0, the space W (Q)) is complete.
n—oo

Corollary 3.1. The space H*(2) = Wh2(2) is a Hilbert Space with inner product

mmzéwm

Corollary 3.2. In general H™?(2) C W™P(Q)

3.1 Approximation by Smooth Functions on )

In this section we wish to establish the fact that any element in W™ can be approximated
by functions smooth on €. In other words the set {¢p € C*(Q) : ||¢||;m, < 00} is dense in
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Wm™P(€)). We require the notion of infinitely differentiable partitions of unity. We then
this theorem without proof.

Theorem 3.2 (Partitions of Unity). Let A be an arbitrary subset of R and let O be
a collection of open sets in R™ which cover A, i.e A C JyeoU. Then there exists a

collection W of functions ¥ € C§°(R™) having the following properties:
(i) For every i € ¥ and every x € R, 0 < ¢(z) <1
(i) If K € A, all but finitely many 1 € ¥ vanishes identically on K.
(111) For every i) € U there exists U € O such that supp(v) C U.
() For every x € A, we have ) 5y, Y a)h= L.
Such a collection V s called a C*° - partition of unity for A subordinate to Q.
Lemma 3.1 (Mollification in W™?(Q)). Recall the definition of a mollifier ”"for any
k>0,
J(x) = { k exp (ﬁ) x| <1
0 lz| > 1
JEOT = c N, . > ()

Let J. be so defined and let 1< p < oo and v € W™P(Q). If Q" is a subdomain with
compact closure in ), then

B Fets i) in W™P(Q))

e—0+

Thus,
Je % - =uin WP (Q)

Proof Let e < d(Q,00))and @ be.the zero extension of u outside €. That is, u(x) =
u(z) if z € Q and 0 otherwise. If p-€D(Q"),

Q/J xu(z)D(x) dz /n /n w(zx —y)J(y)D(x) dz dy
vl [ Drute — ) dedy

Q/
= (-1 )(’"/K Jex Du(z)¢(x) dx
Q/
Thus, the derivative of the mollification is equal to the mollification of the derivative,i.e

DJ.xu=JD**xu
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in the distributional sense in . Since Du € LP(Q) for 0 < |a| < m we have by property

(3) of mollifications:

Jim | D*Jex u— Dullpgr = litm || Je+ D®u — Dullp0r =0

It follows that lim. o4 ||Jeu — u||lmpo =0

Theorem 3.3. If1 < p < o0, then
H™P(Q) =W™P(Q)

Proof By Corollary 3.2 H™?(Q) gWimr(Q)F Wd siiow {hat Ww™r(Q) c H™P(Q), that
is, the set {¢ € C™(Q) : ||@]|m, <loo} i8 dense in W™P()). It suffices to show that for
every u € W™P(Q)) and € > 0, there exists ¢ € C*°(12) such that ||¢ — u|lm, < €. For
k=1,2,... define

Qp={r€Q:|zf<k and dist(z, bdry?) > 1/k}
and let Qy = Q_; = (). Then
— {Uk llly, L] (de)c?k: 172;---}

is a collection of open subsets of ©Q that covers €). Let W be a C> - partitions of unity
for Q subordinate to O. Let a4y € C§2(Uy) and ™) 72 the(x)'= 1 on Q.

If0 <e < 1/(k+1)(k+2) , then Jox (¢pu) has support in the intersection Vj =
Qg2 N (Q—2)¢ € Q. Since Ypuc W™P(Q) choose €, with 0< €, < m, such that

D — “JEk o (1/)k“) — wkuHm,p,Vk > E/Qk

H‘]ck g (¢ku) _ ¢ku|

Let ¢ = Z Je, * (Yru). Onany Q. c Q only finitelyumany terms in the sum can be
k=1
nonzero. Thus ¢ € C>(Q)). For x € Q. we have

k+2 k+2

u(z) = Z wi(z)u(z), and  ¢(z) = Z e, % (yu)(z).

Thus
k42

o= Gllmpor <D 1, * (1) = Yjullmpa < €

=1

Hence by MCT ||u — ¢||;mp0 < €.
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3.2 Approximation by Smooth Functions on R"

Having shown that any u € W™P can be approximated by smooth functions on €2, we

proceed to check if they can be approximated by functions smooth on R™.

Lemma 3.2. Given u € W™P(Q) and v € C§°(R2), then uv € W™P(Q)

Proof To show that uwv is in the Sobolev Space, we have to compute its weak derivative

/uvDa(¢ Ydz = ( |a/¢DO‘ uv)
Q
for any ¢ € C§°(€2). Note that

D*(uv) = Z (g) DPvD* .

BLa

and have

We prove by induction. Fix ¢ € C§°(2). Then for || = 1,

/uvDa(gzﬁ) dx =/uD(v¢)—u¢D“vdzL‘
Q Q

= —/ (uD% +v D) ¢ dz
Q

Since D*u and D*v-exists for.any-u € W™P(Q) and v € C5(£2), the above relation is
true.

Assume the relations holds for |a| < for any [ <m and all v € C5°(€2). Choose « such
that |o| = [+ 1. Then we write |a| = |8| + |y| where |5| =l and |y| = 1. Then for any
v, ¢ € C°(Q)

/Q wwD(@p) de = / WD’ (DY) da

d/

ﬁ|+|7|/z <ﬁ> D" (D°vD""u) ¢ dx

o<y

1)l / Z( ) DvD* (u)¢ d

o<«

( ) DoDP=4 D ¢ dx

= (- )a|/¢D°‘(uv) dr

Theorem 3.4. Assume Q@ C R" is bounded and that w € W™P(Q) for 1 < p < co.Then
there exists functions u, € C§°(§2) such that

U, —> u  in WT™P(Q)
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Proof Decompose 2 into the following sets;

Q= {r e Q| dx,d0) > 1/i}, ieN\0

and define V; = Q;5 — Q;11. Choose any Vy CC Q such that U = J;2, Vi. Let ¢72,(V;)
can be defined as a partition of unity(Theorem for U such that

0<¢; <1 ¢ €C5()
ZzO¢Z:1 on €2

By Lemma we know that for each i, p;u € W™P(Q) and ¢;u has support contained in
V;. We then proceed using the mollifigation cancept toghow that the sequence u® € C5°(£2)
is dense in ¢;u € W™P(Q)). Let J. besour mellifier function and choose 6 > 0. Then given
€; > 0 such that u' := J; x (¢;u), the following relations are satisfied. For W; := Q44— Q,
1=1,2,...
[u’ — Gullmp S 587 ©=0,1,2,...
{ supp(uhC Wy i=1,2,...

Define v(z) := Y2, u'(x) € C5°(2) since u* € Cg°(Q) and u'(x) can be nonzero for only

a finite number of i. Let u = Y ‘¢u, we have

[e¢]
o —"uf =< D v #bullmzn
=0

=8
SZOQZ‘H

=3

for each open set V.CC U.

Taking the supremum of all such V gives {|v =l 50.< 6. Thus C5°(2) is a dense subset
of W™P(Q).
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Chapter 4

APPLICATION TO
DIFFERENTIALE EQUATION

The aim of this thesis was to explore the properties of Sobolev Spaces and apply them to
solving differential equations. In this chapter, certain examples of differential equations

(e.g. boundary value problems) are provided.

4.1 Some Examples of Boundary Value Problems

Let 2 = [a,b] and given any f.€ C(Q). Consider the boundary value problem

{—u”+1L i« (41)

U =% on 0N

We wish to use Sobolev spaces to find a weak solution that satisfies this pde. The following

steps are adapted in‘approaching any pde using the concept of Sobolev space.
A. Defining the weak solutions.

B. Establishing the ezistenceand uniqueness -of amweak solution.

C. Regularity of a weak solution.

D. Recovery of the classical solution.

Note. A classical solution is a function u € C%(Q) that satisfies in the usual sense.
The concept of weak derivatives is used here to define a weak solution of[4.1| by multiplying
by ¢ € C'(Q) and integrating by parts.i.e

¢f = —ou” + pu
/Qf¢>=—¢u’lg+/ﬂu’¢’+/ﬂu¢:/Qu'qs'+/gu¢ since ¢ = 0 on 0Q
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Thus a weak solution of [4.1]is a function u € H}(Q) satisfying

/Q fo= /Q o + /Q w  pe HIQ) (1.2)

Moreover, given any f € L*(Q) there exists a unique u € H{(f2) to equation 4.2 We

obtain u by
. 1 ) 2
min {5 [0+~ [ o}

We call this the Dirichlet’s Principle

We state the Lax - Milgram Theorem, which is key in establishing the existence and

uniqueness of a weak solution.

Theorem 4.1 (Lax-Milgram). Let H be a Hilbert space and B - H x H — R be a bilinear
mapping satisfying the following inequalities

i. there exists o > 0 such that |B(umw)| < al|lulll|v|pfor all u,v € H,
i. there exists > 0 such that B||ul|* < Bluyw) for all v € H .

Then if f : H =R is a bounded linear functional on H, there exists a-unique element
u € H such that
®7w= U Vvye H

Proof For any u € H, the mapping v — B(u,v) is a bounded linear functional on H.
Then by Riesz Representation Theorem, there exists a unique element w € H such that
for any u € H

B, v)i=<w0)—Xv € H

Define a mapping A : H — H by w — w, where w fits the above definition. Thus
B(u,v) = (Au,v) v € H-\We have

(i) A is linear. For any t,u,v € H and-Ae&R;

(A(Mt + u),v) = B(AM+u,v) = AB(t,v)+B(u,v) = (AAt,v)+(A,v) = (At + Au, v)

(ii) A is bounded. We apply the first inequality;
[Aul® = (Au, Au) = B(u, Au) < ajul|]| Aull

. Hence, ||Au|| < a||u|| for all u € H.
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(iii) A is bijective. By the second inequality;
Bllull* < B(u,u) = (Au,u) < [[Au||u].

Hence f||u|| < ||Au|| which holds iff Au = 0 = uw = 0. Thus A is injective. By
definition, A is onto since to every w € H there corresponds an element v € H such
that Au = w.

Since A is a bounded linear functional, we can apply the Riesz Representation Theorem

and obtain

B(u,v) = (Au,v) = (w,v) = (f,v)

To show that u is unique, suppose both{tyu € H satisfy the above equation. Then

B(u,v) = (f,v) = B(t,v)
(Au,v) = (At v)

So, Au = At and since A is bijective, we have u = t.

In STEPS C and D, note that if f € L* and w € Hj is the weak solution of (4.1]). Then
from [4.2} _
fe =S ue pecli@)
Q

Q
and from the definition of Sobolev. Spaces, u' € H* for f. = w€ L?> Thus u € H? and
finally, if f € C(2), we have the weak solution u € C*(£2).

Example 4.1. Let 2 = (0,1). Consider the problem

—(pu') +qu = [ inQ
U =0 on 0f2

where p € C1(Q), ¢ € C(Q), and+f € L?*(Q) with p,g > 0on Q
STEP A: Every classical solution is a weak solution.
If w is the classical solution of (4.3]), we have

Jwre+ [@io= [ 1o oeniw)

This is achieved by multiplying through by ¢ € H}(Q2) and integrating by parts. Thus
any u that satisfies this equation is a weak solution of (4.3)).
STEP B: Establish the existence and uniqueness of a weak solution.

Define a symmetric continuous bilinear form on H{(€2) such that

Bué) = [ ()6 + [ (qu)o
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Then by Lax-Milgram’s Theorem, there exists a unique element v € Hj({2) such that

Blu,¢) = (f,6) = /Q fo ée HIQ

and obtain u by the Dirichlet’s principle

;ﬂ;l{% e ae) - [ f¢}

STEP C: The weak solution is proved to be of class C?.
We have;

[ o] [ fabe | 4EH

Thus pu’ € H', and so v/ € H = u € H? Also;if 7€ C(Q) then pu’ € CY(Q) = v’ €
CH(Q), and so u € C?(9Q).

STEP D: Show that any weak solution that is C*? is a classical solution.
| 16= [ w8 fauer 8 < c'@)
Q Ja Q

[ o= s [ ot [
/Qf(b — /Q(pu,)/¢ q /Q(qu)qﬁ ¢ = 0on 0f)

Thus
0= [ (= (uy+qu=f)o
s —(pu’g)l’ + g W oo
=(pu!) +qu =4 a.e on Q\ON
Finally

S—(pu) +qu=f _onQ

Hence u is a classical solution of ({4.3]).

4.2 Elliptic PDE of Second Order

Example 4.2. Let (2 C R” be an open bounded set. Consider the Dirichlet problem for
the Laplacian

(4.4)

—Au+u =f inf
U =0 on 0N
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where Au = Z g 2 is the Laplacian of w.

STEP A: Every classmal solution is a weak solution.
Note that a weak solution of ([{.4) is a function u € H}(Q2) which satisfies

/Qvu-quJr/Qucb:/Qﬁb b€ HY(Q)

ou 0¢
ox; 0x;
If u € C?(Q) is a Classu:al solution of (4.4)) then v € H}(Q) is its weak solution since

C?(Q) is dense in H{ () and by the same resuits in thesearlier example.

where Vu - V¢ = Z

STEP B: Establish the existence and,uniqueness,of a weak solution.

Theorem 4.2. Given any [ € L*(Q)), there exists a unique weak solution u € H}(Q) of

Proof Let
B(u, ¢) = / (Vu=Vo+ uo)
Q

be a symmetric continuous bilinear form on H} () and the mapping-¢ — fQ fo be a
bounded linear funetional on A} (). Then by the Lax-Milgram’s Theorem, there exist a
unique element v € H}(€Q) such that

Bind)= [4vu Votud)= [ o

which satisfies the definition of a weak solution of (4.4)). Similarly u is obtained by the

Dirichlet’s principle
m{ OAEoR = f¢}
be, )

STEP C: Regularity of the weak solution. If [ € L*(Q) and u € H}(2) then

Vo € Hi(Q)
/QVU-VQSJr/QuqS:/Qfgb

Vu-Vo = —
/Q” ¢ /Q(f u)¢
Then u € H?.

STEP D: Show that any weak solution that is C? is a classical solution. Let
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u € HL(Q) be a weak solution of (4.4).

/Qf(;5=/QVu-V¢+/Qu¢
[ o= [ =auruo

0:/9(—Au+u—f)¢
= —Au+u—f=0 ae

Thus —Au+u=f on Q. Hence u € C?() is a classical solution of (4.4))

KNUST
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Chapter 5

SUMMARY,CONCLUSIONS AND
RECOMMENDATIONS

The main point of this work was to explore the Sobolev Spaces and it’s involvement in
solving differential equations. Their importance comes from the fact that solutions of
partial differential equations are naturally found in Sebolev spaces, rather than in spaces
of continuous functions and with the derivatives understood in the classical sense.

Consider this boundary value problem with Q= (0, 1)

(5.1)

{—u"(x) (! (&) + )ulz) = f(w)
g (0 =N JF= O

Let b,c and f be given continuous functions. Assume that a classical solution exists,
i.e. a twice continuously differentiable function u satisfying (|5.1). Then for an arbitrary

function v we have

/ (=" + bu'+ cu)v dx = / fudr (5.2)
Q Q
If v € CY(Q), then by integrating [5.2{ by parts, we obtain
—uv |z = 0" 4 / u'v da + / (bu'eu)vdr = / fodzx
0 Q Q

Under the initial conditions of v(0) = v(1) = 0, this reduces to

/u'v'daz+/(bu'+cu)vdx:/fvdx (5.3)
Q Q Q

Unlike or (5.2), equation still makes sense if we know only that u € C(Q).
But we have not yet specified a topological space in which mappings implicitly defined by
a weak form of such as have desirable properties like continuity, boundedness,
etc. It turns out that Sobolev spaces,which generalize LP spaces to spaces of functions

whose generalized derivatives also lie in L, are the correct setting in which to examine
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weak formulations of differential equations.

We conclude that the use of Sobolev Spaces in solving differential equations appears to
be more reliable than the well-known classical solutions and even the numerical approach

since continuity and 'many’ derivatives are possible.
The recommendation for this work is simply mathematician should use more of the

method of Sobolev Spaces in solving certain types of differential equations - one whose

solutions do not have continuity and/or differentiability of higher orders.
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