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ABSTRACT 

Assessing the probability of rare and extreme events is an important issue in the 

risk management of financial portfolios. Crude oil markets are highly volatile and 

risky. Extreme Value Theory (EVT), an approach to modelling and estimating 

risks under rare events, has seen a more prominent role in risk management in 

recent years. This thesis presents an application of EVT to the daily returns of 

Brent crude oil prices in the spot market between 1987 and 2009. We focus on the 

peak over threshold method by analysing the generalized Pareto distributed 

exceedances over some high threshold. This method provides an effective means 

for estimating tail risk measures specifically, Value-at-Risk (VaR) and Expected 

Shortfall (ES). The estimates of these risk measures computed under high quantile 

(99th percentile) provides estimates of VaR  as 8.1% and 8.0% for daily positive 

and negative returns, respectively. The estimates for expected shortfall are 12.3% 

and 10.7% for daily positive and negative returns, respectively. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND INFORMATION  

The oil market analyst and investors speak daily about the risks that affect the 

movement of their world. They search tirelessly to understand how these risks arise, 

the exact effect they have, and how they act. The past years and even now, have been 

characterised by significant instability in financial markets worldwide. This has led to 

numerous criticisms about the existing risk management systems and motivated the 

search for more appropriate methodologies to cope with rare events that have heavy 

consequences. The typical question one would like to answer is: “If things go wrong, 

how wrong can they go?” The problem is then how to model the rare phenomena that 

lie outside the range of availably observations. In such a situation it seems essential to 

rely on well founded methodology. The Extreme Value Theory (EVT) provides a 

firm theoretical foundation on which we can build statistical models describing 

extreme events. 

In many fields of modern science, engineering and insurance, EVT is well 

established; Embrechts et al., (1997and1999), Reiss and Thomas, (1997)). Recently, 

numerous research studies have analyzed the extreme variations that financial 

markets are subject to, mostly because of currency crises, stock market crashes and 

large credit defaults. The tail behaviour of financial series has, among others, been 

discussed in Koedijk et al. (1990), Dacorogna et al. (1995), Loretan and Phillips 

(1994), Longin (2001), Danielsson and de Vries (2000), Kuan and Webber (1998), 

Straetmans (1998), McNeil (1997), Jondeau and Rockinger (1999), Rootzµen and 
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KlÄuppelberg (1999), Neftci (2000), McNeil and Frey (2000) and Gencay et al. 

(2003a). An interesting discussion about the potential of EVT in risk management is 

given in Diebold et al. (1998). 

This thesis deals with the behaviour of the tails of Brent crude oil pricing. More 

specifically, the focus is on the use of EVT to compute tail risk measures and the 

related confidence intervals.    

 

1.2 STATEMENT OF PROBLEM 

Crude oil markets can be volatile and risky. The world crude oil prices have risen 

dramatically during the past decade. However, oil prices did not sustain a constant 

rise – rather, they showed high volatility, reflecting market conditions such as 

political turmoil, supply disruptions, unexpected high demand and speculation. 

Research conducted by Acadian Asset Management Inc. shows that the daily returns 

on crude oil (West Texas Intermediate) have a wider range than that of gold, copper 

and major U.S. stock market indices through the period of 1990-2006.  

The percentage change in oil price over one trade day was as high as 36.12% and as 

low as -18.13% between 1987 and 2009. For instance, following the September 11, 

2001 attacks, the price of oil plummeted as oil traders believed that weakened 

economies in the U.S. and elsewhere would use less oil. In particular, on September 

24, the price went by 24%, its biggest one-day drop through that period. In contrast, 

on March 23, 1998, the crude oil price increased sharply by 17% over one day 

because of the news that three of the world’s biggest oil producers agreed to cut 

supply. Relative to the average positive daily return of 1.74% and the average 
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negative daily return of -1.69% during that period, these cases provide examples of 

extreme events. 

Moreover, volatile oil prices may lead to price variability of other energy 

commodities and can have wide-spread impacts on the international economy.  The 

bulk of Ghana’s crude oil is imported from the Europe, Nigeria, U.S.A., Saudi Arabia 

and other oil producing countries. So, volatility in the price of world’s crude oil 

impacts significantly on the global economy. Specific examples of impacts include 

the obvious example of gasoline, and hence transportation costs. Other examples 

include the stock market and exchange rates, which can be affected substantially by 

the price of oil  (Nandha and Faff, 2007), as well as the chemical industry. If relevant 

risk management organizations and investors in these markets cannot predict and 

capture the risks appropriately, their losses could be huge. The highly volatile 

behaviour of crude oil prices and the substantial impacts of this volatility motivate us 

to undertake research on modelling oil price fluctuations and providing an effective 

instrument to measure energy price risks. 

In order to better disclose the nature of the risks under extreme situations, and finally 

avoid the risks in the most degree, we need certain risk measures. EVT, a theory for 

assessing the asymptotic probability distribution of extreme values, models the tail 

part of the distribution where the risk exists. This theory is playing an increasingly 

important role in dealing with modelling rare events. While application of EVT is not 

foolproof, it provides a relatively safe method for extrapolating beyond what has been 

observed (Embrechts et al., 1997). On successfully modelling tail-related risks, we 

then need to find suitable instruments to measure these risks. Two popular measures 
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are Value-at-Risk (VaR) and Expected Shortfall (ES). VaR is the maximum loss of a 

portfolio such that the likelihood of experiencing a loss exceeding that amount over a 

specified risk horizon is equal to a pre-specified tolerance level. Expected Shortfall 

measures the mean of the losses that are equal to or greater than VaR. In particular, 

VaR has become one of the most commonly used techniques in risk management. In 

order to capture the effect of market behaviour under extreme events, EVT has been 

widely adopted in VaR estimation in recent years. Because extreme value methods 

are derived from a sound statistical theory, and provide a parametric form for the tail 

of a distribution; these methods are attractive when dealing with measuring risks. 

There is a large literature that studies EVT for risk measures in areas where extreme 

observations may appear, such as finance, insurance, hydrology, climatology, 

engineering and modern science. Specifically, numerous studies in finance and 

insurance have been conducted, including Embrechts et al. (1997), Reiss and Thomas 

(1997), Danielsson and de Vires (2000), McNeil and Frey (2000), Gencay et al. 

(2003) and Gilli and Këllezi (2006). However, to the best of our knowledge, there is 

only limited discussion of the application of EVT to markets for crude oil, which is a 

crucial commodity to the world economy. Among the studies on Value-at-Risk(VaR) 

estimation on energy markets with EVT approaches is Krehbiel and Adkins (2005) 

who examined the price risk in the New York Mercantile Exchange (NYMEX) 

energy complex. This study constructed risk statistics for unconditional distributions 

of daily price changes and applies the conditional extreme value method for 

estimating VaR and related risk statistics. Another research undertaken by 

Marimoutou et al. (2006) explored the daily spot Brent oil prices and compared the 
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performances of unconditional and conditional EVT models with that of conventional 

models such as Generalised AutoRegressive Conditional Heteroskesdasticity 

(GARCH) and historical simulation. 

 

1.3 JUSTIFICATION AND OBJECTIVES OF STUDY 

First and foremost, nowadays, statistics admittedly holds an important place in all the 

fields of our lives. Almost everything is quantified and, most often, averaged. Indeed, 

‘averaging’ is the statistical notion most easily understood and most widely used. On 

the other hand, not few are the cases where the central tendency, as this is captured by 

an average measure, is not suitable to ‘statistically’ describe the situations and their 

impacts.  

Two important dates in the history of risk management are February 1, 1953 and 

January 28, 1986. During the night of February 1, 1953 at various locations the sea-

dykes in the Netherlands collapsed during a severe storm, causing major flooding in 

large parts of coastal Holland and killing over 1,800 people. The second date 

corresponds to the explosion of the space shuttle Challenger. According to Dalal et al. 

(1989), a probable cause was the insufficient functioning of the so-called O-rings due 

to the exceptionally low temperature the night before launching. In both of these 

cases, an extremal event caused a protective system to breakdown. One could argue 

that statistical concepts, such as averages, also ‘broke-down’, since not only they 

offer no help but they can also be misleading, if used. In such cases, it is the 

examination of extremes that provides us with insight of the situations.  
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The primary goal of this research is to use EVT to assess the size of extreme/rare 

events of Brent crude oil. In particular: 

• To model related risk measures such as value-at-Risk, expected shortfall and 

return levels applying it to daily log-returns on Brent crude oil pricing. 

• To compare the methods of Extreme Value Theory. 

Natural or man-made disasters, crashes on the stock market or other extremal events 

form part of society. The systematic study of extremes may be useful in contributing 

towards a scientific explanation of these. As will be made clearer in the sequel, 

analysis of extreme values is an aspect of statistical science that has much to offer too 

many fields of human activity. Secondly, most of the world’s markets including 

Ghana are affected by the fluctuations of Brent Crude oil pricing and therefore the 

need to model the extremal events particularly at the tail of the distribution.   Finally, 

Ghana will be going to oil production next year and therefore the need to estimate the 

risk measures associated with the world oil pricing. 

 

1.4 METHODOLOGY OF STUDY 

To achieve these objectives of the study, both qualitative and quantitative approaches 

are employed. Data analysis will be primarily on secondary data from 

http://tonto.eia.doe.gov/dnav/pet/hist/rbrted.htm. A starting point for modelling the 

extremes of a process is based on distributional models derived from asymptotic 

theory. The parametric approach to modelling extremes is based on the assumption 

that the data in hand (X1, X2, ..., Xn) form an independent identical distribution (i.i.d) 

sample from an exact General Extreme Value (GEV) distribution function. In this 

http://tonto.eia.doe.gov/dnav/pet/hist/rbrted.htm
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case, standard statistical methodology from parametric estimation theory can be 

utilised in order to derive estimates of the parameters. In practice, this approach is 

adopted whenever our dataset is consisted of maxima of independent samples. 

The Block maxima/minima and Peaks Over Threshold will be the main methods for 

sampling the data for analysis.  The application of the method of block maxima goes 

through the following steps : divide the sample in n blocks of equal length, collect the 

maximum value in each block, fit the GEV distribution to the set of maxima and, 

finally, compute point and interval estimates for return level at a period. 

The delicate point of this method is the appropriate choice of the periods defining the 

blocks. The calendar naturally suggests periods like months, quarters, etc. In order to 

avoid seasonal effects, we choose yearly periods which are likely to be sufficiently 

large for Fisher and Tippett (1928), Gnedenko (1943) to hold; to be discussed. The 

data sample can be divided into say, 30 non-overlapping sub-samples, each of them 

containing the daily returns of the successive calendar years. Therefore not all our 

blocks are of exactly the same length. The maximum return in each of the blocks 

constitutes the data points for the sample of maxima M which is used to estimate the 

generalized extreme value distribution (GEV). However, this approach may seem 

restrictive and not very realistic since the grouping of data into maxima is sometimes 

rather arbitrary, while by using only the block maxima, we may lose important 

information (some blocks may contain several among the largest observations, while 

other blocks may contain none). Moreover, in the case that we have few data, block 

maxima cannot be actually implemented. 
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The implementation of the peak over threshold method involves the following steps: 

select the threshold u, fit the GPD function to the exceedances over u and then 

compute point and interval estimates for Value-at-Risk and the expected shortfall. 

The selection of the threshold u by theory (Pickands (1975), Balkema and de Haan 

(1974)) tells us that u should be high, but the higher the threshold the less 

observations than are left for the estimation of the parameters of the tail distribution 

function. So far, no automatic algorithm with satisfactory performance for the 

selection of the threshold u is available. The issue of determining the fraction of data 

belonging to the tail is treated by Danielsson et al. (2001), Danielsson and de Vries 

(1997) and Dupuis (1998) among others. However these references do not provide a 

clear answer to the question of which method should be used. A graphical tool that is 

very helpful for preliminary data analysis and the selection of the threshold u is the 

use of R or matlab functions. 

This thesis focuses on the univariate case; the approach is not easily extended to the 

multivariate case, because there is no concept of order in a multidimensional space 

and it is difficult to define the extremes in the multivariate case. 

 

1.5 DEFINITION OF SOME TERMS 

Risk: Uncertainty about a situation can often indicate risk, which is the possibility of 

loss, damage, or any other undesirable event. Most people desire low risk, which 

would translate to a high probability of success, profit, or some form of gain. 

Value -at-Risk (VaR):  A forecast of a given percentile, usually in the lower tail of 

the distribution of returns on a portfolio over some period: similar in principle to an 
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estimate of the expected return on a portfolio which is a forecast of the 50th 

percentile. Value-at-risk is can also be defined as the loss level that will not be 

exceeded with a certain confidence level during a certain period of time. 

Expected Shortfall(ES):  A measure that produces better incentives for traders than 

VaR is expected shortfall(ES). This is also sometimes referred to as conditional VaR, 

or tail loss. Where VaR asks the question 'how bad can things get?' expected shortfall 

asks 'if things do get bad, what is our expected loss?' 

Market Risk: The possibility of loss in an investment or speculation due to 

movements in market forces 

Extreme Value Theory (EVT):  EVT is the theory of modelling and measuring 

events which occur with very small probability. 

Portfolio: The collection of financial and real assets-bank deposits, treasury bills, 

government bonds, ordinary shares of industrial companies, gold, work of art-which 

the financial investor’s wealth is held. 

Volatility: A trading conditions likely to change suddenly or sharply; unstable: 

volatile stock-markets, exchange rates, interest rates etc. 

 

1.6 ORGANISATION OF THESIS 

This thesis deals with the behaviour of the tails of brent crude oil pricing. More 

specifically, the focus is on the use of extreme value theory to assess tail related risk; 

it thus aims at providing a modelling tool for modern risk management. 

Chapter 1 proves a general introduction, whiles in chapter 2, the review of related 

literature is presented for practical applications. Chapter 3 reviews the fundamental 
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results of extreme value theory used to model the distributions underlying the risk 

measures. In chapter 4, some of the questions concerning the concepts of financial 

risk measures are answered. Chapter 5 looks at how practical application is 

presented, where the observations of twenty-two years of daily returns on an index 

representing the brent crude oil prices are analysed. Both tails are modelled and point 

and interval estimates computed. Finally, a brief analysis of the risks estimates with 

conclusions and recommendations are presented in chapter 6. 
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 DEVELOPMENT OF EXTREME VALUE THEORY (EVT)  

The EVT is a blend of a variety of applications concerning natural phenomena such 

as rainfall, floods, wind gusts, air pollution and corrosion and sophisticated 

mathematical results on point processes and regular varying functions. So, engineers 

and hydrologists on the one hand and theoretical probabilists on the other were the 

first to be interested in the development of EVT. It is only recently that this theory 

attracted mainstream statisticians. Indeed, the founders of probability and statistical 

theory Laplace, Pascal, Fermat, Gauss, and so on were too occupied with the general 

behaviour of statistical masses to be interested in rare extreme values. 

Historically, work on extreme value problems may be dated back to as early as 1709 

when N. Bernoulli discussed the mean largest distance from the origin when n points 

lie at random on a straight line of length t (Johnson et al., 1995). A century later 

Fourier stated that, in the Gaussian case, the probability of a deviation being more 

than three times the square root of two standard deviations from the mean is about 1 

in 50,000, and consequently could be omitted (Kinnison, 1985). This seems to be the 

origin of the common, though erroneous, statistical rule that plus or minus three 

standard deviations from the mean can be regarded as the maximum range of valid 

sample values from a Gaussian distribution. 

The first to investigate extreme value statistics were early astronomers who were 

faced with the problem of utilizing or rejecting suspected observations that appeared 

to differ greatly from the rest of a data-set. Still, systematic study and exploration of 
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EVT started in Germany in 1922. At that time a paper by Bortkiewicz (1922) 

appeared which dealt with the distribution of the range of random samples from the 

Gaussian distribution. The contribution of Bortkiewicz is that he was the one to 

introduce the concept of ‘distribution of largest values’. A year later another German, 

von Mises, introduced the concept of “expected value of the largest member of a 

sample of observations” from the Gaussian distribution (Mises, 1923). Essentially, he 

initiated the study of the asymptotic distribution of extreme values in samples from 

Gaussian distribution. At the same time, Dodd (1923) studied largest values from 

distributions other than the normal.  

Indeed, a major first step occurred in 1925, when Tippet (1925) presented tables of 

the largest values and corresponding probabilities for various sample sizes from a 

Gaussian distribution, as well as the mean range of such samples. The first paper 

where asymptotic distributions of largest values (from a class of individual 

distributions) were considered appeared in 1927 by Frechet (1927). A year later, 

Fisher and Tippet (1928) published the paper that is now considered the foundation of 

the asymptotic theory of extreme value distributions. Independently, they found 

Frechet’s asymptotic distribution and constructed two others. These three 

distributions have been found adequate to describe the extreme value distributions of 

all statistical distributions. We will explore further this result in subsequent chapter. 

Moreover, they showed the extremely slow convergence of the distribution of the 

largest value from Gaussian samples toward asymptote, which has been the main 

reason for the difficulties encountered by prior researchers. Indeed, the use of the 

Gaussian distribution as starting point has hampered the development of the theory, 
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because none of the fundamental extreme value theorems is related in a simple way to 

the Gaussian distribution. Some simple and useful sufficient conditions for the weak 

convergence of the largest order statistic to each of the three types of limit 

distributions were given by Von Mises (1936). A few years later Gnedenko (1943) 

provided a rigorous foundation for the EVT and necessary and sufficient conditions 

for the weak convergence of the extreme order statistics. The theoretical 

developments at the 1920s and mid 1930s were followed in the late 1930s and 1940s 

by a number of publications concerning applications of extreme value statistics. 

Gumbel (1941) was the first to study the application of EVT. His first application was 

to old age, the consideration of the largest duration of life. In the sequel he showed 

that the statistical distribution of floods could be understood by the use of EVT. 

Extreme value procedures have also been applied extensively to other meteorological 

phenomena (such as rainfall analysis), to stress and breaking strength of structural 

materials and to the statistical problem of outlying observations. 

The applications mentioned above all refer to the early development of statistical 

analysis of extremes from a theoretical as well as practical point of view. Gumbel’s 

book of 1958 Gumbel, (1958) contains a very extensive bibliography of the 

developed literature up to that point of time. Of course, since then many more 

refinements of the original ideas and further theoretical developments and fields of 

applications have emerged. Some of these recent developments will be further 

discussed in the chapters to follow. Still, while this extensive literature serves as a 

testimony to the validity and applicability of the extreme value distributions and 
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processes, it also reflects the lack of co-ordination between researchers and the 

inevitable duplication of results appearing in a wide range of publications. 

 

2.2 FIELDS OF APPLICATIONS OF EVT 

We have so far gained an idea of the diversity of fields where extreme-value analysis 

can be applied. Now in this sequel, we give only a short review of the most important 

areas where EVT has already been successfully implemented. 

 

2.2.1 Hydrology – Environmental Data 

As we have mentioned hydrologists were of the first to use EVT in practice. Here, the 

ultimate interest is the estimation of the T-year flood discharge, which is the level 

once exceeded on the average in a period of T years. Under standard conditions, the 

T-year level is a high-quantile of the distribution of discharges. Thus, one is primarily 

interested in a quantity determined by the upper tail of the distribution. Since, usually 

the time span T is larger than the observation period, some additional assumptions on 

the underlying distribution of data have to be made. If the statistical inference is 

based on annual maxima of discharges, then hydrologists favoured model is the 

Generalised extreme-value (GEV) model. Alternatively, if the inference is based on a 

partial duration series, which is the series of exceedances over a certain high 

threshold, the standard model for the flood magnitudes is the generalized Pareto 

model. 

There is a large literature of extreme-value analyses applied to hydrological data. 

Hosking et al. (1985) and Hosking and Wallis (1987) apply their proposed estimation 
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method(GEV) to river Nidd data (to 35 annual maxima floods of the river Nidd, at 

Hunsingore, Yorkshire, England). Davison and Smith (1990) apply the generalized 

Pareto distribution to more detailed data of the same river, taking into account both 

seasonality and serial dependence of data. Dekkers and de Haan (1989) were 

concerned with the high tide water levels in one of the islands at the Dutch coast. The 

increasing need to exploit coast areas combined with the concern about the 

greenhouse effect has resulted in a demand for the height of sea defences to be 

estimated accurately, and to be such that the risk of the sea-dyke being exceeded is 

small and pre-specified. 

So, more elaborate techniques have recently been developed. Tawn (1992) performed 

extreme-value analysis to hourly sea levels by taking into account the fact that the 

series of observations is not a stationary sequence (due to astronomical tidal 

component). Barão and Tawn (1999) utilized bivariate extreme value distributions to 

model data of sea-levels at two UK east coast sites, while de Haan and de Ronder 

(1998) modelled wind and sea data of Netherlands using bivariate extreme value 

distribution function. Extreme low sea levels are of independent interest in 

applications to shipping and harbour developments and for the design of nuclear 

power station cooling water intakes. With simple adaptations most methods can be 

applied to sea-level minima to solve such problems. 

Another related issue is that of rainfalls. The design of large-scale hydrological 

structures requires estimates to be made of the extremal behaviour of the rainfall 

process within a designated catchment region. It is common to simulate extreme 

events (rainfalls) and then to access the consequent effect on hydrological models of 
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reservoirs, river flood networks and drainage systems. Coles and Tawn (1996) 

exploited extreme value characterizations to develop an explicit model for extremes 

of spatially aggregated rainfall over fixed durations for a heterogeneous spatial 

rainfall process. Furthermore, in ecology, higher concentration of certain ecological 

quantities, like concentration of ozone, acid rain or SO2 in the air are of great interest 

due to their negative response on humans and generally, on the biological system. For 

example, Smith (1989) performs extreme value analysis in ground-level ozone data, 

taking into account phenomena common in environmental time series, such as 

seasonality and clustering of extremes. Similar is the subject dealt with in 

Küchenhoff and Thamerus (1996). 

 

2.2.2 Insurance 

Estimating loss severity distributions (i.e. distributions of individual claim sizes) from 

historical data is an important actuarial activity in insurance. In the context of 

reinsurance, where we are required to choose or price a high-excess layer, we are 

specifically interested in estimating the tails of loss severity distributions. In this 

situation it is essential to find a good statistical model for the largest observed 

historical losses; it is less important that the model explains smaller losses. In fact, a 

model chosen for its overall fit to all historical losses may not provide a particularly 

good fit to the large losses. Such a model may not be suitable for pricing a high-

excess layer. It is obvious that EVT is the most appropriate tool for this job, either by 

using GEV to model large claims or generalized Pareto distribution to model 

exceedances over a high threshold. 
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The applicability of EVT to insurance is discussed by Beirlant et al.(1994), Mikosch 

(1997), McNeil (1997), McNeil and Saladin (1997) with application to Danish data 

on large fire insurance losses, Rootzen and Tajvidi (1997) with application to 

Swedish windstorm insurance claims. 

 

2.2.3 Finance – Risk Management 

Finance and, even more general, risk management are areas where only recently EVT 

has gained ground. Insurance and financial data can both be investigated from the 

viewpoint of risk analysis. Therefore, the insight gained from insurance data can also 

be helpful for the understanding of financial risks. Mainly due to the increase in 

volume and complexity of financial instruments traded, risk management has become 

a key issue in any financial institution or corporation of some importance. Globally 

accepted rules are put into place aimed at monitoring and managing the full diversity 

of risk. Extreme event risk is present in all areas of risk management. Whether we are 

concerned with credit, market or insurance risk, one of the greatest challenges to the 

risk manager is to implement risk management models which allow for rare but 

damaging events, and permit the measurement of their consequences. In market risk, 

we might be concerned with the day-to-day determination of the VaR for the losses 

we incur on a trading book due to adverse market movements. 

In credit or operational risk management our goal might be the determination of the 

risk capital we require as a cushion against irregular losses from credit downgrading 

and defaults or unforeseen operational problems. No discussion has perhaps been 

more heated than the one on VaR. The biggest problem with VaR is the main 
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assumption in the conventional models, i.e. that portfolio returns are normally 

distributed. 

In summary the main points of risk management are the followings: 

• Risk management is interested in estimating tail probabilities and quantiles of 

profit/loss distributions, and indeed of general financial data 

• Extremes do matter. 

• We want to have methods for estimating conditional probabilities concerning 

tail events: ‘Given that we incur a loss beyond VaR, how far do we expect the 

excess to go?’ 

• Financial data show fat tails. 

EVT is a subject whose motivations match the four points highlighted above. It has a 

very important role to play in some of the more technical discussions related to risk 

management issues. The usefulness of EVT to risk management is stressed by 

Danielsson and de Vries (1997), McNeil (1998 and 1999), Embrechts et al. (1998, 

1999), Embrechts (1999). 

 

2.2.4 Teletraffic Engineering 

Classical queuing and network stochastic models contain simplifying assumptions 

guaranteeing the Markov property and insuring analytical tractability. Frequently, 

inter-arrival and service times are assumed to be i.i.d. and typically underlying 

distributions are derived from operations on exponential distributions. At a minimum, 

underlying distributions are usually assumed nice enough that moments are finite. 

Increasing instrumentation of teletraffic networks has made possible the acquisition 
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of large amounts of data. Analysis of this data is disturbing since there is strong 

evidence that the classical queuing assumption of thin tails and independence are 

inappropriate for these data. Such phenomena as file lengths, Central Processing Unit 

(CPU) time to complete a job, call holding times; inter-arrival times between packets 

in a network and length of on/off cycles appear to be generated by distributions which 

have heavy tails. Resnick and Stărică (1995), Kratz and Resnick (1996), and Resnick 

(1997a) here dealt with such kind of data. 

Other areas where extreme-value analysis has found application are engineering 

strength of materials (Harter, 1978 provides a detailed literature on this subject); 

earthquake size distribution (Kagan, 1997); athletic records (Strand and Boes, 1998, 

Barão and Tawn, 1999); city-sizes, corrosion analysis, exploitation of diamond 

deposits, demography, geology and meteorology among others. 
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CHAPTER THREE 

EXTREME VALUE THEORY (EVT) 

3.1 INTRODUCTION 

The aforementioned schemes work on the quantiles of the random variables using 

information from the whole data set. However, due to the fact that quantiles at 1% or 

5% are ultimate values of the distribution, it is natural to emphasize the representation 

of the tails directly as an alternative to attempt the whole structure of the distribution. 

EVT, then, provides a theoretical justification to such procedures, as it plays the same 

essential role as the Central Limit Theorem performs when modelling sums of 

random variables. This section will supply some basic notions indispensable for the 

rest of the thesis. When modelling the maxima of a random variable, EVT plays the 

same fundamental role as the central limit theorem plays when modelling sums of 

random variables. In both cases, the theory tells us what the limiting distributions are. 

Generally, there are two related ways of identifying extremes in real data. Let us 

consider a random variable representing daily losses or returns. The first approach 

considers the maximum the variable takes in successive periods, for example months 

or years. These selected observations constitute the extreme events, also called block 

(or per period) maxima.  

In Figure 3.1 below, the observations X2, X5, X7 and X11 represent the block maxima 

for four periods of three observations each. 
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Figure 3.1: Block-maxima 

The second approach focuses on the realizations exceeding a given (high) threshold. 

The observations X1, X2, X7, X8, X9 and X11 in Figure 3.2, all exceed the threshold u 

and constitute extreme events. 

 

 

 

 

 

 

 

Figure 3.2: Excesses over Threshold u 

The block maxima method is the traditional method used to analyze data with 

seasonality as for instance hydrological data. However, the threshold method uses 

data more efficiently and, for that reason, seems to become the method of choice in 

recent applications. 
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In the following subsections, the fundamental theoretical results underlying the block 

maxima and the threshold method are presented. 

 

3.2 DISTRIBUTION OF MAXIMA 

The limit law for the block maxima, which we denote by nM , with n the size of the 

sub-sample (block), is given by the following theorem: 

Theorem 3.1:  (Fisher and Tippett (1928), Gnedenko (1943)).   

Let ( nX ) be a sequence of i.i.d (independent and identical distribution) random 

variables. If there exist constants  nc  > 0, Rdn ∈  and some non-degenerate 

distribution function H such that   dn n

n

M d H
c
−

→    then H  belongs to one of the 

three standard extreme value distributions: 
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The shapes of the probability density functions for the standard Frechet, Weibull 

and Gumbel distributions are given in Figure 3.3, 3.4 and 3.5. 
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Figure 3.3.  Density function for Frechet             Figure 3.4.  Density function for Weibull 

 

       Figure 3.5.   Density function for Gumbel 

 

 We observe that the Frechet distribution has a polynomially decaying tail and therefore 

suits well heavy tailed distributions. The exponentially decaying tails of the Gumbel 

distribution characterize thin tailed distributions. Finally, the Weibull distribution is the 

asymptotic distribution of finite endpoint distributions. Jenkinson (1955) and von Mises 

(1954) suggested the following one-parameter representation:   
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As representation of these three standard distributions, with x such that 1 0xγ+ > . 

This generalization, known as the generalized extreme value (GEV) distribution, is 

obtained by setting 1γ α −=  for the Frechet distribution, 1γ α −= − for the Weibull 

distribution, and by interpreting the Gumbel distribution as the limit case for 0γ = . 

As in general we do not know in advance the type of limiting distribution of the 

sample maxima, the generalized representation is particularly useful when maximum 

likelihood estimates have to be computed. Moreover the standard GEV defined in 

equation (2.2) is the limiting distribution of normalized extrema. Given that in 

practice we do not know the true distribution of the returns and, as a result, we do not 

have any idea about the norming constants nc  and nd , we use the three parameter 

specification 
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of the GEV, which is the limiting distribution of the un-normalized maxima. The two 

additional parameters µ  and σ  are the location and the scale parameters representing 

the unknown norming constants. The quantities of interest are not the parameters 

themselves, but the quantiles, also called return levels, of the estimated GEV: 
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Substituting the parametersγ ,σ  and µ  by their estimates   ,  and , we get 
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A value of 10R
∧

 of 8 means that the maximum loss/gain observed during a period of 

one year will exceed 8% once in ten years on average. 

 

3.3 DISTRIBUTION OF EXCEEDANCES 

An alternative approach, called the peak over threshold (POT) method, is to consider 

the distribution of exceedances over a certain threshold. Our problem is illustrated in 

Figure 3.6 and 3.7 where we consider an (unknown) distribution function F of a 

random variable X. We are interested in estimating the distribution function Fu of 

values of x above a certain threshold u. 

 
      Figure 3.6 : Distribution function F(x) 
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            Figure 3.7:  Conditional Distribution function Fu 

 

The distribution function Fu is called the conditional excess distribution function and 

is defined as  ( ) ( ) , 0u FF y P X u y X u y x u= − ≤ > ≤ ≤ −    .......................3.6 

where X is a random variable, u is a given threshold, y x u= −  are the excesses and 

Fx ≤ ∞  is the right endpoint of F. We verify that Fu can be written in terms of F, i.e. 
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The realizations of the random variable X lie mainly between 0 and u and therefore 

the estimation of F in this interval generally pose no problem. The estimation of the 

portion Fu however might be difficult as we have in general very little observations 

in this area. At this point EVT can prove very helpful as it provides us with a 

powerful result about the conditional excess distribution function which is stated in 

the following theorem: 
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Theorem 3.2 (Pickands (1975), Balkema and de Haan (1974))  

For a large class of underlying distribution functions F the conditional excess 

distribution function Fu(y), for u large, is well approximated by ,( ) ( )uF y G yγ σ≈ ,          

u →∞  , where  

 
( )

1

,

1 1 0
( ) ..................................3.8

1 0
y

y if
G y

e if

γ

σ

γ
σ

γ σ

γ

γ

−

−

 − + ≠= 
 − =

 

for  ( )0, Fy x u∈ −     if   0γ ≥   and 0,y σ
γ ∈ −    if      0γ <  .  

,Gγ σ  is the so called generalized Pareto distribution (GPD). 

If x is defined as x = u + y, the GPD can also be expressed as a function of  x, i.e.         

1

, ( ) 1 (1 ( ) ) ............................................3.9G x x u γ
γ σ γ σ −= − + −  

Figure 3.8 illustrates the shape of the generalized Pareto distribution ,Gγ σ  when γ  

called the shape parameter or tail index, takes a negative, figure 3.9 a positive and 

figure 4.0, a zero value. The scaling parameter σ  is kept equal to one. 

                    
Figure 3.8 Shape of pareto distribution         Figure 3.9 Shape of pareto distribution     
             0.5γ = −                                                                                0γ =  
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Figure 3 .10 :   shape Pareto distribution 0.5γ =  

 

The tail index γ  gives an indication of the heaviness of the tail, the largerγ , the 

heavier the tail. As, in general, one cannot fix an upper bound for financial losses, 

only distributions with shape parameter 0γ ≥  are suited to model financial return 

distributions. 

Assuming a GPD function for the tail distribution, analytical expressions for VaRp 

and ESp can be defined as a function of GPD parameters. Isolating F(x) from 

equation (3.7), ( ) (1 ( )) ( ) ( )uF x F u F y F u= − +  and replacing Fu by the GPD and 

F(u) by the estimate ( )un N n− , where n is the total number of observations and Nu 

the number of observations above the threshold u, we obtain  
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inverting  (2.10) for a given probability p gives 

ˆ
ˆ

1 .................................................................................3.11
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−
∧   

 = + −    
             

Let us rewrite the expected shortfall as  

( ) ....................................................3.12p p ppES VaR E X VaR X VaR
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= + − 〉  

where the second term on the right is the expected value of the exceedances over the 

threshold VaRp. It is known that the mean excess function for the GPD with 

parameter 1γ <  is           
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0 ....................................3.13zσ γ+ >  

This function gives the average of the excesses of X over varying values of a 

threshold z. Another important result concerning the existence of moments is that if X 

follows a GPD then, for all integers 1r γ<  such that, the r first moments exist. 

Similarly, given the definition for the expected shortfall and using expression (3.13), 

for  pz VaR u= −  and X representing the excesses y over u we obtain 
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3.4 EXTREME-VALUE INDEX ESTIMATORS 

In this section, we give the most prominent answers to the issue of parameter 

estimation. We mainly concentrate on the estimation of the shape parameter γ due to 

its (already stressed) importance. The setting on which we are working is:  

Suppose that we have a sample of i.i.d random variable (r.v’s)  X1, X2, ..., Xn (where 

X1:n  ≥  X2:n  ≥ ... ≥ Xn:n are the corresponding descending order statistics) from an 

unknown continuous distribution function. F. According to EVT, the normalized 

maximum of such a sample follows asymptotically a GEV distribution function. 

: ,Hγ µ σ  i.e.  F ∈ MDA(H )γ; μ, σ . In the remaining of this section, we give the most 

prominent answers to the above question of estimation of extreme-value index γ. We 

describe the most known suggestions, ranging from the first contributions, of 1975, in 

the area to very recent modifications and new developments. 

 

3.4.1 Pickands Estimator 

The Pickands estimator (Pickands, 1975), is the first suggested estimator for the 

parameter γ ∈ ℜ of GEV distribution function and is given by the formula 

 ( 4): ( 2):

( 2): :

1 ln ............................ 3.15
ln 2

k n k n
p

k n k n

X X
X X

γ
 −

=   − 
 

The original justification of Pickands estimator was based on adopting a percentile 

estimation method for the differences among the upper-order statistics. A more 

formal justification is provided by Embrechts et al. (1997). A particular characteristic 

of Pickands estimator is the fact that the largest observation is not explicitly used in 
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the estimation. One can argue that this makes sense since the largest observation may 

add too much uncertainty. 

The properties of Pickands estimator were mainly explored by Deckers and de Haan 

(1989). They proved, under certain conditions, weak and strong consistency, as well 

as asymptotic normality. Consistency depends only on the behaviour of k, while 

asymptotic normality requires more delicate conditions (2nd order conditions) on the 

underlying distribution function. F, which are difficult to verify in practice. Still, 

Deckers and de Haan (1989) have shown that these conditions hold for various 

known and widely-used distribution function’s (normal, gamma, GEV, exponential, 

uniform, Cauchy). 

 

3.4.2 Hill Estimator 

The most popular tail index estimator is the Hill estimator, (Hill, 1975), which, 

though, is 

restricted to the Fréchet case γ > 0 . The Hill estimator is provided by the formula 

: 1:
1

1
ln ln ................................. 3.16

k

H i n k n
i

X X
k

γ +
=

= −∑  

The original derivation of the Hill estimator relied on the notion of conditional 

maximum likelihood estimation method. The statistical behaviour and properties of 

the Hill estimator have been studied by many authors separately, and under diverse 

conditions. Weak and strong consistency as well as asymptotic normality of the Hill 

estimator hold under the assumption of i.i.d. data (Embrechts et al., 1997). Similar (or 

slightly modified) results have been derived for data with several types of dependence 
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or some other specific structures (see for example Hsing, 1991 as well as Resnick and 

Stărică, 1995, 1996 and 1998). 

Note that, the conditions on k and distribution function, F, that ensure the consistency 

and asymptotic normality of the Hill estimator are the same as those imposed for 

Pickands estimator. Such conditions have been discussed by many authors, such as 

Davis and Resnick (1984), Haeusler and Teugels (1985), de Haan and Resnick 

(1998). 

Though the Hill estimator has the apparent disadvantage that is restricted to the case 

γ>0, it has been widely used in practice and extensively studied by statisticians. Its 

popularity is partly due to its simplicity and partly due to the fact that in most of the 

cases where extreme-value analysis is called for, we have long-tailed distribution 

function.’s (i.e. γ>0). 

 

3.4.3 Adapted Hill Estimator 

The popularity of the Hill estimator generated a tempting problem to try to extend the 

Hill estimator (with its simplicity and good properties) to the general case γ ∈ ℜ. 

Such an attempt, led Beirlant et al. (1996) to the so-called adapted the Hill estimator, 

which is applicable for any γ in the range of real numbers : 
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3.4.4 Moment Estimator 

Another estimator that can be considered as an adaptation of the Hill estimator, in 

order to obtain consistency for all γ ∈ ℜ, has been proposed by Deckers et al. (1989). 

This is the moment estimator, given by  

12
1

1
2

: ( 1):
1

( )1
1 1

2

1
(ln ln ) 1, 2.

.......................... 3.18
M

k
j

j i n k n
i

M
M

M

M X X j
k

where

γ
−

+
=

= + − −

= − =

 
    



∑



 

Weak and strong consistency, as well as asymptotic normality of the moment 

estimator have been proven by Dekkers et al. (1989). 

 

3.4.5 QQ – Estimator 

One of the approaches concerning Ηill’s derivation is the ‘QQ-plot’ approach 

(Beirlant et al., 1996). According to this, the Hill estimator is approximately the slope 

of the line fitted to the upper tail of Pareto QQ plot. A more precise estimator, under 

this approach, has been suggested by Kratz and Resnick (1996), who derived the 

following estimator of γ : 
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They proved weak consistency and asymptotic normality of QQ-estimator (under 

conditions similar to the ones imposed for the Hill estimator). However, the 

asymptotic variance of QQ-estimator is twice the asymptotic variance of the Hill 



34 

 

estimator, while similar conclusions are drawn from simulations of small samples. On 

the other hand, one of the advantages of QQ-estimator over the Hill estimator is that 

the residuals (of the Pareto plot) contain information which potentially can be utilised 

to confront the bias in the estimates when the approximation is not exactly valid. 

 

3.4.6 Moments Ratio Estimator 

Concentrating on cases where γ > 0 , the main disadvantage of the Hill estimator is 

that it can be severely biased, depending on the second order behaviour of the 

underlying distribution function, F. Based on an asymptotic second order expansion 

of the distribution function. F, from which one gets the bias of the Hill estimator, 

Danielsson et al. (1996) proposed the moments ratio estimator: 
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They proved that MRγ   has lower asymptotic square bias than the Hill estimator 

(when evaluated at the same threshold, i.e. for the same k), though the convergence 

rates are the same. 

 

3.4.7 Peng's and W estimators 

An estimator related to the moment estimator Mγ   is Peng’s estimator, suggested by 

Deheuvels et al. (1997):     
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These estimator has been designed to somewhat reduce the bias of the moment 

estimator. 

Another related estimator suggested by the same authors is the W estimator, where           

( ): ( 1): 1,2.
1

1 .....................3.22
k j

j i n k n j
i

L X X
k + =

=

= −∑
            

 

As Deheuvels et al. (1997) mentioned,  Lγ  is consistent for any γ ∈ℜ (under the usual 

conditions), while Wγ   is consistent only for γ < 1/2. Moreover, under appropriate 

conditions on F and k(n),  Lγ  is asymptotically normal. Normality holds for Wγ  only 

for γ < 1/4. 

 

3.5 USE OF MEAN EXCESS PLOT 

A graphical tool for assessing the behaviour of a distribution function,  F is the mean 

excess function (MEF). The limit behaviour of MEF of a distribution gives important 

information on the tail of that distribution function (Beirlant et al., 1995). MEF’s and 

the corresponding mean excess plots (MEP’s) are widely used in the first exploratory 

step of extreme-value analysis, while they also play an important role in the more 

systematic steps of tail index and large quantiles estimation. MEF is essentially the 

expected value of excesses over a threshold value u. The formal definition of MEF 

(Beirlant et al., 1996) is as follows: 

Let X be a positive random variable X with distribution function F and with finite 

first moment. Then MEF of X is  
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1( ) ( ) ( ) ...................3.23
( )

Fx

u

e u E X u X u F y dy
F u

= − > = ∫                                      

for all u > 0. 

The corresponding MEP is the plot of points {u, e(u), for all u > 0}. The empirical 

counterpart of MEF based on sample 1 2( , ,..., )nX X X is   

( ) ( , )
1

( , )
1

1 ( )
( ) ...................................3.24

1 ( )

n

i u i
i

n

u i
i

X u X
e u

X

∞
=

∞
=

−
=
∑

∑


 

where       ( , )1 ( ) 1u x∞ =   if x > u, 0 otherwise. 

Usually, the MEP is evaluated at the points. In that case, MEF takes the form 

( 1): : ( 1):  k =1,2,...,n
1

1( ) .........................3.25
k

k k n i n k n
i

E e X X X
k+ +

=

= = −∑
     

If   X ∈ MDA(H ) γ , γ > 0, then it s easy to show that  

ln as   (ln ) (ln ln ) ............................... 3.26X ue u E X u X u γ →∞= − > →        

Intuitively, this suggests that if the MEF of the logarithmic-transformed data is 

ultimately constant, then X ∈ MDA(H ) γ , γ > 0 and the values of MEF converge to 

the true value γ. Replacing u, in the above relation, by a high quantile 1 kQ
n

 − 
 

, or 

empirically by ( 1):K nX + , we find that the estimator ln ( 1):( )X K ne X +  will be a 

consistent estimator of γ in case X∈MDA(H ) γ , γ > 0. This holds when k/n→ 0 as  
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n → ∞ . Notice that the empirical counterpart   ln ( 1):( )X K ne X +  of  is the well-known 

the Hill estimator. 

 

3.6  ESTIMATION OF PARAMETERS 

3.6.1 Introduction 

There are different methods available for performing parameter estimation these 

include: Method of Moments Estimation (MME), Probability Weighted Moments 

(PWM) or equivalently L-Moments (LM), Maximum Likelihood Estimation (MLE), 

and Bayesian methods. For smaller sample sizes  (n < 50), the MLE is unstable and 

can give unrealistic estimates for the shape parameter (e.g., Hosking and Wallis 

(1997), Coles and Dixon (1999), and Martins and Stedinger (2000,2001)). Madsen et 

al (1997) argue that the MME quantile estimators have smaller root mean square 

error when the true value of the shape parameter is within a narrow range around 

zero. For weather and climate applications, enough data are typically available to 

expect that MLE would be comparable in performance, especially when blocks 

smaller than years are used. Additionally, MLE allows one to easily incorporate 

covariate information into parameter estimates. 

Furthermore, it is more straightforward to obtain error bounds for parameter estimates 

with MLE compared with most alternative methods. Although work on Bayesian 

estimation with respect to extreme-value analysis has been sparse in the literature, 

good examples are available (Stephenson and Tawn (2004) and the references 

therein, Coles (2001, Section 9.1), and Cooley et al. (2005a, 2005b)). Obviously, one 
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will never select the Gumbel when fitting data to a GEV because the Gumbel is 

reduced to a single point in a continuous parameter space. A common approach is to 

perform an initial hypothesis test to determine which of the three extremal types is 

appropriate, and then fit data only to that type. However, this approach does not 

account for the uncertainty of the choice of extremal type on the subsequent 

inference, which can be quite large. Stephenson and Tawn (2004) suggested a 

Bayesian approach to estimate these parameters that allows for the Gumbel to be 

achieved with positive probability; though results can be highly sensitive to choice of 

prior distributions.  

Suppose we have a random variable X which has probability density function, 

( , )f x θ  where θ   is either a real number or a vector of real numbers. Assume that 

Ω∈θ  which is a subset of ,pR  for .1≥p  For example, θ   could be the vector 

),( 2σµ  when X has a ),( 2σµN  distribution or θ   could be the probability of 

success p when X has a binomial distribution. Our information about θ  comes from 

the sample 1 2, ,. .. ., .nX X X  We often assume that this is a random sample which 

means that the random variables   nXXX ,....,, 21  are independent and have the same 

distribution as X; that is, nXXX ,....,, 21 are independently and identically distributed 

(iid).  We may use the  statistic 1 2( , ,...., ),nT T X X X=  a function of the sample to 

estimate θ   and say that T is a point estimator for .θ  For example, suppose  

nXXX ,....,, 21  is a random sample from a distribution with mean µ   and 
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variance, 2 .σ  Then the statistics X  and  2S  (the sample mean and variance of this 

random sample) are point estimators of  µ  and 2σ   respectively. 

In order to decide which point estimator of a parameter is the best one to use, we need 

to examine their statistical properties and develop some criteria for comparing 

estimators and also gives the most economical information. Ideally, we want an 

estimator which generates estimates that can be expected to be close in value to the 

parameter. These properties are presented in the following Section:  

 

3.6.2 PROPERTIES OF POINT ESTIMATORS 

The desirable properties: unbiasedness, efficiency, consistency, and sufficiency, 

which need be satisfied by point estimator, are presented as follows: 

3.6.2.1 Unbiasedness and efficiency 

Let 1 2, , . . ., nX X X be a random sample from the random variable X with the 

probability distribution function, ( , ),f x θ where .θ ∈Ω  Let 1 2
ˆ ( , , . . ., )nh X X Xθ =   

be a statistic. We say T is an unbiased estimator for θ   if ˆ( ) ,E θ θ= for all .θ ∈Ω  If 

θ̂  is not unbiased (that is, ˆ( )E θ θ≠ ), we say that T is a biased estimator for .θ  

Selecting among several unbiased estimators is to choose the one with minimum 

variance, minimum variance unbiased estimator (MVUE). The lower bound for the 

variance of an unbiased estimator can be established if the appropriate derivatives 

exist and can pass under the integration sign. A remarkable inequality, called the 

Rao-Cramer Lower Bound (CRLB), gives a lower bound on the variance of any 
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unbiased estimator. We then show that under the following regularity conditions, the 

variances of the maximum likelihood estimates achieve this lower bound 

asymptotically. 

4 Assumptions (Regularity Conditions):  

(i) The probability density functions ( ) are distinct. 

(ii) The  have common support for all  . 

(iii) The point  (the true value of ) is an interior point in, the parameter 

space. 

(iv) The , ( , )pdf f x θ  is twice differentiable as a function of . 

(v) The integral ( , )
Rx

f x dxθ∫  can be differentiated twice under the 

integral sign as a function of . 

Theorem 2.3 (Rao-Cramer Lower Bound):  

Let  be independent and identically distribution ( ) with common 

pdf ( , ),f x θ for θ ∈Ω  and T be an unbiased estimator for  then under the 

regularity conditions,   [ ] 1( ) ( )Var T nI θ −
≥ ,  

where 
2 2

2

log ( , ) log ( , )( ) ...................................3.27f x f xI E Eθ θθ
θ θ

   ∂ ∂ = = −    ∂ ∂     
  

  

Proof: The proof for the continuous pdf ( , )f x θ is given as follows: 

1 ( ; )f x dxθ
∞

−∞

= ∫ , since ( , )f x θ is probability density function. Taking the 
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derivative with respect to θ  results in,  ( ; )0 f x dxθ
θ

∞

−∞

∂
=

∂∫  . The latter expression 

can be rewritten as  

 ( ; ) /0 ( ; )
( ; )

f x f x dx
f x
θ θ θ
θ

∞

−∞

∂ ∂
= ∫  

     Or, equivalently, 

 log ( ; )0 ( ; ) .................................................3.28f x f x dxθ θ
θ

∞

−∞

∂
=

∂∫                              

Writing this last equation as expectation, we have established, 

log ( ; ) 0, .............................................................3.29f XE θ
θ

∂  = ∂ 
  

that is, the  mean of the random variable log ( ; )f X θ
θ

∂
∂

is zero(0). If we differentiate       

equation (2.28) again, it follows that 

2

2

log ( ; ) log ( ; ) log ( ; )0 ( ; ) . ( ; ) ...........................3.30f x f x f xf x dx f x dxθ θ θθ θ
θ θ θ

∞ ∞

−∞ −∞

∂ ∂ ∂
= +

∂ ∂ ∂∫ ∫
  (3.18) 

The second term of the right hand side of this equation (2.30) can be written as an 

expectation. This is Fisher information, denoted it by  

2 2

2

log ( ; ) log ( ; )( ) ( ; ) .........................................3.31f x f xI f x dx Eθ θθ θ
θ θ

∞

−∞

 ∂ ∂   = =     ∂ ∂     
∫
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 Clearly, from equations (2.32) and (2.33), we have  

2

2

log ( ; ) log ( , )( ) ( ; ) ar .............................................3.32f x f XI f x dx Vθ θθ θ
θ θ

∂ ∂ = − =  ∂ ∂ ∫

which means that the Fisher information is the variance of log ( ; )f X θ
θ

∂
∂

. 

Note that the important function, log ( ; )f x θ
θ

∂
∂

 is called the score function. Recall 

that it determines the estimating equations for the maximum likelihood estimator, that 

is, the maximum likelihood estimator,θ̂  solves equation: 

 
1

log ( ; )
0

n
i

i

f x θ
θ=

∂
=

∂∑  for θ . 

Now let 1 2( , , . . ., )nT h x x x= be the unbiased estimator forθ , 
1

log ( ; )n
i

i

f x
Z

θ
θ=

∂
=

∂∑ , 

and define ( , ),T g T θ= where and define ( ) ( , ) .E T Tg T dTθ= ∫  Then 

 
1

log ( ; )
( ) 0

n
i

i

f x
E Z E

θ
θ=

∂ = = ∂ 
∑  and 

2

2
1

log ( , )
( )

n
i

i

f x
Var Z n

θ
θ=

∂
= −

∂∑  

 Under the regularity conditions and differentiation under the integral sign: 

 
2 2

2 2log ( , ) log ( , )i if x dx f x dxθ θ
θ θ

∞ ∞

−∞ −∞

∂ ∂
=

∂ ∂∫ ∫  

 ( , ) ( ) ( ) ( ) ...................................................3.33Cov T Z E TZ E T E Z= −  

 ( , )

T Z

Cov T ZCorrρ
σ σ

= =       and     ( ) ( ) 1T Z E T E Zρσ σ + =   
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  1,T Zρσ σ = and  2 2 2 1,T Zρ σ σ ≤ since ( ) 0E Z =  and  2 1ρ ≤ .........................3.34

 2
2 2 2

2

1 1 1
log ( ; )log ( ; )

T
Z f xf x nEnE

σ
σ θθ

θθ

≥ = =
    ∂∂  −      ∂∂       

= CRLB 

Definitions: The following are the consequences of the CRLB inequality: 

(i) An unbiased estimator T is said to be efficient if it attains the CRLB. 

(ii) For any unbiased estimator T, its efficiency is defined by ( )
( )

CRLBeff T
Var T

= . 

(iii) Often 1 2 3( , , ,..., )nT t x x x x=  is efficient at . Specifically, T is said to be 

asymptotically efficient.  

For example, if X has the Bernoulli distribution, (1, ),B θ we obtain ( )I θ as follows:  

log ( ; ) log (1 ) log(1 ),f x x xθ θ θ= + − −      

log ( ; ) 1 ,
1

f x x xθ
θ θ θ

∂ −
= −

∂ −
 

( )

2

2 2

log ( ; ) 1
1

f x x xθ
θ θ θ

∂ −
= − −

∂ −
 

 
( )2 2

1( )
1

X XI Eθ
θ θ

 − −
= − − 

−   ( ) ( ) ( )2 2

1 1 1 1
1 11

θ θ
θ θ θ θθ θ

−
= + = + =

− −−
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3.6.2.2 Consistency and sufficiency 

Let 1 2, , . . ., nX X X be a random sample from the random variable X with cumulative 

distribution function, ( , ),F x θ ..θ ∈Ω  The statistic n̂θ  is said to be consistent if it 

converges to θ .  In other words, the estimator nθ  is said to be a consistent estimator of 

  if, for any positive ,  

  ( )ˆlim 1,nn
P θ θ ε

→∞
− ≤ =  or equivalently, ( )ˆlim 0.nn

P θ θ ε
→∞

− > =  

This means that an unbiased estimator n̂θ for θ  is a consistent estimator of θ  if 

ˆlim ( ) 0nx
Var θ

→∞
→  

The property of sufficiency provides methods for finding statistics that in a sense 

summarize all the information in a sample about a target parameter. Such statistics 

are said to be sufficient. Often, sufficient statistics are used to develop estimators that 

have minimum variance among all unbiased estimators. 

Definition 2.2: The statistic 1 2( , ,..., )nT x x x is said to be sufficient for θ if and only if, 

for each value of t , the conditional distribution of the random sample 

1 2( , ,..., )nx x x given T t= does not depend on θ . 

1 2
1 2 1 2

( , ,..., , )( , ,..., | ) ( , ,..., ) ......................................3.33
( , )

n
n n

f x x xf x x x T t g x x x
h t

θ
θ

= = =
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The following serves as an illustrative example: Let 1 2, ,..., nx x x  be a sequence of 

independent random sample drawn from the Bernoulli distribution, (1, )B θ , where 

( 1)iP x θ= = and 1( , ) (1 ) , 0,1.i ix x
i if x xθ θ θ −= − = To show that iT x= ∑  is 

sufficient for θ we have the following:  

The statistic ( , ) (1 )t n t
i

n
T x B n

t
θ θ θ − 

= = − 
 

∑  

1 2( , ,..., , ) (1 ) (1 )i i
n xx t n t

nf x x x θ θ θ θ θ− −∑∑= − = −  

1 1 2 2( , ,..., | )n nP X x X x X x T t= = = =  

1 2( , ,..., | )
( )

nf x x x T t
P T t

=
=

=
1 2( , ,..., , )

( , )
nf x x x

h t
θ

θ
=  

(1 ) 1

(1 )

t n t

t n tn n
t t

θ θ

θ θ

−

−

−
= =
   

−   
   

, which is independent of θ  

Theorem 2.4(Neyman Factorisation): This theorem which states as follows may also 

provide a convenient means of identifying sufficient statistics:  

A necessary and sufficient condition for the statistic 1 2( , ,..., )nT x x x  to be sufficient 

for θ  is that the joint probability distribution function of the random sample 

1 2, ,..., nx x x  can be factorised into two non-negative functions:  

1 2 1 2 1 2( , ,..., , ) ( ( , ,..., ), ) ( , ,..., ) ...............................................3.34n n nf x x x h T x x x g x x xθ θ= ⋅
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where 1 2( , ,..., )ng x x x  is independent ofθ . 

The Proof: Let 1 2( , ,..., )nX X X X= and 1 2( , ,..., )nx x x x=  

( ) ( )
( ) ( ) ( , ) ( )

T x t T x t
P T t P X x h t g xθ

= =

= = = =∑ ∑  

( )

( , ) ( )( | )
( ) ( )

T x t

P X x T t h xP X x T t
P T t h x

=

= =
= = = =

= ∑
  which does not depend on θ . To 

show that the conclusion holds in other direction, suppose that the conditional 

distribution of X  given T  is independent of θ . Let  ( , ) ( , )h t P T tθ θ= =  and 

( ) ( | )g x P X x T t= = =  

( ) ( , ). ( | ( , ). ( )P X x P T t P X x T t h t g xθ θ θ= = = = = =  

The most commonly used approaches to the statistical estimation of parameters are 

the least squares method and method of maximum likelihood. The later is usually 

used for generalized linear models, where the estimates are usually obtained 

numerically by an iterative procedure which turns out to be closely related to 

weighted least squares estimation. 
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3.7 METHODS OF POINT ESTIMATION 

3.7.1 Methods of maximum likelihood 

Suppose that 1 2, , . . ., nx x x  are independent and identically distributed ( )iid random 

variables with common probability density function, .),;( Ω∈θθxf . The basis of our 

inferential procedures is the likelihood function given by, 

 
1

( , ) ( ; ), ................................3.35
n

i
i

L x f xθ θ θ
=

= ∈Ω∏          

where 1 2( , , . . ., ) ,T
nX x x x=  and the likelihood function which is a function of θ  is 

simply denoted by ( ).L θ  The maximum likelihood estimator ˆ( )θ  of the parameter θ  

is obtained by maximizing ( ).L θ  Usually, for mathematical convenience, we rather 

work with ( ) log ( ),l Lθ θ= which interestingly gives us no loss of information in 

using )(θl because the log is a one-to-one function. Thus   

 
1

( ) log ( ) log ( ; ), ..........................................3.36
n

i
i

l L f xθ θ θ θ
=

= = ∈Ω∑   

Illustrative example 2.1:  

(a) Given the iid random sample, 1 2, ,. . ., nx x x  from the logistic density , 

2

exp{ ( )}( , ) ,
(1 exp{ ( )})

xf x
x
θθ
θ

− −
=

+ − −
    ., ∞<<∞−∞<<∞− θx    

the log of the likelihood simplifies to 
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1 1

( ) log ( ; ) 2 log(1 exp{ ( )})
n n

i i
i i

l f x n nx xθ θ θ θ
= =

= = − − + − −∑ ∑  

Using this, the first partial derivative becomes: 

 ∑
= −−+

−−
−=

n

i

i

x
x

nl
1 1

1 .
)}(exp{1

)}(exp{
2)(

θ
θ

θ         

Setting this equation to 0 and rearranging terms results in the equation: 

 
1

exp{ ( )}
1 exp{ ( )} 2

n
i

i i

x n
x
θ
θ=

− −
=∑

+ − −
                 

 The above has a unique solution. The derivative of the left side of the above equation 

simplifies to, 

 2
1 1

exp{ ( )} exp{ ( )}
0.

1 exp{ ( )} (1 exp{ ( )})

n n
i i

i ii i

x x
x x
θ θ

θ θ θ= =

 − − − −∂
= > ∂ + − − + − − 

∑ ∑  

Thus the left side of equation 
1

exp{ ( )}
1 exp{ ( )} 2

n
i

i i

x n
x
θ
θ=

− −
=∑

+ − −
  is a strictly increasing 

function of θ . Finally, the left side of the same equation approaches 0 as −∞→θ  

and approaches n as ∞→θ . Thus the equation
1

exp{ ( )}
1 exp{ ( )} 2

n
i

i i

x n
x
θ
θ=

− −
=

+ − −∑  has a 

unique solution. Also the second derivative of )(θl is strictly negative for all θ ; so 

the solution is a maximum. 

(b) Also, suppose we have observations Y1, . . . , YN which are data for which the 

GEV distribution  is appropriate. For example, perhaps we take one year as the unit 
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of time, and Y1, . . . , YN represent annual maximum values for each of N years. The 

corresponding log likelihood is 

1

1( , , ) log 1 1 1i i
Y

i i

Y YN
γµ µµ σ γ σ γ γ

γ σ σ

−  − −   = − − + + − +     
    

∑ ∑     

provided    ( )1 0iYγ µ σ+ − >  for each i. 

For the Poisson-GPD model discussed above, suppose we have a total of N 

observations above a threshold in time T , and the excesses over the threshold are Y1, 

. . . , YN . Suppose the expected number of Poisson exceedances is µ T , and the GPD 

parameters are σ and γ . Then the log likelihood is 

1, ( , , ) log log 1 log 1
N

i
Y N

i

YN T Nµ σ γ µ µ σ γ
γ σ

   = − − − + +   
  

∑  

provided 1 0iYγ σ+ > for all i . Similar log likelihoods may be constructed from the 

joint densities and for the r largest order statistics approach and the point process 

approach. 

The maximum likelihood estimators are the values of the unknown parameters that 

maximize the log likelihood. In practice these are local maxima found by nonlinear 

optimization. The standard asymptotic results of consistency, asymptotic efficiency, 

and asymptotic normality hold for these distributions if  γ > −1/2 (Smith 1985). In 

particular, the elements of the Hessian matrix of − (the matrix of second-order partial 

derivatives, evaluated at the maximum likelihood estimators) are known as the 

observed information matrix, and the inverse of this matrix is a widely used 

approximation for the variance-covariance matrix of the maximum likelihood 

estimators. 
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The square roots of the diagonal entries of this inverse matrix are estimates of the 

standard deviations of the three parameter estimates, widely known as the standard 

errors of those estimates. All these results are asymptotic approximations valid for 

large sample sizes, but in practice they are widely used even when the sample sizes 

are fairly small. 

 

3.7.2 L- and M-estimators 

L-estimators are constructed primarily for estimating the location parameter. 

Formally,  will be called a location parameter if   for some 

probability density (or probability mass function) . Similarly,   is called the scale 

parameter if  for some probability density (or probability mass 

function) . The mean of a distribution may not be its location parameter. For 

instance, it is so in case of the normal distribution. However, while in case of a 

general gamma distribution the mean is neither a scale nor a location parameter. 

Let be a random sample from the distribution , and let 

 denote the order statistics of the sample. By an L-

estimator we mean a statistic from the form   , where  ,  

is a double array of coefficients. Thus, L-estimators are simple linear combinations of 

order statistics. The class of L-estimators contains many well-known estimators: 

Choosing 

   for  gives  . The choices ,  for  or 

  for  gives two extreme order statistics, 
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  and . In a similar way one can 

obtain any sample quantile. Choosing  ,  for the remaining  

, one can obtain the sample inter-quartile range, and so on. 

Perhaps the most important L-estimators are the trimmed and windsorized means, 

defined as follows, 

Definition: Let . Then the -trimmed mean is  

   

while the -windsorized mean is   

 

Thus, -trimming consists of rejecting from the sample the fraction   of lowest and 

the fraction  of largest observations, and taking the average of the remaining 

ones(the middle  fraction of observations). On the other hand, -windsorizing 

consists of replacing each observation in the lower  and , respectively. The 

windsorized mean is then calculated as the mean of the windsorized sample. It is 

clear that the purpose of trimming (or windsorizing) is to eliminate (or decrease) the 

effect of outliers in the sample. 

The main objective of L-estimates, apart from establishing their asymptotic 

properties, is to define the notion of optimality and then to determine the optimal 

level of  at which the mean should be trimmed or windsorized. 
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Another class of estimators is M-estimator obtained as follows: Let  be a 

function of two arguments. Given a ample  from the distribution , 

one takes as an estimator of  the solution of the equation 

     …………………………………………......................3.37 

Such estimators are most often obtained by solving an approximate minimisation 

problem. Suppose that we have a “distance” of some sort (not necessarily satisfying 

any conditions for metric), say  . As an estimator  of  we choose a point  

that minimise the sum  

       ……………………………………………............................3.38 

interpreted as the sum of distances from  to all sample points. In a sense,  is the 

point closest to the sample, with closeness being expressed by function H. 

differentiating (2.37) with respect to  and setting the derivative equal to zero(0), we 

obtain equation (2.38) with . This formation comprises two 

important classes of estimators, MLE’s and least squares estimators. Indeed, if we 

define the   as  , then   and the M-

estimator corresponding to this choice is the maximum likelihood estimator ( the 

minus sign is connected with the fact that the problem is now formulated as a 

minimisation problem). 

If we take appropriate functions H and h, we can also obtain different variants of least 

squares estimators. Similarly, trimmed or windsorised means can be obtained by 

appropriate choice of the function H and h. For example, we may take a special form 
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of function  , namely , for some function H of one 

argument. The M-estimator then minimises the sum . For  

we have the simplest least squares estimator; if   for  and 

 for  , we obtain a form of windsorised mean. 

As with L-estimators, the main direction of research is to study the asymptotic 

properties of M-estimators under some general assumptions on functions H or h and 

distributions of . 

 

3.7.3 The bayesian estimation principle 

Bayesian estimation is another likelihood–based method besides the maximum 

likelihood (ML) method. In addition to the statistical model, the statistician must 

specify a prior distribution. In this section, we introduce Bayes estimators within a 

decision–theoretical framework.We estimate a real–valued functional 

parameter ( )T θ , ( )( ) ( )2 2ˆ ˆ( ) ( ) : ( ) ( )E T X T E T X Tθ θ θ− = − where 

1 2 3( , , ,..., )mθ θ θ θ θ= is a parameter vector. This includes, e.g., the estimation  of the jth 

component jθ  of θ  if  ( ) jT θ θ=  , and of the mean ( ) ( )T xdF xθθ = ∫  of the underlying 

df Fθ   represented byθ  .  

T he Prior Density, Minimizing the Bayes Risk: Let (X) be an estimator of the 

functional parameter ( )T θ , where X is a random variable having a distribution 

represented by θ  . For example, 1 2 3( , , ,..., )nX X X X X=  is a sample of size n, ( )T θ  

is the mean of the common distribution and (X) is the sample mean X. The 
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performance of (X) as an estimator of  can be measured by the mean squared error 

(MSE),   ( )( ) ( )2 2ˆ ˆ( ) ( : ( ) ( ) ..................................................3.39E T X T E T X Tθ θ θ− = −   

where the left–hand side emphasizes the fact that the expectation is taken under the 

parameter θ . The performance of the estimator can be made independent of a special 

parameter vector θ  by means of a “prior” probability density ( )P θ  which may be 

regarded as a weight function. Some prior knowledge about the parameter of interest 

is included in the statistical modeling by means of the prior density ( )P θ . The Bayes 

risk of the estimator  with respect to the prior ( )P θ  is the integrated MSE 

2
1

ˆ ˆR(p,T)= E(T(X)-T( ))  | )P( )d .... ..................................3.40mdθ θ θ θ θ
                 

An estimator   , which minimizes the Bayes risk, is called Bayes estimator.  

Computing the Bayes Estimator, the Posterior Density : We introduce the posterior 

density, which is determined by the prior density ( )P θ and the likelihood function, 

and deduce an explicit representation of the Bayes estimator by means of the 

posterior density. Let 1 2 3( , , ,..., )nX X X X X= be a vector of iid random variables with 

common distribution function Fθ and density fθ , where again 1 2 3( , , ,..., )mθ θ θ θ θ= is 

the parameter vector.  

Let ( ) ( )i
i n

L x f xθθ
≤

=∏ be the likelihood function given the sample vector 

1 2 3( , , ,..., )nX X X X X= . Using the likelihood function, one gets the representation 

2 2
1

ˆ ˆ(( ( ) ( )) ) (( ( ) ( )) ) ( ) ..... .............3.41nE T X T E T X T L x dx dxθ θ θ θ θ− = −∫  

of the MSE. We verify that the Bayes estimate can be written 
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1( ) ( ) ( ) ...... ..........................................3.42mT x T P x d dθ θ θ θ∗ = ∫                                                                   

where the function: 

1

( ) ( )
( ) ............................................3.43

( ) ( ) ..... m

L x P
P x

L x P d d
θ θ

θ
θ θ θ θ

=
∫

                               

is the “posterior” density for a given sample vector x , whenever the denominator is 

larger than zero. If ϑ is a one–dimensional parameter and ( )T θ θ= , then the Bayes 

estimate is the mean ( )P x dθ θ θ∫ of the posterior distribution according to (2.42). 

Thus, by means of the prior density ( )P θ  and the likelihood function ( )L x θ  one 

gets the posterior density ( )P xθ . Notice that the posterior density in (2.42) and the 

Bayes estimate can be computed whenever ( ) ( )L x Pθ θ , as a function in θ , is known 

up to a constant. Writing ( ) ( )g fθ θ∝ , when functions g and f are proportional, we 

have  ( ) ( ) ( )p x L x pθ θ θ∝ . 

To prove the representation (2.42) of the Bayes estimate, combine (2.40) and (2.41) 

and interchange the order of the integration. The Bayes risk with respect to the prior 

( )P θ  can be written  

 

………(3.44) 

 

( )
2

1 n 1 m

2
1 1 n

ˆ ˆR(p,T) = E(T(X)-T( ))  | )L(x| )p( )dx ....dx d ........d
ˆ           =  (T(X)-T( )) ( ) ..... f(x)dx .......dx   np x d d

θ θ θ θ θ θ

θ θ θ θ

∫

∫ ∫
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where 1( ) ( ) ( ) ........ mf x L x P d dθ θ θ θ= ∫ . To get the Bayes estimate, compute for every 

x the value z which minimizes the integral ( )2

1
ˆ( ) ( ) .......... mz T p x d dθ θ θ θ−∫ . This 

value z can be computed by showing that the derivative 

( ) ( )2

1 1
ˆ ˆ( ) ( ) .......... 2 ( ) ( ) ..........

2( ( ))

m mz T p x d d z T p x d d
z

z T x

θ θ θ θ θ θ θ θ

∗

∂
− = −∫ ∫

∂
= −

  

is equal to zero, if z is equal to the value  in (2.42). In those cases where the 

posterior density ( )P xθ  is of the same type as the prior density ( )P θ  one speaks of 

a conjugate prior.  

3.7.4 The Maximum likelihood Test 

Let  1 2, ,. . . , nX X X  be iid with pdf  ( , )f X θ  for , where θ is a scalar.  

Consider the two-sided hypotheses     versus  , where  is 

a specified value. The maximum likelihood function and its logarithm are given by: 

1

( ) ( ., )
n

i
i

L f xθ θ
=

=∏   and   
1

( ) log ( ., ) ......................................3.45
n

i
i

l f xθ θ
=

=∑  . 

Let  denote the maximum likelihood estimate of θ. To motivate the test, if  is the 

true value of θ then, asymptotically,   is the maximum value of  . Consider 

the ratio of two likelihood functions, namely       

0( ) .......................................................3.46ˆ( )
L
L
θ
θ

Λ =   
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Note that 1Λ ≤ , but if  is true Λ should be large (close to 1); while  is true, Λ 

should be smaller. For a specified significance level α, this leads to the intuitive 

decision rule, Reject  in favour of   if  where  is such that 

.  This test is called the likelihood ratio test.  

In the multi-parameter case, hypotheses of interest often specify θ  to be in a sub-

region of the space. Suppose X has a ),( 2σµN distribution. The full space is 

}.,0:),{( 22 ∞<<−∞>=Ω µσσµ This is a two-dimensional space. We may be 

interested through in testing that ,0µµ =  where 0µ  is a specified value. Under ,0H  

the parameter space is the one-dimensional space }.0:),{( 22 >= σσµω We say that 

,0H  is defined in terms of one constraint on the spaceΩ . 

In general, let nxx ,.....,1 be iid with pdf );( θxf for .pR⊂Ω∈θ  The hypotheses of 

interest here are, ,:: 10
cHversusH ωθωθ ∩Ω∈∈ where Ω⊂ω  is defined in 

terms of ,0, pqq ≤<  independent constraints of the form, .)(,....,)( 11 qp agag == θθ  

The functions 1 2, , . . ., qg g g  must be continuously differentiable. This implies ω is a 

qp − dimensional space. Based on Theorem; 

,),;(),(
1

Ω∈=∏
=

θθθ
n

i
ixfxL , the true parameter maximizes the likelihood function, 

so an intuitive test statistic is given by the likelihood ratio. 

max ( ) ...........................................3.47
max ( )

L
L

θ ω

θ

θ
θ

∈

∈Ω

Λ =   
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Large values (close to one) of  Λ  suggests that 0H  is true, while small values 

indicate 1H   is true. For a specified level ,10, << αα  this suggests the decision rule 

reject 0H  in favour of ,1H if ,CΛ ≤  where C  is such that max [ ].P Cθ ωα ∈= Λ ≤  As 

in the scale case, this test often has optimal properties; To determine ,C  we need to 

determine the distribution of Λ  or a function of Λ  when H is true. 

Let 
∧

θ  denote the maximum likelihood estimator when the parameter space is the full 

space Ω   and let  
Λ

0θ  denote the maximum likelihood estimator when the parameter 

space is the reduced spaceω . For convenience, define )()(
ΛΛ

=Ω θLL and 

).()( 0

ΛΛ

= θω LL  Then we can write the test statistic as 
)(

)(
Λ

Λ

Ω
=Λ

L

L ω . .( Mckean, et al 

2005)  

 

3.7.5 Profile Likelihoods for Quantiles 

Suppose we are interested in the n-year return level yn, i.e., the (1−1/n)-quantile of 

the annual maximum distribution. This is given by solving the equation 

1
1exp 1 1ny
n

γµγ
σ

− −  − + = −  
   

.  Exploiting the approximation 

1 11 exp
n n

 − ≈ − 
 

,  this simplifies to  
1

11 ny
n

γµγ
σ

−− + = 
 

 , and 

hence  1
n

ny
γ

µ σ
γ
−

= + . 

One approach to the estimation of yn is simply to substitute the maximum likelihood 

estimates µ̂ ,σ̂ , γ̂   for the unknown parameters , ,µ σ γ  respectively, thus creating a 
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maximum likelihood estimator ny  . The variance of ny  may be estimated through a 

standard delta function approximation.  
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CHAPTER FOUR 

FINANCIAL-RISK MEASURES AND MODELLING APPROACHES 

4.1 CONCEPTS OF FINANCIAL-RISK MEASURES 

Some of the most frequent questions concerning risk management in finance involve 

extreme quantile estimation. This corresponds to the determination of the value a 

given variable exceeds with a given (low) probability. A typical example of such 

measures is the Value-at-Risk (VaR). Other less frequently used measures are the 

expected shortfall (ES) and the return level. Hereafter, we define the risk measures 

we focus on in the following section. 

 

4.1.1 Extreme Market Risk 

In the market risk interpretation of our random variables 

( ) ( )1 1 1log log *100 100* .............................................4.1t t t t t tX P P P P P− − −= − − ≈ −     

represents the loss on a portfolio of traded assets on day t, where Pt is the closing 

value of the portfolio on that day. We change to subscript t to emphasize the temporal 

indexing of our risks. As shown above, the loss may be defined as a relative or 

logarithmic difference, both definitions giving very similar values. 

In calculating daily VaR estimates for such risks, there is now a general recognition 

that the calculation should take into account volatility of market instruments. An 

extreme value in a period of high volatility appears less extreme than the same value 

in a period of low volatility. Various authors have acknowledged the need to scale 

VaR estimates by current volatility in some way (see, for example, Hull & White 

(1998)). Any approach which achieves this call for a dynamic risk measurement 
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procedure. In this thesis we focus on how the dynamic measurement of market risks 

can be further enhanced with EVT to take into account the extreme risk over and 

above the volatility risk. 

Most market return series show a great deal of common structure. This suggests that 

more sophisticated modelling is both possible and necessary; it is not sufficient to 

assume they are independent and identically distributed. Various stylized facts of 

empirical finance argue against this. While the correlation of market returns is low, 

the serial correlation of absolute or squared returns is high; returns show volatility 

clustering - the tendency of large values to be followed by other large values, 

although not necessarily of the same sign. 

 

4.1.2 Basel I and II 

Paul Embrechts referred to modelling and analysis of extremes in econometric data as 

“extremes in economics”. This has been illustrated by Longin, F. (2001), one of the 

pioneers of EVT in finance. In this paper, the author, for instance, estimates the 

probability of exceedance and waiting time period for the ten largest daily return 

price movements in the U.S. equity market (S&P 500) over the period July 1962 to 

December 1999. This “hit parade” ranges from −18.35% on October 19, 1987 to 

−3.29% on October 9, 1979. Other, perhaps less well known applied econometric 

work on extremes in economics concerns spill-over events; see for instance Hartmann 

et al.(2001) . In this case, EVT in a multidimensional setup appears. 

“Economics of Extremes,” concentrates on the crucial question: given the 

econometric evidence on quantifiable extremal events in finance (and insurance), how 
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can we handle these extremes from an economic point of view?. Some concrete 

questions could be: How can one devise prudent regulatory rules aiming at market 

stability? Here the Basel Committee enters. 

Measure and more importantly price the time-dimension of system-wide risk. For 

these questions, see for instance, Crockett, A. (2000) and Borio et al. (2001). An 

interesting review on systemic risk, an area where EVT as a quantitative tool has a lot 

to offer, is De Brandt, O and Hartmann, P (2000). Important in these problems is 

finding typically macroeconomic structures that help the economy/market to dampen 

(hopefully avoid) the more negative consequences of extremal events. For most of the 

more mathematically minded extreme value theorists, working in risk management is 

equivalent to estimating Value-at-Risk (VaR) for ever more complicated stochastic 

models. In their terminology, VaR is “just” a quantile of some underlying process or 

distribution. However, VaR is to finance what body temperature is to a patient; an 

indicator of bad health but not an instrument telling us what is wrong and far less a 

clue on how to get the patient (system) healthy again. Let us look at some of the main 

issues in risk management (RM) from the perspective of the regulator as personified 

by the famous Basel Committee. Details underlying the summary below are to be 

found on the homepage www.bis.org of the Bank of International Settlements in 

Basel. 

The Basel Committee was established by the Central-Bank Governors of the Group 

of Ten at the end of 1974. The committee does not possess any formal supranational 

supervisory authority, and hence its conclusions do not have legal force. Rather, it 

formulates broad supervisory standards and guidelines and recommends statements of 
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best practice in the expectation that individual authorities will take steps to implement 

them through detailed arrangements — statutory or otherwise — that are best suited 

to their own national system. In 1988, the committee introduced a capital 

measurement system, commonly referred to as the Basel Capital Accord (also called 

Basel I). This system provided for the implementation of a credit risk measurement 

framework with a minimum capital standard of 8% (a so-called haircut) by the end of 

1992. From the start, banks criticized the lack of risk sensitivity in this approach. 

On the credit risk side, this led to the New Capital Adequacy (so-called Basel II) 

framework of June 1999. The latter is now under discussion with the industry and 

was planned to become operational from 2006. Besides these key developments 

within the credit risk area, already around 1994 we saw various amendments to Basel 

I catering to market risk, in particular for derivative positions. The 1996 report on the 

amendment to the Capital Accord to incorporate market risks opened the floodgates 

for the VaR–modellers. Through this amendment, a direct link between the 

quantitative VaR measure for market risk and regulatory capital was established. The 

exact form of the link very much depends on the statistical qualities of the underlying 

market risk models through backtesting. 

 

4.1.3 Value-at-Risk (VaR) 

In today’s financial world, the Value-at-Risk (VaR) has become the benchmark risk 

measure. Following the Basle Accord on Market Risk (1988, 1995, 1996) every bank 

in more than 100 countries around the world has to calculate its risk exposure for 
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every individual trading desk. The standard method (the normal model) prescribes in 

the following steps: 

• estimate the p-quantile of the profit/loss distribution for the next 10 days 

• set  p = 1% (or p = 5%) based on observations of at least one year (220 trading 

days).  

•  Finally, multiply the estimated quantile by 3. This number is negative and its 

modulus is called Value-at-Risk (VaR).  

The factor 3 is supposed to account for certain observed effects, also due to the model 

risk; it is based on backtesting procedures and can be increased by the regulatory 

authorities, if the backtesting proves the factor 3 to be insufficient. The importance of 

VaR is undebated since regulators accept this model as a basis for setting capital 

requirements for market risk exposure. A textbook treatment of VaR is given in Joriot 

(1997). Interesting articles on risk management are collected in Embrechts,et al(1997 

). 

There were always discussions about the classical risk measure, which has 

traditionally been the variance, and alternatives have been suggested. They are 

typically based on the notion of downside risk concepts such as lower partial 

moments.  

Value-at-Risk is generally defined as the capital sufficient to cover, in most instances, 

losses from a portfolio over a holding period of a fixed number of days. Suppose a 

random variable X with continuous distribution function F models losses or negative 

returns on a certain financial instrument over a certain time horizon. VaRp can then 

be defined as the p-th quantile of the distribution F,     that is  ( )1 1pVaR F p−= −    



65 

 

where 1F −  is the so called quantile function defined as the inverse of the distribution 

function F. For internal risk control purposes, most of the financial   firms compute a 

5%   VaR over a one-day holding period. The Basel accord proposed that VaR for the 

next 10 days and  p = 1%, based on a historical observation period of at least 1 year 

of daily data, should be computed and then multiplied by the `safety factor' 3. The 

safety factor was introduced because the normal hypothesis for the profit and loss 

distribution is widely recognized as unrealistic. 

More generally a quantile function is defined as the generalized inverse of F: 

{ }( ) inf : ( ) ...........................................4.2F p x R F x p← = ∈ ≥  

 

4.1.4 Conditional Value - at – Risk (CVaR) 

As it can be easily seen, VaR is a risk measure that only takes account of the 

probability of losses, and not of their sizes. Moreover, VaR is usually based on the 

assumption of normal asset returns and has to be carefully evaluated when there are 

extreme price fluctuations. Furthermore, VaR may be convex for some probability 

distributions. Due to these deficiencies, other risk measures have been proposed. 

Among them, the Expected Shortfall (ES) as defined in Acerbi et al. (2001), also 

called Conditional Value-at-Risk (CVaR).  Note that in Acerbi and Tasche (2002), 

several risk measures related to ES are considered and the coherence of ES is proved. 

 

4.1.5 The Benefits of using VaR 

The previous sections have shown that VaR is not unproblematic to use, and is not a 

coherent risk measure, however its estimate is downward biased and subject to large 
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errors. These shortcomings which can be exploited by individuals within the 

company as well as the company as a whole do not necessarily imply that VaR is not 

a useful tool in risk management.  The obvious benefit of VaR is that it is easily and 

intuitively understood by non-specialists. It can therefore be well communicated 

within a company as well as between the company and regulators, investors, or other 

stakeholders. Furthermore, it can address all types of risks in a single framework, 

which not only allows the aggregation of risks but also further facilitates 

communication.  

With the help of VaR we can address most problems arising from risks. It can be used 

to set risk limits for individual traders, divisions, and the entire company; it facilitates 

performance measurement and can be used as the basis for performance-related pay; 

it facilitates decisions on the allocation of capital and gives an indication of the total 

capital requirement; finally, it can help to decide which risks to reduce, if necessary.  

No other risk management system developed thus far addresses all these aspects in a 

single framework, while still being accessible to managers and a wide range of 

employees. Therefore VaR has proved to be a very useful tool that is readily 

accepted, despite its shortcomings. But it is exactly these shortcomings that limit the 

extent to which VaR can be used. The VaR estimate should not be taken as a precise 

number, but it provides an indication as to how much risk is involved. It also aids in 

detecting any trends in the behavior of individuals, divisions, or the company as a 

whole. Properly used, VaR is a powerful but still simple tool in risk management. On 

the other hand, overreliance on its results and justifying important decisions solely on 

its basis are likely to be counterproductive. No risk management system can replace 
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the sound judgment of managers, and those using it should be aware of its limits. The 

benefits of the simplicity of VaR cannot be underestimated. A much more precise and 

improved method that is not understood by decision makers is of much less value 

than an easily understood method, even if it gives only a rough estimate of the risks 

involved, provided these limits are understood. Results based on systems that are not 

understood are either ignored or used without the necessary precautions. In both cases 

decisions are likely to be inferior. 

 

4.1.6 Expected shortfall and return level 

Another informative measure of risk is the expected shortfall (ES) or the tail 

conditional expectation which estimates the potential size of the loss exceeding VaR. 

The expected shortfall is defined as the expected size of a loss that exceeds pVaR . 

  ( )p pES E X X VaR= >  .............................................................................4.3 

Artzner et al. (1999) argue that expected shortfall, as opposed to Value-at-Risk, is a 

coherent risk measure. 

If H is the distribution of the maxima observed over successive non overlapping 

periods of equal length, the return level 1 11k
nR H

k
−  = − 
 

     is the level expected to 

be exceeded in one out of k periods of length n. The return level can be used as a 

measure of the maximum loss of a portfolio, a rather more conservative measure than 

the Value-at-Risk. 
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4.2 SOME MODELLING APPROACHES 

4.2.1 Block maxima approach (GEV) 

A starting point for modelling the extremes of a process is based on distributional 

models derived from asymptotic theory. The parametric approach to modelling 

extremes is based on the assumption that the data in hand ( 1 2 3, , ,..... nX X X X ) form an 

i.i.d. sample from an exact GEV distribution function. In this case, standard statistical 

methodology from parametric estimation theory can be utilised in order to derive 

estimates of the parameters θ  In practice, this approach is adopted whenever our 

dataset consist of maxima of independent samples (e.g. in hydrology we have disjoint 

time periods). This method is often called method of block maxima. Such techniques 

are discussed in DuMouchel (1983), Hosking (1985), Hosking et al. (1985), Smith 

(1985), Scarf (1992), Embrechts et al. (1997) and Coles and Dixon (1999). However, 

this approach may seem restrictive and not very realistic since the grouping of data 

into maximum/minimum is sometimes rather arbitrary, while by using only the block 

maxima, we may loose important information (some blocks may contain several 

among the largest observations, while other blocks may contain none). Moreover, in 

the case that we have few data, block maxima cannot be actually implemented. 

In this thesis we deal with another widely used approach, the so-called ‘Maximum 

Domain of Attraction Approach’ by (Embrechts et al., 1997), or Non-Parametric. In 

the present context we prefer the term ‘semi-parametric’ since this term reflects the 

fact that we make only partly assumptions about the unknown distribution function, 

F. So, essentially, we are interested in the distribution of the maximum (or minimum) 

value. Here is the point where EVT gets involved. According to the Fisher-Tippet 
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theorem, the limiting distribution function of the (normalized) maximum value (if it 

exists) is the GEV distribution function. ; ,H Hθ γ µ σ= . So, without making any 

assumptions about the unknown distribution function, F (apart from some continuity 

conditions which ensure the existence of the limiting distribution function.),  EVT 

provides us with a fairly sufficient tool for describing the behaviour of extremes of 

the distribution that the data in hand stem from. The only issue that remains to be 

resolved is the estimation of the parameters of the GEV distribution function. 

( , , )θ γ µ σ= . 

Of these parameters, the shape parameterγ  (also called tail index or extreme-value 

index) is the one that attracts most of the attention, since this is the parameter that 

determines, in general terms, the behaviour of extremes. According to EVT these are 

the parameters of the GEV distribution function that the maximum value follows 

asymptotically. Of course, in reality, we only have a finite sample and, in any case, 

we cannot use only the largest observation for inference. So, the procedure followed 

in practice is that we assume that the asymptotic approximation is achieved for the 

largest k observations (where k is large but not as large as the sample size n), which 

we subsequently use for the estimation of the parameters. However, the choice of k is 

not an easy task. On the contrary, it is a very controversial issue. Many authors have 

suggested alternative methods for choosing k, but no method has been universally 

accepted.  

One approach to working with extreme value data is to group the data into blocks of 

equal length and fit the data to the maximums of each block; for example, monthly 
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maxima of daily oil pricing. The choice of block size can be critical as blocks that are 

too small can lead to bias and blocks that are too large generate too few block 

maxima, which leads to large estimation variance Coles, Stuart(2001). The block 

maxima approach is closely associated with the use of the GEV family. Note that all 

parameters are always estimated by maximum likelihood estimation (MLE), which 

requires iterative numerical optimization techniques. 

 

4.2.2 The R- largest order statistics model 

An extension of the maximum approach is to use the r largest observations in each 

fixed time period (say, one year), where r > 1. The mathematical result on which this 

relies is that 

( )Pr ( )nn n
n n

n

M b x F a x b H x
a

 −
≤ = + → 

 
...............................................4.5 

which  is easily extended to the joint distribution of the r largest order statistics, as  

n → ∞ for a fixed r > 1, and this may therefore be used as a basis for statistical 

inference. A practical caution is that the r-largest result is more vulnerable to 

departures from the i.i.d. assumption (say, if there is seasonal variation in the 

distribution of observations, or if observations are dependent) than the classical 

results about extremes.   

The main result is as follows: if ,1 ,2 ,3 ,...n n n n rY Y Y Y≥ ≥ ≥ ≥   are  r   largest order 

statistics of  i.i.d.  sample of size n, and na and nb are the normalising constants  
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in equation (3.5),  then 
,1 ,,...,n n n r n

n n

Y b Y b
a a
− − 

 
 

 converges in distribution to a 

limiting random vector ( )1,..., rX X , whose density is  

1

1
1

1( ,..., ) 1 1 log 1 ..........4.6
r

jr r
r

j

xxh x x exp
ξ µµσ γ γ

σ γ σ

−
−

=

 −  −  = − + − + +     
       

∑
 

Some examples using this approach are the papers of Smith (1986) and Tawn (1988) 

on hydrological extremes, and Robinson and Tawn (1995) and Smith (1997) for a 

novel application to the analysis of athletic records. 

 

4.2.3 Point process approach 

This was introduced as a statistical approach by Smith (1989), though the basic 

probability theory from which it derives had been developed by a number of earlier 

authors. In particular, the books by Leadbetter et al. (1983) and Resnick (1987) have 

much information on point-process viewpoints of EVT. In this approach, instead of 

considering the times at which high-threshold exceedances occur and the excess 

values over the threshold as two separate processes, they are combined into one 

process based on a two-dimensional plot of exceedance times and exceedance values. 

The asymptotic theory of threshold exceedances shows that under suitable 

normalisation, this process behaves like a non homogeneous Poisson process. 
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4.2.4 Peaks over threshold (pot)/point process (pp) approach 

The GPD model looks at exceedances over a threshold and those values are fitted to a 

generalized Pareto distribution. A more theoretically appealing way to analyze 

extreme values is to use a point process characterization. This approach is consistent 

with a Poisson process for the occurrence of exceedances of a high threshold and the 

GPD for excesses over this threshold. Inferences made from such a characterization 

can be obtained using other appropriate models from above (Coles, Stuart (2001)). 

However, there are good reasons to consider this approach. Namely, it provides a nice 

interpretation of extremes that unifies all of the previously discussed models. For 

example, the parameters associated with the point process model can be converted to 

those of the GEV parameterization. In fact, the point process approach can be viewed 

as an indirect way of fitting data to the GEV distribution that makes use of more 

information about the upper tail of the distribution than does the block maxima 

approach (Coles, Stuart(2001)). 
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CHAPTER FIVE 

MODELLING OF DAILY BRENT CRUDE OIL PRICES 

5.1 INTRODUCTION 

In this chapter our primary objective is to analyze the volatility of daily crude oil 

prices by applying the concepts EVT to model the tails of the distribution for daily 

returns. We describe the historical data for Brent crude oil prices on worlds market, 

the preliminary tests undertaken on the data and exploratory techniques, the 

determination of thresholds, the fitting of the GPD, and the examination of tail 

modelling. The empirical analysis has been undertaken by writing program code that 

was executed using the R package. We have used GEV distribution fitting to the 

extreme value data and investigate the likelihood-based confidence intervals for 

quantiles of the fitted distribution.  We will also use Generalised Pareto Distribution 

(GPD) and fit the extreme value data.  

Fitting a parametric distribution to the daily Oil price (Brent crude) sometimes results 

in a model that agrees well with the data in high density regions, but poorly in areas 

of low density.  For unimodal distributions, such as the distribution of oil pricing, 

these low density regions are known as the "tails" of the distribution. One reason why 

a parameter model might fit poorly in the tails is that by definition, there are fewer 

data in the tails on which to base a choice of model, and so models are often chosen 

based on their ability to fit data near the mode.  Another reason might be that the 

distribution of real data is often more complicated than the usual parametric models. 

However, in many applications, fitting the data in the tail is the main concern.  The 

GPD was developed as a distribution that can model tails of a wide variety of 



74 

 

distributions, based on theoretical arguments. One approach to distribution fitting that 

involves the GPD is to use a non-parametric fit (for example the empirical cumulative 

distribution function) in regions where there are many observations, and to fit the 

GPD to the tail(s) of the data. 

We will also demonstrate how to fit the GPD to tail data, using functions in the 

Statistics software of R and Matlab for fitting this distribution and estimating 

parameters by maximum likelihood method. The Generalized Pareto (GP) is a right-

skewed distribution, parameterized with a shape parameter, , and a scale 

parameter , sigma. The shape parameter,  is also known as the "tail index" 

parameter, and can be positive, zero, or negative. 

 

5.2 PRELIMINARY ANALYSIS OF DATA 

The descriptive analysis performed in this section gives the important features of the 

data obtained. Table 4.1 presented below give quick descriptive summary of all the 

parameters under study. The data used in this study is the daily closing prices of 

Brent crude oil over the period extending from 21 May 1987 to 18 May 2009 making 

total observations of 5594 excluding public holidays.  The data are obtained from the 

website  http://tonto.eia.doe.gov/dnav/pet/hist/rbrted.htm source Energy Information 

Administration 

 

 

  

http://tonto.eia.doe.gov/dnav/pet/hist/rbrted.htm
http://www.eia.doe.gov/
http://www.eia.doe.gov/
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Table 5.1: Descriptive statistics for the Oil pricing returns  

Mean 30.91842 Skewness 2.126262 

Maximum 143.9500 Kurtosis 7.681817 

Minimum 9.100000 Jarque-Bera 9324.118 

Std Dev. 22.77285 Probability 0.000000 

 

The returns at time t are defined in the natural logarithm of the oil price (p), that is,  

( ) ( )1 1 1log log *100 100* ...............................5.1t t t t t tX P P P P P− − −= − − ≈ −  

Generally the index has a large difference between its maximum and minimum 

returns. The standard deviation is also high indicating a high level of fluctuations of 

the daily Oil price. There is also evidence of positive skewness, which means that the 

right tail is particularly extreme, an indication that the Oil pricing has non-symmetric 

returns. Spot Oil price are leptokurtic or fat-tailed, given its large kurtosis statistics in 

Table 5.1. The kurtosis exceeds the normal value of 3. The series is non-normal 

according to the Jarque-Bera test, which rejects normality at the 1% level for each 

series.  
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Figure 5.1: Plots of Daily oil prices 

 

 
 
  Figure 5.2: Plots of daily logarithmic returns. 

There are 5,593 adjusted observations, including 2,655 observations of gains and 

2,793 observations of losses. The plot of the daily crude prices (Figure  4.1a) shows a 

substantial increase since 2002 with lots of fluctuations, and the graph of daily returns 

(Figure 4.1b) confirms the volatility of the crude oil market. 
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                                 Figure 5.3: Histogram of standardized returns 

 In Figure 5.3 above, we reproduce the histogram of the standardized returns and we 

observe that in the tails the data are far from normal. 

 

5.2.1 Distribution of Gains and Losses 

Some studies, including Krehbiel and Adkins (2005), claim that the upper and lower 

tails behave differently, and thus should be treated separately while estimating risk 

measures. Evidences from our empirical study show the small difference in risk 

statistics on both tails, implying that the thickness of two tails is likely to be similar. 

In Figure 5.4 below, the empirical distribution of both tails of the distribution are 

shown. The gains distribution (top) shows a higher extremal observation than that of 

the losses distribution (bottom). The losses on the other hand, show many extremal 

observations than the gains distribution. 

The distributions of the gains and losses observations are shown in figure 5.4. Thus 

the figure gives the empirical distribution of both tails of the gains and losses. 
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            Figure 5.4: Distribution of gains (top) and losses(bottom) 

 

 

5.3 MODELLING OF DATA 

5.3.1 Block maxima approach (GEV) 

We now apply the block maxima method to our daily return data for the gains (right 

tail) distribution. Similar method will be applied for losses (left tail). For this method 

the delicate point is the appropriate choice of the periods defining the blocks. The 

suggested periods is block size of 30 observations, this is due to the volatile nature of 

the returns and also for sufficiently large data for Theorem 3.1 in chapter 3 to hold. 

For the gains, the data used over the period under study (ie 2,655 observations) is 

divided into 30 non-overlapping sub-samples and the maximum observed value 

picked. This gives a total sample size of 89 observations, each of them containing the 
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daily returns of the successive month. 
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Figure 5.5:  Plots of the monthly maxima of the daily returns of GEV fit. (gains) 

 

In Figure 5.5 the two top plots; gives the sample plot of block maxima (left) and a 

histogram showing the GEV of residuals (right). In the bottom is a scatter plot of the 

residuals showing time of block maxima. The idea here is to observe a possible time 

trend in the observations. To aid in judging this, a simple fitted curve (using the 

function of fExtremes package in R) is superimposed and there is evidence of a 

systematic trend.  The solid line is the smooth of scattered residuals obtained by a 

spline method. The QQ-plot of the residuals is shown in the bottom right. The QQ-

plot of the fitted model does not deviate much from the straight line; the plot is based 
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on the GEV fitted to all 89 block maxima. 
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                  Figure 5.6:  Diagnostic plots for GEV fit (Gains) 

 

Figure 5.6 displays the diagnostic plots for GEV fit to block maximum data of sample 

size 89. The top two plots do not deviate much from the straight line and the 

histogram match up with the curve. The return level plot gives an idea of the expected 

return level for each return period. The maximum likelihood estimates (MLE) for the 

parameters of the fit shown in Figure 4.2 were found to be  = 4.4489(0.0789), 
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 =1.8113 (0.2130) and = 0.2940(0.1777) with a negative log-likelihood value for 

this model of approximately 208.5651 and standard errors in parentheses. Similarly, 

for the left tail the maximum likelihood. 

   

5.3.2 Estimation of Shape Parameters  

We mainly concentrate on the estimation of the shape parameter γ due to its (already 

stressed) importance in this section.  

Figure 5.7 shows Hill-plot of the oil pricing data with a 0.95 confidence interval. In 

this plot, estimated parameters  are plotted against upper order statistics (number of 

excedances). Alternatively, estimated parameters may be plotted against different 

thresholds. A threshold is selected from the plot where the shape parameter  is fairly 

stable. The number of upper order statistics or thresholds can be restricted to 

investigate the stable part of the Hill-plot. The function hill Plot investigates the 

shape parameter and plots the Hill estimate of the tail index of heavy-tailed data, or of 

an associated quantile estimate. This plot is usually calculated from the alpha 

perspective. For a generalized Pareto analysis of heavy-tailed data using the 

Generalised Pareto Distribution (GPD) fit function, it helps to plot the Hill estimates 

for  (the shape parameter). 
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        Figure 5.7: Hill plot of oil price data 

 

From figure 5.8 below, the Pickands estimate of the shape parameter is,  0.3131 
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Figure 5.8: Plot of Pickands Estimator 
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From Figure 5.9 below, the hill estimate of the shape parameter is,  
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    Figure 5.9: Plot of Hill Estimator 
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   Figure 5.10: Plot of Decker – Einmahl – de Haan Estimator with shape parameter 

is,    
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5.3.3 Return Level Plot for Positive and Negative Returns using GEV Fit 

The return level plot shown in Figure 5.11 shows the return level, and an estimated 

95% confidence interval. The return level is the level we expect to be exceeded only 

once every k  (time period): This is level is (in this case percentage) that is expected 

to be exceeded, on average, once every m time points (in this case months). The 

return period is the amount of time expected to wait for the exceedance of a particular 

return level.  
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Figure 5.11 : Profile likelihood plots for the one-month return level and 95%   
confidence   (top positive returns) and (bottom negative returns)  
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In figure 5.11, the top graph is the profile likelihood plots for the ten-month return 

level and 95% confidence interval for return value 10.227 (8.973 , 12.17525) of the 

right tail with confidence interval in parentheses. The left tail (shown bottom) gave 

return level value 9.63 (8.6838, 10.9704) with confidence interval in parentheses. A 

return value of 10.227 means that the maximum gain (positive returns) observed 

during a period of 12 mouths will exceeds 10.23% (8.97%, 12.17%) in one out of one 

year on an average with 95% confidence interval in parenthesis. Similarly, for the left 

tail, a return value of 9.63 means that the maximum loss observed during a period of 

12 months will exceeds 9.23% (8.68% ,10.97%) in one out of one on an average with 

95% confidence interval in parenthesis. 

In table 5.2 below, the point estimate of the shape parameter is greater than zero an 

indication of fat-tailness of the distribution. The confidence interval also does not 

include zero confirming the heavy-tail distribution at the right tail. The scale 

parameter does not include one(1) an indication of extremal events. 

Table 5.2:   Generalised Extreme Value Parameter Estimates for Gains 

PARAMETER POINT ESTIMATE CONFIDENCE INTERVAL 

    Shape parameter 0.2940   [0.1394    0.4489] 

Location  parameter 4.4493   [4.0313    4.8662] 

    Scale parameter 1.8113                 [1.4943    2.1949] 
   

 In table 5.3 below, the point estimate of the shape parameter is greater than zero an 

indication of fat-tailness of the distribution. The confidence interval includes zero 

confirming the thin -tail distribution at the left tail. The scale parameter does not 

include one(1) an indication of extremal events. 
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Table 5.3:   Generalised Extreme Value Parameter Estimates for Losses 

PARAMETER POINT ESTIMATE CONFIDENCE INTERVAL 

    Shape parameter 0.1244      [-0.0125  0.2613] 

Location  parameter 4.4853     [4.0413   4.9292] 

    Scale parameter 1.9802                    [1.6727   2.3443] 
   

 

5.3.4 The threshold selection 

Choosing some suitable threshold is critical in order to adopt the POT method to 

model the tails of the distribution of daily returns. So far, no automatic algorithm with 

satisfactory performance for the selection of the threshold u is available. The issue of 

determining the fraction of data belonging to the tail is treated by Danielsson et al. 

(2001), Danielsson and de Vries (1997) and Dupuis (1998) among others. However, 

these references do not provide a clear answer to the question of which method 

should be used. It is desired to find a threshold that is high enough that the 

underlying theoretical development is valid, but low enough that there is sufficient 

data with which to make an accurate fit. That is, selection of a threshold that is too 

low will give biased parameter estimates, but a threshold that is too high will result in 

large variance of the parameter estimates. Some useful descriptive tools for threshold 

selection includes, the mean excess, or mean residual life, plot and another method 

involving the fitting of data to a GPD several times using a range of different 

thresholds. The ME (mean excess) plot is helpful in detecting graphically the quantile 

above which the Pareto’s relationship is valid.  
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Chapter three details the empirical mean excess plot is approximately linear in the 

threshold u given that the underlying distribution of sample data is a GPD. More 

specifically, the ME plot of the data can be used to distinguish between light- and 

heavy-tailed models. The plot of a heavy-tailed distribution shows an upward trend, a 

medium tail shows a horizontal line, and the plot is downward-sloped for light-tailed 

data. A common ground in our sample data is that both the ME plots of positive and 

negative returns have an upward-trend part followed by an irregular portion in the far 

end. The initial and small part of the gain plot is downward-sloping until u ≈ 0 to 4.5, 

followed by a roughly upward-sloping, where upon it varies sharply. The case of 

losses shows an approximate linearity with slightly upward trend in the threshold 

from u ≈ 1 to u ≈ 5. Therefore, there is some evidence to choose thresholds from 4.5 

to 6 for the right tail and from 4.5 to 5.5, for the left tail based on the criterion of 

linearity in the ME plots shown in Figure 5.12 below.  
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Figure 5.12: Mean excess plot for positive returns (top) and negative 
returns (Bottom)  

 
 

The empirical distribution function is given in figure 5.13 on a double logarithmic 

scale. This scale is used to highlight the tail region. Here an exact Pareto distribution 

corresponds to linear plot. 
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Figure 5.13: log-log Empirical distribution 

The sample mean excess function, which is an estimate of the mean excess function 

e(u) defined in equation 2.23, should be linear. This property can be used as a 

criterion for the selection of u. Figure 5.14 shows the sample mean excess plots 

corresponding to the oil pricing data. From a closer inspection of the plots we suggest 

the values u = 5.0 for the threshold of the right tail. This value is located at the 

beginning of a portion of the sample mean excess plot that is roughly linear, leaving 

respectively 110 observations in the tails. 

A straight line with positive slope above a given threshold u = 5.0 is a sign of the 

GPD  
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                Figure 5.14: Mean excess plot 
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                   Figure 5.15: Mean Residual Plot 

Figure 5.1 shows the mean excess plot, with confidence bands, for the daily oil price 

data, based on all exceedances over thresholds u = 5.0. The continuous dotted line 

(middle) is the estimated theoretical mean excess assuming the GPD at threshold u, 
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the dotted lines above and below is the estimated confidence bands. The plot lie 

nearly everywhere inside the confidence bands, but plot appears to show more 

systematic departure from a straight line, adding to the evidence that threshold 5.0 is 

a better. 

As a means of threshold selection, the ME plots may be difficult to interpret, and the 

results can be treated as preliminary conclusions. A further step is to apply the GPD 

fitting and look for stability of shape parameter estimates. We fit the exceedances of 

daily returns beyond the associated threshold in each tail to the GPD. Because the 

maximum likelihood estimator of the shape parameter is asymptotically normal, we 

can calculate the associated approximate standard errors and construct confidence 

intervals for this parameter. The plots of the shape parameter estimates against 

different threshold levels are shown in Figure 5.16 for gains and figure 5.17 for 

losses. The upper and lower dashed lines constitute confidence intervals at an 

approximate 95% level.       
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                  Figure 5.16: Estimates for shape parameter (positive returns) 
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                    Figure 5.17: Estimates for shape parameter (negative returns) 

The estimated shape parameter  and scale parameter  as well as their associated 

standard errors under different thresholds for both tails are listed in Table 5.4 

 

Table 5.4: Maximum likelihood parameter estimation under different thresholds 
for   both returns 

 
       Parameter estimates for positive returns       Parameter estimates for negative returns 

 u= 4.8827 u = 5.1293   u=5.4067  u= 4.7641   u = 4.9889   u=5.2912 

 

(s.e.) 

0.3151  

0.1226   

0.2815 

 0.1294  

0.2164 

0.1352 

 0.1867 

(0.1033)    

0.1807   

(0.1101)   

0.1853 

(0.1197)   

 

In order to apply EVT, the threshold should be sufficiently large so that only the tail 

of the distribution can be analyzed. When the threshold is close to zero, there are too 

many observations included. Practical experience suggests it is reasonable including 

observations up to roughly one-fifth of the total number of observations for both 

positive returns and negative returns. This is somewhat arbitrary, but provides a 
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reasonable compromise. Combining this restriction and results from the ME plots and 

the shape parameter plots, we choose the range of the threshold from 4.5 to 5.5 for 

positive returns and from 4.6 to 5.4 for negative returns. 

 

5.3.5 Generalized Pareto Distribution(GPD) 

Sometimes using only block maximum can be wasteful if it ignores much of the data. 

It is often more useful to look at exceedances over a given threshold instead of simply 

the maximum (or minimum) of the data. EVT provides for fitting data to GPD 

models as well as threshold selection. 
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Figure 5.18: Diagnostic plots for the GPD fit of the daily oil price returns 

using a    threshold of 5.0(Gains) 
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In Figure 5.18 (top left) the estimated GPD model for the excess oil pricing is plotted 

as a curve while the actual daily oil pricing thresholds are shown in circles (in 

logarithmic scale). With threshold of u = 5.0, the estimated parameters are 

and . The number of exceedances is 110 from oil pricing data 

sets. The top right is a plot of the empirical distribution of the data vector on 

logarithmic scaled axes. The bottom left of figure 5.18 shows scatter plot of the 

residuals indicating time of exceedance. The idea here is to observe a possible time 

trend in the observations. To aid in judging this, a simple fitted curve (using the 

function of fExtremes package in R) is superimposed and there is evidence of a 

systematic trend.  The solid line is the smooth of scattered residuals obtained by a 

spine method. The QQ-plot of the residuals is shown in the bottom right. The plot of 

the fitted model does not deviate much from the straight line; it is based on the GPD 

fitted to all exceedances above threshold 5.0. The main point here is that although 

there are reasons for treating the largest observations as outliers, they are not in fact 

very far from the straight line in other words; the data are in fact consistent with the 

fitted GPD, which in this case is extremely fat-tailed. If this interpretation is accepted, 

there is no reason to treat those observations as outliers.             

In order to start this procedure, a threshold value u = 5.0 and 4.5 for the right and left 

tail respectively, has to be chosen as estimate depend on the excesses over this 

threshold. The estimates of the key shape parameter   and their corresponding 

standard deviations for both tails as a function of u (alternatively, as a function of the 

number of order statistics used) are given in Figure 5.19 and Figure 5.20.   
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    Table 5.5 :    GPD estimate of positive tail- index  
PARAMETER GPD ESTIMATE STANDARD DEVIATION 

Shape parameter 0.351 0.1386 

Scale parameter 1.683 0.2775 

     
 
 
  Table 5.6:    GPD estimate of negative tail- index  

PARAMETER GPD ESTIMATE STANDARD DEVIATION 

Shape parameter 0.118 0.0941 

Scale parameter 1.929 0.2413 

 

   Table 5.7 : Risk Measures of right-tail distribution (GPD-fit) 
PROBABILITY VALUE-AT-RISK(VaR)  EXPECTED  SHORTFALL(ES) 

0.9500 4.694  7.122 
0.9900   8.1023  12.374 
0.9950 10.2776 15.725 
0.9990 17.9258 27.509 
0.9995               22.8069                         35.031 
0.9999 39.9687  61.474 

 

    Table 5.8 : Risk Measures of left-tail distribution (GPD-fit) 
PROBABILITY VALUE-AT-RISK(VaR)  EXPECTED  SHORTFALL(ES) 

0.9500 4.5726 6.771 
0.9900 8.0079 10.668 
0.9950 9.7018 12.589 
0.9990              14.2158 17.712 
0.9995              16.4417 20.236 
0.9999              22.3735 26.966 

 

The results in Table 5.7 indicate that, with probability 0.01 that is 99% confidence 

interval, the tomorrow's gain will not exceed the value 8.10% and that the 
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corresponding expected gain, that is the average gain in situations where the gains 

exceed 8.10%, is 12.37%. Similarly, results in Table 5.8 indicate that, with 

probability 0.01 that is 99% confidence interval, the tomorrow's gain on a short 

position will loss the value 8.00% and that the corresponding expected loss, that is the 

average loss in situations where the losses exceed 8.10%, is 10.67%. 

For higher quantiles that is 99.99% confidence interval, in table 5.7 the tomorrow's 

gain on a long position will exceed the value 39.96% and that the corresponding 

expected gain, that is the average gain in situations where the gains exceed 39.96%, is 

61.47%. Similarly, results in table 5.8 indicate that, with 99.99% confidence interval, 

the tomorrow's loss on a short position will lose the value 22.37% and that the 

corresponding expected loss, that is the average loss in situations where the losses 

exceed 22.37%, is 26.96%. It is interesting to note that the upper bound of the 

confidence interval for the shape parameter  is such that the first order moment is 

finite (1/0.68 > 1). This guarantees that the estimated expected shortfall, which is a 

conditional first moment, exists for both tails as shown in figure 5.19 
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Figure 5.19:  The profile log-likelihood and confidence intervals for shape parameter. 
Gains (top) and losses(bottom) 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability plot

Empirical

M
od

el

- - -
- -

-
-

-
-

-
-

-

-
-

-
-

-
-

-
-

- - - -

10 15 20 25 30

10
15

20
25

30
35

QQ-plot

Model

Em
pir

ica
l

---- - - - - - - -
-

--
--

- -
-

-

-

-

10 15 20 25 30 35 40 45

0.
00

0.
10

0.
20

Density Plot

Quantile

De
ns

ity

1 2 5 10 20

10
15

20
25

30
35

Return Level Plot

Return Period (Years)

Re
tu

rn
 L

ev
el

 

Figure 5.20: Graphical diagnostic for a fitted POT model (univariate case) 
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Figure 5.20 above shows graphic diagnostics for the fitted model. It can be seen that 

the fitted model with maximum likelihood estimates seems to be appropriate. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 INTRODUCTION 

The study was carried out to explore the application of EVT in relation to world’s oil 

pricing of Brent crude. The main objective of this study was to find out the long-term 

effect on investing in Brent Crude oil industry in Ghana. This chapter presents a 

summary of the various analyses performed, the findings obtained and what they 

imply with regard to the research objectives. The chapter is concluded with 

recommendations including the further work to be done. 

 

6.2 SUMMARY OF FINDINGS 

In this study, Value-at-Risk measures the best/worst case scenario on the market 

value of the Brent crude oil over one trade day. We first consider the cases of point 

estimates under the thresholds for both tails (u=5 for the right tail and 4.5 for the left 

tail) with statistics shown in Table 4.6 and 4.7. For example, we calculate VaR as u = 

5.0 at the 99th percentile for the right tail. That is, given usual conditions, we expect a 

daily change in the value of crude oil market would not increase by more than 8.10%. 

In other words, the market value, with a probability of 1%, would be expected to gain 

by $81,000 or more if we have an investment of $1 million in that market. On the 

other hand, VaR is estimated as u=4.5 at the 1st percentile for the left tail. This 

implies that, for the lowest 1% negative daily returns, the worst daily loss in the 

market value may exceed 8.00% in expectation. Put differently, if we invest $1 

million in crude oil, we are 99% confident that our daily loss at worst will not exceed 
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$80,000 during one trade day. Similarly, at a lower quantile of 95-level, the estimated 

VaR is 4.69% for gains and 4.57% for losses. We can state that, with 95% 

confidence, the expected market value of crude oil would not gain by more than 

7.12% for the best case scenario or lose more than 6.77% for the worst case scenario 

within one-day duration. Under the higher threshold for both tails (5.5 for the right 

tail and 5.8 for the left tail), the estimates of VaR are very close to their 

corresponding values under the lower threshold, and the estimates may or may not be 

larger than that under a lower threshold. These estimates can be used in different 

ways. For example, the VaR results in table 4.7 and 4.8 imply that, given the same 

amount of investment the possibility of loss for an investment in the oil market is 

relatively lower than the possibility of gain. In addition, the difference between the 

VaR and ES for the positive returns is bigger than that for the negative returns. This 

means that the expected gain over the VaR under the situation of gain is more than 

the expected loss over the VaR under the situation of loss. 

The risk measures could also help oil producers to forecast the required number of 

barrel of oil to produce. 

Researchers have conducted sound studies on the tail distribution modelling by 

applying some methods of univariate EVT, especially in the financial field. An 

important argument is that the EVT approach well captures the features of the 

innovation distribution and can provide more accurate estimates of risk measures 

compared with other approaches (for example, McNeil, 1997; Gencay et al., 2003; 

Fernandez, 2005), and one can obtain better estimates with the application of the 

GPD fitting of the excess distribution based on threshold models (for example, Coles, 
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2001; Gilli and Këllezi, 2006; Marimoutou et al., 2006). This confirms our belief of 

choosing the POT method to apply the EVT. Overall, the assessment of our results 

shows that the point and estimations are stable and reliable, implying that this 

approach of modelling extreme values can be used to further application of extreme 

events.  

 

6.3 CONCLUSION 

The high volatility of prices in oil markets requires the implementation of effective 

risk management. EVT is a powerful tool to estimate the effects of extreme events in 

risky markets based on sound statistical methodology. This study exhibits how EVT 

can be used to model tail-related risk measures such as Value-at-Risk and Expected 

Shortfall by applying it to the daily returns of world’s crude oil prices market. Our 

application captures the heavy-tailed behaviour in daily returns and the asymmetric 

characteristics in distributions, suggesting us to treat positive and negative returns 

separately. An unconditional approach is favoured as no evidence indicates the 

existence of conditional heteroskedasticity in our sample data. In the context of 

applying EVT, the peak over threshold method provides a simple and effective means 

to choose thresholds and estimate parameters. By assessing empirical excess 

distribution functions and survival functions with associated theoretical distribution 

simulations, we find the goodness of fit in tail modelling. Furthermore, as we increase 

the threshold, the fit is gets less precise for both gains and losses; at an either lower or 

higher threshold level, positive daily return series fits a GPD slightly better than 

negative one does.  



102 

 

The EVT-based Value-at-Risk approach adopted in this study provides quantitative 

information for analysing the extent of potential extreme risks in oil markets, 

particularly the crude oil markets. 

Our conclusion is that EVT can be useful for assessing the size of extreme events. 

From a practical point of view this problem can be approached in different ways, 

depending on data availability and frequency, the desired time horizon and the level 

of complexity one is willing to introduce in the model. One can choose to use a 

conditional or an unconditional approach, the Block Maxima Method (BMM) or the 

Peaks over Threshold (POT) method. 

In our application, the POT method proved superior as it better exploits the 

information in the data obtain. Being interested in long term behaviour rather than in 

short term forecasting, we favoured an unconditional approach. 

 

6.4 RECOMMENDATIONS 

• Interested organizations and corporations could employ this technique as one 

of the means of risk management. For those who invest in the Ghana crude oil 

market, our estimates of VaR and ES provide quantitative indicators for their 

investment decisions. 

• Government should employ all necessary legislature and business plans to 

speed up the exploitation of oil as there is an indication of a substantial rise in 

oil price for the next five (5) month. 

• Government is encouraged to speed up the passage of freedom to information 

bill to enable student of research to have access and usage of public data. 
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• Students of research are encouraged to look into other areas of EVT 

applications, for instance, extreme climate (rainfall) in Ghana.   

• The Department of Mathematics should established good faith with 

companies to unable them used their data. 

• Statistical Software packages should be taught in relation to the courses 

undertaken at the Postgraduate level in the Mathematics department. 
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APPENDIX 

A. SOME CODES USED IN R SOFTWARE  
 
A.1 Generalised Extreme Value Models 
   
par(mfcol = c(2, 1)); m = blockMaxima(Gains,30,doplot="TRUE");  
n = blockMaxima(-Losses, 30,doplot="TRUE"); 
  #  plot of heavy-tailed data 
 p = 0.01*(1:10); q=0.1*(1:10) 
hillPlot(m, start = 20, ci = 0.95, doplot = TRUE, plottype = c("xi"), labels = TRUE) 
hillPlot(n, start = 5, ci = 0.95, doplot = TRUE, plottype = c("xi"), labels = TRUE) 
d=shaparmPlot(x, p = 0.01*(1:10), xiRange = NULL, alphaRange = NULL,doplot = 
TRUE, plottype = c("upper")) 
shaparmPickands(x, p = 0.05, xiRange = NULL,doplot = TRUE, plottype = 
c("both"), labels = TRUE) 
shaparmHill(x, p = 0.05, xiRange = NULL,doplot = TRUE, plottype = c("upper"), 
labels = TRUE) 
y <- pgev(q, xi=0.2092864, mu=0.03428153, beta =0.01540) 
qgev(p, xi=0.2092864, mu=0.03428153, beta=0.01540) 
dgev(y, xi=0.2092864, mu=0.03428153, beta=0.01540) 
# Sample mean excess plot of heavy-tailed 
 par(mfcol = c(2, 1));mePR<-mePlot(m); mePL<-mePlot(n) 
   # Fit GEV to monthly Block Maxima: 
 fit = gevFit(as.vector(m));print(fit); par(mfcol = c(2, 2)); summary(fit) 
 fit1 = gevFit(as.vector(n));print(fit1); par(mfcol = c(2, 2)); summary(fit1) 
  
 
 
A.2 GENERALISED PARETO DISTRIBUTION 

#    Explorative Data Analysis 

emdPlot(x, doplot = TRUE, plottype = "xy",labels = TRUE); 

mePlot(Losses, doplot = TRUE, labels = TRUE) 

qqparetoPlot(x, xi=0.32241, trim = NULL, threshold = 5.0, doplot = TRUE,labels = 
TRUE); 

mrlPlot(Gains, ci = 0.95, umin = 3, umax = 7, nint = 100, doplot = TRUE, plottype = 
c("autoscale"), labels = TRUE) 

mxfPlot(Gains, u = 5.0, doplot = TRUE, labels = TRUE) 

recordsPlot(m, ci = 0.95, doplot = TRUE, labels = TRUE) 
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exindexPlot(x, block = 30, start = 5, end = NA, doplot = TRUE, plottype = "thresh", 
labels = TRUE) 

exindex(x, block = 30, quantiles = c(0.99, 0.995, 0.999, 0.9995, 0.9999), length = 10, 
doplot = TRUE, labels = TRUE) 

        

A.3  PEAKS OVER THRESHOLD (POT)    

gs = shape(Gains,30, 15,500, TRUE, labels = TRUE) 

shape(-Losses, models = 30, start = 5, end = 100, reverse = TRUE,auto.scale = 
TRUE, labels = TRUE) 

mrlplot(x, u.range = c(1, quantile(x, probs = 0.995)), col = c("green", "black", 
"green"), nt = 200) 

G <- fitgpd(Gains,5, est = "mle") 

L <- fitgpd(-Losses,4.5,est="mle") 

mle <- fitgpd(Gains, 4.5:5.5, est = "mle");  

gpd(Gains,110, "expected") 

 

B. PORTION OF BRENT OIL PRICES OBTAINED (1987 -2009) 

Date 
Spot 

Prices Date 

Spot 
prices 

 

Date 

Spot 
prices 

 

Date 

Spot 
prices 

May 20, 1987 18.63 Aug 04, 1987 20.65 Oct 10, 1990 40.2 Apr 30, 2009 50.3 

May 21, 1987 18.45 Aug 05, 1987 19.8 Oct 11, 1990 41.15 May 01, 2009 51.75 

May 22, 1987 18.55 Aug 06, 1987 19.75 Oct 12, 1990 39.9 May 04, 2009 53.26 

May 25, 1987 18.6 Aug 07, 1987 19.65 Oct 15, 1990 38.28 May 05, 2009 53.16 

May 26, 1987 18.63 Aug 10, 1987 19.43 Oct 16, 1990 38.93 May 06, 2009 55.07 

May 27, 1987 18.6 Aug 11, 1987 19.45 Oct 17, 1990 35.33 May 07, 2009 56.63 

  May 28, 1987 18.6 Aug 12, 1987 19.5 Oct 18, 1990 35.65 May 08, 2009 56.02 

  May 29, 1987 18.58 Aug 13, 1987 19.4 Oct 19, 1990 33.2 May 11, 2009 55.99 
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Jun 01, 1987 18.65 Aug 14, 1987 19.25 Oct 22, 1990 27.45 May 12, 2009 56.52 

Jun 02, 1987 18.68 Aug 17, 1987 18.85 Oct 23, 1990 28.95 May 13, 2009 56.84 

Jun 03, 1987 18.75 Aug 18, 1987 18.75 Oct 24, 1990 30.1 May 14, 2009 56.25 

Jun 04, 1987 18.78 Aug 19, 1987 18.5 Oct 25, 1990 32.9 May 15, 2009 56.33 

Jun 05, 1987 18.65 Aug 20, 1987 18.3 Oct 26, 1990  33.73 May 18, 2009 56.51 

 

 

C. EXTREME VALUES OIL PRICES USED FOR ANALYSIS 

C.1 Extreme Values of Transformed Data for Gains (Block Maxima method) 

4.203338   3.485457   5.867122   4.115807 4.401689   9.977115   6.663438   

5.043085   2.141409   7.867457   4.035130 13.511242  19.01837 36.12143   

6.359620 4.766467 7.059432   2.887592   6.164416   3.790152 3.230094   

1.953187   3.166491   2.176364 3.181960   2.902493   6.860632   5.861190 

5.610139   3.780828   2.602377   4.086649 4.729832   3.411183   3.468556   

6.748230 5.299538   4.817686   5.307656   4.154600 3.512925   5.140434   

4.330768   6.057139 7.596326     4.796198 9.145378   7.764039 4.860770   

7.194008   4.133633   8.534919 8.036722  10.184082   9.859426   3.943464 

5.232134  19.89064 12.88262 6.036974 5.523340   4.311481   6.117130   

9.000286 4.160712   5.406722   7.527378   4.390796 4.660776   4.191365   

7.120778   7.242899 5.040163   4.089635   3.859921   4.244973 5.037134   

5.642480   4.274962   3.687136 3.817735   3.612872   4.178705   4.448924 

4.604872  11.46205 16.83201 11.32620 5.858422   
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C.2 Extreme Values of Transformed Data for Losses (Block Maxima method) 

2.456623   4.490750   8.104121   4.095060 6.669137   7.221821 12.44377  

6.237033 4.251548     2.876172   6.615867 5.086920 6.991604    12.26979 

9.789019 17.333273 3.490287   6.016852   2.955880   4.815430 5.990461   

4.591625   2.660911   2.885370 1.917342   3.040133   6.138608   7.835769 

4.074522   4.310771   4.748667   3.351563 3.120976   3.303985   2.251388   

2.980443 7.455016   4.764109   5.787313   4.914469 2.907785   4.206719   

5.851318   6.225397 16.25594   7.378990   7.068766 12.73735 6.706423   

6.449469   4.915569   5.310983 5.968551   5.676893   7.036149   7.168992 

6.172817   5.080076   4.220388   5.397184 12.85340  7.988946   4.935690   

2.934021 2.697172   3.867787   4.919332   5.078315 4.225743   8.898349   

4.927410   6.863158 5.732228  11.46876   5.342517   4.988998 4.955381   

5.719516   5.291180   3.803921 4.997704   5.209159   4.346279   4.558116 

3.311317   2.859573   5.913052   4.369357 3.622088   8.195202   8.355146 

18.12974 10.27656  1.073670     

  

 

D. LIST OF ABBREVATIONS 

Maximum Domain of Attraction (MDA) 

Mean Excess Function (MEF) 

Mean Excess Plot (MEP) 
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