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Abstract

We investigate the asymptotic performance of the Location Model for two populations
(II;,# = 1,2) given different combinations of continuous (p) to categorical (g) variables
and increasing group centroid separation function (6 = 1,2,3). The number of predictor
variables are 4 and 8 with 1:3, 1:1 and 3:1 being the predetermined ratios for p : g. We
generate N (u:,I) of sizes 40, 80 and 120 with MatLab R2007b for p variables within 27
binary cells in II;. The size of Il is determined using sample ratios 1:1, 1:2, 1:3 and 1:4
for ny : ne within 29 cells. Populationl has mean ,u,[ln = 0 m the first cell (for p continuous
variables) and pg” — §, subsequent cells, ,ugmﬂ] = p,ém} + 1 . Error rates reduced more
rapidly for increase in d than asymptotically. The optimal p : ¢ was 3:1 and the model
deteriorated at 1:3 with larger variability. The 8 variable model performed better than the
4 variable model for large sample sizes of p: g =1:1 and outperformed it for all sample
sizes of p : ¢ = 3 : 1. Results show that to use the Location model for classification problems
with equal (or more) categorical to continuous variables, it should be compensated with
increased distance function and large samples. Finally the Location Model is compared to

the Logistic Discrimination Model. The Location Model performed better than Logistic

Discrimination with the variation in the error rates being higher for Logistic Discrimination.
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Chapter 1

Introduction

In attempting to choose an appropriate analytical technique, we sometimes encounter a
problem that involves a categorical dependent variable and several metric independent
variables. If the dependent variable is metric, then undoubtedly multiple regression could
be employed. A statistical technique that addresses the situation of a nonmetric dependent
variable is discriminant analysis. In this type of situation, the researcher is interested in
the prediction and explanation of the relationships that affect the category in which an
object is located, such as why a person is or is not a customer, or if a firm will succeed or

fail.

The subject discriminant analysis has been well dealt with over the years. The review
of works in the area of logistic discrimination and the location model has been clearly
presented in IKrzanowski (1988). Some comparative studies on the Location and Linear
Discriminant Models have also been carried out with stringent data characteristics. The

following sections discussesscnn//egiﬂi%e studies in brief.
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1.1 Background Studies

Discrimination or Discriminant Analysis (DA) is a decision support tool with a wide
range of applications, such as health applications, bankruptcy prediction, education plan-
ning, taxonomy problems, including engineering applications. It is a Multivariate statistical
classification technique for separating distinct sets of objectives and allocating a new ob-
jective to a previously defined group, which could have been formed by a cluster analysis
performed on past data. In scientific literature, discriminant analysis has many synonyms,
such as classification, pattern recognition, and character recognition, depending on the
type of scientific area in which it is used. The technique usually proceeds in the following
manner; a sample of objects is drawn from a population and a partition of this sample
is known. Each object within the population is described by several characters or certain
measurements, which together form a feature vector belonging to a suitable feature space.
Using the feature vectors and the individual labels of the sample, an allocation rule is es-
tablished in order to classify other nonlabeled objects from the previous population. The
technique of discriminant analysis, though fairly old, still reflects the same ideas as that of

general statistical inference in its applications.
From the above definition, DA can be put into two main purposes.

1. Descripﬂqn of group Egga’;a.tiﬂn,. in which linear functions of the variables (discrimi-

nant functions) are used to describe or explain the differences between two or more

__,_--'""___- ¥
groups, either graphically or algebraically. This is known as discrimination.



2. Prediction or allocation of observations to groups, in which classification functions
are employed to assign an individual sampling unit to one of the groups. This concept

is known as classification.
(Johnson & Wichern, 2007; Rencher, 2002)

A function that separates objects may sometimes serve as an allocator, and, conversely, a
rule that allocates objects may suggest a discriminatory procedure. In practice, discrim-
ination and classification overlap, and the distinction between separation and allocation
becomes blurred. For convenience, we shall use the terms discrimination and classification

interchangeably and stick to DA.

Since the pioneering work of Fisher, DA has been of interest to statisticians, both theo-
retically and its applications in different fields of study. In the early works, Fisher (19306)
considered a linear function that maximizes the ratio of the between-samples variance to
the within-samples variance using two species (groups) of the popular iris data collected by
Dr. E. Anderson. Rao (1948) later extended Fisher’s approach to more than two groups.
The objective of his research was to determ_i:_le the group constellations of 22 inbreeding In-
dian castes and tribes living in a compact geographic region. Three castes were considered
for DA - Brahmin, Artisan, and Korwa — with four character measurements (stature, sit-
ting height, nasal depth and nasal height). These characters were assumed to be normally
distributed. “I.;_IE' then defined the linear discriminant scores which were used to classify an

—

individual into one of the three caste populations.
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In biological applications, Phillips and Furness (1997) used DA to predict the sex of adult
Parasitic Jaegers breeding on Foula, Shetland. Two separate discriminant analyses were
performed. The first function involved incubation body mass and wing length, while the
second function used wing length, head plus bill length, bill length and bill depth. They also
presented a relationship between the discriminant scores and the probability of membership
of the male or female group (i.e. posterior probability of belonging to a particular group).
Bertellotti et al. (2002) also used DA to determine the sex of Magellanic Penguins at
six breeding colonies on the Patagonian coast of Argentina, differing in size and other
ecological characteristics. The sex of the birds were predetermined by molecular analysis
and separate discriminant functions were obtained for adults and chicks using the jackknife
procedure with the SAS System program. In a later study, Adebanji et al. (2008) looked at
the effects of the sample size ratio on the performance of the linear discriminant function

under non-optimal conditions with 4 variables in each group using simulated data.

Traditionally, DA is used for differentiating groups (categorical dependent variables) which
are known a priori while the independent variables are quantitative and normally dis-
tributed. When discrimination and classification is looked at on the basis of posterior
probability, the posterior probability of an observation belonging to a labeled group can
be modeled by the logistic function. In this case, even if the assumption of normality is
violated, logistic regression can be used in predicting group membership, since the model
in itself hEB"I;O distributhﬁﬁom This approach is termed Logistic Discrimination

_LLE_) (J. A. Anderson, 1972; Krzanowski, 1988).



Since the work of J. A. Anderson (1972), much has been done on LD, especially with
its comparison with other classification procedures like the linear discriminant analysis
(LDA). Efron (1975) looked at the asymptotic relative efficiency of LDA and LD under
multivariate normality, and found that this efficiency depends on A, the Mahalanobis
distance between two normal populations, as well as on the number of individuals in each
population. In a later development, Press and Wilson (1978) contrasted the merits of
LD with maximum likelihood estimates with those of discriminant function estimators by
carrying out two empirical studies of nonnormal classification problems. Also Bull and
Donner (1987) looked at the asymptotic relative estimated efliciency (ARE) of multiple LD
compared with multiple DA under two cases — strong correlations between populations and
no correlation between populations. Sapra (1991) in later works established a relationship
between the logit model, normal discriminant analysis, and multivariate normal mixtures
and found that if the posterior distributions in DA are taken to be multivariate normal
with a common covariance matrix, one derives the implication that the relative odds that
a given vector of observations is drawn from one posterior distribution or the other are
given by the logistic formula. Fan and Wang in 1999 compared predictive discriminant
analysis (PDA) with LD through a simulation study for the two group case. Three factors
were of interest — homogeneity of cﬁvaria,nce matrices, sample size, and prior probabilities.
Their results did not vary much from the general conclusion from previous studies. Lei
and K{!t"]ll};_(éa[-_‘il‘}} in further study-criticized the work of Fan and Wang and carried out a

Monte Carlo simulation to manipulate four factors under multivariate normality: degree of

__.--""'-_"-_-



group separation in addition to the factors studied by Fan and Wang. They recommended
the use of LDA when model assumptions are satisfied because it is simple to calculate and

has classification accuracy compared to LD.

When the independent variables used in DA constitute both qualitative (discrete) and
quantitative (continuous), the application of the location model (LM) is advised. This
model which was first proposed by Olkin and Tate (1961) assumes that the conditional dis-
tribution of the continuous variables given the discrete variables are multivariate normally
distributed with constant covariance matrix across all locations determined by the discrete
variables. Chang and Afifi (1974) extended the concept of LM to two-population situations
deriving a Bayes classification procedure for classifying an observation consisting of both
dichotomous and continuous variables. Two discriminant functions were developed, one
for each dichotomous variable. They described the procedure as the double discriminant
function (DDF), because two separate linear discriminant functions were formed for the
two states of the dichotomous variable. They found that if both variables are independent
and the discrete variable has the same distribution in the groups, then the two functions
are the same. Thus, all the information for classification comes from the continuous vari-
ables alone. Their procedure was applied to medical data with a dichotomous and two
continuous variables. The sample DDF was compared to other two methods: linear dis-
criminant function (LDF) based on the two continuous variables only and LDF obtained

from all three variables mghe dichotomous variable as continuous. They found

the DDF (i.e. LM) outperforming the other two methods. They then extended their model

__.—-—'-"'_—-



to more than one dichotomous variable. A generalization of their results has been consid-
ered by Krzanowski (1975). He derived optimum and estimated allocation rules for mixed
binary and continuous variables using likelihood ratio. He considered the consequences of
treating the binary variables as if they were continuous by carrying out a simulation study
to compare the Fisher’s LDF and LM for a single continuous variable y and ¢ = 2,3,4
mutually independent binary variables z,,...,%,. The Mahalanobis squared distance be-
tween populations 1 and 2 was taken as unity in all cells. Two scenarios were taken: when
there is no interaction between the binary variables and the populations and when there is
an evidence of interaction between populations and z; = 0. It was found that under the
first condition, the average error rates for the two methods were similar, whereas Fisher’s
LDF tends to give poorer results than the rule derived from LM when there is evidence
of interactions between binary variables and populations. Some practical examples were
considered where comparisons were made among LM, Fisher’s LDF, LD and a method in
which all the continuous variables were converted to binary ones. He later looked at LM
for mixtures of all types of variables (Krzanowski, 1980), and when there exists more than
two differentiating groups for more general discrete and continuous mixtures (Krzanowski,
1986). It is important to mention that parametric methods of discrimination range from
the simple linear discriminant function studied by Fisher (1936) to the full LM studied by

Krzanowski (1986).

—
o

Other authors have also mpared the performance of LM to other discrimination tech-

~_niques on existing data, two of which are Knoke (1982) and Maclaren (1985). Knoke looked



at the performance of LM with Fisher’s LDF, quadratic discriminant function, LDF with
higher-order terms and discriminant function with logistic regression estimates of the coet-
ficients for situations involving interactions among the explanatory variables using medical
data. The resubstituion error rate estimation was used. Maclaren also applied LM method
of discriminant analysis to the problem of early identification of cases of complicated pneu-
moconiosis among coalworkers. The method was compared with the simple LDF, a modified
LDF and LD. The leave-one-out method of error estimation (Lachenbruch & Mickey, 1968)
was applied to all methods except LD and found all methods yielding essentially the same

results.

1.2 Problem Statement

Because both LM and LD can be used for predicting or classifying individuals into different
groups based on a set of measurements, a logical question is, how do the two techniques com-
pare with each other? As presented in the background studies, there has been considerable
discussion about the relative merits of the two techniques. Theoretically, LM is considered
as having more stringent data assumptions, thus, multivariate normality of the continuous
data and homogeneity of the covariance matrix matrices of the groups (krzanowski, 1983).
LD on the other hand, is relatively free of those stringent data assumptions. Research find-

ings about the relative performenceof the two methods appear to be inconsistent because

the studies were done using existing data sets and the method of error rate estimations
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were also not on common grounds (e.g., Krzanowski, 1975; Knoke, 1982; Maclaren, 1985).

We shortly outline some of the possible problems below.

In the few empirical studies conducted about the comparison of LM and LD, the underlying
distribution assumptions for the continuous data were unknown. This will in no way be a
problem to LD, since it is relatively free from data assumptions but will be a problem to

LM because it requires normality and homogeneity of covariance matrices.

Also, the relative performance of LM and LD under different sample-size conditions and
proportion of continuous to categorical variables is an issue of interest. This is because
inconsistent results have been reported about the relative performance of the two techniques
with regard to the sample size conditions. For example, Krzanowski’s (1975) results with a
sample size of 186 (99 from II; and 87 from II;) saw LM having superiority over LD, while
total sample sizes of 40, 93 and 62 gave similar results. The results obtained by Maclaren
(1985) for a sample size of 4749 (257 from II; and the rest from I1,) showed no distinctive
superiority of one over the other. The question that comes to mind is, does an increase in

sample-size increase the performance of one method over the other?

In addition to the two, another issue of interest is the ratio of continuous variables to that
of the categorical variables. In the study of Krzanowski (1975), the data set that gave
comparative results used 6 continuous and 3 binary variables while Maclaren (1985) used

9 continuous; 1 binary and 1 ordered categorical variable.
—_— _’__/—"'————___

Last but not least, another population characteristic that may affect the classification

-
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capacity is the degree of group separation, usually measured in terms of multivariate Ma-
halanobis distances (A?). Unfortunately none of the studies discussed above talked about
group separation. It is expected however, that, larger degree of group separation will

improve the performance of the classification rule.

1.3 Objectives

In light of these, the principal objective of this study is to compare LM to LD by considering

the conditions:

e Different sample size ratios

e Increasing Mahalanobis distance

e Different categorical-continuous predictor composition.
The specific objectives of the study therefore are

e to evaluate LM and LD for the two-group case.

e to conduct a Monte Carlo simulation to compare the two methods under non-optimal

conditions.

e use the same error rate estimation procedures for both models.

e f—
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1.4 Methodology

We examined the impact of sample sizes, number of predictors (continuous and binary),
and group separation on classification accuracy using simulated data for the two-group
case. The sample discriminant rules for both methods are obtained as in literature after
implementing a three-factor controlled experimental design for each of the two population
data structures. The two groups differed with respect to their mean vectors alone and had
homogeneous covariance structures. The covariance structure for both populations was the

identity matrix. The levels of the three factors were set as follows:

1. sample sizes set at 40, 80 and 120 for the first group and that of the second group

determined by the ratios 1:1,1:2,1:3 and 1: 4.

9. number of predictor variables set at 4 and 8 with the number of continuous and binary

variables determined by the continuous to binary variable ratios 1:3,1:1 and 3 : 1,

respectively.

3. the degree of group separation was determined by the squared Mahalanobis distance
A? = (p; — p)' S~ (uy — pe), which was predetermined after setting the distance

between the mean vectors by 1, 2 and 3.

We used the MatLab R2007b and 2009a subroutine to generate normal random data within

each cell. The number of cells, 27 is predetermined by the number of binary variables, g.
Discriminant analysis is then carried out within each cell using LDA and the percentage

_.—-"'-'---_
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of misclassification averaged over the cells to obtain the estimated error rate of LM. The
normal data within each cell and the particular pattern of the multinomial variable cor-
responding to that particular cell are concatenated to obtain the data for LD. In both
analyses, the error rates are estimated using the ‘leave-one-out’ method of Lachenbruch
and Mickey (1968). All the needed information for the study was sourced from online

journals and books.

1.5 Justification of Problem

The inconsistent findings reported in the literature may be due to several reasons. In using
existing data sets, researchers have no control on data characteristics which makes it impos-
sible to systematically investigate the impact of each individual factor on the analysis. Also,
most of those studies did not provide enough information about the data characteristics,
making it difficult to synthesize the results across studies. For these reasons, simulation
studies are useful in assessing the effects of those relevant factors on the performance of

the discriminant function.

1.6 Structure of The Thesis

This thesis_is structured inte—five chapters. The first chapter is the introduction which

encompasses the background of the study, statement of the problem, the objectives of the
Pl
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study, the methodology and justification of problem. The second chapter is a literature
review of related studies with chapter three being the methodology chapter. Chapters four

and five talks about the simulation results and conclusion with recommendations.



Chapter 2

Literature Review

Undoubtedly a lot of research works has been done in the area of discriminant analysis. In
this chapter we review studies which are pertinent to this study in the field of LDA, LM
and LD. The area of concern will be on the normality assumption, misclassification in the
training sample, Mahalanobis distance, sample size, prior probabilities and estimation of

error rate.

2.1 Studies on Assumption of Normality

The basic assumption of DA is that of normality. If the populations under study are

normally distributed with homogeneity of covariance, a linear discriminant function is used.

A quadratic discriminant function is used if the covariances are not homogeneous. The

studies of Fan and Wang (1999) and Lei and Koehly (2003) made use of the assumption of

normality. They considered the case of equal covariance and unequal covariance structures
=== ’/-—”"__ -

for the two groups. In the case of unequal covariance matrices, that of the smaller group is

—given as 2/5% ;mmon and the larger group given as 8 5% .,mmon. 1N both cases Predictive
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Discriminant Analysis (PDA) is compared with LD. The error rates were found to be lower

for unequal covariances than equal covariances for LD (Fan & Wang, 1999).

Kakai. Pelz, and Palm (2010) did a Monte Carlo study to assess the relative efficiency of the
linear classification rule in 2, 3 and 5-group discriminant analysis. The simulation design
took into account the number p of variables (4, 6, 10, and 18), the size sample n so that:
n/p = 1.5,2.5 and 5. Three values of the overlap, e of the populations were considered
(0.05; 0.1; 0.15) and their common distribution was normal, chi-square with 12, 8, and 4
df; the heteroscedasticity degree, I' was measured by the value of the power function of
the homoscedasticity test related to I (0.05; 0.4; 0.6; 0.8). For each combination of these
factors, the actual empirically computed error rate was used to calculate the relative error
of the rule. The results showed that for normal or homoscedastic populations, the efficiency
of the rule became better for large number of groups. Non-normality or heteroscedasticity
negatively impacted the performance of the rule whereas high values of the ratio n/p and
high overlap have positive effect on the rule. The mean relative error of the rule became

three times more important from homoscedastic to heteroscedasticity.

2.2 Studies on Misclassification In The Training Data

Initial misclassification can arise-r-many ways; €.g., an imperfect criterion for assigning the
initial observations to their true populations. Lachenbruch (1974) did a Monte Carlo study

___._--""_—-_

of two models of non-random initial misclassification using the observations themselves
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to decide if the individual is initially misclassified. The first model was called complete
separation model and is defined as follows. For each observation, x, calculate (x — u;)'(x —
py) = x'x and (x — wp)'(x — p2) (where gy = 0 and p; = (6,0,---,0)) and assign the
observation to whichever population leads to the smaller of the two quantities. The second
model is a generalization of the first. The same criterion is used, but, in addition, for an
observation from II; to be misclassified, (x — p;)'(x — ;) must be greater than a quantity,
Vi- During the simulation process, 4 and 10 variables were used for n; = ny = 25 and 100.
Values of 6 of 1, 2, and 3 were used for each combination. In this study, it was seen that
the true error rates of the LDF are only slightly affected by initial misclassification of the
samples in a non-random manner and the apparent error rates are considerably affected.
The D method estimates of error rates are seen to suffer from the same defects as the

apparent error rates.

2.3 Studies on Mahalanobis Distance

Bull and Donner (1987) looked at the asymptotic relative estimated efficiency (ARE) of

multiple LD compared with multiple DA. Two cases were considered - strong correlations

between populations and no correlation between populations. In the first case, LD ex-

hibited substantial increase in the ARE, while the second case exhibited no substantial
ks s

increase in the ARE. It was also found that as the distance between populations increases

“the discriminant procedure does relatively better, with the logistic procedure eventually
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producing infinite parameter estimates when there is no overlap between populations.

Lei and Koehly (2003) performed a Monte Carlo simulation to furnish information about
the relative accuracy of LDA and LD, under various commonly encountered and inter-
acting conditions. The factors manipulated under multivariate normality are equality of
covariance matrices, degree of group separation, sample size, and prior probabilities. They
stated that the relative performance of the LDA and LD procedures depends on the inter-
action between model assumptions and population group distance. The degree of group
separation was measured in terms of the squared Mahalanobis distance, A? set at 2.68
(small) and 6.7 (large). They found that if total misclassification is of interest, the optimal
cut-score is 0.5. With a cut score of 0.5, LD and LDA with proportional or accurate prior
specification perform similarly and best among other LDA specifications examined in the
study, providing good to excellent classification accuracy for extreme population priors or

large A2. In general they observed that the misclassification rates were good for large A2,

2.4 Studies on Sample Size

In a study of Krzanowski (1975), five different sets of data were used to evaluate the

performance of LM with Fisher’s LDF, LD and a method in which all the continuous

o

variables were converted to birary-omes. The sample sizes considered for the data sets are

as follows: a total of 40 — 20 from IT; and 20 from Il,; 63 from II; and 30 from I15; 38 from

—_—l—"'-"-_-_’

I, and 24 from II,; a total of 186 — 99 from II; and 87 from Il,; and a total of 137 — 59
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from I1; and 78 from Il,, respectively for data sets one to five. LM gave satisfactory results

and in the situation with relatively large sample size, gave much better results.

Efron (1975) looked at the asymptotic relative efficiency of the normal discrimination pro-
cedure (LDA) and LD under multivariate normality, and found that this efficiency depends
on A, the Mahalanobis distance between two normal populations, as well as on the number
of individuals in each population. LD was shown to be between one-half and two-thirds as
effective as LDA for statistically interesting values of the parameters. He stated that the
LD procedure must be less efficient than the LDA at least asymptotically, as n — oo. He
further stated that though LD is less efficient and also more difficult to calculate, it is more

robust, at least theoretically, than LDA.

Kakai and Pelz (2010) performed a Monte Carlo study to assess the asymptotic error
rate of linear, quadratic and logistic rules in 2, 3 and 5-group discriminant analyses. The
simulation design that was considered took into account the overlap of the populations
(e = 0.05,0.1,0.15), their common distribution (Normal, Chi-square with 12, 8 and 4 df)
and their heteroscedasticity degree, I, measured by the value of the power function, 1 — 3
of the homoscedasticity test related to I' (1 -5 = 0.05,0.4,0.6,0.8). For each combination
of these factors, the asymptotic error of the 3 rules was computed using large samples of
size 20,000. The efficiency parameter of the rules was their relative error with regard to
the optima.f'e;i*or rate. TheTesults showed the overall best performance of the quadratic
rule for the Normal heteroscedastic cases. The linear rule seemed to be more robust to an

___—.______..—-—

increased number of groups than the two other rules. The logistic rule was less affected
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by the distribution of the populations. For small size samples, the three rules become less

efficient.

2.5 Studies on Prior Probability

On the study of prior probabilities, Krzanowski (1975) specified a range of values of p, and
ps between 0.1 and 0.9 in a Monte Carlo simulation to compare LM to Fisher’s LDF. He
also varied the number of binary variables ¢ between 2 and 4. It was observed that for
equal priors, the error rates were a constant for both models. However, the error rates were

found to decrease as p, increased.

Also in a simulation study, Adebanji et al. (2008) looked at the effects of the sample size
ratio on the performance of the linear discriminant function under non-optimal conditions,
with 4 variables in each group. They observed that for ratio combinations exceeding 1 : 2
the misclassification of observations for the smaller group were much higher, and four
times much higher than the larger group when the ratio exceeds 1 : 3. For increased
disproportional representation of the sample groups, the performance of the classification
rule deteriorates, and its performance could not be improved by asymptotic increase in

sample size.
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2.6 Studies on Error Rate Estimation

The utility of an allocation rule can be assessed by the probabilities of misclassification, or
error rates, that it gives rise to. When parameters are known in the discriminant model,
the error rates are given by the optimum error rates, since they indicate the best results
possible with the model. When parameters are unknown, various types of error rates
may be distinguished. In particular, once an allocation rule has been derived in practice,
it is essential to have a reliable method for estimating the error rates that it incurs to
have some measure of its utility and to be able to assess its performance relative to other
allocation rules. Accordingly, we need to consider methods of estimating the error rates
arising from the allocation rule derived. Lachenbruch and Mickey (1968) discussed some

means of estimating error rates for a given discriminant function which are discussed below.

2.6.1 The Holdout or H Method

This method falls under empirical methods of error rate estimation. The method proceeds
as follows: If the initial samples are sufficiently large, we may choose a subset of observa-
tions from each group, compute a discriminant function from them, and use the remaining
observations to estimate the error probabilities. The number of errors in each group will be
binomially c_iig:ti’ibuted witg_pmbafbil%ties F 1 and F ,. After these estimates have been ob-
tained we may recompute the discriminant function using the entire sample. Lachenbruch

L L
and Mickey (1968) noticed several drawbacks to this method. First, in many applications

20



large samples are not available. This is particularly true in biomedical uses when the data
is usually expensive and difficult to obtain. Second, the discriminant function that is evalu-
ated is not the one that is used. There may be a considerable difference in the performance
of the two. Third, there are problems capnected with the size of the holdout sample. If it
is large, a good estimate of the performance of the discriminant function will be obtained,
but that function is likely to be poor. If the holdout sample is small, the discriminant
function will be better, but the estimate of its performance will be highly variable. Finally,
this method is quite uneconomical with data. A larger sample than is necessary to obtain

a good discriminant function must be selected to obtain estimates of its performance.

2.6.2 Resubstitution or R Method

The resustitution method is also an empirical technique of estimating error rates. It sug-
gests that the sample used to compute the discriminant function would be reused to es-
timate the error. The method has been found to be quite misleading; and “if the sample
used to compute the discriminant fmiction is not large, this method gives too optimistic

an estimate of the probabilities of misclassification.” (Lachenbruch & Mickey, 1968)

2.6.3 The D Method

The probability of misclassification, P, , may be written as
e 1 ro—-1
-y +3y)'S
e [ Ctiagat) 1
V2'S-1ES5-12
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where t is a standard normal deviate, y = ; + T, and z = T; — T». If we replace y;
and ¥ by Z; and S, for normally distributed variables the estimate of P, = ®(— B/2),
and similarly P, = ®(— N/2), where D? is Mahalanobis sample distance. Lachenbruch
and Mickey (1968) stated that if the degrees of freedom are large, this is a fairly accurate
estimate of P; since D? is consistent for §2. If the degrees of freedom are not large, this

may be badly biased and give much too favorable an impression of the probability error.

2.6.4 The DS Method

If ny, and ny are not large relative to p, it may be desired to use an unbiased estimate of
52 based on D?, denoted as D*2. Unfortunately, when this is most useful (when n; , n are
small relative to p and D? is also small) D*? is frequently negative. Instead of using 18
one may construct estimates of 6 using the quantity DS = (m — p — 3)D?/(m — 2). The

estimate of P; = ®(—+v/DS/2) is denoted as the DS method.

2.6.5 The Leave-One-Out Method

A desirable empirical method would make use of all the observations, as in the method,
yet not have the disadvantages of serious bias. A procedure which has the advantages of
both the K Elidfﬁhe H merows: each unit of the initial samples is classified in
turn, using the remaining n; +ny— 1 units to obtain the allocation rule. The error rate from

LI e
each population is then estimated by the proportion of units misclassified from each sample
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in this way. This method is known as “Lachenbruch’s Method" or leave-one-out method.
Regarding this method Krzanowski (1975) states that “despite some adverse criticisms in
terms of variance and mean square error, the method is intuitively appealing and yields

estimates which have only small bias."

Krzanowski and Hand (1997) investigated the leave-one-out estimator in a simulation study,
both in absolute terms and in comparison with a popular bootstrap estimator. They then
suggested an improvement to the leave-one-out estimator. Parameters varied in their study
include separation of the two populations and number of variables observed. They chose
well separated populations, moderately separated populations and considerably overlapping
populations, for 5 and 10 number of variables. The third parameter to be varied was the
sample size for each design set. Equal sample sizes from the two populations (ny =ng =n)
were used, for small, medium, and large design sets. The LDF was used. During simulation,
they explored a simple extension (the leave-two-method) of the leave-one-method aimed
at reducing its (correct measure of) variance, which they found superior to that of the

leave-one-out method in performance.

Kakai, Pelz. and Palm (2009) did a Monte Carlo study to assess the relative efficiency of
ten non parametric error rate estimators in 2, 3 and 5-group linear discriminant analysis.
The simulation design took into account the number p of variables (4, 6, 10, 18) together
with the size'éa,mple n so that™ n/p = 1.5,2.5 and 5. Three values of the overlap, e of the
populations were considered (e = 0.05,e = 0.1,e = 0.15) and their common distribution

_.—-'-'-'-—-_

was Normal, Chi-square with 12, 8, and 4 df; the heteroscedasticity degree, I' was mea-
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sured by the value of the power function, 1 — f of the homoscedasticity test related to I
(1 - = 0.05,0.4,0.6,0.8). For each combination of these factors, the actual error rate
was empirically computed as well as the ten estimators. The efficiency parameter of the
estimators was their relative error, bias and efficiency with regard to the actual error rate,
empirically computed. The ranks of the estimators were not influenced by the number of
groups but for high values of the later, the mean relative bias of the estimators tend to

ZET0.
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Chapter 3

Methodology

In this chapter, we present the models and methods which were employed in the solution
of the problem. Focus is on the general theory of discriminant analysis with emphasis on
Linear Discriminant Analysis (LDA) and Logistic Discrimination (LD), and most especially
the Location Classification Model (LM). We begin by looking at the fundamental principles

of classification rules based on probability models.

3.1 Fundamental Principles

The problem of Discriminant Analysis (DA) is formulated as follows:

Suppose we have g distinct populations or groups IIy, . .. I, where g > 2. Suppose that
associated with each group II;, there is a probability density fi(v) on RP, so that if an
individual comes from group II;, it has density f;(v). Then the object of DA is to allocate
an individuli ﬁ;ﬁne of thw on the basis of its p random measurements v. A
discriminant rule corresponds to a division of RP into mutually exclusive and exhaustive

__-—.-—_—'—F .
regions Ry,...,R, (N Ri = ¢,UR: = RP). The rule is defined by allocating v to II; if
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veER,fori=1,...,9. (Hirdle & Simar, 2007; Mardia et al., 1979)

3.2 Classification Into One of Two Groups of Known

Distributions

Let us suppose it is required to allocate an individual to one of g = 2 populations of
known densities, on the basis of p measurements that have been made on it. Probabilistic
classification rules are found on the premise that a large number of individuals will need to
be classified in the future, and hence the classification rule should be chosen in such a way
as to minimize the expected consequences of mistakes made in this series of allocations.
Mistakes will arise because virtually any of the possible sets of p values that constitute
p-dimensional sample space R could plausibly be observations from either population. We
note that probability models play a central role not only to a description of the populations

but also to an assessment of the performance of the classification rule.

Let v denote a p-component random vector of observations made on any individual, v

denotes a particular observed value of v, and II;, II; denote the two populations involved

in the problem. Since the two populations are to be distinguished, the basic assumption

is that v has different probability distributions in II;,Il;. Let f (v) and fa2(v) be the
S /""_’——_

probability densities of v in II; and II, respectively. A classification rule can be defined by

_apartition of R into two mutually exclusive and exhaustive regions R; and R,, together
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with the decision rule that assigns to II; individuals falling in R;, and to Il; individuals
falling in Ry. This procedure corresponds to what is known as forced classification since
we require a definite decision about population membership to be made for each individual

that is considered. The problem at hand is how the two regions are to be chosen.

3.2.1 Likelihood Ratio Discriminant Rule

By intuition, it is suggested that v, should be allocated to II; whenever it has greater
probability of coming from II; than from II,, to II; whenever these probabilities are reversed,
and arbitrarily to IT; or I, whenever these probabilities are equal. By this argument, we
define R, as the set of points for which f;(v) > fa(v), and R; as the set of points for which

fi(v) < f2(v). Rewriting the above slightly, the classification rule is as follows:

fi(vo)
f2(vo)

Assign vq to II; if =1, (3.1)

and to II, otherwise.

The allocation rule 3.1 is known as the h’kelihood ratio rule. This rule, however, fails to
take into account some factors which may be important in practice. These factors are:
differential prior probabilities of observing individuals from the two populations and the
differential costs of misclassification. The classification rules associated with these factors

are discussed in the subsequent sections.
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3.2.2 Expected Cost and Total Probability of Misclassification Rules

Assume it is known that individuals from II; are observed very rarely in practice while
individuals from II, are observed quite frequently. For example, II; might denote the
population of individuals suffering from active tuberculosis, while Il might denote the
population of individuals suffering from bronchitis. Despite the fact that vg is more likely
to occur in II; than in II,, our prior knowledge of the incidences of II; and II; would
persuade us to ignore 3.1 and allocate vq to II. This is because of the relative closeness of
f1(vo) and fo(vo). The probability density fi(vo) would need to be considerably in excess
of fo(vo) before the evidence became sufficiently persuasive for us to disregard the prior
information and allocate vg to IT;. Another aspect is the cost incurred in making an error in
classification. Suppose that classifying an individual from II; as belonging to Il represents
a more serious error than classifying a IT, individual as belonging to II;. Then one should
be careful about making the former assignment. An optimal classification procedure should

whenever possible, account for the costs associated with misclassification.

Let P(j|i) = P;; the conditional probability of classifying as individual as IT; when, in fact,
it is from II;, and c(j|i) = c;; be the cost when an observation from II; is classified as II;,
and further assume that the prior probability that an observation v is from II; is p; such

that p; + p» = 1. Then
i ety /,.-—-"""'——._—_

Pj; = P(v € Rj|IL;) = Pif fi(v)dv, i,j=1,2 (3.2)
R;=R-R;
i Lol

The overall probabilities of correctly or incorrectly classifying individuals can be derived
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as the product of the prior and conditional classification probabilities:

P(individual is correctly classified as II;) P(individual comes from II;

and is correctly classified as II;)
= P(v € R;|I;) P(I1;) = Pj;p;
P(individual is misclassified as IT;) = P(individual comes from II;

and is misclassified as II;)

I

P(v € R;|IL;) P(IL;) = Pjip; (3.3)

We define the costs of misclassification in a cost matrix below.

Table 3.1: Costs of misclassification matrix

Classify as:
I I1,
I | O C21
True Population:
Hg C12 0

For any rule, the average or expected cost of misclassification (ECM) is provided by mul-

tiplying the off-diagonal entries in the cost matrix by their probabilities of occurrence,

obtained from 3.3. Mathematically,

- f'-'---

__: ' /,EaM—zﬂmpzlpl + c12P12P2. (3.4)

Ml_l be interested in classification rules that keep the ECM small or minimize it over a

class of rules. The discriminant rule minimizing the ECM 3.4 for two populations is given
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by the regions

7 gy 2 (32) (%)
R, fi(v)

o ('Z_j) (%) (3.5)

For simplicity, we denote the right hand side of 3.5 (also known as the cut-off point) by

The likelihood ratio discriminant rule 3.1 is thus a special case of the ECM rule for equal

misclassification costs and equal prior probabilities. Other special cases of 3.5 are:

(a) ps/p1 = 1 (equal prior probabilities); K = 22

C21

fi(v)

>K: . R f1(v) <K
(v)

i )

P

(b) ci2/ca1 =1 (equal misclassification costs); M = ;?_f

' fi(v) _ fi(v)
B ) ey

The rule (b) could have been derived equivalently by minimizing the total probability of

misclassification, TPM, where
TPM = Pyp + Prap2 (3.6)

is given by ECM of 3.4 but with ¢ and c;, removed. It is worth mention that the rule
(b) is equivall_(g'_nt to the allocatio derived by maximizing the posterior probability of

population membership. (Johnson & Wichern, 2007)
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3.2.3 Bayes’ Classification Rule

Let

P(V = IL:) = p'iai = 1, 2 (37)

be the prior probabilities that a randomly selected observation v = v, belongs to either II,
or II,. Suppose also that the conditional multivariate probability density of v for the ith

class is

P(Y=VQ|V€H1)=ft(VD),Z= | 4 (38)

From 3.7 and 3.8, Bayes’ theorem yields the posterior probability,

% . ¥ fi(vo)pi
P(IL|v) = P(v € IL;|v =vg) = o Rn (3.9)

that the observed vy belongs to II;,7 = 1,2. For a given vy, a reasonable classification
strategy is to assign v to the class with the higher posterior probability. This strategy
is called the Bayes’ classification rule. Since we are dealing with forced classification, the

classification rule is

P(II;|v)

A (3.10)

assign Vo to H1 if

otherwise assign v to II;. The ratio %E—;% is referred to as the “odds-ratio” that II; rather
than II, is the correct class given the information in vy. Substituting 3.9 into 3.10, the

Bayes’ classification rule becomes
— /—-”'—'-—

fi(vo) > P2! (3.11)

assign vg to Il if >
S ' fa(ve) T mn

e ——

and to I, otherwise. (Izenman, 2008)
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3.3 Classification Into One of Two Multivariate Normal

Groups

The most common form of the classification model is to assume that II; is a multivariate

normal population with mean y; and covariance matrix 3; for ¢ = 1,2. Thus
. _1 1 = .
fil(v) = (2 )P?|Z;| 2 exp{——j(v — 1) SN (v — )}, fori=1,2. (3.12)

The special case of equal covariance matrices leads to a particular simple linear classification

statistic.

3.3.1 Classification of Normal Populations When ¥; = 3, = X

Krzanowski (1088) states that “the presence of two different population dispersion matrices
renders difficult the testing of hypothesis about the population mean vectors, and it has
been argued that the assumption ¥; = ¥ = ¥ is a reasonable one in many practical

situations.” Making this assumption has some practical benefits, in that, the discriminant
function and the allocation rule become very simple. If ¥; = ¥p = 3, then the density

function for Il;, 7 = 1,2 is given by

ﬁ(:;j’: (2 )prgv — ) EN (v = w)}, fori=1,2. (3.13)
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And subsequently,

V) @)D"z exp{—3(v — )T} (v — )}
f2v) (2 ) P2|Z| 2 exp{—i(v — )1 (v — )}
1

= exp{(m — p2)’T v — 5(#1 — p2)' B (1 + p2)} (3.14)

The minimum FECM regions are therefore given as

= 1 =
Ry : exp{(p — p2)' T 7'V — 5(#1 — o) T (1 + p2)} > K

= 1 Iey—
Ryt exp{(mn — p) BTV — S (i — i) T (1 + p2)} < K (3.15)

lewled
C21 P1

is the cut-off. Since the logarithmic function is monotonically increasing, then from 3.15

where

the allocation rule that minimizes the EC M is given as
Allocate v to I1; if L(v) > Ink, (3.16)
and otherwise to II;, where

e 1 x
L(v) = (1 — p2) % v -*-5.(#1 — pi2) T (1 + pi2)-

If on the other hand the covariance matrices for the two populations are unequal, that is,

3, # 3,, the minimum ECM allocation rule is given as

i Allocate v to IT; if (v) > Ink, (3.17)
e //—

and otherwise to Il,, where
ol 2 0 8

1 1 i) F - L3 s S
(v) = -2-111{|§32|+ |2 _E(V (2] 1 -2 1) —2v'(X] 1.“1 — 2, 1#’*2)‘1'#121 lﬂ'l — o255 1#2)}*
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The allocation rules 3.16 and 3.17 are known as the linear discriminant and quadratic

discriminant rules respectively.

3.3.2 Evaluating The Linear Classification Function

Now expanding and rearranging L(v) yields
L(v) =v'E (= ma) - %(m + m2)'T7 (1 — pa).

If v is from II;, i = 1,2, then v ~ N,(i, £), and L(v) is also normally distributed as

follows.

E{L(v)|v € I}

I

1 o=t 2
E{VE" (1 - ma) - 5(#1 + )Ty — pa)|v € I, }

i E7 (= pa) - %(u: + p2) 7 (1 — p2)

Il

= — 1) B g — i)

I

EA 3.18
2& (3.18)

Var{L(v)|v € II,} E{(m - ua) (v = ) (v = ) B (i = pa)lv € T}

i

(y = p2)' T (y = pa)

A? (3.19)

where A? is the squared Mahalanobis distance between I1; and I1,. Similarly,
the', quared a———

E(LvlveTl) = —34° (3.20)

Var{L(v)|v € 11} A? (3.21)
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(T. W. Anderson, 2003).

Since the individual v is classified to II; whenever L(v) > Ink, it follows that

P = P{L(v) > Ink|v € II;}

P{LV) STELE) S N(-%a*, A?))

1 1
S i 1 A2
P{z > ~(Ink + A%}

I

@{-%(mk - %a’*‘)}. (3.22)

Similarly,

Pn = {5 (Ink - 5A%). (3.23)

The two probabilities 3.22 and 3.23 may be termed as the optimal error rates for discrimi-
nating between two multivariate normal populations with equal covariance matrices. Even
if we have knowledge of all the characteristics of the two populations, and make a choice of
the best possible all{;:cation rule in the given circumstances, we will still misallocate future
individuals from each population, at a .rate gli#'en by 3.22 and 3.23, because of an overlap
between the two populations. We note that if the likelihood ratio rule 3.16 is used, £k = 1

and Ink = 0. In this case, therefore, the two kinds of error have the same probability:

Pya=P, = ‘I’(:,i)-
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3.3.3 Apparent Error Rate

Given that f;(v) and f»(v) are known (along with their associated population parameters),
the TPM expression given in 3.6 may therefore be evaluated to obtain the actual error rate
(AER). Because the specification of fi(v) and f2(v) is seldom known one generally cannot
obtain the AER, but must be satisfied with an estimate. There is a measure of performance
that does not depend on the form of the parent populations and that can by calculated
for any classification procedure. This measure, called the apparent error rate (APER), is
defined as the fraction of observations in the training sample that are misclassified by the

sample classification function.

The apparent error rate can be easily calculated from the confusion matriz, which shows
actual versus predicted group membership. This is called the substitution or resubstitution
method (Timm, 2002). For n; observations from Il;, ¢ = 1, 2, the confusion matrix has the

form where nic is the number of II; observations correctly classified and n;ys 1s the number

Table 3.2: Confusion matrix

Predicted Membership:
Hl Hg
Actual Hl nic My =n —Mac | 1
Membership Ils | ngpr = ng — Nac Nac Mo

of TI; observations misclassified as II;, for i # j = 1, 2. Then, the APER is defined as the
— /”———_-—_ )
ratio of the total number of misclassified observations to the total, which is represented

—

e ——
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mathematically as

APER = Mipm + Naom
n1+'ﬂ.2

(3.24)

3.3.4 Expected Actual Error Rate

The APER is an estimate of the probability that a classification rule based on a given sample
will misclassify a future observation. Unfortunately because the same data are being used
to both construct and evaluate the classification rule, the APER tends to underestimate
the AER. To eliminate the bias in the APER, one procedure is to split the total sample into
a “training" sample and a “validation" sample. Then, the classification rule is created using
the training sample and the apparent error rate is determined using the validation sample.
This is sometimes called the holdout, resubstitution method. The primary disadvantages

of this procedure are that
1. it requires a large sample, and

9 since the classification rule is based upon a subset of the sample, it may be a poor

estimate of the population classification function, depending on the split.

An alternative approach that seems to work better than the holdout method is the leave-

one-out method of Lachenbruch and Mickey (1968). The procedure is as follows:

-

e

1. Starting with II;, ommation from the sample and develop a classification

ot imule based upon the n; — 1 and n, sample observations.
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2. Classify the holdout observation using the rule estimated in step 1.

3. Continue this process until all observations are classified and let ntlf,‘,) denote the

number of misclassified observations in population II;.

4, Repeat steps 1 to 3 with population Il and denote the number of misclassified ob-
servations from II; as n{ﬁ}

A nearly unbiased estimate of the expected actual error rate, E(AER) is then defined as

g (H) | (H)
E(AER) = MM T oM

ny + No

(3.25)

3.3.5 The Location Model

The classical discriminant analysis assumes that the discriminatory variable v is continuous
and assumes normality. Often in practice, the discriminatory variable is a mixture of
continuous and discrete variables. Let v denote a random vector of observations made on
any individual which is a mixture of ¢ discrete variables x and p continuous variables y. If
the ith discrete variable has.S; categories (i = 1,...,q) then the contingency table formed
from x has $= $ XSy X ... X$, locations; and denote these locations by 21, 22,...,2s.
Then the location model (LM) as proposed by Olkin and Tate (1961) has the following

distribution assumptions:

1. the conditional distribution of y given that x falls in location 2, 1s

—_—-"'-"'_-__

Np(ﬂ(m]: 3) (3.26)
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and

2. the marginal distribution of the locations is given by

P(2 = %n) = pm, With Y pp=1. (3.27)

m=1

Afifi and Elashoff (1969) adopted the location model as specified in equations 3.26 and 3.27,

(m
1

allowing different values for the continuous variable location means p ) and multinomial
probabilities p;m (m = 1,...,8) in the two populations (i = 1,2) but constraining the
conditional continuous variable dispersion matrix X to be constant over all locations and
over both populations. From the normality assumption of the model, the conditional

probability density of y, given that the discrete variables locate the individual in cell m, is

1
(2m)P/2|B|z

1 A m
em{—g(y—#ﬁ 5y — ™)}

in IT;, (i = 1,2). Thus the joint probability density of obtaining the individual cell m and

observing the continuous variable values y is

Pim 1 (m)yre—1 (m)
_exp{—=(y — 1 )E(y - )}
(27 )P/2| 2|2 { 2( ;

in IT;, (i = 1,2). Inserting these two joint probability densities into the likelihood ratio rule

3.16, and tidying up the expression by algebraic manipulation yields the allocation rule:

__——Allecate the individual v/ = (y',x’) to II;

—

if the discrete variables x correspond to the m*™ multinomial cell and
e

1 Fiis m
=y sy — -2;(#5 )+ u™)} > In(pom/pim); (3.28)
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otherwise allocate v to Il,.

Given that the LM is appropriate, probabilities of misclassification from populations IT;

and Il are shown to be

Pu = 3 py@{in(pay/pyy) - 5A2H/A]
P, = szj@[{—lﬂ(sz/Plj)'“%A?}/ﬁj] (3.29)

j=1
where A% = (1) — g9y (u? — 4) is the Mahalanobis squared distance between II;
and II, in cell j of the multinomial table, and ®(:) is the cumulative normal distribution

function.

3.4 Inferential Procedures In Discriminant Analysis

Several inferential procedures exists in discriminant function analysis. The basic ones are

discussed here.

3.4.1 Test for Hy: u; = p2 When 3; = 3, Using Hotelling’s T?-Test

In the multivariate case, we wish to compare the mean vectors from two populations. We

assume that tivé independenﬁia;rﬁmnjamples Vi1, Y12, " 3 Ying and yo1,¥22," ** »Yon, are

drawn from Np(u1, 21) and Np(u2, 3,), respectively, where 3; and ¥, are unknown. In

s
order to obtain a T2-test, we must assume that ¥; = X = X, say. From the two samples,
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we calculate ¥1,¥2, W1 = (n1 — 1)S;, and Wy = (n, — 1)S;. A pooled estimator of the

covariance matrix is calculated as

W, + W,
ﬂl—l‘?’lq**—21

for which E(Sy) = Z.

To test
Ho: py = po  versus Hj:py # po,

we use the test statistic

TL17g = i: . L
: (Y1 — yﬂ)fspll(yl — ¥2),

ﬂ1+ﬂ2

7% =

which is distributed as T2, .. _, when Hy is true. We reject Hy if 7% > T3 . 4n,—2-

3.4.2 Wilks’s Likelihood Ratio Test

Ify;,i=1,2,---,9, j=12,--- ,n, are independently observed from Np(p;, %), then the

likelihood ratio test statistic for Hp : uy = pg = + -+ = 4o can be expressed as

(3.30)

where H and E are defined as

and
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The test statistic 3.30 is distributed as the Wilks A-distribution. We reject Hp : p1 =

po == g if A < Agpyyve- P,vn and vg is the dimension and degrees of freedom for

hypothesis and error, respectively.

3.4.3 Box’s M-Test

For a one-way MANOVA with g groups (g > 2), the assumption of equality of covariance

matrices can be stated as a hypothesis to be tested:
H0121=22=*”=Ey (331)

versus H;: at least two X;’s are unequal. Define W; = ;.":l(yij — ¥i)(yi; — ¥i)', and

- s

M y
|SPI|E.UJ2

(3.32)

where v; = n; — 1,S; = W,/; is the unbiased sample covariance matrix, and Sy is the

pooled sample covariance matrix,

I uS; E
~m g==1 Vioi i
Spt v f:l Vi VE
The statistic
u=-2(1—c¢)InM (3.33)

has an approximated x?-distribution with %(k — 1)p(p + 1) degrees of freedom, where
— ’_’_"_..—--""'-——___

2| 1 2p° +3p—1
‘e lzfé' Llw] [6(p+1)(k—1)]'

i=1

—--'-'""__--

We reject Hp if u X2
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3.5 Classification with Several Populations

In this section, we briefly generalize the concept of classification for more than two discrim-
inating groups. We focus only on the multivariate normal population with equal covariance

matrices (linear discriminant analysis), the location model and logistic discrimination.

3.5.1 Minimum TPM Rule for Equal-Covariance Normal Popula-

tions

Suppose that the II; are multivariate normal populations, with different mean vectors

u(i=1,...,9) but same dispersion matrix ¥ in each. Then

f(v) = @) exp{—5(v — w) BV - )}

so that

n{pfi(V)} = Inpi— 3 In{@PIE} - 50v = ) =7V - )

, 1
= g+Inp;+p37 (v — Sm) (3.34)

where ¢ = —1 In((27)?|Z|) — 3v'E"'v. Allocating v to the population for which it has

greatest posterior probability is equivalent to allocating it to the population for which

-

In{p; fi(v)} isxgl:fe’a.test. Since g hes-the same value for all populations II;, the use of 3.3
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leads to the optimal rule:

Allocate v to the population II; for which

1
Inp; + B (v — -,u,l) is greatest. (3.35)

3.5.2 The Location Model

In a similar fashion, the allocation rule for the LM can be derived from 3.35. Define the
the conditional probability density of y, the continuous variable, given that the discrete

variables locate the individual in cell m, to be

| A - 1 (m)yrga—1(y, _ ,,(m)
fi(ylzm) (2n)c32|z|%e}q){ (v — u™My= Yy — ™).

Then, the joint probability density of obtaining the individual cell m and observing the

continuous variable values y is

_ __ Dim Crligadymyy (m) 3.36
fiv) = PRNITSTE exp{—5(y — ™)V ET (v — )} (3.36)

in Il;, (i=1,...,9). Taking natural logs on both sides of 3.30,

Infi(v) = Inpin— 3 In{@0)ISN} - 50— k"YE 0 — ™)
= g+ Inpim+ (A7YS (Y — 5™ (3.37)

where ¢ = —1 In((27)°|Z|) — 3¥’ »-ly. Since ¢ has the same value for all populations II;
in cell m, the @_Liocation rule R ity
Allocate v’ = (y’,x') to the populﬁtion I1; in cell m for which

In pim + (1 {m])’}? Ny — ( }) is greatest. (3.38)
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3.5.3 Distance Based Classification

We now turn our attention to classification rules for several groups based on the distance
between v and the discriminating groups. We consider the case where v is multivariate

normal in IT;, i = 1,...,g. The squared Mahalanobis distance between v and II; is defined

as

AZ(V) = (v — )= (v — ).

The allocation rule is

allocate v to the group for which A?(v) is smallest. (3.39)

3.6 Logistic Discrimination

We have been primarily concerned with discrimination and classification assuming a multi-
variate normal model for the variables in each group in section 3.3. However, as discussed
under subsection 3.3.5 one often finds that the variables in a study are not always continu-
ous, but a mixture of categorical and continuous variables. If the group membership variable
is categorical or a mixture with continuous, then logistic discrimination may be performed

using logistic regression (Bull & Donner, 1987). “Logistic discrimination can be viewed as

a partially panaﬁletric approach —as-it-isonly the ratios of the densities (fi(v)/f;(v),i # J)

that are being modeled.” (McLachlan, 1992)

—_--""-—H.-F

The logistic approach to discrimination is postulated as an alternative for discrimination
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and classification by parametric specification of the posterior probabilities P(II;|v) and

P(I1,|v), where

Ply) = =Rt OH)
1 + exp(ap + a'v)’
1
1+ exp(ag + a'v)’

Il

P(Ilz|v)

(3.40)

I

with ap = aj — k, and k is any of the forms discussed earlier. The fundamental assumption

of the logistic approach to discrimination is that the log of the ratio of the group-conditional

densities is linear, that is,

P(Hllv) . o
ln[P(Hgl‘V)] = Qg+ QaV. (341)

The classification rule, therefore, is
if ag + a’'v > 0, assign v to IIy, (3.42)

otherwise, assign v to Ils.

Directly generalizing the LD to the g-group case, the model for the posterior probabilities

is given as:

exp(agi + ai'v)P(Ily|v) wherei=1,...,9 -1

P(I1;|v)

il . (3.43)
14+ Y97 exp(api + ai'v)

P(Ily|lv) =
We therefore assign v to the group which has the greatest posterior probability. Thus,
e B

Allocate v to the population II; for which

P(I1;|v) is greatest. (3.44)
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3.7 Monte Carlo Studies

Monte Carlo method is a heuristic statistical technique for evaluation and simulation of
intractable problems by probabilistic simulation. It has close affinity with controlled labora-
tory experiments. The center in a Monte Carlo study usually is a test statistic or estimator
that has unknown finite sample properties, though a great deal might be known about its

asymptotic properties. The interest is the performance in practice.

In this section we first look at the nature of the models used in the simulation and the

salient computer subroutines used.

3.7.1 The Location Model

In this study, LM is formulated as follows. Let v denote a random vector of observations

made on any individual which is a mixture of ¢ binary variables x and p continuous variables

y. Then the contingency table formed from x has s = 924 Jocations or cells; and denote these

locations by 2z, 23, . .., 2s. Define the conditional probability density of y, the continuous

variable, given that the binary variables locate the individual in cell m, to be
1 (m)yrgr=1 (m)
' = T EXPL—5\)Y = M )E(y —m )}
fi(¥]2m) s} xp{—5(y —#
Then, the joingjf;f)a,bility dills/it_v__cﬁ_ﬂhtaining the individual cell m and observing the
continuous variable values y is
p'i = _ {m} Ie—1 B {m} 345
fi(v) nexp{—(y—m )BTV )} (3.45)

v) =
(211')?/2'2'%

= 47

- e e “‘“ -
-

TYEwm = =

TEAFRTY amn



inIL, (i=1,2).

Let 3‘;}"‘], S and p;,, denote the sample estimates for pf"'}, ¥ and py,, respectively. We
let pim = Pij for m # 3% cells, which implies the probability of locating an observation
in, say, the m'* cell is p,, = 1/29, a constant. Consequently pyn = . the estimated prior
probability of II;, (i = 1,2). Also assume £ = I with sample estimate I. Then equation

3.45 becomes

A+ 1 )
filv) = B exp{—=(y - 7™y - 7™
( ) (2?7)Ff2|1|'§ xp{ 2(y Yi )I (}’ Yi )}

and the allocation rule 3.3% becomes

Allocate v/ = (y’,x) to the population II;, (i = 1,2) in cell m for which

—(m)

- —(m)vg-—- 1 .
Inp; + (yE ))'I y - 53& ) is greatest. (3.46)

3.7.2 The Logistic Discrimination Model

Under LD the logit (or logistic) model is used. Let v denote a random vector of observations

made on any individual. The logistic model states that the probability of falling into a
particular group given the set of predictor values v is

P(I,|lv) = exp(ao+ a'v)P(Ilz|v)

== 1
) . 3.47
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where do and & are the parameter estimates in the logistic model. We allocate v to the

group with the greatest posterior probability. Thus,

Allocate v to the population II;, i = 1,2 for which

P(II;|v) is greatest. (3.48)

3.7.3 Generation of Sample Values

In setting up a Monte Carlo experiment, the following conditions were decided.

e The sample size was specified. We set 3 values of n; at 40, 80 and 120 respectively.
The size of n, is decided by the predetermined sample size ratios n; : np. The ratios

are 1:1, 1:2, 1:3, 1:4. These ratios determine the prior probabilities to be considered.

o Numerical values were assigned to the values of §, the group centroid separator factor

and Mahalanobis’ distance determinant. These are 1, 2 and 3 respectively.

e The number of variables in the simulation is specified. The number of continuous

variables from which the multi-normal distributions is to generated within multino-

mia] cells is predetermined by the continuous to binary variable ratios p : g. The

values of the number of variables are set at 4 and 8, and p : ¢ are also set at 13

1:1 and 3:1’rgépe.ctively. The MatLab R2007b and R2009a packages were used for

generating the values of the predetermined variables from a normal distribution.

——

e The leave-one-out procedure is used in estimating the error rates.
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e The number of replications of the experiment is set at 30. Hence 30 samples of random
variates of the required specification are generated within cells, and the analysis is
carried out on the 30 samples. The error rate estimates are then averaged over
the number of replicates. This procedure is repeated for every size in the range of

predetermined samples or ratios 1:1, 1:2, 1:3, and 1:4 respectively for every value of

.

e The mean and covariance structures were specified. Here the identity matrix is the
one specified for the covariance matrix corresponding to p. The mean for group 1 in
the first cell is set to the zero vector and the corresponding mean for group 2 is 0, the

group centroid separator. To ensure different mean structures in the different cells,

the difference between the means of a particular group in two successive cells is taken

as unity.

3.7.4 Subroutine for the Location Model

Series of subroutines were written in MatLab to perform the simulation and discrimination

procedures. The salient ones are presented.

3.7.4.1 Data Simulation
— j/-—-"""-__'_ =

% number of continuous and binary variables

ncvar = var_ratio(1)/totvar_ratio*nvar; Yinumbe
nbvar = nvar-ncvar; number of binary variables

ncells =-2*nbvar; Ynumber of multinomial cells

r of continuous variables

for cell m to ensure integer values

= . I- le sizes
nm = ceil(n/ncells) ;%ksamp — n#ncells; Jredefining sample sizes

nmtotal = sum(nm);%total observations in cell mn

; 50
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Yredefining sample sizes
rr=rem(n,ncells)==zeros(1,2);
for j = 1:g
if rr(j) == 0
n = nm*ncells; |
end
end i
% if rem(n,ncells) =zeros(1,2) i
% n = nm*ncells;’redefining sample sizes
% end f

Rommmmmmmeee To ensure nonsingular covariance matrix------------
if (nmtotal-1)-2<ncvar
error(’sample sizes within cells too small’)

end

mu(:,1) = zeros(ncvar,1); %mean for group 1
I = ones(ncvar,1); |
mu(:,2) = mu(:,1)+dist*I;%mean for group 2

II=ones(ncvar,2);
tMeans{1} = mu;
for m = 2:ncells
tMeans{m} = tMeans{m-1}+II;%means within the various cells

end

tSIGMA = eye(ncvar);/common covariance matrix

h=-==-=-- forming cell structures of mean and covariance matrices-------
mcell(m) .rep(r) .structure = slgausscumh('maans’,tHanna{m},’cnvs’,tSIGHA};
hommmmmmm = generating normal random sample for the different cells--------
mcell(m) .rep(r).cdata = slgaussrnd(mcell(m).rep(r).structure,nm); r
=== partitioning the data into the different populations--------
for i = 1:g !
if i == 1
mcell (m) .rep(r) .group(i) .cdata = mcell (m) .rep(r).cdata(:,1:nm(i))’;
else
mcell(m) .rep(r) .group(i).cdata = mcell(m).rap{r).cdata(:,sum{nmfl:(i-l)})+1:aum(nm(1:i))}’;
end

end

The main command 'U.SEd in the entire pr{jcedure 1S [LM,LG] = thesis(nl ,n:ratin,mrar,va:_ratin,dalta,nrep}.

The above procedure creates a data set by simulating random variates from two normal

populations within cells with specified parameters. The command slgaussrnd is used to

-

generate combined data for thepopulations within each cell. The next lines of code are

used to sort the data into the respective groups. The output is a data of size nn for the
———
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miht cell.

3.7.4.2 Discrimination Procedure

for i = 1:g
for a = 1:om(i)
%mean for the remaining sample after holdout
mcell(m) .rep(r) .MeansH(:,i) = mean(mcell(m).rep(r).group(i).trainsample{a,i});

%linear discriminant score
for k = 1:g
if k==i

mcell (m) .rep(r) .LDF{a,i}(k, :)=log(mprior(k))+mcell(m).rep(r).MeansH{a}(:,i) ’*mcell(m).rep(r).invCovarH{a,i}*
(mcell(m).rep(r).group(i).holdout(a,:)’ - (1/2)*mcell(m).rep(r).MeansH{a}(:,i));

else

mcell(m) .rep(r) .LDF{a,i}(k,:) = log(mprior(k))+mcell(m).rep(r).Means(:,k)’*mcell(m).rep(r).invCovarH{a,i}*
(mcell(m) .rep(r).group(i).holdout(a,:)’ - (1/2)*mcell(m).rep(r).Means(:,k));

end
end

% pre-defined vectors of actual group and predicted
mcell (m) .rep(r) .actual_group = []; mcell(m).rep(r).predict_group = [];
for 1 = 1:g
for a = 1:om(i)
%finding maximum linear discriminant score
[mmax,q] = max(mcell(m).rep(r).LDF{a,i}); !

for h = 1:g
%assigning the holdout sample with the maximum
¥linear discriminant score to the appropriate group
if q==h

mcell (m) .rep(r).group(i) .predict(a)= h;

end

end

end
end

Ygenerating confusion matrices within the various cells

for m = 1:ncells
for r = 1l:nrep : 2
mcell(m) .rep(r).confmat = cfmatrix(mcell{m}.rep(r}.actual_group,mcﬂllim}.rep(r).predlct_grﬂup,groups,ij,
end
end

il

Yaverage confusion-matrix for the replicasioms—

for m = 1:ncells

¥
for r = l:nrep

C = horzcat(ﬂ.mcall(m]‘rep(r).cnnfmat(i.j));

=13 BT
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end
mcell(m) .confmat(i,j) = mean(C);
end
end
end

=

The hold-out observation is classified into one of the groups. The leave-one-out error rates
are computed using the cfmatrix comma,nd., which generates a confusion matrix. This is i

done for each replication within the cells and later averaged over replications.

3.7.5 Subroutine for the Logistic Discrimination Model

3.7.5.1 Data Simulation

YCreating Indicator variables for the binary variables
a = [0;1];%a(1)=0;a(2)=1;
b= [00:1 0;0 1;1 11;%b(1,:)=[0 0];b(2,:)=[1 0];b(3,:)=[0 1];b(4,:)=[1 1];

if nbvar==1
b=a;
elseif nbvar==2 :
b=b;
else
for p = 3d:nbvar
tzeros = zeros(length(b),1); tones = ones(length(b),1);
c=[b,tzeroe] ;d=[b,tones] ;b=[c;d];
end
end

YDiscrete Data representation of the cells for the different classification
hgroups
for i = 1:g
for m = 1:ncells
mcell (m) .group(i) .bdata = repmat (b(m,:),nm(i),1);

= group labels-------
group(i) .label = ones(n(i),1)*i;
end

The simulation for LD is done in this manner. Indicator variables are created for the binary
- //—-—,’

variables which correspond to a particular cell (forming our binary data), as above. Next

thﬁm’:,_r data is combined with the multinormal data generated for LM for the different

L in s
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cells. Lastly the combined data representing the various cells are combined again to obtain

the data for a particular replication.

Ycontinuous and discrete data for the different cells i
for m = 1:ncells |
for r = l:nrep !
for i = 1:g
: mcell(m).group(i).lgdata = [mcell(m).rep(r).group(i).cdata,mcell(m).group(i).bdatal;
en
end
end

Yconcatenaating the data in the various cells

for r = l:nrep
for i = 1:g
group(i) .rep(r).1lgdata = [1; E
for m = 1:ncells '
group(i) .rep(r) .lgdata = vertcat(group(i).rep(r).lgdata,mcell(m),group(i).lgdata);
end
%concatenating the group labels and the rest of the data
group(i) .rep(r) .lgdataset = [group(i).label,group(i).rep(r).lgdata];
end
end

3.7.5.2 Discrimination Procedure

First logistic regression is done to find the estimated parameters. The posterior probabilities

corresponding to the two groups are then computed.

for r = 1l:nrep
for 1 = 1:g
for a = 1:n(i)
rep(r) .B{a,i} = mnrfit{grnup(i).rap{r}.1gtrainaampla{a.i}{:,2:and}..,
group(i) .rep(r).lgtrainsample{a,i}(:,1));
end
end
end

for r = 1:nrep
for 1 = 1:g
for a = 1:n(i)
rep(r) .H{a,i} = group{i).rap(r}.lghulduut(a,z:end);

sum_expo{a,i}.rep{r} = 0;
for ] = lig~l

auﬁ:ﬁfpa{a.i}.rap{r};nfﬂﬁﬁfﬁiﬁsfgjij.rﬁp{r} + exp(rep(r) .B{a,i}(1,j) +...
rap(r).E{a,i}(?:and.j}**rap{rl.H{a.i}’};
end

—f‘:"""fap{rl.lngistic_postarinr{a,i}{g.:} = 1/(1 + sum_expo{a,i}.rep{r});

for j = 1:g-1

rap(r).lngistic_pusterior{a.i}{j.=) = (axP(raP(r)'B{“'i}(i’j) pilan.
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rap(r)-B{&-i}(2=ﬁ“d-j)’*rﬁp(r)-H{H-i}’}}*rﬁp(r}.1agistic_puatariar{a_i}{g,;);
end
end

Next is the classification of the hold-out samples based on the maximum posterior proba-
bility. The confusion matrix is generated for each replication and averaged over the repli- |

cations using the cfmatrix command.

for r = l:nrep
rep(r) .actual_group = [];rep(r).predict_group = [];
for i = 1:g
for a = 1:n(di)
[lmmax,s] = max(rep(r).logistic_posterior{a,il});

for h = 1:g
%if rep(r).lmax{a,i} == rep(r).logistic_posterior{a,il}(h,:)
if s==h
gp(i) .rep(r) .predict(a) = h;
end
end
end

gp(i) .rep(r).actual = (ones(n(i),1)*i)’;

rep(r) .actual_group = harzcat{rap{r).actual_group,gp(i}.rep{r}.actual?;
rep(r) .predict_group = hurz:at{rep(r).pradict_gruup.gp(i}.rep(r).pradlct};

end
end
for r = l:nrep e
rep(r) .lgconfmat = cfmatrix(rep(r).actual_group,rep(r).predict_group,groups,=/,
end
__'_._--.-#-F_
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Chapter 4

Simulation Results and Discussion

4.1 Introduction

The content of this chapter is the results of our investigation on the effects of sample size and
sample size ratios, number of variables and variable ratios, and Mahalanobis distance on the
performance of the Location Classification Model (LM), and its comparative performance
to Logistic Discrimination (LD). The sample size of the first group (n,) is fixed throughout
the study and the size of the second group (n2) is determined by the respective sample size
ratio under consideration. With respect to the number of sample within cells, the total
sample size, which is predetermined by n, and the respective sample size ratio, is divided
equally among the number of cells. The LDF is first applied to the set of simulated data
within multinomial cells (i.e. LM) and then the LD is applied afterwards. The sample

sizes for which we simulated the normal random variables for each value of n, and sample

size ratio combination is presented in table 4.1. On the number of discriminating variables

used in the simulation, the total number of discriminating variables is fixed throughout

the study and the number of continuous, p and binary, g variables are determined by the
et ’/_/'

continuous to the binary variable ratio p : ¢ under consideration. Table 4.2 is the summary

of the number of variables used and the number of multinomial cells (in parenthesis) within
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- ‘ ch the normal variates were simulated.

Number of Variables




this chapter. Tables are displayed first for discussions on effects of sample size and sample
size ratios and variable selection for both models. Appendix D shows the tables of results

for all scenarios. Fach page displays the results for a particular § and n;.

For the next two sections, the first columns of the tables are the total sample sizes used
in the simulation for a particular n,, followed by the outcome of the continuous to binary
variable ratios in the next three columns. The results of both LM and LD are displayed
side-by-side on the same table for the various variable ratios. The graphs of the mean,
standard deviation and coefficient of variation are displayed on the same page with that of
LM on the left. The graphs show the total sample sizes on the horizontal axis and the mean,
standard deviation or coefficient of variation on the vertical axis. Except on the discussion
of the effect of Mahalanobis distance on the classification rules, all results displayed in
this chapter are for § = 1 with 4 number of variables, and with 4 and 8 variables under
discussions on variable selection. The rest of the results, both tabular and graphical, are

shown in the appendices. In all cases, the results were recorded to four decimal places.

4.2 Effects of Sample Size on the Classification Models

In this section, we look at the asymptotic performance of the LM and LD. The average

misclassification rﬁ_fg results foibggh_madﬂls < shown in table 4.3 for § = 1 with 4 variables.

The table of results of the standard deviations and coefficients of variation for 6 = 1 with 4

___.—-"""-_-_

variables are shown in tables A.1 and A.2 respectively. The graphs of the results for 0 = 1
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with 4 variables are shown in figures 4.1 to 4.3. The results for § = 1 with 8 variables and
= 2,3 with 4 and 8 variables are shown in tables A.3 to (.G and figures A 1 to A.3, B.1

to B.3, B.7 to B.9, C.1 to C.3, and C.7 to C.9.

A glance through the mean error rates of misclassification in the tables shown in appendix
D reveals that, generally, an increase in the total sample size decreased the error rate of
misclassification for a particular n,, for both LM and LD, under all parameter combinations.
From figure 4.1, the mean error rates of LM all decreased as the total sample size (S/Size)
increased. The error rates for n; = 40 reduced faster as S/Size increased than when n; = 80
and 120. The error rates for all n; were almost the same as n; : n; increased from 1:3 to
1:4 for the continuous to binary variable ratios 1:3 and 1:1. For variable ratio 3:1, the
mean error rates were almost the same for n; = 40 and 80 under all sample size ratio
combinations. For LD, the mean error rates also generally decreased as S/Size increased,
with the mean error rates being almost the same as n; : n increased from 1:3 to 1:4 for
variable ratio 1:3. Under variable ratio 1:1, when n; = 40 the mean error rate sharply
increased as S/Size increased from 80 to 120, decreased sharply again as S/Size increased

to 160, falling below the error rate for S/Size = 80 and even further decreased as S/Size

goes to 200. For n; = 80, the mean error rate increased as S/Size increased from 160 to

9240, and then decreased as S/Size further increased.

For their standard deviations, thatof 7 = 40 decreased as S/Size increased for variable

ratios 1:3 and 1:1 for LM. For variable ratio 3:1, the standard deviation for n; = 40 de-

__——__..-r—

creased as S/Size increased from 80 to 120, and increased sharply after 160. In general, the
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Table 4.3: Mean error rates of misclassification for § = 1, nvar = 4

Variable Ratio

S/Size 1:3 1:4 3.1
LM LD TN | LD T D
ny = 40
80 | 0.1754 | 0.1812 | 0.1394 | 0.1125 | 0.1029 | 0.1250
120 | 0.1515 | 0.1583 | 0.1211 | 0.1542 | 0.0931 | 0.0958
160 | 0.1191 | 0.1188 | 0.0991 | 0.1094 | 0.0766 | 0.0875
200 | 0.0974 | 0.0925 | 0.0795 | 0.0850 | 0.0689 | 0.0550
n; = 80
160 | 0.1537 | 0.1469 | 0.1215 | 0.0813 | 0.1030 | 0.1000
240 | 0.1410 | 0.1333 | 0.1118 | 0.1104 | 0.0917 | 0.0979
390 | 0.1145 | 0.1234 | 0.0928 | 0.1031 | 0.0788 | 0.0891
400 | 0.0944 | 0.0975 | 0.0822 | 0.0763 | 0.0684 | 0.0525
ny = 120
040 | 0.1587 | 0.1792 | 0.1265 | 0.1333 | 0.0982 | 0.1083
360 | 0.1357 | 0.1347 | 0.1110 | 0.1194 | 0.0908 | 0.0958
480 | 0.1121 | 0.1156 | 0.0967 | 0.1000 | 0.0793 | 0.0740
600 | 0.0954 | 0.0975 | 0.0799 | 0.0697 | 0.0664 | 0.0717
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standard deviations marginally increased as S/Size increased. For that of LD, the standard
deviations increased and later decreased for n; = 40,80, and for n, = 120 increased and
later decreased marginally after 480 for variable ratios 1:3 and 1:1, with that of variable
ratio 3:1 being sinusoidal. As to the coefficients of variation for the two models, there was

a relative increase as S/Size increased.

For 8 number of variables, the mean error rates for LM decreased as S/Size increased with
their standard deviations and coefficients of variation also decreasing asymptotically. For
LD, the mean error rate decreased sharply and later marginally for n, = 40 and variable ra-
tio 1:1, and increased marginally as S/Size increased from 120 to 160 and sharply decreased
from 160 to 200 for variable ratio 3:1. Under n; = 80 the mean error rates were sinusoidal
as S/Size increased. When n; = 120 the mean error rates decreased asymptotically for
variable ratio 1:1 and for variable ratio 3:1, increased from S/Size = 240 to 360 and then
decreased. Their standard deviations were found to follow no particular pattern as S/Size

increased. However, the coefficients of variation generally increased asymptotically.

For 6 = 2 and 4 classification variables, the mean error rates for LM decreased asymptoti-

cally, with their standard deviations and coefficients of variation also decreasing as S/Size

increased. For LD, the mean error rates decreased and then increased for n; = 40 as S/Size

increased. For n; = 80, the mean error rates increased as S/Size increased from 160 to

940 and then decreased, for variabteTatios 1:3 and 1:1. The error rates for n; = 120 were

averagely found to decrease asymptotically. The standard deviations and coefficients of
—

variation for the error rates exhibited no particular pattern. When the number of variables

-
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increased to 8, the mean error rate of LM and their standard deviations were found to de-
crease asymptotically. The coefficients of variation increased and decreased asymptotically
for variable ratio 1:1 and decreased asymptotically for variable ratio 3:1. The mean error
rates for LD behaved sinusoidally as S/Size increased for n; = 120, increased for n; = 40
under variable ratio 1:1, decreased sharply frbm S/Size = 120 to 160, and increased after
160 for variable ratio 3:1. Also for n; = 80, there was an increase in the mean error rate
as S/Size increased from 160 to 240 and decreased after 240 for variable ratio 1:1. The
situation is the opposite for variable ratio 3:1. The standard deviations and coefficients of
variation behaved sinusoidally for variable ratio 1:1, for n; = 80 under variable ratio 3:1,

increased after S/Size = 240 for the standard deviation.

When § = 3, the mean error rates of LM and their standard deviations and coefficients
of variation generally decreased asymptotically for 4 and 8 number of variables. However,

the coefficients of variation for the 8 variables were found to increase for n; = 40,80 and

decrease for n; = 120 for variable ratio 1:1. For LD we observed the following: when the

variable ratio is 1:1, the error rate increased as S/Size increased from 120 to 160, then

decreased sharply as S/Size increased from 160 to 200 for n; = 40. When n; = 80 the

mean error rate increased sharply from 0 after S/Size 240 and drops back again. That of

ny = 120 shoots up after S/Size 480. When the variable ratio is 3:1, the mean error rates

were found to be zero for all S//Sige’g;cggpi that the error rate shot

patterns. The coefficients of variation

up after S/Size 160 for

n; = 40. The standard deviations recorded similar

_.---""'—.—-_

could not be computed since most of the mean error rates were zero.
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4.3 Effect of Variable Selection on the

Classification Models

We look at the effect of number of variables and continuous to binary variable ratios on the
performance of the classification models. The table of results used under this section are
the same for the previous section. The graphs of the results for § = 1 with 4 variables are
shown in figures 4.4 to 4.6. The graphical results for § = 1 with 8 variables and § = 2,3
with 4 and 8 variables are shown in figures A.4 to A.6, B.4 to B.¢, B.10 to B.12, C.4 to

€6, and C.10 to C.12.

A look through the tabular results displayed in appendix D reveals the following. Under LM
the error rates decreased as the number of variables increased from 4 to 8 for ratios 1:1 and
3:1. The 8 variables generally had superiority over the 4 variables under all circumstances.
When n; = 40 the 4 variables gained superiority for the ratio 1:1 for § = 3 after sample
size ratio 1:2. Also the variable ratio 3:1 outperformed 1:1 for both 4 and 8 variables.
Under LD the 8 variables outperformed the 4 variables in general. From figure 4.4, we
observed that the plots of the variable ratio 3:1 were below the other ratios with ratio 1:3
being on top for both LM and LD. The mean error rates droped faster for n; = 40 than for
ny = 80,120. The standard deviations for LM were found to be higher for ratio 1:3 than 1:1

and 3:1 with thgi_lf ﬁc}efﬁcients Eggaﬁaﬂ%—increasing as S/Size increased. For LD both the

standard deviations and coefficients of variation were found to increase as S/Size increased

-.._-l-l-""'——_-r

and curved downward after sample size ratio 1:3. In general the standard deviations and
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coefficients of variation were found to be lower for variable ratio 3:1. A similar argument
can be made for the other cases. The mean error rates were always found to be lower for

variable ratio 3:1 followed by 1:1. When § = 3 with 4 variables, the mean error rates under

the two models were found to be very high for variable ratio 1:1, as shown in figure C.4.

The standard deviations were found to be lower for variable ration 3:1.
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4.4 Effect of Mahalanobis Distance on the Classification

Models
Table 4.4: Mean error rates of misclassification for var. ratio 3:1, nvar = 4
0=1 d = §=3
S/Size
LM LD LM LD LM LD

ny = 40
80 | 0.1035 | 0.1250 | 0.0256 | 0.0188 | 0.0031 | 0.0125
120 | 0.0931 | 0.0958 | 0.0201 | 0.0083 | 0.0026 | 0.0000
160 | 0.0766 | 0.0875 | 0.0200 | 0.0094 | 0.0019 | 0.0063
200 | 0.0689 | 0.0550 | 0.0181 | 0.0175 | 0.0019 | 0.0000

n; = 80
160 | 0.1030 | 0.1000 | 0.0250 | 0.0219 | 0.0034 | 0.0000
240 | 0.0917 | 0.0979 | 0.0203 | 0.0188 | 0.0024 | 0.0000
300 | 0.0788 | 0.0891 | 0.0171 | 0.0172 | 0.0028 | 0.0031
400 | 0.0684 | 0.0525 | 0.0163 | 0.0225 | 0.0020 | 0.0038

n, = 120
240 | 0.0982 | 0.1083 | 0.0227 | 0.0208 | 0.0019 | 0.0042
360 | 0.0908 | 0.0958 | 0.0208 0.0208 | 0.0016 | 0.0014
“u50 | 0.0793 [0.0740 | 0.0175 | 0.0198 | 0.0017 | 0.0010
S 600 | 0.0664 | 0.0717 0.0153 | 0.0142 | 0.0016 | 0.0017
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Table 4.5: Mean error rates of misclassification for var. ratio 3:1. nvar — 8

6=1 0= 6=3
S/Size
LM LD LM LD LM LD
n; = 40
80 0.0894 | 0.0375 0.0i48 0.0000 | 0.0013 | 0.0000
120 | 0.0736 | 0.0667 | 0.0068 | 0.0125 | 0.0004 | 0.0000
160 | 0.0623 | 0.0688 | 0.0058 | 0.0000 | 0.0001 | 0.0000
200 | 0.0558 | 0.0425 | 0.0052 | 0.0025 | 0.0000 | 0.0025
ny = 80
160 | 0.0670 | 0.0500 | 0.0059 | 0.0094 | 0.0005 | 0.0000
240 | 0.0610 | 0.0563 | 0.0039 | 0.0000 | 0.0001 | 0.0000
320 | 0.0511 | 0.0313 | 0.0047 | 0.0016 | 0.0001 | 0.0000
400 | 0.0463 | 0.0563 | 0.0039 | 0.0025 | 0.0000 | 0.0000
ny = 120
240 | 0.0641 | 0.0479 | 0.0058 0.0000 | 0.0000 | 0.0000
360 | 0.0595 | 0.0611 | 0.0043 | 0.0083 | 0.0000 | 0.0000
480 | 0.0498 | 0.0292 | 0.0039 | 0.0021 | 0.0001 | 0.0000

In this section, we investigate the effect of the centroid separators 4 = 1,2,3 on our classi-

fication models. For simplicity, we-present only the summary of results for continuous to

binary variable ratio 3:1 in this section. A look at the results in appendix D reveals that

-_.—-l-'"'——--
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the squared sample Mahalanobis distance D? increased as the continuous to binary variable
ratio increased from 1 : 3 to 3 : 1 for a total variable of 4. However, with 8 variables D?

increased for the variable ratios 1:1 to 3:1, when n; = 80 and ny : np = 1: 3,1 : 4, and also
when n; = 120 for m; :ng =1:2,1:3,1:4. It is also worth noting that as the number of
variables increased, D? also increased for a p.ﬁ.rticular continuous to binary variable ratio.
Tables 4.4 and 4.5 show that the error rates of LM and LD decline as ¢ increased from 1
to 3. This is shown pictorially in figures 4.7 and 4.8. It can be seen that the error rates for

§ = 2 and 3 are closer to each other, especially for the 8 variables, while that of 0 = 1 is

high above the other two.
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LM plot of delta=1, delta=2, delta=3 vs S/Size

LD plot of delta=1, delta=2, delta=3 vs S/Size
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Figure 4.7: Mean error rates of misclassification for var. ratio 3:1, nvar = 4
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4.5 Comparison of LM and LD

In concluding this chapter, we present the discussion of the comparison of LM and LD.
We present graphs of the mean error rates of misclassification for both models and their
coefficients of variation. The coefficients of variation for the location model is first divided
by the number of cells before being compared with that of LD. This is done because the
coefficients of variation recorded for LM are the total variations over all cells. Dividing
the variations over the number of cells is therefore necessary to ensure equal grounds for
comparison. We can infer from the graphs that, in general there was a difference between
the performance of the two models. However, a look through figure 1.9 shows that LM
outperformed LD for the 4 variables case, and in some cases the performance alternated
between LM and LD as S/Size increased, while for the 8 variables LD outperformed LM,
as S/Size increased. There was actually a vast difference in the performance of LM and
LD when n; = 40 for the 8 variables with variable ratio 1:1. The coefficients of variation
plots in figure 4.10 shdw that of LD being higher than LM as S/Size increased for the 4

variables. However, the coefficients of variation for the 8 variables, with variable ratio 3:1
has that of LM being marginally higher than LD.

The results are similar when 0 = 2. However, the coefficients of variation for LD was

found to be more volatile as S/Size increased, with that of LM being almost uniform. In

——— '/’——_
general that of LM was lower fhan LD. With § = 3 the error rates for the two models were

harddydistinguishable with that of 4 variables with variable ratio 1:3 alternating as S/Size
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increased. For 8 variables with variable ratio 1:1, the error rates are marginally higher for
LM but declines as S/Size increased. A broader view of the graphs shows that as S/Size
increased, LM outperformed LD. On the coefficients of variation shown in figure 4.14, that
of LM were found below that of LD for 4 variables with ratio 1:3 when n; = 80 and 120.

The others show that of LM being higher than LD.
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Figure 4.13: Mean error rates of misclassification for § = 3
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Chapter 5

Conclusion and Recommendations

5.1 Introduction

In this study, we investigated the sensitivity of the Location Classification Model (LM)
and Logistic Discrimination (LD) to increase in sample size, prior probability (defined by
the group size ratio n; : ng), number of continuous and binary variables and Mahalanobis
distance (defined by the group centroid separator d) through a Monte Carlo simulation.
Three sample sizes for group 1 were chosen at ny = 40, 80, 120 and the total sample sizes
(S/Size) determined by four sample size ratios of group 1 to group 2 (ny :mg =1:1,1:
2.1 : 3 and 1:4) for three values of group centroid separator (§ = 1,2,3). The number
of continuous and binary variables considered were 4 and 8 and the respective number of
continuous (p) and binary (g) variables determined by three ratio of continuous to binary
variables 1:3, 1:1 and 3:1. For the 8 variables, the ratios considered were 1:1 and 3:1.

Multivariate normal observations were generated for the p-variate situations for LM within

——

each multinomial cell predetermined by 27. The observations for LD were generated based

omtiat of LM and indicator variables from the multinomial cells.
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5.2 Findings and Conclusions

In chapter four we presented the empirical results of the simulation. In this summary

attention is focused on the following.
1. The behaviour of the mean error rates and their stability as:
e We vary the total number of variables between 4 and 8.

e The centroid separator J varies from 1 to 3.

e The sample size ratios vary from 1:1 to 1:4 for n; = 40, 80, 120.

9. A comparison of the Location Classification Model and Logistic Discrimination.

The summary of our findings is as follows:

e There was a decline in the misclassification error rates for both LM and LD as n,

nereased from 40 to 120. This was also seen as the sample size ratios increased from

1:1 to 1:4.

e The error rates of misclassification reduced rapidly as group separator 0 increased

from 1 to 3 than as sample size increased.

e Results for LM showed that as we increased the number of variables from 4 to 8, the

error rates were found to be higher for the 8 variables with variable ratio 1:1 when

n, = 40 Er all 0. Simm;as observed for n, = 80 with sample size ratio

31 The error rates were lower for the 8 variables when the variable ratio 3:1 was
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considered. For LD, the error rates were lower for the 8 variables under all conditions.
e LD showed higher coefficients of variation than LM in general.

e It can be concluded that the optimal for both models is 8 variables with continuous

to binary variable ratio 3:1.

5.3 Recommendations

Based on our findings, the following recommendations are made for a mixture of continuous

and binary variables with the continuous variables being normally distributed with equal

covariance matrices for the two group case.

1. To use the Location Model for classification problems, it is expedient to increase the

distance function and sample sizes.
9. LM should be preferred over LD for smaller number of variables.

Due to minimal availability of memory of the computer used for the study, there was

restriction on the variation of the parameters used. The following are also recommended

for further research (on a high performance computer):

1. Increasing the number of continuous and binary variables.

9. Increasing & beyond 3//'

T Increasing n; beyond 120.
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Appendix A

Results for § =1

Table A.1: Standard deviation of error rates of misclassification for § = 1, nvar = 4

Variable Ratio
S/Size 1:3 1:1 3:1
LM | LD LM | LD LM | S LD
ny = 40
80 0.1180 | 0.0189 | 0.0642 | 0.0126 | 0.0409 | 0.0000
120 0.1080 | 0.0504 | 0.0579 | 0.0714 | 0.0321 | 0.0294
160 0.0880 | 0.0504 | 0.0570 | 0.0662 | 0.0326 | 0.0441
200 0.0761 | 0.0429 | 0.0490 | 0.0504 | 0.0358 | 0.0303
ni = 80
160 0.0686 | 0.0032 | 0.0402 | 0.0063 | 0.0274 | 0.0000
240 0.0820 | 0.0336 | 0.0454 | 0.0525 | 0.0255 | 0.0189
320 0.0837 | 0.0741 | 0.0477 | 0.0536 | 0.0294 0.0268
400 0.0735 | 0.0555 | 0.0495 | 0.0391 | 0.0309 | 0.0151
ny = 120
240 0.0400 | 0.0126 | 0.0367 | 0.0042 | 0.0255 | 0.0042
360 0.0798 | 0.0518 | 0.0406 | 0.0392 | 0.0269 | 0.0294
480 0.0779 | 0.0683 | 0.0473 | 0.0441 | 0.0286 | 0.0200
600 0.0725 | 0.0664 | 0.0450 | 0.0328 | 0.0285 0.0235

Table A.2: Coefficient of variation of error rates of misclassification for 6 = 1, nvar = 4

Variable Ratio
S/Size 1:3 141 31
LM | LD LM | LD LM LD
ny = 40
80 0.6727 | 0.1043 | 0.4607 0.1120 0.3951 | 0.0000
120 0.7128 | 0.3185 | 0.4783 0.46334 | 0.3449 | 0.3069
160 0.7395 | 0.4246 | 0.5750 0.6051 0.4263 | 0.5042
200 0.7812 | 0.4633 | 0.6166 0.5932 0.5195 | 0.5501
ny = 80
160 0.4467 | 0.0215 | 0.3308 0.0776 0.2660 | 0.0000
240 0.5815 | 0.2521 | 0.4063 0.4757 0.2782 | 0.1931
320 0.7311 | 0.6000 | 0.5140 0.5195 0.3733 | 0.3008
400 07784 | 0.5689 | 0.6029 0.5125 0.4523 | 0.2881
1 = 120
240 0.3148 | 0.0704 0.2904 0.0315 0.2595 | 0.0388
360 0.5886 | 0.3847 | 0.3653 0.3283 0.2957 | 0.3069
480 0.6946 | 0.5905 | 0.4889 0.4412 0.3607 | 0.2699
600 _| 873961 0.6809 | 0.5628 | 0.4738 0.4295 | 0.3283
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Table A.3: Mean error rates of misclassification for § = 1, nvar = 8

Variable Ratio

S/Size 1:1 3:1
LM LD LM [ LD
ny = 40
120 0.1650 | 0.0977 | 0.0736 | 0.0667
160 0.1157 | 0.0597 | 0.0623 | 0.0688
200 0.1005 | 0.0577 | 0.0558 | 0.0425
] = 80
160 0.1355 | 0.0844 | 0.0670 | 0.0500
240 0.1044 | 0.0854 | 0.0610 | 0.0563
320 0.0911 | 0.1047 | 0.0511 | 0.0313
400 0.0744 | 0.0650 | 0.0463 | 0.0563
n1= 120
240 0.1104 | 0.1055 | 0.0641 | 0.0479
360 0.0933 | 0.0707 | 0.0595 | 0.0611
480 0.0767 | 0.0635 | 0.0498 | 0.0292

Table A.4: Standard deviation of error rates of misclassification for § = 1, nvar = 8

Variable Ratio

S/Size 1:1 3:1
LM LD LM LD
ny = 40
120 0.1195 | 0.0118 | 0.0402 | 0.0000
160 0.0862 | 0.0086 | 0.0340 | 0.0063
200 0.0715 | 0.0097 | 0.0288 | 0.0076
ny = 80
160 0.0966 | 0.0032 | 0.0386 | 0.0063
240 0.0706 | 0.0021 | 0.0296 | 0.0021
320 0.0534 | 0.0331 | 0.0218 | 0.0032
400 0.0439 | 0.0202 | 0.0183 | 0.0214
ny = 120
240 0.0687 | 0.0039 | 0.0294 | 0.0021
360 0.0524 | 0.0110 | 0.0237 | 0.0028
480 0.0423 | 0.0091 | 0.0189 | 0.0042

Variable Ratio

S/Size 1:1 31
LM | LD LM LD
mn = 40
120 0.7245 | 0.1210 | 0.5461 | 0.0000
160 0.7450 | 0.1441 | 0.5458 | 0.0917
200 0.7113 | 0.1681 | 0.5159 | 0.1780
ny = 80
160 0.7352 | 0.0373 | 0.5766 | 0.1261
|__249—T 06760 | 0.0250 0.4855 | 0.0374
320 0.5859 | 0.3161 | 0.4267 0.1008
400 0.5900 | 0.3103 | 0.3952 | 0.3810
' ny = 120
240 0.6225 | 0.0374 | 0.4586 0.0438
360 0.0815 | 0.1551 | 0.0639 0.0458
480 0.0726 | 0.1441 | 0.0333 0.1441
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A.2 Graphs for Variable Selection
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Appendix B

Results for 0 = 2

Table B.1: Mean error rates of misclassification for § = 2, nvar = 4

Variable Ratio
S /Size 1:3 1:1 3:1
LM ] LD LM | LD LM | LD
n = 40
80 0.0867 | 0.0938 [ 0.0490 | 0.0375 | 0.0256 | 0.0188
120 0.0761 | 0.0583 | 0.0368 | 0.0333 | 0.0201 | 0.0083
160 0.0651 | 0.0688 | 0.0373 | 0.0406 | 0.0200 | 0.0094
200 0.0593 | 0.0725 | 0.0299 | 0.0450 | 0.0181 | 0.0175
1 = 80
160 0.0776 | 0.0906 | 0.0457 | 0.0312 | 0.0250 | 0.0219
240 0.0746 | 0.0979 | 0.0399 | 0.0500 | 0.0203 0.0188
320 0.0667 | 0.0609 | 0.0337 | 0.0297 | 0.0171 0.0172
400 0.0577 | 0.0538 | 0.0303 | 0.0313 | 0.0163 0.0225
ny = 120 '
240 0.0810 | 0.0771 | 0.0407 | 0.0208 | 0.0227 | 0.0208
360 0.0736 | 0.0625 | 0.0390 | 0.0361 0.0208 | 0.0208
480 0.0653 | 0.0667 | 0.0347 | 0.0302 0.0175 | 0.0198
600 0.0586 | 0.0575 | 0.0301 | 0.0275 0.0153 | 0.0142

Table B.2: Standard deviation of error rates of misclassification for d = 2, nvar = 4

Variable Ratio
S/Size 1:3 1:1 3:1
— LM | LD LM | LD LM | LD
ny = 40
80 0.0707 | 0.0063 | 0.0467 | 0.0000 | 0.0233 0.0063
120 0.0611 | 0.0168 | 0.0294 | 0.0084 [ 0.0146 0.0000
160 0.0485 | 0.0189 | 0.0296 | 0.0031 | 0.0168 0.0032
200 0.0464 | 0.0227 | 0.0236 | 0.0050 | 0.0126 0.0025
ny =80
160 5.0523 | 0.0158 | 0.0285 | 0.0063 | 0.0162 0.0031
240 0.0435 | 0.0147 | 0.0240 | 0.0126 | 0.0120 0.0063
320 0.0385 | 0.0173 | 0.0190 | 0.0047 | 0.0101 0.0016
400 0.0338 | 0.0113 | 0.0152 | 0.0063 | 0.0081 0.0025
ny = 120
240 0.0425 | 0.0021 [ 0.0244 | 0.0042 0.0130 | 0.0042
360 0.0347 | 0.0070 | 0.0182 | 0.0056 0.0102 | 0.0014
480 0.0315 | 0.0168 | 0.0155 | 0.0011 0.0071 | 0.0074
600 _—e-0307 [ 0.0126 0.0137 | 0.0076 | 0.0075 | 0.0008
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Table B.3: Coefficient of variation of error rates of misclassification for 6 = 2, nvar = 4
Variable Ratio

S /Size 1:3 1:1 3:1

LM LD IM | LD LM LD
ny = 40
80 | 0.8158 | 0.0672 | 0.9548 | 0.0000 | 0.9073 | 0.3362
120 | 0.8028 | 0.2881 | 0.7998 | 0.2521 | 0.7268 | 0.0000
160 | 0.7454 | 0.2750 | 0.7949 | 0.0776 | 0.8397 | 0.3362
200 | 0.7827 | 0.3130 | 0.7879 | 0.1121 | 0.6962 | 0.1441
ny = 80
160 | 0.6743 | 0.1738 | 0.6226 | 0.2017 | 0.6482 | 0.1441
240 | 0.5830 | 0.1502 | 0.6021 | 0.2521 | 0.5926 | 0.3362
390 | 0.5772 | 0.2844 | 0.5652 | 0.1592 | 0.5877 | 0.0917
400 | 0.5858 | 0.2111 | 0.5018 | 0.2017 | 0.4953 | 0.1121
ny =120
540 | 05252 | 0.0273 | 0.6001 | 0.2017 | 0.5728 | 0.2017
360 | 0.4715 | 0.1121 | 0.4679 | 0.1551 | 0.4917 | 0.0672
480 | 0.4821 | 0.2521 | 0.4457 | 0.0348 | 0.4083 | 0.3715
600 | 0.5229 | 0.2192 | 0.4552 | 0.2750 | 0.4919 | 0.0593
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B.1 Graphs for Effect of Sample Size and Sample Size
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B.2 Graphs for Variable Selection
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Table B.4: Mean error rates of misclassification for 6 = 2, nvar = 8

Variable Ratio
S/Size 1:1 3:1
LM | LD LM | LD
ny = 40
120 0.0714 | 0.0078 | 0.0068 | 0.0125
160 0.0389 | 0.0170 | 0.0058 | 0.0000
200 0.0316 | 0.0216 | 0.0052 | 0.0025
n1 = 80
160 0.0483 | 0.0219 | 0.0059 | 0.0094
240 0.0266 | 0.0229 | 0.0039 | 0.0000
320 0.0209 | 0.0125 | 0.0047 | 0.0016
400 0.0166 | 0.0100 | 0.0039 | 0.0025
n1 = 120
240 0.0246 | 0.0137 | 0.0058 | 0.0000
360 0.0197 | 0.0136 | 0.0043 | 0.0083
480 0.0148 | 0.0202 | 0.0039 | 0.0021
600 0.0135 | 0.0115 | 0.0033 | 0.0067

Table B.5: Standard deviation of error rates of misclassification for § = 2, nvar = 8

Variable Ratio
S/Size 1:1 3:1
LM LD LM LD
ny = 40
120 0.0948 | 0.0000 | 0.0148 | 0.0042
160 0.0564 | 0.0057 | 0.0111 | 0.0000
200 0.0489 | 0.0073 | 0.0099 | 0.0025
ny = 80 ' '
160 0.0676 | 0.0032 | 0.0124 | 0.0032
240 0.043 0.0021 | 0.0077 | 0.0000
320 0.0303 | 0.0032 | 0.0075 | 0.0016
400 0.0250 | 0.0025 | 0.0060 | 0.0025
ny = 120
240 0.0402 | 0.0020 | 0.0098 | 0.0000
360 0.0277 | 0.0027 | 0.0067 | 0.0000
480 0.0214 | 0.0020 | 0.0057 | 0.0021
600 0.0180 | 0.0033 | 0.0045 | 0.0017

Table B.6: Coefficient of variation of error rates of misclassification for § = 2, nvar = 8

Variable Ratio
S/Size 116 i 3:1
LM LD LM | LD
ny = 40
120 13281 | 0.0000 | 2.1719 | 0.3362
160 1.4490 | 0.3362 | 1.8992 -
200 1.5504 | 0.3362 | 1.9067 1.0084
ni = 80
160 1.3978 | 0.1441 | 2.1002 0.3362
240 1.5906 | 0.0917 | 1.9785 0.0000
320 1.5120 | 0.2521 | 1.5866 1.0084
400 1.5009 | 0.2521 | 1.5387 1.0084
___d____.......---'"""_'__-d_ - ny = 120 ] i
540 | 1.6344 | 0.1441 1.6968 | 0.0000
360 1.4041 | 0.2017 | 1.5567 0.0000
480 1.4416 | 0.1008 | 1.4779 1.0084
600 1.3334 | 0.2881 1.3568 | 0.2521
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B.4 Graphs for Variable Selection
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Appendix C

Results for 6 = 3

Table C.1: Mean error rates of misclassification for 6 = 3, nvar = 4

Variable Ratio

S/Size 1:3 13 3:1
LM | LD LM | LD LM | LD

ny = 40

80 0.0346 | 0.0438 | 0.0125 | 0.0313 | 0.0031 | 0.0125

120 0.0335 | 0.0250 | 0.0100 | 0.0000 | 0.0026 | 0.0000

160 0.0295 | 0.0375 | 0.0101 | 0.0031 | 0.0019 | 0.0063

200 0.0302 | 0.0250 | 0.0075 | 0.0073 | 0.0019 | 0.0000
ny = 80

160 0.0333 | 0.0344 [ 0.0098 | 0.0094 | 0.0034 | 0.0000

240 0.0313 | 0.0438 | 0.0081 | 0.0146 | 0.0023 | 0.0000

320 0.0278 | 0.0266 | 0.0081 | 0.0109 | 0.0028 | 0.0031

400 0.0263 | 0.0263 | 0.0073 | 0.0113 | 0.0020 | 0.0038
np=120

240 0.0372 | 0.0458 | 0.0099 | 0.0125 | 0.0019 | 0.0042

360 0.0314 | 0.0264 | 0.0082 | 0.0056 | 0.0016 | 0.0014

480 0.0290 | 0.0313 | 0.0070 | 0.0083 | 0.0017 | 0.0010

600 0.0258 | 0.0242 | 0.0072 | 0.0075 | 0.0016 | 0.0017

Table C.2: Standard deviation of error rates of misclassification for § = 3, nvar = 4

Variable Ratio

S/Size 1:3 T 3:1
LM LD LM LD LM | LD
ni1L = 40
80 0.0553 | 0.0063 | 0.0240 | 0.0063 0.0083 | 0.0126
120 0.0409 | 0.0000 | 0.0165 0.0000 | 0.0072 | 0.0000
160 0.0334 | 0.0063 | 0.0143 0.0032 | 0.0045 | 0.0000
200 0.0314 | 0.0050 | 0.0120 0.0025 | 0.0042 | 0.0000
ny = 80
160 0.0379 | 0.0032 | 0.0154 0.0032 | 0.0061 | 0.0000
240 0.0284 | 0.0063 | 0.0110 0.0021 | 0.0043 | 0.0000
320 0.0237 | 0.0047 | 0.0093 0.0016 | 0.0040 | 0.0000
400 0.0201 | 0.0088 | 0.0082 0.0013 | 0.0030 | 0.0013
i I ny = 120 :
240 0.0324 | 0.0042 | 0.0123 0.0042 | 0.0040 | 0.0000
360 0.0235 | 0.0042 | 0.0094 0.0000 | 0.0029 | 0.0014
480 0.0193 | 0.0063 | 0.0071 0.0021 | 0.0025 | 0.0010
5ﬂq,f-mﬂ"ﬁiﬁuzs 0.0068 | 0.0008 | 0.0024 0.0000
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Table C.3: Coefficient of variation of error rates of misclassification for § = 3, nvar = 4

Variable Ratio
S/Size 1:3 1:1 Sl
LM LD LM LD LM | LD
n; = 40
80 1.5996 | 0.1441 1.9189 | 0.2017 | 2.6568 | 1.0084
120 1.2209 0.0000 1.6477 - 2.7T151 -
160 1.1341 0.1681 1.4116 1.0084 | 2.3905 | 0.0000
200 1.0406 | 0.2017 1.6496 | 0.3362 | 2.1703 -
' i ny = 80 ]
160 1.1359 | 0.0917 1.5770 | 0.3362 | 1.7615 -
240 0.90618 | 0.1441 1.3644 | 0.1441 | 1.8407 -
320 0.85241 | 0.1780 1.1546 | 0.1441 | 1.4361 | 0.0000
400 0.76518 | 0.3362 1.1340 | 0.1121 | 1.5275 | 0.3362
' ny = 120
240 0.87222 | 0.0917 | 1.2464 | 0.3362 2.1141 | 0.0000
360 0.74815 | 0.1592 1.1451 0.0000 | 1.7998 | 1.0084
480 0.66679 | 0.2017 1.0137 0.2520 | 1.4720 1.0084
600 0.69088 | 0.1043 0.95263 | 0.1121 1.5698 | 0.0000
/—,——_
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C.1
Ratios

Graphs for Effect of Sample Size and Sample Size
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Figure C.2: Standard deviation of misclassification rates for 6 = 3, nvar =

4
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C.2 Graphs for Variable Selection
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Figure C.4: Mean error rates of misclassification for 0 = 3, nvar = 4
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Table C.4: Mean error rates of misclassification for § — 3, nvar = 8

Variable Ratio
S/Size 1:1 3:1
LM | LD LM | LD
ny = 40
120 0.0321 | 0.0039 | 0.0004 | 0.0000
160 0.0090 | 0.0057 | 0.0001 | 0.0000
200 0.0059 | 0.0000 | 0.0000 | 0.0025
ny = 80
160 0.0143 | 0.0000 | 0.0005 | 0.0000
240 0.0041 | 0.0000 | 0.0001 | 0.0000
320 0.0023 | 0.0047 | 0.0001 | 0.0000
400 0.0015 | 0.0000 | 0.0000 | 0.0000
n1 = 120
240 0.0044 | 0.0000 | 0.0000 | 0.0000
360 0.0019 | 0.0000 | 0.0000 0.0000
480 0.0014 | 0.0000 | 0.0001 | 0.0000
600 0.0015 | 0.0041 | 0.0000 | 0.0000

Table C.5: Standard deviation of error rates of misclassification for 4 = 3, nvar = 8

Variable Ratio
S/Size 1:1 3:1
LM LD LM LD
ny = 40
120 0.0667 | 0.0039 | 0.0037 | 0.0000
160 0.0281 | 0.0000 | 0.0016 | 0.0000
200 0.0217 | 0.0000 | 0.0000 | 0.0025
ny = 80
160 0.0386 | 0.0000 | 0.0036 | 0.0000
240 0.0160 | 0.0000 | 0.0015 | 0.0000
320 0.0109 | 0.0016 | 0.0011 | 0.0000
400 0.0078 | 0.0000 | 0.0000 | 0.0000
ny — 120
240 0.0168 | 0.0000 | 0.0000 | 0.0000
360 0.0088 | 0.0000 | 0.0007 | 0.0000
480 0.0067 | 0.0000 | 0.0008 | 0.0000
600 0.0063 | 0.0008 | 0.0004 | 0.0000

Table C.6: Coefficient of variation of error rates of misclassification for § = 3, nvar = 8

Variable Ratio
S/Size 1:1 3L
LM | LD LM | D
1 ﬂ11= 40
120 2.0754 | 1.0084 | B8.9068 -
160 3.1231 0.0000 | 15.4920 -
200 3.6592 - - 1.0084
ny = 80
160 2.7101 - 6.8700 -
240 3.9099 - 10.932 -
320 4.7776 | 0.3362 10.932 -
400 5.2131 - - <
[ ny = 120
240 3.7919 - - -
360 4.7369 - 15.4920 -
480 4.6204 - 10.9320 -
600 4.2560 | 0.2017 | 15.4920 -
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C.3 Graphs for Effect of Sample Size and Sample Size
Ratios
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Figure C.8: Standard deviation of misclassification rates for 6 = 3, nvar = 8
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C.4 Graphs for Variable Selection
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Figure C.10: Mean error rates of misclassification for § = 3, nvar = 8
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Figure C.11: Standard deviation of misclassification rates for 0 = 3, nvar =8
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Appendix D

Tables of Simulated Results
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