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Abstract

In this project, we consider a (2 + 1)-dimensional universe. We want to find
out how a 2-dimensional creature living on a two-dimensional surface and having no
sense of a third dimension will see its universe, We construct a metric in (2 + 1)-
dimensions, which turns out be analogous to the Robertson-Walker metric. To do this,
we consider the two-dimensional surface Lo be a space embedded in a 3-dimensional
hypersurface. (Likewise in the (34-1)-dimensions, the Robertson-Walker metrie can be
derived by considering a 3-dimensional space as a space embedded in a 4-dimensional
hypersurface.] The metric thus obtained is used to solve the Einstein field equations,
which allows us to formulale the corresponding Friedmann models for the case of
comoving pressure-free “matter or dust particles™  The results are compared with
the results obtained with the Robertsom-Walker metrie in (3 + 1)-dimensions. All
the results obtained have their analogies in (3 + 1)-dimensions, except that we found
thal the 2-D universe is always expanding irrespective of the curvature of the space.
Specifically, the 2-D universe expands linearly in time forever. In 3-D universe, the
expansion is generally nonlinear in time and under certain situations contraction 1s

possible.
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Chapter 1

Introduction

Recently there has been much interest in (2 + 1)-dimensional theory of cosmology,
as il is supposed to be a useful model for understanding (3 + 1)-dimensional theory of
cosmology since it is of a lower dimensionality. Until recently, cosmology was studied
in dimensions other than 2-dimensions hut now a lot of research is going on iu the area
of (2 — 1)-dimensional theory of cosmology to ascertain its usefulness in the study of
the origin and evolution of the universe. The study of cosmology in (3+1)-dimensions

has a partieular difficulty which is;

o Computations involved in the solutions of Einsteins field equations are very

tedious.

This difficulty motivated us to undertake this study. That is, to investigate how
a 2-dimensional creature will see its tmiverse. Because 3-dimensional creatures see
their universe to be curved. We will also compare the solutions of (3 + 1)-dimensional
theory of cosmology to those of (2 + 1)-dimensional theory of cosmology to see if the
results in (2 + 1)-dimensions can be carried over into the study of (3 + 1)-dimensional
theory of cosmology, If it’s possible, then we can use the (2 — 1 )-dimensional theory
of r:usmﬁiﬁg}f__as; a prototype for the (3 + 1)-dimensional theory of cosmology.

T_'h_t:_;:;mline of the project is as follows. In Chapter I, we have a brief infroduction

of the project and also the aims and objectives of the project. In Chapter IT, we briefly
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look at the fundamentals of cosmology and the study of galaxies. Chapter 111, go on Lo
discuss tensors and its properties and also how the general expressions for computing
the non-vanishing Christoffel symbols are derived. We briefly discuss some particular
tensors which include, the Kronecker symbol, the Levi-Civita tensor, the Generalized
Kronecker delta and the Metrie tensor. Riemannian spaces, the eurvature tensor, the
Ricci tensor, the Curvature scalar, the Finstein temsor and the energy momentum
tensor are discussed Lo conclude the third Chapter.

The derivation of the field equations and solutions to them are discussed in chapter
four. The Robertson-Walker metric is the working metric of (3 + 1)-dimensional
cosmology of a humogenous, isotropic universe. 1t is derived in Chapter V. Solutions
to the Einstein field equations for (2 + 1)-D space are discussed in the sixth chapter.
Finally, Chapter V1I gives the conclusion and diseussions, i.e. comparison between the
solutions of the field equations of the Robertson-Walker metric in (3 + 1)-dimensions
and that of Robertson - Walker metric in (2 + 1)-dimensions. It also talks about how

5, 2 dimensional creature will see its universe.



Chapter 2

Study of the Universe

2.1 Cosmology

Cosmology is the scientific study of large scale properties of the universe as a whole
or the study of the history of the universe from the perspective of physics. It endeav-
purs to use scientific methods to understand the arigin and evolution of the universe.
Cosmology involves the construciion of theories of. or models for, the universe that
make specific verifiable predictions about observed phenomena. 1t addresses questions

like:

e What is the origin of the universe?

How old is the universe?

Is the universe expanding?
e What is the ultimate fate of the universe?

What is the structure of the nmiverse?

The tiniverse is the sum of evervthing that exists in the cosmos, including time and

F_,_.—-"--__
space itself. Cosmos is an orderly or harmonious system. The shape of the universe is

______determined by a struggle between the momentum of expansion and the pull of gravity.
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The rate of expansion is expressed by the Hubble constant. Hy, while the strenpgth of
gravity depends on the densily and pressure of the matter in the universe. If the
pressure of the matter is low, then the fate of the universe is governed by the density.
If the density of the universe is less than the “critical density”which is proportional
to the square of the Hubble constant, then the universe will expand forever. Gravity
might slow the expansion rate down over time, but for densities below the eritical
density. there isnt enough gravitational pull from the material to ever stop or reverse
the outward expansion. This is also known as the “Big Chill” or "Big Freeze” because
the universe will slowly cool as it expands until eventually it is unable to sustain any
life. If the density ol the universe is greater than the eritical density, then the uni-
verse will collapse back on itself, the so called “Big Crunch”. In this situation, there
is sufficient mass in the universe to slow the expansion to a stop, and then eventnally
reverse it. Recent observations have suggested that the expansion of the universe is

actually accelerating or speeding up.

(lassical cosmology theory is based on the eosmological principle, which states
that, on large scale, the universe is homogenous and isotropic, (Andrew Liddle!).
That is to say that the ymiverse looks the same from each point and in all direc-
tions. These do not automatically imply one another. For example, a universe with
a uniform magnetic field is homogeneons, as all points are the same, but it fails to
be isotropic hecause directions along the field lines can be distinguished from those

perpendicular Lo them.

For example, Matt Roos? considered an observer A in an inertial {rame who mea-
sures the density ofiﬂgm.arnd—t-heir velocities in the space around him. Because of

the homogeneity and isotropy of space, he would see the same mean density ol stars

e



(at one time t) in the two different directions r and ',
wa(Fit) = galr't)

Another observer B in another inertial frame, looking in the direction +* from his

location would also see the same mean density of stars,

ealr t) = palFt)

The velocity distribution of stars wonld also look the same to both observers, in fact

in all directions, for instance in the 17’ direction,
Va(r' t) = Va(r' 1)

Hence, we conclude that the universe is homogeneous and isotropic.

Space is defined by a set of coordinate axes. We have two types of spaces, namely
the Euclidean space, which is a space described by a set of rectangular coordinates
and the non - Euclidean space or Riemannian space, which is a space that cannot be
covered with a set of rectangular coordinate system. Spacetime is any mathemati-
cal model that combines space and time into a single construct called the spacetime
continuum. Thus, 4-dimensional spacetime being three dimensional space plus time
which plays the role of the fourth dimension. Dimensions are components of a coor-
dinate grid typically used to locate a point in space or on the globe. However, with
spacetime, the coordinate grid is used to loeate “events”(rather than just points in

space), so time is added as another dimension to the grid.

2.1.1 The Galaxies

Williain Herschel (1738 - 1822) in his study of stars gave a first understanding of
et e ' i ] :
what the Milky Way is. The Milky Way is a distribution of stars in a dise spread

all around the sun. Such a distribution of stars on a large scale is now known as a

5



galaxy. The Milky Way is also called the Galaxy. The structure of the universe as
viewed [ace on shows the spiral structure of the Galaxy whereas the edge on piciure
demonstrates that it is a disc with a central bulge. The disc is also referred to as the
galactic plane. Below are some examples of pictures of the Milky Way, as described

by William IHerschel and the types of galaxies.

In 1926 Hubble classified the various types of galaxy according to their shape.
There are four types of galaxies. They are Spiral, Barred spiral, Elliptical and Irreg-

ular galaxies. Our galaxy is an example of a spiral galaxy.

Spiral galaxies are the most numerous amongst the various types of bright galax-
ies. A typical spiral galaxy contains about one hundred thousand billion stars and
is approximately one hundred thonsand light years across. Spiral galaxies are char-
acterized h}; large and thick central bulge and spiral arms (see Fig. 2.2.) The spiral
arms are made up of millions of relatively young stars in a constant orbit around the

center of the galaxy. Our galaxy the Milky Way is an example of such a spiral galaxy.

A barred spiral galaxy is characterized by a bar running through its nucleus. The
arms of a barred spiral galaxy originate not from the nuclens but from bars running
thromgh the galaxvs nucleus. Like the spiral galaxy, the barred spiral galaxy has a

central bulge containing the majority of mass in the galaxy (see Fig. 2.3.)

An elliptical galaxy is ellipsoidal in shape and they are the most numerous amongst

all galaxies. They exhibit very little rotation and have very little gas and dust (see

Fig. 2.4.)
Irr_ggﬂiar- ga.taadew—itl many different types. They are put in this group

because they dent fit into any of Hubbles other classification (see Fig. 2.5.)

T



In 1929, Edwin Hubble announced that his observation of galaxies outside our own
Milky Way showed that they are systemafically moving away from us with a speed
proportional to their distance from us. The more distant the galaxy, the faster it
was receding from us. The specific form of Hubble's expansion law is important: the

speed of recession is propertional to the distance for not too large cosmic distances.



Figure 2.1: “The shape of the Milky way as deduced from star counts by William

Herschel in 1785; the solar system was assumed to he near the centre.”

Figure 2.2: NGC 4414, a typical spiral galaxy in the constellation Coma Berenices, is
about 17,000 parsecs in diameter and approximately 20 million parsecs distant. Credit:

Hubble space, Telescope/ NASA /ESA.

_— _,..—-""'---_-_

__ Figure 2.3: NGC 1300, an example of a barred spiral galaxy. Credit: Hubble Space

Telescope/NASA /ESA ]



Figure 2.4:. An example of an elliplical galaxy. Credit: Hubble Space Tele-

scope/NASA/ESA

Figure 2.5: An example of an irregular galaxy. Credit: Hubble Space Tele-
scope/NASA/ESA
— = _,_I—"'_'-'_.-.--_-_
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Chapter 3

Mathematical Tools of
Mathematical Cosmology: Tensor

Analysis

3.1 Tensors

3.1.1 Definition

A temsor is any guantity that transforms between coordinate systems according
to a particular transformation law. Physical laws must be independent of any par-
ticular coordinate systems used in describing them mathematically, if they are to be
valid. A study of the consequences of this requirement leads to tensor analysis. The
discussions in this project involve tensor analysis. A tensor of rank zero is called a
scalar and a tensor of rank one is known as a veetor. Sinece the physical laws are
independent of any particular coordinate system, it ghonld he emphasized that, if all

the components of any tensor vanish in a given coordinate system, they will vanish

in any ofher coordinate system®.
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The set of N" quantities T2 jg said to constitute the components of a
contravariant tensor of rank r at a point P in an N-dimensional space if under the
coordinate transformation ¥ = ¥/(r'), these quantities transform according to the

law

"y B_L“ ET}:JLJ-‘I-"J' (3.1)

=S Sy ]
T 1102 = -~
i (e

The set of N* quantities T;, ;4. 15 said to constitute the components of a

covariant tensor of rank s at a point P in N-dimensional space, if under the coordinate

transformation ¥ = ('), these quantities transform according to the law

s i e
Tiydodsods = e g ;FT}:.J:J.;....:. (3.2)

A set of N™* quantities TH 44 0 o . is said to constitute the components
of a mixed tensor ol rank r + s, contravariant of order or rank r and covariant of
order or rank s, at a point P in an N-dimensional space, if under the coordinate

transformation ¥ = 7 (r'), these quantities transform according to the law

?1 L L - e &F‘”- 3‘ - axil a,;!’_'i" Tkllb}nka" o {3 3}
udaivende = G Gk g o Wi ‘

Next we go on to discuss some algebraic properties of tensors.

3.1.2 Tensor Algebra

Addition
The sum of two or more tensors of the same rank and type (i.e. same number
of contravariant indices and same number of covariant indices) is also a tensor of

the same rank and type. Addition of tensors is commutative and associative. For

11



example, A", and B™, are tensors; i.e.
qjk ol {'i"_k ar”
: AP det gEt "

T az! aT* ox"
= P00 Bt ar

where Linstein's summation convention is implied. Then

T’ dx* dx”
D

@+ BN = (A%, + Bri,)

Hence AP+ BPI. is a tensor of the same rank and tvpe as A", and BPY..

The difference between A%, and 7% can be written as A7% + (—B7%),

Multiplication: The Outer (or Direct) Product Theorem.

The product of two tensors is a tensor whose rank is the sum of the ranks of the
given tensors. This product which involves ordinary multiplication of the compo
nents of the tensor is called the outer praduct. Let H.*;I.f and S' he tensors, whose

transformation laws are respectively given by

Rk ix* ozt ot

s rjfjﬂ

ﬁlm = d_ﬁ a_m
e Bt

Therefore

R gim _ 07" Ot B! 0T OF”

= o apd

VYT Gt F7 0 9P Oxd

s e ;ﬂ"‘"-__éfk a7 arm drt drt

s Sl Sl M R
Az AP G o g "

12



This is the transformation law for a tensor of type (3, 2).

Contraction
The contraction of a tensor of type (r, 8) over a pair of indices. one contravariant
and the other covariant, results in a tensor of type [r—1,s—1). For example, consider

the tensor R*;;. Let k=

7 o Ot da™ dF o o
— e I T ————
ST g g0 "™ ar 0 o ™
. Jat !
=g R = —R"

Pyt b [T F
(i (3 ek

which is the transformation law for covariant tensor of the type (0, 1).

The Inner Product Theorem

The inner product of two tensors of type (ri, ) and (ra, s2] is 2 tensor of type
(g +ra — 1,8 + 52 — 1) provided that the contraction is over a pair of indices, one
contravariant and the other covariant. For example. let 79 be a contravariant tensor
of the second rank, so that it transforing according to the law:

b S g
oL il FTICS
Ie= axT SIET

And let €, and [y be two covariant vectors. They transform accerding fo these

transformation laws:

E— dFt gt dat de™
b ks 5
¥l F, — = TTT T
_ £ilstie dz’ Oz oxF 679~ !

13



Let us now contract over the indices j, p

UG E gz g da! dr™
T P e

=

i
T timi

_ g7 oz
 de Oxt

1
EET”Fm

b e TN O
il it

S ETT 6:‘*‘1 21Tt

which 18 the transformation law for a tensor of type (1, 1).

Criteria for Tensor Character: The Quotient Theorem
Suppose it i5 not known whesher a quantity X is a tensor or not. If an inner or
outer product of X with an arbitrary tensor isitself a tensor, then X is also a tensor.

This is called the quotient theorem.

Symmetric and Skew-Symmetric Tensors

Now, we lonk at symmetric and skew-symmetric tensors. A tensor is called sym-
metric with respect to two contravariant or twoe covariant indices if its components
remain unaltered upon interchange of the indices. Thus if A" = AF% . the tensor
is symmetric in m and p. Tfa& tensor-is symmetric with respect Lo any two contravari-
ant and any two covariant indices, it is called symmetric,

A tensor is called skew-symmetric with respect to iwo coniravariant or two co-
variant indices if its component r‘.hang-[-! sign upon interchange of the indices. Thus
it A™",, = —AP™"_ the tensor is skew-symmetric in m and p. I a tensor is skew-
symmetric wilh respect to any two contravariant and any two covariant indices it is
called skew-symmetric. It should also be emphasized that all symmetry and shew-

symmetry properties of tensors are independent of the choice of the coordinate system.
R ,..-F-"""--_—_ F .
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3.1.3 Some Particular Tensors
The Kri-uneckar Symbol

It is defined by,

1 5f j=i
0 if j#i

{ri.ﬂ'_

|
=
E1s
T

Clearly

e azi fr s ozl dx”  ow!
S aitart t perar | o

- ey i <
Hence 4, is type (1,1) tensor and it is the same in all coordinate systems.

The Levi-Civita Symbols

The Levi-Civita symbols also known as permutation symbols are defined by,

"-hI 5!&1 .’1.‘

and
e = ) B, 1
Sk T

The general form of the Levi-Civita symbol is given by,

+1 if hy...h, isaneven permulation of 1.2,....n

Ehpoh, =M =8 1 §f ko h, is an‘odd permutatiion of 1,2,....n [(3.5)

0 otherwise

The Gpm-ralued Kronecker Delta
The E;enonhzed }Ggﬂgc—k—;_ delta. denoted by .:}” I, is one of the most important

numerical or isotropic tensors, namely, tensors that have identical components in all
————
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coordinate systems. It possesses an equal number of sub- and superseripts (1) and is
defined [n terms of an r x r determinant as follows:
71 1 i
ﬁh-. JM o
Ta eiz =91
A e R

G = (3.6)

which means that it is skew-symmetric under interchange of any two sub- or super-
scripts and that if any two sub- or superscripts coincide. the corresponding 6;&%:
vanishes identically. Clearly the Kronecker delta 43 and the Levi-Civita symihols,
Eiyigiy and £719293 are special cases of the generalized Kronecker delta, and since, as
shown above, the Kronecker deltais & type (1, 1) tensor, it follows immediately that

the generalized Kronecker delta (3.6) is a type (r; &) tensor.

The Metric Tensor

The metric tensor is undoubtedly the most important tensor in mathematical
physics. It prescribes the element of length in a space to which the notion of distance
applies. Consider an N-dimensional Euclidean space defined by the rectangular co-
ordinates r'(i = 1,2, .., N). By analogy with 3-D Euclidean space, the element of

distance in such a space is given by
ds? = (dr')? + (dr?)® + o 4 (de™ )

Now, requiring that this distance be invariant under coordinate transformation z* =
E'{.’I"}, and that the coordinate elements dr® transforms like the components of a

contravariant vector, L.e.

e ok
dT" = ﬂ'f. dr’ = [ﬁ e
A = kil irt
== e T

16



(by Einsteins summation convention), we have

ds? = d&® = (d2')? + (dF?) + - - + (4™ )

N
=) drtdr*
k=1
N
R =k
=Y Ear S ap
drt or!
k=]
N
aF* oT*
= s ,—‘d.'l"l'i.l"'
drt Jrd
k=1
or
ds* = g, dr'dr! (3.7)
where
a3zt o
W L

It is easy to show that the metric tensor are the components of a svinmetric
second-rank covariant tensor. This tensor is called the metric tensor.

We postulate that any space for which the distance between two points in the space
can be defined is endowed with a metric g,; giving the element of length or line element
of the space in the form {3.7). In general, g, is not diagonal and its determinant is
not positive definite or non-zero, but it must be symmetric and invariant under any
coordinate transformation. A space endowed with a metric with a positive definite
determinant is called a Riemannian space, while a space endowed with a metric
whose determinant vanishes identically or is not positive definite is called pseudo-
Riemannian. Euclidean spaces are therefore Riemannian, whereas Minkowski space
is pseudo-Riemannian. If a metric is a nop-null tensor, i.e. the determinant is non-zero
then it hasan inverse. g,, has an inverse of g". Let g = |g,,| denote the determinant
with eléments g,, aml'fﬂ.__l"lwn g¥ = '11 where (,; are co-factors of g;: i.e.

Gy = (=1)'YM,; where M,; are the minors of the matrix. g% is a contravariant
—
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tensor of rank two. ¢" raises indices whiles g;; lowers indices. i.e.

ik &
_'?ijT" bin = ?-:1

im

ﬂii.f,jkm — ik

3.1.4 Differentiation

The derivative of a tensor is generally not a tensor, but we can use it to construct
a tensor and the tensor thus obtained is known as the covariant derivative of the
lensor. As is Lo be expected, the results for covariant and contravariant tensors are
not the same. The covariant derivatives of the covariant tensor A, with respect to z4
i8 a covariant tensor of rank two, denoted by A,., and given by

f?.f-lp

i

Apy= =2 T, A,

where the T’ .”

p g AL0 quantities known as the affine connection, The covariant derivative

of the contravariant tensor A” with respect to 27 is denoted by AP, and is given by
aAr

= e AC

F
AP g= e

The above results can be extended to covariant derivatives of higher rank tensors.

Thus
,—,IAM
wilr TN
AJ’ 2 i .iﬂ:k E ]-_‘1.“ ‘,.;fP T B L T S aE
o=l

r
E Fm.mkﬂ:“ Bl lm‘l"ﬂ_lm}ru...is
a=1

The structure of this expression is governed by the following rules:

e Apart from the partial derivatives, there is a negative term, known as an affine

term, for each covariant index and a positive affine term for each contravariant

index. e .
e The second subseript of the I' symbal is always the differentiation index.

18



e Each index in A9, . is transferred in turn to the unoccupied spot of the
same character (subscript or superseript) on the I' symbol and its place is taken

by a dummy index which also ocenpies the remaining spot on the I' symbaol.

Thus,

A"

Ar"-k N
A dak

— rimkArTnj F 11jmkﬂr{m B F"er.‘qmij.

It can be shown that the covariant derivative of the metric tensor g;; vanishes iden-

tically, i.e.
Poei= o = L™ gms — T3 e gim =0 (3.8)

Perlorming a cyclic permutation of the indices 1, 3, k, we obtain two other formulae:

U.':f i - m e
"}'3;;1; =T/ B = Deigpme= 0 (3.9)
':j.g.k':; R -
T " — L gthem =0 (3.10)

Now adding (3.9) and (3.10) and subtracting (3.8), we obtain on using the symmetry

properties of g; and T;™:

OGik 00k w06 o5 b
dzt Bzt fz¢ e

m ‘agjﬁ: ﬂg‘ﬂ’ ﬂgij
20l = 55+ 55— 5%

m

Solving for I';"™;, by multiplying both sides by 1g™ and using the relation G Gore =

", we obtain for the components of the affine connection the expression

Mage

" lgﬂk a.g.jfd aﬂhl ﬂgi‘.ﬂ'q Edllj
2 dat axd art
In particular, for a reference frame with a diagonal metric tensor gy, the non-zero

components of the afline-esmmection are given by the following expressions;

(i) T, =0 for i#j#k

B
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‘3 _1 ik | 095k 55‘&} iy
(i) 1y, = 59 [fﬁh:i i = 5‘1;“}

= Egﬁ ;i i :’.ﬂgf;- _ Ogj; il _}gee%
2 dri  dzl da 2% gt

i I gy :
Fjj:“ﬁ;ﬂ:l“' fﬂr L?{_J

17y 25’ r

: L Y
l'".=1"t =_J.l|. xt. _? i
i) L [5:1:3 T Br  Brk

_ 1o |9 Oy Og 1 O
= 9d [Hr-" A Cdat| 2

(e o’ 2% Bad
l—-, e I agaii
147 90 Ay

(iv) F:'E. =

l ¥ 8] 5’ 1 i
gg,klgk_‘_ Uk 35'}

il it . ihk

IR CYINC TR T s )
T o e  odd| T 27 B
B 1 agﬁ
M ?gﬁ a1

3.1.5 Repeated Covariant Differentiation:

The Curvature Tensor

Consider the tensor X7, Its covariant derivative is, as seen below, given by

Js ax e,
X1, = e [ X
This is a_t;j:;r..pe-{'l, 1) tens ieh can be differentiated to obtain
| X7, o 3
XJ:ﬁik — [Iﬂ .'ilh} + ]_""LJka:h = I-.hﬂkxj;.!
—— i
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a {SXJ

; axm™
{
Ak | Brh = PIIF;X:| + Pl [

+ [1 HLLJY-‘ L Fhlk-}:j:!

2 SV ax! d}{’”
= Skaah T Bk X'+ 1y ek + D' 4 T WX - TX S (302)
Similarly,
, X4 Hr; ¥ X! . axm .
Xoan=zgmm + =5 X41¢ K gan T Dl + Dl a T X = T, (3.13)

= Tl e F i 5 4 i . 3 i
Assuming that 65.%:;. = £.;$:j_... and noting that the indices { and m in the third and

fourth terms in (3.12) and (3.13} are dummy indices, we have

X = X ap = (d’_ﬂih = O’y

Ak fh

) X'+ (T D™y — To? kD™ )X — (Tilp = Tl )2y

_wary,. el
=\ F T oo

= =8 WLl = |'mf’hi‘;“k) il e AL

= FKipe X' — S Xy,

where

5 al'dy  ory . o
K = d.;k! < ﬁ + D kDy ™ = Dol

i i
= Tie =Tk

The quantities K/, are components of a type (1, 3) tensor, called the enrvature
tensor of the space X and the quantities S’y constitute the components of a type
(1, 2) tensor called the borsion tensor, In a space endowed with & symmetric affine
connection, ie. ™, = '™, the torsion tensor vanishes identically but the enrvature
tensor does not in general vanish, which means that in general the results of repeated

nnvari@:diﬁerénbiat-iw-un the order of differentiation. Thus,
X g = XV o = K X! — Sha Xy, (3.14)
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and we can similarly show that

Yioik = Yirn = — K'Yl = S, (3.15)
T pe = T p = K T™ + Kl 7™ — S™ T8 (3.16)

and
Tty — Titgsn = — K" 55Tt = K™ i Ty — S 5 Titorn (3.17)

The relations (3.14) to (3.17) are often referred to as the Ricei identities. There are
spaces for which the curvature tensor vanishes identically. Such spaces are called fat

spaces.

3.2 Riemannian Spaces

3.2.1 The Curvature Tensor

Riemannian spaces are spaces endowed with a symmetric metric and such that
det(gi;) # 0. The curvature tensor is denoted by R’ ), in Riemannian space. In this
case, the components of the affine connection are called Christoffel symbols and are
denoted by v,7,, i.e. T}7, = 7,9, Here the Christoffel svmbaols 7,7, are symmetric in
their subscripts h and &, so that the corresponding torsion tensor vanishes identically,

and we have

i E By

Rj;hk = Bk Trh = ’Fm"lk'ﬁmh wer ".fﬂt'l.l.“fimk [318}
S'=0
R o X k= X = R X'
e T H_,__---""'-_'__

= i t
bk — Yian=—R jhreY
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i i . al )
Tj she = TJ T = Iiﬂmhh‘T, = R[mhkTJm

Totn = Tiwn = =B jpr Tt — R 1 Ty

R ipiis known as the Riemannian-Christoffel curvature tensor. Some of the properties
of the curvature tensor are as follows:

i) The curvature tensor is skew-symmetric on the last pair of covariant indices. i.e.

g = — .
i)
Rk + Ry + Rl = 0, (3.19)

which is obtained by cyclically permuting the indices [ h k in (3.18) and adding the
two results to (3.18).
1ii)

Rfli‘ll!k;p + Rr]‘kplh + IR:Jphlk = D

iv) A type (0, 4] tensor R can be constructed from it by taking its inner product

with the metric tensor g, L.e.

tip
Rtk = B B i

This new type (0, 4) tensor is usually called the covariant curvature tensor.

It possesses the following properties:

i) It is symmetric in jl and bk, Le. Bjme = Rk

ii)'I'he covariant eurvature tensor is skew-symmetric in the first two subscripts as well
as the last two subscripts. e, fyme = — Byne = — Rjien = Riikk

iii)The inner product of (3.19) with the metric tensor g;; yields

Gy (Rl + B + Bln) = 0,

IR ’“"".—ﬁ’:m F Ripg + R = 0

_‘,iwi}_._Hj;h;,.ip + Rjigun + Hitpne = 0. This is known as the Bianchi identity

23



3.2.2 The Ricci Tensor and The Curvature Scalar
From the covariant curvature tensor R, we can construct the symmetric tensor
Ry = ¢" Ry = 97 Runjo = Ry (3.20)
and the scalar
R=g"¢"Run = " R;p. (3.21)

Then tensor My is known as the Ricci tensor, while the scalar R is known as the
curvature scalar. They are the cornerstones ol General Relativity, as will bhe seen

presently.

3.2.3 The Einstein Tensor

Consider the Bianchi identity
RJ”LL‘:FJ 1 ij.‘:;ﬁl,‘h + HJI?:J&.*.‘ T ﬂ

Contracting this identity with g%, we obtain

il
gjhﬂjnlkip B gJ'TRI-jf.krgh + If,r'l R_ﬂph:k‘ — {:I
Rippt 0" Rjthpin =" Rjtpic = 0

Rivp -+ & Ritigh — Ripie =0
Contracting again with g'*, we have
9 Rigp o+ ' 07 Ritipn — G R =10
b i jjfi%&'j "Rijipin— 9" Ripr =0
Ry - ¢ By — g'* Rip
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R_-P—#l';ﬁ_ R.,_j,=ﬂ'.
or. since h and k& are dummy indices,
R, — 2R, =0

Lilg

1
(R’*,, - Eé;E) =,
h

where :’i:]‘ is the Kronecker delta.

The tensor
1l h ] h i
Gp =Ry = s R (3.22)

is known as the Einstein tensor.

3.3 Energy Momentum Tensor of Matter in the
Universe

The galaxies being small compared to the distances between them are considered
to be particles: dust particles, relativistic particles or particles of a fluid. Dust
particles are the simplest situation. In this situation, particles of matter move without
any relative motion as cited by Jayant V. Narlikar®. The four - velocity 7' in the co-
moving coordinate system is given by /' = (1,0.0,0). The only non - zero component
of the energy tensor is

N ] £
i 2‘ mac = pee

a
where the summation is over a unit volume. Here p is the rest mass density of the

dust. Hmn, for-dust particles—the energy momentum tensor 15 of the form;
T = diag(pc®.0,0.0) (3.23)
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For relativistic particles and fluid, the particles are in random motion through space.
Using the fact that the particles are moving randomly, we find that the energy mo-
mentum tensor is given hy

T* = diag(pc, p, p. p). (3.24)

ie. that 7% = T® = TH where p is the pressure exerted by the particles, and
T'" = pe’. Now if ¢ is the kinetic energy density of the randomly moving particles,

then p = }z, and we have

; o) O |
=i =g, =C, =
iag (pcz, 353 BE)

The factor % comes from randomizing in all the three space directions.

In (2 + 1)-dimensions, since the particle move in only two directions, the relation-

ship between the pressure, P and energy density, , is given by
Pi= =k (3.25)

For the purpose of this project, we will consider the simplest case. That is, the case

of dust particles. Hence the appropriate energy momentum tensor is given by
TH.= pc*; TR=T¥=TH=-0 (3.26)
for 3D space and
T = pe?; - T2 =T¥ =0 (3.27)

for 2D space.



Chapter 4

Introduction to General Relativity

4.1 Einstein Field Equations

4.1.1 Derivation of the Field Equations

In a weak static field produced by a nonrelativistic mass density p, the time - time

component of the metric tensor is approximately given by
goo = —(1 + 20)

Here o is the Newtonian potential, determined by Poisson's equation

" w7
Vb =—3

P

where (3 is Newton's constant. Furthermore the energy densily Ty for the nonrela-

tivistic matter is just equal to its mass density:
Ty =p
Combining the above equations, we have then

sy

r e

m— _'_,_,_,--"'"-_-_'_;
Vg = —

Ty \4:1)
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Equation (4.1) leads us to guess that the weak-field equations for a general distribution

Ty of energy and momentum take the form

By
St =

T

where (7,5 is a linear combination of the metric and its first and second derivatives.
It follows then from the principle of equivalence that the equations which povern
gravitational fields of arbitrary strength must take the form

) 877
L’uu == __f_,:i_ Tuv {42}

where (7, is a tensor which reduces to G5 for weak fields,

Considering the left hand side of (4.2}, we require (7, to take the form
Gu:.r = GIRM + f'Eﬂgyﬁ (4.3)

because ¢, is a tensor and by assumption,(5,, contains only terms with N = 2
derivatives of the metric, whers ¢; and ¢ are constants. Using the Bianchi identity

bR = %{5#;{{}# gives the covariant divergence of G, as
- L
l[:-Jf":.'.-l. == (E e EE) H,'u

Since G, = 0 allows two possibilities, either ¢; = ~ 5 or R, vanishes everywhere.
We can reject the second possibility, becanse (4.2) and (4.3) give

&y
o

Gl = (e +4c)R = ——Tf

Thus if R, vanishes, then so must TJ' . and this is not the case in the presence of

inhomogeneous nonrelativistic matter. We conelude then that ¢; = —%, so (4.3)

becomes

: ‘ 1
Ui.'u - "--'I{Fi.rw — §y.l“-'R}

Selting o :E 1 we ubt.;gﬁin.._-—— =

1
Glf_.!.l.-' == H,uu i Egpr.rR
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With (4.2), this gives the Einstein field equations

1 83

R — ﬁﬂwR = _Tf:ﬂ‘ (4.4)

where K, is the Ricei tensor,R is the curvature scalar,g,, the metric tensor and T,
the energy momentum tensor. The constant & is called the Einstein constant {of
gravitation). The ahove form of the Einstein field equation is for the — + ++ metric
sign convention. Using the + — —— metric sign convention leads to an alternate form
of the Einstein field equation which is

1
Hp.u — EﬂpuR = H']_;rbr {45)

where & = {%}1 18 Archimedes' constant, G, Newton's general gravitational constant
and ¢ the speed of light. The change of sign on the right hand side occurs because
the values of T, have signs which are determined by the kind of energy momentum
tensor being used.

Although the Einstein field equations were initially formulaied in the context of a
four-dimensional theory, the equations can be seen to hold in n dimensions. Because
of this,[Cornish and Frankel®] studied Einstein gravity in (d + 1)-dimensions and have

shown that, in any dimension Einstein's equations are

1 d—
RPH e Ei?#.uR = 1%

b Al
=GaSqT (4.6)

L]

i o i . i . T ol pi
where Sy = %’T is the solid angle of a sphere in Lhe space in question, Gy = (g
\Z

being some fundamental length. One can write the Einstein field equations in & more

compact form in terms of the Einstein tensor

1
GJ“_J = R“L- . Eg'”yﬂ H [d.?}
¢
iy (4.8)

Lt C

The eﬁp?c?siun on t.hmEﬁents the curvature of spacetime as determined by

the metric and the expression on the right represents the matter/energy content of
e —
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spacetime. The Einstein field equations can then be interpreted as a set of equations
dictating how the curvature of spactime is related to the matter /energy content of
the universe,

In (3 + 1)-dimensions,

2mif?
53 = r3/2) = 4m, Gy =Gsl" =G, Newton's gravitational constant,

and the Einstein equations takes the form
Rl ; g R = 84GT), (4.9)

The singular nature of the coupling constant x in d = 1, 2 spatial dimensions demands

individual consideration. When d = 1, GG, = 0, this is reflected in this equation;

. 1 d -1
G}U-f = HT:“, =5 H“u = EQ'J”,.H = d—_zgﬂﬂgd?}_]p

where k¥ — 0 when d — 1. The coupling constant x diverges when d — 2. This
is an unacceptable situation as all terms are infinite and the theory as a whole is
unworkable. A more satisfactory solution is to renormalize the gravitational constant

in two spatial dimensions via dE—di — ;. Henee, when d = 2. Einstein’s equation is

1
Ry — 59w R = 27GT,, (4.10)
because
2 (8
i ' = — = —_— = G
SN e ETY

4.1.2 Properties of the Field Equations

By the definition of the Einstein field equation, Gy, is a tensor, because it mani-

festly covariance.
Since the-energy momestwmrTensor T, is symmetric, so is (.

An important consequence of the Einstein field equations is the conservation of energy

S
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and momentum. The divergence or covariant differentiation of the energy momentum

tensor is equal to zero. i.e.
vp’_‘rlw s T"""‘"w =
This is because

nﬁ":}h == D

4.2 Solution of the Field Equations

The solutions of the Einstein field equations are metrics of spacetime. These met-
rics deseribe the structure of the spacetime including the inertial motion of objects
in the spacetime. As the field equations are non-linear, they cannot always be com-
pletely solved (i.e. without making approximations). In practice, it is usually possible
to simplify l'.hc—:. problem by replacing the full set of equations of state with a simple
approximation. Some common approximations are:

Vacoum: 7, =0

Fluid: Ty = (p+ pc)u’u” Spge

Here p and p are the density and pressure of the fluid respectively

Dust: T, = poctufu®

As stated earlier, we considered the dust particles,

4.3 The Cosmological Constant

We can modify the Einstein field equation by introducing a term proportional to

the metric.

1 ;
R = 59 R = —87G Ty + Agu (4.11)

T

= A _,..--"""--‘-_._ 5 : L *
The constant A is called the cosmological constant. Since A is a constant, the en-

ergy conservation law is unaffected. The cosmological constant term was originally

31



N T L ., Sy ——

introduced by Einstein to allow for a static universe (i.e. one that is not expanding
or contracting). This effort was unsuecessful for two reasons: the static universe de-
scribed by this theory was unstable, and observation of distant galaxies by Hubble
a decade later confirmed that our universe is, in fact, not static but expanding. So
A was abandoned, with Einstein calling it the “biggest blunder he ever made”, as
discussed by Gamow George®. For many vears the cosmological constant was almost

nniversally considered to be zero.
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Chapter 5

Cosmology in (3-+1)-dimensions

5.1 The Robertson-Walker Metric

The Einstein equations form the basis of the mathematical study of cosmology. All
that is needad is the construction of the appropriate metric g,.. The simplest universe
is one which appears isotropic to a set of co-moving observers because each observer
sees the other as moving along with the overall cosmic expansion. Coordinates are
called co-moving coordinates when two objects at different spatial coordinates ean
remain at those coordinates at all tunes, while the proper distance between them
changes with time. The most important thing is that there are sites from which the
universe would appear isotropic (there 15 no preferred direction) if there were anyone
there to observe. The time measured by each co-moving observer equipped with a
standard clock is the saine because they are all controlled by the same rules of physics,
Then, we can say that the universe is homogencous (the same at all points). In a
homogeneous and isotropic universe, the interval between events can be described by
the Robertson-Walker Melrie.

Hubble observed that the universe seems to be an orderly structure in which the
g&]ﬂxiEH.‘--u{;ﬂSTﬂér"ed as hasteTrTiTs, are moving apart from one another. This inluitive

picture of regularity is often expressed formally as the Weyl postulate, after the early

N
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work of the mathematician Hermann Weyl. The postulate states that the world lines
of galaxies designated as fundamental observers form a 3 - bundle of nonintersecting
geodesics orthogonal to a series of spacelike hyperspaces, (see Jayant V. Narlikar®).
Einstein also believed that the universe has so much matter as to close the space.
Einstein assumed homogeneity and isotropy in his cosmological problem. He further
assumed that space is static. That led him to choose a time coordinate ¢ such that

the line element of spacetime could be described by
ds? = di® - o, dr"dr” (5.1)

where a,, are functions of space coordinates (u, v = 0,1.2,3) only.
For a space of constant positive curvature, the easiest way of deriving the Robertson-
Walker metric is to consider a 3-dimensional space as a space embedded in a 4-

dimensional hypersurface given by;
(2')? + () + () + (') = &? (5.2)

where S is in general a function of L.

In such a space, the line element is given by

do? = (dr'V? + (de®)? + (de*)? + (da*)? (5.3)
Setting
&' = Ssin ycosd
r = Ssinysinfeos o
r* = Ssin y sin fsin ¢
— = ..--""".-—-_._
' = Seosy, (54)
= A
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Computing the (dr')?, substituting into (5.3), and simplilying, we abtain
do? = S*[dx*® + sin® xd6? + sin® y sin® Bdo?]

If we further set

r = sin =
[ ‘(1 X I:GE.'E X —; J_ — Tz}
we find
L] ¥ 2
do* = §* T 72(dé* + sin® Hd@*}] (5.5)
e

The quantity S is called the radius of the universe or Lhe expansion factor. The line

element is therefore ziven by

ds® = *dt* — do” (5.6)

{lrrz Traadl .9 12 ; 5
——+r (df* + sin” 0d¢” ) (5.7)

i I

= Adt* — &1

This is the Robertson-Walker metric for a space of constant positive curvature.
For & space of constant negative curvature, the REobertson-Walker metric is most
easily derived by considering a 3-dimensional space embedded in a 4-dimensional

hypersurface given by;
(' P+ (&) + @%) — () = =87 (58)

where S is in general a function of the time.

The line element in this psendo-Euclidean space is given by
do? = (da')2 + (da?)? + (da®)* — (dz*)?

Now setting™
1E T o _'_,_,_,--"'-'-_-_-_

r! = Ssinh y cosf
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bt e

z* = Ssinh ysin f cos o)

2% = Ssinh ysin fsing

7 = Scosh v, (5.9)

we: find
do” = S*[dy” + sinh® xd6? + sinh? y sin® #d¢?]

If we further sel,

inh gy dr® dr? dr?
T =511 * ] = —_ =
% - cosh? y 1 4-sinh®y 1 42
we obtain
o [ dr* . : :
do® = 5% | ——; + r*(dg* + sin” d¢?) (5.10)
4=

The quantity S is called the radius af the universe or the expansion factor. The line

element
ds® = *dt* — do® (5.11)

then takes the form
dr®
1+v2

ds? = c2de? = 87 [ + r?(d6? + sin’ ﬁmp-'*j] (5.12)

Equations (5.7) and {5.12) can be combined into a single expression by introducing

a parameter k that takes values X1, as well as the value 0

-

dr? YTV SR o, W S
2 (d9? + sin? Bdp ]J (5.13)

1—kr?®

ds® = edt® — §* [

The k — () case gives the line element of a 3-D Enclidean space, expressed in spherical

-

coordinates — = s
ds? = c2dt® — §%|dr® + r*(d6® + sin” 0do*)] (5.14)
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We can consider this line element as describing a flat space. Hence the most general
line element satisfying the Weyl postulate and the cosmological principle is given by

dr®
1-k

- +7(d6” + sin’ §ds?) (5.15)

ds® = Adt* — §%(1) [
The above equation is known as the Robertson - Walker metric in (3+1)-dimensional
spacetime. Three different surfaces can be embedded in this space. They are; the
surface of zero curvature, the surface of positive curvature and the surface of negative
curvature,

When k& = 0, we have a space of zero curvature, such a space, examples of which
are Euclidean spaces like the plane and pseudo-Euclidean spaces like Minkowski space
called a flat space. For k = 1 we have a space of positive curvature. This is necessarily
a closed space, spherical and ellipsoidal spaces being prime examples. Finally, the
k = —1 case describes a space of negative curvature. As the embedding equation
(5.3) shows, it is a saddle-shaped, and therefore an open space.

As noted above, the scale factor S(t) is often called the expansion factor. The
reason is that it in effect determines the rate of expansion of the universe and its
determination is arguably the basic problem of mathematical cosmology. Below we
touch upon its determination for the various cases of spatial curvature. The solutions

are known as the Friedmann models of the universe.

5.2 The Friedmann Models

The Friedmann models are the solutions of the Einstein field equation with the

Robertson - Walker metric for k = 0, =1. The metric is

1 0 0 0
= 0 =5 0 0
i S g — 5% 0
0 0 0 — 5% ?sin® 0



Let  da' = cdi, dx® = dr, de® = dé, drt = dg
The non-vanishing Christoffel symbuols are;

kr S S y
e = e Ay Sl A e i
o kr? 21 S Lo cS 58 B
1 1 3

o s o [ T e 1 &
Yeig = Vo g=— = cot @ Yy g =
g == ¥ Y4 3 %2 e(1 — kr?)

g872 S5Srisin? 4
’}’313 = "'r’+1a;|. = f "-’32:-{ =—r{l — krz}
ve% = —r(1 = kr?)sin’ Y4’y = —sin f cosf

Giving the following non-vanishing components of the Ricci tensor

_ Fn{—g)'? Byl Lo ¢ Oln(—g)'"?
ST S U T

where

S804 5in® @

¥ s
is the determinant of the metric:
38
B Bt
NS
- 1 (85 4 262 ¢ 2k
& e 1 — k2
o, :
Fi:g;l, = "—C—ZESS e 252 - - Ekci}
Zeindp ; i
J‘?qq, = X 51;1 (SS—FQH.Z ‘|‘2.|[Tr‘"':'.
[

>

From these eomponents swe-essity compute the curvature scalar
R=R'=g%Ry=g" R+ g R + g™ Rys + g™ Has.
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It is given by

p_S §+ 5% 4 ke
Fl3+—=— (5.17)
The Einstein's equation is given by;
1 87
Gir = R — 59 R = —~Tu = ——"Ty (5.18)
A 1 &rC
Gy = Ry - §H11H= ~Tig e
35 1|68 S +kF\| _ 8CG
2S5 2|0 :';:+ g2 S

35 3 (8 S'+k?) _ 8G
A5 A\ TS ]T T af
3 S +k? 882G
Gn = W= P (5.19)

1 [ S8 +25% + %k 2 6 (5 8?4k
amm =4 e (eid) -o

2|\ Tiow 3\T=k?) @ \5
28 8% 4+ ke?
= — = 5.20
Gn = 5 + 51 0 ( )
=
Due to symmetry: i
25 84k
GﬂEGﬂEGuET&:‘ﬂ' 5 =)



As stated earlier on,
T =&, Ta=Ty=Ty=-p
Irom equation (5.19), we have
S(8% + k) = #33 p

Differentiating both sides with respect to ¢, we obtain:

R L0 A
= [8(5% + k)] = 7 715
N ReG d
S(258) + §(82 + k) = - = (p8%)
3 di
29 5 51+ ke’ B1G d )
5 X | \B gy
From equation (5.20)
d
5% =0
d’lﬁTt.P :I

5%p = Sa° o,

where py and S, are the density of matter in the universe in the present epoch and

the expansion factor al Lthe present epoch respectively,

Thus
56°
=S (5.21)
Now the [riedmann models for dust particles are given by;
S 52 + ke?
S plia i 5.22
2 e — (5:22)
2 Lk B8R G5p°
SRR e R e h.23
T HE 3 Iﬂﬂ SH l: }
——— il _‘_'_._,_.--""--_-_-__
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5.2.1 Euclidean Sections(k=0)

For Euclidean sections, i.e. when k = 0, at the present epoch:

t 2/3

Where the age of the universe at the present epoch is,

P 2
= 3 (5.25)
where
Hy = (ﬁ) : (5.26)

is the Hubbles constant. In the Euclidean section. the universe continue to expand

forever.

5.2.2 Closed Sections(k=1)

For closed sections, i.e. when k = 1, at the present epoch, the solutions are
obtained in parametric form. They are;

= %n{l ~ cos 0)

el = %nfl— sin ) (5.27)

where o is a constant.
In this section, the universe will expand to a particular limit and will start to con-
tract. Thus, at some point in the future the “galaxies™ will stop receding from each

other and begin to approach each other as the universe collapses on itsell.
e = _'_'___.--'-'-_-_._-

11



5.2.3 Opened sections(k=-1)

For opened sections, i.e. when k = -1, at the present epoch. the solutions are also

obtained in parametric form but in a hyperbolic space. They are:

g = %ﬁ((m}lﬂ” - }}

el = %;’i{sinh Y — 1) (5.28)

where /7 is a constant.

Like the Euclidean section, this model will continue to expand forever.
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Chapter 6

Cosmology in (2 + 1)-Dimensions

6.1 Robertson-Walker Metric in (2 + 1)-
Dimensions: The 2-D Coordinate Subspaces
and their Curvature.

In this chapter, we will first construct a Rebertson-Walker like metric in (2 +
l)-dimensional space. The easiest way of doing this is to consider a 2-dimensional
coordinate space as a space embedded in a 3-dimensional “hypersurface”. For a space

of constant negative curvature, the hypersurface is described by
{.’r];'l?' 4 [J:E}? {I'd-}E & _SE {ﬁl]

where § is independent of the coordinates z'(t = 1,2,3), but may depend on time

(see Jayant V. Narlikar!), and the metric

do® = (da')V + (da?)2 — (dr®)° (6.2)

Clearly Eq. 6.} admits of the transtormation

e _'_'__,_,.--'—"-_-_'_ .

r' = S'sinh y cos#. 7* = Ssinh y sinf, " = Scosh x

=
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From which we find

(dz')? = S*[cosh? x cos® Bdy? + sinh® y sin® #d6% — 2 cosh y sinh y cos # sin Odydp),
(de?)* = S*[cosh? y sin® fdx* + sinh? y cos® 6d6? + 2 cosh y sinh y cos # sin B 0],

(dz*)* = S%sinh? ydy®
and

do* = §*[(cosh® x cos® 8 + cosh?® x sin® # — sinh? y)dx® + (sinh?® y sin? + sinh® x cos” 6)d6”]

= S%[dx® + sinh® xd#?]

Now let us set .

r = sinh y
Then
dr = cosh ydy
12 dr? dr? dr?
[ = = = - = 3
X cosh®y 1+sinh*y 1472
and

'2‘
do* = S° [ B ;HF]
+
The line element for the (2 + 1) spacetime is therefore given by

ds? = Adi? — do”

i = _,.F-"""'_F--_-_'_ -
dr? ;

ds® = *dt® — §° [ B s+ rzdﬂz] (6.3)

14



~ For a space of constant positive curvature, the Robertson-Walker metric s de

Mbm-mmw--mm in the
3-dimensional hypersurface described by the equation

(#') + (£ + () = 5* (6.4)

(where S is a constant) and the metric

do® = (dz')? + (dz*)* + (dr*)* (6.5)
Setting
r' = Ssin ycos#, 1 = Ssin ysin#, = Scosy,
we have

(dr')? = S”Im’ y cos® fdy? + sin? \ sin® #d6® — 2 cos y sin y cos @ sin 0d 8],
(dr?)? = 5%|cos” y sin’ Odx? + sin® y cos® 8d#* + 2cos  sin y cos 6 sin fd ydd],

(dx®)? = §7sin? ydy*,
and

do* = S’[{m’ ycos® 0 + cos® ysin® @ + sin’ y)dy® + (sin® ysin’ # + sin® y cos” 0)d#®]

= Sdy?* +sin’ ydé’],
If we further substitute;
- re= ﬂn ‘
— _,.,.-l""""-.-.-_h
dr = cos ydy
——
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or
e
do? = 52 | 9"\ 2gm
1—7?
where
T =3siny.

The line element of (2 + 1)-dimensional spacetime is therefore given by

ds® = dt* — da®

i L T 7 [ dr® 242
ds” = ¢di” = 5 N & + redf (6.6)

Equations (6.3) and {6.6) can be combined into a single expression by introducing a

parameter k that takes values +1:

dr®
1 — kr?

ds® = Adi? — 52 [ +r?d5'-*] (6.7)

In analogy with the Robertson-Walker metrie, the above metric ean be called the
Robertson-Walker metric in (2 + 1)-dimensional spacetime. The metric also de-
scribes a 2-dimensional coordinate space of zero carvature, (ie a flat 2-dimensional
space), which is the case for k = 0.

Thus, when k = 0, we have a space of zero curvalure, ie a flat space, k = 1 is a space
of positive curvature, which is a closed space and k = -1 describes a space of negative

curvature, which is an open space. Examples of such surfaces are shown below.

46
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Figure 6.1: Example of surfaces of zero eurvature, ie. a plane

Figure 6.2: Example of surfaces of positive(non-zero) curvature, i.e. a spherical

surface in 3-D space

T

Figure ﬁ,:j:—%]xziihljle of surfrersof Tiegative curvature, i.e. surface of a saddle in 3-D
space

e
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::pﬁﬁwmmmthemudthem part is given by;

do? = §* [_.+rw] (68)

we (% o)

i) =(r, 8)=(1, 2) Computation of the non-vanishing Christoffel symbols,




—

".fzz = =

-

RO
TJ_?: _HE

29, ot

":.' 1..1, =" ] . H—EE?

= 2000 Ohr!
PR Cow

T

T'a = - %)

For a 2-D space, the only non-zero components of the curvature tensor

1 P & gu @ qui T r oo v
Bywe = 5 (afkax* T 9rkor | Orhdp a:hazf) + a1 W0 = Tl (&%)

are the components Ry2:2 and Rgyqy, with Riziz = Rgzr. Using the Christoffel symbols
obtained above and the formula above we had

Bl =% Pgn  Pgu , P9 Fgn )
1212 7 5\ Gz20r® G200 | Or'dr'  Orloet
gt it = 1l emlniits = ntael

3 % (HTlig’f‘l) +g“hll.k_?ﬂlﬂ} —gn(n’a'1)
1 3‘2{521'2] 52 . r )_.']__2)_51.1(_1_)
=§(ﬁ?'-ﬁr +1—r2 1 — 12 (—r(1 =+%)) Ll (B
1 2 ot -
= ~(257) - -5
e & ?(25 ) 1—r®
e 5 _._'_,..--'"'--_._—
_l_;'ﬂ 2
Ry = — r‘z = Rym
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e curvature of a 2-D space described by the metric 5 1s given by the Gaussian

_ Rygp
e (6.10)

e g is the determinant of the metric. In this case

. O S
b TlegR SEE g

; proves that the space indeed has a positive curvature.
For a 2-D space with k = -1, we have

(6.11)

LAl
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and the only non-zero independent component; of the Ricmann curvature tensor is
 given by |

e

1/ gy Pgn | FPon g1 )+

Ruw =5\ 59,7~ 0r202% | daioa’  dridn?

— gulmtyets — el + galn®ine’s — et
e 3

ST _,--""'--—-—_-_-_ =

1 &gn e ol T
3 (‘&mlas;l + guln’e's) —gnlim 1)

a1

e

-

e ———

e o



3D S (2ol

1 §2.2
L _ g2
2[: j * 1+r? o
Thus,
SET‘J
Ry = e
212 = 77
which yields [or the Gaussian curvature
K= g
q
where
Sd';l"g
s T

is the determinant of the metric, and, hence, the curvature of the space, the expression

S 1 Lg® 1
] 4+ 72 Sipd

ﬁ-=

g

Henee a 2-D space with k = -1 is indeed a space with negative curvature.

Finally, for a 2-D space with k = 0, ie one with the line element

de? = S[dr® + v?df”| (6.12)
and metric
ST -
g = : (6.13)
| - ot

The non-vanishing Christoffel symbols are

J 1 f}i’?u
W= g B
—— Fﬂf___________
_ 1 O
e et 2522 N
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- 4 __1 s
2572 oy

T ==

=1 =

i 1 9y
LE 2¢; Or

lﬂgn

) — ey
T2 2 2,9_11 Eml

1 a5t
257 " ar

BN 1

: the only non-zero independent component
R _1( &g g h Py g2 )+
12 =5 \ 522027~ 022020 | Baroa’ O O

5'11[*}‘111’12 5= z’i’ilj‘i‘__;_;_;_'_:_ 1'32 2 =it

=5 (,a‘;r'_aﬂf;im) ﬁiﬁ:“;ﬁ*;‘)

%gﬁ:ﬁ"ﬂj - 52=0,
and the Gaussian curvature
. K- = _.'Rl'lli'___
- g
— g=S4*

"

— ..--""'-_—__-_-_ )
~is the determinant of the metric {6.13}, is clearly equal to zero,
ace-the 2-D space with k =0 is indeed a flat space.
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6.2 The Einstein Field Equations for (2 + 1)-D
Spacetime

Let us return to the (2 + 1)-D spacetime. As shown above. the Robertson-Walker
line element for this Riemannian space is

y . dr®
ds® = c*dt? — ol ] M R T
| } T + roddt|

and the corresponding Robertson-Walker metric is

15 e L T 8
fr=| 0 —2 oo gi=l o —ig
00 522 00—k

Setting (t,r.8) = (x', 2% %), and using these melrics, we easily compute the non-

vanishing Christoffel symbols:

ey
51 Eg{j rf.?:r“

w2 . I g
‘¥ 25?_:;,, dr?

= k-5 O __52
— 7 hEs e\ Sk

2 kr
e = Jer2
; 1 gy
i e TR
o D A
5 | l"T}{IE
o W™ g, o)
o _,_,—l"-'-'_.---_.__
1 -kt d (_ 5 )
—— S _.252 Cat Hi= Arﬂ






29, O
_(1=k?) 8
& 250 ar{‘sa’!]

vy = —r(1 = kr?)

Hence the non-vanishing Christoffel symbols are:

kr S s

e R Sl g R §

‘T! = T JIC?*? '}2 = f-‘S 1‘3 = f,"..g

g 1 AR . B
Y3 -2'"_-r 'T!‘i i C{l _krzj "'3 - Tl c

”f;{na — *—f‘{l = kl"’}

Using these results, we easily compute the non-vanishing Ricei tensor components
using the formula below;

oyl 2 12 3 F o | .ﬂ
R = ‘?;f e g;[gik )i = gon n(9)") - 0" (6.14)
where
542
o= 1 o kri

is the determinant of the metric (6.7). We find

3":‘1’1 Bz{h[g}lm] d

| et 12y, m
R ==t 4 D) ) s
e e e e i
> 5% )] 242 4 (4,202
| =cﬂat: [ln(m +{Tl !] [Tl 3]
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c2ot?

: r
|:]_nSz +In —n—-_.vr__liw_z +[,},1‘12}2+ [7133:]2

&
= IS+ (%) (it
| since r does not explicitly depend on f. Thus

28 92§52 9g?

= = 257 =+ IC3
28
R = 5= (6.15)
v’y | 8*(ln(g)V2
Boy = — 5;3 + {@igiz :I AW LA R _a_nﬂn{ g)V2) - 7",
Ay 1 By 2 aﬂﬂn gjl.-"ﬂ:] o v ™
= [ 5;12 % r-j;za] + {fjiz};g + Y2 1’?21"«. & 1 E‘him-i-'}"z ﬂiﬂm
a r
—@(IH{Q)”E] T ¥ UHE 1) - 2%,

(5 B e )] ot
“|@\ i e T )| T 5 P\ ' ety

VT T 31.:1 5% , TSS__EIH(L St
TVl T2 372 3T VI — 2 dl—kr?)  Or =% 1 k2

. SiSE TN )Jr.aﬂ [m( v NJF 257 +( kr
T &1 - krf) Or\l-krt) .o V1 —kr? A(l—kr?) ' \1—kr?
1

B M A —52)| Tk

258 - ; k 25
52488 B[ Kk )__14,3( r )+ {
¥

= TEi ke oI ] 2 or\l-—krt) &l =k
i | e o L ( ke 2
— .3 (1—Jm~2) T T E1 k) 1-kr? \1—Fkr
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s ‘ég'i‘aglﬁ- o k
A=k 1— k2

Re=—g =33 (6.16)

1 S8+ 8?2 4 ke?
o

'y fi §2(In(g)/?)

=i d 1/2 -
== @hr T e = e (n(g)™) -

Sl | Oty | P(n(g)?)
e T 63:'33 > (D)2 + 1"+ BN

+13" Y8 — @(IH{SJIMJ'TSI& ¥z guﬂ{yrﬂ} s

2 3
= — l:% (Sfir ) -+ %{—r{l — kr?))

- [+ (77)] 5wl o

= '?'531'?3153 - Tauz’:rs:-j i I '}'31:;‘?331 i = Ta’a"hs:

02,2 Ol 2 q
=-M+]_3Er3'+zbrﬂ_g(]_hﬂj__unsql 55r?
2 ¢
a r Zl
o _£ w1 — kr?
+35 [ln( e )] r(1 )
8§ + 8517 25%2 "2 B N hghr ]
=_—T—+1—-3kr2+ = —2(1—!.73}— =t | (1= kr?)
=_§“r’+5¢5’r2_h,
':'-‘i
il _
=% ﬁ{aa + 2+ kA) (6.17)




‘Thus

28
Ru=;&§,
N | S5 + §2 4 ke?
& 1 — k2 :

n - "
Bis = -.2—5(55 +82 + k)

These results allow us to compute the curvature scalar

R=R=9"Ry=g)'Ri; + 9" Ryp +.4" Rag (6.18)
We have
25
g"' Ry = _f:i%
np, (1= kil S8 482 4 ke?
il 52 (1 = kri)
-k §+ 82 + ke?
. 1
g™ Rys = o —gfﬂ§+ 5%+ ke)
1 {8 5%+ ke
)
= 9 12 5 Lk
= % 5 k) 1 (5 S +ke
_ R”E*?G:%_) e (5"’ 57
e ——
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2 (28 S%4kd
N )
2 (S o )
The Einstein field equations for the metric (6.7), given hy
&\
G = Ry iﬂ;kﬂ = =rT (6.19)
1 ;
Gy = Ry = ﬁgnﬂt =«Ti;

Gn= S (§+.ﬂ‘—-—§2+kﬂ?) =—Ez

~ {32 S 2 IZ!J'z S Sﬂ (:“
G“ = Sz_l{s;kcz = EWGP {E,Eﬂ]

1

1 (86+8+k) 1 D e B T o Luial) I
Ga=—a\ T 1o ek -k7) &8 5

G+ 824 k? 2585 + 8% + kc? .

~ E—=an kA i-kD

5=0
e
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1
G33 = Rﬂ-.i =] EQ'E;ER =3 —J‘E-T33

B : 1 9 2 o1l 2
oz = —— (85 + 9% 4 b2y g Lpeziay 2 [235 7+ ke’ _
33 a3l S+kn}+2{57] ci(?+ =0

L
|
e

G:.g:; = Ggg =5=0 {b?l}

6.3 The Friedmann Model in (2 + 1)-D Spacetime

In this project, we considered the time when the 2-D universe is dust-dominated.

The dust dominated universe is described by the egnations

ok oy (622)
Si=0 (6.23)
The solution to (6.23) is clearly
S(t) =at + b,

where a and b are constants.

Assuming that S = 0 at £ = 0, we have b= 0, and
S(t)y=nt (6.24)
At that reference epoch, Eq. 6.22 beeomes;
52 = 2w G pgSn*— ke,
or e e
a? = 2nGpgSo” — ke
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= M/Qﬂﬂ'p@ﬁ'ﬂz e

where gy and Sy are the density of matter in the universe at the ¢ — ty or reference
epoch and the expansion factor at the reference epoch respectively.

From Eq. 6.24 we finally obtain the expansion factor for (2 + 1)-D spacetime as,

= 1/ (27CpySy® — k)t (6.25)

For Euclidean section, i.e. when k=0, from (6.22) as the reference epoch, we have;

5

where Hy is the Hubbles constant (see Fq. 5.26)

= Hy? =27CGpy (6.26)
ta

6.3.1 Model for 2-D Coordinate Euclidean space.

For k = 0, i.e. for flat or Euclidean space, (6.25) becomes,
S(t) = 4/ (2rCpaSe* )

In terms of the Hubble constant, this equation can be rewritten as

S(t) = SpHl (6.27)
ar
I
S{tl = 59 (7) (6.28)
]
whera
1 :
= 6.29
Lo o, ( |

estimates ’rhé age of the universe.

From (6.28) we see that if the 2-D coordinate space were flat, the (2 + 1 -D spacetime

__weould expand forever.
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6.3.2 Model for Closed 2-D Coordinate space.
Fork =1, i.e. for 2-D coordinate spaces of positive eurvature, we have from (6.25)
;q{f} — |:I'2,r{_;pu£'ﬂ I ‘..E:Ilj"zt

As noted above, gy is the density of matter in the 2-D universe at the reference epoch.
A

It pg > ﬁ‘E‘ then the universe is expanding linearly in time, and since in the steady

state the total amount of matrer in the universe must be o constant, py will decrease

from epoch to epoch and will approach p, = % asymptotically.

In other words. the universe will expand in any given epoch, but the rate of

expansion will decrease from epoch to epoch until the terminal density p, = ﬁ s
reached. If the density is reached abruptly, the expansion will stop, and all phenom-
ena, like the redshift, associated with the expansion will cease to exist; otherwise the

expansion will continue asymptotically and the 2-D universe will expand indefinitely.

However, an abrupt increase in the density of matter pg. it will kick start a con-

traction: which will cause the universe to contract and the rate of confraction will
b ] ; ; . gt A :

decrease from epoch to epoch until the terminal density gy = === 15 reached, then

the contraction will stop, and all the phenomena, like the redshift will cease to exist.

It can be seen from the graph below that the rate of expansion keeps on de-

creasing as the density of matter decreases from epoch to epoch:

63



Figure 6.4: Solutions of Einstein’s equations for a Robertson-Walker (2 + 1)-D uni-

verse with curvature k=1

6.3.3 Model for Opened 2-D Coordinate space.

For k = -1, i.e. for 2-D coordinate spaees of negative curvature, we have from (6.25)
S{t) = (2nGpgSy + )

From the equation above, it is seen clearly that, the 2-D universe will continue to
expand forever. Similarly, sinee the totality of matter in this universe is constant,
when the universe starts expanding it will start to deerease in size. When the matter
in the 9-D universe continnes to decrease Gill its content becomes very small, this

universe will continue to expand but this time at the velocity of light. This shows

that, in all situations this universe will expand lorever,

i
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Figure 6.5: Solutions of Einstein’s equations for a Robertson-Walker (2 + 1)-D uni-

verse with curvatures k=1, k=0 and k=-1 (The slopes are not drawn to scale)

Putting the three sections together we obtain the graph above.

From the graph, we can see clearly that the gradient of k = -1 is the greatest,
followed by k = 0 then followed by k =1

In analogy with the Friedmann models in (3 + 1)dimensional spacetime we can

refer to these models as the Friedmann models for (2 + 1)dimensional spacetime.



Chapter 7

Discussion and Conclusion

In (3 + 1)-dimensions, the Robertson-Walker metric is given by

drt
1 — kot

ds® = *di® — §° [ + 12 dHF— gin® ﬁ'd-\p”]] (7.1)

We observed that in (2 + 1)-dimensions, the Robertson-Walker metric is given by

ds® = 2dt* - §* L
1— ke?

+ rzdﬁ?] (7.2)

Comparing Eq.(7.1) to Eq.(7.2) we can see that the fourth term in equation (7.1)
is missing in equation (7.2). Equation (7.2) was not obtained by just cancelling
the fourth term or setting ¢ = 0 in Eq.(7.1) but by considering transformations
of 92-dimensional space as a space embedded in 3-dimensional hypersurface, Whiles
solid fgures are embedded in d-dimensional hypersurface, 2-dimensional surfaces are
embedded in 3-dimensional hypersurface.

In (3 + 1)-dimensions, due to the complex nature of the equations, Lhe expansion
factor cannol be given by a single equation but we can ebrain the various sections,

ie. the Euclidean, closed and opened sections. For Euclidean sections, the expansion

factor is gives by;

g\ 218
S =5 (—) (7.3)



where the age of the universe s,

and

For closed sections, the solution is given by the parametric equations below:

1
= 5&{1 — cos f)

B %ﬂrw — sin 6} {(7.4)

where ¢ i3 a constant.

For opened sections, the solution is given by the parametric equations in hyperbolic

space as shown belowr;

8= %J{cosh P—1)

i :rla—.'ﬂl[sinh P — 1) (7.5)

where [ is a constant.

In (2 + 1)-dimensions, the expansion [actor was obtained as a linear function of

time(t) given by:

e ,
Sty =/ ’; St — k) (76)

We observed that in (2 + 1)-dimensions, the expansion factor for the Euclidean section

(k = 0) is given h}{';
et f.____..---'-_'d_ E

¢ ¢ 202 { }
N i i = S St il
e (tu) ; (in)



where the age of the universe is given by:

1
ty = —
=
Comparing (7.3) to (7.7), we conjectured that in the Euclidean section the expansion
factor is given bhy:
' 2/d
S=5 (F) (7.8)
{
where
g 2
T dH,

and d denotes spatial dimension.

It was observed that whiles the expansion factor in the (3 + 1)-dimensional space-
time was exponential, the expansion factor in the (2 41)-dimensional spacetime is
linear. It was also observed that. in both (3 + 1) and (2 + 1)-dimensions, the Eu-
clidean section will expand forever,

It was also observed that in the opened sections for both dimensions, ie. (3 +
1) and (2 + 1)-dimensions, the universe expands forever. Whiles the solution for
opened section in (3 + 1)-dimensions is given in a parametric form, that of the (2 +
1)-dimensions is obtained as a linear function of time(t).

For closed sections (ie. k = 1), the universe expands to a certain limit and a
contraction may begin in both (3 + 1) and (2 + 1)-dimensions. The solution in (3 +
1)-dimensions is given in a parametric form in hyperbolic space whiles the expansion

factor is a linear function of time(t) in (2 + 1)-dimensions.
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Figure 7.1: The solutions of Einstein's equations for a Robertson-Walker metric in (3

+ 1)-dimensions with curvature k = 1, k = 0 and k = -1.

Comparing Fig. 6.5 to Fig. 7.1, we can clearly see that, in Fig. 6.5, the gradi-
ent of k =-1 is the greatest, followed by k = 0 then k = 1. Likewise in fig. 7.1, the
gradient of k =-1 is the greatest, followed by k = 0 then k = 1. Also, since the solu-
tions in (3 + 1)-dimensions are a bit complex and parametric in nature, the graphs
are curved but they are straight in (2 4+ 1)-dimensions because the expansion factor

for the various models is a linear funetion if time(t).

In conclusion. comparing the solutions in (2 + 1)-dimensions to (3 + 1)-dimensions,

we found that uil the mﬁiﬁémed have their analogies (3 + 1)-dimensions, except

that we found that the 2-D universe is always expanding irrespective of the curva-
1
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ture of the space. Specifically, the 2-D universe expands linearly in time forever. n
3-D universe, the expansion iz generally nonlinear in Lime and under certain situa-
tions contraction is possible. Hence. the results in (2 4+ 1)-dimensions can be carried
over into (3 4+ 1)-dimensions. We also found that eomputations involved in (2 + 1)-
dimensions are less tedious as compared to (3 + 1)-dimensions. We then concluded
that cosmology in (2 + 1)-dimensions is realistic and can be used as a prototype

model for (3 + 1)-dimensional theory of cosmology.
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