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Abstract

In this thesis, Primal-dual method, which is one of the interior-point methods, was used to

assist the improvement of revenue generation efforts at Sunyani West District Assembly. The

data which was collected from the Sunyani West District Assembly was modeled into objective

function and subject to constraints. The matrices generated were investigated as well as an

implementation of numerical iteration of the models to determine the efficient income genera-

tion strategy for the Assembly. THe result shows that the Assembly can raise its revenue to

GH¢1358357.28 annually which represents an appreciable 52.12% increase in the Assembly’s

revenue.
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Chapter 1

Introduction

1.1 Background to the study

Evidence clearly shows that tax efforts rates are much higher for higher-income countries than

in low-income countries, supporting the notion that performance and tax mobilization is essen-

tial for reaching higher level of income. A low level of government revenue is a constraint on

the capacity to finance essential public investment programme and undertake adequate level of

spending on social services, which are important for improving living standard.

Kaldor was in fact echoing an earlier call by Sir Arthur Lewis who posited that ’the government

of an undeveloped country needs to be able to raise revenue of about 11-19 percent of full in

order to give a better than average standard of service’ (Martin and Lewis ,1956). The role of

government revenue and the capacity of government to raise taxes for the purpose of financing

economic development have pre-occupied economists and policy makers for a long time more

than 40 year ago. Kaldor (1963), raised the very important question of whether undeveloped

countries will ’learn to tax’ , with the underlying view that for these counties to reach higher

levels of living standard ,they would need to achieve levels of tax effort that are significantly

higher than observed at that time.

What is less straight forward is what makes a country or a government capable of achieving

high levels of revenue performance. Bird, Vazquez and Torgler (2008) pointed out in their work

that, most of the attention in the analysis of tax effort has traditionally been focused on the

supply side (or tax handles’ in their word), mainly the availability of readily taxable activities

such as trade/commerce and natural resources. African Countries have generally performed

poorly in tax revenue mobilization.

The average tax-to-GDP ratio in Sub-Saharan Africa increased only reasonably over the past

two decades. Two key problems were evident. First, African Countries have been unable to
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connect natural resource endowment for the purpose of revenue mobilization. Second, African

countries have been unable to develop their capacity to mobilize non-resource sources of tax

revenue. In the case of resource-reached countries, this is a result of failure to utilize the natural

resource bonanza to promote activities outside the natural resource industrial, so as to diversify

their production and export base. The problem goes beyond the issue of value addition in the

natural resource industry or moving up the value chain. It also lacks capabilities to innovate

within and outside the natural resource value chain.

The pool of District financial resources in many developing countries might come from seven

main sources. Some of these are Independent revenue sources or own sources (if any) assign

to the District, central government financial transfers to the District (which can have different

forms), voluntary contributions by community or beneficiary groups, profit from public enter-

prises or rent from public property etc, financial assistance from donor agencies, short and long

term loans and other sources like penalties, selling property (Kroes, 2008).

However, following the decentralization process, District Assemblies in Ghana now have the

responsibility to plan and implement their own project or programmes. The Sunyani west

District largely depends on internal sources for the day- to- day running of the District admin-

istration. These include rates and receipts ,royalties from lands, fees and tolls. Licenses, rent,

investments and other miscellaneous activities that accrue as a result of it own effort at rev-

enue mobilization and generation. On the outside, revenue also comes to the District Assembly

from the central government in the form of Grant-in-aid and the District Assemblies common

fund (Sunyani West District medium term 2011-2014 draft plan). Katentet, (2011) examines

the poor revenue generated by most assemblies in Ghana as a result of insufficient revenue

base, existence of two institutions working for internally generated funds, poor organizational

structure and revenue administrational mechanism. Gap on knowledge and understanding of

revenue, weak voluntary compliance as well as revenue leakage.

According to the District medium term draft plan (2011-2014), poor data base on revenue
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/ratable items, in adequate qualified revenue collectors, inadequate and poor marketing facil-

ities are some of the challenges in revenue collection. High rate of tax evasion, inadequate

logistic to promote Education on the need to pay taxes, lack of permanent internal auditors /

local government inspectors, inadequate revenue mobilization capacity and weak tax ,revenue

collection mechanism are the major problems of the District revenue mobilization.

The Sunyani West District was carved out of the Sunyani Municipal in November, 2007, through

legislative instrument (Li) 1881, 2007. It was inaugurated on the 14th January, 2008. The

Administrative Capital of the District is Dumasi. It covers a total land area of 657 square kilo-

meters. According to the 2010 population and housing census, the District has a population

of 67,176 and growth rate of 2.8 percentages per annum. The Population is however projected

to reach 85,689 in 20014. The predominate occupation in the District is agriculture which

employs about 66.5 percent of the active labour force. Services employ 9.4 percent, industrial

5.2 percent and commerce 1.2 percent. The District share common boundaries with Sunyani

Municipal to the East, Berekum to the South, Wenchi Municipal to the North.

1.2 Problem Statement

The standard of living in the Sunyani West District keeps on worsening as the Assembly is

not able to provide the citizenry with the basic social amenities’ such as portable water, bet-

ter health care facilities, quality education, good roads, improved sanitation, infrastructural

development and so on. The reason being that, the District Assembly is not able to mobilize

sufficient revenue to execute its project and programme aimed at bettering the lot of its peo-

ple. The Assembly, since it inception in January 2008 has never met its revenue target and

therefore has to rely heavily on the central government for its basic expenditure financing. This

problem has been a major headache to the Assembly as it is hampering the effective growth of

the District. This research work is basically targeted at developing a mathematical programme

that will help the Assembly to optimize its revenue mobilization strategy.
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1.3 Objectives of The Study

The study seeks to:

1. Model the Assembly’s revenue as linear programming problem

2. Maximize the Assembly’s revenue.

1.4 Methodology

The problem of revenue maximization will be modelled as a linear programming problem.

Primal-Dual, one of the interior point algorithms will be used to solve the mathematical model.

Data would be collected from Sunyani West District Assembly for the research. Software

programme on matlab will be developed to run the data.

1.5 Significance of the Study

The Sunyani West District Assembly, since its inception has been under performing in its

revenue mobilization efforts. This state of affair has made it difficult for the Assembly to

provide basic social services such as schools, healthcare, access roads, places of convenience,

portable water supply etc. This project is geared towards finding a lasting solution to help the

Assembly to optimize its revenue collection so that it can support it inhabitant to improve upon

their standard of living with the provision of many social amenities such as schools, hospitals,

provision of portable water etc. It is also envisaged that some other Districts in the country

with revenue mobilization challenges can use the findings from this research to improve upon

their revenue generation strategy.

1.6 Organization of the Study

The thesis consists of five chapters, including this chapter. Chapter 2 is literature review of the

existing theoretical and empirical literature. Chapter 3 deals with methodology that is being
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used for the study. Chapter 4 deals with data collection, analysis, and discussion of results.

The concluding chapter, Chapter 5 summarizes the findings and also provides conclusions and

recommendations.
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Chapter 2

Literature Review

This chapter reviews the literature on the application of linear programming:

2.1 Linear Programming

Jianq etal., (2004) proposed a linear programming based method to estimate arbitrary motion

from two images. The proposed method always finds the global optimal solution of the lin-

earized motion estimation energy function and thus is much more robust than the traditional

motion estimation schemes. As well, the method estimates the occlusion map and motion field

at the same time, (et al., 2004). To further reduce the complexity-reduced pure linear program-

ming method they presented a two phase scheme to estimating the dense motion field. In the

first step, they estimated a relative sparse motion field for the edge pixels using a non-regular

sampling scheme, based on the proposed linear programming method. In the second step, they

set out a detail-preserving variational method to upgrade the result into a dense motion field.

The proposed scheme is much faster than a purely linear programming based dense motion

estimation scheme. And, since they used a global optimization method linear programming

in the first estimation step, the proposed two-phase scheme was also significantly more robust

than a pure variation.

Hoesein and Limantara., (2010) studied the optimization of water supply for irrigation at Ja-

timlerek irrigation area of 1236 ha. Jatimlerek irrigation scheme was intended to serve more

than one district. The methodology consisted of optimization water supply for irrigation with

Linear Programming. Results were used as the guidance in cropping pattern and allocating

water supply for irrigation at the area.

Linear programming model was applied by Hassan, (2004), to calculate the optimal crop

acreage, production and income of the irrigated Punjab. Crops included in the models were

wheat, Basmati rice, IRRI rice, cotton, sugarcane, maize, potato, gram and mong / mash. The
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results showed that the irrigated agriculture in the Punjab was more or less operating at the

optimal level. Overall cropped acreage in the Optimal solution decreased by 0.37% as compared

to the existing acreage. However, in the optimal cropping pattern some crops like cotton and

pluses gained acreage by 9-10% each, while maize and Basmati rice remained unchanged. On

the other hand crops like wheat, IRRI rice, potato and sugarcane lost acreage by 4-11%. As a

result of optimum croppingpattern income, increased by 1.57%.

Reuter and Deventer, (2003) proposed two linear models, the second being a subset of the

first, for the simulation of flotation plants by use of linear programming. The first linear model

produced the circuit structure, as well as the optimal flow rates of the valuable element between

any number of flotation banks incorporating any number of recycle mills. An optimal grade for

the valuable element in the concentrate was given by the second model. Operating conditions in

the flotation banks and recycle mills were included as bounds in these models, permitting their

possible application in expert systems. The simulated circuit structure, concentrate grade and

recoveries closely resembled those of similar industrial flotation plants. The only data required

by the simulation models were the feed rates of the species of an element, and their separation

factors which were estimated from a multiparameter flotation model.

Becker, (1995) explored the implications of the transformation of the system of water resources

allocation to the agricultural sector in Israel from a one in which allotments were allocated to

the different users without any permission to trade with water rights. A mathematical planning

model was used for the entire Israeli agricultural sector, in which an ’optimal’ allocation of the

water resources was found and compared to the existing one. The results of the model were

used in order to gain insight into the shadow price of the different water bodies in Israel (about

eight). These prices could be used to grant property rights to the water users themselves in

order to guarantee rational behaviour of water use, since no one could sell their rights at the

source itself. From the dual prices of the primal problem they could forecast the equilibrium

prices and their implications for the different users. The results showed that there was a poten-

tial budgetary benefit of 28 million dollars when capital cost was not included and 64 millions

dollars when it was included.

Greenberg et al., (1986) introduced a framework for model formulation and analysis to support

7



operations and management of large-scale linear programs from the combined capabilities of

camps and analyze. Both the systems were reviewed briefly and the interface which integrates

the two systems was then described. The model formulation, matrix generation, and model

management capability of camps and the complementary model and solution analysis capability

of analyze were presented within a unified framework. Relevant generic functions were high-

lighted, and an example was presented in detail to illustrate the level of integration achieved in

the current prototype system. Some new results on discourse models and model management

support were given in a framework designed to move toward an ’intelligent’ system for linear

programming modeling and analysis.

To examine how farmers could sustain an economically viable agricultural production in salt-

affected areas of Oman, (Naifer et al, 2010), divided a sample of 112 farmers into three groups

according to the soil salinity levels, low salinity, medium salinity and high salinity. Linear

programming was used to maximize each type of farm’s gross margin under water, land and

labor constraints. The economic losses incurred by farmers due to salinity were estimated by

comparing the profitability of the medium and high salinity farms to the low salinity farm’s

gross margin. Results showed that when salinity increased from low salinity to medium salinity

level the damage was US$1,604 ha−1 and US$2,748 ha−1 if it increased from medium salinity

to high salinity level. Introduction of salt-tolerant crops in the cropping systems showed that

the improvement in gross margin was substantial thus attractive enough for medium salinity

farmers to adopt the new crops and/or varieties to mitigate the effect of water salinity.

A linear programming model for a river basin was developed by (Avdelas et al, 1992), to include

almost all water-related economic activity both for consumers and producers. The model was

so designated that the entire basin or basin sub-division could be analyzed. The model included

seven sectors, nine objective function criteria, and three river-flow levels. Economic basis for

conflicts among sectors over incidence of cost allocation and level of economic activity were

traced to some chosen objective. The disposal of untreated household waste water, particularly

from the rural household, directly into the river was consistent with maximizing net benefits

and minimizing costs. For each of the three industries analyzed separately, paper, wool and

tanning, public treatment of industrial waste water was the optimal treatment process in one
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or more of the solutions.

Cherubini et al., (2009) framed an optimization model which aims at minimizing the maximum

link utilization of IP telecommunication networks under the joint use of the traditional IGP

protocols and the more sophisticated MPLS-TE technology. The survivability of the network

was taken into account in the optimization process implementing the path restoration scheme.

This scheme benefits of the Fast Re-Route (FRR) capability allowing service providers to offer

high availability and high revenue SLAs (Service Level Agreements). The hybrid IGP/MPLS

approach relies on the formulation of an innovative Linear Programming mathematical model

that, while optimizing the network utilization, provides optimal user performance, efficient use

of network resources, and 100% survivability in case of single link failure. The possibility of

performing an optimal exploitation of the network resources throughout the joint use of the IGP

and MPLS protocols provides a flexible tool for the ISP (Internet Service Provider) networks

traffic engineers. The efficiency of the proposed approach was validated by a wide experimen-

tation performed on synthetic and real networks. The obtained results showed that a small

number of LSP tunnels have to be set up in order to significantly reduce the congestion level

of the network while at the same time guaranteeing the survivability of the network. They ap-

plied this approach to a quadratic-cost single-commodity network design problem, comparing

the newly developed algorithm with those based on both the standard continuous relaxation

and the two usual variants of PR relaxation.

Mousavi et al., (2004) presented a long-term planning model for optimizing the operation of

Iranian Karoon-Dez reservoir system using an interior-point algorithm. The system is the

largest multi-purpose reservoir system in Iran with hydropower generation, water supply, and

environmental objectives. The focus was on resolving the dimensionality of the problem of

optimization of a multi-reservoir system operation while considering hydropower generation

and water supply objectives. The weighting and constraints methods of multi-objective pro-

gramming were used to assess the trade-off between water supply and hydropower objectives

so as to find noninferior solutions. The computational efficiency of the proposed approach was

demonstrated using historical data taken from Karoon-Dez reservoir system.

Konickova, (2006) proposed a linear programming problem whose coefficients are prescribed by
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intervals is called strongly unbounded if each linear programming problem obtained by fixing

coefficients in these intervals is unbounded. In the main result of the paper a necessary and

sufficient condition for strong unboundedness of an interval linear programming problem was

described. In order to have a full picture they also showed conditions for strong feasibility and

strong solvability of this problem. The necessary and sufficient conditions for strong feasibil-

ity, strong solvability and strong unboundedness can be verified by checking the appropriate

properties by the finite algorithms. Checking strong feasibility and checking strong solvability

are NP-hard. This shows that checking strong unboundedness is NP-hard as well. Optimal

solutions of Linear Programming problems may become severely infeasible if the nominal data

is slightly perturbed.

Frizzone et al., (1997) developed a separable linear programming model, considering a set of

technical factors which might influence the profit of an irrigation project. The model presented

an objective function that maximized the net income and specified the range of water avail-

ability. It was assumed that yield functions in response to water application were available

for different crops and described very well the water-yield relationships. The linear program-

ming model was developed genetically, so that, the rational use of the available water resource

could be included in an irrigation project. Specific equations were developed and applied in

the irrigation project ’Senator Nilo Coelho’ (SNCP), located in Petrolina - Brazil. Based on

the water-yield functions considered, cultivated land constraints, production costs and products

prices, it was concluded that the model was suitable for the management of the SNCP, resulting

in optimal cropping patterns.

Chung et al., (2008) considered a municipal water supply system over a 15-year planning pe-

riod with initial infrastructure and possibility of construction and expansion during the first

and sixth year on the planning horizon. Correlated uncertainties in water demand and sup-

ply were applied on the form of the robust optimization approach of Bertsimas and Sim to

design a reliable water supply system. Robust optimization aims to find a solution that re-

mains feasible under data uncertainty. It was found that the robust optimization approach

addressed parameter uncertainty without excessively affecting the system. While they applied

their methodology to hypothetical conditions, extensions to real-world systems with similar
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structure were straightforward. Therefore, their study showed that this approach was a useful

tool in water supply system design that prevented system failure at a certain level of risk.

Khan et al., (2005) used Linear Programming Model to calculate the crop acreage, production

and income of cotton zone. This was carried out in the three districts of the Bahawalpur. These

three districts were collected by purposive sampling technique. The study was conducted on

4652 acres of the irrigated areas from the three districts. Crops included in the model were

wheat, basmati rice, IRRI rice, cotton and sugar cane. The results showed that the cotton was

the only crop, which gained acreage by about 10% at the expense of all other crops. Overall

optimal crop acreage decreased by 1.76%, while optimal income was increased by 3.28% as

compared to the existing solutions. The study reported that Bahawalpur division was more or

less operating at the optimal level.

Matthews., (2005) evaluated and optimized the utility of the nurse personnel at the Internal

Medicine Outpatient Clinic of Wake Forest University Baptist Medical Center. Linear program-

ming (LP) was employed to determine the effective combination of nurses that would allow for

all weekly clinic tasks to be covered while providing the lowest possible cost to the department.

A specific sensitivity analysis was performed to assess just how sensitive the outcome was to the

stress of adding or deleting a nurse to or from the payroll. The nurse employee cost structure

in this study consisted of five certified nurse assistants (CNA), three licensed practicing nurses

(LPN), and five registered nurses (RN). The LP revealed that the outpatient clinic should staff

four RNs, three LPNs, and four CNAs with 95 percent confidence of covering nurse demand on

the floor.

Kumar and Khepar, (980) in their study demonstrated the usefulness of alternative levels of

water use over the fixed yield approach when there is a constraint on water. In the multi-crop

farm models used, a water production function for each crop was included so that one had the

choice of selecting alternative levels of water use depending upon water availability. Water pro-

duction functions for seven crops, viz. wheat, gram, mustard, berseem, sugarcane, paddy and

cotton, based on experimental data from irrigated crops were used. The fixed yield model was

modified incorporating the stepwise water production functions using a separable programming

technique. The models were applied on a selected canal command area and optimal cropping
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patterns determined. Sensitivity analysis for land and water resources was also conducted. The

water production function approach gave better possibilities of deciding upon land and water

resources.

Heidari, (2007) formulated and solved ground water management model based on the linear sys-

tems theory using linear programming. The model maximized the total amount of pound water

that could be pumped from the system subject to the physical capability of the system and

institutional constraints. The results were compared with analytical and numerical solutions.

Then, this model was applied to the Pawnee Valley area of south-central Kansas. The results

of this application supported the previous studies about the future ground water resources of

the Valley. These results provided a guide for the ground water resources management of the

area over the next ten years.

Vimonsatit et al., (2003) proposed a linear programming (LP) formulation for the evaluation

of the plastic limit temperature of flexibly connected steel frames exposed to fire. Within a

framework of discrete models and piecewise linearized yield surfaces, the formulation was de-

rived based on the lower-bound theorem in plastic theory, which lead to a compact matrix form

of an LP problem. The plastic limit temperature was determined when the equilibrium and

yield conditions were satisfied. The plastic mechanism can be checked from the dual solutions

in the final simplex tableau of the primal LP solutions. Three examples were presented to

investigate the effects of the partial-strength beam-to-column joints. Eigenvalue analysis of the

assembled structural stiffness matrix at the predicted limit temperature was performed to check

for structural instability. The advantage of the proposed method is that it is simple, computa-

tionally efficient, and its solutions provide the necessary information at the limit temperature.

The method can be used as an efficient tool to a more refined but computationally expensive

step-by-step historical deformation analysis.

Banks and Fleck, (2010) applied Linear programming techniques to ground-water- flow model

in order to determine optimal pumping scenarios for 14 extraction wells located downgradient

of a landfill and upgradient of an estuary. The model was used to simulate flow as well as the

effects of a pump-and-treat remediation system designed to capture contaminated ground wa-

ter from the water-table aquifer before it reached the adjacent estuary. The objective function
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involved varying pumping rates and frequencies to maximize capture of ground water from the

water-table aquifer. At the same time, the amount of water extracted and needing treatment

was minimized. The constraints placed on the system insured that only ground water from the

landfill was extracted and treated. To do this, a downward gradient from the disposal area

toward the extraction wells was maintained.

Khaled, (2004) developed four models of optimal water allocation with deficit irrigation in

order to determine the optimal cropping plan for a variety of scenarios. The first model (Dy-

namic programming model (DP)) allocated a given amount of water optimally over the different

growth stages to maximize the yield per hectare for a given crop, accounting for the sensitivity

of the crop growth stages to water stress. The second model (Single Crop Model) tried to find

the best allocation of the available water both in time and space in order to maximize the total

expected yield of a given crop. The third model (Multi crop Model) was an optimization model

that determined the optimal allocation of land and water for different crops. It showed the

importance of several factors in producing an optimal cropping plan. The output of the models

was prepared in a readable form to the normal user by the fourth model (Irrigation Schedule

Model).

Turgeon, (1986) developed a parametric mixed-integer linear programming (MILP) method for

selecting the sites on the river where reservoirs and hydroelectric power plants were to be built

and then determining the type and size of the projected installations. The solution depended

on the amount of money the utility was willing to invest, which itself was a function of what the

new installations would produce. This method was used based on the fact that the branch-and-

bound algorithm for selecting the sites to be developed (and consuming most of the computer

time) was solved a minimum number of times. Between the points where the MILP problem

was solved, LP parametric analysis was applied.

Belotti et al., (2005) proposed to tackle large-scale instances of Maximum feasible subsystem

using randomized and thermal variants of the classical relaxation method for solving systems of

linear inequalities. They established lower bounds on the probability that these methods iden-

tify an optimal solution within a given number of iterations. These bounds, which are expressed

as a function of a condition number of the input data, imply that with probability one these
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randomized methods identify an optimal solution after finitely many iterations. Computational

results obtained for medium - to large-scale instances arising in the design of linear classifiers,

in the planning of digital video broadcasts and in the modeling of the energy functions driving

protein folding, indicate that an efficient implementation of such a method perform very well in

practice.Industrial switching involves moving materials on rail cars within or between industrial

complexes and connecting with other rail carriers. Planning tasks include the making up of

trains with a minimum shunting effort, the feasible and timely routing through an in-plant rail

network on short paths, and assigning and scheduling of locomotives under safety and network

capacity aspects. A human planner must often resort to routine and simple heuristics, not least

for the reason of unavailability of computer aided suggestions.

Tsakiris and Spiliotis, (2004) treated the Systems Analysis formulation problem of water allo-

cation to various users as a linear programming problem with the objective of maximizing the

total productivity. This was intended to solve one of the basic problems of Water Resource

Management in the allocation of water resources to various users in an optimal and equitable

way respecting the constraints imposed by the environment. In this work a fuzzy set repre-

sentation of the unit revenue of each use together with a fuzzy representation of each set of

constraints, were used to expand the capabilities of the linear programming formulation. Nu-

merical examples were presented for illustrative purposes and useful conclusions are derived.

Yoshito, (2004) considered the problem of finite dimensional approximation of the dual problem

in abstract linear programming approach to control system design. A constraint qualification

that guarantees the existence of a sequence of finite dimensional dual problems that computes

the true optimal value. The result is based on the averaging integration by a probability mea-

sures. A matrix is sought that solves a given dual pair of systems of linear algebraic equations.

Necessary and sufficient conditions for the existence of solutions to this problem were obtained,

and the form of the solutions was found. The form of the solution with the minimal Euclidean

norm was indicated. Conditions for this solution to be a rank one matrix were examined. On

the basis of these results, an analysis was performed for the following two problems: modifying

the coefficient matrix for a dual pair of linear programs (which can be improper) to ensure

the existence of given solutions for these programs, and modifying the coefficient matrix for a
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dual pair of improper linear programs to minimize its Euclidean norm. Necessary and sufficient

conditions for the solvability of the first problem were given, and the form of its solutions was

described. For the second problem, a method for the reduction to a nonlinear constrained

minimization problem was indicated, necessary conditions for the existence of solutions were

found, and the form of solutions was described (Matthews, 2005).

The primal-dual method for approximation algorithms considers a primal integer programming

formulation of the problem in question and the dual of a linear programming relaxation of the

integer program. The method above is modified by relaxing complementary slackness condi-

tions related to dual variables; that is, we relax the condition that if Xj > 0 the corresponding

primal constraint must be met with equality. As we will see below, relaxing this constraint

in appropriate ways leads to provably good algorithms for NP-hard problems in combinatorial

optimization. The method yields a solution to the primal integer problem that costs no more

than α times the value of the feasible dual solution constructed, which implies that the primal

solution is within a factor of α of optimal. The value of the dual solution is always within

some factor of α of the value of the primal solution, but may from instance to instance be

much closer; by comparing the value of the primal and dual solutions generated, we can give

a guarantee for the instance which might be better than α. The performance guarantee of an

algorithm using the primal-dual method is thus connected with the integrality gap of the integer

programming formulation of the problem. The integrality gap of a formulation is the worst-case

ratio over all instances of the value of the integer program to the value of the corresponding

linear programming relaxation. Since the performance guarantee of an algorithm using the

primal-dual method is proven by comparing the value of a primal solution against the value of

a feasible dual, its performance guarantee can never be shown to be better than the integrality

gap of the formulation used. Conversely, a proof of a performance guarantee of α obtained in

this way implies that the integrality gap is no more than α. So far the primal-dual method for

approximation algorithms usually leads to dual-ascent algorithm sin which dual variables are

never decreased, (Williamson, 2002).
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Chapter 3

Methodology

3.1 Introduction

This chapter reviews the methodology used for developing revenue mobilization model. The first

phase of this chapter talks about some procedures, the linear programming model, theoretical

method used in solving it and software for solving linear programming.

3.2 Linear Programming

Linear programming is a mathematical technique that deals with the optimization (maximizing

or minimizing) of a linear function known as objective function subject to a set of linear

equations or inequalities known as constraints. It is a mathematical technique which involves

the allocation of scarce resources in an optimum manner, on the basis of a given criterion

of optimality. The technique used here is linear because the decision variables in any given

situation generate straight line when graphed. It is also programming because it involves the

movement from one feasible solution to another until the best possible solution is attained.

A variable or decision variables usually represent things that can be adjusted or controlled.

An objective function is a mathematical expression that combines the variables to express your

goal and the constraints are expressions that combine variables to express limits on the possible

solutions.

Linear programs can be expressed in the form:

maximize cTx

subject to Ax ≤ b

where x represents the vector of variables (to be determined), c and b are vectors of
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(known) coefficients and A is a (known) matrix of coefficients. The expression to be maximized

or minimized is called the objective function (cTx in this case). The equations Ax ≤ b are the

constraints which specify a convex polytope over which the objective function is to be opti-

mized.

Linear programming can be applied to various fields of study. It is used most extensively in

business and economics, but can also be utilized for some engineering problems. Industries

that use linear programming models include transportation, energy, telecommunications, and

manufacturing. It has proved useful in modeling diverse types of problems in planning, routing,

scheduling, assignment, and design.

3.3 Standard Form

The Standard form is the usual and most intuitive form of describing a linear programming

problem. It consists of the following four parts:

• A linear function

• Problem constraints

• Non-negative variables

• Non-negative right hand side constants

Given an m-vector b = (b1, ..., bm)T , an n-vector c = (c1, .., cn)T and an m× n matrix,

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . .

. . . .

. . . .

am1 am2 . . . amn


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of real numbers, the standard form can be described as

maximize F = CTX

Subject to

Ax ≤ b

where x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

3.4 Methods of Solving Linear programming

Basically, there are several methods of solving a linear programming problem. These are

i. The graphical (Geometrical) Method

ii. The simplex (Algebraic) Method

iii. Revised simplex method

iv Interior point Methods

3.4.1 A Unique Optimal Solution

This is where the solution to the problem occurs at one and only one extreme point of the

feasible region. That is, the combination that gives the highest contribution or profit or the

minimum cost or time depending on the problem at hand.

Example:

Max Z = 6x1 + 8x2

Sub 5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 40

x1, x2 ≥ 0
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Solution: Resulting Equalities

5x1 + 10x2 + S1 = 60

4x1 + 4x2 + S2 = 40

Now using the Gauss Jordan elimination method. Let x1, x2 = 0 in both constraints

5(0) + 10(0) + S1 = 60

4(0) + 4(0) + S2 = 40

The Basic solution x1 = 0, x2 = 0, s1 = 60, s2 = 40 Another Basic solution using Gauss Jordan

elimination. Set s1, s2 = 0

5x1 + 10x2 + s1(0) = 60

4x1 + 4x2 + s2(0) = 40

Basic solution x1 = 8, x2 = 2, s1 = 0, s2 = 0

From the solution, 4 basic solution is attained, which shows that feasible solution is achieved and

also, optimality conditions were reached after a few iteration. The optimal solution occurred

at a single extreme point.

3.5 Simplex Method

It is a systematic way of examining the vertices of the feasible region to determine the optimal

value of the objective function. Simplex usually starts at the corner that represents doing

nothing. It moves to the neighboring corner that best improves the solution. It does this

over and over again, making the greatest possible improvement each time. When no more
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improvement can be made, the most attractive corner corresponding to the optimal solution

has been found.

3.5.1 The Standard Maximum Form for s Linear Program

A standard maximum problem is a linear program in which the objective is to maximize an

objective function of the form:

Z = C1X1 + C2X2 + . . .+ CnXn

Sub to: a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2

... ≤ ...

am1x1 + am2x2 + . . .+ amnxn ≤ bm

where x1, x2, . . . , xn ≥ 0 and bj ≥ 0 for j = 1, 2, . . . ,m

3.6 The Simplex Tableau

To set up the simplex tableau for a given objective function and its constraints, add none neg-

ative slack variable si to the constraints. This is to convert the constraints into equations. The

constraints therefore become:
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Sub to: a11x1 + a12x2 + . . .+ a1nxn + s1 = b1

a21x1 + a22x2 + . . .+ a2nxn + s2 = b2

... =
...

am1x1 + am2x2 + . . .+ amnxn + sn = bm

where xi ≥ 0 for i = 1, 2, . . . , n

Table 3.1: Table Showing the Formulation of the Simplex Tableau

Cj c1 c2 . . . cn 0 0 . . . 0

CB Bv x1 x2 . . . xn s1 s2 . . . sn RHS

0 s1 a11 a12 . . . a1n 1 0 . . . 0 b1

0 s2 a21 a22 . . . a2n 0 1 . . . 0 b2

...
...

...
... . . .

...
...

... . . .
...

...

0 sm am1 am2 . . . amn 0 0 . . . 1 bm

Zj 0 0 . . . 0 0 0 . . . 0 0

Cj − Zj c1 c2 . . . cn 0 0 . . . 0

CB is objective function coefficients for each of the basic variables.

Zj is the increase the value of the objective function that will result if one unit of the variable

corresponding to the jth column of the matrix formed from the coefficients of the variables in

the constraints is brought into the basis (thus if the variable is made a basic variable with a

value of one)

Cj − Zj is called the Net Evaluation Row, is the net change in the value of the objective

function if one unit of the variable corresponding to the jth column of the matrix (formed from
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the coefficient of the variables in the constraints), is brought into solution.

From the Cj − Zj we locate the column that contains the largest positive number and this

becomes the Pivot Column. In each row we now divide the value in the RHS by the positive

entry in the pivot column (ignoring all zero or negative entries) and the smallest one of these

ratios gives the pivot row. The number at the intersection of the pivot column and the pivot

row is called the PIVOT.

We then divide the entries of that row in the matrix by the pivot and use row operation to

reduce all other entries in the pivot column, apart from the pivot, to zero.

3.6.1 The Stopping Criterion

The optimal solution to the linear program problem is reached when all the entries in the net

evaluation row, that is, Cj − Zj are all negative or zero.

3.6.2 Infinite Many Solution

This is where the optimal solution to the problem is obtained at more than one extreme

point. This implies that there is no unique solution to the problem. When this happens,

the assumption made is that the graph of the objective function is parallel to at least one of the

constraints binding the feasible region. Thus two or more different points may give the same

value. Thus all points on this line will give an optimal solution.

Example:

Max Z = 4x1 + 3x2

Sub to: 8x1 + 6x2 ≤ 25

3x1 + 4x2 ≤ 15

x1, x2 ≥ 0

Solution:

Max Z = 4x1 + 3x2 + s1 + s2
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Sub to: 8x1 + 6x2 + s1 = 25

3x1 + 4x2 + s2 = 15

x1, x2, s1, s2 ≥ 0

Table 3.2: Iteration One

Cj 4 3 0 0

CB Bv x1 x2 S1 S2 RHS

0 S1 8 6 1 0 25

0 s2 3 4 0 1 15

Zj 0 0 0 0

Cj − Zj 4 3 0 0

Table 3.3: Iteration Two

Cj 4 3 0 0

CB Bv x1 x2 S1 S2 RHS

4 x1 1 3
4

1
8

0 25
8

0 s2 0 7
4

3
8

1 45
8

Zj 4 3 1
2

0 100
8

Cj − Zj 0 0 −1
2

0

As shown in table 3. 3, (in iteration two) optimality is reached but the variable x2

is not in bases, which has its (Cj − Zj) value zero. There is the need for another iteration to

complete optimality (Iteration 3).
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Table 3.4: Iteration Three

Cj 4 3 0 0

CB Bv x1 x2 S1 S2 RHS

4 x1 1 0 2
7
−3

7
5
7

0 x2 0 1 −3
8

4
7

45
14

Zj 4 3 1
2

0 100
8

Cj − Zj 0 0 −1
2

0

3.6.3 Unbounded Solution

This is a situation where the feasible region is not enclosed by constraints. In such situation,

there may or may not be an optimal solution. However, in all cases if the feasible region

is unbounded, then there exists no maximum solution but rather a minimum solution. To

illustrate unbounded solution, let us consider a numerical example.

Example:

Maz Z = 4x1 + 3x2

Sub to: x1 − 6x2 ≤ 5

3x1 ≤ 11

x1, x2 ≥ 0

Solution:

Max Z = 4x1 + 3x2 + 0s1 + 0s2
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Sub to: x1 − 6x2 + s1 = 5

3x1 + s2 = 11

x1, x2, s1, s2 ≥ 0

Table 3.5: Iteration Four

Cj 4 3 0 0

CB Bv x1 x2 S1 S2 RHS

0 s1 1 -6 1 0 5

0 s2 3 0 0 1 11

Zj 0 0 0 0 0

Cj − Zj 4 3 0 0

Table 3.6: Iteration Five

Cj 4 3 0 0

CB Bv x1 x2 S1 S2 RHS

0 s1 0 -6 1 −1
3

4
3

4 x1 1 0 0 1
3

11
3

Zj 4 0 0 4
3

Cj − Zj 0 3 0 −4
4

Unboundedness occurs in this solution, because there is an entering variable in the

second iteration but there is no leaving variable in the same iteration.
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3.6.4 No Solution

There may also be a situation where there is no solution to the problem at hand. In such case,

there will be no feasible region hence; the bounded area will be empty.

3.6.5 Minimizing the Objective Function

Standard form of LP problem consists of a maximizing objective function. Simplex method is

described based on the standard form of LP problems. If the problem is a minimization type,

the objective function is multiplied through by -1 so that the problem becomes maximization

one.

Min F = −Max F

3.6.6 Constraints of the ≥ Type

The LP problem with ’greater-than-equal-to’ (≥) constraint is transformed to its standard form

by subtracting a non negative surplus variable from it:

aix ≥ bi

is equivalent to

aix− si = biand si ≥ 0

3.6.7 Constraints with Negative Right Hand Side Constants

Multiply both side of the constraint by -1 and add either an artificial variable or a surplus and

artificial variable as required. Assuming we have the constraint:

−2x1 + 7x2 ≤ −10
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Multiplying both sides by a negative gives:

2x1 − 7x2 ≥ 10

To convert the new constraint into equality, we add both a surplus and artificial variable as

follow:

2x1 − 7x2 − 1s1 + 1A1 = 10

where s1 and A1 are surplus and artificial variables respectively.

3.6.8 Unconstrained Variables

If some variable xj is unrestricted in sign, replace it everywhere in the formulation by xlj − xllj ,

where xlj ≥ and xllj ≥ 0.

Example

Max Z = 100x1 + 200x2

Sub to: 5x1 + 7x2 ≤ 30

5x1 + 2x2 ≥ 5

Where x1 and x2 unconstrained

Solution:

To Solve the unconstrained, let x1 = xl1 − xll1 and x2 = xl2 − xll2

Max Z = 100xl1 − 100xll1 + 200xl2 − 200xll2

Sub to: 5xl1 − 5xll1 + 7xl2 − xll2 ≤ 30

5xl1 − 5xll1 + 2xl2 − xll2 ≥ 5

xl1, x
ll
1 , x

l
2, x

ll
2 ≥
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This reformulated problem can now be solved using the simplex tableau. The initial and the

final simplex tableaus are presented in tables 3.7 and 3.8

Table 3.7: Iteration 1

Cj 100 -100 200 200 0 0 -M

Cv Bv xl1 xll1 xl2 xll2 s1 s2 A1 RHS

0 s1 5 -5 7 -7 1 0 0 30

-M A1 5 -5 2 -2 0 -1 1 5

Zj -5M 5M -2M 2M 0 M -M -5M

Cj − Zj 100+5M 100+5M 200+2M -200-2M 0 -M 0

Table 3.8: Iteration 2

Cj 100 -100 200 200 0 0 -M

Cv Bv xl1 xll1 xl2 xll2 s1 s2 A1 RHS

-100 xll1 -1 1 0 0 0.08 0.28 -0.28 1

200 xl2 0 0 1 -1 0.20 0.20 -0.20 5

Zj 100 -100 200 -200 32 12 -12 900

Cj − Zj 0 0 0 0 -32 -12 -M+12

However, to determine the optimal solution to the original problem, these variables must be

reconnected to their original.

x1 = xl1 − xll1

x2 = xl2 − xll2

Thus the solution to the original problem does indeed have one variable with negative
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value (i.e x1 = xl1 − xll1 = −1) including that the production rate should decrease.

3.6.9 The Central Path Method

The guiding principle in primal-dual interior-point algorithms is to follow the so-called central

path toward an optimal solution. The central path is a smooth curve connecting an initial

point and a complementary solution. Consider a primal linear programme in standard form:

Minimize CTX

subject to AX = b

We denote the feasible region of this problem by FP . We assume that Is nonempty and

the optimal solution set of the problem is bounded. Associated with this problem, we define

for µ ≥ 0 the barrier problem.

(BP) Minimize CTX − µ
∑n

j=1 logXj

subject to AX = b

X ≥ 0

As µ is varied continuously toward 0 , there is a path X(µ) define by the solution to

(BP), this path X(µ) is termed the primal central path. As any µ > 0, Langrange multiplier

vector y is introduce for the Linear equality constraints to form the Langrangian

CTX − µ
n∑
j=1

logXj − yT (AX − b)

The derivatives with respect to the Xjs are set to zero leading the conditions

Cj −
µ

Xj

− yiaj = 0 for each j

or equivalent

µX−11 + ATy = C

Where as before aj is the jth column of A , I is the vector of 1s and X is the diagonal matrix
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whose diagonal entries are the component of X > 0 setting Sj = µ
Xj

the complete set of

conditions can be written as X · S = µ

AX = b

ATy + S = C

Note that y is a dual feasible solution.

Consider the problem of maximizing within the unit square S = [0, 1]2. The problem is formu-

lated as

Minimize Z = −X

Subject to x1 + x3 = 1

x2 + x4 = 1

x1, x2, x3, x4 ≥ 0

Here x3 and x4 are the slack variables for the original problem to put it in standard

form.The optimality conditions for X(µ) consist of the original two linear constraints equation

and the four equations.

x1 + s1 = 1

x2 + s2 = 0

x1 + s3 = 0

x2 + s4 = 0

Together with the relation si = µ
xi

for i = 1, 2, . . . 4. These equations are readily solved

with a series of elementary variable elimination. Find

X1(µ) =
1− 2µ±

√
1 + 4µ2

2

X2 =
1

2
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Here the central path in this case the analytical center of the optimal face (at µ→ 0)

3.7 The Revised Simplex Method

The revised simplex method is a succinct and efficiently implementable algebraic representation

of the simplex method. Only a small part of the condensed tableau is actually calculated.

These entries are needed to completely determine a pivot step and the resulting economy of

computation has proved the key to practical software implementation of the simplex method.

Instead of representing the whole tableau explicitly, we manipulate the basic and nonbasic

variables. Let us consider the following LP problem.

Maximize Z = CX

Subject to: AX ≤ b

Initial constraints become (standard form).

[
A I

] Xs

Xs

 = b

Xs = slack variables. Let B = I

Where I is the identity matrix that appeared in the solution of a given problem.

XB = basic variable value

XB =



XB1

...

...

...

XBM


At any iteration non-basic variable = 0

BXB = b
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Therefore XB = B−1b

At any iteration given the original b vector and the inverse matrix, XB (current R.H.S) can be

calculated.

Z = CBXB

Where CB = objective coefficient of basic variables.

3.7.1 Steps in Revised Simplex Method

Step 1: Determine entering variable xj ,with associated vector pj

i. compute Y = CBB
−1

ii. compute ZJ − CJ = Y pj − CJ for all non basic variables

iii. choose largest negative value (maximization). If non stop.

Step 2: Determine the leaving variable Xr, with associated vector Pr

i. compute bXB = B−1 (current RHS )

ii. compute current constraints coefficient of entering variable αj = B−1PJ

Xris associated with θ =
{

(XB)K
αJ
K

, αjk > 0
}

Step 3: Determine next basis (calculate B−1)

Go to step 1

Example:

Max Z = 3x1 + 5x2

Subject to x1 ≤ 4

2x1 + 2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0
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Solution:

x1 + s1 = 4

2x1 + 2x2 + s2 = 12

3x1 + 2x2 + s3 = 18

x1, x2 ≥ 0

XB = B−1b =


1 0 0

0 1 0

0 0 1




4

12

18

 =


4

12

18



CB =

[
0 0 0

]

Z = CBXB =

[
0 0 0

]
4

12

18

 = 0

Step 1: Determine entering variable xj, with associated vector pj

Y = CBB
−1 =

[
0 0 0

]
1 0 0

0 1 0

0 0 1

 =

[
0 0 0

]

ZJ − CJ = Y pj − CJ for all non-basis

Z1 − C1 =

[
0 0 0

]
1

0

3

− 3 = −3

Z2 − C2 =

[
0 0 0

]
0

2

2

− 5 = −5
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Therefore x2 is the entering variable.

Step 2: Determine the leaving variableXr, with associated vector Pr XB = B−1 ; XB =


4

12

18



α2 = B−1PJ =


1 0 0

0 1 0

0 0 1




0

2

2

 =


0

2

2


Therefore s2 leaving the basis

Step 3: Determine new B−1 B =


1 0 0

0 2 0

0 2 1

 ; B−1 =


1 0 0

0 1
2

0

0 −1 1


Solution after one iteration :

XB = B−1b =


1 0 0

0 1
2

0

0 −1 1




4

12

18

 =


4

6

6


Go To Step 1

Step 1: Second Iteration Compute Y = CBB
−1

Y =

[
0 5 0

]
1 0 0

0 1
2

0

0 −1 1

 =

[
0 5

2
0

]

Compute ZJ − CJ = Y pj − CJ for all non- basis (variable X1 and S1)

X1 = Z1 − C1 =

[
0 5

2
0

]
1

0

3

− 3 = −3
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X2 = Z4 − C4 =

[
0 5

2
0

]
0

1

0

− =
5

2

Therefore X1 enters the basis

Step 2: Determine the leaving variable

XB =


4

6

6

 α1 =


1 0 0

0 1
2

0

0 −1 1




1

0

3

 =


1

0

3


θ = min

{
4
1
,−, 6

3

}
Therefore S3 leaves the basis

Step 3: Determine new B−1

B =


1 0 0

0 1
2

0

0 −1 1

 B−1 =


1 1

3
−1

3

0 1
2

0

0 −1
3

1
3


Solution after two iteration

XB = B−1b =


1 1

3
−1

3

0 1
2

0

0 −1
3

1
3




4

6

6

 =


2

6

2


Step 1: Compute Y = CBB

−1

Y =

[
0 5 3

]
B−1 =

[
0 3

2
1

]
Compute ZJ − CJ = Y pj − CJ for all non- basis (variable S2 and S3)

S2 = Z4 − C4 =

[
0 3

2
1

]
0

1

0

− 0 =
3

2
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S3 = Z5 − C5 =

[
0 3

2
1

]
0

0

1

− 0 = 1

No negative therefore stop. Optimal solution.

S∗1 = 2

X∗2 = 6

X∗1 = 2

Z∗ = CBXB =

[
0 5 3

]
2

6

2

 = 36

3.7.2 The Interior-Point Method

Interior point methods are certain class of algorithms used to solve linear and nonlinear convex

optimization problems. They follow a path through the interior of the feasible region until the

final solution is attained.

All interior point algorithms are based on the general framework which is summarized below:

3.7.3 General Optimization Algorithm

• Given an iterate xk , find the search direction M x by solving the linear system

Of(xk) M x = −f(xk)

• Find the step size αk

• Update xk to xk = xk + αk M

The symbol Of represents the derivative, gradient, or Jacobian of the function f depending on

the definition of the function f .
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Starting Point

The choice of starting point depends on two requirements: the centrality of the point and the

magnitude of the corresponding infeasibility. These conditions are met by solving two least

squares problems which aim to satisfy the primal and dual constraints:

(P) Minimize cTx

Subject to Ax = b, x ≥ 0

(D) Maximize bTy

Subject to ATy + s = c, s ≥ 0

These problems have solution:

x̃ = AT (AAT )−1b, ỹ = (AAT )−1Ac, s̃ = c− AT ỹ

The solution is further shifted inside the positive octant to obtain the starting point as:

w0 = (x̃+ δxe, ỹ, s̃+ δse)

where δx and δs are positive quantities.

Search Direction

It is (∇x,∇y,∇z). It is obtained by solving the Newton’s equation:

Of(x, y, s)


∇x

∇y

∇z

 = −f(xk, yk, sk)
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Step Size

The choice of step-size is essential in proving good convergence properties of interior point

methods. The step size is chosen so that the positivity of x and s are preserved when updated.

αmax is the maximum step size that is chosen until one of the variables becomes zero (0).

αmax is calculated as follows:

αmax
P = min

{
− xi

(dx)i
: (dx)i < 0, i = 1, . . . , n

}

αmax
D = min

{
− si

(ds)i
: (ds)i < 0, i = 1, . . . , n

}
αmax = min {αmax

P , αmax
D }

Since none of the variables is allowed to be zero (0), α = max {1, θαmax} is taken,

where θ ∈ (0, 1). The usual choice is θ = 0.9 or θ = 0.95.

Termination Criteria

Due to the presence of the barrier term that keeps the iterates away from the boundary, they

can never produce an exact solution. Feasibility and complementarily can therefore be attained

only within a certain level of accuracy.

For these reasons, termination criteria for the algorithm to be used has to be decided on. Some

common termination criteria used in practice are as follows: ‖Ax−b‖
1+‖x‖∞ ≤ 10−p ‖A

T y+s−c‖
1+‖s‖∞ ≤ 10−p

‖cT x−bT y‖
1+‖bT y‖∞ ≤ 10−q

The values of p and q required depend on the specific application.

3.7.4 Primal-Dual Methods

It is one of the three main categories of the interior point methods. The primal dual algorithm

operates simultaneously on the primal and the dual linear programming. They find the solutions
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(x∗, y∗, s∗) of 
A 0 0

0 AT I

Sk 0 Ak



dx

dy

ds

 =


rkP

rkD

−XkSk + γµke


by applying variants of Newton’s method to the above and modifying the search directions

and the step lengths so that inequalities (x, s) ≥ 0 are satisfied strictly at every iteration.

X,S ∈ Rn×n are diagonal matrices of xi, si respectively and e ∈ Rn is a vector of ones.

3.7.5 Karmakar:

Karmarkar’s algorithm falls within the class of interior point methods: the current guess for

the solution does not follow the boundary of the feasible set as in the simplex method, but it

moves through the interior of the feasible region, improving the approximation of the optimal

solution by a definite fraction with every iteration, and converging to an optimal solution with

rational data.

Karmarkar method is applied to a Linear Programme in the following.

Min Z = CX

Subject to: AX = 0

X1, X2, . . . Xn = 1

X ≥ 0

where X = {X1, X2, . . . , Xn}T . A is an m × n matrix, C = [C1, C2, . . . Cn] and 0 is

an n-dimensional column vector of zeros. The LP must also satisfy
[
1
n
, 1
n
, . . . , 1

n

]T
is feasible,

optimal Z value = 0

Karmakar Algorithm

1. Begin at the feasible point X0 =
[
1
n
, 1
n
, . . . , 1

n

]
and set k = 0

2. Stop if CXk < ε, If not go to step 3
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3. Find the new point yk+1 =
[
yk+1
1 , yk+1

2 , . . . , yk+1
n

]T
in the transformed unit simplex given

by

yk+1 =

[
1

n
,

1

n
, . . . ,

1

n

]T
−
θ(I − P T (PP T )−1P )

[
Diag(Xk)CT

]
‖Cp‖

√
n(n− 1)

Here ‖Cp‖ = length of (I − P T (PP T )−1P )
[
Diag(Xk)CT

]
, P is the (m+ 1)× n matrix whose

whose first m rows are A
[
Diag(Xk)

]
and whose last row is a vector of one’s and 0 < θ < 1

chosen to ensure convergence of the algorithm, θ = 1
4

is known to ensure convergence.

Example:

Min Z = x1 + 3x2 − 3x3

Sub to: x1 − x3 = 0

x1 + x2 + x3 = 1

Solution: LetK = 0, given ε = 0.10, n = number of variables, A = coefficient matrix of constraint and D =

diagonal matrix

Let XK = X0

X0 =

[
1
3

1
3

1
3

]T
X0 yields Z = 1

3
> 0.10

A =

[
0 1 −1

]

D(X0) =


1
3

0 0

0 1
3

0

0 0 1
3

 ; AD(X0) =

[
0 1

3
−1

3

]

P =

 0 1
3
−1

3

1 1 1

 ; PP T =

 2
9

0

0 3

 ; (PP T )−1 =

 9
2

0

0 1
3


But

(I − P T (PP T )−1P ) =


2
3
−1

3
−1

3

−1
3

1
6

1
6

−1
3

1
6

1
6


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C =

[
1 3 −3

]
; D(X0)CT =


1
3

1

−1


But

(I − P T (PP T )−1P )(D(X0)CT ) =

[
2
9
−1

9
−1

9

]
Now using θ = 0.25

y1 =

[
1
3

1
3

1
3

]T
− 0.25

[
2
9
−1

9
−1

9

]
√

3(2)‖ 2
9
−1

9
−1

9
‖

Because ‖ 2
9
−1

9
−1

9
‖ =

√
4
18

+ 1
18

+ 1
18

=
√
6
9

We obtain

y1 =

[
1
3

1
3

1
3

]T
−
[

6
72
− 3

72
− 3

72

]T
=

[
1
4

3
8

3
8

]T

For X1 = Z = 1
4

+ 3
(
3
8

)
−
(
3
8

)
Therefore 1

4
< 1

3
. Hence converges

3.7.6 The Primal-Dual

Given the linear programming problem in the standard form:

(P) Minimize cTx

Subject to Ax = b, x ≥ 0

Where c ∈ Rn, A ∈ Rm×n and b ∈ Rm are given data, and x is the decision variable. The dual

(D) to the primal (P ) can be written as:

(D) Maximize bTy

Subject to ATy + s = c, s ≥ 0
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with variables y ∈ Rm and s ∈ Rn

3.7.7 Fundamental Steps in the Primal-Dual Method

The use of primal-dual algorithm to solve linear programs is based on three steps:

Step 1: The application of the Lagrange multiplier approach of classical calculus to transform

an equality constrained optimization problem into an unconstrained one

Step 2: The transformation of an inequality constrained optimization problem into a sequence

of unconstrained problems by incorporating the constraints in a logarithmic barrier func-

tion that imposes a growing penalty as the boundary (xj = 0, zj = 0 for all j) is ap-

proached.

Step 3: The solution of a set of nonlinear equations using Newton’s method, thereby arriving

at a solution to the unconstrained optimization problem.

When solving the sequence of unconstrained problems, as the strength of the barrier function

is decreased, the optimum follows a well-defined path that ends at the optimal solution to the

original problem.

Finding the Lagrangian of the Function

A well-known procedure for determining the minimum or maximum of a function subject to

equality constraints is the Lagrange multiplier approach.

Consider the general problem

Maximize f(x)

Subject to gi(x) = 0, i = 1, . . . ,m

Where f(x) and gi(x) are scalar functions of the n−dimensional vector x The La-

grangian for this problem is

L(x, y) = f(x)−
n∑
i=1

yigi(x)
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Where the variables y = (y1, y2, . . . , ym) are the Lagrange multipliers.

Necessary conditions for a stationary point (Maximum or minimum) of the constrained opti-

mization of f(x) are that the partial derivatives of the Lagrangian with respect to the compo-

nents of x and y be zero; i.e

∂L
∂x

= 0, i = 1, 2, . . . , n and ∂L
∂y

= 0, j = 1, 2, . . . , n

For linear constraints (aiX−bi = 0), the conditions are sufficient for a maximum if the function

f(X) is concave and sufficient for a minimum if f(X) is convex.

Constructing a Barrier in the Interior Region

The idea of the barrier approach is to start from a point in the strict interior of the inequalities

(xj > 0, sj > 0 for all j) and construct a barrier that prevents any variable from reaching

a boundary . (e.g.,xj = 0). Adding ”log(xj)” to the objective function of the primal, for

example, will cause the objective function to decrease without bound as xj approaches 0. The

difficulty with this idea is that if the constrained optimum is on the boundary ( that is , one

or more x∗j = 0, which is always the case in linear programming ), then the barrier will prevent

the optimum from being reached on the boundary. To get around this difficulty, a barrier

parameter µ is added to balance the contribution of the true objective function with that of

the barrier term. This is shown in the table below;

Table 3.9: Primal and Dual barrier problems

(P) Maximize Bp(µ) = cx+ µ
∑n

j=1 log(Xj) (D) Minimize Bp(µ) = yb− µ
∑n

j=1 log(Zj)

Subject to Ax = b Subject to yA− z = c

The parameter µ is required to be positive and controls the magnitude of the barrier

term. Because the function log(x) takes on very large negative values as x approaches zero

from above, as long as x remains positive the optimal solution to the barrier problem will be

interior to the nonnegative octants (xj and zj > 0 for all ). The barrier term is added to the
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objective function to have nonlinear objective functions with linear equality constraints, and

can be solved with the Lagrange technique for ε > 0 fixed. The solution to these problems will

approach the solution to the original problem as µ approaches zero.

Table 3.10 shows the development of the necessary optimal conditions for the barrier problems.

These conditions are also sufficient because the primal Lagrangian is concave and the dual

Lagrangian is convex. Note that the dual variables are the Lagrange multipliers of the primal,

and the primal variables X are the Lagrange multipliers of the dual.

Table 3.10: Necessary conditions for the barrier problems (complementary slackness)

Lagrangian

Lp(µ) = cx+ µ
∑n

j=1 log µ(Xj)− y(Ax− b) LD(µ) = yb− µ
∑n

j=1 log(Zj)− (yA− Z − C)X

∂LP

∂xj
= 0 ∂LP

∂xj
= 0

Cj −
∑m

j=1 aijyj + µ
xj

= 0

−Z + µ
x

= 0 µ
Z

+Xj = 0

ZjXj = µ, j = 1, . . . , n ZjXj = µ, j = 1, . . . , n

(µ− Complementary Slackness) (µ− Complementary Slackness)

Thus the optimal conditions are nothing more than primal feasibility, dual feasibility,

and complementary slackness satisfied to within a tolerance of ε. Theory shows that when µ

goes to zero the solution to the original problem would be attained; however, we cannot just

set µ to zero because that would destroy the convergence properties of algorithm. To facilitate

the process, a two n× n diagonal matrices containing the components of x and z, respectively
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are defined. That is;

X = diag {x1, x2, . . . , xn}

Z = diag {z1, z2, . . . , zn}

Also , let e = (1, 1, . . . , 1)T be a column vector of size n. Using this notation, the necessary

and sufficient conditions derived in Table 3.10 for the simultaneous solution of both the primal

and dual barrier problems can be written as:

Primal feasibility: Ax− b = 0 (m linear equations)

Dual feasibility : ATyT − z − c = 0 ( n linear equations)

µ - Complementary Slackness: XZe− µe = 0 (n non linear equations)

There is therefore the need to solve this set of nonlinear equations for variables (x, y, z)

Finding the Stationary Solution Using Newton’s Method

Newton’s method is an iterative procedure for numerically solving a set of nonlinear equations.

For instance; consider a single variable problem of finding h to satisfy the nonlinear equation

f(h) = 0 where f is once continuously differentiable. Let h∗ be the unknown solution. At

some point h∗, one can calculate the functional value, f(hk), and the first derivative , f I(hk).

Using the derivative as a first order approximation for how the function changes with y, one

can predict the amount of change ∇ = hk+1 − hk required to bring the function to zero.

Taking the first order Taylor series expansion of f(h) around h∗ gives

f(h(k + 1)) ≡ f(hk) +∇f I(hk).

Setting the approximation of f(hk+1) to zero and solving for ∇ gives

∇ = −f(hk)/f I(hk)

The point hk+1 = hk +∇ is an approximation solution to the equation. It can be shown that

if one starts at a point ho sufficiently close to h∗, the value of hkwill approach h∗ as k →∞
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The method extends to multidimensional functions. Consider the general problem of finding

the r−dimensional vector h that solves the set of r equations f1(h) = 0, i = 1, . . . r or f(h) = 0

Let the unknown solution to the equations be h∗. The n×n Jacobian matrix describes the first

order variations of these with the components of h. The Jacobian at hk is

J(hk) =



∂f1
∂h1

∂f1
∂h2

· · · ∂f1
∂hn

∂f2
∂h1

∂f2
∂h2

· · · ∂f2
∂hn

...
. . .

∂fn
∂h1

∂fn
∂h2

· · · ∂fn
∂hn


All the partial derivatives are evaluated at hk. Now, taking the first order Taylor

series expansion around the point hk, and setting it to zero gives f(yk) + J(yk)d = 0 where

d = hk+1 − hk is an n−dimensional vector whose components represent the change of position

for the k + 1st iteration. Solving for d leads to

d = −J(h)k−1f(hk)

The point h(k+ 1) = hk + d is an approximation for the solution to the set of equations. Once

again, if one starts at an initial point h0 sufficiently close to h∗, the value of hk will approach

h∗ for large values of k.

Using Newton’s Method for Solving Barrier Problems

The stage is now set for Newton’s method to be used to solve the optimality conditions for the

barrier problems given in Table 3.10) for a fixed value of µ. For h = (x, y, z) and r = 2n+m,

the corresponding equations and Jacobian are:

Ax− b = 0

AT − z − CT = 0
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J(h) =


A 0 0

0 AT −1

Z 0 X


XZe− µe = 0

Assuming that a starting point (X0, y0, Z0) satisfying X0 > 0, y0 > 0, Z0 > 0 and denoted by

δp = b− Ax0

δD = CT − AT (y0)T + Z0

Are the primal and dual residual vectors at this starting point. The Optimality conditions can

be written as

J(y)d = −f(y)
A 0 0

0 AT −1

Z 0 X



dx

dy

dz

 =


δP

δD

µe−XZe


Where the (2n + m)-dimensional vector d = (dx, dy, dx)T is called the Newton direction. The

d will now be solved.

In explicit form, the above system is

Adx = δp

ATdy − dz = δD

Zdx+Xdz = µe−XZe

The first step is to find dy. In making dy a subject the following equation is obtained;

(AZ−1XAT )dy = −b+ µAZ−1e+ AZ−1XδD or

dy = (AZ−1XAZ)−1(−b+ µAZ−1e+ AZ−1XδD (3.1)
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It is worth noting that Z−1 = diag 1
Z1
, 1
Z2
, . . . , 1

Zn
and is trivial to compute. Further

multiplications and substitutions give

dz = −δD + ATd (3.2)

and

dx = Z−1(µe−Xze−Xdz) (3.3)

From these results, it is obvious in part why it is necessary to remain in the interior of the

feasible region. In particular, if either Z−1 or X−1 does not exist the procedure breaks down.

Once the Newton direction has been computed, dx is used as a search direction in the x−space

and (dy, dz) as a search direction in the (y, z)-space. That is, the iterant moves from the current

point (x0, y0, z0) to a new point (x1, y1, z1) by taking a step in the direction (dx, dy, dz). The

step sizes,∂p and ∂D , are chosen in the two spaces to preserve x > 0 and y > 0.

This requires a ratio test similar to that performed in the simplex algorithm. The simplex

approach is to use

αP = γmin

{
−Xk

j

(dx)kj
: (dx)kj < 0

}

αz = γmin

{
−Zk

j

(dz)kj
: (dz)kj < 0

}

Where γ is the step size factor that keeps the iterant from actually touching the boundary.

Typically, γ = 0.995. the notation (dx)j refers to the jth component of the vector dx. The

new point is

x1 = x0 + αpdx

y1 = y0 + αpdy

z1 = z0 + αpdz

Which completes one iteration. Ordinarily, one would now resolve equation (1)-(3) at (x1, y1, Z1)

to find a new Newton direction and hence a new point. Rather than iterating in this manner
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until the system converges for the current value of µ, it is much more efficient to reduce µ after

every iteration. The primal-dual method itself suggests how to update µ. It is straight forward

to show that the Newton step reduces the duality gap (θ), which is the difference between

the dual and primal objective values at the current point. Assume that is primal feasible and

(x0, Z0) is dual feasible, then in general case let θ(0) denote the current duality gap,

θ(0) = y0b− cx0

= y0(AX0)− (y0A− Z0)Tx0 (primal and dual feasibility)

= (Z0)Tx0

If we let α = minαp, αD then θ(α) = (Z0 + αdz)T (X0 + αdx) and with a little algebra, it can

be shown that θ(α) < θ(0) as long as µ < θ(0)
n

The following formula was used in the computations made;

µk =
θ(αk)

n2
=

(Zk)TXk

n2

Which indicates that the value of µk is proportional to the duality gap, (θ).

Termination Criteria

Due to the presence of the barrier term that keeps the iterant away from reaching the boundary,

they can never produce an exact solution. Feasibility and complementary can therefore be

attained only within a certain level of accuracy.

For this reason, termination criteria for the algorithm to be used have to be decided on. The

most common criterion is the use of the duality gap. That is , at optimality the duality gap is

zero (0)

Iterative procedure for Newton’s method

Step 1: In summarizing the basic steps of the algorithm the following inputs are assumed:

1. The data of the problem (a, b, c) ,where the m× n matrix A has full row rank
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2. Initial primal and dual feasible solutions x0 > 0, Z0 > 0, y0 > 0

3. The optimality tolerance ε > 0 and the step size parameter γ ∈ (0, 1).

Step 2: (Initialization) Start with some feasible point X0 > 0, y0 > 0, Z0 > 0

Chose (X0, y0, z0) such that (X0, y0, z0) > 0 and set the iteration counter k = 0.

Step 3 (Optimality test) .If (zk)TXk < ε stop; otherwise, go to step 4.

Step 4: (Compute Newton direction). Let

Xk = diag
{
Xk

1 , X
k
1 , . . . , X

k
n

}
Xk = diag

{
Xk

1 , X
k
1 , . . . , X

k
n

}
µ2 =

(Zk)TXk

n2

Solve the following linear system equivalent to (7) to get dkx, d
k
y and dkz

Adx = 0

ATdy − dz = 0

Zdx+Xdz = µe−XZe

Note that δp = 0 and δD = 0 due to the feasibility of initial point.

Step 5: (Find step lengths). Let

αP = γmin

{
−Xk

j

(dx)kj
: (dx)kj < 0

}

αz = γmin

{
−Zk

j

(dz)kj
: (dz)kj < 0

}

Step 6: (Update solution) . Take a step in the Newton direction to get;

Xk+1 = Xk + αp(dx)kyk+1 = yk + αp(dy)kZk+1 = Zk + αp(dz)
k
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Table 3.11: Table showing standard minimum and dual maximum constraints

x1 x2 · · · xn

y1 a11 a12 · · · a1n ≥ b1

y2 a21 a22 · · · a2n ≥ b2

...
...

...
...

...
...

ym am1 am2 · · · amn ≥ bn

≤ c1 ≤ c2 · · · ≤ cn

Put k → k + 1 and go to step 2.

3.7.8 The centering parameter (σ)

It balances the movement towards the central path against the movement toward optimal

solutions. If σ = 1, then the updates move towards the center of the feasible region. If σ = 0,

then the update step is in the direction of the optimal solution.

3.7.9 The duality Gap (µ)

It is the difference between the primal and dual objective functions. Theoretically, these two

quantities are equal and so give a result of zero (0) at optimality. In practice however, the

algorithm drives the result down to a small amount. This is given by the equation:

µ =
1

n
(xT s) = cTx− bTy

While µ ≥ ε, Newton’s method is applied until µ ≥ ε when the algorithm terminates. ε is a

positive fixed number.

The general standard minimum problem and the dual standard maximum problem may be

together illustrated as:
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3.7.10 Formulation of the Dual From the Primal of a Linear Pro-

gramming Method

To illustrate this, let us consider the problem:

Minimize x1 + x2

Subject to x1 + x2 ≥ 4

4x1 + 4x2 ≥ 12

−x1 + x2 ≥ 1

x1, x2 ≥ 0

As a first step, a matrix A is formed from the coefficients of the primal objective function and

its constraints as:

A =



1 2 4

4 2 12

−1 1 1

1 1 0


A second matrix B is formed from the transpose of A. That is:

B =


1 4 −1 1

2 2 1 1

4 12 1 0


The dual problem is formulated as follows:

Maximize 4y1 + 12y2 + y3
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Subject to 4y1 + 4y2 − y3 ≤ 1

2y1 + 2y2 + y3 ≤ 1

y1, y2, y3 ≥ 0

It must be noted that if the objective function in the primal is to be minimize, then its dual

objective function will maximize and vice versa.

3.7.11 The Primal-Dual Algorithm

Initialization

Step 1: Determine (x0, y0, z0) such that (x0, s0) > 0 and ‖x0s0−µ0e‖ ≤ βµ0 where µ0 = (x0)T s0

n

Then choose β, γ ∈ (0, 1) and (εP , εD, εG) > 0

Step 2: Set k = 0

Step 3: Set rkP = b− Axk, rkD = c− AkTyk − sk, µk = (xk)T sk

n

Step 4: Check the termination. If ‖rkP‖ ≤ εP , ‖rkD‖ ≤ εP , (xk)T sk ≤ εG then terminate.

Step 5: Compute the direction by solving the system


A 0 0

0 AT I

Sk 0 Ak



dx

dy

dz

 =


rkP

rkD

−XkSk + γµxe


Step 6: Compute the step size

α = max {α′ : ‖X(α)s(α)− µ(α)e‖ ≤ β(α), ∀α ∈ [0, α′]}

where

x(α) = xk + αdx, s(α) = sk + αds, and µ(α) =
xT (α)s(α)

n

Step 7: Update

xk+1 = xk + αkdx, y
k+1 = yk + αkdy, s

k+1 = skds
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Step 8: Set k = k + 1, and go to Step 3.

NUMERICAL EXAMPLE

Minimize 2x1 + 1.5x2

Subject to 12x1 + 24x2 ≥ 120

16x1 + 16x2 ≥ 120

30x1 + 12x2 ≥ 120

x1 ≤ 15

x2 ≤ 15

x1, x2 ≥ 0

3.7.12 Standard non-negative equations

Minimize 2x1 + 1.5x2

Subject to 12x1 + 24x2 − x3 = 120

16x1 + 16x2 − x4 = 120

30x1 + 12x2 − x5 = 120

x1 + x6 = 15

x2 + x7 = 15

x1, . . . , x7 ≥ 0

Substituting (x̃1, x̃2) = (10, 10) into the equations above and solving for the slack
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variables (x̃3, . . . , x̃7) give:

x̃ =

[
10 10 240 200 300 5 5

]T
> 0

For an initial dual iterate, the algorithm requires a ỹ such that s̃ = c−ATy > 0. Writing these

explicitly give:

s̃1 = 2− 12ỹ1 − 16ỹ2 − 30ỹ3 − 1ỹ4 > 0

s̃2 = 1.5− 24ỹ1 − 16ỹ2 − 12ỹ3 − 1ỹ5 > 0

s̃3 = 0 + 1ỹ1 > 0

s̃4 = 0 + 1ỹ2 > 0

s̃5 = 0 + 1ỹ3 > 0

s̃6 = 0 − 1ỹ4 > 0

s̃y = 0 − 1ỹ5 > 0

The above inequalities are satisfied by putting in ỹ1 = ỹ2 = ỹ3 = 1 and ỹ4 = ỹ5 = −60. This

gives:

ỹ =

[
1 1 1 −60 −60

]
, s̃ =

[
4 9.5 1 1 1 60 60

]
> 0

The matrices generated are as follows:

A =



12 24 −1 0 0 0 0

16 16 0 −1 0 0 0

30 12 0 0 −1 0 0

1 0 0 0 0 1 0

0 1 0 0 0 0 1


, B =



120

120

120

15

15


and C =

[
2 1.5 0 0 0 0 0

]

With α = 0.95 and complementarity tolerance ε = 0.00001, the algorithm will stop
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when all xjsj < 0.00001.



−0.4000 0 0 0 0 0 0 12 16 30 1 0

0 −0.9500 0 0 0 0 0 24 16 12 0 1

0 0 −0.0042 0 0 0 0 −1 0 0 0 0

0 0 0 −0.0050 0 0 0 0 −1 0 0 0

0 0 0 0 0.0033 0 0 0 0 0 −1 0

0 0 0 0 0 −12 0 0 0 0 −1 0

0 0 0 0 0 0 −12 0 0 0 0 1

12 24 −1 0 0 0 0 0 0 0 0 0

16 16 0 −1 0 0 0 0 0 0 0 0

30 12 0 0 −1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0





4x1

4x2

4x3

4x4

4x5

4x6

4x7

4y1

4y2

4y3

4y4

4y5



=

[
4 9.5 1 1 1 60 60 0 0 0 0 0

]T
Solving the system yields:

4x =



−0.1017

−0.0658

−2.7997

−2.6803

−3.8414

0.1017

0.0658



and 4y =



−0.9883

−0.9866

−0.9872

61.2208

60.7895



4s is obtained by setting:

4s = −s̃− x̃−1
∑̃
4x
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=



4

9.5

1

1

1

60

60



−



0.4000 0 0 0 0 0 0

0 0.9500 0 0 0 0 0

0 0 0.0042 0 0 0 0

0 0 0 0.0050 0 0 0

0 0 0 0 0.0033 0 0

0 0 0 0 0 12 0

0 0 0 0 0 0 12





−0.1017

−0.0658

−2.7997

−2.6803

−3.8414

0.1017

0.0658



=



−3.9593

−9.4375

−0.9883

−0.9866

−0.9872

−61.2208

−60.7895


The ratio

x̃j
−4xj is computed for each of the five 4xj < 0, and θx is set to the smallest:

4x1 < 0 :
x1
−4x1

=
10

0.1017
= 98.3284

4x2 < 0 :
x2
−4x2

=
10

0.0658
= 152.0034

4x3 < 0 :
x3
−4x3

=
240

2.7997
= 85.7242

4x4 < 0 :
x4
−4x4

=
200

2.6803
= 74.6187 = θx

4x5 < 0 :
x5
−4x5

=
300

3.8414
= 78.0972

The ratios
s̃j
−4sj are computed in the same way to determine θs:

4s1 < 0 :
s1
−4s1

=
4

3.9593
= 1.0103

4s2 < 0 :
s2
−4s2

=
9.5

9.4375
= 1.0066

4s3 < 0 :
s3
−4s3

=
1

0.9883
= 1.0118

4s4 < 0 :
s4
−4s4

=
1

0.9866
= 1.0136

4s5 < 0 :
s5
−4s5

=
1

0.9872
= 78.0972

4s6 < 0 :
s6
−4s6

=
60

61.2208
= 0.9801 = θs

4s7 < 0 :
s7
−4s7

=
60

60.7895
= 0.9870
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The step length is given by:

θ = min(1, αθx, αθs)

= min(1, 0.995 · 74.6187, 0.995 · 0.9801) = 0.975159

The iteration ends with the computation of the next iterate as:

x̃ = x̃+ θ(4x) =



10

10

240

200

300

5

5



+ 0.97519



−0.1017

−0.0658

−2.7997

−2.6803

−3.8414

0.1017

0.0658



=



9.9008

9.9358

237.2699

197.3863

296.2541

5.0992

5.0642


The algorithm carries out a total of 9 iterations before reaching a solution that satisfies the

stopping condition.

The optimal solution for the first two variables are x1 = 1.6667 and x2 = 5.8333 with

stopping condition of 0.000004 < 0.00001

58



Table 3.12: Table Showing Iterations of first two variables out of seven in the problem

Iter. x1 x2 θ maxxjsj

0 10.0000 10.0000 . . . 300.000000

1 9.9008 9.9358 0.975159 11.058316

2 6.9891 9.2249 0.423990 6.728827

3 3.2420 8.5423 0.527256 2.878729

4 1.9735 6.6197 0.697264 1.156341

5 2.0266 5.4789 0.693037 0.189301

6 1.8769 5.7796 0.841193 0.027134

7 1.7204 5.7796 0.841193 0.027134

8 1.6683 5.8317 0.979129 0.000836

9 1.6667 5.8333 0.994501 0.000004
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Chapter 4

Data Analysis and Results

4.1 Data Collection

The Sunyani West District Assembly has its way of collecting revenue on taxable items using a

policy called The Fee Fixing Policy. This Fee Fixing Policy is a document on rates and fixing

resolutions and it focuses on taxes such as; Rates, Fees and Fines, Licenses and Lands. Each

category has sub taxes which constitute to the group. For instance Rates which is one of the

main categories is constituted by basic and property rates. Similarly, registration of building

plots, stool land revenue, building permit and revenue from concession constitute the category

of lands.

4.1.1 Type of Data and Source

The data for this project work is a secondary quarterly data obtained from the offices of the

Sunyani West District Assembly in the Brong Ahafo region of Ghana, and it spans between 1st

quarter 2010 and 4th quarter 2012.

4.1.2 The Raw Data

The tables 4.1 to 4.4 share similar characteristics. The 1st column in table 4.1 made up of the

tax item number whiles the 2nd column is made up of the revenue sub-heads. The remaining

columns form the estimated revenue (E.R) and the actual revenue (A.R) for the various quarters

and their respective averages as shown in the respective tables below:

The rest of the raw data up to the 4th quarter of 2012 can be found at the appendix

A, table 4.1
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4.2 Data Analysis

Steps involved in Processing the Raw Data

Step 1: The averages of the raw data were determined to get the estimated revenue average

(E.R) and actual revenue average (A.R) for the data.

Step 2: The various revenue sub-heads were assigned variable names.

Step 3: The summation of the actual revenue and expected revenue became the constraint

column matrix.

Step 4: The unit charge for each of the items was also determined from the Fee-fixing Policy

Document given by the Assembly. This formed the coefficient matrix.

Step 5: The coefficient of the objective function was formulated by using the unit charge for

each of the items from the fee-fixing police document by the Assembly. These values

formed the coefficient of the objective function.

Table 4.2: Table Showing the E.R and A.R generated by the assembly for the 12 quarters of
the assembly

REVENUE SUB-HEAD E.R (AVERAGE) A.R (AVERAGE)

1 Basic Rate 8,733.33 2,331.66

2 Property Rate 22,000.00 18750.00

3 Stool land Revenue 36,666.66 9916.66

4 Building Permit 6,050.00 1057.25

5 Market Tolls 3,420.00 5297.56

...
...

...
...

29 Traditional Caterers 443.33 160.58

30 Registration of Chainsaws 373.33 0.00

Table 4.3 This table is made up of 2 columns. Column 1 forms the decision variables

whiles column 2 is made up of the revenue sub-heads. The remaining part of the table can be

found in appendix E.
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Table 4.3: Table showing the number of people paying for each category of tax as a variable,
xj, j = 1, 2, 3 . . . 30.

DECISION VARIABLE (Xi) REVENUE SUB-HEAD

x1 Basic Rate

x2 Property Rate

x3 Stool land Revenue

x4 Building Permit

x5 Market Tolls

...
...

x29 Traditional Caterers

x30 Registration of Chainsaws

Table 4.4: This table serves as the pivot for the whole problem formulation .It is made

up of 7 columns. The first column deals with the tax item number. The 2nd column talks about

the broad Revenue Heads. These include the Rates, Lands, Fees and Fines, Licenses and Rent.

This broad category has been sub-grouped into the next basic unit called revenue sub-heads

in the 3rd column. The 4th column is made up of the decision variables (Xj) . Column 5 is

made up of the unit charge which forms the coefficient matrix, A. The right hand side (R.H.S)

matrix is obtained from column 6 and 7 of the table. Finally, the coefficient of the objective

function Cj is obtained from column 3 and 4 of table 4.4. The complete form of the table can

be found in the appendix F.
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4.3 Data Input Format

In expressing the above information in terms of matrices the following matrix equation will

be obtained; Ax = b; where A is the coefficient matrix of the taxpayers function x, b is the

constraint column matrix and c is the coefficient of the objective function. The complete form

of the data in A, c and x can be found in table 4.3 of appendix F.

A =



0.1 10 0 0 0 · · · 10 · · · 0

0 0 3 36.62 0 · · · 0.2 · · · 0

0 0 0 0 0 · · · 0 · · · 0

0 0 0 0 0 · · · 0 · · · 0

0 0 0 0 0 · · · 3 · · · 0



b =



46980.53

10386.86

83897.46

20892.91

197634.10

11548.16

149734.64

1982438.24

3281.00

712.20



X =



X1

X2

X3

...

X30


; X1, X2, X3 . . . X30 ≥ 0

c =

(
0.1 10 10 36.62 0.2 . . . 9.67 48.33

)

4.4 Model Formulation

The various taxes collected by the district assembly are broadly categorized into five groups.

The groups are Rates, Lands, Fees and Fines, Licenses and Rent. These broad categories are
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shown in column 2 of table 4.3. The unit charge is obtained from the fee- fixing policy of the

district. For instance, each member of the Sunyani West district is required by law to pay a

basic rate of GHs 0.10 per annum.

4.4.1 Formulation of the Objective Function

At this point we seek to maximize revenue from an objective function generated from the data

collected. As stated in chapter three, the function f(x) being maximized is called the objective

function and conditions associated with the problem are called the constraints. In using the

variable representing number of people paying each tax (Xj) and each unit charge (Cj), we

model an objective function represented by z from table 4.4 as follows:

Z =
30∑
j=1

CjXj

Z = (0.1X1 + 10X2 + 10X3 + 36.62X4 + · · ·+ 48.33X30) (4.1)

The Cj represents the coefficients of the objective function. The full data can be found

in column 5 of table 4.3 in appendix F.

From the table 4.3, ten constraints are generated for the objective function, Z, based on the

broad categories of the taxes collected. Two constraint are generated each for Rates, Licenses,

Fees and Fines, Rent and Lands respectively.

4.4.2 Formulation of the Constraints

The right hand side of each of the constraints represents the respective sum of the actual revenue

(A.R) and expected revenue (E.R) generated by the respective variables. This information can

be found in column 6 and 7 of table 4.4. Under listed below shows the constraints formed by

the broad category of the revenue collected.
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Rates:

The constraint for the rate is obtained from 3 decision variables, X1, X2 and X27 with corre-

sponding R.H.S values of 10386.86 and 46980.53.

0.10X1 + 36.62X2 + 10X27 ≤ 46980.53

0.10X1 + 36.62X2 + 10X27 ≥ 10386.86

Lands:

The constraint for lands is obtained from the decision variables, X3, X4 and X23 and with

respective R.H.S values of 20892.91 and 83877.46.

10X3 + 36.62X4 + 450X23 ≤ 83877.46

10X3 + 36.62X4 + 450X23 ≥ 20892.91

Fees and Lines:

The constraint for fees and fines is obtained from 7 decision variables of X5, X6, X7,

X8, X10, X11, and , X24 and with R.H.S values of 11548.16 and 197634.10

0.2X5 + 10X6 + 0.89X7 + 30.33X8 + 14.78X10 + 3.78X11 + 24.67X24 ≤ 197634.10

0.2X5 + 10X6 + 0.89X7 + 30.33X8 + 14.78X10 + 3.78X11 + 24.67X24 ≥ 11548.16

Licenses:

The constraint for licenses is made up of 17 decision variables of X12, X13, X14, X15, X17,

X18, X19, up to X30 excluding X22, X23, X24 and X27 and the R.H.S values of 149734.64 and

1982438.24 .

67.50X12+67.50X13+352.22X14+· · ·+3.0X22+20X25+300X26+0.28X28+· · ·+48.33X30 ≤ 1982438.24
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67.50X12+67.50X13+352.22X14+· · ·+3.0X22+20X25+300X26+0.28X28+· · ·+48.33X30 ≥ 149734.64

Rent:

The constraint for the rent is obtained from a unit decision variable, X22 and with corresponding

R.H.S values of 712.20 and 3281.00.

3X22 ≤ 3281.00

3X22 ≥ 712.20

4.4.3 Formulation of the Problem

Maximize Z = (0.1X1 + 10X2 + 10X3 + 36.62X4 + · · ·+ 48.33X30)

Subject to: 0.10X1 + 36.62X2 + 10X27 ≤ 46980.53

0.10X1 + 36.62X2 + 10X27 ≥ 10386.86

10X3 + 36.62X4 + 450X23 ≤ 83877.46

10X3 + 36.62X4 + 450X23 ≥ 20892.91

0.2X5 + 10X6 + 0.89X7 + 30.33X8 +

14.78X10 + 3.78X11 + 24.67X24 ≤ 197634.10

0.2X5 + 10X6 + 0.89X7 + 30.33X8 +

14.78X10 + 3.78X11 + 24.67X24 ≥ 11548.16
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67.50X12 + 67.50X13 + 352.22X14 + · · ·+ 3.0X22 +

20X25 + 300X26 + 0.28X28 + · · ·+ 48.33X30 ≤ 1982438.24

67.50X12 + 67.50X13 + 352.22X14 + · · ·+ 3.0X22 +

20X25 + 300X26 + 0.28X28 + · · ·+ 48.33X30 ≥ 149734.64

3X22 ≤ 3281.00

3X22 ≥ 712.20

4.4.4 Problem Formulation involving the Slacks

Expressing the above inequalities in the equality form we have the following equations:

0.10X1 + 36.62X2 + 10X27 + s1 = 46980.53

0.10X1 + 36.62X2 + 10X27 + s2 = 10386.86

10X3 + 36.62X4 + 450X23 + s3 = 83877.46

10X3 + 36.62X4 + 450X23 + s4 = 20892.91

0.2X5 + 10X6 + 0.89X7 + 30.33X8 +

14.78X10 + 3.78X11 + 24.67X24 + s5 = 197634.10

0.2X5 + 10X6 + 0.89X7 + 30.33X8 +

14.78X10 + 3.78X11 + 24.67X24 + s6 = 11548.16

67.50X12 + 67.50X13 + 352.22X14 + · · ·+ 3.0X22 +

20X25 + 300X26 + 0.28X28 + · · ·+ 48.33X30 + s7 = 1982438.24

67.50X12 + 67.50X13 + 352.22X14 + · · ·+ 3.0X22 +

20X25 + 300X26 + 0.28X28 + · · ·+ 48.33X30 + s8 = 149734.64

3X22 + s9 = 3281.00

3X22 + s10 = 712.20
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Xj, Sj ≥ 0 for j = 1, 2, 3, . . . 30

4.4.5 Iterative Primal-Dual Interior-Point Algorithm

In summarizing the basic steps of the algorithm the following inputs are assumed:

Step 0: (i) The data of the problem (A, b, c), where the m× n matrix A has full row rank,

(ii) Initial primal and dual feasible solutions X0 > 0, Z0 > 0, y0 > 0.

(iii) The optimality tolerance ε > 0 and the step size parameter γ ∈ (0, 1).

Step 1: (Initialization). Start with some feasible point X0 > 0, Z0 > 0, y0 > 0. Choose

(X0, Z0, y0) such that (X0, Z0, y0) > 0 and set the iteration counter k = 0.

Step 2: (Optimality test). If (Zk)TXk < ε stop; otherwise, go to Step 3.

Step 3: (Compute Newton directions). Let

Xk = diag{Xk
1 , X

k
2 , . . . , X

k
n}

Zk = diag{Zk
1 , Z

k
2 , . . . , Z

k
n}

µk =
(Zk)TXk

n2

Solve the following linear system equivalent to step 5 in section 3.7.10 to get dkx, d
k
πand dkz

Adx = 0

ATdπ − dz = 0

Zdx +Xdz = µe−XZe

Note that δP = 0 and δD = 0 due to the feasibility of the initial point.

Step 4: (Find step lengths). Let

αP = γminj

{
−xkj
(dx)kj

: (dx)
k
j < 0

}
and αD = γminj

{
−zkj
(dz)kj

: (dz)
k
j < 0

}
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Step 5 (Update solution). Take a step in the Newton direction to get

Xk+1 = Xk + αP (dx)
k

yk+1 = yk + αP (dy)
k

Zk+1 = Zk + αD(dz)
k

Put k = k + 1 and go to Step 2.

4.5 Computational Method

The coefficients of the tax functions, left-hand side constraint inequalities and right-hand side

constants were written in matrices form. Matlab program software was used for coding the

primal-dual algorithm.

The matrices were inputted in the Matlab program code and ran on AMD Athlon(tm)X2

DualCore QL-66 CPU 2.20GHz , 32-bit operating system, Windows7 HP laptop computer.

The code ran successfully on ten trials with hundred iterations for each trial.

4.6 Result

The result below gives the primal solution and the dual solution. The X(j); j = 1, 2, 3 . . . 30

gives the total amount that each revenue item contributes in arriving at the optimal solution.

After 10 successful trials with 24 iterations for each of them, an optimal value of f = 1359357.28

was achieved. The results of the final test run for the total revenue generated after 24 iterations

are shown below:

4.7 Discussion

The data collected from the Sunyani West District Assembly which was used for this research

work reveals that the average total annual revenue by the Assembly for the past three years

has been GH¢893,608.52. A total of GH¢1358357.28 annually, based upon the primal-dual
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x1 to x10 x11 to x20 x21 to x30

7948 752 2076

795 263 906

2462 263 55

672 0 115

1421 351 751

284 287 504

3195 255 795

94 5 2710

4976 2971 2047

192 1401 277

y Value

y1 8

y2 7

y3 5

y4 7

y5 2

y6 3

y7 0

y8 2

y9 2

y10 8

algorithm code, would be obtained Hence with this research work, the Assembly can raise its

revenue to GH¢1358357.28 annually which represents an appreciable 52.12% increase in the

Assembly’s revenue collection.
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The revenue data collected from the Sunyani West District Assembly was modeled into Linear

Programming Problem. An optimal revenue mobilization strategy was then developed out of

the Linear Programming Problem. The data was then run on a matlab software code. The

analysis done in chapter four using primal-dual interior-point algorithm showed that average

annual revenue generated by the Assembly between 2008 and 2011 was GH¢893,608.52. Based

upon this research work, the Assembly can raise its revenue to GH¢1358357.28 which represents

52.12% increase in the Assembly’s revenue. The results also revealed that the tax item which

performed well was the Burial Fees, Self Employed Artisans, Kiosks and Financial Institutions

and the tax item which performed badly was the Registration of Chainsaws, Revenue from

Concession, Development Levy and Lotto Operators.

5.2 Recommendations

The Sunyani West District Assembly as aforementioned in the problem statement has not been

performing well in revenue mobilization. This state of affairs has contributed immensely in

the Assembly’s inability in providing basic social amenities such as schools, hospitals, portable

water, improved sanitation facilities etc. This research work has come at an opportune time

and it is a sigh of relief for most of the indigenes in the Sunyani West District Assembly. This

reason stems from the fact that internally generated revenue which has being the assembly’s

major headache can now be addressed by this research work. I hereby recommend the following

results and findings of this thesis to the Sunyani West District Assembly:

1. The work should serve as basis for further research works in improving revenue mobiliza-
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tion strategy by the Assembly and other District Assemblies in Ghana.

2. The research work also reveals that the contribution of basic rate showed a significant

impact on the overall revenue generation, but many of the citizens’ default in its payment.

It is however recommended that this tax will be linked up with the national health

insurance registration and renewal. This will take care of citizens who evade this tax,

and will also widen the tax bracket. It is also recommended that the basic rate should be

increased from its current form of GH¢0.10 to GH¢0.50 with attractive commission for

the tax collectors.

3. The researcher is of the view that the assembly will benefit a lot by way of addressing

revenue leakages if they can acquire automated tax collection machines for tax collection

by the assembly.

4. The model did not include certain tax item due to the fact that Sunyani West District was

one of the newly created District prior to when this research was conducted. Therefore

the availability of certain tax items was a problem. We therefore recommend that further

research is to be extended to include these items, since when included can help modelers

predict the severity revenue leakages in the country.

The study was carried out on secondary data obtained from the Assembly spanning

between 2010 and 2012. The focus of the subject area of the study was internally generated

revenue of the district.
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Appendix A

Table 5.1: Table Showing Tax No. and the associated Revenue Sub-Head.

Tax (Item N0.) Revenue Sub-Head

1 Basic Rate

2 Property Rate

3 Stool Land Revenue

4 Building Permit

5 Market Tools

6 Court Fines

7 Farm Produce

8 Marriage and Divorce

9 Toilet Management Revenue

10 Burial Fees

11 Lorry parks

12 Petroleum Products

13 General Goods

14 Financial Institutions

15 Kiosks

16 Chemical Sellers

17 Sale of Bid Documents

18 Adverts/Bill Boards

19 Lotto Operators

20 Self Employed Artisans

21 Clod Stores

22 Market Stores

23 Revenue from Concession

24 Registration of Building Plots

25 Registration of Business

26 Awards of Contracts

27 Development Levy

28 Hawkers

29 Traditional Caterers

30 Registration 0f Chainsaws
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Table 4.1: Table Showing the (E.R) and the (A.R) generated by the assem-

bly for the four quarters of 2010

TAX Q1(E.R) Q1(A.R) Q2(E.R) Q2(A.R) Q3(E.R) Q3(A.R) Q4(E.R) Q4(A.R)

1 8000.00 30.00 8000.00 46.00 8000.00 52.00 8000.00 52.00

2 21,000.00 15,000.00 20,000.00 17,000.00 20,000.00 20,000.00 21,000.00 22,000.00

3 35,000.00 0.00 35,000.00 7,000.00 53,000.00 10,000.00 35,000.00 20,000.00

4 4,050.00 400.00 4,050.00 647.00 4,050.00 1,272.00 4,050.00 1,410.00

5 2,420.00 1,540.00 2,420.00 4,890.00 2,242.00 6,880.00 2,420.00 6,880.00

6 400.00 220.00 400.00 340.00 400.00 380.00 400.00 410.00

7 2,270.00 810.00 2,270.00 1,110.00 2,270.00 2,140.00 2,270.00 2,800.00

8 500.00 0.00 500.00 0.00 500.00 0.00 500.00 0.00

9 1,000.00 90.00 1,000.00 100.00 1,000.00 100.00 1,000.00 100.00

10 1,500.00 350.00 1,500.00 1,690.00 1,500.00 4,080.00 1,500.00 4,900.00

11 550.00 80.00 550.00 2,080.00 550.00 5,090.00 550.00 5,506.00

12 100.00 180.00 100.00 510.00 100.00 530.00 100.00 550.00

13 190.00 0.00 190.10 0.00 190.00 200.10 190.00 200.10

14 40.00 22.00 40.00 240.00 40.00 530.00 40.00 574.00

15 500.00 0.00 500.00 590.00 500.00 592.00 500.00 590.00

16 100.00 46.00 100.00 78.00 100.00 410.00 100.00 640.00

17 600.00 0.00 600.00 0.00 600.00 370.00 600.00 1,275.00

18 52.00 0.00 52.00 0.00 52.00 0.00 52.00 0.00

19 950.00 0.00 950.00 0.00 950.00 0.00 950.00 0.00

20 2,500.00 106.00 2,500.00 250.50 2,500.00 305.00 2,500.00 447.00

21 35.60 0.00 35.60 54.00 35.60 78.00 35.60 147.00

22 150.00 60.00 150.00 80.00 150.00 250.00 150.00 300.00

23 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00

24 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00

25 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00

26 1,500.00 0.00 1,500.00 0.00 1,500.00 0.00 1,500.00 0.00

27 0.00 0.00 0.00 .00 0.00 0.00 0.00 0.00

28 30.00 0.00 30.00 0.00 30.00 12.00 30.00 20.00

29 310.00 0.00 310.00 0.00 310.00 145.00 310.0 404.00

30 220.00 0.00 220.00 0.00 220.00 0.00 220.0 0.00
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Appendix B

Table 4.2: Table showing the estimated revenue (E.R) and the actual revenue (A.R)

generated by the assembly for the four quarters of 2011

TAX Q1(E.R) Q1(A.R) Q2(E.R) Q2(A.R) Q3(E.R) Q3(A.R) Q4(E.R) Q4(A.R)

1 8,200.00 190.00 8,200.00 3,406.00 8,200.00 4,152.00 8000.00 6,652.00

2 24,000.00 17,000.00 24,000.00 18,000.00 24,000.00 20,000.00 24,000.00 20,000.00

3 35,000.00 0.00 35,000.00 8000.00 35,000.00 11,000.00 35,000.00 21,000.00

4 4,050.00 500.00 4,050.00 747.00 4,050.00 1,472.00 4,050.00 1,610.00

5 3,420.00 1,540.40 3,420.00 4,890.00 3,420.00 7,880.00 3,420.00 8,880.00

6 400.00 220.00 400.00 340.00 400.00 380.00 400.00 410.00

7 2,570.00 910.00 2,570.00 1,310.00 2,570.00 2,340.00 2,570.00 2,800.00

8 500.00 0.00 500.00 0.00 500.00 0.00 500.00

9 1,000.00 90.00 1,000.00 100.00 1,000.00 100.00 1,000.00 100.00

10 1,800.00 450.00 1,800.00 1,890.00 1,800.00 4,580.00 1,800.00 5,900.00

11 550.00 80.00 550.00 2,080.00 550.00 5,090.00 550.00 5,506.00

12 200.00 280.00 200.00 550.00 200.00 630.00 200.00 750.00

13 300.00 0.00 300.10 100.00 300.00 200.10 300.00 200.10

14 400.00 50.00 400.00 260.00 400.00 560.00 400.00 674.00

15 500.00 0.00 500.00 590.00 500.00 592.00 500.00 590.00

16 400.00 100.00 400.00 120.00 400.00 400.00 400.00 640.00

17 600.00 0.00 600.00 120.00 600.00 370.00 600.00 1,275.00

18 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00

19 950.00 0.00 950.00 0.00 950.00 0.00 950.00 0.00

20 2,800.00 120.00 2,800.00 350.50 2,800.00 405.00 2,800.00 547.00

21 35.60 0.00 35.60 54.00 35.60 78.00 35.60 147.00

22 250.00 80.00 250.00 100.00 250.00 350.00 250.00 400.00

23 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00

24 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00

25 50.00 0.00 50.00 0.00 50.00 80.00 50.00 100.00

26 2,000.00 0.00 2,000.00 50.00 2,000.00 50.00 2,000.00 50.00

27 8,328.60 00.00 8,328.60 0.00 8,328.60 0.00 8,328.60 0.00

28 30.00 0.00 30.00 0.00 30.00 12.00 30.00 20.00

29 510.00 80.00 510.00 100.00 510.00 145.00 510.0 404.00

30 400.00 0.00 400.00 0.00 400.00 0.00 400.00 0.00
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Appendix C

Table 4.3: Table showing the estimated revenue (E.R) and the actual revenue (A.R)

generated by the assembly for the four quarters of 2012

TAX Q1(E.R) Q1(A.R) Q2E.R Q2A.R Q3E.R Q3A.R Q4E.R Q4A.R

1 10,000.00 2000.00 10,000.00 3000.00 10,000.00 4000.00 10,000.00 5000.00

2 25,000.00 17,000.00 25,000.00 18,000.00 25,000.00 20,000.00 25,000.00 22,000.00

3 40,000.00 5000.00 40,000.00 7000.00 40,000.00 10,000.00 40,000.00 20,000.00

4 10,050.00 600.00 10,050.00 1,247.00 10,050.00 1,372.00 10,050.00 1,410.00

5 4,420.00 1,540.40 4,420.00 4,890.00 4,420.00 6,880.00 4,420.00 6,880.00

6 500.00 220.00 500.00 340.00 500.00 380.00 500.00 410.00

7 4,270.00 910.00 4,270.00 1,310.00 4,270.00 2,240.00 4,270.00 3,800.00

8 1000.00 60.00 1000.00 80.00 1000.00 150.00 1000.00 180.00

9 1,000.00 150.00 1,000.00 400.00 1,000.00 500.00 1,000.00 600.00

10 4,500.00 1,700.00 4,500.00 1,800.00 4,500.00 4,080.00 4,500.00 4,900.00

11 850.00 100.00 850.00 2,880.00 850.00 6,090.00 850.00 6,506.00

12 500.00 220.00 500.00 510.00 500.00 530.00 500.00 550.00

13 4000.00 100.00 400.10 120.00 4000.00 300.10 400.00 400.10

14 440.00 22.00 440.00 240.00 440.00 530.00 440.00 574.00

15 500.00 100.00 500.00 590.00 500.00 592.00 500.00 590.00

16 550.00 120.00 550.00 150.00 550.00 410.00 550.00 640.00

17 800.00 150.00 800.00 200.00 800.00 370.00 800.00 1,275.00

18 150.00 0.00 150.00 0.00 150.00 40.00 150.00 60.00

19 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00 1,000.00 0.00

20 3,500.00 220.00 3,500.00 1,250.50 3,500.00 1,305.00 3,500.00 2,447.00

21 35.60 0.00 35.60 54.00 35.60 78.00 35.60 147.00

22 350.00 80.00 350.00 100.00 350.00 350.00 350.00 400.00

23 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00

24 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00

25 100.00 0.00 100.00 40.00 100.00 60.00 100.00 140.00

26 2,000.00 150.00 2,000.00 200.00 2,000.00 200.00 2,000.00 240.00

27 8,328.60 00.00 8,328.60 0.00 8,328.60 0.00 8,328.60 0.00

2 800.00 0.00 800.00 80.00 800.00 90.00 800.00 220.00

29 510.00 0.00 510.00 100.00 510.00 145.00 510.0 404.00

30 500.00 0.00 500.00 0.00 500.00 0.00 500.00 0.00
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Appendix D

Table 4.4: Table showing the average E.R and A.R generated by the assembly for

the past 12 quarters of the assembly.

TAX NO. ITEM REVENUE SUB-HEAD E.R (AVERAGE) A.R (AVERAGE)

1 Basic Rate 8,733.33 2,331.66

2 Property Rate 22,000.00 18750.00

3 Stool land Revenue 36,666.66 9916.66

4 Building Permit 6,050.00 1057.25

5 Market Tolls 3,420.00 5297.56

6 Court Fines 433.33 337.50

7 Farm Produce 3036.66 1873.33

8 Marriage and Divorce 666.67 39.16

9 Toilet Management Revenue 1000.00 202.5

10 Burial Fees 2600.00 3,026.66

11 Lorry parks 650.00 3424.00

12 Petroleum Products 266.67 482.50

13 General Goods 296.66 151.75

14 Financial Institutions 293.33 356.00

15 Kiosks 500.00 549.77

16 Chemical Sellers 350.00 313.00

17 Sale of Bid Documents 666.66 440.41

18 Adverts/Bill Boards 100.66 8.33

19 Lotto Operators 966.66 0.00

20 Self Employed Artisans 2933.33 646.08

21 Clod Stores 47.46 69.75

22 Market Stores 250.00 212.50

23 Revenue from Concession 300.00 0.00

24 Registration of Building Plots 200.00 0.00

25 Registration of Business 66.67 35.00

26 Awards of Contracts 1833.33 78.33

27 Development Levy 5552.4 0.00

28 Hawkers 286.66 37.83

29 Traditional Caterers 443.33 160.58

30 Registration of Chainsaws 373.33 0.00
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Appendix E

Table 4.5: Table showing the number of people paying for each category of tax as

a variable Xj, j = 1, 2, 3, · · · 30

DECISION VARIABLE (Xi) REVENUE SUB-HEAD

x1 Basic Rate

x2 Property Rate

x3 Stool land Revenue

x4 Building Permit

x5 Market Tolls

x6 Court Fines

x7 Farm Produce

x8 Marriage and Divorce

x9 Toilet Management Revenue

x10 Burial Fees

x11 Lorry parks

x12 Petroleum Products

x13 General Goods

x14 Financial Institutions

x15 Kiosks

x16 Chemical Sellers

x17 Sale of Bid Documents

x18 Adverts/Bill Boards

x19 Lotto Operators

x20 Self Employed Artisans

x21 Clod Stores

x22 Market Stores

x23 Revenue from Concession

x24 Registration of Building Plots

x25 Registration of Business

x26 Awards of Contracts

x27 Development Levy

x28 Hawkers

x29 Traditional Caterers

x30 Registration of Chainsaws
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Appendix F

Table 4.6: Table representing the tax items and the unit charges used to model the

L.P for the problem. Tax Payer’s Variable xi and Unit Charge ci for i = 1, 2, . . . 30

TAX
NO.

REVENUE
HEAD

REVENUE
SUB-HEAD (xi) (ci)

AV. A.R FOR
12 QUARTERS

RATIO OF
A.R TO (Ci)

1 Rates Basic Rate x1 0.10 2,331.66 233.16
2 Rates Property Rate x2 10.00 18750.00 18,7500

3 Lands
Stool land
Revenue x3 10.00 9916.66 99,166.6

4 Lands Building Permit x4 35.62 1057.25 37,659.24
5 Fees and Fines Market Tolls x5 0.20 5297.56 1,059.51
6 Fees and Fines Court Fines x6 10.00 337.50 3370.50
7 Fees and Fines Farm Produce x7 0.89 1873.33 1667.26

8
Fees

and Fines
Marriage

and Divorce x8 30.33 39.16 1,187.72

9

Toilet
Management

Revenue

Toilet
Management

Revenue x9 17.50 202.5 3543.75
10 Fees and Fines Burial Fees x10 14.78 3,026.66 4,4734.03
11 Fees and Fines Lorry parks x11 3.78 3424.00 12,942.72

12 Licenses
Petroleum
Products x12 67.50 482.50 32,568.75

13 Licenses General Goods x13 67.50 151.75 10,243.12

14 Licenses
Financial

Institutions x14 352.22 356.00 125,390.32
15 Licenses Kiosks x15 3.94 549.77 2,166.09

16 Licenses
Chemical

Sellers x16 25.00 313.00 7,825

17 Licenses
Sale of Bid
Documents x17 76.67 440.41 33766.23

18 Licenses
Adverts/

Bill Boards x18 33.13 8.33 275.97

19 Licenses
Lotto

Operators x19 25.50 0.00 0.00

20 Licenses
Self Employed

Artisans x20 4.73 646.08 3055.95
21 Licenses Clod Stores x21 9.83 69.75 685.64

22 Rent
Market Stores/

Stalls x22 3.00 212.50 637.5

23 Lands
Revenue from

Concession x23 450.00 0.00 0.00

24
Fees

and Fines
Registration of
Building Plots x24 21.67 0.00 0.00

25 Licenses
Registration
of Business x25 20.00 35.00 700.00

26 Licenses
Awards of
Contracts x26 300.00 78.33 23499.00

27 Rates
Development

Levy x27 10.00 0.00 0.00
28 Licenses Hawkers x28 0.28 37.83 10.59

29 Licenses
Traditional

Caterers x29 9.67 160.58 1552.80

30 Licenses
Registration
of Chainsaws x30 48.33 0.00 0.00
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Appendix G

Number of iteration run for the optimal value.

iter 1: mu = 3.52e+ 014, resid = 7.42e+ 009

iter 2: mu = 6.47e+ 013, resid = 1.79e+ 009

iter 3: mu = 5.12e+ 012, resid = 1.20e+ 008

iter 4: mu = 3.28e+ 011, resid = 7.78e+ 006

iter 5: mu = 2.85e+ 010, resid = 6.82e+ 005

iter 6: mu = 3.58e+ 009, resid = 1.09e+ 005

iter 7: mu = 7.09e+ 008, resid = 1.92e+ 004

iter 8: mu = 9.59e+ 007, resid = 2.39e+ 003

iter 9: mu = 2.71e+ 007, resid = 6.52e+ 002

iter 10: mu = 5.27e+ 006, resid = 1.30e+ 002

iter 11: mu = 1.58e+ 006, resid = 3.92e+ 001

iter 12: mu = 1.58e+ 005, resid = 3.86e+ 000

iter 13: mu = 2.98e+ 004, resid = 8.12e− 001

iter 14: mu = 3.00e+ 003, resid = 9.71e− 002

iter 15: mu = 3.06e+ 002, resid = 6.72e− 003

iter 16: mu = 1.17e+ 002, resid = 2.64e− 003

iter 17: mu = 1.17e+ 001, resid = 2.51e− 004

iter 18: mu = 1.18e+ 000, resid = 2.51e− 005

iter 19: mu = 1.18e− 001, resid = 2.52e− 006

iter 20: mu = 1.19e− 002, resid = 2.53e− 007

iter 21: mu = 1.19e− 003, resid = 2.53e− 008

iter 22: mu = 1.20e− 004, resid = 2.54e− 009

iter 23: mu = 1.45e− 006, resid = 3.08e− 011

iter 24: mu = 2.12e− 010, resid = 4.51e− 015
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Appendix H

Matlab Code for the Algorithm

function [x,y,s,f] = pdip(A,b,c)

% primal-dual interior-point method for problem

%

% min c’x s.t. Ax=b, x¿=0,

%

% whose dual is

%

% max b’y s.t. A’y+s=c, s¿=0.

%

% calling sequence:

%

% [x,y,s,f] = pdip(A,b,c)

%

% input: A is an m x n SPARSE constraint matrix.

% b is an m x 1 right-hand side vector

% c is an n x 1 cost vector.

%

% output: x is the n x 1 solution of the primal problem

% y is the m x 1 dual solution

% s is the n x 1 vector of ”dual slack”

% f is the optimal objective value

if margin = 3

error(’must have three input arguments’);

end

if issparse(A)
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error(’first input argument A must be a SPARSE matrix; possibly use sparse() to convert’);

end

t0=cputime;

[m,n] = size(A);

if m ¡= 0 or n ¡= 0

error(’input matrix A must be nontrivial’);

end

if n = length(c)

error(’size of vector p must match number of columns in A’);

end

if m = length(b)

error(’size of vector b must match number of rows in A’);

end

% set initial point, based on largest element in (A,b,c)

bigM = max(max(abs(A)));

bigM = max([norm(b,inf), norm(p,inf), bigM]);

x = 100*bigM*ones(n,1); s = x; y = zeros(m,1);

% find row/column ordering that gives a sparse Cholesky % factorization of ADA’

ordering = symmmd(A*A’);

bp = 1+max([norm(b), norm(c)]);

for iter=1:100

% compute residuals

Rd = A’*y+s-c;
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Rc = A*x-b;

Rp = x.*s;

mu = mean(Rp);

relResidual = norm([Rd;Rc;Rp])/bp;

% fprintf(’iter %2i: mu = %9.2e, resid = %9.2e n’, iter, mu, relResidual);

fprintf(’iter %2i: mu = %9.2e, resid = %9.2e n’, iter, full(mu), ...

full(relResidual));

if(relResidual ¡= 1.e-7 & mu ¡= 1.e-7) break; end;

Rp = Rp - min(0.1,100*mu)*mu;

% set up the scaling matrix, and form the coefficient matrix for

% the linear system

d = min(5.e+15, x./s);

B = A*sparse(1:n,1:n,d)*A’; % use the form of the Cholesky routine ”cholinc” thatś best

% suited to interior-point methods

R = cholinc(B(ordering,ordering),’inf’);

% set up the right-hand side

t1 = x.*Rd-Rp;

t2 = -(Rc+A*(t1./s));

% solve it and recover the other step components

dy = zeros(m,1);

dy(ordering) = R (R’ �2(ordering));

dx = (x.*(A’*dy)+t1)./s;

ds = -(s.*dx+Rp)./x;

tau = max(.9995,1-mu);

ac= -1/min(min(dx./x),-1);

ad = -1/min(min(ds./s),-1);
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ac = tau*ac;

ad = tau*ap;

x = x + ac*dx;

s = s + ad*ds;

y = y + ad*dy;

end

f = c’*x;

% convert x,y,s to full data structures

x=full(x); s=full(s); y=full(y);

fprintf(’Done! t[m n] = [%g %g] tCPU = %g n’, m, n, cputime-t0);

return;
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