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ABSTRACT 
The travelling salesman problem is considered to be a classic example of what is known 

as a tour problem. Essentially, any type of tour problem involves making a series of 

stops along a designated route and making a return journey without ever making a 

second visit to any previous stop. Generally, a tour problem is present when there is 

concern on making the most of available resources such as time and mode of travel to 

accomplish the most in results. 

The objective of the thesis is to use Simulated Annealing to determine the optimal route 

for visiting all the ten regions in Ghana, save time and minimize expenditure. 

This study formulated a real-life problem of WAEC as a TSP, modelled as network 

problem and a matlab program was prepared using simulated annealing algorithm in 

solving the problem. It was observed that the route that gave minimum achievable 

inspection plan was 3 – 9 – 6 – 10 – 8 – 5 – 2 – 4 – 7 – 1 at the minimum distance of 

2229 km. Thus; 

 Koforidua → Ho → Tamale → Bolgatanga → Wa → Sunyani → Kumasi → Takoradi 

→ Cape Coast → Accra 

Hence an officer assigned to inspect the various question paper depots can start from 

Accra and end in Accra following the order above. 
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CHAPTER 1 

1.0 INTRODUCTION 
Ghana is a sub-Saharan African country with a population of 24,391,823million 

according to the 2010 population census and annual population growth of 2.4. 

Ghana covers a total land area of about 92456sqm or 239460sqkm. It has ten (10) 

administrative regions namely; Greater Accra, Western, Eastern, Central, Volta, Ashanti, 

Brong-Ahafo, Northern, Upper East and Upper West. It also has 170 districts.  

 

Ghana contains about 32,250km of road of which about 12,000km are main roads. 

Approximately 6,000km are paved; the remainder is gravel, crushed stones or graded 

earth. The country’s rail network is 953km in length; all track is 1.067m (narrow) gauge 

and all but 32km are single track. Poor rural infrastructure has been blamed for problems 

in agriculture, partly because transportation costs accounts for about 70% of the 

difference between farm price and retail prices. Only about one-third of the feeder road 

network can carry vehicular traffic. 

 

The Government has no plans of extending the railway system beyond its limited 

coverage of the southwestern regions of the country. Figures indicate a downward trend 

in passenger traffic from a high of 389 per km in 1988 to 277 per km in 1990. The 

government has instead focused on improving the road system. Since 1985 all trunk 

roads and about 2,900km of feeder roads as well as a number of bridges and drainage 

systems have been undergoing repairs. 
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The travelling salesman or salesperson problem (TSP) is one of the most well-known 

optimization problems in the literature. It has attracted the attention of many researchers 

over the last half a century because of its simple problem description but simultaneously 

its associated difficulty in obtaining an optimal solution efficiently. The travelling-

salesman problem involves a salesman who must make a tour of a number of cities using 

the shortest path available. For each number of cities n, the number of paths which must 

be explored is n!, causing this problem to grow exponentially rather than as a 

polynomial. 

The travelling salesperson problem (TSP) is a classic model for various production and 

scheduling problems. Many production and scheduling problems ultimately can be 

reduced to the simple concept that there is a salesperson who must travel from city to 

city (visiting each city exactly once) and wishes to minimize the total distance travelled 

during his tour of all n cities. Obtaining a solution to the problem of a salesperson 

visiting n cities while minimizing the total distance travelled is one of the most studied 

combinatorial optimization problems. While there are variations of the TSP, the 

Euclidean TSP is NP-hard (Schmitt and Amini, 1998; Falkenauer, 1998). The interest in 

this particular type of problem is due to how common the problem is and how difficult 

the problem is to solve when n becomes sufficiently large.  

In this chapter of the thesis, an overview of the travelling salesman problem would be 

given; a brief description of the problem statement of the thesis is also presented 

together with the objectives, the methodology, the justification and the organization of 

the thesis. 
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1.1 BACKGROUND OF THE STUDY 
The Travelling Salesman Problem (TSP) is a problem whose solution has eluded many 

mathematicians for years. Currently there is no solution to the TSP that has satisfied 

mathematicians. The TSP has a very rich history. Historically, mathematics related to 

the TSP was developed in the 1800’s by Sir William Rowan Hamilton and Thomas 

Penyngton Kirkman, Irish and British mathematicians, respectively. Specifically, 

Hamilton was the creator of the Icosian Game in 1857. It was a pegboard with twenty 

holes that required each vertex to be visited only once, no edge to be visited more than 

once, and the ending point being the same as the starting point. This kind of path was 

eventually referred to as a Hamiltonian circuit. However, the general form of the TSP 

was first studied by Karl Menger in Vienna and Harvard in the late 1920’s or early 

1930’s. 

TSPs were first studied in the 1930s by mathematician and economist Karl Menger in 

Vienna and Harvard. It was later investigated by Hassler Whitney and Merrill Flood at 

Princeton. Applegate et al., (1994) solved TSP containing 7,397 cities. Later in 1998, 

they solved it using 13,509 cities in United States. In 2001, the authors found the 

optimal tour of 15,112 cities in Germany. Later in 2004, TSP of visiting all 24,978 cities 

in Sweden was solved; a tour of length of approximately 72,500 kilometers was found 

and it was proven that no shorter tour exists. This is currently the largest solved TSP.  

The travelling salesman problem (TSP) is a typical example of a very hard combinatorial 

optimization problem. The problem is to find the shortest tour that passes through each 

vertex in a given graph exactly once. The TSP has received considerable attention over 

the last two decades and various approaches are proposed to solve the problem. As early 

as in 1954, optimal solution to travelling salesman problem with 49 numbers of cities 
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has been obtained. In 1970’s Held and Karp used minimum spanning tree to solve the 

TSP with 64 cities. In 1971, Bellmore and Malone solved TSP using sub tour 

elimination .In 1980’s, Crowder and Padberg solved the problem with 318 cities using 

cutting-plane method. In 1991 Grötschel and Holland proposed a solution for large scale 

TSP. Applegate et al., (1998, 2001 and 2004) proposed solution for TSP using cuts that 

solved 13509,15112 ,24978 cities respectively. The solutions worked well up to 5000 

cities and can be used up to 33,810 cities. 

 

1.2 STATEMENT OF THE PROBLEM 
Nowadays, the route management is very important to make sure the user can arrive at 

the destination the fastest. In the transportation industry, the route that will be generated 

should consider the cost and time constraints which are dependent on the distance 

travelled using the route. Although from human logical thinking, the route can be 

generated easily but the calculation of checking the route whether it is optimal route or 

not is difficult and will take long time to be implemented. 

WAEC Ghana, during its various Examination seasons, sends officers to inspect the 

various question paper depots and examination centres where security materials are kept 

to ascertain whether the regulations regarding the safety of the materials are complied 

with in the various regions in Ghana.  

An officer moves from the various regional capitals and is expected to visit as many 

examination depots and centres as possible on each route within each journey. 

 Inasmuch as to manage time and minimize cost, one of the best and sure ways is by 

taking the optimal route of an officer in all his/her inspection/ visitation.  
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The specific form of problem that this thesis seeks to solve is to mathematically model 

the West African Examinations Council Depot inspection problem as travelling 

salesman problem (TSP) and solve the problem. 

 

1.3 OBJECTIVES 
The objective of this research is to determine the optimal route for visitation and to 

model the West African Examinations Council depot inspection problem in all the 

regional capitals of Ghana. 

 

1.4 JUSTIFICATION 
WAEC Ghana, during its various Examination seasons, sends officers to inspect the 

various question paper depots and examination centres where security materials are kept 

to ascertain whether the regulations regarding the safety of the materials are complied 

with in the various regions in Ghana. 

At the time of this work, records show that there is no laid down procedure for 

determining which routes to be used by inspection officers. The routes are chosen 

arbitrarily and sometimes the driver’s discretion is the determining factor. The 

maximum number of centres they normally visit were three on a route. 

This thesis will seek to address the problem of WAEC officers travelling more distances 

and will minimize the total distance of the inspection so as to manage time and minimize 

expenditure. 
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1.5 METHODOLOGY 
The West African Examinations Council’s question papers depot inspection will be 

modeled as a Travelling Salesman Problem (TSP). Simulated Annealing (SA) is the 

method that will be used to solve the TSP model. This is because the SA is a generic 

probabilistic metaheuristic for the global optimization problem of locating a good 

approximation to the global optimum of a given function in a large search space when 

solving TSP. 

 

1.6  ORGANIZATION OF THE THESIS 
Chapter one deals with introduction, chapter two talks about the literature review, 

chapter three methodology, chapter four is the collection of data, analysis and 

discussion. Conclusion and recommendations are discussed in chapter five. 

 

 1.7 SUMMARY 
In chapter one, we presented brief history of Ghana and introduction to TSP, background 

to the study, statement of the problem, objectives of the thesis and methodology. 

In the next chapter, we shall review some literature in the field of TSP and SA. 

 

 

 

 

 

 

 



7 
 

CHAPTER 2 

LITERATURE REVIEW 

2.0  INTRODUCTION 

In this chapter we shall review some works done by other people in the field of TSP and 

SA where we shall look at the various methods used to solve the TSP and their findings. 

 

 In 2005, Cook et al computed an optimal tour through a 33,810-city instance given by a 

microchip layout problem, currently the largest solved TSPLIB instance. For many other 

instances with millions of cities, solutions can be found that are guaranteed to be within 

1% of an optimal tour. 

  

Dantzig et al (1954), also used linear programming (LP) relaxation to solve the integer 

formulation by suitably chosing linear inequality to the list of constraints continuously.  

Eastman (1958), Held and Karp (1970), Smith et al, Carpaneto and Toth, Balas and 

Christofides proposed branch and bound (B & B) algorithm based on assignment 

problem relaxation of the original TSP formulation. Some Branch and Cut (B & C) 

based exact algorithms were developed by Crowder and Padperg, Padberg and Hong, 

Grotschel and Holland.  

 

Ratliff and Rosenthall (1983) studied a problem of order-picking associated with 

material handling in a warehouse. Assume that at a warehouse an order arrives for a 

certain subsets of the items stored in the warehouse. Some vehicle has to collect all 

items of this order to ship them to the customer. The relation to the TSP is immediately 
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seen. The storage locations of the items correspond to the nodes of the graph. The 

distance between two nodes is given by the time needed to move the vehicle from one 

location to the other. The problem of finding a shortest route for the vehicle with 

minimum pickup time can now be solved as a TSP. 

 

Davoian and Gorlatch (2005) presented a new modification of the Genetic Algorithm 

(GA) for solving the classical Travelling Salesman Problem (TSP), with the objective of 

achieving its efficient implementation on multiprocessor machines. The authors 

described the new features of our GA as compared to existing algorithms, and developed 

a new parallelization scheme, applicable to arbitrary GAs. In addition to parallel 

processes and iterative data exchanges between the involved populations, our parallel 

implementation also contains a generation of new possible solutions (strangers), which 

eliminates typical drawbacks of GA and extends the search area. The proposed 

algorithm allows for acceleration of the solution process and generates solutions of 

better quality as compared with previously developed GA versions. 

 

Applegate et al (1994) solved a traveling salesman problem which models the 

production of printed circuit boards having 7,397 holes (cities), and in 1998, the same 

authors solved a problem over the 13,509 largest cities in the U.S.  For problems with 

large number of nodes as cities the TSP becomes more difficult to solve.  

 

Kenneth and Ruth (2007) studied a new multi-period variation of the M-travelling 

salesman problem. The problem arises in efficient scheduling of optimal interviews 

among tour brokers and vendors at conventions of the tourism and travel industry. In 
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classical travelling salesman problem vocabulary, a salesman is a tour broker at the 

convention and a city is a vendor's booth. In this problem, more than one salesman may 

be required to visit a city, but at most one salesman per time period can visit each city. 

The heuristic solution method presented is polynomial and is guaranteed to produce a 

non-conflicting set of salesmen's tours. The results of an implementation of the method 

for a recent convention are also reported. 

 

Bellmore and Hong considered a Single Depot Multiple Travelling Salesman Problem 

(SDMTSP) where each salesman is available for service at a specific cost and the edge 

costs need not satisfy triangle inequality. Since the objective is to reduce the total cost 

travelled by the salesmen, there could be situations when the optimal solution will not 

necessitate using all the salesmen. Bellmore and Hong provide a way of transforming 

this single depot MTSP to a standard TSP for the asymmetric case.  

 

Hong and Padberg present a more elegant transformation for the same problem in Rao 

discusses the symmetric version of the SDMTSP in Jonker and Volgenant give an 

improved transformation for a variant of the symmetric, SDMTSP where each salesman 

has to visit at least one target. Currently, there is no transformation available for the 

MDMTSP when each salesman must return to his initial depot for more than 2 depots.  

 

Bernd and Peter (1996) presented an approach which incorporates problem specific 

knowledge into a genetic algorithm which is used to compute near-optimum solutions to 

travelling salesman problems (TSP). The approach is based on using a tour construction 

heuristic for generating the initial population, a tour improvement heuristic for finding 



10 
 

local optimal in a given TSP search space, and new genetic operators for effectively 

searching the space of local optima in order to find the global optimum. The quality and 

efficiency of solutions obtained for a set of TSP instances containing between 318 and 

1400 cities are presented. 

 

The problem of scheduling buses is investigated by Angel et al as a variation of the 

mTSP with some side constraints. The objective of the scheduling is to obtain a bus 

loading pattern such that the number of routes is minimized, the total distance travelled 

by all buses is kept at minimum, no bus is overloaded and the time required to traverse 

any route does not exceed a maximum allowed policy. 

 

Svestka and Huckfeldt report an application for deposit carrying between different 

branch banks. Here, deposits need to be picked up at branch banks and returned to the 

central office by a crew of messengers. The problem is to determine the routes of 

messengers with a total minimum cost. 

 

Zakir (2010) presented a new crossover operator, Sequential Constructive crossover 

(SCX), for a genetic algorithm that generates high quality solutions to the travelling 

salesman Problem (TSP). The sequential constructive crossover operator constructs an 

offspring from a pair of parents using better edges on the basis of their values that may 

be present in the parents' structure maintaining the sequence of nodes in the parent 

chromosomes. The efficiency of the SCX is compared as against some existing 

crossover operators; namely, edge recombination crossover (ERX) and generalized N-
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point crossover (GNX) for some benchmark TSPLIB instances. Experimental results 

show that the new crossover operator is better than the ERX and GNX. 

 

Lenstra and Rinnooy Kan describe two similar applications, where the first application 

consists of finding the routes of a technical crew, which has to visit telephone boxes in 

North Holland. The second application involves designing the routes of vehicles to visit 

200 mailboxes in Utrecht, such that the number of vehicles used is minimized.  

Another application of the mTSP in crew scheduling is reported by Zhang et al., who 

investigate the problem of scheduling multiple teams of photographers to a large number 

of elementary and secondary schools. 

 

Croes (1958) proposed a variant of 3-opt together with an enumeration scheme for 

computing an optimal tour. He solved the Dantzig-Fulkerson-Johnson 49-city example 

in 70 hours by hand. He also solved several of the Robacker examples in an average 

time of 25 minutes per example.  

 

Bock (1958) describes a 3-opt algorithm together with an enumeration scheme for 

computing an optimal tour. The author tested his algorithm on some 10-city instance 

using an IBM 650 computer.  

  

Gilbert and Hofstra describe an application of a multiperiod variation of the mTSP, 

where the problem arises in scheduling interviews between tour brokers and vendors of 

the tourism industry. Each broker corresponds to a salesman who must visit a specified 

set of vendor booths, which are represented by a set of T cities. 
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The algorithm of Held and Karp (1971) was the basis of some major publications in 

1974. In one case, Hansen and Krarup (1974) tested their version of Held-Karp (1971) 

on the 57-city instance of Karg and Thompson 1964 and a set of instances having 

random edge lengths.  

 

Smith and Thompson, 1977 presented some improvements to the Held-Karp algorithm 

tested their methods on examples which included the 57-city instance of Karg and 

Thompson 1964 and a set of ten 60-city random Eucliean instances. The decade ended 

with a survey on algorithms for the TSP and the asymmetric TSP in Buckard, (1979). 

 

The first computer implementation of the Dantzig-Fulkerson-Johnson cutting-plane 

method for solving the traveling salesman problem, written by Martin, used subtour 

inequalities as well as cutting planes of Gomory's type. The practice of looking for and 

using cuts that match prescribed templates in conjunction with Gomory cuts was 

continued in computer codes of Miliotis, Land, and Fleischmann.  

 

Grotschel, Padberg, and Hong advocated a different policy, where the template 

paradigm is the only source of cuts; furthermore, they argued for drawing the templates 

exclusively from the set of linear inequalities that induce facets of the TSP polytope. 

These policies were adopted in the work of Crowder and Padberg, in the work of 

Grotschel and Holland, and in the work of Padberg and Rinaldi; their computer codes 

produced the most impressive computational TSP successes of the nineteen eighties. 
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Eventually, the template paradigm became the standard frame of reference for cutting 

planes in the TSP.  

 

In the next chapter, we will be considering some of the methods used to solve the TSP 

and extensively use the simulated annealing method to solve the campaign visitation of a 

presidential aspirant which will be modeled as a TSP. 
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CHAPTER 3 

METHODOLOGY 

3.0  INTRODUCTION 

This chapter focuses on the overview, formulation of the TSP model, some 

terminologies associated with TSP and other methods used to solve the TSP.  

The chapter also discusses the application of the TSP and other linkages with other 

problems. 

 

3.1  OVERVIEW 
Many managerial problems, like routing problems, facility location problems, 

scheduling problems, network design problems, can either be modeled as combinatorial 

optimization problems, or solve combinatorial optimization problems as sub-problems. 

A very commonly researched combinatorial optimization problem in this and other 

contexts is the Traveling Salesman Problem (TSP). In a TSP, we are given a weighted 

graph with n nodes, and are required to find a tour in the graph visiting each node 

exactly once such that the sum of the costs of the edges or arcs in the tour is the 

minimum possible. The number n is commonly referred to as the size of the TSP. TSPs 

serve as a representation of many managerial problems, especially in logistics. Many 

more problems, though not obviously related to the TSP can be modeled as TSPs. A 

large number of other problems are not equivalent to solving TSPs, but solve TSPs as 

sub-problems. 

The traveling salesman problem (TSP) is one which has commanded much attention of 

mathematicians and computer scientists specifically because it is so easy to describe and 
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so difficult to solve. The problem can simply be stated as: if a traveling salesman wishes 

to visit exactly once each of a list of m cities (where the cost of traveling from city i to 

city j is cij) and then return to the home city, what is the least costly route the traveling 

salesman can take? A complete historical development of this and related problems can 

be found in Hoffman and Wolfe (1985).  

The importance of the TSP is that it is representative of a larger class of problems 

known as combinatorial optimization problems. The TSP problem belongs in the class of 

combinatorial optimization problems known as NP-complete.  Specifically, if one can 

find an efficient algorithm (i.e., an algorithm that will be guaranteed to find the optimal 

solution in a polynomial number of steps) for the traveling salesman problem, then 

efficient algorithms could be found for all other problems in the NP-complete class. To 

date, however, no one has found a polynomial time algorithm for the TSP. Does that 

mean that it is impossible to solve any large instances of such problems? Many practical 

optimization problems of truly large scale are solved to optimality routinely. In 1994, 

Applegate, et. al. solved a traveling salesman problem which models the production of 

printed circuit boards having 7,397 holes (cities), and, in 1998, the same authors solved 

a problem over the 13,509 largest cities in the U.S. So, although the question of what it 

is that makes a problem "difficult" may remain open, the computational record of 

specific instances of TSP problems coming from practical applications is optimistic. 

How are such problems tackled today? Obviously, one cannot consider a brute force 

approach. In one example of a 16 city traveling salesman problem -- the problem of 

Homer's Ulysses attempting to visit the cities described in The Odyssey exactly once -- 

there are 653,837,184,000 distinct routes, (Grötschel and Padberg, 1993). Enumerating 
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all such roundtrips to find a shortest one took 92 hours on a powerful workstation. 

Rather than enumerating all possibilities, successful algorithms for solving the TSP 

problem have been capable of eliminating most of the roundtrips without ever explicitly 

considering them. 

3.2  TERMINOLOGIES 

Graph theory: is the study of graphs, which are mathematical structures used to model 

pairwise relations between objects. A graph in this context is made up of vertices or 

nodes and lines called edges that connect them. A graph may be undirected, meaning 

that there is no distinction between the two vertices associated with each edge, or its 

edges may be directed from one vertex to another. 

Hamiltonian path: is a path that uses each vertex of a graph exactly once. 

Hamiltonian circuit: is a path that uses all the vertexes of a graph and ends with a 

starting vertex.  

The first step to solving instances of large TSPs must be to find a good mathematical 

formulation of the problem.  In the case of the traveling salesman problem, the 

mathematical structure is a graph where each city is denoted by a point (or node) and 

lines are drawn connecting every two nodes (called arcs or edges). Associated with 

every line is a distance (or cost). When the salesman can get from every city to every 

other city directly, then the graph is said to be complete. A round-trip of the cities 

corresponds to some subset of the lines, and is called a tour or a Hamiltonian cycle in 

graph theory. The length of a tour is the sum of the lengths of the lines in the round-trip. 

http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
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3.3  FORMULATION OF THE TSP MODEL 

Depending upon whether or not the direction in which an edge of the graph is traversed 

matters, one distinguishes the asymmetric from the symmetric traveling salesman 

problem.  To formulate the asymmetric TSP on m cities, one introduces zero-one 

variables  

 

and given the fact that every node of the graph must have exactly one edge pointing 

towards it and one pointing away from it, one obtains the classic assignment problem. 

These constraints alone are not enough since this formulation would allow "subtours", 

that is, it would allow disjoint loops to occur. For this reason, a proper formulation of the 

asymmetric traveling salesman problem must remove these subtours from consideration 

by the addition of "subtour elimination" constraints. The problem then becomes  

   ∑∑      

 

   

 

   

 

    ∑                             

 

   

 

 ∑                             

 

   

 

∑∑                                  {     }
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where K is any nonempty proper subset of the cities 1,...,m. The cost cij is allowed to be 

different from the cost cji. Note that there are m(m-1) zero-one variables in this 

formulation. 

To formulate the symmetric traveling salesman problem, one notes that the direction 

traversed is immaterial, so that cij = cji. Since direction does not now matter, one can 

consider the graph where there is only one arc (undirected) between every two nodes. 

Thus, we let xj  {0,1} be the decision variable where j runs through all edges E of the 

undirected graph and cj is the cost of traveling that edge. To find a tour in this graph, one 

must select a subset of edges such that every node is contained in exactly two of the 

edges selected. Thus, the problem can be formulated as a 2-matching problem in the 

graph G
v
 having m(m-1)/2 zero-one variables, i.e. half of the number of the previous 

formulation. As in the asymmetric case, subtours must be eliminated through subtour 

elimination constraints. The problem can therefore be formulated as: 

 

      ∑ ∑     

 

      

 

   

 

    ∑                                 
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 ∑                                {     }

 

      

 

                                        

 

where J(j) is the set of all undirected edges connected to node j and E(K) is the subset of 

all undirected edges connecting the cities in any proper, nonempty subset K of all cities. 

Of course, the symmetric problem is a special case of the asymmetric one, but practical 

experience has shown that algorithms for the asymmetric problem perform, in general, 

badly on symmetric problems. Thus, the latter need a special formulation and solution 

treatment. 
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The figure below shows an example graph used for the travelling salesman problem 

 

Figure 3.1 Travelling Salesman Problem 

We will use the travelling salesmen problem (TSP) on the graph as an example problem 

for the metaheurisics discussed. Travelling Salesman Problem (TSP): 

A salesman spends his time visiting n cities (or nodes) cyclically. Starting from the 

home city, the salesman wishes to determine which route to follow to visit each city 

exactly once before returning to the home city so as to minimize the total distance of the 

tour. 

The difficulty of the travelling salesman problem increases rapidly as the number of 

cities increases. For a problem with n cities and a link between every pair of cities, the 

number of feasible routes to be considered is (n-1)!/2. Due to enormous difficulty in 

solving the TSP, heuristic methods guided by the meta-heuristics, address such 
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problems. Heuristic methods involve sequence of feasible trial solutions, where each 

solution is obtained by making certain adjustment in current trial solution.  

 

3.4  METHODS FOR SOLVING THE TSP 

 3.4.1  SUBTOUR REVERSAL 
Adjusting a sequence of cities visited in the current solution by selecting a subsequence 

of the cities and simply reversing the order. 

Eg. Initial trial solution is the following sequence of cities visted: 1-2-3-4-5-6-7-1 with 

total distance = 69. 

While reversing the sequence 3-4, we obtain new trial solution: 1-2-4-3-5-6-7-1 with 

total distance = 65. 

Neighbors: We say 2 tours/solutions/cycles are neighbors if we can transform one to the 

other by a subtour reversal. 

Degree of Neighbor: The degree of a neighbor A to B equals the minimum number of 

subtour reversals required to get from A to B. 

Local Minimum: A local minimum is when no neighbors are better i.e no neighbour's 

subtour gives a better solution. Problems like TSP have many local minima's. If we look 

into the gradient search approach to solve TSP, the steps are: 

- Pick a cycle 

-  Take best neighbor 

- Repeat until local minima is obtained. 

Because of local mininma, this may not yield good solution. 
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3.4.2  TABU SEARCH 
The key process is finding the local optima and then continue the search by allowing non 

improving moves (or illegal moves, called as tabu moves) to the best solutions in the 

neighborhood of the local optima. One of the features of tabu search is to avoid bad 

solutions which have already been explored i.e use of memory to guide the search by 

using tabu list to record recent searches. Essentially, Tabu search makes some moves 

illegal by maintaining a list of 'tabu' moves. 

For example, if A is a neighbor of B in the TSP then B is a neighbor of A. But if you 

have already chosen B over A, there might not be any reason to search A again. 

Some Useful Definitions 

 Intensify: To intensify the search is to search the local area (portion of feasible 

region) more thoroughly. 

 Diversify: To diversify the search is to force the search away from the current 

solution (to unexplored areas of feasible region). 

 Length of Tabu List: The length of the list signifies the balance between 

intensify/diversify. 

The Tabu Search Algorithm 

 Initialize 

 Iteration: 

- Compare all possible moves 

- Take best (even if it is worse than the current solution) 

- Update List 

- Stop after a fixed time or CPU usage, or there are no feasible moves. 

The optimal solution is the best solution so far. 
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Travelling Salesman Example 

Initial trial solution: 1-2-3-4-5-6-7-1 Distance = 69  

Tabu list: Null 

Iteration 1: Reverse 3-4 

Deleted links: 2-3 and 4-5 

Added links: 2-4 and 3-5 

Tabu List: (2-4), (3-5) 

New trials Solution: 1-2-4-3-5-6-7-1 Distance = 65 

Iteration 2: Reverse: 3-5-6 

Delete links: 4-3 and 6-7 

Add links: 4-6 and 3-7 

Tabu List: 2-4, 3-5, 4-6, 3-7 

New Solution: 1-2-4-6-5-3-7-1 Distance = 64 

Keep running for more iteration until algorithm terminates at a point where we obtain 

the best trial solution as the final solution. While running Tabu search it is necessary to 

keep track of the Tabu list and the best solution so far. So, delete few links from the tabu 

list after some number of iterations and while doing this, delete the oldest links of tabu 

list. 

Advantage 

This method is easy to integrate with other methods. 

Disadvantage 

Tabu search approach is to climb the hill in the steepest direction and stop at top and 

then climb downwards to search for another hill to climb. The drawback is that a lot of 

iterations are spent climbing each hill rather than searching for tallest hill. 
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3.4.3  GENETIC ALGORITHMS 
Genetic Algorithms are a class of optimization algorithms based on survival of the 

fittest" and combining solutions (parents and children). Here feasible solutions to 

particular problems correspond to members of species. Fitness of each member is 

measured by the objective function. The basic idea is that each possible solution is a 

member of entire population of trial solutions, and any given population is keeping track 

of multiple solutions. 

Parents in a genetic algorithm are selected at random from the available population, and 

the new trial solutions (children) are created from the parents. When these children are 

added to the population they occasionally have mutations which add more variety to the 

population. 

Important property: 

When going through a genetic algorithm, a good solution is more likely to survive and 

hence more likely to reproduce. 

 A framework for a Genetic Algorithm 

1. Choose the initial population of individuals 

2. Evaluate the fitness of each individual in that population 

3.  Repeat on this generation until termination: (time limit, sufficient fitness 

achieved, etc.) 

(a) Select the best-fit individuals for reproduction 

(b) Breed new individuals through crossover and mutation operations to give birth to 

offspring 

(c) Evaluate the individual fitness of new individuals 

(d) Replace least-fit population with new individuals 
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- Initialize the population of solution 

-  Randomly Select Parents to combine 

- Generate Child based on parents 

 keep the child (add to population) if good or adds improvements or 

  reject if infeasible or bad{ mutate randomly 

 Possibly throw out all solutions if necessary. 

Many decisions affect the effectiveness of genetic algorithm for any particular problem: 

 Population Size 

The population size indicates how much of the search space the GA will search in each 

iteration. Smaller size could mean the algorithm takes smaller time to find the optimal 

solution. Similarly when the size is large the algorithm take a longer time in sampling 

the large number of chromosomes in order to obtain the best chromosome. 

 

Selection Rule 

The general selection process involves reproduction, crossover and mutation operations. 

The selection process is used to generate a new population from the current one. The 

objective is to select individuals from the high fitness range . It is used for selecting 

individuals for crossover and mutation. 

 

Combination rule 

Two chromosomes are chosen at random. The one with the higher fitness is then 

selected.  

The process is repeated until the required numbers of chromosomes are obtained. 
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Mutation Rule 

Mutation operation is performed on individual chromosome whereby the alleles are 

changed probabilistically. 

 

Stopping Rule 

The algorithm terminates when a set of conditions are satisfied. At that point the best 

solution is taken as the global solution or the algorithm may terminate if one or more of 

the following are satisfied;  

i.  A specified number of total iteration is completed.  

ii. A specified number of iteration is completed within which the solution of 

best fitness has not changed.  

iii. A standard deviation of the generation of the population approaches a given 

value.  

iv. The average fitness of the generation of the population does not differ 

significantly from the solution of best fitness.  

 

A genetic algorithm is often good for solving hard optimization problems which can 

easily be represented in binary. 

 An example solution for the TSP using a genetic algorithm: 

Some characteristics of the TSP when represented to be used with a genetic algorithm 

need a rule for joining parents (or 2 subtours). Parents are tours and the current city is 

the home city of a path. 

Algorithm 

 Identify all links from current in either parent that are not already in the tour. 
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  Randomly select one of the available. 

 Check for mutation. 

 The next city is one these 

 Use this link to complete the tour. 

 Example 

1-2-4-6-5-3-7-1 

1-7-6-4-5-3-2-1 

Generate a child: 

1-2-4-5-6-7-3-1 

Parents are selected using a fitness function, if we were given the choice amongst the 

following: 

1. f(x1) = 69 

2. f(x2) = 65 

3. f(x3) = 79 

4. f(x4) = 86 

We would choose numbers 1 and 2 as they are the lowest distance. Alternatively for 

some problems we would choose to select those which have the highest fitness. 

Have mutations to randomly allow other links as these help genetic algorithms to 

explore a new/better feasible solution. Essence is that parents generate children (new 

trial solutions) who share some features of both parents. Since the fittest members of the 

population are more likely to become parents than others, a genetic algorithm tends to 

improving populations of trial solutions as it proceeds. 
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3.4.4 HARMONY SEARCH 
In computer science and operations research, Harmony Search (HS) is a phenomenon-

mimicking algorithm (also known as metaheuristic algorithm, soft computing algorithm 

or evolutionary algorithm) inspired by the improvisation process of musicians proposed 

by Zong Woo Geem in 2001. In the HS algorithm, each musician (= decision variable) 

plays (= generates) a note (= a value) for finding a best harmony (= global optimum) all 

together. Proponents claim the following merits 

 HS does not require differential gradients, thus it can consider discontinuous 

functions as well as continuous functions. 

 HS can handle discrete variables as well as continuous variables. 

 HS does not require initial value setting for the variables. 

 HS is free from divergence. 

 HS may escape local optima. 

 HS may overcome the drawback of GA's building block theory which works well 

only if the relationship among variables in a chromosome is carefully considered. 

If neighbor variables in a chromosome have weaker relationship than remote 

variables, building block theory may not work well because of crossover 

operation. However, HS explicitly considers the relationship using ensemble 

operation. 

 HS has a novel stochastic derivative applied to discrete variables, which uses 

musician's experiences as a searching direction. 

 Certain HS variants do not require algorithm parameters such as HMCR and 

PAR, thus novice users can easily use the algorithm. 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Soft_computing
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/w/index.php?title=Zong_Woo_Geem&action=edit&redlink=1
http://sim.sagepub.com/cgi/content/abstract/76/2/60
http://dx.doi.org/10.1016/j.cma.2004.09.007
http://en.wikipedia.org/wiki/Genetic_algorithms#The_building_block_hypothesis
http://dx.doi.org/10.1007/11892960_11
http://dx.doi.org/10.1007/11892960_11
http://dx.doi.org/10.1016/j.amc.2007.09.049
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Basic Harmony Search Algorithm 

Harmony search tries to find a vector which optimizes (minimizes or maximizes) a 

certain objective function. 

The algorithm has the following steps: 

Step 1: Generate random vectors ( ) as many as (harmony memory 

size), then store them in harmony memory (HM). 

 

Step 2: Generate a new vector . For each component , 

 with probability (harmony memory considering rate; 0 ≤ ≤ 1), pick 

the stored value from HM:  

 with probability , pick a random value within the allowed range. 

Step 3: Perform additional work if the value in Step 2 came from HM. 

 with probability (pitch adjusting rate; 0 ≤ ≤ 1), change by a small 

amount: or for discrete variable; or 

for continuous variable. 

 with probability , do nothing. 
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Step 4: If is better than the worst vector in HM, replace with . 

Step 5: Repeat from Step 2 to Step 4 until termination criterion (e.g. maximum 

iterations) is satisfied. 

The parameters of the algorithm are 

 = the size of the harmony memory. It generally varies from 1 to 100. 

(typical value = 30) 

 = the rate of choosing a value from the harmony memory. It generally 

varies from 0.7 to 0.99. (typical value = 0.9) 

 = the rate of choosing a neighboring value. It generally varies from 0.1 to 

0.5. (typical value = 0.3) 

 = the amount between two neighboring values in discrete candidate set. 

 (fret width, formerly bandwidth) = the amount of maximum change in pitch 

adjustment. This can be (0.01 × allowed range) to (0.001 × allowed range). 

It is possible to vary the parameter values as the search progresses, which gives an effect 

similar to simulated annealing. 

Parameter-setting-free researches have been also performed. In the researches, algorithm 

users do not need tedious parameter setting process. 

 

http://en.wikipedia.org/wiki/Simulated_annealing
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3.4.5  SIMULATED ANNEALING (SA) 
The process of simulated annealing is inspired by the physical process of annealing from 

chemistry. Annealing involves slowly heating the metal and then slowly cooling the 

substance by varying the temperatures until it reaches the low energy stable state, 

resulting in a global reduction in energy, but locally it may result in an increase in 

energy. These changes in energy follow a Boltzmann distribution. 

The key idea in simulated annealing algorithm is to select an appropriate temperature 

schedule which needs to specify the initial, relatively large value of T and then decrease 

the value of T. Starting with relatively large values of T makes probability of acceptance 

relatively large, which enables the search to proceed in almost all random directions. 

Gradually decreasing the value of T as the search proceeds gradually decreases the 

probability of acceptance, which emphasizes on climbing upwards. 

In 1983 Kirk Patrick showed how Simulated Annealing of Metropolis could be adapted 

to solve problems in Combinatorial Optimization.  

The following analogy was made  

1. a) Annealing looks for system state at a given temperature.  

b) Optimization looks for feasible solution of the combinatorial problems  

2. a) Cooling of the metal is to move from one system state to another  

             b) Search procedure (algorithm scheme) tries one solution after another in order 

to find the optimal solution.  

3. a) Energy function is used to determine the system state and energy 

             b) Objective (cost) function is used to determine a solution and the objective 

function value.  
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4. a) Energy results in evaluation of energy function and the lowest energy state 

corresponds to stable state.  

             b) Cost results in evaluation of objective function and the lowest objective 

function value corresponds to the optimal solution  

5. a) Temperature controls the system state and the energy  

             b) A control parameter is used to control the solution generation and the 

objective function value  

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global 

optimization problem of applied mathematics, namely locating a good approximation to 

the global minimum of a given function in a large search space. It is often used when the 

search space is discrete (e.g., all tours that visit a given set of cities). For certain 

problems, simulated annealing may be more effective than exhaustive enumeration — 

provided that the goal is merely to find an acceptably good solution in a fixed amount of 

time, rather than the best possible solution. 

The basic iteration 

At each step, the SA heuristic considers some neighbouring state s' of the current state s, 

and probabilistically decides between moving the system to state s' or staying in state s. 

These probabilities ultimately lead the system to move to states of lower energy. 

Typically this step is repeated until the system reaches a state that is good enough for the 

application, or until a given computation budget has been exhausted. 

The neighbours of a state 

The neighbours of a state are new states of the problem that are produced after altering a 

given state in some well-defined way. For example, in the traveling salesman problem 

http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Traveling_salesman_problem
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each state is typically defined as a permutation of the cities to be visited. The neighbours 

of a state are the set of permutations that are produced, for example, by reversing the 

order of any two successive cities. The well-defined way in which the states are altered 

in order to find neighbouring states is called a "move" and different moves give different 

sets of neighbouring states. These moves usually result in minimal alterations of the last 

state, as the previous example depicts, in order to help the algorithm keep the better parts 

of the solution and change only the worse parts. In the traveling salesman problem, the 

parts of the solution are the city connections. 

Searching for neighbours of a state is fundamental to optimization because the final 

solution will come after a tour of successive neighbours. Simple heuristics move by 

finding best neighbour after best neighbour and stop when they have reached a solution 

which has no neighbours that are better solutions. The problem with this approach is that 

the neighbours of a state are not guaranteed to contain any of the existing better 

solutions which mean that failure to find a better solution among them does not 

guarantee that no better solution exists. This is why the best solution found by such 

algorithms is called a local optimum in contrast with the actual best solution which is 

called a global optimum. Metaheuristics use the neighbours of a solution as a way to 

explore the solutions space and although they prefer better neighbours they also accept 

worse neighbours in order to avoid getting stuck in local optima. As a result, if the 

algorithm is run for an infinite amount of time, the global optimum will be found. 

 

 

 

http://en.wikipedia.org/wiki/Permutation
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
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Acceptance probabilities 

The probability of making the transition from the current state to a candidate new state 

is specified by an acceptance probability function , that depends on the 

energies and of the two states, and on a global time-varying 

parameter called the temperature. States with a smaller energy are better than those 

with a greater energy. The probability function must be positive even when is 

greater than . This feature prevents the method from becoming stuck at a local 

minimum that is worse than the global one. 

When tends to zero, the probability must tend to zero if and to a 

positive value otherwise. For sufficiently small values of , the system will then 

increasingly favor moves that go "downhill" (i.e., to lower energy values), and avoid 

those that go "uphill." With the procedure reduces to the greedy algorithm, 

which makes only the downhill transitions. 

In the original description of SA, the probability was equal to 1 when 

— i.e., the procedure always moved downhill when it found a way to do so, 

irrespective of the temperature. Many descriptions and implementations of SA still take 

this condition as part of the method's definition. However, this condition is not essential 

for the method to work. 

The function is usually chosen so that the probability of accepting a move decreases 

when the difference increases—that is, small uphill moves are more likely than 

http://en.wikipedia.org/wiki/State_transition
http://en.wikipedia.org/wiki/Greedy_algorithm
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large ones. However, this requirement is not strictly necessary, provided that the above 

requirements are met. 

Given these properties, the temperature plays a crucial role in controlling the 

evolution of the state of the system vis-a-vis its sensitivity to the variations of system 

energies. To be precise, for a large , the evolution of is sensitive to coarser energy 

variations, while it is sensitive to finer energy variations when is small 

General schema for Simulated Annealing Algorithm.  

a. Generate a starting solution S and set the initial solution S * = S.  

b. Determine a starting temperature T.  

c. While not yet at equilibrium for this temperature, do the following:  

d. Choose a random neighbour S* of the current solution.  

e. Set Δ = Length(S*) = Length(S).  

f. If ≤ 0 (downhill move):  

            Set S = S*.  

            If Length(S) < Length(S *), set S * = S.  

g. If length(S) < length(S*) (uphill move):  

             Choose a random number r uniformly from [0, 1].  

              If r < 
  

 ⁄  , set S = S*.  

h. End “While not yet at equilibrium” loop.  

i. Lower the temperature T.  

j. End “While not yet frozen” loop.  

k. Return S *. 
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Travelling Salesman Example 

Considering Figure 3.1  

Taking the initial solution to be in the tour in the order: 1-2-3-4-5-6-7-1 using the 

parameters;  

To = 20    Tk+1 = αTk      α = 0.5 

Stop when T < 0.1 

First Iteration  

Assuming x
o
 =1-2-3-4-5-6-7-1   

d(x
o
) = d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1) = 69  

Using the sub-tour reversal as local search to generate the new solution x
1
 =1-3-2-4-5- 6-

7-1  

d(x
1
 ) = d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68  

δ = d(x
1
) – d(x

o
) = 68-69 = -1

 
 

Since δ < 0, set x
o
← x

1
 

Updating the temperature T1 = αTo = 0.5(20) =10 

 

Second Iteration 

d(x
o
 ) = 68 

By the sub-tour reversal as local search to generate the new solution 1-2-3-5-4-6-7-1 

x
1
 =1-2-3-5-4-6-7-1 

d(x
1
 )=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65 

δ= d(x
1
) - d(x

o
 ) =65-68 = -3 

Since δ < 0, set x
o
← x

1
 

Updating the temperature, T2 = 0.5(10) = 5 
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Third Iteration 

d(x
o
)=65 

Using the sub-tour reversal as local search to generate the new solution 1-2-3-4-6-5-7-1 

x
1
 =1-2-3-4-6-5-7-1 

d(x
1
 )=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66 

δ= d(x ) - d(x ) = 66-65 =1 

Since δ>0, then apply Boltzmann‘s condition     
  

  ⁄  = 0.81 

A random number would be generated from a computer say θ 

If m>θ then set x
o
← x

1 
otherwise x

1
← x

o
 

Updating the temperature, T3 = 0.5(5) = 2.5 

This process will continue until the final temperature and the optimal solution are 

obtained. 
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3.5  APPLICATION OF TSP AND LINKAGES WITH OTHER PROBLEMS 

Drilling of printed circuit boards 

A direct application of the TSP is in the drilling problem of printed circuit boards 

(PCBs) (Grötschel et al., 1991). To connect a conductor on one layer with a conductor 

on another layer, or to position the pins of integrated circuits, holes have to be drilled 

through the board. The holes may be of different sizes. To drill two holes of different 

diameters consecutively, the head of the machine has to move to a tool box and change 

the drilling equipment. This is quite time consuming. Thus it is clear that one has to 

choose some diameter, drill all holes of the same diameter, change the drill, drill the 

holes of the next diameter, etc. Thus, this drilling problem can be viewed as a series of 

TSPs, one for each hole diameter, where the 'cities' are the initial position and the set of 

all holes that can be drilled with one and the same drill. The 'distance' between two cities 

is given by the time it takes to move the drilling head from one position to the other. The 

aim is to minimize the travel time for the machine head. 

 

Overhauling gas turbine engines 

An application found by Gerard (1994) is overhauling gas turbine engines in aircraft. 

Nozzle-guide vane assemblies, consisting of nozzle guide vanes fixed to the 

circumference, are located at each turbine stage to ensure uniform gas flow. The 

placement of the vanes in order to minimize fuel consumption can be modeled as a 

symmetric TSP. 
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X-Ray crystallography 

Analysis of the structure of crystals (Dreissig & Uebach, 1990) is an important 

application of the TSP. Here an X-ray diffractometer is used to obtain information about 

the structure of crystalline material. To this end a detector measures the intensity of Xray 

reflections of the crystal from various positions. Whereas the measurement itself can be 

accomplished quite fast, there is a considerable overhead in positioning time since up to 

hundreds of thousands positions have to be realized for some experiments. In the two 

examples that we refer to, the positioning involves moving four motors. The time needed 

to move from one position to the other can be computed very accurately. The result of 

the experiment does not depend on the sequence in which the measurements at the 

various positions are taken. However, the total time needed for the experiment depends 

on the sequence. Therefore, the problem consists of finding a sequence that minimizes 

the total positioning time. This leads to a traveling salesman problem. 

 

Computer wiring 

(Lenstra & Rinnooy Kan, 1974) reported a special case of connecting components on a 

computer board. Modules are located on a computer board and a given subset of pins has 

to be connected. In contrast to the usual case where a Steiner tree connection is desired, 

here the requirement is that no more than two wires are attached to each pin. Hence we 

have the problem of finding a shortest Hamiltonian path with unspecified starting and 

terminating points. A similar situation occurs for the so-called testbus wiring. To test the 

manufactured board one has to realize a connection which enters the board at some 

specified point, runs through all the modules, and terminates at some specified point. For 
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each module we also have a specified entering and leaving point for this test wiring. 

This problem also amounts 

to solving a Hamiltonian path problem with the difference that the distances are not 

symmetric and that starting and terminating point are specified. 

 

The order-picking problem in warehouses 

This problem is associated with material handling in a warehouse (Ratliff & Rosenthal, 

1983). Assume that at a warehouse an order arrives for a certain subset of the items 

stored in the warehouse. Some vehicle has to collect all items of this order to ship them 

to the customer. The relation to the TSP is immediately seen. The storage locations of 

the items correspond to the nodes of the graph. The distance between two nodes is given 

by the time needed to move the vehicle from one location to the other. The problem of 

finding a shortest route for the vehicle with minimum pickup time can now be solved as 

a TSP.. 

 

Vehicle routing 

Suppose that in a city n mail boxes have to be emptied every day within a certain period 

of time, say 1 hour. The problem is to find the minimum number of trucks to do this and 

the shortest time to do the collections using this number of trucks. As another example, 

suppose that n customers require certain amounts of some commodities and a supplier 

has to satisfy all demands with a fleet of trucks. The problem is to find an assignment of 

customers to the trucks and a delivery schedule for each truck so that the capacity of 

each truck is not exceeded and the total travel distance is minimized. Several variations 

of these two problems, where time and capacity constraints are combined, are common 
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in many realworld applications. This problem is solvable as a TSP if there are no time 

and capacityconstraints and if the number of trucks is fixed (say m ). In this case we 

obtain an m -salesmen problem. Nevertheless, one may apply methods for the TSP to 

find good feasible solutions for this problem (see Lenstra & Rinnooy Kan, 1974). 

 

Mask plotting in PCB production 

For the production of each layer of a printed circuit board, as well as for layers of 

integrated semiconductor devices, a photographic mask has to be produced. In our case 

for printed circuit boards this is done by a mechanical plotting device. The plotter moves 

a lens over a photosensitive coated glass plate. The shutter may be opened or closed to 

expose specific parts of the plate. There are different apertures available to be able to 

generate different structures on the board. Two types of structures have to be considered. 

A line is exposed on the plate by moving the closed shutter to one endpoint of the line, 

then opening the shutter and moving it to the other endpoint of the line. Then the shutter 

is closed. A point type structure is generated by moving (with the appropriate aperture) 

to the position of that point then opening the shutter just to make a short flash, and then 

closing it again. Exact modeling of the plotter control problem leads to a problem more 

complicated than the TSP and also more complicated than the rural postman problem. A 

real-world application in the actual production environment is reported in (Grötschel et 

al., 1991). 
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CHAPTER 4 

COLLECTION OF DATA, ANALYSIS OF DATA AND RESULTS 

4.1  INTRODUCTION 
This chapter deals with the collection and gathering of data, analysis and evaluation of 

the data and interpretation of the results. 

 

4.2  DISTANCE MATRIX FOR THE 10 REGIONAL CAPITALS IN GHANA 

IN KILOMETERS (KM). 
Table 4.1 is the distance matrix table, taken from Transport Department of WAEC and it 

shows the various links of connecting question paper depots and examination centres for 

officer assigned to all the ten (10) regions of Ghana in kilometers (km). 

For cities which have no direct link the minimum distance along the edges is considered. 

The cells indicated zero shows that there is no distance. 

Cij = the distance from city i to city j 

Cii = Cjj = 0 = There is no distance 
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 Cij Accra K’si K’dua T’di S’nyani T’male C.Coast Wa Ho Bolga 

ACCRA 0 270 85 218 400 658 144 740 165 810 

KUMASI 270 0 194 242 130 388 221 470 162 558 

KOFORIDUA 85 194 0 303 324 582 229 664 162 752 

TAKORADI 218 242 303 0 372 683 74 765 362 853 

SUNYANI 400 130 324 372 0 300 351 378 486 470 

TAMALE 658 388 582 683 300 0 609 314 476 170 

CAPE COAST 144 211 229 74 351 609 0 691 309 779 

WA 740 470 664 765 378 314 691 0 790 368 

HO 165 356 162 362 486 476 309 790 0 914 

BOLGATANGA 810 558 752 853 470 170 779 360 914 0 

 

Table 4.1 Distance matrix for the 10 regional capitals in Ghana in kilometers (Km) 
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For the purpose of this work, numbers have been allocated to the ten major city depots in 

Ghana. This is illustrated in the table below. 

REGIONAL DEPOT NUMBER ALLOCATED 

Accra 1 

Kumasi 2 

Koforidua 3 

Takoradi 4 

Sunyani 5 

Tamale 6 

Cape Coast 7 

Wa 8 

Ho 9 

Bolgatanga 10 

 

Table 4.2: numbers allocated to various regional capitals. 
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4.2  FORMULATION OF THE TSP MODEL FOR THE WAEC DEPOT 

INSPECTION PROBLEM. 
The problem can be defined as follows: Let G = (V,E) be a complete undirected graph 

with vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij 

for (i,j).  

We focus on the symmetric TSP case in which Cij = Cji, for all (i,j).  

We formulate this minimization problem as an integer programming, as shown in 

Equations (1) to (5). 

      ∑ ∑                                          (1) 

∑                        
    

                              (2) 

∑                        
   

                               (3) 

∑ ∑                                                                      (4) 

                                                        (5) 

 

The problem is an assignment problem with additional restrictions that guarantee the 

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that 

does not include all vertices (or cities). Equation (1) is the objective function, which 

minimizes the total distance to be travelled.  

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each 

city is entered from only one other city, while (3) ensures that each city is only departed 
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to on other city. Constraint (4) eliminates subtours. Constraint (5) is a binary constraint, 

where Xij = 1 if edge (i,j) in the solution and Xij= 0, otherwise. 

 

4.3  ANALYSIS 
To satisfy constraints (2) and (3) we choose the random 

Initial tour (x
0
) = 3 – 9 – 2 – 5 – 6 – 10 – 8 – 7 – 4 – 1  

From the objective function (1) the initial distance = d(x
0
) = d(3,9) + d(9,2) + d(2,5) + 

d(5,6) + d(6,10) + d(10,8) + d(8,7) + d(7,4) + d(4,1) = 2360 Km 

The initial temperature is taken to be (To) = 3540.00 and α = 0.99 

Temperature is updated by using the formula Tk+1 = αTk where k is the number of 

iterations. Stop when T ≤ 51.97. 

Simulated annealing algorithm was used to find the final solution. An HP dual core 

computer with processor 2.66GHz was used in ascertaining the final solution after 841 

iterations in 182.72 seconds. The execution time varied with the number of iterations. 
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4.4  RESULTS  
After performing 841 iterations, the optimal tour = 3 – 9 – 6 – 10 – 8 – 5 – 2 – 4 – 7 – 1  

Thus, d(3,9) + d(9,6) + d(6,10) + d(10,8) + d(8,5) + d(5,2) + d(2,4) + d(4,7) + d(7,1) = 

2229 Km. 

The optimal tour was found to be the same after it was run ten times. 

The optimal tour is therefore as follows: 

Koforidua → Ho → Tamale → Bolgatanga → Wa → Sunyani → Kumasi → Takoradi 

→ Cape Coast → Accra 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1  CONCLUSION 
The travelling salesman problem is a traditional problem that has to do with making the 

most efficient use of resources while at the same time spending the least amount of 

energy in that utilization. The designation for this type of problem hails back to the days 

of the travelling salesman, who often wished to arrange travel distances in a manner that 

allowed for visiting the most towns without having to double back and cross into any 

given town more than once. 

In a wider sense, the travelling salesman problem is considered to be a classic example 

of what is known as a tour problem. Essentially, any type of tour problem involves 

making a series of stops along a designated route and making a return journey without 

ever making a second visit to any previous stop. Generally, a tour problem is present 

when there is concern on making the most of available resources such as time and mode 

of travel to accomplish the most in results. Finding a solution to a tour problem is 

sometimes referred to as discovering the least-cost path, implying that the strategic 

planning of the route will ensure maximum benefit with minimum expenditure incurred. 

TSP is a very attractive problem for the research community because it arises as a 

natural sub-problem in many applications concerning everyday life. Indeed, each 

application, in which an optimal ordering of a number of items has to be chosen in a way 

that the total cost of a solution is determined by adding up the costs arising from two 

successive items, can be modelled as a TSP instance. Thus, studying TSP can never be 

considered as an abstract research with no real importance. 
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The study shows clearly that, any WAEC officer who has been assigned to inspect the 

question papers depots within the ten (10) regions of Ghana must consider the tour order 

below. 

The order is as follows:  

Koforidua → Ho → Tamale → Bolgatanga → Wa → Sunyani → Kumasi → Takoradi 

→ Cape Coast → Accra 

 

5.2 RECOMMENDATION 
The use of mathematical models has proved to be efficient in the computation of 

optimum results and gives a systematic and transparent solution as compared with an 

arbitrary method. 

Management will benefit from the proposed approach for officers who would be 

assigned to inspect various examination centres in order to visit more centres on a route 

at a minimized travel distance. We therefore recommend that our TSP model should be 

adopted by WAEC for its depot inspection planning. 

Students can use this work as reference for further research covering all the regions in 

Ghana.  
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APPENDIX 

MATLAB PROGRAM 

>> %function simanneal()  

% **********Read distance (cost) matrix from Table 4.1 ******  

>> d = xlsread('distance.xlsx'); 

>> d_orig = d;  

start_time = cputime;  

summ=0;  

dim1 = size(d,1);  

dim12 = size(d);  

for i=1:dim1  

d(i,i)=10e+06;  

end  

for i=1:dim1-1  

for j=i+1:dim1  

d(j,i)=d(i,j);  

end  

end  

%d  

% *****************Initialise all parameters**********************  

d1=d;  

tour = zeros(dim12);  

cost = 0;  

min_dist=[];  

short_path=[];  
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%*****************************************************************  

%************Initialize Simulated Annealing paratemers************  

%T0 Initial temperature is set equal to the initial solution value  

>> Lmax = 400; %Maximum transitions at each temperature  

ATmax = 200; %Maximum accepted transitions at each temperature  

alfa = 0.99; %Temperature decrementing factor  

Rf = 0.0001; %Final acceptance ratio  

Iter_max = 1000000; %Maximum iterations 13  

start_time = cputime;  

diary output.txt  

% *******Generate Initial solution - find shortest path from each node****  

% if node pair 1-2 is selected, make distance from 2 to each of earlier  

%visited nodes very high to avoid a subtour  

k = 1;  

for i=1:dim1-1  

min_dist(i) = min(d1(k,:));  

short_path(i) = find((d1(k,:)==min_dist(i)),1);  

cost = cost+min_dist(i);  

k = short_path(i);  

% prohibit all paths from current visited node to all earlier visited nodes  

d1(k,1)=10e+06;  

for visited_node = 1:length(short_path);  

d1(k,short_path(visited_node))=10e+06;  

end  

end  
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tour(1,short_path(1))=1;  

for i=2:dim1-1  

tour(short_path(i-1),short_path(i))=1;  

end  

%Last visited node is k;  

%shortest path from last visited node is always 1, where the tour  

%originally started from  

last_indx = length(short_path)+1;  

>> short_path(last_indx)=1;  

tour(k,short_path(last_indx))=1;  

cost = cost+d(k,1);  

% A tour is represented as a sequence of nodes startig from second node (as  

% node 1 is always fixed to be 1  

crnt_tour = short_path;  

best_tour = short_path;  

best_obj =cost;  

crnt_tour_cost = cost;  

obj_prev = crnt_tour_cost;  

fprintf('\nInitial solution\n');  

crnt_tour  

fprintf('\nInitial tour cost = %d\t', crnt_tour_cost);  

nbr = crnt_tour;  

T0 = 1.5*crnt_tour_cost;  

T=T0;  

iter = 0;  
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iter_snc_last_chng = 0;  

accpt_ratio =1;  

%*********Perform the iteration until one of the criteria is met***********  

%1. Max number of iterations reached***************************************  

%2. Acceptance Ratio is less than the threshold  

%3. No improvement in last fixed number of iterations  

while (iter < Iter_max && accpt_ratio > Rf)  

iter = iter+1;  

trans_tried = 0;  

trans_accpt = 0;  

while(trans_tried < Lmax && trans_accpt < ATmax)  

trans_tried = trans_tried + 1;   

 

Initial solution 

 

crnt_tour = 

 

     3     9     2     5     6    10     8     7     4     1 

 

Initial tour cost = 2360  

city1 = round(random('uniform', 1, dim1-1));  

city2 = round(random('uniform', 1, dim1-1));  

while (city2 == city1)  

city2 = round(random('uniform', 1, dim1-1));  

end  
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if (city2>city1)  

i=city1;  

j=city2;  

else  

i=city2;  

j=city1;  

end  

nbr(i)=crnt_tour(j);  

nbr(j)=crnt_tour(i);  

if i==1  

if j-i==1  

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));  

else  

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))- 

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j- 

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));  

end  

else  

if j-i==1  

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));  

else  

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))- 

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j- 

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));  
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end  

end  

delta = nbr_cost - crnt_tour_cost;  

prob1 = exp(-delta/T);  

prob2 = random('uniform',0,1);  

if(delta < 0 || prob2 < prob1)  

summ = summ+delta;  

crnt_tour = nbr;  

crnt_tour_cost = nbr_cost;  

trans_accpt = trans_accpt + 1;  

if crnt_tour_cost < best_obj  

best_obj = crnt_tour_cost;  

best_tour = crnt_tour;  

end  

else  

nbr = crnt_tour;  

nbr_cost = crnt_tour_cost;  

end  

end  

accpt_ratio = trans_accpt/trans_tried;  

fprintf('\niter# = %d\t, T = %2.2f\t, obj = %d\t, accpt ratio=%2.2f', 

iter,T,crnt_tour_cost,accpt_ratio);  

if crnt_tour_cost == obj_prev  

iter_snc_last_chng = iter_snc_last_chng + 1;  

else  

iter_snc_last_chng = 0;  



61 
 

end  

if iter_snc_last_chng == 10  

fprintf('\n No change since last 10 iterations');  

break;  

end  

obj_prev = crnt_tour_cost;  

T = alfa*T;  

iter = iter + 1;  

end  

fprintf('\nbest obj = %d', best_obj);  

fprintf('\n best tour\n');  

best_tour  

end_time = cputime;  

exec_time = end_time - start_time;  

fprintf('\ntime taken = %f\t\n', exec_time);  

diary off 


