MAX-PLUS ALGEBRA FOR GENETIC

ALGORITHMS

By

Joseph Ackora-Prah B.Sc (Hons), M.Sc

August 2012



Declaration

I hereby declare that this submission is my own work towards the PhD and
that, to the best of my knowledge, it contains no material previously pub-
lished by another person nor material which has been accepted for the award
of any other degree of the University, except where due acknowledgment has

been made in the text.

p—
o4 Frekort - fean

PG . CIN26 (S ‘P/LU

Student Name and ID Signature Date

Certified by:

Supervisor’s Name Signature Date

Certified by:

Head of Dept. Name Signature Date

e
i LIBEA g W
i B :1: ::il.:kﬂrr"': £L:”: = IS N
Kﬁ;f’} F I!:':-“:r L E & TERT i

~Y

oy,



Abstract

We investigate the redesigning of the general Genetic Algorithms (GAs) using
concepts from max-plus algebra. Our formulation presents a general outlook
which é,ffnrds a comprehensive analysis of genetic algorithms and ensures
that maximum fitness function is obtained by summing the functional values

of all chromosomes in the seafchspacel

s BRY
Y I

We showed that the populationt geﬁfi'—:reiitiﬁ'ﬁ &yriamics of GAs can be for-
mulated using a max-plus linear recursive equation and this yields a sequence
of better solutions for the next generation each time. We illustrated how the
non-linear iterative system ;rf*‘" = mjeq{._ﬂij’i‘m; } in our genetic algorithm
can be lineap-in-thesmax-plits-senses” We'mote that.if the population is too
low, the investigatien mayscover too little of the search_space to find the
optimum solution. - Out ﬁmdel was able to withstand large populations so
that the optimum- solutien.would not be trapped in.arlocal optimum. This
is shown by thefact that there.areno restriction on number.0f chromosomes
in the population: -

Our formulation makes tsedf the'stable growth max-plus equation A%+ =

A ® z(%) which normalizes the GA system and makes it stable with constant

populatjgg. Again, the model addresses some of the disadvantages of GAs.
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Our formulation uses equations from max-plus algebra to present a more
general model to genetic algorithms and to the best of our knowledge, this
is the first mathematical framework in genetic algorithms. The model gives
a real understanding of the effegts Bi par@meter 5§ on the properties of
the GAs and can be used fo]guﬂszImml and to predict

the behavior of the GAs in future wopks.
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Introduction

In this thesis, we investigate thlgdmmu nge]eral Genetic Algo-

rithms (GAs) using concepts from maxzp us algebra. Max-plus algebra is

an analogue of conventional linearjalgebra d reloped on the operations of @

and ®. The algebraic structure | e elements are the usual

. . T 1 _. .
real numbers al¢ ng with'e= where @/ represents taking the

B — dap’
maximum and ® is the standard addition. A GA-is an evo!

sionary heuristic

search and uptimization A1gOrY b m the JOLKS 2 1Ve 3 pplic:a,tion ﬂf evo-

O

¥ osane
se-of selection operator and the fitness

- of mutation, stopping criteria, the type-ot'se
function affect the performance of the GA. They are also inter-related and

form a system.

1
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Max-plus algebra is a relatively new concept in mathematics used mostly
by the control theory community. Despite this, several other interesting
applications have emerged. We give a brief overview of some of the most
interesting applications here.

Quite recently, non-linear models that describe the behavior of discrete
event systems have been described iy, mgdels thapr@redimear in the max-plus

’ - '

algebra (Boom et al., 2004). P¥evio#is work'efMeEnecaney, (see McEneaney,
2004) shows that Hamilton-Jacobi-Bellman partial differential equations are
based on the max-plus formulation of these problems. Max-plus algebra
has also been used as an algebra for oeptimal eontrol of dynamical systems
and several authors+hayve already developed methods to compute optimal
control sequences formax-plus-linear.discrete event systems, see for example
(Baccelli at al., 1992).

In this thesis we examine the dynamies of genetic algorithms in terms of
the max-plus algebra. We define"a-function ealled the max-plus ﬁtﬁess in
Genetic Algorithnis, Which determines the fittest ';hrqn‘iﬂ'same in the search
space to begin the next generation, propése that-the search space is a max-
plus idempotent commutative semi-ring and present a novel max-plus linear

model to describe the genetic algorithm processes. This model allows us to

-
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translate the many properties, concepts and techniques of the genetic. algo-
rithms in a simplified manner and offers a compact way of describing the
dynamics of the iterative processes in the genetic algorithms. This theo-
retical approach of analysis provides a useful framework for propagating a
population of candidate solutions such that an optimal solution can be ob-
tained in an evolutionary compufafion process. dmvaddgition, it provides an
important basis for further analytical stidies-On the eﬁ'ciency of the genetic
algorithm procedure.

The thesis is organized as follows: In chapter one we discuss some key
properties of the max-plus algebra and how these,properties are used to an-
alyze some linear algebra coneepts. Sﬂlﬁtions of systems of equations and
inequalities are also-introduced:. Chapter two presents.some of the applica-
tions of the max-plus algebra in various fields of mathematics such as control
problems, discrete eventisystems and global convergence. In chapter three,
we review GAsas search technigues, which Have emerged fo meet the- global
optimization needs.nascomplex search space. I.n'-‘éha..pﬁ;ef four, we formulate
a max-plus model for the geneticalgortithms.~Chapter five concludes and

suggests open problems and extensions of the study.



Chapter 1

KNUST

Max-plus Algebre

h .

1.1 Preliminary Concepts'and Algebraic Prop-
W = =

Sy,

erties | 1:{ U S =4

In this chapter, we provide the preliminary defini

| e
properties of the max-plus algebra. We also i 2 the concept of matri-

ral numbers, R the set of real umers, g= —00,e¢=0,and Rz = RU{e}.

We give an overview of the max-plus algebra by defining the operations &

and ® by-a®b = max(a,b) and a®b = a+b where a,b € Ryqz. The set



R ez equipped with the operations @, ® and the elements € and e is called a
max-plus algebra and is denoted by Rmaz = (Rimaz, ®, ®; €, e). We see clearly
that max(a, —o0) = max(—00,a) = a and a + (—00) = (—00) + a = —oo for
all a € R,,,,. We show that ae = €@ a = a where € 1s an additive identity
for @. Similarly a®e =e®a =a foral a € Rpe and e = 0 is the
multiplicative identity. Again @ @ T :: ® d showsg ‘E’haﬂ‘t—*@_i'; s an absorbing ele-
Y \ I a
ment under ® in max-plus algébra. “We show that=® and ® in the max-plus

algebra obey some of the properties similarito ‘4" and 'x’ in the conventional

algebra. For example, for a,b, c/€ Riqee We have

a® (boe)

= max(a+b;a+c)

(a@) @ (@ ®C)

which means that ® is distributive'over @. The list of the algebraic properties

of the max-plus.algebra is given below.

1. Commutativity?Va, b€ Rz : a ® b =bGa~"and b R@a=a®b

9. Associativity: Va,b,c € Rmaz 0P (bepe) = (a@b)@c and a®((b®c) =
(a®b)®c
3. Distributive of ® over ®: Va,b,c € Roer : a® (b®c) = (a®b) B (a®c)

e ’,‘/—-’I
9
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4. Existence of a zero element: Va € R, :aBe=€@a
5. Existence of a unit element: Va € Ryor :a®e=€e@a=a
6. The zero is absorbing for ®: Va € Rper :a®e=6®a=¢

7. Idem-potency of ®: Va € Rpaz : @B a=a

8. Let m,n€ Nanda € RKtNUSm[ +na=(m+n)a=

a®(men)

and we have Gondran and Minoux (Gondran and Minoux, 1984) requiring

that a =0@®c and b=a®d = a=>and in this instance we have &

6



inducing an ordering > on the element of the max-plus algebra in either case
asa>b © a=a®banda>b & 3IJc€ Ry :a=bBc. In either case,
the relation > must be a partial ordering, that is,a > band b > a = a = b

and > is transitive.

Dioid Algebra m SI
Dioid algebra is a powerful mathenratic tUt “alldws a linear descrip-

tion of systems that have non-linear rep:

esentation. For our purpose, the

importance of dioids is seen in chapter

and'in particular discrete event
systems, where synchronizatio ainates. The max-plus al-

gebra is one of the

ss.which are called dioids, however

it has several useful propertie ssarily :J;:{;i t in all dioids.

M

We begin the definition of dioid by introducin 10id, the simple algebraic
| e - ! ;

unit from which dioids Siesformed

Definition
A monoid (M, @) is an algebraics|

and an operation & on the elements of M such that:

(i) M is closed with respect to ®: a,b€ MAa@b=c = c€ M.



(ii) M is associative with respect to @: Ya,b,c € M : (a®b)®c=a® (bde).
(iii) M has a zero or identity element, e € M such that: Va € M:e®a=
ade=a.

We note that a commutative monoid is one in which Va,b € M : a®b = bDa.

Definition

A dioid (D, &, ®) is an algebrdic tue jconsi T set D with a pair
of associated operations ® an]gmau Sg

(i) (D, ®) is a commutative monoid with'identity element &.

properties apply to these infinite series, then the dioid is said to be complete.

S _..-——""'-_—-



1.2 Max-plus Linear Algebra

In this section we define inverse and permutation matrices in terins of the
max-plus algebra. The pair of operations (®,®) is extended to matrices
and vectors formally in the same way as in the conventional linear algebra.

We consider A = (a;;), B = (bi;) and C = (c;;) as matrices with elements

M NLLIGT
from R of compatible sizesithep € F=1A & Buif cy = ai; D b;; for all
1 .1 | Y’ E

i,J; C = A® B if ¢ = Efal-k ® by; = max(aix + bx;) for all 2,7 and
a®A=ARa=(a®aq;) for a g Raz.’ The transpose of a matrix AT
is as defined in conventional algebra t,hat._is: (a)i; = (a)ji- We denote by [
the square matrix called the unitmatrixy whose diagonal entries are 0 and

off-diagonals are . Then we have

and obviously A® I =I®A=Aiflisofa compatible dimension. This
shows that in max-plus algebra, the identity matrix is an identity with respect
to ®. Fora square matrix in max-plus algebra and positive integer k, the

9



kth power of A will be denoted by A®*which is the iterated product AP® =

k times

m and by definition. A° = [ for any square matrix A. We note
that ® distributes over & for matrices and as usual @ is commutative but &
is not. Also @ is idempotent in R?*" since we have A@® A = A. This means
that R™*" is another idempotent semi-ring in which ® is non-commutative.
A square matrix is called diagdnal’ denofed by igT TP, .., An), or D(A;)

& ﬁ"‘x.‘ir | 'H

if its diagonal entries are Ay, Az, ..., X e*@m,ﬁ and=off-diagonal entries are €

that is:
[
A e, osaosenad -
E"‘ Ag E --------- E
\E 3 g An

A permutation matrix S aimatrix in which each rowsand each column con-
tains exactly one entry equal to.e and all other entries arerequal to e. If
o :{1,2,..,n} = {12 .an}is a permutationswe define the max-plus per-

mutation matrix as P, = [pj;] whete

e ifi=1a(j)
Pij =
¢ ifi# o(j)
—— /—"—"—/—
10
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So the jeu column of P, has e in the o(j)* row

Left multiplication by P, permutes the rows of a matrix, so that the ith row
of A appears as the o (i) row of P, ® A. We state and prove the following
theorem to show that the matrix A € R has a right inverse if there is a

permutation.

Theorem 1.1. A € R}.\7 has K’gNeU Eo1 y if there is a per-

mutation o and values \; > €,i € {1,2,...,n} and such that A= P, ® D(\;).

Proof. Let the matrix B € R2%" such'that A®.3 = I. Then we have

(1.3)

Since aigu) > € = aig(y) for  # j, it follows that g is injective and therefore
a permutation. From equation (1.3), aigq) is the only entry of the 6(i)%"
column of A4 that is not e. Now let’s denote Py ® A by A , then 6(i)™ row

11



of A is the i row of A whose entry is greater than € in the 6(¢)"* column.
All the diagonal elements of A are greater than € and A has only one non-
¢ element in each column. This is also true for A that is B, @ A = A =
D(X\;) with A = ag-1); > €. Let 0 = 6! and since P, ® P, = I, it follows
that A = P, @ D()\;). Conversely we assume that A = P, ® D();) and
\; > . If this is true then we lef| 1¢€ B\= DE\;) @ P, T§hich implies that
A®B=PF,® D(\;)® D(—\;) ®Pg—1 L el @'-P&I_l = I Tiﬁerefore ARB=1

and B is the right inverse of A. O

Any matrix which can be obtained from the unit or diagonal matrix by
permuting the rows and/or columns will be ealled & generalized permutation
matrix. We notesalse that the generalized permutation matrices are special
in max-plus algebra than in.the conventionallinearalgebra since they are the
only matrices having inverses. Clearly, if an inverse to the matrix A exists

then it is unique. This is shown by the following theorems.

Theorem 1.2. For AjB' e RP*"if A®Q B =E then BRQA=E, and B 1is

uniquely determined by A.

Proof. From theorem (1.1) we have A = P,®D();). We see that E=D(—Ai)®

P, is a left inverse of A. If A® B = I, then B= E@(A ® B) =(E®A)®

<
=

e /,—-/—/
12



B= | ® B = B, implying that B is uniquely determined by A. O

Theorem 1.3. If A € R**" and B € R'X" are invertible then A ® B is

wmvertible.

Proof. From theorems (1.1) and (1.2) we have A = P,,® D(){) and D(\)®

P,, Then A® B = P,, ® D(\}) @D()\f) ® P,,. Since the product of two

:w"é I'.lel. . | N, |
diagonal matrices is a diagonall matgix e bave: A% B = P,, ® DIV ®

A) ® P,, Therefore A ® B is a permuted @iagonal matrix and hence A® B

is invertible. O

Theorem 1.4. Suppose A € REX® and let Ly : R: .. — R}, be a linear
map La(z) — A ® . The.the following are equivalent;

1. A= P, ® D()\;) forisame permutation A; > €

9. L4 is surjective

8. A has a right inverse’A@B. = E

| 4. A has a right "’i’n_*ugr.se:B Q@ A=E

5. L4 s tnjective

Proof. We have already proved that 1 < 3. The proof that 1 & 3, 2 & 3,
1 & 2,1 < 4 < 5 are all elementary. We are left to prove that 5 & 1.

To see this-we let L4 be injective and define the sets F; = j : a;i > € and

e //‘—-_/'
13



G; = j :a; > ¢ for some k # 1 and claim that F; € G;. We suppose by
contradiction that F; ¢ G;. We show that this is a contradiction to the fact

that L 4 is injective. Let z = [z)| where

(

T = {

e if k#1

e H k=1

Define b = ARz = D, 4 Qe KrNd@sSa Tcolumn of A and

suppose that j € F;, then j € G. Therefore there exists k # i for which

ajx > €. This means that we have b; 2 > €. Since aj; > &, then we

can find a; > £ such that a; ® a % < bj. If j & F3 then aj; = ¢. Therefore

a® a; < bj for all j. Thus wehave /@y < bland A ® z@a®e) =

¥ P

Soforz =z a® 3:

L), Bk, 2 o2 % =&, contradicting

-, _—

which proves our ifzii"-: . We note that for each

the fact that L4 is injective

permutation. Therefore for each row j tHere 1s a unique column i(j = o(i))

such that a;; is the only entry not equal to €. For each column ? and any

row k with-k # o(i) we know that k = o(i) for some i # i. This means a;

14



is not the unique non—e entry in the k** row, so a;; = €. Therefore a,(y; is
the only non—¢ entry in column ¢. Hence A is a permuted diagonal matrix

and A = P, ® D()\;) for some permutation A; > €. O

1.2.1 Max-plus exponential functions

In this section we look at the opanailcﬂis alland & ofi ekxpanéntial functions as
induced by the conventional algebra. This concept 15 the Dasis of many proofs
in the max-plus algebra. Infact it has beenused to generalize the Cramer’s
rule and the Cayley-Hamilton’s theorem as we shall see in the later sections
of this chapter. If ¥ : (0,00) S(0,00) 20d A € (oo, o0) then we define
b < e to medh limg—eo s=Ha () =-X. We note in the conventional algebra
that In(0) = —oo and e3> =0, We state.the following theorem which will
be applied to the discussion of dominance and permanent of matrices in the

next section.
Theorem 3 D Iff e e® and g = ES'EJ then f +g — 63({1@) aﬁd fg — 63(5‘-@{")

Proof. We see that lim,_ou Sl fo)= limgeyss,  Mlf)+limsoe0 s n(g) =

o+ b=a®b that is, fg < ¥, Now we have maz(f,g) = f+g9 <

2maz(f,g). This means that lim, o s~Ln(maz(e®?, e®)) < limy o s~ IN(€%+

e?) < lim,_, s~} (In(maz(e*, e”)) + In(2)].

"

15



By applying the squeeze theorem we see that lims_,co s~ in(f+g) = maz(a,b) =

a @ b since lim,_,oo s~ Hn(maz(e’?, e®)) = maz(a,b). O

1.2.2 Determinants

In this section we discuss the max-plus algebra determinant with reference
to two related quantities, the p%?l %Qa ﬁf BA a.}mckﬁﬁe_afmmance of A and
indicate the difference between it and the. conventmnal algebra determinant.
The max-plus determinant has no direct anailqgue with the conventional due
to the absence of additive inversés. 'In conventional algebra A € R™*" has
detA = Zoep, sgn(o)Ili;aisq) where P, 1s the: .’Bet' of all permutations of
{1,2,...,n} an¥ é‘gn(a"} is-the. sign-of ﬁhe 'permut.ations o.In_the max-
plus algebra the pe:ma.nent of A; called perm(A) a.nd the don;ma_nt of A,
dorm/(A) are two related quantltles, whmh take over the role of the deter-
minant. Perm(A) is dcﬁﬂed:-snmlarlx to the .det,.erm;aﬁnt but with sgn(o)
omitted , see ( OIBd;ir et al, 1998 ). For Ay R>" the permanent of A is
defined to be perm(A) =D e X1 (@io(i))> wi:tfh g€ Pﬂ as the set of all

permutation of {1,2,...,n}. T"h‘e &%mﬁinﬁ of A-is given by

(
limse0 1m0 | det (e54) | if det (e54) #0
dom(A) =
= ¢ if det (¢%4) =0
\

16



We state the following theorems which characterize permanents and domi-

nants without proofs.

Theorem 1.6. 1. dom(A) < perm(A)
9. If A € R¥X" is invertible, then dom(A) # €

3. If A € R¥X" is invertible, then dom(A) = perm(A)

17N VO
4. If A € RI" s invertible, thep d@ﬁ{/ﬂ@ B) :domfiﬂ) ® dom(B) and

| | L | N

perm(A ® B) = perm(A) ® perm(B).

1.2.3 Cramer’s Rule

In this section, we present the m-ax—fpluéfor’r’nula,tiﬁh for the Cramer’s rule,
the method in linear algebra used to'solve systems of linear'equations. We
note that the dominant is a rgﬁ'uéd version of perinanent-and leads to the
result such as the max-plus analogue.of the Cramer’s rule. When A is a non-
singular matrix, then in conventional algebra, A'Cra;mﬁr‘-'s- rule gives a solution

to the linear matrix equation Az =b as follows:

e

det (atl 3 .,..-a*i“n.,], b;} a*i-]il'i‘a*n) [ .
Ii: - ‘ u*i 2:112,...171
detA

where a,; denotes the j* column of A and 1 < j < n, (Farlow,2009).

The max-plus analogue of the Cramer’s rule for Az = bis A®z = b

—— _/“"’———_ll
17




and is given by z; ® dom(A) = dom(a.y, ...0u-1, 0, Guis1...0sn). Note that
(a1, - Bai=1, b, Quig1..-Gen) is matrix A with its i* column replaced by the vec-
tor b. Unlike the conventional algebra, dom(A) is not sufficient to produce a
solution. An additional condition is needed that is, sign(@.y, ...Qei-1, 0, Geitl-+-Oen) =

sign(A) for all 1 < i < n. To define sign(A), let P, be the set of per-

mutation o : {l,?,...,n} — {K } nUtSt mir be all pmi-
ble values such that: t, = @\fa.s 1)N I Let S; = {o €
P :ti = @, (i) forsome 0 € Falk Sie = {0 € 5i : 0 € g

-5'1..={t'.l'E.S';:.*.:rEF’,,‘,’f}I;-,,—t-_—l,s‘.'IE X

Then sign(A) = 1 if ki —

il

e

0. If dom(A) i sign(A)- F h jk{’l’" definitionn we can

write det(e*d) = Lrk

Vo note that if sign{A) # ¢, then

The concept of linear independence and dependence has its analogue in the

max-plus ﬁnse (Gaubert, 1997). Since max-plus algebra is an idempotent
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semi-ring we need the definition of semi-inodule to explain linear depen-
dence and independence. A semi-module is essentially a linear space over
a semi-ring. Semi-modules and sub-semimodules are analogous to modules
and submodules over rings. A set V C R%,. is a commutative idempotent
semi-ring over Rpqq if it is closed under & and scaler multiplication, that is,
a®@veVandudv eV for alg Jweﬁm@ ind i@ e RET. (Hogben et al,
2007). A finitely generated semi-module™ C Rrw=s the set of all linear

combinations of a finite set {uy, uz, ..., uppfoflvectors in Ry

mazx”®

V = {@ v; @ uq l ], 9y ey A € Romaz }

1=1
An element 7 'can Beswrittenfas.a finitelinear €ombination ot elements of
FCVifz =@ ®ffor some As € R,..e Such that-Xs=¢ for all but
finitely many / € F. There are different interpretations'of linear dependence

and independence but weeensider their definitions due to (Akian et al, 2007).
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Definition

1. A set p of vectors {v1,vs, ..., Up} € RY,,, is linearly dependent if the set
{1,2,...,p} can be partitioned into disjoint subsets I and K such that

for j € I U K there exist a; € Rpqz, N0t all equal to € and

!' ﬂ 'U @ ﬂkvk

& I\ B |
i L] « b
2. A set p of vectors {v1,vs,...,9p} € Ri g, 18 linearly independent if for

all disjoint subsets I and K of {1,2,,p}j € I U K and all @; € Riex

we have

‘r ﬂ-':ﬂt - @Hk'b‘h

i€l ke K

unless a = € forallg e UK.

1.2.5 Graph Theory in Max-plus

Many results in“max-plus can be attributed-to the theory of graphs in max-
plus. Graph theor};r pla,ys an important role in obtaining thé maximum cycle
mean, which is used to solve elgenvalue and elgenvector pfoblems A directed
graph is an ordered pair D = (V, E) whefe V is a non-empty set (of nodes)
and E C V x V (the set of arcs). A sub-digraph of D is any digraph
D = (V+E') such that V' C V and E CE. If e = (u,v) € E for some
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w,v € V then we say that e is leaving u and entering v. Any arc of the form
(u,u) is called a loop (Butkovic, 2008).

Let D = (V,E) be a given digraph. A sequence 7™ = (v1,...,Up) of nodes
in D is called a path (in D) if p = 1 or p > 1 and (v;,vi41) € E for all
i=1,...,p-1. The node v is called the starting node and v, the end node of 7.
The number p — 1 is called the l%gﬁhﬁf rjthat i§ [(7) ang-thus [Misau—v
path. If there is a u — v path in D ﬁ'ien vk"i?s sll*:%iiﬁ‘ii-;o ‘ﬁ;"’reéthable from w that
is w — v. A path (v, ...,vp) is called a cyélelif (vi =vp) and p > 1. If there
is no cycle in D then D is called acyelic.

A digraph is strongly connectedfif @ = v-for all modes u,v in L. A sub-
digraph D' of D-is-called.a_strongly connected component of D if it is a
maximal strongly connécted sub-digraphiof -

If A= (a;;) € R"" thensthe symbol F '4(Z 4) will denote, the digraphs with
the node set N and.arcigetsels = {(i:1); 0 > cr A = (3,7); ai; = 0).
Fa(Z4) will be'calledythe finiteness {zero)-digraph of A. Jf Fy is strongly
connected then A is Caﬂ’%ﬂ-*‘igr@ducible and reducible 'oﬁhgrw'iSé. If A= (as;) €
R™X" js irreducible and n ::-- 1 Ehéh.’*)ﬁ’fis“ called dotbly R-astic. and if A =
(a;;) = R™™ is row or column R-astic then F4 contains a cycle.

A weighted @igraph D = (V, E,w) where (V, E) is a digraph and w: E = R.
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If 7 = (vy,...,vp) is a path in (V, E,w) then the weight of 7 is w(w) =
w(vy, v2) + w(v,v3) + ... + W(vp-1,vp) if p > 1 and e if p = 1. A cycle
o is called positive if w(c) > 0. In contrast, o is called a zero cycle if
w(vg, vgg1) =0 for all k =1,..,p—1. Given A = (a;;) € Rx2 let D denote

the weighted digraph (N, E,w) where F4 = (N.E) and w(i,j) = ay; for all

(,5) € E. If 7 = (i1, .., zp)maKNU T = w(m)
and it follows that w(m, A) = @i i, + Qigig i, af P!> 1and e if p=1

(Carr¢ , 1971).

1.2.6 Max-plus polynomials:

1 1 W D0, VIO , i 1i tion in
In this section ‘we introc fyhomials ApC _.

modeling Discrete Event
tems, ( Baccelli et al, ' he operator y be such that vz(k) =

z(k — 1), then the max-pl Lis P(1) = 20@0°C 1M @ .. ©pa®

= po®7°2(k) ® pimz(k) @ ... ® pa ® 7" 2(K)

po®z(k)@p®2(k—1)@... 0 pa ® 2(k —n)
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Let P, and R be three max-plus polynomials such that

P(y) = pp®1V@pm® .. &pa®7"

Q) = 0®’ NS .. ®¢g.®7"

R(Y) = @Y ®mm® .. 0rm®1™
Then the max-plus product and su r polynomials are defined as follows:
PM&Q(Y) = m®Y &py KN@u S @qwx@ B¢ ®7"

= @(Pﬁ D i) ® Vi
i=0 |

P(Y)®R(7) = (Po ®7 & p1Y @ u] ®90) @@ e @ . BT ® ™)

k-

Let P,Q,R be three .mﬁ-: Iuﬁg&yﬂ( d 2z and’wbe
VE=

= ‘ 4-'m-..
the ms

.--""-.r.r-

WO Sig'ﬂBlS,

then we can observe the fo lowing p. u» es O ¢plus polynomial

expressions:

We consider systems that can be described by the input-output relation:

y(k) = a ®y(li:’})$ a, @Yk —2)®...0a, ®y(k —n)
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® by@uk®b Quk—1)@ ... D by @ u(k —m)

This can be written in polynomial form as y(k) = A(y)y(k)® B(y)u(k) where

A(7) and B(7) are polynomial operators

A7) W7V D’ ®..®a, 7"

“KNUST

A system of multivariate polynomial equalities and inequalities in the max-

Il

B(7)

Il

plus algebra is defined as a set of integers {m.} and sets of coefficients

{axi}, {bx} and {ck;;} withi € (1, . Sneih

1,...,p1 + p2} such that

mg
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1.2.7 Solution of Systems of Equations in Max-plus

The theory of linear systems of equations for the max-plus method is devel-
oped in this section after Gordran and Minoux, 1984. Generally, we would
like to be able to solve the matrix equation A ® x=b. Although there are
some similarities in solving systems of equations in max-plus and the conven-
tional algebra method, the operaﬁj’@n @ Greates sgme,_j{;terfgsting differences.
We consider the equivalent syst.elm of equations in the conventional algebra
to first get an idea of how to solve the,systems, We can write A ® x=Db as

the following detailed matrix equation and the equivalent system of max-plus

equations as follows:

( Ol 012w "5 — i \ / Ly \ ( b1 \
ao1l G2 ' Q2n ) b2
AR®x=b = ® =
| '.\(‘ﬂml Am2 S Omp ) \ In / \bm /
That is:

|
L
-

(a1 ® 1) P (a12 ® To) DD (@10 ® Z4)

r({121®$1)@(ﬂ22®$2)@'"@'(3211@:511) = b2

- F
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(a*ml @ :E..I) D (ﬂ'm‘.'i X 3:2) DD (amn 029 :Bn)

The following system must be solved simultaneously as follows:

mam{(an -+ .’L‘l) (a12 —+ Zg) (ﬂd,n - .'I?ﬂ b
maz{(as + Z1), ( “KN U S-sz

maz{(am1 + 1), (am (amakt zn)} = bm

We first consider the case that & nd some of the entries of

b are —oo. Withott loss" s'so that

the finite entries of b o




R N T e g o i P

N (W Al o T WM SEPIRE ) T Py e W T T W WY T el T T
T |

L o ek Lo doam - o pill amemea ) . JAd o Bl i

This gives the following system of equations:

m{lm{(ﬂlj_ o $:l.): (alﬂ i m2)1 S (arl'n == .‘.Fn')} = bl

maz{(ag + 71), (ak2 + T2), - - -, (kn + Tn)} = bk
maz{(ak+1,1 + T1), (ak+1KN U Scﬂ)' —00
maz{(a, + 1), (an2 + B2). ta,)} = —o©
Rearranging the variables so that s BREL e Gt
_ &
occur first we h 4 ;
'f‘r 1 : . ‘ :
Il!II " , II
Allixhl. ' P
A NA: | | 00 =
_ | &>
T 5
K3 o
27
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i) )

Let the dimensions of A; be k x I. Let b’ = : and X =

b 2T\

We note that if A ® x = b has a solution, then z,41 = T, = —

4

and

A®x =Db. Thus, A®x = b has a solution if and only if x is a solution to

A ® x =b and solutions to A m:l l S T

" a solution to the system, we first consider each component of x separately.
For example, if there is a solution z; to the system, then a; +z; < b for
i =1,...,m. Thus z; < b; — a; for each 1, leading to the following system of
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- ——u'—'iﬁ

upper bounds on z;:

1 < by —an

71 < by — ag

Ty S bm — Om1

The solution of this system of inlqgmmufs |

1), i, (b — ama)}

Ty S Im'n{(bl = {111), (bz —5 @9

Similarly, zg, ..., Z,, Will give us the following,s; tern of inequalities on the

entries of x:
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This leads to a candidate for a solution to A ® x=b, That is:

G
o
S i where
siiai
5‘;1 < min{ (b — ﬂuléﬁ M):‘ : ‘s'bS ql-)}
$; < min{ (b — a12), (b2 — a2 " VA (bm — am2)}




1.2.8 Solution of systems of linear equations and in-

equalities in max-plus

In this section we consider the problem consisting of a system of linear equa-

tions and inequalities in max-plus algebra and present necessary and sufficient

conditions for its solvability.

Let A = (ﬂij) = Rk"“,C’ = (Cin[N U],SJWE Rk and d =

(ds, ...,d-)T € R". A one sided max-linear system with both equations and

inequalities is of the form:

(1.4)
= _,_l-""..rﬂ
The following notation wi
e
ay ac
- b e
PR TA Lot
of ‘o P >
m\‘l‘ﬁ?‘gﬁ. S5



o
|

= —a,Ya € R

=
-

2
I

{re R ARz =b}

=
I

{k€ Miby®aj =min(b;®a;;')} V jEN

- . | .
T li;élﬂ(bit@aﬁ) VJEN

T; = ®a,3 VJEN
K; = {ke K;bk®a;j ='n(b,¢®a;j)} VjEN
T = (TiyeesTn).

=l

S(A,C,bMd)-=a.c ] 'ﬁ QzLdl _—7

S(A,b.<)

S(C,d, <)

and N; = {j € N;z; = 7;}. Since much attention has been given to
one-sided systems of linear equations and systems of inequalities in max-plus

algebra, we present the mglg;lg_qtion of the two system as one and the aim
i ‘_';_,,.-:"___,“ —
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is to analyze the existence and uniqueness of solution to such systems . The
following theorems show how the existence of a unique solution to max-linear
system A®z = b is described and how the system containing both equations
and inequalities can be solved. We state the following theorems and without

proofs ( Aminu, 2011, Cuninghame-Green, 1979).

Theorem 1.7. Let A = (ay;) € ﬂ1< Nﬂ %n}% S(A,b) if and

only if

Theorem 1.8. Let A= (a;

and only if

R* and d = (dy,...,d.)" € R". Then the following three statements are

equivalent:

il (i) S(A,C,b,d)#0
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() &€ S(A,C,b,d)

@i) | JKi=K
jeJ
Proof. (i) = (i1). Let = € S(A,C,b,d), therefore x € S(A,b) and =z €
S(C,d, <). Since z € S(C,d, <), it follows from theorem 1.7(iii) that z < 7.

Now that z € S(A,b) and also z € S(C,d, <), we need to show that i

z; Vj € N; (thatis N; C J). K/NEU!ST%:BES(C:'}*‘J)

we have z < T and therefore 7; < T, thus j € J. Hence N; C J and by

Alsod < T and :) J glVES ‘ T _ Hence UjeNi K b

- e

A, D ‘ {{ )"'H ite

is S(A,C,b.d) # 0) and this’proves-auz) == “Q_,...yﬁ O

ReXR +" X7 ' . .(bl1 Sy bk)T €

K, theref T €S ) -“~_ b, d) (that
erefore & bid) (

Proof. Let z € S(A,C,b,d), thenz < T and ¢ < . Since £ =T @7 we have

z < 3. Alsez € S(A,C,0, d) implies that z € 5(C,d, <). It follows from
e = //-—-’_'_.
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theorem (1.7) that Uy, K; = K.

—

Suppose that z = WD

Hll

and |J;cn, K = K. It follows from theorem
(1.7) that € S(A,C,b,d), and also by theorem (1.8) that z € S(C,d, <).

Thus z € S(A,b) N S(C,d,<) = z € S(4,C,b,d). O

Let | X| be the number of elements of the set X.

Lemma 1: Let A = (a;;) € ]R‘“K N, U"‘S % (by,...,bx)T € R*

and d = (dy, ...,d.)T € R". If |S(A,C,b,d)| =1 then |S(A,b)| = 1.

IS(A, C, b,d)| > 1.

Proof of case (i): Suppose that L - one element say n € N

that is L = {n} s from theorem.(1.9) that
€ S(A.C,b.d) S(A,C bid). It can
SO
— - T .
be seen that z,, < 7, andjany,Veei,or.ol Lie -’i = (71, ...,_fn_l,ﬂ') =

& S ANE
S(A,C,b,d), where a < Z,. Hence |S(A, C,b,d)| > 1. If L contains more

than one element, then the proof is done in a similar way. Case (ii): that is

L =0(J = N): Suppose J = N. Then we have ¢ =% < 7. Suppose without
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loss of generality that z,z. € S (A,b) such that  # 2. Then 2 < 7T < 7 and
also z: < T < Z. Thus, z,7: € S(C,d, <). Consequently, z,z: € S(4,C, b, d)

and x # .. Hence |S(A,C,b,d)| > 1. O

Theorem 1.11. Let A = (a;;) € R¥®,C = (¢;;) € R™"™, b = (by,....bx)T €

k and d = (dy,...,d.)T € R". If|S(A,C,b,d)| =1 then J = N.

Proof. Suppose |S(A,C,b,d)| = KMH%ET (1.7) that UJEJK =

K. Also, |S(A.C,b,d)| = 1 implies that [S(A,b)| =1 from Lemma 1. More-

Corollary 1: ket . A =

and d = (dl, vo sy d

(ii) |S(A,b)|=1 and J =N

(i) | JK;=Kand |JK;#K, forevery J CJ,J #J, and J=N.
jed e j'E-I'
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Proof. (i) = (i) Follows from Lemma(1) and Theorem 1.11. (i2) = (i)
Let J = N, therefore T < T and thus S(A,b) N S(C,d, <) = S(A,b). Hence
|S(A,C,b,d)| = 1.

(1) = (it) Suppose that S(A,B) = {z} and J = N. It follows from
Theorem 1.8 that | ),y K;j = K and [,y K; # K, N C N,N' # N. Since
J = N the statement follows fronlée erd 118.

(412) = (i2) It is immediate that J = JN tuaﬁe]:ow follows from
Theorem 1.8. . O

Theorem 1.12. Let A = (ﬂ@j) & -.3;-:'_’ '-;I ;Tx“1 b = (bh e bk)T c

Rt and d = (dy,....d,)T € R". If|S(A C.ord)[i> 1 then |S(A,C,b,d)| is

infinite. ' , -

of the form:

\

is in S(A,C,b,d), and the statement follows. From Theorem 1.10 we can

e ——— //'
37
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equations and inequalities can only be 1,0, co. O

1.2.9 Max-Linear Program with equation and inequal-

ity constraints

In this section, we show how max-plus can be applied to optimization. In

particular we show formulation K&Ne{;}% ]:-;th equality and

inequality constraints. We present a polynomial algorithm for solving max-

linear programs whose constraints are max-linear equations and inequalities.

This algorithm does not increase then ; - of constraints and thus decrease

S i ¥ = r

i Ft* 9)
*"_, 10 __ | ‘814;:- ._

e fARzeu®y) =

the computa,tiona.l complexity.

Suppose f € R" a d‘“letylj" ~¢®

(i) f(z) is max-linear (Gond _' “ang

g

' - 7

minimizing(maximizing) the function:

fz) = fT ® = = max(fi + z1. fi + T2, ..., fn + Tn) subject to
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ARz =0
C®z<d
is called max-linear program with one-sided equations and inequalities. The

set, of optimal solutions are denoted by S™"(A4, C,b,d) and S™*(A,C,b,d)

respectively. We note that it would be possible to convert equations to

inequalities and conversely but thKowNﬂU HS{;¥E in the number

of constraints or variables and thus increasing the computational complexity.

in the following algerithnithat.S(A; C,b,d) # Urand also 5 win (- b,d) # 0.

Algorithm  (Max-linear program with one-sided equations and inequal-
ities)
Input: f =’('f11f2,---=fn)i€fR",b = (by, ba, ..., bx)T € R¥,d = (dy,da, .., dr)" €

/_”-
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R, A = (a;; € R¥*" and C = (c;;) € R™*".
Output: z € S™*(A,C,b,d)

1. Find Z,%Z,% and K;,j € J;J = {j € N;T; > 7,}.
20 =2

3. H(z) :={j € N; f; + z; = f(z)}

4. Jo="J\ H{(z) KI\L ST
5. If U;ey Kj # K then stop (z (A, ,L,.'J)

6. Set z; small enough for every j € H(z)

7. Goto 3

Max-Linear Progeam with two sided const aints

=

Here, we show an extension of the previ

maximization problem is the max-linear program with two sided constraints.

f(@) = fT ® z = max(fi + 21, fi + 22, ., fa + Za) subject to

s ‘/—_——’-
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ARz®Dc=BRxxrdd

where f = (f1, fo, ..., fa)T € R* € R*, c = (c1,¢2y -, m) T, d = (d1,da, ..., dm)T €

R™, A = (a;;) and B = (b;;) € R™*" are given matrices and vectors.

1.2.10 Eigenvalues and Eigenvectors

In max-plus algebra the max-pluiéeM Mi%%:rs have a graph

theoretical interpretation. We explain this graph theoretical interpretations

through a series of definitions. For an n xn matrix A, the digraph(or directed

graph) of A is the graph with vertices where there is a directed arc

from i to j with weight a;; if and . A path is a sequence

-
of distinct vertices i, s, ... _ N ' m 1,41 for
N e T | is_the s_- the weights of the
arcs that make up that patk BEVy, h- C _' DA is strongly
connected if there is a path from any vertex to any _ -vertex. If Dy is

Definitions

1. A cycle o, is a sequence i, iz, ..., 24 Ol distinct vertices such that i; —
in,ip — i3,...,ix — i of adjacent arcs in the digraph that starts and ends

at the same vertex and does not travel through any other vertex more than

- e
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once. This can be described as a sequence of vertices. The number of arcs

in a cycle is called its length [,. Note that for any o,[, < n.

2. A loop is a cycle with length 1. For a cycle o, the sum of its arc weights

divided by the length [,, is called the mean M(o).

We are interested in the maximum of these cycle means, where the maximum

is taken over all circuits in the m N l l S 1\'
3. For a matrix A with distinct cycle e the maximum

cycle mean by p(A) = M(o;). A graph

“contains only the cycles with
the maximum cycle mean is called a critical g
We note that the maximum cycle mean of a matrix :

8iof fundamental impor-

tance In max-pl us g& ra~-because-tor m; 4§ u_im. e
_-"""%‘I_\_ P _1.'_; 1

max-algebraic eigenvalue. *‘T.‘.‘k‘_‘-‘ \

m J@x it is the a.test

f’f’

A@m for A =
esponding eigen-

Here, we discuss

will involve
some combinatorial features of the-eigen-preblem-—We note that for every
= (a;;) € R2X" there is a unique value of A = A(A), called the eigenvalue

of A to which there is an z € R®__ satisfying the equation A® z = A ® z.
'/,‘-""

- //—'—’l
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The unique eigenvalue is the maximum cycle mean in D4 that is

_w(A)
Mele oL, (o)

where ¢ = (i;,....1x) denotes an elementary cycle (that is a cycle with no

repeated node except the first and the last one) in Dy, w(A,0) = aiyi, + ... +

@i,i, is the weight of o and (o) BK NI:U Sl‘ aximization is
taken over elementary cycles of hs the loops. The

computation of the maximum cycle mean ds

difficult since the number of
cycles is very large in general. Thek method currently is Karp’s

algorithm which is based on the fg

1991 ‘The Transitive {

We discuss transitive closures which are of fundamental importance in max-

p——

e _/
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series as follows:
MA)=AR A’® A®® ... (1.5)
AA)=TdT(A)=T0Ad A’ A% ... (1.6)

where A € R™*" and show how I'(4) and A(A) can be used for finding

a solution to the equations A® z = z and A ® ¢ < A ® z. The matrix

I'(A) is called the weak transitivaN Lifjhgse]:s converge, and

A(A) is the strong transitive closure of A. We use these matrices to describe

all non-trivial solutions (if any) to the max-plus equation A ® z = z in

ot {0 1] E I

NnsS"10 A"

the case of T'(A) and all finite soluti < A\® z in the case of

] .J"-.ﬂ

A(A). To see this,we propose thati(1.5) anve ges if and only if AL@) <.0.

T

If A(A) < 0 then-bA)y=-4 @

A is irreducible and n > L then T(A) i inite. “We' consider the matrix

_ l v —— . S———— e o,
) ll'-lnlh.’-_ll-ﬂtn-i-"ﬁ
, : o

A(A) < 0 we have A(A) = I ®T(A) = Je A A’® A*@ ... ® A* for every

k> n—1 which implies that A®A(A) = AQ(IDAD A2 A°@...0 A =
i /’_’——"—_’
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& TnSw=n

A A2® A3 @ ... » A" = T'(A) < A(A), that is every column of A(A) is a
solution to A®z < x

Similarly if A(A) < 0 we have ART(A) = AR (A A’ A’ .. ®A") =
AAgA.. DA <A@ A’ A*® ... ® A"*! = T'(A) which also implies

that every column of I'(A) is also a solution to A ® z < z. If A(A) =0,

then at least one column of I"(A) ST We note that

A®z < A® z has a finite solution 1 and only

1.2.12 Linear Program \pproach to Finding Eigen-

values in Max-p
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B sl

" _— -

then

e ton sy 4

-, 11 @12 413 T1

a21 Q22 Q23 ® ) =A® T3

\ %31 Gz a3 ) ) 3

Rewriting the above matrix equalI(N Svel

(a11 ® 1) @ (a12 @ 72) D (a

,:-:-" }\+$1

M | Em""

(521 ® 1) D (a2 @ z2) & (ags &? '3) A+ zo
i i P

e,

(a31 ® 1) D (a3 @ 2 A+ T3

= Cap+ T2 < A+ 1,
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ﬂ13+$3 S /\+$1:
921 +$1 ﬂ A+$21
a2 + To < A + g,

a3 + 3 < A + T,

"KINUST
Q392 Lo = A + L3,

azz3 + 73 < A .Ji';uz._

And this can be written in matrix formas: . =

=

1
0F —in. 1 a3z
o 0 D I 6 1) 033)
— _,,./'
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Let H, be an n? x (n+1) matrix in the conventional algebra, then the simplex

method solves the linear programming problem

Primal:  max bTy subject to Hfy=¢, y > 0,and

Dual : min ¢’z subject to Hp,z > b

We note the formulation (1.7) is tKlN(lLJ SCIISE (1.8) to find

the eigenvalue and an eigenvector of A by linee

_programming. We need to
minimize ¢”z o that Haz > b. Let |¢&0,0,%.50, 2T then ¢"> = X and the

sum of all entries of H,z is equal t0 n2A = n2el2

48




1.2.13 Cayley-Hamilton Theorem and the Max-plus

Characteristic Equation

The characteristic equation of a matrix equation in conventional algebra
is used to determine the eigenvalue of a matrix. Let Cf be the set of all

subsets of k elements of the set {1,2,....,n}. If A is an n X n matrix and

ulmg—gars and columns

of A except those denoted by ¢ is denoted by A

¢ C {1,2,...,n}, the submatrix oBtaingd

. The following theorem

guarantees the determination of eigenyaluies from the characteristic equation.

det

A" o AP

where the ¢ are given by g =

The Ca,yley—H antlten. ]

Consider the matrix e°”, the characteristic f omial“of the matrix-valued

function e®*4 is given by

detOM I — e°4) = \* + 1 ($)A" ! + ... 4 Yn-1(8)A + Tn(s) (1.9)
f’ =
e ——L ”/——"—I'
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with coeflicients yi(s) = (=1)* 3 ccx det(e®?ee).

| Therefore (e54)* +71(s)(€34)" +... +Yn-1(s)e** +7nl = 0. This is the result
of applying the above theorem to the matrix e*#. The Max-plus characteristic
equation of A is also found by rearranging (1.9) and removing the yx(s)A" ™"
for which Ax(s) has a negative leading coefficient to the right side, replace
X\ with e**. The reason for doin sulit@c 1 not defined in
the max-plus algebra. The max-plus c LJ S ation of A € R 7 1S

defined as \®" & ®kE£ dr ® \8n—k — @k .__.;__f; . &

\®"—k and A satisfies its own

- . g 2 @n 1 o A®n—k _ M ®n—k
characteristic equation A®" @ D, pdr ® A" D dk @ A
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Chapter 2

KNUST

Some Applications, of Max-plus

Algebra

many idempotent semi-rings, whieliZhave: bee: &dusidéred in various field of
mathematics. Max-plus algebra has found applications in many areas such as

optimization, mathematical physics, algebraic geometry and combinatorics.

-
-

—— /"——_’-
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It has also been used extensively in control theory, discrete event processes,
telecommunication networks, machine scheduling, manufacturing systems,
traffic control and parallel processing systems (Gaubert, 1997).

Max-plus serves as a powerful tool required to analyze the highly nonlin-
ear equations that arise in most applied models in Mathematics. Many of the
model equations formulated for dK 1j these applica-
tions are nonlinear in the conventional sense. en max-plus is applied, the

highly nonlinear equations are transformed into linear in the max-plus alge-

bra. This is one of the reasons why it is'used i areas of application.

We present some of the applicatiofis of $he 1nax-plusalgebra to finite and
ifinite horizon ;’ it

problems, linear discreté@évent systems and asymptotic growth rate analysis.

(HJB PDEs) are based on max-plus formulation of these problems. One of

the approaches to solving nonlinear control problems is Dynamic Program-

-

-

m—— /4-’———/-
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ming (DP) (Bertsekas, 1987). The Dynamic Programming Principle (DPP)
is an operator mapping the the value function (optimal cost as a function
of system state) at one time to the value function at a later time. In the

continuous-time case, if one takes the limit in the DPP as the time-interval

goes to zero, the Dynamic Programming Equation (DPE) is obtained. For

most continuous-time/continuousKN}I@SSUT' takes the form
of an HJB PDE which is a nonlinear first-order PDE:"
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2.2.1 Finite and Infinite-time horizon optimal control

problems

In this subsection we discuss finite and infinite-time horizon applications in
optimal control problems. Let the state at time ¢ be denoted by &, the state
space be R”, and points in the state space by = € R". One obvious category

of problems appropriate for the mK Ndugq\-te time-horizon

optimal control problems. Let the clynanuca and initial condition be

where u, is a controlinput process taking

ematics for solution of associated HIB PD will e esamere dless of the

For example, one might haveljegr-=Jdu..[s,Fp—= Ufu~is measurable} if
U is compact. If U is not compact (e.g., U = “), then one might take
Uist) = {u : [s,T) = U | f[m’f'l | we|?dt < co}. It will generally be of interest
to consider eptiinization of a payoff (or cost criterion) through choice of this

E— /,.—-’-—’_—
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input process. In the case where u represents a controller, we may interpret
the problem as an optimal control problem with the given cost criterion.

Such a criterion would typically take a form such as

o
J(s,z;u) = f L(&:,us)dt + ¢(Er)

(McEneaney, 2004) Other probleumuiﬂes suprema or
limit suprema over time are consitered next. inize the payoff, the

value function of this problem would be

Problems where one.naximizes, over X space 1s usua,lly a,m_enable
: ,.-«'L =

then the min-plus
4‘1’

eresting class of problems

-II—

3

to max-plus methods: If m %ne w

algebra would be appropriate.

will be the robust/He infi s. The typical

where v(z) is the fixed feedback controller, g(&) = f(€,v(€)) represents the

nominal dyﬁéﬁii_cs (that is, the dynamics in the absence of a disturbance

e

99
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process), u represents an input disturbance process. If the range space of u
were R*, then the disturbance space (also referred to as the control space of

u) is given by:

U = Ly([0,00); R*) = {u: [0,00) = R¥|upoz € L2(0,T) V T € [0,00)}

where Ly(0,T) is the set of SunN ST [0,7]. This
system is said to satisfy an H, itérion ne ameter v €

(0, oc) if there exists a locally bounded /3 : L, (0, 00) where 3(0) = 0 such

see for example (Lions, 1982).
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2.2.2 Max-plus Finite Element Method For Optimal

Control Problems

We now develop the max-plus finite element method to solve finite determin-

istic optimal control problem. Let the optimal control problem be

maximize /0 f(x(l)((N—Ft(mJ?gT (2.1)

subject to the following constraints

gla)= f(z(s), wu(s)), z xé)e X, u(s) eU (2.2)

forall0 < s <T. X CR"is the statespac " € R™isthe set of control val-

ues, T > 0 is the "'i:-'_‘a ‘E "'w
4:—

the map u(-) is measurab a;n_ h%

ndi * : m;rgﬂ_., We assu e“‘rtha.t

Vw finuous. Assume

« U — R, and the

also that the instantaneous res -

dyna.mlCS f eA XU = Rﬂ, are sufficle

is solution of the Hamilton-Jacobi equation of the form:

_=—+ H(z, —) =0, (z,t)e X x(0,T] (2.3)
= //"_"
o7




with initial conditions

v(z,0) = ¢(z), =€ X, (2.4)
where H(z,p) = sup,ey l(z,u) + p.f(z.u) is the Hamiltonian of the problem
(Lions, 1982). The evolution semi-group S* of (2.3) and (2.4) associates to
any map ¢ the function v* = v mv!m ISTnctmn of the
optimal control problem (2.1). ¢ S* is max-plus

linear (Kolokoltsov et al, 1997) that is for allkmaps f, g from X to Ry,.,, and

for all A € Rz, we have

we have the following recursive equation:

= St t=0,6t,...T =0 (2.5)

—_— = /-”'—_—_’4—
58




where v° = ¢ and § = %, for some N. Let W be semi-module Ry, of
functions from X to Ry, such that ¢ € W and for all v € W, t > 0,
Sty € W. Let Z be a semi-module of test functions from X to Rpqz, then
the max-plus scalar product is (u|v) = sup,.x u(z) ® v(z), for all functions

w,v: X = Ronee. Let equation (2.5) be replaced by the following:
(z|vt0) = (2)8%v') W2 € 2 (2.6)

fort = 0,6t,...,7 — §, with v°,...,vT € W. The above equation (2.6) can be
used to define a notion of solution to Hamilton-Jacobilequations (Kolokoltsov
et al, 1988). Let a semi-module gy EFWIbe gencrated by the family
{wi}1<i<p- The functionsw; is called the finite elements, We appreximate
ot by vt € Wi that iswubr vk = Q7 wiA{, where A€ Rpast We also
consider a semi-module Z, @ Z generated by the family {2 }12i<q, then the

functions 21, ..., 2, act as testfunctions.We replace equation (2.6) by the

following equation:
(zilupPy=dat80,), Vv 1< iS4 (2.7)

for t = 0,0t,....,T — &, with v) = ¢n =~ ¢ and v;, € Wh,t = 0,6t,....T.

Equation (2.7) need not have a solution therefore we look for the maximal

_'_'_,.r’ .
o

29




sub-solution, that is the maximal solution v;™ € W, of

(zilvh) < (#|S°0R), Y1<i<gq (2.8)

We also consider the approximate value function vj, at time 0 the maximal

solution vy € Wj, of

'“E;.-"‘: 20 . (2.9)

I8

We denote by W}, the max-plus opérater'from R toa) with matrix Wy =

col(w;)1<i<p, and by Z; the max-plus linear gperator from W to R, whose
transpose matrix is Zj, = col(z;)1<isge »This implies'that WA = D Wi
for all A = (Mi)ic1..p, € R ad@N(ZE0Y;"=M(Zjlv), for all v € W and
j =1,...,q. The'maximal.solution vi*‘}' ciWpbof (2.8) and (2.9) is-given by
vit® = oyt where S = Hﬁ’:‘h o

Let vi € W}, be the maximal solutien of (2.8) and(2:9), for t'= 0,6¢, ..., T
Then for every ¢ = 0, t, ..., Tythere exists A € RF, . such that THES

Moreover the maximal ‘\' satisfying these conditions verifies/ théf recursive

equation
N ="(Z;Wn) (2.10)
and the initial conditions N=W, Forl<i<pand1<j<gq,we define

= (An)si = (%|Wi) (2.11)
-
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(Bn)ii = (2|S°w;) (2.12)

where A, and D) are respectively the matrices of the max-plus linear op-

erators Z, W), and Z;;S°W),. Equation (2.10) may be written explicitly for

e eUST

This recursion may be interpreted as the dynamic programming equation of a

1<i1<pas

2. Compute the matrixtA;
3. Compute A\’ = W}, ‘and" lL

4, For t =9,20%.
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2.3 Optimal Control Approach for Max-plus

Linear Discrete Event Systems (DES)

2.3.1 Max-plus linear state space models

DES can be modeled by a max-plus algebraic model of the form:

2(k) = Aer(hl)s Bat(k)

(k) = C®z(k)

see for example (Heidergott et al, 2006).

The vector z represents the state, w the input vector and y the output
vector of the system. The components of the input, eutput and the state
are event times and k is an event ¢ounter, For a-manufacturingsystem, u(k)
would represent the time at which raw material is fed to the system for the
kth time, z(k) the time at which the machine start proeessing the £ batch
of intermediate products, and y(k) thetimeat which the k" batclrof finished
products leaves the system._Té detérmine the il]ﬁ‘ut-OUtPUt behavior of the

DES we have the following:

z(l) = A®z(0)® B®u(l)
7(2) = A®z(1)® B ®u(2)
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= A% 2z(0)® A® BRu(l)® B ®u(2)

and so on, which yields z(k) = A% ® z(0) ® PF_, A% ' ® B ® u(i), for
k=12".. Hence

y(k) =C®A® ®z(0)® P A®" ® B@u(i) (2.13)

1=1
for b =1.2. ...

Let y3 = {y1(k)}%2; be the output sequence that corresponds to the
input sequence u(1) = {u;(k)}$2, with imitial eondition z;(0) and let y; =
{y2(k)}52, be the output sequence that corresponds to the input sequence
u(2) = {ua(k)}$, with initial condition z5(0).-"Let'@, 5 € R U {—oo} it
follows from equation (2.13) that.the output sequence that corresponds to
the input sequence a ® u; D P us ={o.@ u (B) D SR us(k) I, is given by

a®y LR yo.

2.3.2 Model Predictive Centrel (MPC)

MPC is a very popular controller'design method in.the proeess industry. Pro-
cess industry is always characterized by changes in production parameters,
and MPC has shown to respond effectively to these parameter changes in

many practical process control problems and applications. MPC makes use
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of a finite horizon which allows the inclusion of such additional inputs. It
also uses linear discrete event system models for the process to be controlled.

A cost criterion J is formulated that reflects the reference tracking error Jyu:
and the control effort J;,.

J = Jout"‘l*"\'}in

e 1 @RS | A A W

+ AZ || u(k+ 5 — Ui (2.14)

where g(k + j | k) is the estimate of the output at time step £+ j, r is a
reference signal \ is a non-negative/scalar, and N is the prediction horizon.
The input is takemsto-be Constant.from. a eértaintime on,that is: w(k +7) =
u(k + N, — 1) for j = N&.... Ny TgwhereilN, is'the control horizon. The

use of a control horizon leads to a reduction of the number.of optimization

variables which gives a smoother.controller signal and a stabilizing effect.

2.3.3 Max-plus Linear Input-Output (MPLIO) Systems

We consider systems that can be deseribed by-the-input-output relation:

y(k) = a1 ®@yk—-1)DaQyk—2)®...0e@yk—n)

28 bg@)uk@bl@u(k—l)@...@bm®u(k—1n) (2.15)
= 3 /’,_/——‘_’—

S
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This can be written in polynomial form as

y(k) = A(y)y(k) & B(7)u(k) (2.16)

where A(7) and B(v) are polynomial operators, that is:

=
=
Il

u®Y ®ay®...0a, 7" (2.17)

Sy
—
~2

|

o N

Discrete event systems (DES) .Lhat can be described b}; this model will
be called max-plus linear input-output(MPLIO)\systems. The input u(k)
contains the instants at which the input-eventsoceur for the k** time, and
the output y(k) contains the time instants at-which the output events occur
for the k** time. Note that for a nlanttfactﬁring system, u(k) contains the
time instants at which the £™batch of taw material is fed toithe system, and
y(k) the time instants at which the kt* batch of finished product leaves the
system. The entries-of the polynomials A(7).and B(v) are varying in time

due to slow changes\in the system.

2.3.4 Model Predictive Control for MPLIO Systems

In this subsection we consider a cost criterion J(k) that reflect the output

and input cost functions Jou(k) and Jin(k) respectively in the event period

I
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[k, k+ N, — 1] as J(k) = Jout(k) + AJin(k) in which

Jaut(k)

%20 max(i(k +j | k) — r(k + 5),0)

(k) = —Z375 u(k + j)
where N, is the prediction horizon and ) is a weighting parameter, §(k+7 | k)
is the prediction of the output mK N.;U S t step and (k)
is the due date signal. J,(k) re r nd Jin(k) is used

to penalize a large input buffer (De Schutter and Boom, 2001). In order to

calculate the optimal MPC input signal, we need to make predictions of the

output signal.

Theorem 2.1.

deml ' : s -(2. 574 0! —negatwe
,/ <

integer j, there exist polyno .:a_. ”’j "f

such that

gk +j | k) = Ci(Ny(k) ® Di(Vulk — 1) & Fi(v)u(k+j)  (2.19)

] e
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Proof. : (De Schutter and Boom, 2001). Define

Co(7)

Il

A(A)

Do(7) = 0®Y D0 @7 @... 0 b @™}

Fo(v) by ® 7°

and for j < 0, Cj(v) =777, Dj(KN[iJ S‘r.lg) is satisfied
for j = 0 since y(k) = A(y)y(k) & B(PHu(k)= Ou)itk) ®°Do(7)u(k — 1) @

»

Il

Ll
r T

Fo(7)u(k) and for 5 < 0,17 > 0, we have y(k 'r‘y(k) Letforj€ Z,5 >0,

the polynomials C;_¢(7), D;-¢(7) and K & or alll € Z,£ > 0 be such

that §i(k +j — €| k) = Cj-e(7)y(k) @ Di=eCriul D Fj-e(v)u(k+7-18)

then
gk+Jlk) =
D
@ B(y)ulk+J)
= @(ﬂt ® (Cj-e(7))y(k) ® @(ﬂe ® (Dj-e(7))ulk — 1)
=1 =1
& Plac® Fi-elr")ulk +5) © B(y)u(k + )
et e
67
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= Par® (Crmen)y(k) & Bae ® (Dy-elm)ulk — 1)
£=] £=1

& Plae® Fie(v") ® B(y))ulk + j)
£=1

Let Bf *(v) and Bf“’* () be two polynomials for 7 < m, then

BI'"'(y) = bh®1Y @b ®7' ®...0b o

e N GF-

BI"(y) = B(y

B ()

for 3 > m:

0 \ |
FEAE L=
i \ ‘rfﬁ .
¥

Ll
then forall j€ Z,5 > 0




D;(Y) = BX*(v) ® P (ar® Dj—e(7)

=1

m
Fi(y) = BI*(7) @ P (0® Fi—e(7) @7
=1

L]
We note that the expression C;(v)y(k) @ D;(y)u(k — 1) in equation (2.22)
depends on event previous steps aﬂlﬁ‘ﬁfﬁﬁ)tﬂhﬂﬁ- 35 ie;enﬁg on present and

future values of the input signal.

2.3.5 Asymptotic growth'rate analysis and Limiting
behaviour in max-plus

In this subsection wesdiscuss-how max-plus results can,be used:for global
convergence of Genetic algorithms. We consider the sequences {z(k) : kK € N}
be generated by z(k + 1) = A @=(k) where A € R and =(0) € R7, . is the
initial condition. Then the seﬁﬂen_ces ca;n.'be described as z(k)=24A% ® z(0).
The following results‘are from.(Basser and Bernhard, 1991):
Definition f

Let {z(k) : k € N} be a sequence in R7,, and assume that for all j €
n the quantity x;, defined by limj f’iﬁ, exists. Then the vector Kk =
(K1, Ko, ...,nn)?qs called the cycle time vector of the sequence z(k). If all
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the x’s have the same value, then this value is also called the asymptotic
growth rate of the sequence z(k). If A is irreducible with unique eigenvalue
A and associated eigenvector v, then for z(0) = v it follows that z(k) =
A®* @ £(0) = A®* ® v. This implies that for any j € n, limg_,o =5~ “'] = )\ and

the asymptotic growth rate of (k) coincides with the eigenvalue of A. We

state and prove the following theom l.ﬁjrg‘r]m

Theorem 2.2. Consider the recurrence relation z(k + 1) = A ® z(k),k >

every v € R". We note that the ¢ ot ofavector in R" _ may be infinite.
This happens if at least one of its components is equal to €. The following

theorems will be used in analyzing the overall convergence of the max-plus

_r"'.'-‘-
-

—_ /-"”—_,
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genetic algorithm model for the best solution.

Theorem 2.3. Let A € R%" be a regular (not necessarily square) matriz,

then |[(A®@u) — (A®v)|loo £ ||t — V||l for every u,v € R™.

Proof. We first note that (A ® u),(A ® v) € R™ are finite vectors. Let
¢ =|[(A®u) — (A ® v)|l then there exist an 79 € m such that ¢ = |[(A ®

u) — (A®v)];,| where iy is the index oL t ry with th ;Eimum absolute

value in (A ® u) — (A ®v). Assume that ¢ =

(A®@u)— (A®v));, = 0; then

the mapping u ‘“_ A

WSS v _
Repeated application of the above theorem-for a regular square matrix A

gives the following: (A®* ® u) — (A® ® v)||ee < || — V|- This means that

the ¢*-distance between A®* ® v and A®* ® v is bounded by ||u — V||c.

o=

s ’/-—,4
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Non-expansiveness implies that the cycle-time vector, provided it exists for
at least one initial vector, exists for any initial vector and is independent of
the specific initial vector. Let z(k,z(0)) denote the vector z(k) initiated by

z(0), then z(k,z(0)) = A% ® z(0).

Theorem 2.4. Consider the recurrence relation z(k + 1) = A @ z(k) for

k>0, with A€ R}"" a square regKer Ujiwlemon z(0). If

z(0) € R" is an initial condition such that limj_,oo = erists, then this

limit exists and has the same value for anyfn fiagl condition y(0) € R™.

Proof. Assume that z(0) € R" is such:  limg o 262

For any yo € R" we have,

Taking the limit as k& -

Therefore as k — oo the ¢*°-distance between 1&%@2 and ﬂﬁ%@l tends

to zero, which implies that « is the cycle time vector for any initial value

0). — O
y(0) = et SIS

72




Chapter 3

KNUST

Genetic Algorithms

3.1 Introduction

C P — —
¢ max-plus. algebra. In
=

properties Ih,_this chapter

Our goal in this thesi i8¢

chapter 2, we introduced m -plus alget
II | -' p -_ — - A : 3 I
hich he qm"’-- the global

ace. € onetic Algorip =3 under

we review GA as a search aj

the mechanism of natural selection, a biological process in which stronger

individuals are likely to be the winners in a competing environment. It

"
-
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presumes that the potential solution of a problem is an individual and can
be represented by a set of parameters regarded as the genes of a chromosome
and can be structured by a string of values in binary form. A function known
as the fitness function and closely related to the objective function is used to
determine the best chromosome for solving the problem. A fitter chromosome
has the tendency to yield good-qu E: =population pool
of chromosomes has to be randonj{ The H ’])ulation depends
on the problem at hand, and some guidelines are given in (Mahford, 1994).

In each cycle of genetic operation, called an evolution process, a subse-

quent generation is created from the ehro osqmginthe current population.
This can only beldone il a-group of parent chromosomes are selected via
a specific selection routine. Thesgenies of the parents are'to be mixed and
recombined for the production of _pﬁsprin_g‘r in.the next generation. It is ex-
pected that from this processiﬁfmlutian (amanip;ﬂa.tiawgf-génes) the better

chromosome will wea:tg a ,lm ger number of offspring, and thusﬁa.s a higher

¥

chance of surviving in the subsequent generdtlon, emulaﬁng the survival of

|I".
i L ﬁ

the fittest mechanism in nature. Algorirhms in functlonal optimization are

generally limited to convex regular functions. Many functions are however,

non-differentiable, discontinuous, multi-modal and sampling methods have

-

—_— /
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been used to optimize these functions. Whereas traditional search tech-
niques use characteristics of the problem to determine the next sampling
point (for example, gradients, Hessians, linearity, and continuity), stochas-
tic search techniques make no such assumptions. Instead, the next sampled

points are determined based on stochastic decision rules rather than a set of
deterministic decision methods. § / I | | e —

Genetic algorithms have been used*to solve difficult*problems with objec-
tive functions that do not possess nice properties such as continuity, differ-
entiability, satisfaction of the LipschitziCondition, (Goldberg, 1989). These
algorithms maintain and manipulate a population of candidate solutions and
implement the survival of the-fittest strategy i theic search for better so-
lutions. This provides animplicit.and explicitsparallelism allowing for the
exploitation of several promising areas of the solution or search space at the
same time. The implicit parallelism is due to the fach_ema.f theory developed
by John Holland whereas'the explicit-one.is from the manipulation -:.:3f a pop-
ulation of points. GAs haveralsosbeen shown to solve lincar and non-linear
problems by exploring all regions of the state space and exploiting promis-
ing areas through crossover, mutation, and selection operations applied to

individuals in the population, (Michalewich, 1994). They require the deter-

=== . //—_/
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mination of six fundamental issues namely: chromosome representation, the
evaluation function, selection function, the genetic operators making up the
reproduction function, the creation of the initial population and the stopping

criteria. We describe each of these issues in the following sections.

3.1.1 Initialization and C hram(isgme R.ep;;esentatlon

The GA must be provided with an 11111:13,1 popu‘l&tlon. The population is
generated randomly, covering the entire ramge of the search space (possible
solutions). Since GAs can iteratively improve existing solutions, the ini-
tial population can be seeded with good solutions (le solutions from other
heuristics). A chromosome répresentation 1s needed to-deseribe each-individ-
ual in the population of interest.- Bach chromoseme or individual is made up
of a sequence of genes from a certain alphabet. An alphabet could consist of
binary digits (0 and 1), integers, symbols (like A,B,C,-Djj?-..matrice_s, etc. How-
ever, it has been shov.;n:-that more natural rel)rmntations are ,tjr-e efficient

£

and produce better solutlons (M.mhalewmh 1994) One useful representation

& 1 - ..-\.ﬁ_

of an individual or chromosome for function optimiza,tion involves genes or
variables from an alphabet of floating point numbers with values within the

variables upper and lower bounds.

-
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3.1.2 Selection Mechanism

The selection operation involves the selection of good individuals and at the

same time eliminates bad individuals from the population based on the eval-

uation of individual fitness. A probabilistic selection is performed based on

the individuals fitness such that the better ones have an increased chance
r : s

of being selected. There are seve al sel@t:tﬂm promsses mely: Roulette
| h B - g e g’

wheel , Tournament, Elitist models Scaling techniques and Ranking meth-

ods (Michalewich, 1994). The first selection method, roulette wheel, was

developed by Holland in 1975. An ‘example of a selection function is the

probability function

b, f(m:)
RS ZL f(@r)

on the population {7, ..., #,, }, where f(=;) equals thefitness of individual z;.

Ranking methods assign p(#;) based-on the rank of solution z; when all solu-
tions are sorted. Normalized geometric ranking defines'p(z;) for ea.ch individ-
ual by the following (Houck and Jones, 1994); P(selectmg the. 1.*" individual)
is ¢’(1 — q)"~! where ¢ is the prﬂba:bility of selectingithe best individual, 7 is
the rank of the individual, where 1 is the best, p is the population size and
s i

Tournament Selection works by selecting j individuals randomly with re-

7



placement from the population and inserts the best of the j into the new

population. The procedure is repeated until the required number of individ-

uals have been selected.

3.1.3 Genetic Operators

Genetic operators are used to creatgrmew solmtiops, based=on the existing
solutions in the population. There ﬁré%vﬁﬁo basic'typesof opeérators: crossover
and mutation. The crossover is the most significant Dpera:cion in the genetic
search strategy. It determines the majorbehavior of the optimization process.
There are several crossover schemes/used such as one-point, two-point, multi-
point. However, ag a-eomimen.criteria, any erossover scheme should ensure
that the proper genes of good-individuals be inherited by the new individuals
of the next generation. A /big erossover probability may improve genetic
algorithms capability to search for new solution space:

On the other hand.mutation’s main functien is to prevent-lesing single
important gene segment to.maintain the variety o.%- solution population. Rel-
atively small mutation probabilitiés are 'us;ed. Inversion, for example is &
special form of mutation. It is designed to carry out reordering operation

and improve the local search ability for genetic algorithm. The application

—
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chromosome representation used.
To illustrate this let X and Y be two binary m-dimensional row vectors
denoting chromosomes (parents) from the population. We consider binary

mutation and simple crossover for X and Y as follows:

i

1—z, ] AUQ, 1) K rh

) v |

of these two basic types of operators and their derivatives depends on the

L Ti, otherwise

We note that binary mutation flips each bigfinievery individual in the popu-

also generates a random number 7/from a uniform distribution from 1 to m,

where m is a fixedipositive integer, and creates two new individuals acecording

[ lation with probability p,, accordingtothe above equation. Simple crossover
F
! to the following equations:

T, e
T, = : y  (3:1)

y;3 ~otherwise

: Yiy 1iSiasrs

Y; = $ (32)

L z;, otherwise

For X and Y real, the following operators are defined: uniform mutation,

non-uniform mutation, multi-uniform mutation, boundary mutation, simple

E——

79




crossover, arithinetic crossover, and heuristic crossover. We discuss briefly
the each of the above operators. We consider a; and b; as the lower and upper
bounds respectively of the variable 7. Uniform mutation selects randomly one

variable, j, and sets it equal to a uniform random number U (a;, b;) as follows:

U(ai,b;), ifi=3j

~ KNYST

In boundary mutation we randomly selects one variable, j, and sets it equal

G
where  f(G) = (ra(l— m———))"
ffl,_rg — a uniform random number between (0,1)
80




( = the current generation
Gmerz = the maximum number of generations
b = a shape parameter

The multi-non-uniform operator applies the non-uniform operator to all of

the variables in the parent X. Real-valued simple crossover is identical to

the binary version presented abovel(eanulgd ¥ 2). Arithmetic

crossover produces two complimentary lineaggcombinations of the parents,

where r = U(0, 1) as follows:

where r = U(0,1) and X is better than Y in terms of fitness. We define

.;-"‘ff
it gl
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feasibility as follows:

_ 1. if:t;zai,:cigbi
feasibility =

0, otherwise

i i . .
If X is infeasible, then generate a new random number 7 and create a new

solution using equation (3.3) and stop otherwise.

3.2 Schema

A schema is a structural unit that represents a eoncept, situation, event,
behavior and so on, in a generalized form that 15, 1t contains an abstract
representation of multiple instances of the same kind, Tn schema theorythis
unit is an internal datasstructure in the memory that organizes an individ-
ual’s similar experiences. It is/used to recognize siilar'and discriminate
dissimilar new experiences, aceess the essential elements of the commonality,
draw inferences, create.goals and develop plans.—For example,/therscliema
of a CAR is a generalizaﬁion of all the cars a particular-individual has seen
or experienced before. Though it does-not eontain*all'the details of any car
seen, 1t contains the essentials, the core features and properties shared by

almost all the cars. If an individual sees an object that shares the same

elements and relations as stored in his or her CAR schema, the individual

-

ek
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will recognize it as a car.

3.2.1 Schema in GA

The use of the schema theory was one of the earliest attempts to under-
stand how genetic algorithm works. In schema theory, the search space is
partitioned into subspaces of varyin%;l%v@hiog genetality and mathematical
models are constructed which estimaie how the individuals inI the population
belonging to a schema can be expected to geOw insthe next generation. The
theory gave rise to the building block hypothesis which attempted to explain
how a GA solves a problem by revealing that near optimal solutions were
forged from small, low-order, better-than average schemata.. A schema is a
template made up of a stringof 1s, 0s and *s, where x.is'used a8 a wild card
that can be either 1 or 0. For example H' = 1 %0 * 0 is & schema which has
8 instances one of which is 101010. The number of non ¥, or defined b_its in
a schema, is called its order and is denoted-by'o(H).~In the example, H has
order 3. In the classical sense;we cﬂl}?idf—:r schema t_c:-be' cellections of strings
of a special kind. A schema is represented by an element of {0,1, %} when we

have binary strings of fixed length [. The relationship between the schema s

and the binary strings is given as s...5; «— {d...d; : Vj.s; # + = d; = s;}.

= ,’/'
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We let m; : {0,1}" — {0,1} be the projection to the jth coordinate, that is,

m;i(dy...d;) = d;, then we define schema s as:

4

*, if m;(H) = {0, 1}

5= it (R =1}

0, if 7;(H) = {0}
for any non-empty collection H of sfilgi;‘;”gs;(\’o;se: 1993)}(:: i?istrate this, we
Znl N\ J

see that if H = {001011,011111}, th'en every me;ber of O%1%11 can be gener-
ated, including the strings 011011 and 001441 which are originally contained
in H. Crossover is usually regarded as the central exploratory mechanism of
the genetic algorithm and schema charaeterize the subsets which crossover
explores. Crossover also has the ability of recombining schema. For.example
crossover may produce 001111 from the parents 011111 and“001011. This
is an example of (members of) the schemas %% x11x and 00 * * * * being
recombined to formy(a-member of) the schema 00 * 11%. Thought-ofiin this
way, Crossover can asseniﬁ";lg;the building blocks represented_by *%%11x and
00 * * % * into something new, the cpgs!i{t%.()'{}* 11%~Given that exploration
and recombination of schema are déﬁnitive properties of genetic algorithms,

perhaps a theorem concerning schema could address these issues and relate

them to the direction of genetic search. We state and discuss the Holland
84



schema theorem

Theorem 3.1. E(m(H.t + 1)) > 4400 () _ , &)y} _ o o)

hthdhu-imthublh-nwmthem'ﬂann'wlﬁhuhw
thtunphulndwthnuthRdeﬂnuv&hintpopuhﬁm. Now

let us look at the expected number of i BIlwitcutalho
Standard Genetic Algorithm wmm instances of H
at time t. Let f(x) represent the fitness ofcwmm z, and [ represent

the average fitness at time ¢, or f(1) nm'Mgn- |S]. Let 4(H,1¢)
represent the average fitnes of muta*ﬁﬁﬂ?t or

If we completely ignore the eﬂcchdm-erhdmhmmm we get the

expected value E(m(H, ¢ + 1)) = n%_- ﬁ,&@ = MHOmIL) e

consider only the ¢ i"am:oéé-iiwwlmmma
instances of H in the m&&m m:}m;:mrﬂbctm;w bound on
E(m(H,t +1)). Let S.(H) e ﬂn‘&mm&nmﬂm crossover bit
hbu-mthadnﬁningbiudumdbtp,bethembouﬁtydm
occurring. Then S.(H) = 1 - p.($5!). Let S,,(H) be the probability of an
mdﬁmmwmﬂ&(ﬂjhm




on the order of H. If the probability of mutation is p,,, then S,,(H =
(1 — pn)°(H). Substituting this in the above equation justifies the above
theorem by John Holland. This theorem is often interpreted to mean that
if 4 > f(t), then there will be exponentially more instances of schema with
low defining length and low order. The above theorem somehow justifies
that all genetic algorithms follow a:&;gfia;ih.p{a;tﬁjern ca.lled tHe building block
hypothesis (Herrmann, 2011). In Lrh;; 'p'g.tt:e;';,ﬁst:ﬁeﬁﬁawit!h low order and
low defining length are optimized. Crossover isiused to turn the schema
into higher order and higher definingylength schema.#The schema theorem

provides a good advice on how to assure the growth of good sub-solutions

and to sustain the growth {0 takeover the pepulation.

3.2.2 Termination

Natural selection uses diversity in a population to produce adaptation. If
there is no diversity then.there is nothing for natural selection to work on.
Since GAs imitate natural seléction;-we apply the-same principles and use

a measure of diversity to determine convergence. The following are some of

the stopping criteria in GAs:

1. A common terminating criterion is a specified number of generations.
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2. Another stopping strategy is the population convergence criteria. Ge-
netic algorithms in general will force much of the entire population to

converge to a single population.

3. When the sum of the deviations among the individuals becomes smaller

than some specified threshold. the algorithm can be terminated.

4. The algorithm can also be teléNuUls:f[;provement in

the best solution over a specified numbeiof generations.

5. Sometimes manual inspection helps us to end the process.

Some of the above conditions can be" 2d in n anetion with each other to

&

terminate the algorithm '

—
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Chapter 4

A Max-plus Model,for Genetic

Algorithms

4.1 Introduction

We consider an optimization problem of the form max f(z) subject to a
search space §2, where-f(z).is a nonlinear function for which theaisual gradi-
ent methods are not suitable, - This type of optimizatien problem becomes a
candidate for solution by GA. In this chapter; we develop the max-plus alge-
bra model as a novel mathematical framework which formulates and explains

the many concepts and related properties (operators) in Genetic Algorithms.

e

-

= //’_—_-"
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The model represents key attributes and characteristics of Genetic Algo-
rithms which presents information about the component of the algorithm by
breaking it down to its usable parts for further analysis since Genetic Al-
gorithms do not possess strong mathematical formulations. This max-plus

formulation for genetic algorithms has been developed for the following rea-

|
|

SOINS: 17K |1 | N =

|

(i) to provide a mathematical frafneonl{ H;IT}d'mHJ-‘IIﬂﬁﬂrél for the population
dynamics of the Genetic Algorithm processes,

(ii) to address some of the disadvantages of Geneti¢ algorithms using our
method, and

(iii) to predict or simulate what a real-world system will do in future since
it is expensive, impractical-and sometimes impossible t6 experiment directly

with the system.

4.1.1 Max-plus Search Space and Fitness

We consider Q = {z;, s, -5Zq) 8s.a finite set_ofpossible solutions of the
GA and let © be known as the search space or solution space. Then each
z; € 9,1 < i < nis a chromosome or an individual. We claim that the

GA search space is a commutative idempotent semi-ring. To see this, we

89



note that @ is associative in the search space, that is for all chromosomes
T1,T,23 € Q , 1 ® (22 D z3) = (71 D z2) D 73 and commutative with zero
element =, thus 7; @ e = ¢ ® z; = z;. Again we see that ® is associative,
distributive over @ and has unit element e since for all elements z;, T2, z3 € 1,
T ® (T2 & z3) = (7: ®T2) ® (71 ® 73) and 71 @ e = ex; ® T1 = x1. Next, € is
absorbing for ® since r; ® e = ¢ @ of % for Bll B4 €. "WE also know that
INENL S

® is commutative for all chromosomes z;, T, €=%) sifite 77 ® T3 = T2 ® T3.
Finally, @ is idempotent, and so for all z.,€ ) z, @ z; = z;. Hence the GA
search space is a max-plus commutative idempotent semi-ring. The number
of population members in each generationis represented by the vector of
chromosomes (21, &g,y &)~

Again, we consider the-function giverr bysfi# Q=3 Ry.-defined on some
domain, where R,... is the max-plus algebra, and the domain is problem
specific. Then the goal of the above funetion f is toevaluate the maximum
functional value detegmined by a’Chromosome in the seareh space, that is
z; € Q such that f(z;) >faeal®) for all 1 <1 £ m. The fanction f which
calculates the maximum value of 't};e sohtion space might be called Max-

plus fitness function. The individual chromosome ; € 2 which gives the

maximum fitness is the fittest chromosome to survive in the next generation
-

-
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and is denoted by Z,... We define fitness in max-plus as the suin of the

functional values of all chromosomes in the search space {2, that is:

f(ml) D f(zﬂ) D...8 f(mﬂ) i max(f(;rl),df(;r,g), Beey f(xn))

= Iﬁ_fm f(z3)

argmax f(x;)

Thus given a search space {1 = KN Ung ;m;mn f:Q =

Rz, We have frror = f(Zmaez) = arg maX;epf (2;) where oy, is the fittest

chromosome and [, 18 the maximum fif 1eSS.

- eR2 Max-lus GA steps

s =
We consider the initial po pula aggf' oso nes Whl _are selected ran-
| : ﬂ”r:" |

domly based on the require “ yosed or he soluti . 'Let the initial

population be denoted by P, then 7
=
| -

- _
My

where z; € Q is selected randomly. We note that for any GA, a chromosome

representation-is needed to describe each individual in the population of

91




interest.

Evaluation Process

Individual chromosomal strengths of the population are determined by eval-

uating their fitness function values, f(z;). That is:

== -

I f(-'rl)

- KRUST

and Z; = Tmaz € O 18, thE ext genera-

tion.

Selection Process
A probabilistic selection is performed based on the the fitness of the individ-

ual such that the better chromosomes have more advantage of being selected.
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There are several selection schemes as indicated, (Kolokoltsov and Maslov,
1988). Roulette wheel for example was the first selection scheme developed
by Holland in 1975, (De Schutter and van den Boom, 2001). The probability
of each individual P; is given by P(Chromosome i is chosen) = EITE:(J::)T) where

f(z;) is fitness of chromosome . The distribution of a randomly chosen chro-

Sosome (1 ‘ ot mives i . "‘gii.'f*‘('zj}mj(")
some (in population) after selecttﬁt)ft_l is i@{eﬁ by z(n) S ( (z2))zi(m) W DeTE

o is the selection function. A new poptationtis obtained where y; = z;, that
18:

Y1

Yn

b —

All of the chromosomes of P are those of ‘P and the expectation of the
number of occurrences of amy chromosome of P in P is proportional to
the number of occurrences of that chromosome in-P times the éhromosomes
fitness value, that is £(#;) = z; f(z;). This is designed toimitate the principle
of the survival of the fittest developed by Darwin:

Reproduction Process

The chromosomes of P’ are grouped for mating according to some proba-

-
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bilistic rule and transformation 7. For instance the groups could be

under the crossover transforma.tiol{oN ' ' S |

71 (?}i{' ) yi%‘ - e ii’;j)

This results in the ne

Yir

Yil

yig;l

-

Q,

-

2
Yi2

-2
y"z

-2
o y"qz

0.

- -

p—

O

’" L " A ME .
We mutate P . Mutation serves as-a-
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some randomly chosen element and this gives a new population
I 1
wy
wa

UL

W,
If we are not satisfied with the qolK Nu Sﬁlﬂ: " as the initial
population and the cycle is repeated f times depending on

the stopping conditions imposed on the probl

4.1.3 Max-plus Model Eor Popula jion Dynamics in Ge-

——

s

netic Algorithms

. —— y
N
g
S s . .
ke Y

¥ &
We know that in each generation ation isa v

p—

vectop-of chromosomes,

thus | ;___

where mgk) is the number of chromosomes at generation k.

The probability that a member of the kth population will survive to become

— =3 /f"—_—f-_ '
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a member of the (k 4 1) population is given by Pk, where 0 < P, <1, k=
1,2,...,n— 1. Let b, be the reproduction rate, then by > 0 for k= 1,2, ...,n.

Then these numbers can be written in matrix form as follows:

by by by - bpn-1 bn

B 0700 e 00 0
"1 KNUST

0O 0 O 0

where T is called the projection m#trix.  Mul ﬁﬂ,@. the above matrix T

|

by the population vector x*) produces !*\ vector for the.next

generation. This procedure is‘Tepresented as a recursive max-plus ~a.tian

}. .._

e

of the form

(1)
(4.2)
® o)
e //——_”
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Zk+D)

08z ® (092 @...0 (Poor1 ®2%)) ® (0® M)

k k k
= mazz™, 2P, ..., Pacy +2®,, 2

We iterate to find the population distribution at any generation k as follows:

oo - AANUST

T & (TeR@x©)

ST O

We note that the numerical eval ' s k%7 1 con ni;_iuna.l algebra.

Thus, if we know the initi

We can determine the. next vector by multiplying x(®) by an appropriate

power of the projection matrix.
i ’#-.-F'"_
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Alternatively equation (4.1) can be interpreted in the max-plus algebra as

follows:

x{ﬂ-i-l} L= T®x(n)

(T2 ®2{) @ ... ® (Tin ® 28")

- @(Tﬂjfgz(")
1{3{;; N U ST

The subsequent generations will be determined

Il

by the max-plus multiplica-

tion of the projection matrix 7' by afinitial matrix from the search space re-

lated to the population dynamics of the problem. Jence x" ) = max;<;<k(Tij+

modes are related to their elgenstructures S1mlla.r notions exist for systems

obeying the max-plus equation of the form ARx =) ®x. Let Aben xn

= . //—_"’
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matrix such that
ARdx=A0x

where )\ is a scaler and x is an n—vector whose i** element equals A®x;, which

is equal to A + x;, then A is called the eigenvalue and x is the corresponding

eigenvector of the matrix A. Starlizr m g specified.d uT_populal;ion x(©)
as an eigenvector of A correspon Ne ] ge A, and repeatedly

applying equation (4.1) we see that

x = A@x! = Ad

——
and in general we have

scalar multiple of the n** population vector. Thus, equation (4.5) can be

represented as

i x{ﬂ""l) — T ® E{“) —_ A @ x(“)
R _——
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where A is a scalar and hence
T @x™ =A@ x™ (4.5)

The above max-plus equation (4.5) shows that we can obtain a population

growth pattern in which the chromosome numbers remain constant in the

next generation of the genetic alR’l\N l \ S T

4.1.5 Convergence of the Max=plus GA

To establish convergence, we expect that the algorithm tends to an optimum.

We note in general that the seare yis simply a set without

alue (optimum)ras n tends to

7‘? . .m ?ﬁ (4_6)
2 k—oo k
ey =1 /’-"



exists, where

25 = max (4; +2Y), V1<i<n (4.7)

1<i<n J

Then the vector 7 = (11,72,-..,7n)" is called the cycle time vector of the
sequence x*), If all ;s have the same value, this value is called the asymp-
totic growth rate of the sequence x(*). In this case the sum of deviations
among individuals become small.e;ifﬁ’n&né;llér arid%*tﬁéfe?; lack of improve-
ment in the best solution over a spt;c:‘-uiﬁ:‘ed ;1uml3er of 'éene;ations determined
by the cycle time vector. We apply the‘max-plus asymptotic growth rate
of the sequence x(™ to terminate the genetic ql___g_nrithm. We note that the
above equation (4.7) is nothing buf a linear system in the max-plus semi-ring
x(m+1) = A @ x(™y We-apply the population convergence criteria of genetic
algorithms and use a measure of diversity in the current population to pre-
dict the solution to the problem. We find the asymptotic growth rate of the
sequence x™ of the population to determine the papulatlon .-:_liversity._

o

41.6 The Max-plus GA Complete-Model

We present the complete max-plus GA formulation and indicate the inter-

action between the projection matrix and the generation vectors as shown

e : //_/l
102



below. The fitness function is evaluated by the max-plus equation

f(@1) ® f(22) ® ... ® flzn) = max(f(z), f(22), -, f(2n))

> e )

arg max f(z;) where z; € §2
en

The population dynamics for thejgefiefation i gi?egﬁﬁy the' max-plus equa-

- )i

® J b I.F' L F i
tlDﬂS i - T S |

x*®+) = T @ x@F

Kk times

TR TR.5® Tex?

Il

Tk o « 0

I

We now consider.that.for a given X, the sequencex® % =1, 2, ... generated

by the max-plus equation, x5H-="T"®Q x%®)—kw> 0 yield:a sequence of

-

increasingly better solutions ihd'iCé,bed by the _iteratéé‘*";ﬁf"":jﬁith the projection
matrix. This is shown by the expression max;<j<k(Zi; + %;(n)) below, which
shows the maximum of the interaction between the projection matrix and

the current population vector and in max-plus, this is the fittest population
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to begin the next generation.

xrt) = Tx(

(Ta®zM) D ... » (Tin @ M)
k

P, @ ")

j=1

(ﬂ)
"KNUS LJ
role in max-plus algebra repre-

The equation below actually plays a larger

sentation of convergence of the GA that ig

In this subsection, we discuss what our max-plus genetic algorithm formula-
tion has achieved. We state some of the disadvantages of the genetic algo-

rithms and show how our method addresses them. Previous analysis of GA
— /,./-—'—‘-_'-
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models used paramneters which were specific to the type of problem. Many
genetic algorithms do not fit this frameworks. Our formulation uses mathe-
matical equations from max-plus algebra to present a more general model to

genetic algorithms and to the best of our knowledge, this is the first mathe-

matical framework in genetic algorithms.

One of the disadvantages of GAS i tNhLﬁJS ion is crucial to
the development of a suitable soluttont for* the=pr n. " The fitness func-
tion ensures the fittest member to beginsthe next generation so if poorly

written, the GA may end up solving different problem entirely from the orig-

inally intended one or the solution will be fa from truth. Our max-plus

oo

algebra forinulation eusires-that mmm'“ﬂtlwbs function is obtained by

summing the funrtim1aJ"*--!uah_1_g§*-nf"‘a.ll--c‘hr'@w in thigﬁifch space 2,

!

that is max;e, f(z;) for which z; r;‘%m;is the fittest _chﬁa__mosomes. Hence
from equation (4.1) we nnt@mamﬁgb(ﬁ;:bé;@)w;ﬁttest population

to begin the next'cycle’, Thus the'max-plus*formulation solves-the original
" o

e W _.
intended problem. “~ D

~ S J'h;:"iﬁ, t“f‘{r,': I
Again in real life, many of the equatiens-that are encountered with re-

b . ._—:le_' r
i *-,f:-t'“ >

spect to the description of fitness functions in GAs are nonlinear in conven-

tional algebra but become linear in the max-plus algebra. To illustrate the

-
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usefulness of the max-plus in a simple example, we consider the nonlinear

iterative system given by :L'EHU = maX;en{ai; + :r,?'}}. We express this sys-

tem in max-plus algebra as zgk“) = @Ll(aﬁ ® a:;k)),i =11,2;...,n where
k

D7, (ai; ®:.':-{i N = (a1 ® 1) & (0i2 @ T2) & ... ® (ain ® Tp), which is max-plus

linear. If we let a;; be elements of the matrix A such that x® = A ® x*-1),

then from equation (4.1) we see thatx® =p%* ® gthis is an example

of a conventional nonlinear systeKNu iSI&x-plus sense.
We see that Genetic Algorithms are bmeﬂ on Darwin’s theory of evolu-

tions which mimics the basic natural evelution cycle, that is, natural selection

—

or the survival of the fittest reprod

jon processes result in a

struggle for existence for whicll some ioﬁ,s willsurvive while others
perish. This is a clear ‘example of trial-and error methuﬂ'.‘;rWe note that

this trial and error method is-mt-amirgble due to the faﬂt that money and

time are wasted in the exeeution of this methc { Since:@As do not possess

any strong mathematical framework we:think that our formulation is just
. "ﬂ, N - =N
in time to remedy this'situation;»Our max-plus algebra formulation which

a2 4 T

L r‘ - :
' SANE ¥

E ™=
consist of mathematical equations 15 used-to-describe the behavior of GAs.
The model gives a real understanding of the effects of parameter changes on

the properties of the GAs and can be used for analysis, optimization, control

-
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and to predict the behavior of the GAs in future works.

Another issue with GAs is setting the correct population size. If the
population is too low, the investigation may cover too little of the search
space to find the optimum solution. Our model was able to withstand large
populations so that the optimum solution would not be trapped in a local

optimum. This is shown by the fact,that there arg ne=restpiction on number

Y |
\ :.

of chromosomes in the populatior%:.‘“ SEA R A

Another disadvantage is that a large mimber of parameters need to be
adjusted, for example the kind of selection and crossover operator to use, the
population size, the probabilities of applying a certain operator and the form
of the fitness funetion. Thisfactresults il alengthy trial-and-error procedure
whose purpose is to adjust-the.parameters of the GA and thus makes the
method more complicateds To solve.this our-formulation, makes use of the

stable growth max-plus equation A+ — X2 7)) whichmormalizes the GA

system and makes it stable with constant population. =
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Chapter 5

K N U %lems

Conclusion, Open

and Extensions

In particular, we have shown

problems and some discrete event systems.

how to find eigenvalues of a matrix using the max-plus discrepancy matrix

108



I g W -

and other related max-plus techniques which helped us to obtain important
information on the dynamics of the genetic algorithm population. We have
defined max-plus fitness function which determines the fittest chromosome
in the search space to begin the next generation. We have proved that the
search space is a commutative idempotent semi-ring since for all chromosomes
z; € §) there is associativity forjgsand ®yig distripative=ever ©; has unit
and absorbing elements in the sear¢h“space. We mete that the possibility
of working in a linear-like manner is based on the fact that the max-plus
algebra is an idempotent semi-ring;

We have presented some of the disadvantages of genetic algorithms and
shown how our formuldtion.can help solve them. Weyare able to show by
the max-plus algebra analysis that*our iterate will yield a-sequence of better
solutions for the next generation each time. We have shown that the popu-
lation generation dynamics of GAs can be modeled.using a max-plus linear
recursive equation and this is guaranteed,by equation (4.1)4'We showé& that
by applying repeatedly the'reeursive equation yiélds a sequence of better
solutions for the next generation at any-time: This novel max-plus model
explains a growth patterﬁ in which the chromosomal numbers remain con-
stant after ub_ta,ining 1;he updated population for the next generation. By

=

— //—’/—
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formulating the GA in this way we able to use the model to explain the
concepts better and it turns out to be much more general and easier than
the previously known methods. These results indicate a promising direction
for further research into other operators in Genetic Algorithms and we rec-
ommend that the formulation be extend to other variants of evolutionary
computations. 17N 1) VOO T

%
l : |

| | h B L | ’w:.pﬁ’ - |

5.2 Open Problems and/Extensions

In the previous sections, we discussed the formulation of GAs using concepts
in max-plus algebsa, In this section we present some of the issues that are
related to our work-and are-worth investigating;

Multi-Objective Optimization Problems (MOP)

This thesis focused on a single fitness function as a single objective func-
tion subject to & aeath space. Quite recently, researchers ha.ve used GAs
to solve MOP, where the ohjéctive function is a set of funutmns We think
that the analysis of our formu]atmn will allow for the combination of the
multiple objectives to form a scalar objective function through a max-plus
linear combination. This method seem promising for formulating a GA that

110



solves MOP in terms of a max-plus algebra model.

Formulation of Nonlinear Problems

Our max-plus method offers a clear understanding of polynomial formulation
and its applications to discrete event models as indicated in chapter 1. We
showed that the max-plus operations @ and ® on exponential functions are
induced by the conventional algebrar ipdegdgthigc is the basis of the
generalization of Cramer’s rule KNIU&SZIMW&HA in chap-

ter 1. We expect that the max-plus congépti can be extended to generalize
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Variants of Evolutionary Computations

Another interesting open problem is to extend these max-plus results to other
evolutionary algorithms (EAs) namely, Genetic Programming, Evolutionary
Strategy, Evolutionary Programming, other derivative-free optimization and
search methods like Simulated Annealing and Tabu Search. All these opti-
mization techniques are similar it fupctionin d on the princi-
ple of natural selection, that is ;KNUS 1l operate on fixed

length strings, incorporate selection, mutation and recombination operators

as in the case of Genetic Algorithuns. The formulation of these roblems
Sl . i

rielc ising results.
P

using max-plus algebra, therefore
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