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ABSTRACT
Soil varies naturally due to product of the factors of formation and variations due to
management. Describing spatial distribution patterns of soil properties within a field or
watershed is thus, important for site-specific soil and plant management and environmental
modeling. The objective of this study was to determine spatial distribution patterns of soil
texture and structure, organic carbon, pH, saturated hydraulic conductivity and infiltration
characteristics of soil in an uprooted oil palm field in the Plantation Crops Research Station
of the Department of Crop and Soil Sciences, KNUST. Classical statistical and
geostatistical procedures were used in describing the amount and form of variability and
spatial distribution pattern of soil physical and chemical properties in the field. Scaling
(based on the similar media and linear variability theories) and fractal geometry analyses
were also performed to describe the variability and distribution of soil hydraulic and
hydrologic properties. GraphPad Prism SPSS 16.0 and GS+ version 9.0 softwares were

used for geostatistical and classical statistical analysis of data, respectively.

The descriptive statistics revealed that soil properties exhibited weak to higher variations at
the surface and sub-surface layers across the field with aggregate stability being the most
reliable property and K;, the most variable property in the field. The results also suggested
that scaling can successfully be used for describing variability of soil hydraulic and
hydrologic prg@ﬁs of diﬁWp units and horizons. The results from fractal
geometry analysis point-out that soil hydraulic and hydrologic properties show fractal
2
behaviour. The spatial distribution model and spatial dependence level showed remarkable
variations in field. Distribution patterns of soil properties studied showed variations across

the field for both depths. The sigHificance of semivariogram modeling for the subsequent

interpolation was, thus proven.

vi



TABLE OF CONTENTS

Page
T T AT e mesr i e UL N e e s A SR s (L oo SR BRI £ oS 11
Dedication............... A 0 A ST SO Nyt o OO MRt W00 L ot b e G 111
o T T T v e e e E R LR SOR R e R S BRORE o iv

R T e e A 5.

RIS L e e S R A S o e viii
T R S e R R e e S RV S R S et s s Xi
e s s eas R (P 4 S e L Xii
e T e RSURRURRTRTe B W B, B8, S SR S RO ¢
LIPRARY

KWAIAE NKRUMAN
INIVERSITY OF S1UtEHOE & TECHNOLOGY
KUMAS |

vii



CHAPTERS

CHAPTER ONE
1.0 INTRODUCGCTION.....ccceeeeeeersortenrsnssssssossossssssssssnnsnssssssassssssnsassssesasisssisnes 1
Ll OB O SEALEIIEIIE, = oo v 55 v v oissn s s maywasinte fies o & a ™ air o e oo s W SRR B b 5o )
T s U g e I e e o A e e e R 3
@] 4 e L e s G S I e o e 4
1.3.1 General objective.‘ ............................................................................... -+
1532 Specifio OBJETtIVES . van covguiss ssiiviviuvvhsianisbesiinsscinsasions s sssi st B omemnarmsmmntiss Tl 4
1.4 Expected OULPUL......co0oeevsvsssssnisuonsmmoresinvisnasasssetsisbomsivseyns oL et e e 4
CHAPTER TWO |
NI ERATTURE REVIEW . . liisviesessssvgzssnssansnssatsnsasnsies snnars evsosannsssanpsiriad)
2.1 Background.........ccooeerecereiorsieninenensblananuubiorsusisrasssnssesaassnananansnsnsosrnssonss 5
2.2 Spatial variability of soil physical properties.......... O N N A o O 7
2SO MOISTUIe CONIENE . .. .. o eooves o ORI, , . . < o &iiiesnos oh sism s annanss s dsbuiives 7
2.2.2 Other s0il phySiCal PrOPErties. . .. vas s s cusine s ornamnnnsesesecsnesacncacssassssersusnansssn 10
2.3 Spatial variability of soil hydraulic and hydrologic properties........................... 11
2.3.1 Saturated hydraulic conduCtVItY.........oiiiiviiiiiiiivsn e 12
2.3 D Il tration ChArac e TiSH CS s e e T et as - - - b+ o MRS Co S wtlalill v s vig s+ = s s uwammnpwanwans 12
2.4 Spatial variability of COD MHeLA e T R e = o e e s~ 56 8 i e s 14
2.5 Addressing spatial variability....c.o.oeviiiiiiin e 16
S 1 Sealing. oo s T Ml - TR T R s s s o S QR s oo 0 nm e Y AR08 16
2.5:2 Fractal Geometry analysiS.dt . seaer«cvoeeeosssssMamns 00 e pet e s susiinnannnsssvsnonvnros 18
2.5.3 Statistical and geostatistical techmiques............coooooii 22
2.7 Precision farming ......coeeeeieeiiiiiniieiiimsiauineneiniiisesnmnsesesisnssssssssieitiinenss 25
CHAPTER THREE
3.0 MATERIALS AND METHODS. ..cuttuteteetatnstnensnrimrssnsastitersmiiiaisisn 28
3.1 Site location and characteriStiCS. . .. vvevurrereneriiiiiriirerirssssssiesniiiiiiiaaiaiiin 28
3.2 Land Preparation. .. .. .. . eeseeossaersssnnsssassnensssnnseassnsnsnsnssinsnsssninonsdsssesasses 28
3.3 Soil sampling and laboratory analyses.............coeeiiiiiiiiiiiiiiii s 28
3.4 Assessment of hydro-physical Properties ............ooooiviiiiiii, 30
3.4.1 Particle size analysis............ B R I Sl L e i e 30

viii



I G e o bbb s 5 ee s < oo has s v P s s Smanstsanass 31

3.4.3 Total POTOSILY.......cociniiiiineioersrosassssssssnsansonnsscssssssressssssasssasasnsasasassnss 32

B AT PORDMIEY . sc - con oocn s ovssvnsrindasasas b b ashap s MER e s as s AR Py SE SRS R s Pt 32

345 Anaropate SIBDIHEY .. .. cccicnaciaarnesansonssonssnnsgrnasmrarmarassivsnsssausonhdvanass o nts 32

g T T R R s et 8 Dot SRS T e R T 33

3.4.7 Saturated hydraulic conductivity.........cccovriiinniiiiiiie 34

T A R S S o SO e o ) DR 34

3.5 Statistical and Spatial analyses..........cccvuusnrinnesosarsnissersisianpronsossrsossrsinssee 35

3.5.1 Descriptive StatiStiCS......oconssasssssscnsassonsasecassasrsncrsarsavsss sk ST A R 36

3.6.2 Scaling and Fractal Geometry analyses................coooeiiiiiiiiiiiiiiiiisnsisea. 37
3.6.2.1 Scaling of Saturated hydraulic conduetivity. ... co.ooieiiiiiiiiiiiiiinn 37
3.6.2.2 Scaling of Cumulative infiltration amount.................ooiiiiiiin i 38
3.6.2.2 Fractal Geometry analysis.............coftethuecansiaivucirinisirsississssivescassnssssnss 42
3.6.3 Geostatistical analyses.............. 5. sesscarorestoseceeenenrnrassrasasissnnssssisssasases 45

3.6.3.1 Spatial structure analyses.......ceasees st st iiitin. v veernenrnrecnsesraasrenssasacensnns 46
3.6.3.1.1 SeMIVATIOZIAML. ... .ccuvuureecannnnnessonsasuasasbeesonsessssessssrsrsnnssssnsnssnsomn 46
3.6.3.1.2 Autocorrel ation analysiS.. u. . - reritveita siim insrihsseecsissscaseiosssossniessnonose 49

3.6.3.2 Kriging and Cross-validation. . .........coeeimeemmaniieneniaiiii. 50

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION......... iy, o, B (7 (I 52
4.1 Descriptive statistics......... R s oo oo a0 sk S DI S gl 7 v o 55 55 i S MM SNl 52

4.1.1 Soil physical properties. ... ..ocovussmunrerirnssisstisiseiiiiiiiii 52
4.1.1.1 Variation in particle size fraction...............cooviiiiiiiiiiiiiin e, 58
4.1.1.2 Variation-in bulk density, porosity, aeration and aggregate stability................ 59
.1 100 VARIREEY L DISRITE GO e emsnsoesvasvgisis s s vops e saS T o sasins 62
4.1.2 Soil Hydraulic and Hydrologic properties............coviviiiminnicinmsnnia, 63
s

4.1.2.1 Saturated hydraulic conductivity..........ccocooiiiiiiiiiiiiinrrs e 66
4.1.2.2 Infiltration PAFAMEIETS. . ... .ouveuiesmnrarnarernsrsansasssnssecnsstomoimessennaranennes 67
4.2 Scaling and Fractal Geometry analyses...........o.oviiiiimimimimmin 71

4.2.1 Scaling results.........cc.oeiiiiiiiiiiiiiiiiiiiii st e st s s 71

4.2.1.1 Cumulative infiltration amonnt..............cooeiiemirianianns e Sl 72



4.2.1.2 Saturated hydraulic conductivity............covviviiiimminniiniiieie e 74

4.2.1.3 Fractal Geometry analysis..........ccccccereneressissumssisssssassnnssassssassnassasssssnsanssssassanssasnss 76
4.3 Geostatistical ANAlYSES. ....ccievirersrrrsssasossossoriaitnirennsasasrsnsssrasiassreasseranss 80
4.3.1 Spatial structure and atriDULES. .. .....vureernenirirnrriirrriiiie s 80
4.3.1.1 Particle size fractionS. ......ccveatieerieriutronsiosrneiineissnssssasssassssssnasssnnssnness 89
4.3.1.2 Bulk density, porosity, aeration and aggregate stability..............c.cooeiiianinnn, 91
B A NGBS CONMIBIL i ihiisns sonsnsnssms dosiis n s 4545 T80 s A3 Vaaa da ST MH eV S o 8939 92
4.3.2 Kriging and Cross-validation............ouvmiieriniiiiiie 93
B3] BOILTERRITE. .o o onmnnman svp sl salbdpasnncnn sans swanams vsnms i sise T T 101
4.3.2.2 Bulk density, porosity, acration and aggregate stability................c.ooiinn 102

4.372:3 MOISture COntEnt:.....courmeioverre Moo BN b B S b cicinsconmrasresssnmsntsncenss L
CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS........c.cccoverriennnnnnssneneenn 106

B ) CORCIISION . s vivi s cosvssinimnbnnsansns s UREEE e C oM NURUREIA . ¢« s s visosssssvarssrressssenneesnns 106

2 0T 090 04 (o) (18 LA T85! My e T Wi GERRL i TR SURRRIL et (SR NOERESS PR 107

REFERENCES, ... ciscocsssiciniiiirt et otoecace Pt s e dtete notoMilhevodpsssnsnossasossonvnsnesnsas 108

APPENDICES . . ccivessondorcdneivanaasbetsdoiie e itunsessssssiagangnessinscosreassosnssesssossses 134
M ,_,.-—'-_'___-_—-

s R AT



Table

Table 3.1:
Table 3.2:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:

LIST OF TABLES

Title Page
Relationship between Fractal Dimension and Hurst's Coetficient ............... 44
Relationship between Fractal Dimension and Nature of soil..................... 45
Descriptive statistics of soil physical properties............cocoiiiiiiiiiiniennnnn 53
Descriptive statistics of soil hydraulic and hydrologic properties............... 64
Sealing parameters for K, and L. ...ueeeuesvencvnssnone sesnpenspsnnsssssnsnmsomns 72
Fractal indices of hydraulic and hydrologic properties ....................ovein 77
Semivariogram models and parameters for soil physical pm;:;erties e M K
Cross-validation parameters for soil physical properties............coceviiinin 95

Xi



LIST OF FIGURES

HISTOGRAMS

Table ' Title Page
Figure 1a: Sand content in both layers of sampling..............coooiviiin. 54
Figure 1b: Clay content in both layers of sampling...............ocoiiiii. 54

Figure 1c: Silt content in both layers of sampling...............cooooviiiinieniivimmmiminned3

Figure 1d: Bulk density in both layers of sampling..............cooooiiin. 55
Figure le: Total porosity in both layers of sampling.........c.cooereiiiiiiiini. 56
Figure 1f: Aeration porosity in both layers of sampling.............c.oooitiiiinn.n 56

Figure 1g: Aggregate stability of both layers of SATAPIING. .. oo vbosugion o dmis T emse st b D
Figure 1h: Volumetric moisture content in both layers of sampling...............coonmeen. 57

Figure 2a: Saturated hydraulic conductivity of both layers..... NG WO,k I 0

Figure 2b: Infiltration parameters. ............coueeuruieueriomumrnmeiemnerieminmna 65
LINE GRAPHS

Figure 3a: Variations of cumulative infiltration amount..............cooooivnnnnnann 68
Figure 3b: Variations Of SOIPHIVIY. .. ....cotuieeiiiiiin et 68
Figure 3c: Variations of infiltration rates............coovuemuimmnniii 69
SCALING

Figure 4a: Cumulative infiltration amount..................... i AR W ST 73
Figure 4b: Fractal diagrams of K and /n Kaf the stirface layerl sBf. . ..cooiunossnseonnsuns 74
Figure 4¢: Fractal diagrams of K and /n K’ of the sub-surface layer.............c..coov. 75
FRACTAL GEOMETRY

Figure 5a: Log-log variogram plots of K of both layers............cccoiiiiiiiiiiiin 7
Figure 5b: Log-log variogramplots of infiltration parameters.............cocevueeiiennne 78

A Ete
SEMIVARIOGRAMS AND AUTOCORRELOGRAM

Figure 6a; Sand content in the top layer...........oooiiiiiiii 84
Figure 6b: Clay content in the top layer .........coooiiiiiiii e, 84
Figure 6¢: Silt content in the tOp Jayer .......oveiiriiiieiniiii s 84
Figure 6d: Sand content in the sub-surface layer.............cooiiii . 85

Xii



Figure 6¢: Clay content in the top sub-surface layer...............oooin. 85

Figure 6f: Silt content in the top sub-surface layer....................nn 85
Figure 6g: Bulk density inthe top layer.............ooiimiimi 86
Figure 6h: Total porosity in the top layer............cooooiriiiimmiineiiin... 86
Figure 6i: Aeration porosity inthe top layer............oooiiiii . 86
Figure 6j: Bulk density in the sub-surface layer..................coii.. 87
Figure 6k: Total porosity in the sub-surface layer..............coooii 87
Figure 6m: Aeration porosity in the sub-surface layer............cooooeviinn. 87
Figure 6n: Aggregate stability of the top layer...........coooeaiiininnnn. e SRR 88
Figure 6p: Volumetric moisture content in the top layer...............coooiiiinn 88
Figure 6q: Aggregate stability of the sub-surface layer...............coooooinniin 88
Figure 6r: Volumetric moisture content in the sub-surface layer........................ wierB

KRIGED MAPS AND CROSS-VALIDATION GRAPHS

Figure 7a: Sand content in the top layer............oviiii s 96
Figure 7b: Clay content in the top Jayer ....... ..o 96
Figure 7c¢: Silt content inthe top layer ... 96
Figure 7d: Sand content in the sub-surface layer..... e e T LD, 4
Figure 7e: Clay content in the top sub-surface layer............... ARG IR d o8, 25 B R 97
Figure 7f: Silt content in the top sub-surface layer..........ocooeiiii. .97
Figure 7g: Bulk density in the top layer...............oooiiii 98
Figure 7h: Total porosity in the top layer...... ., g [ SR R 98
Figure 7i: Aeration porosity in the top layer...........cooviiins Aol S N 08
Figure 7j: Bulk density in the sub-surface layer. ..o 99
Figure 7k: Total porosity in the sub-surface layer...............cooiimn. 99
Figure 7m: Aeration porosity in the sub-surface layer.................... IO b g S S 99
Figure 7n: Volumetric moistire content in the 0D LBV .o isossancssvinonaianzinnssnnissive 100
Figure 7p: Aggregate stability of the top layer ... 100
f s %

Figure 7q: Volumetric moisture content in the sub-surface layer ...............ooooovviin 100
Figure 7r: Aggregate stability of the sub-surface layer................coooin 101

LIPRARY

KWl S RUMAH
INIVERSITY Ur SUiLNCE B TECHNOLOGY
KUMAS |

xiii



APPENDICES

Page

Appendix A: T-test results of soil physical PROPETIES o= - iiciintecsirssisusavaskassansstossaed I
A=l Band Content. ... et el W O T T, RO 134
A-2 Clay CONLENL. ....uouenneneneniiinernstebaben s bod B e v aeitransasabententieees 134
A I COMEN s v e nisaeshavous i arr il = a7 R s ¥ SRR Sl e S AR 135
A4 Bulk density...ooieeiveoromonnsoomsonos sl SRS oo v vocrnssssmsnesicoesissssavsssasases 135

=

A=5 TOtal POTOSILY..evenrerncnrucuenevonsns o sBuniBEIRRRERE b <o oovnerenenansesssinnssnenns i 136
A-6 ACration-POTOSILY . ...o. tiiumsees s fouassere ssbumne s sinnee s sesses sprtinaa et enesaan s e 136
A-7 Volumetric mOISTUIe COMEIT. . uu s v ueessnsbanesssasnissitventansbss esssonssioasnaasse 137
A-8 Aggregate stability..........oou it oo et i i s e 137

Appendix B: T-test results of saturated hydraulic CONAUCEIVILY ....cooererenrisnnnnnanarisaess 138



CHAPTER ONE
1.0 INTRODUCTION
The soil is an anisotropic medium having both vertical and horizontal variability, and
consequently, can be seen to exhibit marked spatial variation operating over the micro- and
macro-scales, most especially in tropical soils. This is an indication that the factors
influencing spatial variability differ with scale. Since the nature of soil structure is highly

specific, variation in soil structure under field conditions is the cause of the anisotropic

property.

One of the fundamental features of soils, causing the variations in soil structure under field
conditions is horizonation (or stratification), which represents systematic spatial variation
in the vertical direction as a result of soil development. In a soil profile, the different
horizons may be of varying thickness causing differences in their properties and processes.
Horizontal variation can also be very large and systematic, relating to slope position,
vegetation cover, management history, and parent material. Arid soils are often
characterized by a finer scale, systematic variation in the horizontal direction related to the
“islands of fertility” phenomenon, wherein soil organic matter and nutrient concentrations

are higher beneath shrubs and trees than in interspaces (Schlesinger ef al., 1996).

-

These islands of fertility arethought to be caused by a combination of wind-blown topsoil
_and other debris blown from interspaces and trapped by the shrubs or trees (often on the
leeward side), uptake of nutrients from surrounding soils and recycling them via litter fall

to soils beneath the shrubs and trees, and excreta from animals taking shelter beneath these

trees and shrubs.



Tropical soils are, thus, inherently variable over time and space, indicating that they are not
composed of homogeneous units as indicated on maps, or considered as a closed body, but
always have some degree of variability presenting significant problems for both sampling
and characterisation. This heterogeneity in soils is due to the fact that:

e They are a product of the interaction of several factors and processes of formation that
operate with different intensities and at different scales. These interactions, therefore,
transmit complexity to the soil and produce a dynamic and heterogeneous system.

e The various systems of soil preparation substantially increase the heterogeneity of its
attributes: when the soil is cropped, it has additional sources of heterogeneity, caused

exclusively by the anthropic effects of agriculture.

Heterogeneity, therefore, can be considered as an innate quality of soils that typifies their
anisotropy. In a natural landscape, it represents a wide variety of soil attributes, both spatial
and volumetric, because of the interaction of the processes that rule soil formation (Junior
et al., 2005). Spatial variability of soil properties, as a result, is a serious problem in the
management of tropical soils and has been one of the major objectives in investigations

related to agricultural and environmental sciences.

1.1 Problem statement

Considering the major Mﬁes’ of production systems, there is no clear distinction
_between intensive industrial agriculture and extensive small-scale agriculture. Whatever the

type of agriculture, the most important thing is to develop rational use of inputs such as

tillage, irrigation, fertilization and other agrochemicals to help protect the environment and

biodiversity, while at the same time trying to intensify production. Normally farmers do not

-

consider spatial variability while applying these management strategies (inputs) to the soil.



The common practice is for them to apply the inputs uniformly to their fields. Additionally,
yields of crops from the farmers' fields are also influenced by spatial variability emanating

from soil heterogeneity.

As a consequence, researchers have traditionally attempted to remove spatial variability by
blocking and/or statistical averaging procedures. The consequence has often been a failure
to understand processes acting in the soil (interdependency over sp:ace). On the contrary,
geostatistics provides a body of statistical techniques designed to detecting and modeling
the patterns of spatial dependence of attributes in space, rather than evaluating linear spatial

average values.

1.2 Justification

These observations concerning the management of spatial variability point to variability as
a key soil attribute that should be studied for the physical, hydraulic and chemical attributes
of soil under different management regimes. Thus, it is important to properly characterize
the spatial patterns in soils for a number of reasons. Therefore, an appropriate
understanding of spatial variation of soil properties and the relationships between them is
needed to scale up measured soil properties and to model soil processes since knowledge of
spatial variation of soil properties is important in precision farming and environmental
modeling: ana:ljfscs and medeting of field-scale solute transport processes, crop quality and

_Ii_gj_cl_a,nd groundwater chemistry.



1.3 Objectives

1.3.1 General Objective

The main objective of the study was to assess and analyse the variability of soil on an
uprooted oil palm field spatially. To reach this objective, the following specific objectives

were evaluated:

1.3.2 Specific objectives

The specific objectives, therefore, were to:

¢ Evaluate the structure of spatial variability in hydraulic and hydrologic processes using
scaling techniques and fractal geometry analysis.

e Analyse the extent of spatial variability in selected soil physical properties using

semivariograms, Kriging and autocorrelation analyses.

1.4 Expected output

The study would, for that reason, serve as a reference point to researchers, farmers and
policy makers trying to make sustainable agricultural production a priority in their
activities by producing overall analyses on how spatial variability can be incorporated into

the management of spatially variable tropical soils.



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Background

Knowledge about the variability of soil properties is probably as old as the soil
classification system (Vieira et al., 1981). Spatial properties of field soils vary in a complex
manner, especially, in arid and semi-arid areas, where this variability affects plant quality
and crop production (Berndtsson and Bahri, 1996). Jafarzadeh ez al. -(2010) evaluated some
physical and chemical properties and their spatial variability and frequency distribution
within and between landforms and reported that the spatial distribution of soil properties at
the field and watershed scale (region scale) affects yield potential, hydrologic responses,
and transport of herbicides to surface and/or groundwater. They went further to suggest that
strong spatial dependence could be due to the effects of intrinsic factors such as parent
material, relief and soil types. Also, soil properties variations result from variation in
depositional environments and/or differences in pedogenic or hydrologic processes for
different landform positions, and so it can be affected by flood irrigation, fertilizer addition,
and high water table level or agricultural practices. These effects may cause data departure

from normal distribution and cause skewness (positive or negative) for soil mapping unit.

Soil variability 13 often considered to be composed of “functional” (explained) variations
in addition T{i‘: “random flucTuations or noise”. Nonetheless, the distinction between these
~two_components is scale dependent because increasing the scale of observation almost
always reveals structure in the noise (Burrough, 1983). In agreement with this description,
the “nature of variability™ is considered as a qualitative term describing the kind of

variability in contrast to quantitative terms such as variance or correlation length which

describes the “amount of variability”. Specifically, the nature of variability may be



represented as deterministic and/or stochastic (Philip, 1980; Rao and Wagenet, 1985), but
the total variability of a given parameter is a composite of the deterministic and stochastic
components. An important special case is when homogeneity or no variability is assumed
(Seyfried and Wilcox, 1995). In the case of deterministic variability, various soil properties
vary spatially and possibly, temporally in a known way (Philip, 1980). Spatial variation
may be “known” or deterministic from:

e Theoretically derived relationships

e Empirically observed and described relationships

e Mappable trends

Deterministic descriptions of variability result in exact parameter values for specific field
locations. Stochastic variability is essentially random. In the most common form, this
randomness is assumed to be independent of position or stationary. Stochastic descriptions
of variability result in estimates of the pmbability_ of a certain parameter value occurring at
a given field location. In simplest cases, areas may be represented by “effective” mean
values, but more generally a probability distribution function would be required (Seyfried
and Wilcox 1995). In reality, spatial variability is rarely entirely deterministic or stochastic.
Within any deterministic trend or distribution of parameter values, there is invariably some
degree of uncertainty or a stochastic component. Similarly stochastic variation may be non-
stationary, contai_l_ling sjfstematic trends er be composed of nested deterministic variability.
As the name implies, sca-leﬁé of interest) refers to the size of the area under
consideration which is simply the effect of altering the size of the study area (Seyfried and

Wilcox 1993).

-

Technologies, such as crop yield monitoring systems (Eliason et al., 1995) and site-specific

-

fertilizer applicators (Persson and Bangsgaard, 1999), remote sensing from satellites,



aircrafts and tractors and sophisticated crop and soil sensors (Viscarra Rossel and
Mcbratney, 1997) have, in consequence, been developed to help farmers better manage
their fields utilizing spatially varying prescription intensities based on localized plant

growth requirements or deficiencies (Mulla and Schepers, 1997, Stafford, 1997).

2.2 Spatial variability of soil physical properties

Spatial variability of soil physical properties within or among agricultural fields is inherent
in nature due to geologic and pedologic soil forming factors, but some of the variability
may be induced by tillage and other management practices (Igbal et al., 2005). They further
and documented that these factors interact with each other across spatial and temporal

scales and are further modified locally by erosion and deposition processes.

2.2.1 Soil moisture content

Soil moisture occurs as a balance between the competing demands of the atmosphere,
vegetation, and gravitational drainage (Williams er al., 2009). The soil water content is a
variable of great importance in various hydrological processes including land-atmosphere
interactions (evaporation and precipitation), flooding, erosion, solute transport and others
(Georgakakos, 1996), which, in turn, are relevant in many different fields as hydrology,

meteorology, agriculture, civil engineering and so on.

o

— N /__..'-—-"'"'_'_'_

~Soil moisture content and its form of availability are crucial for the growth and
development of plants. It influences the dissolution, absorption and transportation of plant
nutrients, soil biological activ_ity, soil temperature variation and oxidation and reduction
state of soil matrix (Adhikari ez al., 2009). Hydrologists have, thus, recognized the critical

role of soil moisture and tried to develop models that extend the point-scale or local-scale
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physics of soil hydrology to the larger domains of mesoscale meteorological and global

circulation models (GCMs) (Mohanty et al., 2002).

On top, surface soil moisture exhibits an important variability in terms of spatial and
temporal domains, wl‘;ich may result in critical uncertainties for agricultural water
management (Hu et al., 2008). Spatial distribution and movement of water in the soil vary
both vertically and laterally due to evapotranspiration (ET), irriga'tinn and precipitation,
influence by topography, soil depth, texture, and structure, depth of water table, SOM
content, temperature and other climatic parameters and vegetation (Oldak er.al., 2002;
Adhikari ef al., 2009). Soil moisture content can vary in deterministic or stochastic ways or
in a combination of the two (Seyfried and Wilcox, 1995; Western et al., 1999), therefore, it
can be expressed in the form of a map or mathematical relationship with spatial data such

as topography or land use type (Qiu ef al., 2001).

This spatial variability in soil system depends on the volume and distribution of water in
soil because it may decrease with the increase in soil moisture content (Adhikari et al.,
2009), and it is a necessary and preliminary part for parametric soil and land survey
(McKenzie and Austin, 1993), spatial prediction of soil moisture (Lark et al., 1999), soil
and land evalgatinn for sustainable use (Fu et al., 2000), specific farm planning and
managf:merr[j([)&& et al—T994; Lark et al., 1999), hydrological modeling and watershed
~ management (Jordan, 1994; Westem and Grayson, 1998) and climate models (Robock

etal., 1998).

The spatial and temporal distribution of soil moisture control numerous catchment

processes including runoff generation, groundwater recharge, ET, soil respiration, and



biological productivity (Williams et al., 2009). Shallow surface soil moisture is a key status
variable in hydrologic processes on the land surface, which tends to be variable in both
time and space (Hu et al., 2008). Top layer soil moisture variability can be controlled by a
large number of factors, such as vegetation (Reynolds, 1970), soil properties (Hawley
et al., 1983) and topography (Western and Bloschl, 1999). Therefore, relationships between
soil moisture and environmental factors need to be studied in a variety of places and over a
large range of scales (Qiu ef al., 2001). It may be limited to estims;te the catchment mean

soil moisture using a small number of sampling sites (Owe ez al., 1982).

Land use, an alternative attribute that is easily obtained, also plays an important role in
controlling spatial patterns of soil moisture by influencing the infiltration, runoff and ET,
particularly during the growth season (Fu and Chen, 2000; Fu ez al., 2000). The difference
in transpiration of vegetation resulting from land use can eliminate the effects of
topography, particularly, aspect (Ng and Miller, 1980). Thus, knowledge of the land use
can improve the extent of the prediction power of environmental indices. It is, therefore,
not clear-cut to make out the different dominating processes or factors influencing soil
moisture distributions along different study areas since the dominating factors may also be
different under different soil moisture conditions (Famiglietti et al., 1998; Leij et al., 2004).

For this reason, knowledge of the characteristics of soil moisture variability is essential for

."'F'-F
-

calibration-and validation-of satellite based soil moisture products (Entekhabi ef al., 1999;
~ De Lannoy ef al., 2006), understanding and predicting many hydrologic processes
(Western et al., 2004), land surface processes that vary based on topography, soil texture

and vegetation at different spatial and temporal scales (Teuling and Troch, 2003).



2.2.2 Other soil physical properts.

Variation in soil texture and st
influence the yield potential of any
in nutrient storage and availabili
stability of soil aggregates and th
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shown that among the different s
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plough layer may show less vari

operations (Adhikari et al.. 2009).

—ure are very common phenomena which directly
2. Textural variability may contribute to the variation
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therefore on crop yield. Similarly, Tanji (1996) has
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7. These findings clearly show that soil texture is a
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morosity and so on (Adhikari er al., 2009). Likewise,
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pore structure of soil aggregates affects the storage of water and its availability for plants.
These characteristics are largely influenced by management systems and soil compaction

(Horn, 2004; Lipiec ef al., 2006).

2.3 Spatial variability of soil hydraulic and hydrologic properties

The hydraulic conductivity of a soil is a measurement of its ability to transmit water;
moisture constants related to the water retention curve show the abili;}f of the soil to store
water (Klute and Dirksen, 1986) and it is one of the most important soil physical properties
for determining infiltration rate, irrigation frequency, drainage practices and other
hydrological processes. Hydraulic conductivity is not an exclusive property of the soil
alone, since it depends on the properties of the soil and of the fluid together (Giilser and
Candemir, 2008) and may change as water permeates and flows in a soil due to various

chemical, physical and biological processes.

Some soil physical characteristics, which affect hydraulic conductivity, are the total
porosity, the distribution of pore sizes, and the pore geometry of the soil (Hillel, 1982).
Many extrinsic factors (such as traffic, vegetation, or land use) and intrinsic factors (such as
soil types, pore size distribution) are responsible for the variation of soil physical and
hydraulic properties from field to field in a watershed (Gupta et al., 2006). Field
ubservations—%ow that aulic properties of soils vary significantly with spatial
i‘:ﬂ@_ even within a given soil type (Warrick and Nielsen, 1980). This variability in
hydraulic conductivity as well as water retention characteristics of the soil have been
reported to have an enormous control on the vertical and lateral water transmission

properties (Mohanty et al., 2002). Gupta ef al. (2006) studied hydraulic conductivity at

-
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different soil depths under tillage and no-tillage conditions and concluded that spatial

variability is higher on the surface than the subsurface.

2.3.1 Saturated hydraulic conductivity (Kj)

Among the hydraulic properties of the soil, saturated hydraulic conductivity (K) is one of
the most important properties that affect the water and chemical movement within or
through the soil (Kumar ef al., 1994). The saturated hydraulic conductivity (Ky) has been
recognized as a highly spatially correlated variable than other soil physical and hydraulic
characteristics and the modeling process requires estimation of representative values of this
parameter for every field or sub-basin in a watershed (Gupta et al., 2006). Studies indicate
that preferential flow paths and spatial variability in the K of the soil significantly
influence the chemical transport from agricultural fields to shallow groundwater (Kanwar

et al., 1991).

Rahman ef al. (1996) examined the spatial variability of soil properties across the landscape
and concluded that the geostatistical techniques provide a better description of the nature of
variability in soil properties than conventional statistical techniques such as variance and
regression analysis. Most studies have highlighted the spatial variability of K; only in one
direction, either along tile slope or across the slope, but very little attention has been given
to the variatiaﬁsﬂi.n K, along and-across the slope (Gupta ez al., 2006).
i 2
2.3.2 Infiltration characteristics
Soil hydrology is a component of the environment that could play a strong role in shaping

tropical forest structure and composition (Jirka ez al., 2007). Infiltration, the term applied to

the process of water entry into the sf:ril, generally by downward flow through all or part of
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the soil surface is known to represent the main hydrological process. The rate of this
process, relative to the rate of water supply, determines how much water will enter the root
zone, and how much, if any, will run off (Hillel, 1998). Water infiltration is a driving force
influencing crop growth, soil erosion, and chemical leaching processes. Knowledge of the
relative precision and accuracy of infiltration models is needed for best characterization of

the infiltration parameters (Clausnitzer ef al., 1998).

Agricultural operations like tillage have influenced greatly the local surface runoff,
infiltration and surface storage by altering soil hydrologic properties and soil surface
roughness (Mwenderarand Feyen, 1993). Tillage generally increases infiltration by
increasing soil porosity and breaking up crusts. In addition, the ditch and the drain
networks influence the water transfer from the fields to the catchment outlet (Hughes and

Sami, 1992).

A single infiltration rate or a lumped average is often used to define the infiltration capacity
of a watershed without considering the locatiun of areas of high and low infiltration
capacity (the variability) (Morin and Kosovsky, 1995). Lumping of distributed parameters
can lead to distortions in the results of distributed process based models (Lane ef al., 1995).
Measurement of the variability of vegetation and soil properties is relatively easy;
quantifying the Eﬁﬂcts of thwm on the infiltration process and subsequent impacts
on runoff generation is difficult. This is due in part to difficulty in measuring the
N
infiltration process. Due to this variation in space, soil sampling or measurements at a finite
number of places often give incomplete pictures (Heuvlink and Webster, 2001). Spatial

variability of infiltration is first attributed to the inherent heterogeneity of the soil

infiltration characteristics, and second to the method of measurement itself (Aboulabbes,
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1984: Jury, 1985; Merzougi, 1982). Famiglietti et al. (1998) demonstrated the effects of
soil heterogeneity on flux rates using a distributed catchment-scale water balance model
and found that soil properties are equally or even more important for controlling upward
(evapotranspiration) and downward (infiltration) fluxes than topography, vegetation, or
precipitation, with the relative importance depending on the antecedent moisture content

and the wetting or drying sequence of the soil.

2.4 Spatial variability of crop yield

Variations in crop yield are common in agricultural fields and these variations could be due
to ground-, climate- and input-related factors and their interactions or crop genetics and
biotic (such as insect pests and other pathogens) and abiotic components (such as soil
factors) (Yang et al., i998; Adhikari et al., 2009). Soil properties like available water,
texture, bulk density, clay content, organic carbon, pH, subsoil acidity and soil thickness
have been found to affect crop yield. Other factors like variation in soil fertility and
hydraulic properties, slope position and orientation of the land are also found to affect crop
yield (Adhikari e al., 2009). Drainage probably causes more variability in the yield of
certain crops than any other factors, hence, erosion and sedimentation can influence yield

significantly (Adhikari ef al., 2009).

Crop yield is the cumulative effect of all such variations, therefore, considering crop as the
— __‘__‘--'""'"___

sensor of its own environment, the crop yield data could be used to understand the field
variations and manage it in a site-specific manner (Legg and Stafford, 1998). However,
some of the yield influencing factors such as input and climate vary significantly from

season to season. Consequently, crop yield in a field could be quite different from year to

year even if the crop is same, hence, the yield of one season is not a reliable indicator of the
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field variations and accumulation of yield data from a number of seasons and crops in the
same field can provide an excellent means of gaining a precise understanding of the field

and yield variations (Plant, 2001).

Schepers et al. (2004) o_bserved not only significant within-field spatial variability, but also
significant temporal variability in grain yield and accredited the temporal variability in
grain yields to be likely due to the marked differences in total growing season precipitation
among years, with the driest (2000) and wettest (1999) seasons receiving 62 % and 124 %
of average precipitation, respectively. Machado er al. (2002) observed changes in spatial
yield patterns from year to year and concluded that they were expectedly due to the
interaction of soil factors influencing crop yield with climate variability. Spatial and
temporal variability of crop factors within a field, thus, can have a significant influence on
agricultural production (Zhang er al., 2002) by reducing yield and quality of produce

(Raine er al., 2005).

According to Moore ef al. (1993) and Gessler et al. (2000), soil factors that influence crop
yield include landscape factors controlling water distribution (viz., elevation and slope),
physical properties affecting water-holding capacity (viz., texture and bulk density). and
chemical properties affecting fertility (i.e., pH, EC, and OM). Khakural et al. (1998)
reported on lqﬁf_'ﬁields of cwdsajbean at eroded slopes. Topography is regarded as
one of the most important factors affecting yields (Changere and Lal, 1997) and as a source
of mﬂbtained information that is useful for soil and field characterization (Odeh et al.,

1994; de Bruin and Stein, 1998).
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2.5 Addressing spatial variability

2.5.1 Scaling

According to Bonsu and Laryea (1989), one way to deal with the problem of variability is
by using scaling approach. Scaling factors have, thus, been described as simple conversion
factors that relate the characteristics of one system to the corresponding characteristics of
another (Tillotson and Nielsen, 1984; Bonsu and Laryea, 1989). The definition of scaling
factors comes from the work of Miller and Miller (1956). They introduced the similar
media concept (microscopic geometric similitude or Miller similitude) which is based upon
assumptions concerning the microscopic geometric structure of porous media (“capillary
flow” of fluids in porous media). Similar media differ only in the scale of their internal

microscopic geometries and have therefore equal porosities.

The fundamental concept underlying the algorithm is that two media M, and M, are similar
when the variables that describe the physical phenomena that occur within them, differ by a
linear factor A, called microscopic characteristic length, which relates their physical
characteristics (Reichardt e al., 2003). Similitude then results from the use of this length
scale as a factor to render transport coefficients and potentials for water in porous media in
a scaled form (Sposito and Jury, 1990). The best way to visualize this concept is to
consider M, as an amplified (or reduced) photograph of M; by a factor A. For these media,
the particle diix}_iéi:er of one Wﬂ the other by: D, = AD;. The surface of this particle
by: S; = A’S;. and its volume by V; = %>V,. Because the particle and void geometry is
e
magnified without reorientation or shape change, the characteristic length scale A can
characterize the relative magnification of a particular region relative to the reference

region. Under these conditions, if the flow of water through M, is known, it would be

possible to estimate the flow through M, based only on A (Reichardt et al., 2003).
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For such a medium, the hydraulic and retention properties of any region i can be calculated
from those of the reference region (where A = 1) (Jury ef al., 1984). In principle, the similar
media concept allows results, either experimental or computed, of soil water behaviour in
one soil to be used to describe the behaviour in another by employing reduced variables
defined in terms of appropriate microscopic characteristic lengths. Using artificial porous
media (glass beads), Klute and Wilkinson (1958) and Wilkinson and Klute (1959) obtained
results on water retention and hydraulic conductivity that validated ‘the similar media

concept.

The single objective of scaling, therefore, is to coalesce a set of functional relationships
into a single curve using scaling factors that describe the set as a whole. The scaling
approach has, thus, been extensively used to characterize soil hydraulic spatial variability,
and to develop a standard methodology to assess the variability of soil hydraulic functions
and their parameters. The purpose of scaling, for that reason, simplifies the description of
statistical variation of soil hydraulic properties. By this simplification, the pattern of spatial
variability is described by a set of scale factors a; relating the soil hydraulic properties at
cach location i to a representative mean (Hopmans 1987). Thus, the philosophy behind the
application of scaling methods to water in field soils has been either to simplify the task of
making replicate measurements on a field or to help calibrate a field-wide transport model
formulated from :sc'aling relam/‘s’lligs__(_‘_«h’arrick and Nielsen, 1980).

Mm.tu determine scale factors were described by Warrick et al. (1977) and Russo and
Bresler (1980). These methods are based on regression analysis and can also be described
as functional normalization methods (Tillotson and Nielsen, 1984). Peck et al. (1977),

Lascano and Van Bavel (1982), and -Ahuja et al. (1984) have shown how the distribution
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function of scale factors can be used to assess the effects of variable soil hydraulic
properties on soil water flow. The procedure consists of using scaling factors to relate the
hydraulic properties at a given location to the mean properties at an arbitrary reference
point. This physically based scaling concept provides for the simultaneous scaling of the
soil water retention (Kosugi and Hopmans, 1998) and unsaturated hydraulic conductivity
functions (Tuli er al., 2001), leading to scaled mean soil hydraulic soil functions for each

structural unit, to serve as effective soil hydraulic functions (Mohanty et al., 1997).

2.5.2 Fractal Geometry analyses

A fractal is a shape made of parts similar to the whole in some way (Addison, 1997), i.e.
they are shapes in which parts of the shape resemble the whole shape in some way
(Strecker, 2004). Thus, the basic premise upon which fractal concepts are based is the
notion of self-similarity. The term self-similarity (or statistical self-similarity) implies that
regular (or statistically regular) patterns appear in nature at all scales of observation. For
example, a coastline exhibits statistical self-similarity since irregularities (bays, estuaries,
wave scallops) can be found at any scale nf_ observation. This definition has been warily
and roughly formulated, in that it does not pin down the term fractal in such a way that

some objects that look like fractals are excluded from the definition (Mandelbrot, 1982).

[n place of a P’ﬁ;rfé_speciﬁc def/u/ﬂﬁgn,,m'o qualities are frequently associated with fractals:

invariance under displacement and invariance under scaling. For an object to be invariant

e p—
under displacement, different regions of the object must look similar to each other. For an

object to be invariant under scaling, magnifications of parts of the object at different levels
of scaling must look similar to the whole object. It is clear from this description that, on

some levels of scaling, particle paths are self-similar (Mandelbrot, 1982). A function is

18



statistically self-similar if the statistical properties of the function scale with the length of

time for which the function is observed (Addison, 1997).

The concept of fractals (Mandelbrot, 1982; Feder, 1988) and fractal scaling offers another
viewpoint on quantifying the spatial variability of soil properties. A fundamental property
of fractals that is of practical importance in its application to transport in porous media is
that quantities such as mass, length, area, and volume (and other quantiiies such as density
that are derived from these basic quantities) do not have intrinsic values. Fractal
dimensions of the solid matrix (i.e., soil particle size distribution and soil texture) and the
void phase (i.e., soil pore size distribution and soil pore surface) can characterize the fractal

nature of soils (Tyler and Wheatcraft, 1992; Fazeli et al., 2010).

Among obijects classified as fractals, the fractal dimension of the object is usually (but not
always) a non-integer dimension greater than its topological dimension (which is related to
the shape of an Dbject.and remains the same for the object irrespective of deformations
involving such motions as stretching, shrinking, bending, but without tearing and without
identifying any distinct points) (Baker, 1997; Strecker, 2004). Empirically, the fractal
dimension can be visualized as a degree of the crinkliness or degree of convolution of an
object (Addison 1997). Many types of fractal dimension exist, including the similarity
dimension, the di?fdg]: dimension, the Hausdorff dimension, the box counting dimension,
—— ey :

the correlation dimension, the information dimension, the point wise dimension, the

_-'-——-"_- " "
Lyapunov dimension, and others (Strecker, 2004).

As the names suggest, different dimension measures emphasize different aspects of the

fractal object and may vyield different.results. What all of these dimension measures have in
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common is that they probe the fractal object to discover how much of it there is. The
amount of space the object occupies is closely tied to the way that the object expresses its
invariance under scaling (Addison 1997). Among the numerous measures of fractal
dimension, the most basic are the similarity dimension, the box counting dimension, and
the Hausdorff dimension. Of all of these measures of dimension, the Hausdorff dimension
is perhaps the most authoritative, since Mandelbrot (1982) defined a fractal as an object
whose Hausdorff dimeﬁsicn exceeds its topological dimension. For the topologic objects,
or Euclidean forms, the dimension is an integer (0 for a point, 1 for a line, 2 for a surface
and 3 for a volume). The fractal dimension is, thus, a measure of the degree of irregularity
of the object under consideration. It is related to the “speed” by which the estimate of the

measure of an object increases as the measurement scale decreases (Reichardt et al., 2003).

According to Mandelbrot (1989), the fractal geometry can be defined as the study of
geometric shapes that may seem chaotic, but are in fact perfectly orderly. Fractal geometry,
in contrast to the Euclidean geometry, admits fractional dimensions (Reichardt et al.,
2003). Fractal geometry has, thus, become an important source of scaling laws in soil
hydrology. Fractal geometry focuses on geometric objects in which total length, area, or
volume depends on the scale. Such objects exhibit similar geometric shapes when
observations are made at different scales (Tarquis er al., 2007). Fractal geometry was
initially funnulat’eﬁ_énd termed fractals by Mandelbrot (1982) who suggested that fractals
= e ______,_..-—--"""_"_ =
rather than regular geometric shapes like segments, arcs, circles, spheres, etc., are more

appropriate to approximate irregular natural shapes that have hierarchies of ever-finer detail

and was expanded upon by Feder (1988). Fractals and the concepts of self-similar scaling

have been applied to a wide range of natural processes (Feder, 1988) and in recent years, a
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great deal of attention has been placed on fractal scaling in porous media and

heterogeneous sotls.

This observation marked the beginning of the application of fractal geometry, which has
become very popular during the last 20 years because of its promise to relate features of
natural objects observed at different scales (Gimenez ef al., 1997). Fractals, have thus been
defined as spatial and temporal model systems that exhibit scaling synﬁnetry, i.e. they are
constructed by repeatedly copying a pattern or “generator” on a starting object known as
the “initiator” (Mandelbrot, 1982). They are characterized by a power law relation between
the number and size of objects, whose exponent D is called the “fractal dimension”. For
soils, Rieu and Sposito (1991a), and Tyler and Wheatcraft (1992) showed that D values
should be less than 3. However, these boundary conditions depend on soil texture, as values
exceeding 3 have been obtained with the number-based model used for scaling particle size

distribution (Tyler and Wheatcraft, 1989; 1992; Millan ef al., 2003).

Fractal scaling has been used as a fragmentation model to describe particle size distribution
and soil behaviour (Tyler and Wheatcraft, 1989; 1992; Rieu and Sposito, 1991a; 1991b;
Anderson ef al., 1998) and has been proposed as a model for soil aggregate size distribution
(Perfect and Kay, 199Il ). Fractal geometry offers a powerful descriptive tool for soil
scientists, bec:_a;u}n_éf it pruvidwiitalive framework for integrating soil biological,
chemical and physical phenomena over different spatial and temporal scales. In agronomic
rem.is used to study the dynamic processes that occur in soils (water, solute, heat and
gas movements), soil structure, plant architecture and development, drainage of watersheds,

ete. Fractal models that simulate soil structure (Figure 9) are also used to better understand

soil behaviour. The fractal characteristic of several soil attributes has led to the use of these
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new technologies in substitution to several empirical procedures. (Reichardt er al., 2003).
Moreover, Perfect and Kay (1991) compared the performance of D as a statistical
descriptor of fragmentation to that of the other indices. They showed that D was more

sensitive to cropping treatments.

Fractal geometry characterizes and parameterizes scaling relationships across a range of
scales. In theory, the wider the range of scales, the more reliable are the scaling parameters
such as fractal dimensions or multifractal structure function. Depending on the application,
the change in variability with scale may also be of interest for the cases in which changes in
scale are not large. Fractal models are not meant for this type of analysis, and other tools of
multiscale analysis have to be used. Ideally, they should allow one to parameterize the joint

effect of small changes in location and scale on variability (Tarquis ef al., 2007).

2.5.3 Statistical and geostatistical techniques

Soil physicists (Rogowski, 1972, Biggar and Nielsen, 1976) have studied the variability of
soil properties in conventional statistical terms (i.e. probability density function with
associated moments, analysis of variance and coefficient of variation). These classical
statistical procedures which assume that variation is randomly distributed within sampling
units do not consider the correlation between measurements taken at different locations.
Actually, soil properties are continuous variables whose values at any location can be
expected to vary according to direction and distance of separation from neighbouring

__._'-_———.-—_ - » »

samples (Burgess and Webster, 1980). The coefficient of variation (CV) has commonly
been used to describe the variability of these properties; however, it is only an indicator of

the extent of and not the distribution of the variability over an area. Emphasis has been

placed on the fact that the variations of a soil property are not completely disordered over
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the field and this spatial structure must be taken into account in the treatment of the data

(Al-Kayssi, 2002).

[nvestigators have, thus, shown increasing interest in analyzing measured soil parameters
for their interdependency over space, i.e., to study the dependency of a measured parameter
on location in the field. In order to describe the spatial distribution of the variability,
researchers began to use geostatistical methods. Geostatistical methods have been
successfully used to determine the spatial variability of soil properties and sampling
requirements. Therefore, geostatistical techniques can be used to analyse the spatial
correlation structure of soil physical and hydraulic properties, such as % sand, % silt, and
% clay, bulk density, effective porosity, organic matter content and saturated hydraulic

conductivity (Nielson er al., 1973; Gupta, 1993; Diiwu ef al., 1998).

Although soil properties show continuous changes on earth, the sample mean values for
measured soil properties are commonly used to represent soil populations. There is no way
to measure a property at every location within a study area. But, many soil properties
produce great variations among sample values measured at several points. Therefore,
classical statistical methods may not be used safely for characterizing variations in soil
properties. It is assumed that samples are independent from each other and the mean value
is the best repl"esféﬁ;@li‘*'e of EM mean in classical statistics (Turgut et al., 2008).
However, it is well known that samples taken close together may produce more related

——-——"——-._ - -
values than those far apart. That means that sample pairs produce values as a function of

distance between them (Oztas, 1995).
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The fundamental aspect of the geostatistical methods is based on the idea that at some
scale, the properties in the soil are in some way positively related to each other
(autocorrelation) and geostatistical techniques can be applied to estimate the values of soil
properties at unsampled locations. Geo-spatial statistics are, therefore based on the theory
of regionalized variable (a variable distributed in space or time which exhibits a specific
structure) (Webster and Oliver, 2007). Webster and Oliver (2001) recommended the
application of geostatistical methods for the description and interprel?;tion of the spatial
variability of soil physical and hydraulic properties. The most important way to gather
knowledge in this aspect is to prepare soil maps through spatial interpolation of point-based

measurements of soil properties (Santra er al., 2008).

Geostatistics often consists of variography and Kriging. Variography uses semivariograms
to characterize and model the spatial variance of the data while Kriging uses the modelled
variance to estimate values between samples (Journel and Huijbregts, 1978). Among the
different methods of spatial interpolation of soil properties, inverse distance weighing and
ordinary Kriging are most common (Weisz et al., 1995). Various geostatistical
interpolation techniques capitalize on the spatial correlation between observations to
predict attribute values at unsampled locations using information related to one or several
attributes (Adhikari e al., 2009). The presence of a spatial structure where observations
close to each mhﬁ_fégg more alike than those that are far apart (spatial autocorrelation) is,

——

thus, a prerequisite to the application of geostatistics (Goovaerts, 1999).

_,—-—-'"-'-‘_'_

Advantage of geostatistics is the use of quantitative measures of spatial correlation,
commonly expressed by variograms (Diodato and Ceccarelli, 2005). According to Uyan

and Cay (2010), a major advantage of geostatistics (especially, Kriging) is that it is more
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flexible than other methods used for interpolation and spatial averaging such as inverse
distance weighing and deterministic splines, which are used in interpolation and
contouring, or Thiessen polygons (Proximal mapping). Another advantage of geostatistics
is that it provides the means to evaluate the magnitude of the estimation error. The mean
square error is a useful rational measure of the reliability of the estimate. It depends only on
the variogram and the location of the measurements (Kitanidis, 1996). It provides advanced
tools to quantify the spatial features of soil parameters and to perform si}atial interpolation
(Liu et al., 2006), as a result geostatistical methods are used to make available suitable
tools for analyzing spatial data and their use in SSLM is growing rapidly (Lark et al., 1999;

Cassel et al., 2000).

2.6 Precision Farming (PF) or Site Specific Land Management (SSLM)

Relationships among crop yields, the level of input applied, and soil characteristics
determine spatial variability within a field. These relationships also determine yield
response variability, where yield response variability is defined as the differences in
magnitudes of yield response among management zones (English e al., 1999; Roberts
et al., 2000). Considering this inherent variability, management decisions should be

specific to time and place, rather than rigidly scheduled and uniform (Mandal and Ghosh,

2000).

— _’_,--""'-_-.-—_
Since the evolution of commercialization in agriculture, as can be seen through the

- __-_—__—-._._ " - " - = - w

increased farm holdings or larger parcels, intensive crop cultivation, mechanization and
automation in agriculture, individual and manual treatment of each parts of land in a large
scale became more and more difficult or rather impossible. Then again, the cost involved

increased so high that the farm income keeps on always lagging behind (Adhikari er al.,
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2009). With the enlargement of fields and intensive farming practices, it has become more
difficult to take account of their local field variability manually without a revolutionary

development in technologies (Stafford, 2000).

For that reason, the farmers started treating their whole field as a single management unit
for uniform inputs application and management (such as fertilizers, herbicides, insecticides,
fungicides and irrigation) and local variability did not get much attention (conventional
agriculture), but since long, it has been recognized that crops and soils are not uniform
within a given field (C.assman and Plant, 1992; Mandal and Ghosh, 2000). This uniform
application of farm inputs caused reduced input use efficiency as inputs were applied in
some parts of the field, which, eventually, ended up with the waste of inputs accompanied
with economic losses as well as, more importantly, unfavourable environmental impacts
(Mulla and Schepers, 1997). The farmers have always responded to such variability to take

actions, but such actions are inappropriate and less frequent (Mandal and Ghosh, 2000).

This has led to the design of a new crop and land management idea, precision farming (PF)
or site specific land management (SSLM) which campaigns for the judicious utilization of
input resources to the field to alleviate the ill-effects of over and under usage of inputs and
could be economically and environmentally friendly (Mandal and Ghosh, 2000; Adhikari
et al., 2009). Precision agriculture is, for that reason, the management of variability of yield
in different points of a farm to increase the benefit and decrease the environmental damages
__——l-"'-_.-_ " &
(Shamsi and Mazloumzadeh, 2009). Fundamentally, PF acknowledges the conditions for
agricultural production as determined by soil, weather and prior management across space

and over time (Heimlich, 1998). PF is, therefore, a management philosophy or approach to

the farm and is not a definable prescriptive system (Dawson, 1997). It identifies the critical
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factors where yield is limited by controllable factors, and determines intrinsic spatial
variability and it is essentially more precise farm management made possible by modemn
technology. The variations occurring in crop or soil properties within a field are noted,
mapped and then management actions are taken as a consequence of continued assessment
of the spatial variability within that field (Mandal and Ghosh, 2000). Several works have
provided very precise information for site-specific recommendations. However, most of the
spatial variability studies about fertility are referred to soil analysis and they have been
carried out in various temperate countries, e.g. UK (Blackmore er al., 1998), Belgium

(Geypens et al., 1999) or in lowa, USA (Cambardella and Karlen, 1999).

Since it is a system appll'oach to manage crop and land selectively, according to their needs,
in most cases, PF requires special tools and resources to recognize the inherent spatial
variability associated with soil characteristics, crop growth and to prescribe the most
appropriate management strategy on a site specific basis which farmers in developing
countries cannot afford (Mandal and Ghosh, 2000; Roberts er al., 2000), but offers a
potential step change in productive efficiency (Dawson, 1997). Hence, Precision farming
technologies promise the ability to apply farm chemicals only where needed and in the
appropriate amount, thus reducing the potential for pollution (Blumhorst ef al., 1990).
Thus, precision farming technology (PF) is designed to provide data and information to

assist farmers when making site-specific management decisions in order to increase profit
-~ == "’__,..——""——--—_—

margins and ensure environmental quality.

..__.--'-'_'-—.-._
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Site location and characteristics

The study was conducted at the Plantations Research station of the Department of Crop and
Soil Sciences of the Faculty of Agriculture, KNUST, Kumasi. The site chosen for the
measurements was located in an uprooted oil palm (Elaies guineensis) field, where spatial
variability was predictable because of probable biological activity and the presence of dead
root channels and burrows of soil animals. The area is within the semi-deciduous forest
zone subjected to two growing seasons (a major and a minor season) with a bimodal
rainfall pattern. The major season starts in May and is interrupted by a dry period in
August. The minor season starts from September to October. Annual rainfall is about
1375 mm. Annual temperature ranges from 25°C to 35°C. The soil is well drained with a
lot of gravel and belongs to the Kumasi series described as Plinthi Ferric Acrisol

(FAO/UNESCO, 1990) or Typic Plinthustult (Soil Survey Staff, 1998).

3.2 Land preparation

Modified-No-tillage system was employed in the land preparation process, since the
vegetation was overgrown and tall in order to maintain the soil in its natural and
undisturbed state. The weeds were first slashed with a cutlass. The trash was not burnt, but
was left uve_ﬂ?éﬂﬂ suﬁwms were allowed to regrow and they were then
sprayed with, “Sunphosate™ (Glyphosate), a non-selective herbicide.

o cp——

3.3 Soil sampling and Laboratory analyses

A total field of 75 m x 40 m was gridded with a 10 m x 5 m interval in the north-south and

east-west directions. The sampling -grid size was chosen because a rule of thumb to be
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observed in the interpretation of semivariograms y(h) is that estimation of y(h) is
considered reliable for lags not exceeding 20% of the total transect length (Nielsen er al.,
1997). Sample points were systematically located at the nodes of a rectangular shaped
object superimposed on the field. Grid locations were established and maintained using a
Global Positioning Sys;cm (GPS) device. Systematic grid sampling, which is necessary
where there is little prior knowledge of within-field variability and permits application of
simple techniques to map attributes within fields, was employed. The method also, allows
the inclusion of data in geographic information systems, analysis of relationships between
multiple attribute layers and interpolation or generalization of sample data to finer or
coarser grids or map units, as a basis for management decisions. Because the soil is an
anisotropic medium, its horizontal and vertical variability is indisputable and cannot be
overlooked, hence, horizonation, which is a fundamental feature of soils, was considered
and soil samples were taken from the 0-20 em and 20-40 cm depths from 80 intersection

points.

The samples were used for the analyses of particle size, moisture content, bulk density,
porosity, aeration and aggregate stability. Core samplers with cylindrical cores of 8.1 cm
diameter and 20 cm length were used for undisturbed soil sample collection, while
disturbed soil samples were collected in black sampling (polythene) bags with a spade.
Sampling for _f._t_ﬁgl_’i':s on satu/rfgg’hﬂmulic conductivity was taken from 0-10 ¢cm and 10-
20 cm depths.

muw disturbed samples were:

e Oven-dried at 105°C for 24 hours to a constant mass and analyzed in the Soil Science

Laboratory for moisture content, or
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e Air-dried and analyzed in the Soil Science Laboratory and used for particle size and
aggregate stability determination.
Undisturbed samples were collected in cores and used for bulk density and saturated

hydraulic conductivity determination.

3.4 Assessment of Hydro-physical Properties

3.4.1 Particle size analyses

The hydrometer method (Klute, 1986) was used in the determination of the particle size.
This method was used because it allows for the non-destructive sampling of suspensions
undergoing settling and also, provides for multiple measurements on the same suspension
so that detailed particle-size distribution can be obtained with minimum effort. Fifty one
grams (51 g) of air-dried soil from each plot were weighed into milk-shake cup bottles. Ten
millilitres (10 ml) of § % Calgon (Sodium hexametaphosphate) alongside with 100 ml of
distilled water were added to the soil. The Calgon served as a dispersing agent for the soil

particles.

The mixture was shaken with a mechanical shaker for twenty (20) minutes and the content
was poured into a 1000 ml measuring cylinder, the milk-shake bottle cap was rinsed with
distilled water and added to the content to reach the 1000 ml mark. The cylinder with the
content was ishagéﬁ_m disuwmles equally throughout the suspension and first
hydrometer and temperature readings were taken after 40 seconds. The suspension was left
Oy ML=
to stand for three (3) hours to allow the soil particles to settle. Hydrometer and temperature
readings were taken after three hours and the percent fractions of each soil component was

calculated as follows:

% Sand = 100 — [H, + 0.2(T; —20) — 2] x 2 (1)
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Yo Clay = H, + [0.2(T, — 20) — 2] x 2 (2)
Y% Silt = 100 — (% Sand + % Clay) (3)
Where, H; is the first hydrometer reading after 40 seconds; H> is the second hydrometer
reading after three hours, 7} is the first temperature reading after 40 seconds and 77 1s the
second temperature reading after three hours. The textural class was determined using the

textural triangle.

3.4.2 Bulk density (p;)

The dry bulk density was determined from soil cores collected at the field with core
sampler (Klute, 1986). The cylindrical metal sampler (core sampler) with a diameter of 8.1
cm and a height of 20 cm was driven into the soil vertically with the aid of wooden plank
and a mallet to fill the sampler. In order to prevent compression of the soil, another cylinder
of equal diameter was placed directly on top of the sampling cylinder. The sampler and its
contents were then removed carefully to maintain the natural structure and packing of the
soil. Soils that extended beyond the sampler were trimmed with a sharp knife and the
volume of the soil was taken to be the same as the volume of the cylinder. The cylinders
were covered and sent to the laboratory and oven dried at 105°C for 24 hours to a constant
mass. The oven dried soils were weighed and the dried bulk densities were calculated by
dividing the oven dried mass (M;) by the total volume of the soil (V¢). Thus, the dry bulk

density was cglg:: LJIated from El;,fomlula:

pp=(3) )

t
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3.4.3 Total porosity (f)

Total porosity was calculated by the formula:

-1-(8)

Where, f is total porosity, pp is bulk density and p; is particle density (assumed to be 2.65

g/cm’ for all soils).

3.4.4 Aeration porosity (£,)
Soil aeration porosity was calculated from the formula:
$a=f—0y (6)

Where, &, is aeration porosity, f is the total porosity and 6, is volumetric water content.

3.4.5 Aggregate stability (ASt)

The modified wet sieving method (Kemper and Rosenau, 1986) was employed in the
determination of the stability of soil aggregates for each spot and depth. Soil samples from
each spot and depth were collected with a spade into aluminum containers and air dried in
the laboratory. The aggregates sizes between 2 mm to 4 mm were prepared. Twenty grams
(20 g) of the aggregates were weighed unto a 0.25 mm sieve. The aggregates were wetted
with an atomizer spray. The sieve was immersed in water contained in a basin and gently
rotated S0 times. It was, ensured that the aggregates on the sieve were totally covered with
water. The wet sieved aggreme emptied into Pyrex beaker and oven dried at 105°C
for 24-hours to a constant mass (M). Another 20 g sample was weighed and oven dried at
105°C for 24 hours to a constant mass (m). After oven drying, the wet sieved aggregates
were divided by the sub sample to give the aggregate stability, which was expressed as a

percentage, aggregate stability was calculated as follows:
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ASt = (g x 100) Q)

3.4.6 Moisture content

Soil water content was determined on volume basis. Moist soil samples were taken from
the field two days after a heavy rainfall when the soil was assumed to be at or near field
capacity, defined as the amount of water held in the soil after the excess gravitational water

has drained away and after the rate of downward movement of water has materially ceased

which is attained in the field after 48-72 hours of saturation (Veihmeyer and Hendrickson,

1931; USDA-NRCS, 2008). Soil samples were collected with the core sampler and sent to
the laboratory where they were weighed to find their initial masses. They were then oven-
dried at a temperature .of 105°C to a constant mass M,. The loss of water upon drying
constituted the mass of water M,, contained in the sample. Moisture content was determined

on volume basis from the relation:

8, =0, X (::_:) (8)

Where, 6, is the gravimetric water is content, py, is the dry bulk density and p,, 1s the

density of water (assumed to be 1.0 g/cm3).

M
6, = ( w) 9
£ M : )
Where, M, is total mass of moist soil is M is the mass of the solid components of the soil
and M,, is the mass of water contained in the soil.
Mo =M, - M, (10)
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3.4.7 Saturated hydraulic conductivity (Kj)

The saturated hydraulic conductivity (K;) measurements were made on the cores in the
laboratory using the falling head permeameter method similar to that described by Bonsu
and Laryea (1989). In the measurement, core samples were obtained for each spot from the
0-10 cm and 10-20 cm depths. The cores were soaked for 24 hours in water until they were
saturated. A large empty can with perforated bottom was filled with fine gravel. The core
was placed on the gravel supported by a plastic sieve. The whole syster-n was placed over a
sink in the laboratory and water was gently added to give hydraulic head in the extended
cylinder. The fall of the hydraulic head H, at the soil surface was measured as a function of
time t using a water manometer with a meter scale. Saturated hydraulic conductivity was

calculated by the standard falling head equation as:

Koo (52).tn (%) (11)

Where, a is the surface area of the cylinder, A is the surface area of the soil, H,, is the initial

hydraulic head and L is the length of the soil sample. By rewriting equation (1), a

regression of In (%E) on t with slope b = K; (-&) was obtained. Since a = A in this
L

particular case, K, was simply calculated as:

K;=bL (12)

3.4.8 Field infiltration SRS

A study on the vertical infiltration was conducted in the field using the single ring

e
infiltrometer (Klute, 1986). Before the infiltration measurements were made, soil samples

were taken to determine the moisture content of the soil at each spot. A cylinder
infiltrometer of 10 cm diameter was driven into the soil to depth of 10 cm with the aid of a

wooden plank and a mallet. The soil-surface was mulched with plant debris (dry grass and
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leaves) to prevent the disturbance of soil surface (dispersion and clogging of soil pores) and
false measure of infiltration amount when the soil surface in the infiltrometer was
instantaneously ponded with water. A constant water head of 5 cm from the soil surface
was maintained in the cylinder with water from a 1000 ml (1 litre) glass measuring
cylinder. The volume of water that was used to maintain a constant head of 5 cm in the
infiltrometer in a chosen time was used as a representation of the amount that entered the
soil at the stipulated time. The vertical infiltration was measured from the cylinder for a
period of 60 minutes for each spot. The initial infiltration was measured at 30 seconds
interval for the first five minutes when infiltration was very fast after which the interval
was increased to 60, 180 and 300 seconds respectively as infiltration slowed down over

time towards the steady state.

The cumulative infiltration amounts (I) were plotted as a function of time for each spot on a
linear scale. The slopes of the cumulative infiltration amounts taken at different time scales
represented the infiltration rates (i). The infiltration rates were plotted against time and the
steady state infiltrability (K,) was obtained at the point where the infiltration rate curve
became almost parallel to the time axis. Plots of Cumulative infiltration amount (I) as
function of the square root of time (t'%) for the first five minutes were performed and
sorptivity (S) was obtained from the slope of each plot.
,,-—"""'—_—___
3.5 Statistical and Spatial Analyses
-_—-_'-_.- - - Ll L Ll Ll L] L]

Data analyses were performed in two stages. First the descriptive statistics including mean,
skewness and kurtosis, and second, geostatistical analysis were used to describe soil

property spatial dependency.
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3.5.1 Descriptive statistics

Measured variables in the data set were analyzed using classical statistical methods to
obtain the minimum, maximum, mean, standard deviation (SD) and coefficient of variation
(CV %) for each soil property. Characterization of CV% values as reported by Wilding
(1985) was employed, where CV values from 0 to 15 % were classed as little or low
variability, from 16 to 35 % were moderate variability and greater than 35 % were high
variability. Paired samples t-test was used to compare the means of a variable between the

top and sub layers.

To settle on whether or not data followed the normal frequency distribution, the symmetry
and peakedness of the data distribution were determined using coefficients of skewness and
kurtosis. A distribution that is symmetrical and Gaussian (normal) has skewness and
kurtosis values of zero. Since small variations can arise, producing a chance fluctuation of
skewness and kurtosis measures from zero, each soil property was validated to determine
the type of distribution from which the samples were taken. Therefore, the D'Agostino-
Pearson “Omnibus K2” normality test (D'Agostino, 1986), which calculates how far each
of the skewness and kurtosis values differs from the value expected with a Gaussian
distribution, and cnmpl;ttes a single P value from the sum of these discrepancies at 5 %

level of significance (¢ = 0.05) was used. GraphPad Prism version 5.0 and SPSS version 16

were used in all these statistical analyses.

36



3.5.2 Scaling and Fractal Geometry analyses

3.5.2.1 Scaling of Saturated hydraulic conductivity (K)

Peck et al. (1977) defined a scaling parameter a;as the ratio of the microscopic
characteristic length A; of a soil at a location i and the characteristic length 4,, of a

reference soil, or:

a; = (‘;—;) (14)

where, i = 1,....,i denote locations.

Considering the scaling factors in the similar media concept (Miller and Miller, 1956), the
spatial variability of K has been described in Warrick et al. (1977), Simmons ef al. (1979)
and Bonsu and Laryea (1989). As a result of the scaling theory one can relate the hydraulic
conductivity function at given water contents at a given location to a scaled mean saturated
hydraulic conductivity such that for the hydraulic conductivity:

K;=aK’ (15)

Where, K; is the saturated hydraulic conductivity of a certain profile depth at location i, K*
is the scaled mean saturated hydraulic conductivity for the given depths and a; is the
scaling factor for location i. By setting the mean of a; values to 1, equation (15) can be
redefined to obtain K* from a sample size of n measurements of K; (Warrick et al., 1977,

Bonsu and Laryea, 1989) as:

n 2
1
i=1

n

Since the fractal diagram is a graphical method used to provide visual information about
the distribution of a property (Hald, 1952) and one of the easiest methods to determine

whether or not a set of observations is normally distributed, fractal diagrams of In K"
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values were consequently constructed for both layers. Where, In K* is the lognormal

transformation of K*.

3.5.2.2 Scaling of Cumulative infiltration amount

The scaling method was based on the linear variability theory in soil physics (Vogel

et al., 1991), which has its roots in the similar media concept (Miller and Miller, 1956).

According to Vogel et al. (1991), a soil is described as linearly non-homogeneous if its

hydraulic properties obey the following rules:

e The space and time variability of its hydraulic properties can be expressed in terms of a
linear transformation:

K(T,i h) = ag(T,i)K*(h*)

O(T,i,h) = 0;(T, i) + ay(T,i)[6°(h") — 6{] (17)
Where,
n= ﬂh(T, l)h*

T = an index of time and allows for temporal changes in the hydraulic functions.

i = (x,y,2) is a position vector with z positive upward.

K (h) and 8 (h) = soil hydraulic characteristics at point i .i.e., the hydraulic conductivity-
pressure head and soil moisture-pressure head relations.

K (h*) and 6(h*) = space and time invariant reference soil hydraulic characteristics.

ay , 8 and a:x#; scaling factors—asseciated with soil hydraulic conductivity, moisture
content and pressure head, respectively.

e

6; = residual moisture content.

e The overall spot-to-spot variability can be decomposed into two independent

components: a local (within profile) and a global (between profiles) component:
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aH(T! I.r i) — YK(T,I, E)ﬁf{(i)

ag(T,1,i) = yg(T,1,1)Bo(i) (18)
ﬂh(T,L E) = Yh('rr Ir [)ﬁh(i)
Where,

I = Index which describes global variability (profile identifier).

i = Index which accounts for local variability and describes position within the local
(profile) coordinate.

y and B = global and local components of the respective scaling factors a.

Soil profile is defined in terms of one-, two- and three-dimensional soil region and the
difference between them is determined by the global component of variability. With a set of
soil profiles with hydraulic characteristics that vary according to the outlined linear
variability concept, it is possible to define a reference soil profile as a profile for which
Ye=Ya=Vi—1 (19)
The soil hydraulic propérties of this reference profile can then be fully characterised by the

pair of functions, K*(i, h") and 8*(i, h*) obtained by combining equations (17), (18) and

(19).

K*(i, h*) = Bx(DK (h")

6%(i, h*) = 6! Bo(D)6" (h) — 6] (20)
Where,

B = BuG) (R S

Water movement in any soil profile as well as in the reference profile can be described by

Richard’s equation.

a0
Fra div[K (grad h + grad z) (21)

39



Assuming that certain initial and boundary conditions are satisfied and that the solution for
the reference profile is available, the dynamic variables for the other profiles can be
determined from:

v(T, t, 1, i) = yg(T, Dv* (%, i*)

O(T,t,1,i) = 0,(T,1,i) + ye(T,D[6*(t*,i*) — 6] (i*)] (22)
R(T,t,1,0) = ya(T, 1) + h*(t", i)

Where,

H YK(TJIJ . I

= t; d =
Yo (T, Dyp(T, 1) Yu(T, 1)

i (23)

Since these relationships can be used to compute pressure head, Darcian flux, v and
moisture content at any point of any soil profile at time ¢ from the distribution of respective
reference variables at time t*, they can also be regarded as a linear model to describe
variability of the dynamic characteristics of a soil water system. The described concept, as a
consequence, corresponds to the similar media theory for homogeneous soils (Miller and
Miller, 1956), but uses three instead of one scaling factor and applies to non-homogeneous
soil profiles as well. In order to avoid dependency between soil profile geometry (depth of
soil profile, thickness of soil layers etc.) and soil hydraulic properties through the presence
of ¥, in the position vector transformation in equation (23), the following additional
constraint is necessary:

— =
¥a(T,1)=1 (24)

e —

As a result, the variability of the scaling factor @y is restricted to its local component S (i)
only and i* = i. The two parameters yx and yy denote a relative measure of cross-sectional

available for water flow and permeability, respectively, and together contribute greatly to
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soil water flow. Based on the described concept, the mutual relationship between infiltration

scaling factors was determined from:

_¥i

5o (25)

Yv

Given a set of field-determined infiltration curves that characterize the infiltration process
for a set of soil profiles, the parameters of the reference infiltration curve I* (1*) and the
respective sets of scaling factors y,, y;, and y, can be determined from each measured
infiltration curve approximated by Philip’s (1957) equation:

I(t) = Stz + K, t (26)
Where,

| = cumulative infiltration (m),

K, = parameter known as transmissivity factor (m/s),

S = sorptivity (m/s”), and

t = elapsed time since the start of infiltration (s).

The infiltration scaling factors ;. and y; were then derived from:

e e

Ko

Ve = &) /(,{E),z Bl (28)

K5
R -
K, |
= [— 29
v/ ={g) 29)

Where, S* and K, are the arithmetic means of the individual S and K,values for each of the
measured infiltration curves. y; is the scaling factor for cumulative infiltration amount (1),

v, is the scaling factor for cumulative time (t) and y, is the scaling factor for infiltration

41



rate. The scaling factors were normalized by dividing the scaling factors y,, and y; by their

respective mean values, and the scaling factor y, was recalculated from equation (25).

Consequently, scaling factors y,, and ¥, have arithmetic means of 1. The normalization of
the scaling factors, thus, required new values for S* and K;. The expressions in

(19,20 and 21) were used to find the parameters for the new reference curve:

)" (30);

S
K5 new = Vv Ko (31)
Where, ¥, and ¥; are the arithmetic means of the various scaling factors before the
normalization process. The parameters for the reference cumulative infiltration amount
were then determined as follows: The coordinates y; and y; of each measured data point

was divided by the respective scaling factors.

3.5.2.3 Fractal Geometry analysis

The variogram method was used for estimating the fractal dimension (D) and this
assessment was based on the assumption that the selected soil property has statistical
properties similar to those of fractional Brownian surfaces. The self-similar properties of
fractional Brownian motion (fBm) (a biased random walk in which the walker favours

certain directions at each step) were expressed by a power law variogram in the spatial

s

domain:
——=== i N(h)

=t -_ ; z — hd 32
y(h) ZN(M;[Z(::;) 2+ W] =c (32)
Where, i

y(h) = semi-variance at lag h .
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h = distance (lag)

x = position in one dimensional space

¢ = constant of proportionality

a = slope

For a fractional Brownian motion (fBm) model, a belongs to the interval 0 < a < 2 and is
related to the Hurst exponent, A and subsequently to D by the following relationship given

by Huang and Bradford (1992):

a=2H (33)
D = Ed +1—H (34')
Where,

E,; = Euclidean dimension: the number of co-ordinates required to identify the object
(Voss, 1985: Addison, 1997).

H = Hurst coefficient with arange of 0 < H < 1.

Under certain limiting assumptions (Sugihara and May 1990), the relationship between H
and D is:

H=2-D (35)

Since the Hurst exponent measures the scaling properties of fractional Brownian motion

(fBm), the assumption is that the Hurst exponent closely relates to the fractal dimension,

which also measures scaling properties. As H increases, the fBm has more persistence and

the plot of the function becomes smoother and D decreases accordingly. Contrariwise, as A
L m— g

decreases. the fBm is more anti-persistent and the plot of the function becomes rougher and

D increases (Addison, 1997). This relationship between the fractal dimension and the Hurst

exponent aligns perfectly with the notion of fractal dimension as a measure of the

-

unevenness of an object.
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Table 3.1: Relaﬁunship between Fractal Dimension and Hurst Coefficient

H D Nature of process
> 0.5 < 1.5 Persistent
=0.5 =15 Brownian random
<0.5 > 1.5 Anti-persistent

Source: Sugihara and May (1990).

Taking logarithms on both sides of equation (32) and by plotting it on the arithmetic graph, the
semivariogram approximates a straight line. The fractal dimensions (D) for both hydraulic and

hydrologic data were, thus, calculated as a function of slope of the log-log variogram plot (fitted

line) (Burrough, 1981, 1986):

D=2-—— (36)

Where,

D = the fractal (or Hausdorff- Besicovitch statistic) dimension that is a fractional number
between 1 and 2 (Feder, 1988; Tyler and Wheatcraft, 1989). At D = 0 the distribution is
independent of observation size, therefore, the range of variability of D is strictly limited to
0 < D < 3 (Tyler and Wheateraft, 1989; Castrigané, and Stelluti, 1999).

m = Slope of the log-log variogram.



Table 3.2: Relntiunship between Fractal Dimension and Nature of soil
Fractal Dimension Nature of soil

D=0 All particles are of equal diameter

Number of particles greater than a given radius

D=3 R;doubles with each corresponding decrease
(by half) the double mass
0<D<3 Greater proportion of particles larger than
D = 3 (sand)
D>3 Greater proportion of particles smaller than
D = 3 (silt)

Source: Tyler and Wheatcraft (1989).

Because D is based on the analysis of semivariance, it is sensitive to the same analysis
parameters that affect semivariance analysis. The fractal depiction of spatial behaviour of
soil hydraulic and hydrologic properties in the field, and description of their isotropic
feature and possible impact on fractal dimension were, thus, performed thus, performed
with GS+ 9.0 software. Scaling and Fractal analyses were, thus performed for soil

hydraulic and hydrologic characteristics in the study area.

3.5.3 Geostatistical analyses:

To perform geostatistical analyses, a number of points in the measuring grid, at least
50 - 100 is required (Burrough and McDonnell, 1998). In the study, this was fulfilled in the
case of the whole field (80 grid points) and semivariogram, auto-correlation and Kriging

== a ff‘_r._ . .

analyses were used to examine the spatial correlation structure of bulk density, total
poresity, acration porosity, moisture content, aggregate stability, percent composition of
sand, silt and clay of soil at the field scale. Owing to an often neglected fact that normality

of distribution is not a pre-requisite of geostatistical processing (Kroulik et al., 2006); the

original data set was processed without any transformation. Prediction performance was
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also evaluated by cross-validation. Geostatistical analyses for each soil property were

conducted using GS+ 9.0 software.

3.5.3.1 Spatial structure analyses

[nvestigators have shown increasing interest in analyzing measured soil parameters for
their interdependency over space, (to study the dependency of a measured parameter on
location in the field). Semivariograms and autocorrelograms were used 10 study the spatial

relationships of soil properties at each sampling depth.

3.5.3.1.1 Semivariogram [y(h)]

The semivariogram is a fundamental tool in geostatistics. The empirical semivariogram
[y(h)] is defined as half the average quadratic difference between two observations of a
variable separated by a distance vector h (Journel and Huijbregts, 1978; Warrick er al.,
1986: Goovaerts, 1998). It was determined for each variable to ascertain the degree of
spatial variability between neighbouring observations, and the appropriate model function
was fitted to the semivariogram. The structure of spatial variance between observations

was, thus, derived from the sample semivariogram calculated from the formula:

N(h)
1 .
Y(h) = gcms Z [2(x)) - Z(x¢ + W) (30)

Where, y(h) is the estimated semivariance for lag h (the distance between observations),
—

Z(x;) is the value of the random variable Z at x =x;, Z(x; + h) is the value of Z at a
distance h from x; and N (k) is the number of pairs of points that are a distance h apart.
The spatial structure of a semivariogram [y (h) = C, + C;] can be described by three basic

parameters;
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e Nugget effect (C,), which is the variance when the lag distance is zero (or a scale finer
than the sampling interval) which could be due to sampling errors, micro-scale
variability, and/or measurement errors.

e Structural variance (C,), which is the portion of the total variance resulting from spatial
patterns (functional or explained variation).

e Sill or total variance (C, + C;), which is the maximum variance, g (asymptote of the
semivariogram model).

e Range, which is the lag distance at which the semivariogram reaches the sill, also
referred to as the correlation range since it is the range at which autocorrelation becomes
zero. The range marks the limit of spatial dependence, such that places further apart than

the range are spatially independent.

Various semivariogram model functions have been made available in the literature to
represent the structure of a set of data (Isaaks and Srivastava 1989). The commonly used
semivariogram models were fitted for each soil property. These were the spherical,
exponential, linear and Gaussian models (Journel and Huijbregts, 1978; Warrick ef al,
1986: Deutch and Journel, 1992). All pairs of points separated by distance h (lag h) were
used to calculate the experimental semivariogram. Semivariograms were calculated for
both isotropical and anisotropical orientations. The anisotropic calculations were performed
in four directions (0°, 45°, 90° and 135°) with a tolerance of 22.5° to determine whether
e
semivariogram functions depended on sampling orientation and direction (i.e., they were
aniﬁffffa-ﬁic) or not (i.e., they were isotropic). The best fit model was chosen based upon

minimum residual sum of squares (RSS) for each soil property at each soil depth.

Expressions for different semivariogram models used in this study are as follows:
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e Gaussian model, representing a Smooth transition, defined by:
h?
v(h)= C, + C, [1- erp-(?)l: h = 0; (31)

e Spherical model, representing a clear transition, indicating that one pattern (either

random or functional) dominates, defined by:

Yy(h) = C,+ C4

h hy?
1.5(—)—0.5(—)];11 <a
= C,+ Cl; h =z a

¢ Exponential model, representing a Gradual transition, defined by:

v(h)= C,+ C, [1— exp—(g)]; h=0 (33)

e Linear model, defined by:

c0<h<a (34)

CodflCoC
‘f(h)=[ h(a 1)

= Cﬂ + Ci
Where, h is the offset, a is the range and C is the sill. In all these semivariogram models,

nugget, sill and range were expressed by C,, ( €, + C;) and a respectively. In the case of

exponential and Gaussian models, a represents the theoretical range. From the
semivariogram the structural variance was determined, which is the spatially structured
proportion of the sample variance that is not random noise or measurement error (also

referred to as the degree of spatial dependence, SD). The spatial dependence was defined

e

using the nugget to sill ratio (mr al., 1994; Cambardella and Karlen, 1999).

= [ 0 35
sD c,+c,)x1° (35)

If the ratio was < 25 %, the variable was considered to be strongly spatially dependent, or
strongly distributed; if the ratio was between 25 % and 75 %, the soil variable was

considered to be moderately spatially dépendent; if the ratio was greater than 75 %, the soil
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variable was considered weakly spatially dependent; if the ratio was 100 %, or the slope of
the semivariogram was close to zero, the soil variable was considered non-spatially
correlated (pure nugget or no spatial dependency). The value of SD was, thus, used to

evaluate the spatial dependence or independence of soil properties.

3.5.3.1.2 Autocorrelation analyses

Autocorrelation is the process of self-comparison for a random function tiat expresses the
linear correlation between the members of a spatial series and other members of the same
series separated by fixed intervals of space. Spatial dependency is thus, characterised by: the
autocorrelation function. Autocorrelation has, as a result, been used to express spatial
changes in field-measured soil properties and the degree of dependencies among
neighbouring observations. The sample autocorrelation function (7,) was estimated as

given by Warrick and Nielsen (1980):

i |
n—h
1
en=(=——5) Z (xi = o8) o= 08) (37)

Where, h is the index for separation of h intervals (lag h), Cy is the auto-covariance, gg is
the standard deviation, and X;, X5, X3 .... X, are values of the measured soil physical

properties at different locations. A plot of the autocorrelation function against the lag
e

o

number h is calledan aﬁfncnne}oﬁm autocorrelogram has a maximum value of 1 at

h = 0, decreases as lag increases, ranges from +1 to -1 and is dimensionless. The rate of
U, decr

decay of the autocorrelogram depends on the degree of dependency of the variable upon its

neighbouring values. Thus, for strongly dependent variables, the autocorrelogram will

decay slowly, whereas for weakly dependency, the decay will be rapid. The range over
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which samples of the variable exhibit spatial structure is distance from h = 0 to the lag at
which 73, no longer decreases. An autocorrelogram is, thus, a useful tool in determining the

correlation between successive observations (Haan 1977) and the average distance over

which observations are correlated (Gupta er al., 2006).

3.5.3.2 Kriging and Cross-validation

Kriging is an interpolation (estimation of values from points that are not actually sampled)
technique based on best linear unbiased estimate (Deutch and Journel, 1992; Geostat
workshop, 1995). Semivariograms were applied to calculate the best linear unbiased
estimate at locations where no measurements were available. This feature offered a
measure of the estimation precision and reliability of the spatial variable distribution
(Theodossiou and Latinopoulos, 2006). The random variable Z at a particular point x; was
estimated by interpolating values of Z around those points that were within the range of

correlation. Thus, a linear estimator Z*(x,) as defined by (Journel and Huijbregts, 1978):

n

2'(x5) = ) MZ(x) (38)
=1

with;

nixg)

(39)

Il
(=Y

2
i=1

Where. n is the -mumber of locations where measurements were made, Z(x;) are
measurements selected in the x, neighborhood for performing the estimation of Z*(x,),
Z'(m Kriging estimate at location x,, and 4, are the weights associated with the
distance between x, and x;. The following two conditions were required for computation

Df/ltf ==

e Nonbiased condition: E[Z*(x,) = Z(x,)] = 0 (40)
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e Condition of minimum estimation variance given in expected value notation as to

minimize E[Z*(x,) — Z(x,)]? (41)

Accuracy of the soil maps was evaluated through cross-validation approach (Davis, 1987).
Cross Validation allowed the comparison of estimated and actual values using the
information available in the sample data set. The sample values were temporarily discarded
from the sample data set; the value was then estimated using the remaining samples and the
estimates were compared to the actual values. Clark (1986) recounted the history of
validation and its usefulness in geostatistics and pointed out that this type of comparison
was used to compare methods of estimation (David, 1976; Journel and Huijbregts, 1978)
and to justify the use of Kriging as an estimation method (Parker er al., 1979) and went
further to establish that, the use of cross-validation for selecting a semivariogram model

may be acceptable, but may not be sensitive enough to be very useful.

The evaluation indices used in this study were the regression coefficient, standard error

(SE), correlation coefficient, Y-intercept and SE of prediction.

o The regression coefficient represents a measure of goodness-of-fit for the least-squares
model describing the linear regression equation. A perfect 1:1 would, therefore have a
regression coefficient of 1.00 and the best-fit line (the solid line in the graph) would
coincide with the dotted 45° line on the graph.

_ _'_'_‘--"""'__—_-_ 1
e The standard error (SE) refers to the standard error of the regression coefficient.

e The r value (square of the correlation coefficient) represents the portion of variation

explained by the best-fit line.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Descriptive statistics

The measurements obtained from the experiment are presented in the following Tables and
Figures. The results indicate substantial within-field variability in soil properties that would
be overlooked when treated on the bases of averages in a whole field approach to
management. Paired sample t-tests (P < 0.05) with two-tailed P value (shown in the
Appendices A - C), also showed significant differences between the means of measured
soil properties at both sampling depths. Therefore the observed differences could not have

arisen by chance. The analysis also showed that pairing was effectively significant.

4.1.1 Soil Physical properties

Spot-to-spot variations in soil physical properties as observed for the measured descriptive
statistical values are presented in Table 4.1. The results showed significant differences
between mean values at both sampling depths across the field. This variation could be
ascribed to a combination of factors including experimental error, temporal and spatial
variations. As reported by Federer (1982), the distinctions between different horizons are
often arbitrary and therefore would vary with investigator and field conditions such as

moisture. Figs.1 (a-h) also display histograms with normal curves built on all the data

available for the particuiar soil properties.
Lo

52




Table 4.1: Summary of th statistics of measured soil physical properties

Descriptive statistic
Soil Depth
property fcm) Min. Max. Mecan Sh $CV (%) Skew. Kurt K2

0-20 60.80 86.80 78.31 598 7.64° 0.57 0.073 441"

Sand (%)
2040 4080 8480 74.16 8.14 10.98° «13% 301 27930
0-20 .00 36.00 14.50 5.65 38.98* 1.60 276  31.46%**
Clay (%)
20-40 10,00 4400 21.06 7.43 35.28* 1.01 089  13.88%**
0-20 3.20 17.20 7.24 3.37 46.50" 081 0.17 828
Silt (%) ’
20-40 1.20 17.20 4.75 2.76 s8.11* 1.37 403  31.15%%
0-20 1.204 1.517 1.409  0.064 451 -0.45 0.045 2 88~
py (g em™)
20-40 1.326 1.575 1.476 0048 3.26° -0.59 0.89 6.98*
0-20 42.75 54.57 46.82 2.40 5.12¢ 045 0.048 2.88"
S(%)
20-40 4057 4996 443 1.82 4.10° 0.59 0.90 7.08*
0-20 2040  53.25 35.62 4.30 12.08° 0.40 398  15.05%**
¢ (%)
20-40 2365 40.10 31.62 3.07 9.70° 0.15 061 1. 74"
0-20 6.64 17.52 . .11.33 224 19.81" 0.18 -0.064 0.49"
0, (%) _
20-40 7.78 17.44 12,68 2.33 18.33" -0.01 0.45 0.80™
0-20 19.86 19.98 19.93 0.032 0.16° 0.00 -0.49 1.01™
ASt (%)

20-40 19.71 19.93 19.83 0.06] 0.13¢ 0.00 -0.68 291"

/o (g cm”) = Bulk density, f (%) = Total porasity; <a (%) = Aeration, 0, (%) = Volumetric water conten,
ASt (%) = Aggregate stability; Min = Minimum value; Max. = Maximum value; SD = Standard deviation;
Kurt. = Kurtosis; Skew. = Skewness; }CV (%) = Coefficiemt of variation {a b, ¢ = Very high, moderate and
weak variations, respectively); 1K2 = D'Agostino and Pearson “Omnibus™ Normality Test value (***, **, *,
ns = Highly significant, moderately significant, significant and not significant, respectively)

e 0 ,‘_..—-"-_—__._
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4.1.1.1 Variation in particles size fraction

The top layer showed different textural classes of loamy sand, sandy loam and sandy clay
loam. Except for one sand and sandy clay classes, the texture of the subsurface was either
sandy loam or loamy sand. The coefficients of variation (CV %) for sand content at the top-
and sub-layers were classified as low, whereas those of silt and clay at both layers were
classified as very high with the sub-layers showing higher variability than the top-layer.
Among the primary soil particles, the mean sand and silt contents were slightly lower in the
subsurface than the surface, whereas the mean clay content was higher in the subsurface

than the surface.

The high CV values for silt and clay may be due to the history of the land use and soil
management strategies within the experimental field. Although studies by Santra et al.
(2008) showed that mixing of soil during tillage operation resulted in less variation of
particle size distribution at the surface layer than subsurface layer, the modified minimum
tillagé system used in the land preparation process (minimum disturbance to the soil) in the
site yielded similar results, except for clay content. The low variability of particle size
fractions at the surface layer as compared to the subsurface could thus be accounted for by
the susceptibility of soil aggregates to erosion and deposition of soil particles from one spot
to another in the field. These processes tended to distribute the soil particles, somehow,

uniformly in the field: In addition, the eluviation—illuviation processes due to downward
- =30 f’-‘——_—r P . i '
movement of water through the soil might have resulted in the deposition of the fine-size

partictes (clay particles) at the greater depth and differences in the influence of parent

materials (resistance or susceptibility to weathering) at both surfaces.
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The clay fraction gave positive and the highest kurtosis (2.76) in the surface layer, whereas
in the subsurface, it was observed for silt (4.03). This explains why clay and silt in these
depths are more slender (leptokurtic) than a normal distribution as shown in Figs. 1b and c.
The kurtosis value for sand in the top layer (0.073), though positive (tall and slender
distribution), showed a mesokurtic (normal) distribution, not only because it was closer to
zero, but also established from the value of the K2 test (4.41). This indicates that the
variation of sand content in this layer as demonstrated by the coefficienis of variability
could be due to chance (sampling error, spatial and temporal variations). On the other hand,
all the kurtosis values for the lower depth were too tall or slender than a normal

distribution.

The distribution also showed positive skewness (symmetric tail extends towards more
positive values) for clay and silt contents in both layers, but negative skewness (symmetric
tail extends towards more negative values) for sand content in both surfaces. The
coefficient of skewness of sand in the top-layer (-0.57), extends towards the left showing, a
shift from normal distribution but the K2 test reveals it is normally distributed across the

field. This variation of the coefficient of skewness from normality could, therefore be

attributed to chance.

4.1.1.2 Variation in Bulk density, Porosity, Aeration and Aggregate stability

S 7L ’__,-—"'——-—__ -
Average bulk density for surface (0-20 cm) and subsurface (2040 cm) layers were
1.409-g/em™ and 1.476 g/em’, respectively. Soil bulk density variability was lower in the
top-layer (CV = 4.51 %) than the sub-layer (CV = 3.26 %), but both layers were
categorized as weak in terms of heterogeneity. The surface showed higher mean value of

total porosity (46.82 %) than the subsurface (44.31 %) with accompanying vanation
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coefficients of 5.12 % and 4.10 %, respectively. Thus, the surface porosity was higher and
highly variable in comparison with the subsurface. The mean measure for soil aeration
porosity in the surface layer (35.62 %) was higher and showed a higher variability
(CV = 12.08 %) when compared with the subsurface values (31.62 % and CV = 9.70 %).
Aggregate stability ranged from 19.86 % to 19.98 % with a mean value of 19.93 % and CV
of 0.16 % for the top layer and 19.71 % to 19.93 % with a mean value of 19.83 % and CV

0f 0.31 % for the sub-layer, depicting a higher variation in the sub-layer than the top-layer.

The kurtosis values for aggregate stability at top and lower depths (-0.49 and -0.68), though
exhibited a platykurtic (flat) distribution, had measures for the coefficient of skewness at
both depths being zero, signifying a normal distribution of aggregate stability across the
study area. Except for one outlier which presented a tall peaked distribution, the aggregate
stability of the surface layer displayed an almest uniform and flat distribution across the
field, and this could be appreciated from the CV (0.16 %) at this depth being the weakest
for the entire data set. These values obtained from the K2 test (1.01 and 2.91) further

proved the normal distribution of this property within both layers of study.

For other parameters, such as bulk density (Kurt. = 0.045) and porosity (Kurt. = 0.048) in

the surface layer (leptokurtic), the kurtosis values fell close to 0, both being positive; this

signified that the distribution of these properties as indicated in Figs. 1 (b and c) in the top
I _‘-’_.""'—_._._—__-_

layer was similar or close to a normal. In addition, the coefficients of skewness (-0.45 and -

0.59-for bulk density and porosity respectively), indicated a distribution towards the more

negative values, but the outcome of K2 test (2.88) which is the same for both parameters

specified a normal distribution. Hence, the reason for the nearly normal distribution of

these properties as displayed by the normal curve on the histograms (Figs. 1d and 1e).
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On the other hand, a higher positive value (3.98) was recorded for aeration at the surface,
which made it more slender than a normal distribution as shown in Fig.1d. Skewness
coefficient (0.40) disclosing a distribution towards more positive values together with K2
test (15.05), confirmed the deviation of the distribution from a normal one as shown by the
normal curve in Fig.1d. Somehow higher positive values were recorded in the sub-surface
for these properties, with aeration porosity recording the least (0.61) and porosity, the
highest (0.90). The normal curve on Fig.1d showed that, the distribution of aeration
porosity was nearly normal (mesokurtic). Furthermore, the coefficient of skewness (0.15)
tended to extend towards the right but, K2 test value (1.74) showed that the distribution

was normal.

The low stability of aggregates at both layers could be accredited to previous tillage
practices (ploughing) causing disturbance and/or destruction to the surface and subsurface
structure of the soil, organic matter and clay contents. This is because mechanical forces
operating on the field surface during tillage can cause significant soil compaction, hence
increasing bulk density which causes the destruction of soil aggregates (Aksakal and Oztas,
2010). Furthermore, the higher stability of aggregates at the surface as compared to the
subsurface could be attributed to the accumulation of organic residues (high content of OC)

at the soil surface hence modifying the matrix with the formation of granular aggregates.

The results also indicated a low variability in aggregate stability for both surfaces

indicating an almost homogeneous aggregate stability across the field at both depths,

though the surface showed a lower variability in comparison with the subsurface. This

could be related to the susceptibility of the soil aggregates to erosion and depositional

events occurring at the soil surface, causing an almost evenly distribution of the soil

b1




aggregates in the field. The differences in SOC and soil moisture content within both

depths along the field may also explain the unequal distribution of aggregate stability

within the field. Thus, the amounts of SOC and soil moisture of the experimental field are
related to the extent to which aggregates are stable. From the results. it can be realized that

stability of aggregates is positively correlated with SOC content.

4.1.1.3 Variability of moisture content

The soil moisture values (volumetric water content) measured at the different sampling
locations and depths were used to represent the spatial variation of moisture content in the
field. The average soil moisture in the surface layer was 11.33 % and 12.68 % in the
subsurface layer by volume. However, the spot to spot measurement values ranged from
6.64 % to 17.52 % and 7.78 % to 17.44 %, respectively. Although the average soil moisture
value was slightly lower in the surface layer than the subsurface layer, results from paired
samples t-test (Appendix A-7) revealed significant differences between them. K2 test
(0.49) revealed that soil moisture was distributed normally across the field at both depths,

being positively skewed with a negative kurtosis close to zero.

The coefficient of variation was higher on the surface (19.81 %) than the subsurface

(18.33%), both being moderately heterogeneous. The soil moisture variability reflects to

some extent the variability of soil porosity, and hence, soil particle distribution (clay
e e i J

content), bulk density, organic matter content, vegetation, meteorological factors

(evapetranspiration) and topography (elevation, slope, profile curvature etc.). Likewise, the

variation of different particle sizes might explain the variability of soil moisture content.
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The spatial variability of the water content (initial water content) may have an important
impact on rainfall-runoff processes, in particular under high rainfall conditions. This
variation of soil water content between layers across the field may be due to variation in
soil textural and structural properties as well as changes in micro-topography (Mapfumo
et al., 2006). Similarly, .the controls on the spatial distribution of soil moisture may include
static (topography and soil properties) and dynamic (precipitation and antecedent soil
moisture) variables (Reynolds, 1970). The superposition of static and dynamic controls can
lead to different soil moisture patterns for a given catchment during wetting, draining, and

drying periods (Western ef al., 2004).

The reasons for these variations in the selected soil physical properties include:

e Variation in the composition of parent material within the range of centimetres and
differential deposition of litter depending on wind conditions (Orndorff and Lang, 1981;
Peterson and Campbell, 1993).

o The differential types of soil development as a result of litter from different tree species
(Lodhi and Johnson, 1989), plants growing at different times and different parts of the
field. |

- » The modified soil physical environment for each crop and the burrowing activity of soil

animals (Lavelle and Spain, 2001).

These variations may result in the spatial variation in available water for plants which could

—— ’,‘p—""—‘_—__-_-_

be identified as one of the major reasons for the variability in crop productivity.

e —

4.1.2 Soil Hydraulic and Hydrologic properties
A summary of the experimental data on the hydraulic and hydrologic properties and

processes obtained from the study are presented in Table 4.2. Coefficients of normality

63




(skewness, kurtosis and K2 test values) showed K, distribution in the area deviates from a
Gaussian one, whereas all the hydrologic properties followed a Gaussian distribution as

displayed by the trend of the normal curves on the histograms in Figures 2a and b.

Table 4.2: ¢ statistics of measured soil hydraulic and
property  (em)  Min. Max.  Mesa SD IV sew. Kt 0

&“i
0-10 SO9E-6 476E4 1.26E4 125E4 99.12° 1.25 2.37 16.89%%*

K,(mms")
1020 421E6 236E4  48IE-S 432ES  8971° 050 659  S5.59%ee

I (mm) 0-10 680.00 592000 269500 1261.00 4680° 038 0.56 3.57™
Smms'® 010 13.28 72.75 36.27 14.41 39.74* 030 055 2.84™
i(mms”) 0-10 0.19 1.64 0.75 035 46.81° 037 0.59 3.69™

K.mms" 010 27IE4 106E-3 S74E4 178E4 31.03" 04] 057 3.99™
(mms"') = infiltration rate, Min. = Minimum value; Max. = Maximum valwe; SD = Standard deviation;
Cwrt. = Kurtosis; Skew. = Skewness; $CV (%) = Coefficient of variation (a, b = very high and moderate variations,

espectively); $K2 =D 'Agostino and Pearson “Omnibus™ Normality Test value.
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study area.
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4.1.2.1 Saturated Hydraulic Conductivity (X,)

The data (Table 4.2) showed the values of the vertical saturated hydraulic conductivity in
the plot. The statistical analysis of K2 test also showed that the K. values obtained for both
layers were not normally distributed. The values of K; for the surface soil ranged from
5.09x 10°m s t0 4.76 x 10* m s™ with an average of value of 1.26 x 10™ m s™'. For the
subsurface, K; ranged from 4.21 x 10° m s” to 2.36 x 10* m s with 4 mean value of
481 x 10° m s™. Values at both depths were positively skewed with low kurtosis. The
coefficient of variation for the surface was 99.12 %, and 89.17 % for the subsurface,
implying that the K was highly variable at the surface than subsurface, even though both
variations were rated high at both layers. Similarly, studies by Iqbal et al. (2005) revealed
even higher variation coefficients of K for surface horizon (CV = 160.59 %) and sub-
surface horizon (154.73 %). Paired samples t-test (Appendix B) revealed that mean values

from the two depths were significantly different.

Variation of saturated hydraulic conductivity (K;) values of soils under diverse
management practices may be needed to determine the required sample number, sample
size, and choose suitable sample scheme for characterization of the K values used in water
flow and solute transport modeling studies. As reported by Warrick and Nielsen (1980), the
K values can be highly variable in different depths of a single soil profile as well as among
different soil prﬂﬁ]és over a lanmpﬁtial variability). The variations in K across the
field and-atong the different depths are as a result of the variability in porosity (pore size
distribution), which is also affected by the variations in aggregate stability, organic matter

and bulk density (soil structure) and particle size distribution (texture).
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The K, values varied significantly at both depths since the structure of pores in soil also
varied and were atfected by different rates of biological, physical, and chemical processes.
This variability could also be attributed to the use of small-sized undisturbed soil cores in
the determination of K in the laboratory (Mallants ez al., 1997) or the presence or absence
of open-ended macropores (Mohanty et al., 1994). The lower K value at the subsurface
layer could be accredited to the higher bulk density at the layer. Although Mason er al.
(1957) concluded that bulk density was a poor indicator of soil permeability, Bouma and

Hole (1971) reported that low K values agreed well with high bulk density.

The higher mean K value with larger CV at the surface layer could be attributed to the
modified-no-tillage system which was employed in the land preparation process. This is
confirmed by Cameira er al. (2003), who indicated that minimum tillage has the tendency
of producing higher K; than conventional tillage, associated with larger coefficients of
variation. However, the effect of tillage on the spatial structure of saturated hydraulic
conductivity is not clear from literature. Logsdon and Jaynes (1996) reported that the
increase in the variability induced by tillage makes it difficult to determine the spatial
structure of saturated hydraulic conduectivity. On the contrary, Diiwu ef al. (1998) indicated

that tillage can reduce the variability in saturated hydraulic conductivity compared to no

tillage, resulting in an increase in its spatial autocorrelation.

4.1.2. 2-Infiltration parameters

Figures 3a, 3b and 3¢ show the magnitude of spatial variation as well as spatial pattern of
infiltration parameters (cumulative infiltration amount, sorptivity and infiltration rate, in

that order) within the field. Very high variations (CV > 35%) were recorded for the

measured infiltration parameters (Table 4.2).
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Fig. 3a: Graphical representation of the variations of cumulative infiltration amounts
with time in the field.
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Fig. 3b: Graphical representation of the variations of sorptivity in the field.
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Fig. 3c: Graphical representation of the variations of infiltration rates with time in the
field.

Many factors and combination of factors contribute to the variability in infiltration
parameters. Assuming homogeneous soil characteristics and conditions a major element
influencing infiltration variability in the field could be the uneven distribution of vegetation
and litter (Merzougui and Gifford, 1987). Besides, these variations could be attributed to
the disparities exhibited by soil texture, structure (aggregate stability, bulk density,
permeability, porosity and pore size distribution), tillage (type and intensity), surface
characteristics and -conditions (such as desiccation, sealing, crusting and/or compaction),
- e —
layering sequence (or uniformity of the profile), antecedent moisture content, depth of
Waier‘_tﬁﬂl-é: entrapped air, salt content in water and soil, soil and water temperature at the
point of sampling. As reported by Jury et al. (1991), one reason that field infiltration data
express dissimilar features than calculations from theoretical simulations is that field soil

profiles are rarely homogeneous with depth, nor is the distribution of water content uniform

at the initiation of infiltration. These two effects typically have a tendency to reduce the

69



e

infiltration rate more rapidly than would be predicted from a model that assumes that the

soil is homogeneous.

Since the coarser fragments (sand and silt) were the predominant particles at the surface
and the finer fragments (clay) at the subsurface, the effect of layering was realized from the
fact that, the coarser fragments were above the finer ones, so when the wetting front
reached the buried clay layer, the infiltration rate was immediately reduced and continued
to decrease. For the few spots where finer particles were found at the surface and coarser
particles below them (clay over sand), there was an immediate sharp reduction in
infiltration rate when the front reached the sand. However, as the water accumulated at the
interface, the matric poiential head at the front increased, allowing the larger pores in the

sand layer to fill.

Additionally, report by Jury ef al. (1991), has shown that differences in texture and
permeability between layers influence variations in water entry into the profile through
reduction in the infiltration rate irrespective of the surface texture (coarser or finer). Thus,
for a finer texture, reduction in infiltration is due directly to its lower permeability,
whereas, a subsurface coarse-textured layer generally has a saturated hydraulic

conductivity that is greater than the finer textured soil above it. However, the low matric

i

potential at the wetting front prevents the large, highly conducting pores of the coarse-
textured—region from filling. The unsaturated conductivity of the resulting partially

saturated coarse-textured region is actually lower than the wetter finer-textured region

above, and the infiltration rate decreases as the front reaches the interface.
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Moreover, these variations could be connected to previous land preparation process and
intensity, especially tillage, resulting in compaction of the subsoil due to increased bulk
density and reduced porosity and permeability. Similarly, studies by Cressie and Horton
(1987) showed that the type of tillage applied may result in different types of spatial
dependency in the infiltration characteristics. This is due to effects of tillage on soil
properties such as increase in bulk density and decrease in porosity at the sub surface
through the formation of plough pans. Ersahin (2003) studied the spatial relationship
between infiltration rate and some soil properties and reported a strong negative

relationship between infiltration rate and bulk density of subsoil (30-60 ¢cm).

4.2 Scaling and Fractal Geometry analyses
The variability of soil hydraulic and hydrologic characteristics in the field were analysed by
means of scaling and fractal techniques (Figs. 4a, b and c¢). The values of the scaling

coefficients were obtained by best-fitting the relationships considered as a total group.

4.2.1 Scaling results

The assumptions on which the presented linear scaling theory is based resulted in similar soil
hydraulic properties and flow process (infiltration). Thus the heterogeneity of soil hydraulic
and hydrologic properties from location-to-location within the study area was approximated
by the scaling cngﬁ';;:n;for eam is because the linear variability model presents
relationships between variability of soil hydraulic properties and parameters that describe the
variability of dynamic soil water flow processes - infiltration, redistribution and drainage
(Vogel er al., 1991). Table 4.3 presents the statistical summary of scaling parameters of

saturated hydraulic conductivity and cumulative infiltration amount.
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Table 4.3: Scaling parameters for saturated hydraulic conductivity and infiltration

B . amount

Variable Depth (cm) Min. Max. o SD
K* (m s™) 09 0.23 T 1.024 0.576
10-20 0.30 2.28 0.980 0384
0-10 -1.470 0.779 -1.013 0.564
el 10-20 -1.204 0.824 0.089 0.384
0-10 0.226 2.182 1000 0517
” 050 0.304 2619 1.017 0.477
I* (mm) 010 80.300 3573.000 1269.00 817.80
¢ (min) 010 0.380 59.820 16.24 17.54
Yi 0-10 0232 2.117 1.001 0.517
Yi 0-10 0.391 2.656 1.004 0.464

K* (m s") = Scaled K,; In K* = Log transformed K,; ay = Scaf:'@ factor of K,; I* (mm) = Scaled cumulative
infiltration amount; t* = Scaled time, y; = Scaling factor of cumulative infiltration amount ; y, = Scaling factor of

cumulative time.

4.2.1.1 Cumulative infiltration amount

With regard to the field-measured infiltration curves that characterize the infiltration
process for the study area, the parameters for the reference infiltration curve /* (r*) are
represented in Fig. 4a. The level of success of the scaling method can be deduced from the
comparison of the degree of scatter in Figures 3a and 4a, respectively. The superposition of
all transformed dﬁtﬁ:’ ;iori'n_-tﬂs yielded a single reference infiltration amount. If the selected

analytical expressions are fitted through the transformed data sets, then the resulting fitting

parameters would be referred to as the reference cumulative infiltration amount.
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Fig. 4a: Scaled Cumulative infiltration amount for the study area.

At first glance, it can be observed that the use of scaling factors have reduced the extent of
scatter of the measured variables, allowing the production of a meaningful average curve,
signifying the effectiveness of scaling (Fig. 4a). The higher scattering of data points in
Fig. 3a as compared to Fig. 4a denotes the extent of variability of cumulative infiltration
amount (I) in the field. This result was expected since the use of scaling factors is known to
decompose the overall spot-to-spot variability of measured variables into unison. This is
because the scaling’%;cmrs have eaused a linear transformation on each of the involved
variablfs_..__L'his variability is inferred as an approximation of the linear component of real
soil variability. Accordingly, the variability of cumulative infiltration amount is always
linear, hence the unexplained variability after the transformation could be due to the
nonlinear component of the total variability. Therefore, the assumption is that the linear

component is dominating the nonlinear Cﬂ;np{)ncnt (Vogel et al., 1991). No obvious pattern

in the distribution of the infiltration parameters has been reported with respect to soil type
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or position. The frequency distribution, however, has been reported to be lognormal.
Subsequently, studies using infiltrometers have shown that the results were best described

by a lognormal distribution (Loague and Gander, 1990).

4.2.1.2 Saturated hydraulic conductivity

Even though the samples were taken from different locations within the study area, scaling
was successful with regard to representing the variability of soil hydraulic properties by a
set of scale factor values (Figs. 4b and ¢ ). Fractal diagrams were used to compare values
obtained from sampling with scaling factors. These were obtained from plots of cumulative
probability function defined as (K* — uy+)/0ok- versus In K* (Hopmans, 1987), where
is the mean scaling factor, oy- is the standard deviation of K* and In K* is the natural

logarithmic transformation of K*.
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s

Fig. 4b: Fractal diagrams of unscaled and scaled K for the surface layer.
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Fig. 4¢: Fractal diagrams of unscaled and scaled K for the sub-surface layer.

The scaled mean saturated hydraulic conductivity functions for both layers can be viewed
as being the representative means of the scaled hydraulic data. From the estimated
distribution of scale factor values, a new set of scale factors may be generated to represent
the soil hydraulic properties of the area (Hopmans, 1987). The fact that the plots of In K*
are closer to assuming straight line indicates that a lognormal distribution fits the results
better than a normal distribution. Most studies (Warrick ef al., 1977, Vachaud et al., 1985;
Hopmans and Overmars, 1987; Clausnitzer ef al., 1992; Kosugi and Hopmans, 1998) have
shown that scaling factors are approximately lognormally distributed. The same was true
for data sets analyzed in this study. In addition, it has been established repeatedly that
saturated hydraulic conductivity (K;) obeys-a lognormal distribution (Kutilek and Nielsen,
1994; Bierkens, 1996; Kosugi and Hopmans, 1998). This result also suggests a lognormal
e

distﬁbﬁtinn of scaling factors, since the hydraulic conductivity is expected to be

proportional to the square of the scaling factor (Jury et al., 1987).

Relationships similar to those given for the infiltration process can be found for other water

transport processes, thus a scaling procedure can be applied to the respective dynamic
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characteristics of these processes. As a consequence, the idea of similar soil properties
could be used to provide a basis for soil classification with each soil class categorized by its
reference hydraulic characteristics. The dynamic feature of linear variability theory can be
used in computer simulations for analysing soil-water flow. Furthermore, the use of scaling
factors may result in considerable reserves of experimental and computational effort and
abridge the investigation required to assess the outcomes of the space and time variability

of soil properties.

The linear variability model, thus serves as a tool to simplify the problem of spatial and
temporal variations encountered in the field. This can be achieved through the formulation
and interpretation of initial and boundary conditions imposed on a given system of soil
profiles (Vogel et al., 1991). This study proposes an interpretation of these empirically
derived results. That is, a lognormal scaling factor distribution was derived by assuming
that the soil pore radius of the study area was lognormally distributed and that individual

soil samples were obtained from random sampling of effective pore volume from the study

area.

4.2.2 Fractal Geometry analysis

The fractal geometry provides a statistical tool for characterizing the spatial variability of
soil physical and lﬁaﬁurl-i;-propme results, fractal dimensions have provided a
single_pasameter to describe the spatial variability of soil hydraulic and hydrologic
properties. To calculate the fractal dimension, a regression analysis was performed between
the logarithms of the semivariance [y(h)] and the lag (h). The plots of logarithms of omni-

directional semivariogram and distance (lag = h) for soil hydraulic and hydrologic

properties are shown in Figs. 5a and b, respectively. The least square procedure was used to
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fit a linear function to the isotropic semivariogram for all soil properties. The semivariance
values at distances less than the sampling distance were omitted sequentially to obtain the
highest value of the coefficient of regression for isotropic variogram. The fractal dimension

(D) was computed using equation (36) from the slope of linear regression given in Table

4.4.

Table 4.4: Fractal indices of soil hydraulic and hxdrulngic_pru?erties in the field

Soil property Depth (cm) D SE r H
0-10 1.936 0.807 0.307 0.064
K, (mms™)
10-20 1.981 3.045 0.032 0.019
I (mm) 0-10 1.819 0.324 0.707 0.181
S (mm s'?) 0-10 1.817 0.319 0.714 0.183
i(mms”) 0-10 1.814 0.271 0.775 0.186
K, (mms™) 0-10 1.860 0.334 0.704 0.140
K. (mm s') = Saturated hydraulic conductivity; I (mm) = Cumulative infiltration amount;

S (mm s'°) = Sorptivity i (mm P b Infiltration rate; K, (mm s') = Steady state infiltrability;

D = Fractal dimension; SE = Standard error; r’ = Correlation coefficient of the best-fit line, H = Hurst

coefficient.
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Fig. 5a: Logarithmic plot of empirical variogram for K; of both layers.
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Fig. 5b: Logarithmic plot of empirical variogram for infiltration parameters.

The fractal dimensions for soil properties vary from 1.814 to 1.981. These results indicate

that soil properties exhibit fractal behaviour. The physical meaning of D infers that,

smallest D value designates long range variation, whereas largest D value indicates short

e il

range variation (Vieirr;l ef al., 2010). The fractal dimension is also indicative of the nature

of the-setHin the field and the values obtained in the study denote that there is a greater

proportion of larger particles than sand (Tyler and Wheatcraft, 1989; Kenkel and Walker,

1993). Additionally, values obtained for the Hurst coefficient range from 0.019 to 0.186,

showing an anti-persistent nature (Sugihara and May, 1990) of the soil hydraulic and
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hydrologic properties. This can be explained by the degree of variability exhibited by the

soil properties resulting from spatial and temporal variations.

Fractal dimension showed a trend of variation between the different locations in the field.
The isotropic variograms used in the estimation of the fractal dimension revealed that
fractal dimension remained invariant with respect to direction on a field scale. Neuman
(1990) and Molz and Boman (1993) observed fractal behaviour of hydraulic conductivity
and concluded that the fractal dimension could be used for scaling over large length scales
in a broad variety of geologic media under diverse conditions of flow and transport.
Additionally, applications of fractal geometry in porous media have ranged from the
microscopic (Katz and Thompson, 1985) to the lab scale (Tyler and Wheatcraft, 1989) and
to the field scale (Wheatcraft and Tyler, 1988; Neuman, 1990). In each of these cases, self-
similar or scale invariance was observed in specific properties of natural soils or geologic
materials. The results of this study support the view that the scale invariant property of
fractals can be applied as a scaling rule to represent spatial variability of soil properties
over large areas. This, study therefore, strongly sﬁppurts the notion that many soils and

porous media display fractal scaling in their pore space.

Thus, Fractal behaviour can be used to transfer the information across scales by

—

extrapolating properties observed at one scale to properties at other scale. This is an
indicatieatirat soil hydraulic and hydrologic properties show fractal behaviour and cannot
capture anisotropic variability of soil properties on a field scale. There is therefore an

additional requirement to appreciate the physical interpretation of the fractal dimension and

to develop relationships between fractal dimensions and hydraulic and hydrologic

characteristics.

79



4.3 Geostatistical analyses

Semivariograms, which give information about the nature and structure of spatial
dependency in the field, were obtained from the field and laboratory data. The directional
semivariograms calculated at the angles of 0° (N - S), 45° (NE - SW), 90° (E = W), and
135 (SE — NW) for the measured variables indicated no comprehensible anisotropy.
Therefore, omni-directional semivariograms were obtained using the best fitting model by
the cross-validation method, and the data were modeled with isotropic functions to
determine the spatially dependent variance within the rescarch area. With the data from the
sampled areas, the values for soil attributes were predicted for unsampled locations across
the field with the maximum reduction of errors. Ordinary Kriging using parameters of the
semivariograms were generated. This facilitated detailed representation of the spatial
variability within the entire field through the creation of continuous and smoothed attribute

maps.

4.3.1 Spatial Structure and Attributes (Semivariogram and Autocorrelation analyses)
Spatial structure analysis (semivariograms and correlograms) indicated spatial variability
across field for soil properties studied. Due to the intrinsic and extrinsic soil forming
factors, different spatial relationships were determined for the investigated variables.
Isotropic models were-selected as ideal representation of semivariograms for all soil
properties, since m?&st;inw mml with the minimum residual sum of squares)
were the—same in all directions. Except for silt at the subsurface layer and aggregate
stability and porosity at the surface layer which showed pure nugget effect (absence of
spatial autocorrelation), all other soil properties within both layers were best-fitted by the
transitive variogram models (Gaussian, Exponmual and Spherical models), indicating that

the spatial correlation structure for these soil properties varied with lag (h).



Class ratios to identify the distinctive classes of spatial dependence (autocorrelation) for the
resulting semivariograms indicated the existence of weak to strong spatial dependence for
all soil properties studied in the field (Figure 6). At separation distance greater than the
range, sampling points will not be subjected to spatial correlation. This has great
implication on sampling design, as sampling design should use separation distances that are
shorter than the range for a particular depth in order to understand the spatial distribution
pattern of the given property. In addition, spacing between sampling points are
recommended to be from 0.25 to 0.50 of the range (Mulla and McBratney, 1999;
Balasundram er al., 2009). Based on the range values, sampling spacing should be closer

for layers with shorter ranges than those with longer ones.

Ideally, the experimental variance should pass through the origin when the distance of
sample separation is zero. However, the soil properties had non-zero semivariances as h
approached zero. This non-zero variance (the nugget variance ( C,)) represents the
unexplained or random variance, which could have resulted from measurement errors or
variability of the measured property at a spatial scale smaller than the one of sampling
(Journel and Huibregts, 1978). The structural coefficient C; as a result represents the
component of total variance originating from spatial patterns in the soil. Soil properties
displaying a well-defined spatial structure with a characteristic sill and range suggest that
— = e

the properties vary in a patchy way resulting in areas with small values and other areas with

larger -omes (Frogbrook et al., 2002). The range of spatial correlation of the variogram

provides the average extent of these patches.

Correlograms were also drawn to observe variations in the data. The autocorrelation has a

maximum value of ‘1’ at zero lag (h = 0), then decreases 10 Zero as lag distance increases.
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Detailed descriptions of the autocorrelation for the soil properties across the experimental
field for both surface and subsurface layers are shown in Fig. 6 for physical properties,
respectively. Assessment of correlograms disclosed intervals of space at which the
sequence has a recurring nature; further, it gave information about how far apart variables
became independent of each other (similar to h in the semivariogram model). This will aid

in selecting the best sampling distance for the analyses of soil properties in tlie field.

The best-fit models and model parameters, such as nugget variance, sill variance (nugget
variance plus the structural variance), and the range of influence, are presented in Table
4.5. Among the different theoretical models tested, exponential model was found as the
best fit in most cases. All linear models showed a pure nugget effect, depicting that the
variability of soil properties best-fitted by this model was solely contributed by the nugget
variance and were spatially independent across the field. When analysing the
semivariogram of a particular soil physical property, the occurrence of spatial dependence

was ascertained for both sampling depths to determine the distance at which variables are

spatially correlated.

In this study, as lag distances increased, correlations dropped either gradually or rapidly to,

and then fluctuated about or remained at zero, suggesting that the values being correlated

) "'-i--—.-._.__-_ = " " - -
have dependent and/ or no interdependent relationships for the different soil properties. The

behavieur of soil properties in space is visually provided in Table 4.5 and Fig. 6

(semivariogram and autocorrelogram).
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Tah!le 4.5: BESf—ﬁ:;tEdt hsemwarmgram models and parameters for soil physical properties
Soil property epth (¢cm) Model C, C,+ C, A (m) RSS 1SD (%)
0-20 Exponential  1.24E-3  1.005E-2 415.80 7.79E- -
il ) J9E-6 1234
20-40 Gaussian 8.34E-3 1.72E-2 165.76 1.74E-5 48.49%*
0-20 Gaussian 5.88E-2  141E-1 188.62  3.52E-3  41.70**
Clay (% :
y (%) Shds Exponential  3.01E-2  147E-1 21690  174E-3 20.48%**
0-20 Spherical 1.00E-3 3.16E-1 11.70 6.83E-2 .32%**
Silt (%) :
50.40 Linear (NE) 3.96E-1  3.96E-1 9.14E-2 100 (pn)
0-20 Spherical 2.74E-4  2.06E-3 6.24 T.56B-7  13.30%%*
-3
cm ;
Py (gem™) i Gaussian =~ 7.90E-4 ~ 2.10E-3 37620 3.054E-7 37.62%*
| .
| 0-20 Linear (NE) 249E-3  2.49E-3 e 1.088E-6 100 (pn)
| f (%) : -
20-40 Exponential  1.11E-3  2.93E-3 932.70 7.94E-7  37.88**
L' 0-20 Exponential 7.39E-3 1.60E-2 86.40 5.25E-5 46.19%*
‘ 8a (%) Exponential 7.60E-3  1.53E-2  637.50  1.58E-5  49.67**
20-40 b | ' | o :
0-20 Exponential 9.90E-3  6.20E-2 237.30 2.72E-4 14.52%%%
8 (%) Spherical ~~ 547E-3  3.65E-2 030  427E-4  14.97***
! 20-40 P ‘ ' : i :
]
' 0-20 Linear (NE) 4.20E-2 4.20E-2 R 1.42E-2 100 (pn)
0
ASt (%) o Spherical 1.62E-6  9.94E-6 46.50  1.03E-11 16.30%**

Co = Nugget; Co + C = Sill: A (m) = Range; RSS = Residual sum of squares; ¥SD (%) = Spatial dependence

(*** ** pn = Strong and moderate spatial dependence and pure nugget, respectively); NE = Nugget effect.
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Fig.6a: Best-fitted isotropic semivariogram and autocorrelogram for sand content for
the top-layer.
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Fig. 6b: Best-fitted isotropic semivariogram and autocorrelogram for clay content for

the top layer.
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Fig. 6¢: Best-fitted isotropic semivariogram and autocorrelogram for silt content for
the top-layer.
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Fig.6d: Best-fitted isotropic semivariogram and autocorrelogram for sand content for
the sub-layer.
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Fig.6e: Best-fitted isotropic semivariogram and autocorrelogram for clay content for
the sub-layer.
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Fig.6f: Best-fitted isotropic semivariogram and autocorrelogram for silt content for
the sub-layer.
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Fig. 6g: Best-fitted isotropic semivariogram and correlogram for bulk density for the
surface layer.
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Fig. 6h: Best-fitted isotropic semivariogram and autocorrelogram for total porosity
for the surface layer.
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Fig. 6i: Best-fitted isotropic semivariogram and autocorrelogram for aeration-
porosity for the surface layer.
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Fig. 6j: Best-fitted isotropic semivariogram and autocorrelogram for bulk density for
the sub-surface layer.
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Fig. 6k: Best-fitted isotropic semivariogram and autocorrelogram for total porosity
for the sub-surface layer.
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Fig. 6m: Best-fitted isotropic semivariogram and autocorrelogram for aeration-
porosity for the sub-surface layer.

87



0.0145 Volumetric moisture content
(0-20cm)
00000 +—t—at——ea————
0.00 2825 86 .45 144.74

Separation Distance (h)

T Ty

: 0.14510)
' E ‘“”’EE Aggregate stability (0-20cm)
B . %
§ oow—ort—n%50- g
e - oY -0808
0000 st
0.00 4825 9649 14474

Separation Distance (h)

P ST

1 —olumetric moisture content
(20-40cm)

48.25 96 .49 14474
Separation Distance (h)

Ogpd

+ h a' + +
U0 goo

-0.459 T volumetric moisture content (0-20em)

-0.8181
0.00 4825 96 .49

Separation Distance (h)

144 74

Fig, 6n: Best-fitted isotropic semivariogram and autocorrelogram for volumetric
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Fig. 6p: Best-fitted isotropic semivariogram and autocorrelogram for aggregate
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Fig. 6r: Best-fitted isotropic semivariogram and autocorrelogram for aggregate -
stability for the sub-surface layer.

4.3.1.1 Particle size fractions

The best-fit models for _the various primary soil particles in the top layer were exponential,
Gaussian and spherical for sand, clay and silt respectively, while those for the sub-layer
were Gaussian, spherical and linear for sand, clay and silt contents in that order. The soil
properties expressed low positive non-zero nugget values, which can be explained by
minimum sampling error, sampling intensity and data recording, short range variability,

random and inherent variability.

Silt content at the top layer displayed a well-defined spatial structure (clear characteristic

sill and range) Mthit;lpurtam but nettoo large nugget variance (spherical model). Sand

content at the surface and clay content at the subsurface demonstrated a clear nugget and
.

Sil[' but graduauy apprnachgd the range (expunential l'ﬂ{]dﬂl). while the sand content at the

sub-surface and clay at the subsurface displayed a Gaussian model, showing a smooth

variation with small nugget variation as compared to the spatially dependent random

variation. Silt content at the sub-layer displayed a linear model (pure nugget) which depicts

that this attribute varies at all scales.
TIPHA HY

KWAME NKRUMAH
NIVERSITY OF SCIENCE & TECHNOLOGY
KUMAS |
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The range of influence, which indicates the maximum distance of spatial dependence
between sample pairs, was 415.80 m, 188.62 m and 11.70 m at the surface layer for sand,
clay and silt contents, respectively. The subsurface layer had ranges of 165,76 m, 216.90 m
and 139.78 m for sand, clay and silt contents, respectively. These results imply that the best
distance for sampling for the analysis of soil physical properties is from 165.76 m to
415.80 m for sand, 188.62 m to 216.90 m for clay and 11.70 m to 139.78 m for silt.
Otherwise, any pair of particle size values with a lag distance greater than 415.80 m for
sand content, 216.90 m for clay content and 139.78 m for silt is spatially independent. This
suggests that sampling for soil texture analysis should not exceed a maximum distance of
420 m and this will be dependent on the sampling interval as reported by Trangmar et al.
(1985) and Goovaerts (1997), that sampling intervals influence the semivariogram range.
The range values also indicate that the degree of homogeneity for particle size fractions is

highest for sand at the surface layer and clay for the subsurface layer and lowest for silt at

both depths.

| ~ The nugget-to-sill ratio used to classify the spatial dependence of soil properties
demonstrated weak to strong spatial dependence for particle size fraction in both surfaces.

With the exception of clay content (moderate spatial dependence — SD = 41.70 %), the

——

variables were considered to havé a strong spatial dependence at the surface layer based on

the values—from the ratios (sand = 12.34 %, silt = 0.32 %). With the exception of silt

content (SD = 100 %: i.e. pure nugget effect), sand and clay contents at the sub-layer

displayed moderate and strong spatial dependencies respectively (sand = 48.49 %,

clay = 20.48 %). This result indicated that silt content at the subsurface is spatially

independent or spatially uncorrelated (Fig. 61), which could be probably due to the high

variability found in this property (Table 4.1). Though, generally, small nugget values were
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recorded for the variogram models, moderate spatial dependency displayed by some

parameters could be attributed to a relatively higher residual variance (nugget) values.

The differences in the spatial correlation patterns for the primary particles at the different
depths could be attributed to intrinsic (soil-forming processes) and extrinsic factors
(management and cultivation practices). This inferred that the explainable proportions of
the total variation of particles at the surface layer were 87.66 %, 58.30 % and 99.68 % for
sand, clay and silt contents respectively, and for the subsurface layer, 51.51 % and 79.52 %
for sand and clay contents in that order, while the remaining variation can be attributed to
random sources. This signifies that the total variation of silt at the subsurface layer arose

from random sources.

4.3.1.2 Bulk density, Porosity, Aeration and Aggregate stability

The soil properties expressed spatial variability across the field with low positive nugget
values for some propeﬁies indicating small error of the estimation processes. The sources
of errors in the estimation processes could be due to many factors such as sampling

intensity, positioning, data recording and measurement errors in the determination of soil

properties. =
o o

In generat; the nugget-to-sill ratio used to classify the spatial dependence of soil properties

ranged from strong to weak spatial dependence based on the values from the ratios. For

example, in this study, the nugget-to-sill ratio showed a strong spatial dependence for bulk

density at the surface layer (SD = 13.30 %), while aggregate stability at the surface

displayed a pure nugget (very strong spatial independence, SD = 100 %). These spatial

relations could be attributed to intrinsic (soil-forming processes) and extrinsic factors
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(management and cultivation practices). With regard to extrinsic factors (management and
cultivation practices). With regard to bulk density, the values for nugget, sill, SD, and range
increased from the surface to the deep horizon. This increase indicated higher structured
variance, nugget effect/random variability, and range with increase in depth, which may

reflect a depositional event or a series of depositional events.

Compared with this stu&y, Tsegaye and Hill (1998) observed lower structural variability in
surface bulk density, as judged from a higher nugget (0.003) and lower sill (0.004), that is,
percentage nugget attributed 75 % of total variability with a range value of 22 m. The lower
range reported by Tsegaye and Hill (1998) could be due to a much smaller sampling

interval of 1 m in a relatively small area (45 m x 37 m) located on a level landscape.

4.3.1.3 Moisture content

The semivariogram function for volumetric moisture content (6y) was exponential for the
two layers. In the surface layer, fairly higher nugget (0.0099), sill (0.062) and higher range
(237.30 m) as compared to the subsurface layer, (C, = 0.00547, C, + C, = 0.0365 and

A = 0.300 m). This indicates that small estimated errors arose for the subsurface layer as

compared to the surface layer. The value for the range at the subsurface layer indicates that

0y at the subsurface is spatially correlated at a very short distance, signifying that sampling
for Oyshoutd be within a distance of 0.30m. The values of nugget/sill ratios at the surface

(14.52 %) and subsurface (14.97 %) exhibited strong spatial dependence, but the surface

layer was found to be fairly strongly dependent at a longer distance as compared to the

subsurface layer with the shorter distance. This indicates that future sampling for

determination of moisture content by volume should be within a maximum distance of
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237.30 m. This indicates that future sampling for determination of moisture content by

yolume should be within a maximum distance of 237.30 m.

4.3.2 Kriging and Cross-validation

The real output of the geostatistical processing is maps illustrating spatial distribution of
values measured. The parameters of the best-fitted semivariogram models.were used for
Kriging to produce the spatial distribution maps of the selected soil properties of the study
area (i.e. the parameters of the selected models were used to provide estimates of soil
properties at unsampled locations), thus, Kriged estimates provided a visual representation
of the arrangement of the population and were used to interpret the spatial variations in the
selected soil properties. Regions with white colours always represent higher values of a
given parameter. The existence of minor bordered surfaces of different colours in the maps
indicated high resolution of maps given by the high measuring density. The contour maps
with their associated relative predictive abilities (cross-validation graphs) for physical

properties respectively at each depth in the study area have been illustrated in F igures 7.

~ The spatial maps prepared through ordinary point Kriging procedure were cross-validated

by leaving one sample out and predicting for that sample location based on the rest of the

samples. Each point on the cross-validation graph represents a location in the input data set

il

for which an actual and estimated value are available. Information about individual points

(evaluation indices) resulting from cross-validation of spatial maps of soil properties is

given in Tables 4.6 for the physical properties. Figure 7 displays the plots of actual

(observed) data against estimated (predicted) data used for the cross-validation process.

These maps have greater resolution than the maps presented for mapping units, indicating
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- that when considering land use we can observe the distribution of soil properties in greater

detail (Cruz-Rodriguez, 2004).

The model cross validation, thus, shows how well we can predict the soil test value at any
sample point from all the other sample points. The results show that, while models can be
fit to the data, the model's abilities to predict the soil test values at untested locations within
the field are not very good. For example, sample locations for sand at the surface layer
must be closer together than 415.8 m (range = 415.8 m) in order to be dependent (to be able
to predict something about the soil test value at one location simply by knowing the soil

test value at the neighbouring location).

A model that predicts the right value at every single location (ideal model) would have a
slope of 1.0, an r* of 1.0 and a Y-intercept of 0. Value of Y-intercept greater than 0 and
slope less than 1 indicate that the model tends to over predict lower soil test values and
under predict higher ones (Brouder ef al., 2001). An absolute value of 0.75 for the slope
was selected to test the strength of prediction. As a result, a slope of < 0.5 showed a poor

prediction, between 0.5 and 0.75 showed a moderate prediction and > 0.75 showed a good
prediction,

e

T

Spatial maps of basic soil physical properties for 0-20 cm and 20-40 cm soil depth prepared

througiordinary Kriging are presented in Fig. 7. Evaluation indices resulting from cross-

validation of spatial maps of soil physical properties are given in Table 4.6. Observed

values of physical properties for the-sampling locations in this study were plotted against

their predicted values from the spatial maps (Figs. 7). Among the soil physical properties,

scatter plots of observed and predicted values and their spread around the 1:1 line were
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poor for the surface layer aggregate stability (Fi g. 7p) and porosity (Fig. 7h) as well as sub-

surface silt content and aggregate stability (Fig. 71).

Table 4.6: Cross-validation parameters for soil physical parameters for each layer.
Cross-validation parameter

Soil property Depth

(em) Slope SE rl Y-intercept SE-Prediction

e 0-20 0.985 0.092 0595 1.130 ~ 0.063

20-40 0.900 0.119 0422 7.710 6.192

0-20 1111 0104 _ 0.594 1,090 3.603

Clay (%) 20-40 1.085 0.107 . 0.568 1,170 4.885

0-20 0.775 0329 0066 2.230 3312

Silt (%) 20-40 0.117 0496  0.001 5.210 2.759

0-20 0.587 0399  0.027 0.584 0.063

Bulk density (gem™) 5 .0 0.771 0219  0.137 0.340 0.044

0-20 0.244 0.608  0.002 35.380 2,396

EERORLY (+0) 20-40 0820 0261  0.112 8.030 1.712

0-20 0.695 0.308 0.061 10.930 4.170

QEcion (6) 20-40 0735 0261  0.093 8.480 2.923

0-20 0.849 0.133 0342 1.800 1.819

VD::I:::::;E('EM 20-40 0.788 0.298 0.082 2.870 2.228

020 0,559 1045  0.004 33.060 8.026

Aggreg?:;)stability 20-40 6480 0173 0.093 10.110 0.058
.SE- = Standard error of R‘ejg C f;:?f: ] -*‘!:- ieient of determination (proportion of variation explained Oy

the best-fit line; Y-intercept = Y-intercept of the best-fit line; SE-Prediction = Standard error of prediction.

—
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4.3.2.1 Soil texture

The spatial maps suggest that the entire study area is characterized by a moderate to high
level of sand content with only few small areas which are rich in clay. Spatial map of sand
content (%) shows that it increases from the north to south direction for the surface and
subsurface layers and decreases with depth (Fig. 7a and 7d). The south-western and mid-
eastern and south-eastern parts of the field were the areas in the field with higher sand
content for the surface layer and subsurface layer, but slightly higher in the surface than the
subsurface. For other parts of the farm, there was no significant difference in silt content
between the surface layer and subsurface layer. The poor prediction of silt in the sub-

surface layer could-be attributed the best-fit model (linear model) that described the nature
o _.—-"'"”--__——__-_—

and structure of their variability in the field.

—.——-""-—-_-'_

The distribution map also shows that clay content decreased from the north to south

directions, but distribution from east to west is fairly uniform for both surface and sub-

surface, except for some few patches. Figures 7b and 7¢ show that except for a few patches,
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elay content was less than 22 % for the surface layer and less than 30 % for the subsurface

layer. In general, clay content for the subsurface layer was higher than the surface layer.

Although the spatial variability of sand and clay content appears in more continuous way as
also suggested by the natural behaviour of the best-fitted variogram model, the distribution
of higher sand content areas seems to be more towards the south western and mid-eastern
parts of the study area at both depths, whereas very few clay rich patches appear around the
mid-western region. Moreover, clay is also found to be well distributed throughout the area
but is always with its relatively lower contents. The areas with higher sand are always
associated with the lower clay contents. The assumption is that the areas associated with
the lower clay contents, (especially on the surface), might be due to the effect of soil
erosion or leaching (which removed the easily detachable soil clay leaving behind the

coarse grains on the surface).

4.3.2.2 Bulk density, Porosity, Aeration and Aggregate stability

The southern and north-eastern regions of the field have bulk density in the range
1.50 - 1.52 g;’cnf‘ at the subsurface but lower at the surface (Figs. 7g and j). This shows the
presence of compacted subsurface layer in the southern part of the farm, possibly due to
tillage practices. The distribution of bulk density at the surface layer ranges from

1.38 - 1.42 g/lem’ aemgs_lhe field at the surface, with higher values (1.43 g/cm:’) located at
—— = J’_..-————___'__

the snuﬂu-easter-n part of the field and few patches in the centre. A general trend of increase

in butk density with depth was observed, with higher values (1.42 - 1.52 g/em’) at the

south-eastern part for the surface layer and southern part and north east for the subsurface.

LIBPRARY
: KWAME NKRUMAH s
‘NIVERSITY OF SCIENCE B TECHNOLOG
Kumast
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Patterns of the distribution of total porosity in both sampling layers are represented in Figs.

7h and k. The values range from 45.8 % to 47.8 % in the top-layer and 42.4 % to 46.6 % in
the sub-surface layer. The distribution in the surface layer (Fig. 7h) has no distinct trend
(patchy), with higher values (47.4 % - 47.8 %) located at the northern, mid-north-eastern
and mid-south-western parts, near the centre of the field. The distribution in the subsurface
layer (Fig. 7k) has a smooth continuous trend. Except for a patch of 44.4 % to 44.6 %
dominant values (43.3 % - 44.4 %), were found to be located in the middle of the field,
stretching from north to south. Lower values (42.4 % - 43.3 %) were found to be
concentrated in the southern part of the field with a few patches in the north-eastern part,
while higher values (45.7 % - 46.6 %) were found in the south-eastern and north-western
parts of the field. The poor prediction porosity in the surface layer could be attributed the
best-fit model (linear model) that described the nature and structure of their variability in

the field.

The distribution of aeration porosity in the field is illustrated by Figs. 7i and m for the top-
and sub-layers, respectively. For the surface layer, the range of the distribution is in the
order of 26.6 % to 44.8 %, whereas values for thé sub-surface layer ranged from 28.2 % to
35.6 %. This suggests that the top layer is highly aerated as compared to the subsurface
layer. This could be attributed to the fact that the surface layer has lower bulk density,
higher porosity and lower mean moisture content relative to the subsurface layer. The

— '-’.'-'-‘-'__—__-_.-_ . E -
distribution maps for both layers suggest continuous with patchy distributions across the

_,.-.--"'-'-.—__-

field.

Figures 7p and r display the spatial maps for the distribution of aggregate stability in the

field for the surface and sub-surface layers, respectively. The distribution in the surface
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jayer ranged from 19.9 % to 21.9 %, with higher values (21.9 %) in the mid-southern part

of the field, stretching northwards to the centre of the field, which forms about 8.2 % of the

total area. The remaining 91.8 % of the field is covered by the lower values

(19.9 % - 20.1 %). This suggests that the aggregate stability of the surface layer could be
classed into two groups (low and high) of three values (19.9 %, 20.1 % and 21.9 %). The
distribution in the sub-layer was observed to be very dissimilar to that of the top layer, in
that, the values of the property appeared to be distributed in a patchy pattern-with a range in
the order of 19.7 % to 19.9 %. The poor prediction of aggregate stability in the surface
layer could be accredited the best-fit model (linear model) that described the nature and

structure of their variability in the field.

4.3.2.3 Soil moisture content (0,)

Spatial maps and cross-validation graphs of 6, prepared through ordinary Kriging for both
depths of study are presented in Figs. 7n and 7q. Moisture content in the surface layer
ranged from 7.2 % to 15.0 % and for the sub-surface layer, 11.0 % to 14.2 %. Maximum
water content for the surface layer was found at the mid north-western part of the farm,
where clay content was the highest. Similar form of spatial trend was also observed for the
map of the subsurface. Observed values of 8, for the sampling locations in this study were
plotted against their predicted values from the spatial maps (Figs. 7n and q). Scatter plot of

observed and predicted values and their spread around the 1:1 line was better for the
— J‘_r.______,.l-l-"'-'_-____ G
surface than the sub-surface layer.

—

The distribution maps suggest that the field could be prone to erosion since the soil has low

aggregate stability, high bulk density-and subsequently, low porosity. These measurements
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can help define management zones, which can be combined with less-dense soil samples to

provide a more accurate prediction of spatial variability of soil properties.



| CHAPTER FIVE

| INCLUSIONS AND RECOMMENDATIONS

Iz nclusions

l 1tional statistics, geostatistical methods, scaling as well as fractal techniques can be
! ed to address and analyse the problem of spatial variability of soil properties in the

i While classical statistical analyses showed variability of some soil properties as

| ——;

f:d in their coefficients of variation, the geostatistical analyses facilitated the

e=ition of the variability within the area in accordance with the management zone

bt udy has shown that in spite of the small field size used for the study, soil properties
gxifi: spatial variability (relatively large and small) as well as non-random spatial
it 1s, which could be attributed to intrinsic soil properties due to soil forming processes
| as extrinsic factors due to variations in soil management. Once more, it has been
>d that on a small scale, the spatial variability of soil properties is mainly influenced

v le variations in moisture content and bulk density which are modified by

iet rological conditions, agricultural treatments and crops.

it retation of the measured parameters using geostatistics, specifically Kriging, could

t in delineating homogeneous areas in the field
’
P for agricultural management. Intrinsic variability of locati

that could receive the same level of

ons within the field can be

ana5ed based on the spatial dependence between observations.
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In general, the study proved that maps alone do not provide sufficient information to figure

out the suitability of soils for sustainable activities, but the assessment of the structure of

variability is equally important.

5.2 Recommendations

From the study, the following recommendations have been proposed:
: » Spatial variability studies based on localized soil sampling to generate soil property
i maps should be developed into one of the resources for evaluating and interpreting the

mechanical and dynamic properties of agricultural soils.

; » Soil sampling, therefore, needs to be effectively and efficiently planned in time as well

as space, since important attributes may vary from year- to-year, season-to-season, or

even more frequently.

R e Gl e

» Knowledge of within-field variability over a number of years and seasons should be
made available to farmers and sampling needs to be tailored to the local variability of a
site and the farmers’ information needs (The objective of sampling should be to
provide information helpful to management. decisions and to fill knowledge gaps).

> Application maps resulting from the delineation of management zones should be

R e . Ll e s b dennii . . Lo o R . . o R B L

generated for various farm inputs such as tillage intensity, seed rate, fertilizer,

pesticides or irrigation application to give specific details of inputs required throughout
el _’__,..-—"_—___J

a field. These maps can be fed to a Variable Rate Technology (VRT) system which can

~Be used to treat those variable fields according to the existing variability.

> Studies on the variation of soil attributes due to temporal (time) together with spatial

variation should consequently; be considered in the management plans of individual

farmers to optimize input application rates for better yield and economics of crop

2 T T T T I S v O S T s 1

production.
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APPENDIX A

A-1: Sand content

APPENDICES

T-test results of Soil physical properties

Table Analyzed Data 1
Column C sand 1
i Vs
Column D sand 2
Paired t test

P value < 0.0001
P value summary Ehs
Are means signif. different? (P < 0.05) Yes
One- or two-tailed P value? Two-tailed
t, df =6.625 df=79
Number of pairs 80
How big is the difference?

Mean of differences 4.150
95% confidence interval 2.901 to 5.399
R square 0.3571
How effective was the pairing?

Correlation coefficient (r) 0.7256
P Value (one tailed) <(.0001
P value summary b
Was the pairing significantly effective? Yes
A-2: Clay content

Table Analyzed Data 1
Column E clay 1
Vs L
Column F clay 2
Paired t test

P value < 0.0001
P value summary 3
Are means signif. different? (P <0.05) Yes
One- or two-tailed P value? Two-tailed
t df =10.74 df=;g

Number of pairs

How big is the difference? .

Mean of differences -

95%, confidence interval

R square

———— i AL 5
How effective was the pairing:
Correlation coefficient (r)

P Value (one tailed)
P value summary

Was the pairing significantly effective?

e -6.563
-7.781 to -5.344

0.5935

0.6821
< 0.0001

EL R
Yes
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A-3: Silt content

Table Analyzed Data |
Column G :
silt 1
v ¥s
Paired t test
<
P value 0.0001
P value summary ' sas
Are means signif. different? (P < 0.03) Yes
; Two-
One- or two-tailed P value? tailed
=5.652
t, df df=79
Number of pairs 80
How big is the difference?
Mean of differences 2 488
1.610
to
95% confidence interval 3.365
R square 0.2880
How effective was the pairing?
Correlation coefficient (r) 0.1858
P Value (one tailed) 0.0495
P value summary .
Was the pairing significantly effective? Yes

A-4: Bulk density

Table Analyzed Data 1
Column A bulk density 1
VS VS
Column B bulk density 2
Paired t test

P value <0.0001
P value summary A
Are means signif. different? (P <0.03) ?’es
One- or two-tailed P value? Two-tailed
t, df =8.312 df=79
Number of pairs — 80

How big is the difference?

Mean of differences -0.06653
__95% confidence interval -(.08248 to -0.05057
R square 0.4665
How effective was the pairing?
Correlation coefficient (r) 0.2019
P Value (one tailed) ﬂ.0363
P value summary ==
Yes

Was the pairing signi ficantly effective?
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A-5: Total porosity
Table Analyzed Data 1
Column | porosity 1
Vs =
Column J HETORItY
Paired t test
P value < 0.0001
P value summary ok
Are means signif, different? (P < 0.05) Yes
One- or two-tailed P value? Two-tailed
t, df =8.319 df=79
Number of pairs 80
How big is the difference?
Mean of differences 2512
95% confidence interval 1.910t03.114
R square 0.4670
How effective was the pairing”
Correlation coefficient (r) 0.2015
P Value (one tailed) 0.0365
P value summary *
Was the pairing significantly effective? Yes
A-6: Aeration porosity
Table Analyzed Data 1
Column K aeration 1
Vs VS
Column L aeration 2
Paired t test
P value < (.0001
P value summary ; 4 fod
Are means signif. different? (P <0.05) Yes
One- or two-tailed P value? Two-tailed
t, df t=8.547 df=79
Number of pairs 80
How big is the difference?
Mean of differences— 4.006
95% confidence interval /,_,__,—%E}?l to 4.940
R square 0.4804
How effective was the pairing?
Cﬁﬁn coefficient (r) 0.3924
P Value (one tailed) 0.0002
P value summary at
Was the pairing significantly effective? Yes
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A-7: Volumetric moisture content

Table Analyzed
Column O

VS

Column P

Paired t test

P value

P value summary

Are means signif. different? (P < 0.03)
One- or two-tailed P value?

t, df

Number of pairs

How big is the difference?
Mean of differences

95% confidence interval
R square

How effective was the pairing?
Correlation coefficient (r)

P Value (one tailed)

P value summary

Was the pairing significantly effective?

A-8: Aggregate stability

Table Analyzed
Column S

Vs

Column T

Paired 1 test

P value

P value summary

Are means signif. different? (P <0.05)
One- or two-tailed P value?

t, df

Number of pairs

How big is the difference”
Mean of differences

95% confidence interval
K square = '

How cffective was the pairing?
' ient (r
_E:__'{J;____ITE:]E}I_IQR cuefﬁc: (r)
P Value (one tailed)
P value summary

Was the pairing significantly effective?

Data 1
vmc 1

Vs
vme 2

< 0.0001

ko

Yes
Two-tailed
t=4.754 d=79
80

-1.357
-1.927 to -0.7881
0.2224

0.3754
0.0003

LR S
Yes

Data |
Al
Vs
A2

< 0.0001

: Rk
Yes
Two-tailed
t=17.95 df=79
80

0.09637
0.08567 to 0.1071

-t 0.8030

0.6220
< (.0001

E T Y
Yes
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T-test results of saturated hydraulic conductivity

C: Saturated hydraulic conductivity

Table Analyzed
Column U

Vs

Column V

Paired t test

P value

P value summary

Are means signif. different? (P < 0.05)
One- or two-tailed P value?

t, df

Number of pairs

How big is the difference?
Mean of differences

95% confidence interval
R square

How effective was the pairing”
Correlation coefficient (r)

P Value (one tailed)

P value summary

Was the pairing significantly effective?

APPENDIX B

Data 1
Ks 1
Vs

Ks 2

<0.0001

LL k]

Yes
Two-tailed
=6.679 df=79
80

7.823e-005
5.488e-005 10 0.0001016
0.3609

0.6075
< 0.0001

A%
Yes
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