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ABSTRACT 

  

Malaria is a serious health problem in Ghana and is reported by the Ministry of Health to be 

responsible for more than 44 percent of outpatient visits and approximately 22 percent of deaths 

in children under the age of five, which means there is a lot of work to be done if the country 

wants to achieve the goals set by Roll Back Malaria Partnership (RBM), a global initiative that 

coordinates actions against malaria. The goal of this thesis is to use clinical malaria data from 

Ghana Health Service to develop a mathematical model to help control the spread of malaria in 

Ghana in order to perhaps meet the target year given by RBM programme. The model consists of 

seven non-linear differential equations which describe the dynamics of malaria with 4 variables 

for humans and 3 variables for mosquitoes. We perform stability analysis of the model and the 

next generation method is used to derive the basic reproduction number    . We have proved that 

the disease-free equilibrium is locally asymptotically stable if       and unstable when 

      . The Centre Manifold theorem is used to show that the model has a unique endemic 

equilibrium which is locally asymptotically stable when        . The basic reproduction 

number for Ghana is found to be           . Numerical simulation of the model suggests that 

the most effective strategy for controlling or eradicating malaria is to combine the use of 

insecticide-treated bed nets, indoor residual spraying and chemotherapy, but the best strategy is 

to reduce the biting rate of the female anopheles mosquito through the use of insecticide-treated 

bed nets and indoor residual spraying since the malaria parasite has developed resistance to some 

of the antimalarial drugs. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 BACKGROUND TO THE STUDY 
 

Malaria is a life-threatening disease caused by a protozoan parasite called Plasmodium, which 

lives part of its life in humans and part in Anopheles mosquitoes. The development of malaria 

parasites in a human host commences in the liver cells where the malaria parasites undergo 

asexual multiplication to produce merozoites that are eventually released into the blood stream to 

invade red blood cells. The infected red blood cells burst after 2–3 days to release merozoites 

and gametocytes into the blood stream. This is associated with the clinical symptoms of the 

disease. Anopheles mosquitoes become infected when they feed and ingest human blood that 

contains mature gametocytes. The gametocytes develop into male and female gametes that 

fertilize to become zygotes in the mid-gut wall of the mosquito. The zygote elongates to become 

ookinete and penetrates the mid-gut epithelium that later develop and ultimately produce 

sporozoites which become infective when they migrate to the salivary glands (Tumwiine et al, 

2007).  

The disease is endemic in tropical and subtropical regions, including Africa, Asia, Latin 

America, the Middle East and some parts of Europe. According to the WHO report 2010, it is 

estimated that the number of cases of malaria rose from 233 million in 2000 to 244 million in 

2005 but decreased to 225 million in 2009 and the number of deaths due to malaria is estimated 

to have decreased from 985 000 in 2000 to 781 000 in 2009. Most of the malaria related deaths 

occur mostly in sub-Saharan Africa and in children less than five years. 
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There are more than 100 different species of Plasmodium parasites, but only four species of 

parasites can cause infections in humans, namely Plasmodium falciparum, Plasmodium vivax, 

Plasmodium malariae   and Plasmodium ovale (Understanding Malaria, Fighting an Ancient 

Scourge, February 2007, www.niaid.nih.gov).  The following three species are found in Ghana: 

Plasmodium falciparum, Plasmodium malariae and Plasmodium ovale. Plasmodium falciparum 

is responsible for most of the deaths and morbidity associated with malaria in Ghana, accounting 

for about (90- 98) % of malaria cases. Only infected female Anopheles mosquitoes can transmit 

malaria and they must have been infected through a previous blood meal taken on an infected 

person. When a mosquito bites an infected person, a small amount of blood is taken in which 

contains microscopic malaria parasites. About 1 week later, when the mosquito takes its next 

blood meal, these parasites mix with the mosquito’s saliva and are injected into the person being 

bitten. There are three species that transmit the disease in Ghana: Anopheles gambiae, Anopheles 

arabiensis and Anopheles funestus (Ministry of Health, 2009). 

Because the malaria parasite is found in red blood cells of an infected person, malaria can also be 

transmitted through blood transfusion, organ transplant, or the shared use of needles or syringes 

contaminated with blood. Malaria may also be transmitted from a mother to her unborn infant 

before or during delivery (“congenital” malaria) (Malaria.com, 2011). 

The early people attributed the malaria fevers to evil spirits, angered deities, demons, or the 

black magic of sorcerers. The ancient Chinese believed the frightening symptoms and signs to be 

the work of three demons, one with a hammer, one with a bucket of cold water, and a third with 

a stove.  The ancient Romans worshiped a fever goddess, three demons rolled into one. 

Babylonian cuneiform script attributes malaria to a god, pictured as a mosquito-like insect. In 

http://www.malaria.com/author/admin
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800 BCE the Indian sage Dhanvantari wrote that bites of mosquitoes could causes diseases, 

fever, shivering etc. In 1696 Morton presented the first detailed description of the clinical picture 

of malaria and its treatment with cinchona. Fransesco Torti, professor of medicine at Modena, 

accurately described the intricate course of the disease that was curable by the cinchona in 1712. 

One American physician, James K. Mitchell, wrote that malaria was due to certain spores present 

in marshy regions.  This possible relationship was so firmly established that it gave the two most 

frequently used names to the disease mal’aria, which later shortened to one word ‘malaria’. The 

term malaria is derived from the Italian words mala “bad” and aria “air” which was used by the 

Italians to describe the cause of intermittent fevers associated with exposure to marsh air or 

miasma. Up to that point the various intermittent fevers had been called jungle fever, marsh 

fever, paludal fever, or swamp fever. 

In 1884, Russian physiologist, Basil Danielewsky identified parasites of malaria in the blood of 

wild birds and in the same year, Marchiafava and Celli demonstrated active amoeboid ring in 

unstained blood and named it Plasmodium. The name chosen for the parasite by them turned out 

to be an incorrect one, since the organism is not actually a plasmodium. But the name stuck 

despite years of haggling. On August 20, 1897, Ronald Ross demonstrated oocysts in the gut of 

anopheline mosquito at Secunderabad, India, proving that mosquito was the vector for malaria.  

In September 1898, Italian physician Giovanni Battista Grassi was able to report that this insect, 

Anopheles claviger, was the carrier of human malaria.  

In 1973 human protection from malaria by vaccination was first reported. For about 20 years, 

progress occurred mainly in experimental models rather than in human vaccine trials. In 1987, 

Dr. Manuel Elkin Patarroyo, a Colombian biochemist, developed the first synthetic Spf66 

vaccine against P. falciparum parasite. But phase III trials showed that lacked efficacy. During 
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the past 5 years, many candidate vaccine approaches have been tested in clinical trials. The 

genome sequences of Anopheles gambiae and Plasmodium falciparum were published in 2002 

and those of P. vivax and P. knowlesi in 2008. 

Research information on history of malaria in Ghana can be traced back to the 1950s, that is, 

Gold Coast era. In 1946, Beet suggested that the sickle-cell trait might protect the bearer from 

the effects of malaria in hyper endemic malarial areas, thus accounting for the high incidence of 

the trait in certain parts of Africa. Therefore, in 1954-5, two doctors M.J. Colbourne and G.M. 

Edingiton from the Medical Research Institute in Accra carried out sickling tests during routine 

malaria surveys on two groups: Frafras in the Northern Territories of the Gold Coast then and 

inhabitants of Accra (mainly Ga).  They investigated 680 Frafras inhabiting the small village of 

Yorugu and 1,015 inhabitants of Accra. In Accra the sickle-cell trait appeared partially to protect 

the bearer against P. falciparum infection in all age groups, whereas no protection over the age of 

1 year was noted in sicklers in the North. The sickle-cell trait was not found to give protection 

against P. malariae infection in either district. A group of Accra schoolchildren was also 

observed, and it was found that malaria was responsible for morbidity in both sicklers and non-

sicklers.  

In Ghana traditional herbalists were using medicinal plants to treat malaria before the 

introduction of orthodox medicine. Some of the plants species commonly used are Neem tree 

and its leaves, pawpaw leaves, etc. In 1950s, Ghana with the support from WHO, added indoor 

residual spraying using DDT as one of the measures to control mosquitoes. Many households in 

Volta and Northern regions benefited.  Accra and its surrounding areas also had aerial spraying. 

During the same period, Chloroquine was added to salt and sold at various Post Offices. From 
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the 1970 onwards the use of Chloroquine as malaria drug was intensified at all health facilities in 

Ghana (Action Alert, 2007). 

Malaria is normally referred to fever and its names in some Ghanaian languages are, in Twi is 

called ‘hurae’ or ‘etiridii’ (fever), Dangme is ‘asra’ (fever) or ‘asraku’ (very high fever), Buli 

and Kasim is ‘pua’ (Adongo et al, 2005) and Ga is ‘atridii’ (fever). According to the Anti-

Malaria Drug Policy for Ghana document in 2009, Malaria remains hyper endemic in Ghana and 

is the single most important cause of mortality and morbidity especially among children under 

five years, pregnant women and the poor.  In 2006, the disease accounted for 38.6% of all 

outpatient illnesses and 36.9% of all admissions. Malaria prevalence per thousand populations 

was 171 and 2,835 malaria-attributable deaths (all ages) representing 19% of all deaths were 

recorded. Infection rates are high in children peaking at more than 80% in those aged (5 – 9) 

years and falling to low levels in adults. Malaria infection during pregnancy causes maternal 

anaemia and placental parasitemia both of which are responsible for miscarriages and low birth 

weight babies among pregnant women. It accounts for 13.7% of all admissions of pregnant 

women in 2006 and 9.0% of them died.  According to UNICEF Ghana Fact Sheet July 2007 

report , 3.5 million people contract malaria every year and approximately 20,000 children die 

from Malaria every year (25 per cent of the deaths of children under the age of five). Even if a 

child survives, the consequences from severe malaria such as convulsions or brain dysfunction 

can hamper long-term development and schooling. 

According to Martcheva and Hoppensteadt (2010), WHO, the World Bank and several charitable 

organizations launched in 1998 the Roll Back Malaria Partnership (RBM), a global initiative that 

coordinates actions against malaria. The mission of the RBM Partnership has more recently been 

outlined in its Global Malaria Action Plan. Some of the major goals of the Partnership are (1) 

Reduce global malaria cases from 2000 levels by 50% in 2010 and by 75% in 2015; (2) Reduce 
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global malaria deaths from 2000 levels by 50% in 2010, and to near zero by 2015; (3) Eliminate 

malaria in 8-10 countries by 2015; and eventually (4) Achieve eradication of malaria world-

wide. 

Since 1998, Ghana has committed itself to the RBM Initiative. The country drew up a 

'Medium Term Strategic Plan for Malaria Control in Ghana' (1998-2002), which sought to 

improve the coverage of malaria control activities by adopting an inter-sectoral approach 

involving and promoting partnership with the private sector and the community. It has also 

committed itself to the Abuja Declaration on Roll Back Malaria in Africa, which similarly seeks 

to achieve specific targets on malaria prevention and control. 

In Ghana, as well as globally, the P. falciparum parasite has developed resistance to commonly 

used antimalarials such as Chloroquine which poses a serious challenge to the mono therapies. In 

this regard, in 2002 Ghana initiated the process of using Artemisinin based combination 

therapies (ACTs) following WHO recommendations for all countries experiencing resistance to 

mono-therapies in the treatment of falciparum malaria. Artesunate-Amodiaquine was selected as 

the first line drug for the treatment of uncomplicated malaria, but due to the challenges such as 

adverse drug reactions, lack of other treatment options and safety concerns faced by the Health 

sector, two additional ACTs namely; Artemether-Lumefantrine and 

Dihydroartemisinin/Piperaquine were also added. Quinine or Intramuscular Artemether is the 

drugs of choice for treating complicated malaria. Pregnant women with severe malaria are put on 

parenteral Quinine (Intravenous or Intramuscular in all trimesters) until the patient can take oral 

preparations.  

According to UNICEF Ghana Fact Sheet July 2007 report, as part of the measures to prevent 

Malaria, Ghana health Service (GHS) in cooperation with local government authorities and 

UNICEF has distributed Insecticide Treated Nets (ITNs) to over 20 per cent of children below 5 
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and pregnant women through community bed nets sales agents, antenatal clinics and child 

immunization clinics in the Upper East, Upper West and Northern Regions. 

Malaria has a huge social, economic and health burden on the world, particularly in the tropical 

countries. According to World Health Organization (WHO) report 2010, the amount estimated 

for malaria control in 2010 was more than US$6 billion, but received US$1.8 billion from the 

international sources, which represents less than 30% of the amount aiming at. It is therefore 

means that, the government of malaria endemic country will receive less financial support  from 

WHO and rest of the budget for malaria  will come from country’s Gross Domestic Product ( 

GDP) , which will negatively affect the country’s economic growth. In 2009, Ghana’s Minister 

of Health then, Dr. George Sipa-Adjah Yankey said that the government of Ghana spends over 

$760 million every year treating malaria which  is almost the entire budget for the health sector 

and an amount of over GH¢921 million was allocated for the health sector that year (Ghana 

Business News, 2009).  

 

1.1 STATEMENT OF THE PROBLEM 
 

Malaria is a serious health problem in Ghana which is responsible for up to 40% of daily out-

patient consultations at hospitals and clinics and over 23% of deaths in children under five years 

of age (Buabeng et al, 2007), which  means there is more work to be done if the country wants to 

achieve the goals set by RBM Initiative. The disease also affects majority of the labour force 

especially the poor; therefore, the cost of treatment is indirectly transferred   to the government, 

because they cannot afford it. So apart from the health consequences; malaria puts a heavy 

burden on productivity and hence economic development. Although, a lot of Malaria Control 

Programs are going on in the country, yet the disease seems to be still raging on. Hence, it is time 
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we introduce mathematical models into the fight against malaria in the country and that is the 

goal of this thesis. It has become necessary for the decision makers in Malaria Control Programs 

to understand the main parameters in the transmission of the disease and develop effective 

solution strategies for its prevention and control. We intend to use existing malaria data from 

Ghana Health Service to develop a mathematical model to understand the disease dynamics in 

Ghana and assist decision makers to formulate the best ideas to prevent, control and eradicate the 

disease. It is non-linear ordinary differential equations that will be used to form the model based 

on epidemiological compartmental modelling. 

 

1.2 OBJECTIVES  

 

 The objectives of this thesis are the following: 

1. To develop a mathematical model of the spread of malaria in Ghana taking both host and 

vector populations into account. 

2.  To perform stability analysis of the model.  

3. To perform simulations in respect of various scenarios. 

4. To interpret the results in view of management issues.  

 

1.3 METHODOLOGY  
 

We intend to use deterministic differential equation approach to model malaria where humans 

and mosquitoes interact and infect each other.  The model will be based on the important 

intervention strategies we have in country such as clinical treatment and the death of the female 

Anopheles mosquito which is caused by natural death rate, indoor residual spraying (IRS), 
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insecticide treated bed nets (ITNs), etc. Temporary (time dependent) immunity will also be 

considered for human population. The model divides the human population into four classes: 

susceptible, exposed, infectious and recovered. There are also three classes for the mosquito 

population: susceptible, exposed, and infectious. Both species follow the logistic model for their 

population growth. Data for the thesis is obtained from the World Malaria Report 2010 under the 

aegis of WHO Global Malaria Programme through the internet. The data covers the period  

2000 to 2009 and represents clinical cases of malaria in Ghana. The simulations will be 

conducted using MATLAB's ode45.  

 

1.4 JUSTIFICATION  
 

This thesis will assist Ghana’s Malaria Control Programmes tremendously, because it will give 

decision makers and stakeholders a mathematical model to understand the transmission and 

spread of malaria in order to make precise policy interventions. 

The thesis may also assist research scientists, mathematicians, etc to further develop suitable 

models to help public health professionals make better strategies for controlling the disease.  

Finally, it will assist to measure the performance of the interventions the country has made in 

controlling the disease. 

 

 

1.5 THESIS ORGANIZATION 
 

The first chapter of the thesis talks about the introduction to the topic. It contains the background 

to the study, problem statement and objectives. The chapter two discusses literature review 
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(work done by other researchers in mathematical modelling of malaria and the methods applied). 

The third chapter provides the methodology the researchers intend to use model the problem or 

the topic. That is, formulation and analysis of the model. The fourth chapter is the results 

analysis (that is, computational procedure, discussion, significance and relating the results to the 

literature). Finally, chapter five provides conclusion on the model and findings of the study. It 

also gives recommendation to areas that can be researched in the future by other researchers.  
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CHAPTER 2 

 

LITERATURE REVIEW 

1.0 INTRODUCTION 
 

For the last 100 years, different people have developed many mathematical models for malaria. 

In this chapter, we review the ones that are directly related to the objectives of this study.  

Mathematical modeling of malaria began with Sir Ronald Ross while working at the Indian 

Medical Service in 1911, (Johansson and Leander, 2010).  He developed a simple model, now 

known as the classical “Ross model” (Ross, 1915), which explained the relationship between the 

number of mosquitoes and incidence of malaria in humans. From the Ross’s model, several 

models have been developed by researchers who extended his model by considering different 

factors such as latent period of infection in mosquitoes and humans, age-related differential 

susceptibility to malaria in human population, acquired immunity and genetic heterogeneity of 

host and parasite. 

Ross in his first mathematical model of malaria used the word “pathometry” to mean 

“quantitative study of a disease either in the individual or in the community”. Through his 

model, he showed that reduction of mosquito numbers “below a certain figure” (Transmission 

threshold) was sufficient to counter malaria, (Ross, 1915). The major advantage in Ross’s 

models was his ability to provide a suitable control strategy through the Transmission threshold 

criterion which is based on the reproductive capacity of the parasite and is termed as basic 

reproductive number      . Although the idea of threshold was first introduced by Ross, it 

originated from Fisher’s “net reproductive value” for a parasite, (Fisher, 1930 and Mandal et al, 

2011). 
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The figure 2.1 below is a piece of work done by Mandal et al. (2011). It gives the grouping of 

different types of malaria models developed by researchers in mathematical modelling of 

malaria. It will provide a pictorial background which would make the discussion easier to 

understand. 

 

Figure 2.1 Evolution and grouping of different types of SEIR malaria models. Subscripts ‘h’ and 

‘m’ stands for human and mosquito. Doublefolded boxes are for both human & mosquito 

population, and single fold boxes are only for human. First time addition of a new compartment 

is shown in red. The subscript ‘j’ (= 1, 2, 3) indicates further subdivision of the corresponding 

compartment. Three models inside the big grey box are considered as the Basic malaria models 

in this paper. Dotted arrows show the incorporation of complex factors in different models or 

specific compartment (red circle). Total population size is constant for all models, except the 

ones inside the dashed box. 
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In 1911, Ross introduced the first deterministic differential equation model of malaria by 

dividing the human population into susceptible        and infected        compartments, with the 

infected class returning to susceptible class again leading to the SIS structure. The mosquito 

population also has only two compartments               but they do not recover from infection 

due to their short life span, and thereby follow the SI structure. In the next section we will 

consider the introduction of latent or exposed class in mosquito population by George 

Macdonald. 

 

2.1 INTRODUCTION OF EXPOSED CLASS IN MOSQUITO POPULATION 

 

Ross did not consider the latency period of the parasite in mosquitoes and their survival during 

that period in his model. This resulted in the model predicting a rapid progress of the epidemic in 

human and a higher equilibrium prevalence of infectious mosquitoes. After about 40 years, 

George Macdonald, in the 1950s, reasserted the value of mathematical epidemiology based on 20 

years of fieldwork. He modified Ross’s model by integrating biological information of latency in 

the mosquito due to malaria parasite development, and concerned the survivorship of adult 

female mosquito as the weakest element in the malaria cycle. This provided the basis for a 

massive World Health Organization (WHO) coordinated campaign, which focused on using the 

insecticide dichlorodiphenyltrichloroethane (DDT) that killed mosquitoes, which resulted in the 

elimination of malaria transmission among 500 million people in Africa, (Macdonald, 1956 and 

Pampana, 1969). 

Macdonald termed the latency period as     , and introduced the Exposed        class in the 

mosquitoes. Therefore, in his model the mosquito population is divided into three compartments 
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(SEI), and the model studies the time evolution of the exposed        and infected        classes 

in mosquito, (Macdonald, 1957).  

 

2.2 AGE AND IMMUNITY IN HUMAN POPULATION 

 

Aron and May (1982) added various characteristics of malaria to the Ross-Macdonald model, 

such as an incubation period in the mosquito, a periodically fluctuating density of mosquitoes, 

super infection and a period of immunity in humans. Aron and May proposed an age-specific 

immunity model with a new compartment - Immune      - in humans. This model, thus, 

consists of three compartments in humans: Susceptible    , Infected      and Immune    , and 

is a       model.  They also include a continuum model for immunity where the dynamical 

variables are the population of asexual blood stages of Plasmodium in humans, the population of 

gametocytes (sexual stages of Plasmodium in humans), and the level of human immunity. In this 

system of partial differential equations, the variables depend on both time and age. The 

mosquitoes are modeled through      , the vectorial capacity, which is proportional to the 

mosquito density. This model is a significant deviation from the Ross-Macdonald model as it 

does not keep track of the number of infected humans and mosquitoes. Instead, this continuum 

model measures the number of parasites and level of immunity in the average human. This is 

useful for malaria because there can be a large difference in the parasitemia load in different 

humans, that the Ross-Macdonald model ignores, (Danso-Addo, 2009). 

 

2.3 AGE AND EXPOSED CLASS IN HUMAN POPULATION 

 

 Anderson and May (1991) revisited many of the ideas discussed by Aron and May. Anderson 

and May in this addition, compile numerous data sets for parameter values, including the latent 
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period in mosquitoes and humans, the rate of recovery for humans, the expected adult lifespan of 

mosquitoes and malaria prevalence data across age distributions for humans. Anderson and May 

also studied the effect of adding age structure to the basic Ross model. Age structure was 

included by Anderson and May in the simple Ross model by considering the human population 

density. Finally, they looked at different control strategies, discussing the effects of a vaccine 

and the reduction of transmission rates on the malaria age-prevalence profile of the human 

population, (Anderson and May 1991). 

 

2.4 MIGRATION AND VISITATION   

 

The main two types of mobility patterns that can spread an infection to newer areas are 

migration, i.e., when the people move from one region to another with no returns and visitation, 

when the people return to their original region after visiting other regions. The effects of 

migration and visitation on transmission of malaria were shown by Torres-Sorando and 

Rodriguez by modifying the basic Ross model to include space that is split into     number of 

patches. Only humans are assumed to move among the patches and mosquitoes are evenly 

distributed. Their model results show that increase in mobility between patches enhances the 

persistence of the disease. Even though migration of humans does not change the equilibrium 

prevalence, equilibrium is reached faster for higher levels of migration. When there is visitation, 

the equilibrium prevalence increases with visitation time, and the time to reach the equilibrium 

decreases with increase in the intensity of visitation, (Torres-Sorando and Rodriguez, 1997). 
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2.5 SOCIAL AND ECONOMIC FACTORS 

 

Yang (2000) showed how the basic reproductive number      of malaria transmission changes 

with global warming and local social and economic conditions (Yang and Ferreira, 2000). In his 

model good, intermediate and poor economic conditions among human community were 

considered and each condition was further divided into three temperature zones. A host of factors 

controlling disease transmission rates in his model are differential immunity, endemicity, 

resistance, economic conditions and temperature dependence of mosquito development. These 

lead to different       for three temperature zones with different socio-economic structures. 

These modelling results point out the requirement of proper management of the surrounding 

environment, along with good health care system, in disease transmission. From the point of 

view of designing field research, it is shown in a mosquito based model (Chitnis et al, 2010), that 

the effectiveness of malaria control through different types of intervention methods (insecticide-

treated nets and indoor residual spraying) can have differential protection, with the former being 

more protective. The socio-economic situation for large scale deployment of interventions at the 

population level has also been addressed using modelling studies, (Killeen and Smith, 2007). 

 

2.6 VARYING POPULATION SIZE 

 

Total population size was assumed to be constant for all malaria models which came before 

Ngwa and Shu’s model, (Mandal et al, 2011).  Ngwa and Shu (1999) proposed an immunity 

model in which disease related death rate is considered to be significantly high, and the total 

population is not constant. The Ngwa-Shu model consists of four compartments in humans – 

Susceptible      , Exposed     , Infected      and Immune       and three compartments in 

mosquitoes – Susceptible     , Exposed       and Infected     . Mathematical analysis of the 
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model shows that the Basic Reproductive Number,    , can describe the malaria transmission 

dynamics of the disease, where a globally stable disease-free state exists if         , while for 

        , the endemic equilibrium becomes globally stable. This model explicitly shows the 

role of inclusion of demographic effects (net population growth) in predicting the number of 

fatalities that may arise as a result of the disease.  

In a similar theme, Chitins (2005) and Chitins et al (2006) included constant immigration of 

susceptible human population in their model. Considering immigration of people and excluding 

direct human recovery from the infectious to susceptible class as considered in Ngwa and Shu’s 

model and other models. They showed that the population approaches the locally asymptotically 

stable endemic equilibrium point, or stable disease-free equilibrium point, depending on the 

initial size of the susceptible class. 

 

2.7 OTHER IMMUNITY MODELS 

 

Immunity can be described as a continuum of different levels of protection rather than a single 

class, as anti-malarial immunity develops slowly among people exposed to continuous and 

intense malaria transmission. Yang (2000) divided the immune class      in human population 

into immune      , partially immune       and non-immune but with immunologic 

memory      , with each class having differential immunity. The mathematical analysis of Yang 

model shows that the effects of these three types of immune responses lead to delay in the 

reappearance of the individuals, who already had experienced malaria, to the susceptible 

population. Hence the community under high threat of malaria (high    ) shows low prevalence 

of individuals with asexual blood-stage infection and without infectious gametocytes, whereas, 
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the same community is relatively free of severe infection due to the increase in immunity by re-

infection.  

Due to lack of confirmed markers of immunological protection, different processes that 

determine the immunity acquisition to clinical disease and to asymptomatic carriage of malaria 

parasites are poorly understood. The models discussed in the earlier section consider the immune 

individuals as a separate class, with no consideration of the types of processes that drive 

acquisition of immunity and its role in disease progression, (Mandal et al, 2011). In an insightful 

approach, Filipe et al (2007) introduced three age-specific “immunity-functions” in their SEI 

model for the human host, in which the infected humans are divided into three classes – infected 

with severe disease       , asymptomatic patent infection       , and infected with undetectable 

parasite density       . The effect of mosquito density is incorporated through the force of 

infection     . The three immunity functions        introduced in the Filipe model are - 

     Reducing the susceptibility to clinical disease,          ,       speeding up of the clearance 

of detectable parasites,           , and      increasing tolerance to sub-patent infections, 

          . These functions depend on age and disease transmission intensity (i.e., Entomological 

Inoculation Rate) in a complex manner.  

They base their model assumptions on the fact that the rates at which both types of immunity - 

clinical and anti-parasite - develop are different. All these processes have widely varied time 

scales, which make the disease transmission in this age-structured population quite complex. The 

first two types of immune functions reproduced the epidemiological age-prevalence curves seen 

in empirical data better. The third one i.e. the tolerance to sub-patent infections, is not required to 

explain the empirical data. 
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2.8 HOST-PATHOGEN VARIABILITY AND RESISTANT STRAIN MODELS 

 

Several mathematical models have been developed with pathogen population structure and 

heterogeneous host population to explain variable antigenic response, immune selection, 

pathogen strain structure, (Gupta and Galvani, 1999; Gupta and Anderson, 1999; and Recker et 

al, 2004). Addition of evolution of drug resistance, along with other factors, in the models can 

assist in the design of rational strategies for the control of drug resistance, (Hastings, 1997; Dye 

and Williams, 1997; Mackinnon, 2005). A number of resistant-strain models have been 

developed based on evolution of drug resistance through host immunity,( Koella and Antia 

(2003) and Chiyaka et al ,2009 ), and by considering the practical implications of the 

Artemisinin combination therapy (ACT) drug policies adopted by a lot of countries,( 

Pongtavornpinyo et al ,2008). Population genetic considerations of the cost of resistance are also 

included in this type of models, (Koella, 1998; and Boëte and Koella, 2002). More recent work 

elaborates the complexity of the process of drug resistance by considering the interaction of 

several environmental, pharmacological and genetic factors, (Antao and Hastings, 2011). In 

general, these resistant-Strain models divide the infected host population       into two 

compartments, i.e., infected by drug-sensitive strain and drug-resistant strain of the parasite. The 

model proposed by Koella and Antia (Koella and Antia, 2003), further divides the host 

population infected by drug-sensitive strain into two compartments - treated and untreated. 

So this model consists of five compartments of human: susceptible      , sensitive, infected, and 

treated      , sensitive, infected, and untreated      , infected with the resistant strain      , and 

the recovered     . The role of mosquito vector is included through inoculation rates of sensitive 

and resistant parasites. The main prediction of this model indicates that there is a threshold 
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proportion of people     among the infected and treated        classes, below which resistance 

cannot spread, and above which resistance will eventually become fixed in the population. The 

model also shows that, in the absence of drug or treatment, the fitness of resistant parasite 

reduces with respect to sensitive parasite; otherwise both the parasites have identical properties. 

In this case, sensitive and resistant parasites cannot co-exist. 

 

2.9 ENVIRONMENTAL FACTORS  

 

The basic reproductive numbers       for the early models depend crucially on the parameters 

related to mosquito density. Environmental factors, such as temperature, humidity, rainfall and 

wind patterns have great impact on mosquito reproduction, development and longevity and the 

parasite survival in its life cycle in mosquito. It is known that mosquito breeding is influenced by 

temperature – a change in temperature from 12°C to 31°C reduces the number of days required 

for breeding from 65 days to 7.3 days, (Li et al, 2002). The sporogony of the parasites in vector 

is completed in 55 days at 16°C, which reduces to 7 days at 28°C, (Martens et al, 1995). 

Influence of temperature and humidity change on the rate of transformation from juveniles to 

adults in the susceptible class of adult mosquitoes has been modelled, (Li et al, 2002). In 

addition, several mathematical studies have been performed to simulate the effect of 

environmental variability in the abundance of mosquito populations such as, random fluctuation 

in the form of colour noise in infected mosquito dynamics of Ross model,( Chattopadhyay et 

al,2004), periodic or noisy form of the force of infection,( Aron and May,1982  and Anderson 

and May ,1991). Several studies have also included the effect of environmental fluctuations in 

diverse ways with the aim to develop realistic and validated malaria modelling frameworks that 

are able to identify the crucial linkages between pathogen transmission processes and climactic 
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factors, (Martens et al, 1995; Yang, 2000; Yang and Ferreira, 2000; Hoshen and Morse, 2004 

and Yé et al, 2009). In a recent study, Parham and Michael proposed a model (Parham and 

Michael, 2010), to study the dynamics of the mosquito population by considering simultaneous 

effects of rainfall and temperature. The model consists of three compartments in 

humans               with fixed duration of latency, and three compartments in 

mosquitoes               . Different environmental factors are introduced in this model through 

parameters related to mosquitoes. The birth rate of adult mosquito is considered to be a function 

of rainfall and temperature, whereas, mosquito mortality rate, biting rate, duration of sporogonic 

cycle and survival probability of infected mosquitoes over the incubation period of the parasite 

are considered to be dependent on temperature variation. The major finding of this model is that 

changes in rainfall patterns not only influence vector abundance, but also strongly govern 

malaria endemicity, invasion and extinction. However, when sufficient rainfall exists to sustain 

vector development and survival, then the temperature affects the pathogen life cycle, and has 

stronger influence on the rate of disease spread.  

 

2.10 STOCHASTIC MODELS 

 

Plasmodium life-cycle and mosquito population density are highly dependent on different 

internal processes and external environmental factors, which are probabilistic in nature. In many 

of the models discussed above, stochasticity has been included in different ways. Even when the 

main structure of the compartments is similar to the differential equation based models, 

stochasticity has been included through individual variability in individual based models (Gu et 

al, 2003, and Smith et al, 2008) and probabilistic variation in different variables and parameters 

of transmission processes and environmental factors (Smith, 2008; Saul, 1996; Craig et al, 1999 
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and Gaudart et al, 2009). Models integrating stochasticity with other factors such as, spatial 

contact structure and temporal forcing, also explain many interesting features of disease 

transmission (Dangerfield, 2009 and Parham and Michael, 2011).  

 

2.11 CONCLUSION 

 

 From the public health point of view, decision makers will be more interested in knowing if the 

infection will die out, or persist in a population through the important parameter    . In this 

literature review, efforts have been taken to group the epidemiological models of malaria in 

terms of the complexity of infection processes included in its description, which makes them 

more realistic. The age-specific distribution of infection due to differential immunity across age 

is one such case. The assumption is that more realistic models would enhance the understanding 

of the infection transmission process at the population level, which, in turn, may help in better 

prediction of intervention strategies. Pure mathematical analysis of the models, although not so 

popular among the biologists, is important. They provide clear understanding of the logic of the 

system behaviour in terms of the relationship among the parameters and variables, which are 

representative to real biological processes.  

This literature review of different mathematical models of malaria would contribute to 

consolidate our understanding about the evolution of these models, and may also help in 

developing new models by incorporating features discussed above to improve predictions and 

deciding realistic control measures. 
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CHAPTER 3 

 

MODEL FORMULATION 

3.0    INTRODUCTION  
 

In this chapter, we will use deterministic differential equation approach to develop malaria model 

where humans and mosquitoes interact and infect each other.  The model will be based on the 

important intervention strategies we have in country such as clinical treatment and the death of 

the female Anopheles mosquito which is caused by natural death rate, indoor residual spraying 

(IRS), insecticide treated bed nets (ITNs), etc.  

 

3.1   FORMULATION OF THE MODEL 

  

We formulate a model similar to that of Chitnis (2005) describing the transmission of malaria. 

The model (Figure 3.1) divides the human population into 4 classes: Susceptible,    , the fraction 

of host population that is susceptible to infection; then comes the Exposed,    , the fraction of 

population who are infected , but not infectious and they cannot transmit the infection . The next 

is infectious,     , people who have been infected with malaria and are capable of spreading the 

disease to those in the susceptible class and finally, the  recovered (immune),   , people who 

recover from the infection through clinical treatment with temporary immunity . These humans 

can not transmit the infection to mosquitoes because we assume that they have no plasmodium 

parasites in their bodies. People enter the susceptible class, either through birth or immigration at 

a constant rate. When an infectious anopheles mosquito bites a susceptible human, there is some 

finite probability that the parasite (in the form of sporozoites) will be passed on to the human and 

the person will move to the exposed class. The parasite then travels to the liver where it develops 

into its next life stage. After a certain period of time, the parasite (in the form of merozoites) 
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enters the blood stream, usually signaling the clinical onset of malaria. Then the exposed people 

become infectious and progress to infectious class. After some time, the infectious humans 

recover and move to the recovered class. The recovered humans have some immunity to the 

disease and do not get clinically ill, but after some period of time, they lose their immunity and 

return to the susceptible class. Humans leave the population through natural death and those in 

the infectious class have additional disease-induced death rate. 

We do not include the immigration of infectious humans because we assume that most people 

who are sick will not travel. The movement of Exposed humans are excluded because, given the 

short time of the exposed stage, the number of exposed people is small. We do make a 

simplifying assumption that there is no immigration of recovered humans. 

The female Anopheles mosquito population is divided into 3 classes: Susceptible,     , Exposed 

    and Infectious      . Anopheles male mosquitoes are not included in the model because only 

female mosquitoes bite humans for blood meals. Female mosquitoes enter the susceptible class 

through birth. The parasite (in the form of gametocytes) enters the mosquito, with some 

probability, when the mosquito bites an infectious human and the mosquito moves from the 

Susceptible to the Exposed class. After some period of time, dependent on the ambient 

temperature and humidity, the parasite develops into sporozoites and enters the mosquito's 

salivary glands; and the mosquito moves from the exposed class to the infectious class. The 

mosquito remains infectious for life. Mosquitoes leave the population through natural death rate 

and death caused by insecticides. We assume that longevity of the female Anopheles mosquitoes 

is unaffected by the parasite infection and do not die from the infection. There is no super 

infection of the disease. Mosquitoes cannot survive without human host as they need human 

blood to feed their developing eggs. 

http://en.wikipedia.org/wiki/Insecticide
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The main differences of our model, from that of Chitnis (2005) is that we have excluded the 

infection of female Anopheles mosquito by recovered humans, because we assume that these 

humans do not have sufficient plasmodium parasites in their bodies to transmit the infection to  

mosquitoes. Also, in our model, the infectious humans recover with clinical treatment and the 

death of the female Anopheles mosquito is caused by natural death rate and insecticides. 

The state variables in Table 3.1 and parameters in Table 3. 2 below are used figure 3.1 to 

formulate the malaria model (3.1). 

 

Table 3.1: The state variables for the malaria model (3.1). 

Parameter Description 

       Number of susceptible humans at time     . 

      Number of exposed humans at time     . 

      Number of infectious humans at time    . 

     Number of recovered (immune) humans at time     . 

      Number of susceptible mosquitoes at time     . 

      Number of exposed mosquitoes at time     . 

      Number of infectious mosquitoes at time     . 

      Total human population at time     . 

      Total mosquito population at time     . 
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Table 3.2 Model parameters and their interpretations for the malaria model (3.1). 

Parameter Description 

  Recruitment rate of humans. 

   Recruitment rate of mosquitoes. 

   Force of infection of humans from susceptible state to exposed state. 

   Force of infection of mosquitoes from susceptible state to exposed state. 

    Rate of progression of humans from the exposed state to the infectious state. 

   Rate of progression of mosquitoes from the exposed state to the infectious state. 

  Clinical treatment -recovery rate of humans from the infectious state to the 

recovered state. 

  Natural death rate for humans. 

  Death of mosquitoes caused by natural death rate and insecticides 

  Disease-induced death rate for humans.  

   Rate of loss of immunity for humans. 

     Probability of transmission of infection from an infectious mosquito to a 

susceptible human provided there is a bite.  

    The probability of transmission of infection from an infectious human to a 

susceptible mosquito provided there is a bite. 

    Biting rate of mosquitoes. 
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Figure           : Schematic Diagram for the Malaria Model. Susceptible humans,    , get infected 

at a certain probability when they contact infectious mosquitoes. They then progress through the 

Exposed,   , Infectious,    and Recovered,    , classes, before reentering the susceptible class. 

Susceptible mosquitoes,    , get infected at a certain probability when they contact infectious 

humans and then move through the Exposed,     and Infectious,    , classes. Both species 

follow a logistic model for their population growth.  
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3. 2 EQUATIONS OF THE MODEL 
 

Applying the assumptions, definitions of state variables and parameters above, the system of 

non-linear differential equations which describe the dynamics of malaria are formulated below: 

 

   

  
                                      

   

  
                                          

   
  

                                       

  

  
                                                 

   

  
                                           

   

  
                                      

   
  

                                                              
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                      

with initial conditions  

                                                                                    

where           
      

  
   and         

      

  
  . 

In the model, the term   
        

  
    denotes the rate at which the susceptible humans    , become 

infected by infectious female Anopheles mosquitoes       and   
        

  
   refers to the rate at 

which the susceptible mosquitoes      are infected by infectious humans     . 

It is important to note that the rate of infection of susceptible human        by infected mosquito 

      is dependent on the total number of humans     available per vector, (Mwamtobe, 2010). 

 

The total population sizes are                       and                          with 

their differential equations 
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3.3   ANALYSIS OF THE MODEL 
 

We analyse the model to check if the intervention strategies have any impact on the diseases, that 

is, whether the disease be eradicated or not. The thresholds parameters which determine 

persistence or elimination of malaria will be determined and studied. Therefore, we start by 

determining the invariant region to check whether the model is biologically meaningful and 

showing that all solutions of               are positive for all       and are attracted in that region. 

 

3.3.1    INVARIANT REGION 

This region can be obtained by the following theorem. 

Theorem 3. 1  

 The solutions of the system               are feasible for all t > 0 if they enter the invariant 

region           . 

Proof: 

Let                                           
   be any solution of the system               with      

non-negative initial conditions. 

In absence of the disease (malaria), that is,      , equation               becomes  
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The integrating factor for              is                    

Multiplying both sides of               by        gives 

    
   

  
                    

 

  
                                     

Integrating on both sides of                we have 

       
 

 
                              

where       is a constant of integration. 

Dividing through                by      gives 

    
 

 
             

Using the initial conditions at                        

      
 

 
           

 

 
      

    
 

 
         

 

 
                          

Applying the theorem of differential inequality (Birkhoff and Rota, 1982), we obtain  
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Therefore, as         in          , the human population      approaches    
 

 
  (that is,   

        
 

 
  ), the parameter     

 

 
  is usually called the carrying capacity,        

(Namawejje, 2011). 

Hence all feasible solutions set of the human population of the model             enters the region 

                                   
                                              

 

 
      

Similarly, the feasible solutions set of the mosquito population enters the region 

                             
                                   

 

 
       

Therefore, the feasible solutions set for model              is given by 

                                   
                                                  

 

 
       

 

 
       

Therefore, the region     is positively-invariant (i.e. solutions remain positive for all times, t) and 

the model             is biologically meaningful and mathematically well-posed in the domain   . 

 

3.3.2   POSITIVITY OF SOLUTIONS 

Lemma 3. 1  

Let the initial data be 

                                                                     

Then the solution set                                          of the system              is positive for 

all     . 

Proof 

From the first equation in the model           , we have 
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Integrating by separation of variables gives 

 
 

  
                                                                              

 
 

                                                                         

                                         

                                                        

Therefore,  

                                                                                                        

From the second equation, 

   

  
                                       

 
 

  
                                                               

Therefore, 

                                                                                    

From the third equation, 

   
  

                                           

 
 

  
                        

Therefore, 

                                                                                            

Similarly, it can be shown that the remaining equations of system              are also positive for 

all     , because          for all         .  
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Now that it has been established our model has both the invariant and positivity of solutions, we 

can move on to determine the existence of the disease free equilibrium point which will assist in 

calculating the basic reproduction number using the next generation operator approach. 

 

3. 3. 3    EXISTENCE AND STABILITY OF STEADY-STATE SOLUTIONS 

Steady state solutions or equilibrium points are the roots or solutions of the system of equations 

when the right-hand side of a nonlinear system is set to zero. That is, using the nonlinear 

system           , we have  

 

                                   
       

                                
 

                                            
    

                  
 

                  
 

                                
       

                           
 
 
 
 
 
 

 
 
 
 
 
 

                             

 

Let      
     

     
        

      
     

    be the steady state of             which can be obtained 

by solving            .  

 

3. 3. 4    EXISTENCE OF EQUILIBRIUM POINTS WITHOUT DISEASE 

Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria in the 

human population or Plasmodium parasite in the mosquito population. 
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Let define the “diseased” classes as the human or mosquito populations that are either exposed or 

infectious; that is,                   and       . 

In absence of the disease, this implies that                      , therefore               

reduces to 

 
       

             
 

      
               

                              

which implies that  

       
  

   
 

 
         

 

  
   

 

 
            

 

 

                          

Therefore, the disease-free equilibrium point of the malaria model              is given by,  

        
          

           
                  

          
        

         
 

 
                

 

 
                         

which represents the state in which there is no infection(in the absence of malaria) in the society. 

  

3. 3. 5   BASIC REPRODUCTION NUMBER      

We use the next generation operator approach as described by Diekmann et al. (1990) to define 

the basic reproduction number,     , as the number of secondary infections that one infectious 

individual would create over the duration of the infectious period, provided that everyone else is 

susceptible. 

 Reproduction number       is the threshold for many epidemiology models, it determines 

whether a disease can invade a population or not. When           each infected individual 

produces on average less than one new infected individual, so we would expect the disease to die 

out. On the other hand, if           each individual produces more than one new infected 
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individual, so we would expect the disease to spread in the population. This means that the 

threshold quantity for eradicating the disease is to reduce the value of        to value less than 

one. 

Let us outline the steps needed to compute the basic reproduction number. 

The basic reproduction number cannot be determined from the structure of the mathematical 

model alone, but depends on the definition of infected and uninfected compartments. Let us 

assume that there are     compartments of which the first    compartments correspond to 

infected individuals. 

Let 

       be the rate of appearance of new infections in compartment   ,  

         
         

      , where    
   is the rate of transfer of individuals into     compartment 

   by all other means and    
   is the rate of transfer of individual out of the    th compartment. 

It is assumed that each function is continuously differentiable at least twice in each variable. The 

disease transmission model consists of nonnegative initial conditions together with the following 

system of equations: 

                                      

Where     is the rate of change of    . 

The next step is the computation of the square matrices    and     of order         , where     

is the number of infected classes, defined by     
   

   
       and     

   

   
        with          

           , such that     is nonnegative,     is a nonsingular  -matrix and      is the disease-

free equilibrium point (DFE). Since       is nonnegative and      is nonsingular, then of        is 

nonnegative and also of        is nonnegative. Hence the matrix of          is called as the next 
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generation matrix for the model. Finally, the basic reproduction number (reproduction ratio) 

     is given by 

                 

where         denotes the spectral radius of a matrix      and The spectral radius,             , is 

the biggest nonnegative eigenvalue of the next generation matrix . 

Rewriting the system            starting with the infected compartments for both populations;  

                   and then followed by uninfected classes;               also from the two 

populations, then the model system becomes:  

 

 
   

  
   

        

  
                         

 
   

  
                                    

 
   

  
 

        

  
                        

 
   

  
                                              

 
   

  
          

        

  
            

 
  

  
                                             

 
   

  
    

        

  
                          

 

        

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                  

From the system              ,       and        are defined as: 
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and 

     

 
 
 
 
 
 
 
 

  

 
           

 
                    

 
            

 
            

   
 
 
 
 
 
 
 

                        

The partial derivatives of                with respect to              and the Jacobian matrix of      

at the disease-free equilibrium point            is: 

   

 
 
 
 
 
 
 
 
 
 

 
                                                                              

 
                                                                       

 

                 
      

  
                                               

 
 

                                                                         
 

   

 
 
 
 
 
 
 
 
 
 

                            

Similarly, the partial derivatives of                with respect to                         and the 

Jacobian matrix of       is: 

   

 
 
 
 
 
 
 
 

 
         

 
    

 

 
 

          
 

         

 
 
                   

 
 

 
 

        
            

 
 
 

 
 

            
 

      
  

 
 
        

 
      

 
                   

   

  
 
 
 
 
 
 
 

                    

 

The inverse of the matrix      is given as: 
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Now we have to compute       , 
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From              , we can now calculate the eigenvalues to determine the basic reproduction 

number       by taking the spectral radius (dominant eigenvalue) of the matrix        . 
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 Thus, it is computed by             , we have  

    

                                         
                                           
                                         
                                         

              

    
                    
                      
                          

      
                        
                      
                      

                        

                                    

                         

From the four eigenvalues, the dominant eigenvalue of the matrix        is          . 

Therefore the basic reproduction number            . Hence  

     
              

                           
                    

Where: 

  

      
  means the probability that a human will survive the exposed state to become infectious. 

  

     
  is the probability that a mosquito will survive the exposed state to become infectious. 

      

        
  is the number of humans that one mosquito infects during its infectious lifetime, 

provided all humans are susceptible. 

      

                 
  is the number of mosquitoes that one human  infects during the duration of the 

infectious period, provided all mosquitoes are susceptible.  

The threshold parameter       can be defined as square roots of the product of number of humans 

one mosquito infects during its infectious lifetime         and number of mosquitoes one human 
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infects during the duration of the infectious period           provided all humans and mosquitoes 

are susceptible. Therefore, 

                                                                                                                                                        

                      
       

                  
 

       

         
                      

Hence   

     
       

                  
                       

and  

       
       

         
                         

where   

     

          
  is the number of latent infections produced by a typical infectious individual during 

the mean infectious period. 

     

    is the number of latent infections produced by a typical infectious mosquitoes during the 

mean infectious period. 

The parameter    appears in the both expressions because the mosquito biting rate controls the 

transmission from humans to mosquitoes and from mosquitoes to humans. 

The basic reproduction number can be used to determine the local stability of the disease free 

equilibrium point. 
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3. 3. 6   LOCAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM  

The local stability of the disease-free equilibrium can be analyzed using the Jacobian matrix of 

the malaria model            at the disease free equilibrium point. Using Van den Driessche P. and 

Watmough J., (2002), the following theorem holds. 

 

Theorem 3. 2:   

The disease free equilibrium point for system            is locally asymptotically stable if         

and unstable if        .  

Proof:  

The Jacobian matrix (J) of the malaria model             with                          and      

                      at the disease-free equilibrium point is given by 

 
 
 
 
 
 
 

 

  

         

  

 

 
            

 
       

  
  

         
          

 
 
 

           
    

 
 

 
      

  
                                       

                                                           
 

   

 
 
 
 
 
 
 

                 

The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation 

              

That is  

 

 

 

  

          
  

 

          
              

 

   
   

           
         

 
 
 

               
    

   
   

 
      

  
                                             

                                                                             

 

 

 

 

        

The third column has diagonal entry, therefore one of the eigenvalues of the Jacobian matrix is   
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The remaining eigenvalues can be obtained as follows: 

 

 
    

          

   

   
              

                                
                                 

 
      

  
                        

                                    

 
 

 
   

                                
              

  
                      

To simplify the equation, let        ,              ,                         

and     
              

  
  . This implies  

                                                                         

       
      

                                    

where  

 

                                                        
 

                                  
 

                                     
 

                                                                 

         

 
  
 

  
 

                       

The expression for                 can be written, in terms of    as  

  
   

               

         
                     

Using the Routh-Hurwitz Criteria on              , we can prove that all roots of the 

polynomial               have negative real parts. The Routh-Hurwitz Criteria is stated as follows: 

Important criteria that give necessary and sufficient conditions for all of the roots of the 

characteristic polynomial (with real coefficients) to lie in the left half of the complex plane are 

known as Routh-Hurwitz criteria (Flores, 2011). 
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Theorem 3. 3: Routh-Hurwitz Criteria. 

Given the polynomial 

             
                   

where the coefficients         are real constants,              define the    Hurwitz matrices 

using the coefficients      of the characteristic polynomial: 

                                     
   
    

                        

    
      

      

   

and 

      

 

 
 

  

             
  

  

 

  

  

 

  

  

 

 
  

 

  
  
  

               

  

 

 
 

 

  

where         if        . All of the roots of the polynomial        are negatives or have 

negative real parts if and only if the determinants of all Hurwitz matrices are positive: 

                                    

For the characteristic polynomial in              , when       , the Routh-Hurwitz criteria are  

                                   and                    

          
   
   

          , 

          
    
      

    

             
                       and  
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Now we show that all determinants of the Hurwitz matrices are positive, which means all the 

eigenvalues of the Jacobian               have negative real part. Therefore, disease-free 

equilibrium point is stable. 

                            

 
                                                                                                                                     

                              
            

                            
              

              
                     

  

 
                                                                                                                  

                             
            

                   
              

              
             

  

           
                          

                                             

        
             

              
                                               

where               

Since all the determinants of the Hurwitz matrices are positive, then it means all the eigenvalues 

of the Jacobian                have negative real part and          . Therefore, disease-free 

equilibrium point is stable. 

Conversely, if        it implies that        , and since the remaining coefficients 

(        and    ) of the polynomial                are positive, then all the roots of this polynomial 

cannot have negative real parts. Therefore, the disease-free equilibrium point is unstable. 
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3. 3. 7   THE ENDEMIC EQUILIBRIUM POINT 

Endemic equilibrium points are steady state solutions where the disease persists in the population 

(all state variables are positive). That is, malaria infection will persists in the population and the 

endemic equilibrium (EEP) of the model is given by 

           
         

         
                  

         
         

       

where        
         

         
               

         
         

       .  

To derive the EEP, we have to solve model              by equating it to zero. 

 

                
        

  
               

 

           
        

  
                   

 
                                     

 
                                                 

 

                  
        

  
       

 

    
        

  
                

 
                                                 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

                       

From the seventh equation of         , we have  

             
    

  

 
  

                               

From the sixth equation, we have 

  
     

      
    

  

           
                             

Substituting             into             , we have 
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From the fifth equation, we have 

  
    

   

      
      

                                    

Substituting the equation             into               ,we have  

  
     

         
  

                 
       

                                 

  
     

       
  

       
       

                          

From the second equation, we have 

      
    

  

  
             

                             

Substitute equation             into              , we have  

 
           

    
  

         
       

            
                                

From the third equation, we have 

  
    

       

  
  
                            

Substitute equation             into              , we have  

           
    

  

         
       

 
                   

  

  
                            

             
    

            
                           

  

           
       

   

  
                

            
                             

  
                          

            
                            

             
            

                                           



47 
 

Dividing                through by                      , we have 

             
  

                   
          

          

 
      

                   
        

          
                   

 

 
  

  
       

                  
        

          
    

 

 
     

            
           

   
  

 
     

          
     

       
      

 
     

    
   

       
      

 
       

           

  
   

       
      

  
   

                          

From the fourth equation of           , we have  

     
 

   
  
                                  

Using the first equation of            we can solve for    
   , 

          
      

    
  

  
     

                                   

Substitute equations                               and                into               , we have  

      
 

   
  
    

    

  

 
       

  

       
       

  
       

      

  
   

      
       

      

  
   

           

Finally we get 
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where             ,            . 

Using the quadratic formula 

   
            

  
 

We have  

   
    

              

  
                                                     

  
            

  
      

            

  
  

       
    

            

  
     

          

  
                

                          

Using the equation               , we have 

  
   

           

  
   

                          

From the equation              , we have  

  
    

       

  
                           

From the equation               ,we have 

     
 

   
                          

Using             , we have 
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Using              , we have 

  
    

     
  

               
                              

From              ,we have 

  
     

      

            
                          

 We now consider the possibility of multiple endemic equilibria for the quadratic                . 

The equation                may indicate three distinct situations which we have to consider 

depending on the signs of B and C since A is always positive. The letter C is negative if        

       and positive if          . Hence the three situations will form the following theorem. 

 

. Theorem 3. 4   

 The malaria model (3 .1) has, 

(i) Precisely one unique endemic equilibrium if                     . 

(ii) Precisely one unique endemic equilibrium if        and        or           . 

(iii) Precisely two endemic equilibria if                           and                    

(iv) No endemic otherwise. 

 

3. 3. 8 LOCAL STABILITY OF THE ENDEMIC EQUILIBRIUM  

The stability of the endemic equilibrium of the model             can be analysed using the Centre 

Manifold Theory described by Castillo-Chavez and Song, 2004. 

 

 

Theorem 3 . 5 Castillo-Chavez and Song 

 Consider the following general system of ordinary differential equations with a parameter    .   
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where       is an equilibrium point of the system, that is,              for all     and  

1                
   

   
         is the linearization matrix of the system around the 

equilibrium     with      evaluated at     . 

2   Zero is a simple eigenvalue of      and other eigenvalues of       have negative real parts. 

3   Matrix       has a nonnegative right eigenvector       and a left eigenvector       

corresponding to the zero eigenvalue. 

Let       be the        component of       and 

           

    

      

          

 

       

 

and 

         

 

     

    

     
        

then, the local dynamics of the system                around       is totally determined by the sign 

of     and    . 

1               When            with                 is locally asymptotically stable and 

there exists a positive unstable equilibrium; when                  is unstable and there 

exists a negative, locally asymptotically stable equilibrium. 

2                 When            with                 is unstable; when               

    is locally asymptotically stable, and there exists a positive unstable equilibrium. 
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3                 When            with                  is unstable, and there exists a 

locally asymptotically stable negative equilibrium; when                  is stable, and a 

positive unstable equilibrium appears.  

4               . when       changes from negative to positive,       changes its stability from 

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and 

locally asymptotically stable. 

 

To apply this theorem we make the following change of variables in the system             .  

Let                                                  and          . 

The system                 is written in vector form as 

   

  
          

Where                           
   and                               

  are transposed matrices. 

The system of equations                 becomes  

 

 
   

  
            

        

 
                  

 

 
   

  
    

        

 
                  
 

             
   

  
                        

 

                      
   

  
                      

 

     
   

  
      

         

 
        

 
   

  
   

         

 
                     

 

                             
   

  
                    

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                        

Where                    and                  with            
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Let     be the bifurcation parameter, the system             is linearized at disease free 

equilibrium point when            with         .  Thus       can be solved from                

when            as  

                  
              

                           
                                  

     
             

                           
                                  

    
                           

           
                    

Then zero is a simple eigenvalue of the following Jacobian matrix,          with the application of 

the bifurcation parameters. 

 
 
 
 
 
 
 

  

  
 
 

  
   
   
  

        
 
 
 
           

 
 
 
                      

 
 
 
                

 
 
 
            

   
  
 

  

 
 
 

    
    
   
   

         
 
 
 
 

         
  
  

         
        
  
    

         
           
           

  

       
 
 
 
  

                                                                                                 

  

 
 
 
 
 
 
 

                 

 

Where                      
      

  
      

      

  
                      and         

                   .  

A right eigenvector associated with the eigenvalue zero is                                . We get 
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Solving the systems              , we have the following right eigenvector 

 

 

 

    
        

 
     

 

    
    

      
 

   
     

       
 

    
   

   

      
        

   
 

   
        

           
 

              
 

          

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                                

and the left eigenvector satisfying            is                                    . To find these 

left eigenvector associated with the eigenvalue 0, the matrix                 should be transposed 

and gives matrix,           
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Where                      
      

  
      

      

  
                      and         

                   .  

We have the following system 
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From the left eigenvector we have the following results 

 

 

       

                           
 

               
 

     
           

   
                             

 
                             

 

    
      

     
         

 

    
    

 
                

 

                  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                               

We now compute the sign of     and       as indicated in the theorem. 

Computation of       and       

 For the system             , the associated non-zero second order partial derivatives (at 

DFE) are given by 

          

    

      

                 

    

      

          

 

       

  

 

       

 

        

 

     

    

     
              

 

     

    

     
                              

Since                 for                 ; then                      should be considered. 

That is, the following functions will be used to compute       and         from the system           . 
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Partial derivatives that are not zero at the disease-free equilibrium are 
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Similarly partial derivatives that are not zero when calculating     are: 

  
   

  
  

      

 
          

    

     
  

    

 
  

  

 
 
 

 
              

Therefore 

       

    

     
               

Hence            and           . Therefore the following theorem holds.   

 

Theorem 3. 6   

The model              has a unique endemic equilibrium which is locally asymptotically stable 

when        and unstable when        . 

 

 

3. 4 SUMMARY  
 

We analysed the system of seven non-linear differential equations which described the dynamics 

of malaria with 4 variables for humans and 3 variables for mosquitoes. We demonstrated that 

there exists a domain where the model (3.1) is epidemiologically and mathematically well-posed.  

We perform stability analysis of the model. The next generation method is used to derive the basic 

reproduction number,     , a threshold quantity that determines whether a disease be eradicated or not. If 

      then the disease-free equilibrium is stable and the disease can be eradicated from the population.   

We have proved that the disease-free equilibrium is locally asymptotically stable if       and 

unstable when      . The Centre Manifold theorem is used to show that the endemic 

equilibrium point which is locally asymptotically stable when         . 
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CHAPTER 4 

 

RESULTS 

 

4.0 INTRODUCTION 

 

In this chapter, we use the malaria model (3.1) in chapter three to analyse clinical malaria data in 

Ghana. We will also carry out numerical simulations using a fourth order Rung-Kutta scheme in 

Matlab ode45 and the final part will  be the discussion on the results. 

 

4.1 ESTIMATION OF PARAMETERS 

 

 The parameters in the model (3.1) were estimated using clinical malaria data and demographics 

statistics of Ghana. Those that were not available were obtained from literature published by 

researchers in malaria endemic countries which have similar environmental conditions compare 

to Ghana. The total population for Ghana in 2009 is 23837000 according to World Malaria 

Report 2010 and the population growth rate per year is also 1.855% (2010 est.) by 2011 CIA 

World Factbook and Other Sources. Furthermore, Life expectancy at birth in 2010 is 64years 

according to UNICEF, at a glance: Ghana, 2012. We estimate that it will take 7days for human to 

recover from malaria infection through chemotherapy and the incubation period of malaria in 

humans is from 10 to 14 days (Guidelines for Case Management of Malaria, 2009). Finally, the 

probability of transmission of malaria infection from infectious humans to susceptible 

mosquitoes is estimated to be 0.42 and we also assume that person who has completely 

recovered from malaria will lose his/her malaria acquired immunity after 3months based on 

information received from medical malaria researchers in Ghana. 
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4. 2 POPULATION DATA FOR MOSQUITOES 

 

According to Ghana Living Standards Survey Report of the Fifth Round (GLSS 5), 2008, the 

estimated number of households in Ghana is 5.5 million with a higher proportion in the rural 

areas (3.1 million) than in the urban areas (2.4 million).  Gimnig et al. (2003) provided quarterly 

data for the average number of Anopheles gambiae and Anopheles funestus mosquitoes in a 

region of Western Kenya (Asembo). From this data, Chitnis (2005) used an estimate of 2 

Anopheles gambiae and 0.8 Anopheles funestus mosquitoes per house for his PhD thesis in high 

malaria transmission areas; therefore we can also conservatively estimate that we have 10 female 

Anopheles mosquitoes in each house in Ghana. Hence the female Anopheles mosquito 

population is approximately:                     mosquitoes. We use an estimate of 

0.40 bites on humans per mosquito per day in Ghana. The estimation of biting includes both, the 

dependence on the mosquito's gonotrophic cycle (the number of days a mosquito requires to 

produce eggs before it searches for a blood meal again), and the dependence on the mosquito's 

anthropophilic rate (the mosquito's preference for human blood as opposed to other mammalian 

blood). The probability of transmission of infection from an infectious mosquito to a susceptible 

human is estimated to be 0.0655.  Latent period in mosquitoes is estimated to be 11 days for 

malaria endemic areas (Chitnis, 2005) and finally, the life expectancy of an adult anopheles 

mosquito is assumed to be 25days considering mortality of mosquitoes due to indoor residual 

spraying, mosquito coils and insecticide-treated bed nets. 

 

 The table 4.1 below shows the estimated parameters and their sources for the model (3.1). The 

rates are given per day.   
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Table 4. 1: Estimated parameter values and their sources for model (3.1) 

 

 

4.3     EQUATIONS OF THE MODEL 

After substituting the estimated parameter values in table 4.1 into model (3.1), we have 

following system of non-linear differential equations  
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with initial conditions                                                       

                                                                             

The total population sizes are                people and                   mosquitoes. 

From equations (3.2) and (3.3) we have  

   

  
                                                          

   

  
           

 

  
                                 

 

4.4 DISEASE-FREE EQUILIBRIUM POINTS  

 

  From (3.11) the disease-free equilibrium point of the malaria model is given by  
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4.5   BASIC REPRODUCTION NUMBER      

 

 The basic reproduction number is given by: 

     
              

                           
                                                       

     
                                                    

                                             
     

Therefore the basic reproduction number is               . 

Since                  hence malaria disease can be eliminated or eradicated in the 

susceptible population in Ghana. 

 

4.6   LOCAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM   

 

From (3.23), the Jacobian matrix (J) of the malaria model at disease-free equilibrium point is 

given by 

 
 
 
 
 

 

  

        
       

 

 
        
       

      
     
     

         
               

 
 
 
                 

      
 
 

   

                                                                        
                                                                  

  

 
 
 
 
 

                  

Using (3.24), the characteristic equation of the Jacobian matrix above is given by  

                                                                         

Simplifying (4.4), we have 

                                                

Since                                               , therefore by the Routh-Hurwitz 

stability criteria the disease-free equilibrium point is asymptotically stable. This means that  
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malaria free society can be achieved.  

 

4.7   THE ENDEMIC EQUILIBRIUM POINT 

 

The endemic equilibrium point (EEP) of the model             is obtained given by solving the 

equations below: 

 

 

                             
    

  
                        

 

                                                                   
    

  
              

 
                                                                                        

 
                                                                                     

 

                                                                
    

  
          

 

                                                                   
    

  
              

 
                                                                                          

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

            

The quadratic equation for calculating the value of      
     from (3. 43) is given by                

below: 

         
   

 
        

                                                  

   
       

          

  
     

                                   

         
 

    
                                                                                                                                    

We have 
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The endemic equilibrium point of the model               in terms actual population values is  

                                                                               

Since               in              and also           , therefore the malaria model for 

Ghana has one unique endemic equilibrium point. 

 

4.8 LOCAL STABILITY OF THE ENDEMIC EQUILIBRIUM  
 

The stability of the endemic equilibrium of the model             can be analysed using the Centre 

Manifold Theory described by Castillo-Chavez and Song, 2004. 

From         , the bifurcation parameter is given by  
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The right eigenvector associated with the eigenvalue zero from                is  

 

 

 

    
        

 
  

                                 

          
                           

 
 

    
    

      
 

                

       
                                                                          

 
 

   
     

       
 

              

      
                                                                        

 
 

    
   

   
 

                

        
                                                                            

 
 

      
        

   
  

                                      

                   
        

 
 

   
        

           
 

 
                                      

                           
              

 
                                                                                                                                              

 

              

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

         

From               we have the following results for the left eigenvector  
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Computation of       and       

The parameter     is given by  
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Similarly the parameter    is given by 

       

    

     
                            

Since                   and                , therefore by the Centre Manifold Theory 

described by Castillo-Chavez and Song (2004) the endemic equilibrium point is locally 

asymptotically stable. This means malaria will persist in Ghana.  

 

4.9 NUMERICAL SIMULATIONS 
 

In this section, we present the numerical analysis of the model. A numerical simulation of the 

model               is conducted to find out the dynamics of the disease in the human population. 

The simulations were conducted using MATLAB's ode45.The initial conditions used were            

                                                                  

                                                      . The time-axes in all the phase 

portraits start from the year 2000. In figure 4.1, the system approaches an endemic equilibrium point 

as time increases, showing the existence of a stable endemic equilibrium. It tells us the impact of 

the current interventions we are practising in the country. If the country continues with the 
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current interventions, it will take Ghana almost six hundred years from now to attain malaria free 

nation; since the infectious human population ends somewhere 2565 on time-axis in figure 4. 1.      

 
 

Figure 4.1: is a phase portrait illustrating the changes in the four state variables of the malaria 

model showing the dynamics with time, of susceptible humans, exposed humans, infected 

humans and shows the dynamics of recovered humans. 
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Figure 4. 2: Illustrates the changes in the three state variables of the malaria model showing the 

dynamics with time, of susceptible mosquitoes, exposed mosquitoes and infectious mosquitoes. 

 

 

 

In figure 4.2 above, all the three curves are decreasing as time increases, which is positive for the 

current interventions in the mosquito population, but there is still more work to be done in the 

human population. Therefore, we will consider the effects of varying the main parameters 

responsible control malaria after considering malaria prevalence rate in the population now.  

 

4.9.1 PREVALENCE IN THE MALARIA MODEL 

Prevalence is defined as the ratio of which the number of cases of a disease in a population and 

with the number of individuals in a population at a given time.  
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Figure 4.3: Represents changes of prevalence with time. 

 

 

 

The prevalence graph shows that the prevalence rate as of now is high which confirms the figure 

4.1 that there is more work to be done if we want to achieve malaria free society, because the 

prevalence rate reduces asymptotically to zero  in the year 2600 on the time-axis in figure 4.3.  

 

We now consider the effects of varying the main parameters responsible for controlling malaria. 

We consider the effect of: 

 Reducing the biting rate of mosquitoes on the model.   

 Increasing the treatment rate of infectious humans on model. 
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  Combining the reduction in the biting rate of mosquitoes and the increase in the 

treatment rate of infectious humans on model. 

 

4.9.2 SIMULATION OF BITING RATE OF MOSQUITOES ON THE MODEL.   

The biting rate of mosquitoes can be reduced by using the Insecticide-treated bed nets (ITN) and 

Indoor residual spraying (IRS). The values of the biting rate of mosquitoes, transmission rate of 

infection from an infectious mosquito to a susceptible human, rate of loss of immunity for humans and 

the mosquito population are reduced by        , while the values of the other parameters are maintained. 

This is illustrated in the figure 4.4.   

 

 
 

Figure 4.4: Represents of Effects of Reducing the Biting Rate of Mosquitoes on the Model   
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From figure 4.4 we can see infectious population ends in 2036 on the time-axis. Therefore the 

country can achieve malaria free status in the year 2037 if we reduce the initial values of the 

parameters mentioned above by        . Therefore, we can conclude that reducing biting rate has 

positive impact in controlling malaria disease on the model.  

4.9.3 SIMULATION OF TREATMENT RATE OF INFECTIOUS HUMANS ON THE 

MODEL. 

Increasing the treatment rate will reduce the transmission rate of infection from an infectious 

human to a susceptible mosquito and the rate of loss of immunity for humans. Therefore 

increasing the treatment rate to      and reducing the transmission rate       and rate of loss of 

immunity to      and             respectively, give the phase portrait diagram below. 

 

Figure 4.5: Represents Effects of Increasing the Treatment Rate of Infectious Humans on Model 
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From figure 4.5, if the treatment rate is increased to     , then Ghana will achieve malaria free 

status by the year 2285. Clinical treatment rate could be increased if the pharmaceutical industry 

produces antimalarial drug(s) that will reduce the number of days it takes to recover from 

malaria infection. Comparing the two interventions, we conclude that the most influential 

parameter in controlling the disease (malaria) is to reduce the mosquito biting rate, because even 

the malaria parasite has developed resistance to mono-therapies  treatment of falciparum malaria 

(Anti-Malaria Drug Policy for Ghana,2009).  

4.9.4 SIMULATION OF COMBINING BITING AND TREATMENT RATES OF 

INFECTIOUS HUMANS ON MODEL. 

We consider the effects of combining the two interventions in controlling malaria disease.  

 

 
Figure 4.6: Represents the effects of combining the two interventions in controlling malaria disease. 
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The effects of combining the two interventions in controlling malaria disease are shown in figure 

4.6. When the two interventions are combined in Ghana, we will have malaria free status by 

2029. Our conclusion from this is that intervention practices that involve both prevention and 

treatment controls yield a relatively better result. It shows that the combination of these 

interventions can play a positive role in reducing or eradicating the disease in the country. 

 

 

4.10 DISCUSSION 

 

We have derived and analysed a mathematical model for the transmission and spread of malaria 

in Ghana. We computed the basic reproduction number      for model. If        , the disease 

can not persist in the country and when         the disease can persist. We have also shown 

that the model has both a disease-free and endemic equilibria, and the two equilibrium points are 

locally asymptotically stable. Simulation of the model has been carried out. 

Following results was obtained from the analysis of the model. Therefore the basic reproduction 

number is               .  The disease-free equilibrium point is   

                                                                    and    the endemic equilibrium point 

is                                                                       . 

After the numerical simulation it has been revealed the most effective strategies to eliminate or 

eradicate malaria in Ghana is the combination of the two interventions in 4.6, but we conclude 

that the most influential parameter in controlling the disease (malaria) is to reduce the mosquito 

biting rate through the use of Insecticide-treated bed nets (ITN) and Indoor residual spraying 

(IRS) in figure 4.4 ; because the malaria parasite has developed resistance to mono-therapies  

treatment of falciparum malaria 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.0 INTRODUCTION 

 

In this chapter, we present the conclusion of the study. We also present some recommendations 

based on the work done for further research.  

 

5.1 CONCLUSION 

 

We derived and analysed a mathematical model to better understand the transmission dynamics 

of malaria in Ghana. The model considered a varying total human population that incorporated 

recruitment of new individuals into the susceptible class through either birth or immigration. Our 

model incorporated features that are effective to control the transmission of malaria disease in 

Ghana.  

Mathematically, we modelled malaria as a 7-dimensional system of ordinary differential 

equations. We first showed that there exists a domain where the model is epidemiologically and 

mathematically well-posed. We defined the basic reproduction number,    , which provides the 

expected number of new infections (in mosquitoes or humans) from one infectious individual 

(human or mosquito) over the duration of the infectious period given that all other members of 

the population are susceptible. We proved if       , the disease can not persist in the country 

and when         the disease can persist. We perform stability analysis of the model. We have 

proved that the disease-free equilibrium is locally asymptotically stable if       and unstable 

when      . The Centre Manifold theorem is used to show that the model has a unique 

endemic equilibrium which is locally asymptotically stable when         . 
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In chapter four, the analysis of Ghana clinical data for malaria showed that the disease-free and 

endemic equilibrium points are asymptotically stable. The numerical analysis of the model 

suggested that the most effective strategies for controlling or eradicating malaria are the use of 

insecticide-treated bed nets and indoor residual spraying and prompt and effective diagnosis and 

treatment of infected individuals in figure 4.6. This study concurs with the Chavez (2008) 

suggestion that the intervention using insecticide-treated bed nets represents an excellent 

example of implementing an infectious disease control programme, and Smith et al, (2008)’s 

study, which showed that both regular and non-fixed spraying resulted in a significant reduction 

in the overall number of mosquitoes, as well as the number of malaria case in humans. Hence the 

effect of reducing mosquito bites in figure 4.4 has great impact in the reduction of the spreading 

of the disease (malaria), but the combination of two interventions in figure 4.6 can play a bigger 

role in reducing or eradicating the transmission of the disease and malaria related deaths in 

Ghana. 

 

5.2 RECOMMENDATIONS 

 

Malaria eradication remains a big challenge to National Malaria Control Programme in most 

developing countries, hence there is need to strengthen the control strategies at hand as well as 

looking for some new ones since, in Ghana, malaria is responsible for more than 44 percent of 

outpatient visits at hospitals and clinics and approximately 22 percent of deaths in children under 

the age of five (President’s Malaria Initiative, 2011). Thus, from the results of this work, it is 

recommended that: 

1. Mosquito biting rate should be reduced as seen in figure 4.4, because we have proved that 

the country can achieve malaria free nation in 2037 if the country reduces the biting rate 
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by       . Mosquito biting rate can be reduced if the susceptible population sleeps under 

an insecticide-treated bed nets every night, stays in rooms with screened windows, uses 

mosquito repellants and coils, and reduces time spent outdoors after dark.  Indoor residual 

spraying should also be encouraged, because it does not only reduce mosquito biting rate; 

but it has greater chances of reducing the mosquito population by killing mosquitoes that 

rest indoors after feeding. This strategy is likely to increase the chances of killing infected 

mosquitoes.  

2. People who are ill should seek early clinical treatment at health centres, because in figure 

4.5 we can see that increasing clinical treatment rate has positive impact in controlling the 

disease. Prompt and effective diagnosis and treatment of infected individuals can avoid 

severe or complicated malaria and reduce malaria related deaths. Intermittent prophylactic 

treatment should be encouraged during pregnancy and for infants. 

 

3. Research institutions should commence researching into genetically modified mosquitoes 

that would be incapable of transmitting malaria, because if reducing the mosquito biting 

rates by        could achieve malaria free nation in 2037 in figure 4.4. Then if the 

probability of transmission of infection from an infectious human to a susceptible 

mosquito and vice versa are made permanently to zero, then we can have the genetically 

modified mosquitoes existing without malaria infection in human population.  
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5.3 FUTURE WORK 

 

As there are some species of Anopheles mosquitoes that have an immune response to kill the 

Plasmodium parasites, there is hope that genetically modified mosquitoes could be introduced 

into the wild that would be incapable of transmitting malaria. Having a population of only 

transgenetically modified mosquitoes would be the solution to eliminate the transmission of 

malaria. Li (2004) and (2005) examined some population models for the introduction of 

transgenic mosquitoes (Chitnis, 2005). Therefore, we would like to recommend that future work 

in malaria research should include the effects of the transgenic mosquitoes on the spread of 

malaria in our research works or models.  
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APPENDIX   A 

 

Matlab codes used for simulating the malaria model (3.1) 

 

(i) The M-function files 

 

function dydt = malaria (t,y)  

dydt = zeros (size(y)); 

a1=0.00005079;a2=0.071;b1=(1/14);b2=(1/11);c=(1/7); 

d1=0.00004278;d2=(1/25);e1=(0.0000027);e2=(1/91.3125); f1=0.42;f2=0.0655;f3=0.40; 

Sh=y(1);  

Eh=y(2);  

Ih=y(3);  

R=y(4);  

Sm=y(5);  

Em=y(6);  

Im=y(7);  

Nh = Sh + Eh + Ih + R;  

k1=(f2*f3)/Nh; k2=(f1*f3)/Nh;  

%The malaria model  

dydt(1) = a1 +e2*R - k1*Im*Sh  - d1*Sh;  

dydt(2) = k1*Im*Sh - (b1 + d1)*Eh;  

dydt(3) = b1*Eh - (c + d1 + e1)*Ih;  

dydt(4) = c*Ih - (e2 +d1)*R;  

dydt(5) = a2 - k2*Ih*Sm - d2*Sm;  

dydt(6) = k2*Ih*Sm - (b2 + d2)*Em;  
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dydt(7) = b2*Em - d2*Im;  

%The basic reproduction number for the malaria model  

R0 = sqrt(((f3^2)*a2*b1*b2*f1*f2*d1)/(a1*(d2^2)*(b1+d1)*(c + d1 + e1)*(b2 + d2))); 

disp(R0) 

 

 

 

(ii)The executable file for plotting the line graph of human population against time 

tspan = [0 700];  

y0 = [13413000 18000 3350000 3343000 16500000 500000 38000000];  

[t,y] = ode45(@malaria,tspan,y0);  

plot(t,y(:,1),'r',t,y(:,2),'b',t,y(:,3),'g',t,y(:,4),'y','Linewidth',2)  

title('Plot of human population against time') 

xlabel('Time(years)')  

ylabel('Number of People')  

legend('Susceptible ','Exposed ','Infectious ','Recovered ',2)   

 

(iii)The executable file for plotting the line graph of mosquito population against time 

tspan = [0 700];  

y0 = [13413000 18000 3350000 3343000 16500000 500000 38000000]; 

[t,y] = ode45(@malaria,tspan,y0);  

plot(t,y(:,5),'r',t,y(:,6),'b',t,y(:,7),'g','Linewidth',2)  

title('Plot of mosquito population against time') 

xlabel('Time(years)')  

ylabel('Number of Mosquitoes')  
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legend('Susceptible ','Exposed ','Infectious ')  

 

(iv)The executable file for plotting the line graph of prevalence against time  

tspan = [0 700];  

y0 = [13413000 18000 3350000 3343000 16500000 500000 38000000]; 

[t,y] = ode45(@malaria,tspan,y0);   

N1=(y(:,1)+y(:,2)+y(:,3)+y(:,4));  

plot(t,(y(:,2)+y(:,3)+y(:,4))./N1,'r','Linewidth',2)  

xlabel('Time (years)')  

ylabel('Prevalence')   

 

(v)The executable file for plotting the line graph of Simulation of Biting Rate of Mosquitoes 

on the Model 

tspan = [0 40];  

y0 = [13413000 18000 3350000 3343000 1031250 31250 2375000];  

[t,y] = ode45(@malaria,tspan,y0);  

plot(t,y(:,1),'r',t,y(:,2),'b',t,y(:,3),'g',t,y(:,4),'y','Linewidth',2)  

title('Plot of human population against time') 

xlabel('Time(years)')  

ylabel('Number of People')  

legend('Susceptible ','Exposed ','Infectious ','Recovered ' , 2 ) 
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(vi)The executable file for plotting the line graph of Simulation of Treatment Rate of 

Infectious Humans on the Model 

tspan = [0 300];  

y0 = [13413000 18000 3350000 3343000 16500000 500000 38000000]; 

[t,y] = ode45(@malaria,tspan,y0);  

plot(t,y(:,1),'r',t,y(:,2),'b',t,y(:,3),'g',t,y(:,4),'y','Linewidth',2)  

title('Plot of human population against time') 

xlabel('Time(years)')  

ylabel('Number of People')  

legend('Susceptible ','Exposed ','Infectious ','Recovered ')   

 

(vii)The executable file for plotting the line graph of Simulation of Biting and Treatment 

Rates of Infectious Humans on Model.   

tspan = [0 40];  

y0 = [13413000 18000 3350000 3343000 1031250 31250 2375000];  

[t,y] = ode45(@malaria,tspan,y0);  

plot(t,y(:,1),'r',t,y(:,2),'b',t,y(:,3),'g',t,y(:,4),'y','Linewidth',2)  

title('Plot of human population against time') 

xlabel('Time(years)')  

ylabel('Number of People')  

legend('Susceptible ','Exposed ','Infectious ','Recovered ')  
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APPENDIX   B 

 

The table below shows the susceptible-exposed-infectious-recovered population of Ghana. 
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