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Abstract

A SEIR model for rabies between dogs with vaccination effect is formulated. The

basic reproduction ratio for this model is derived using the Next Generation Matrix

Method. Graphical solutions of the differential equations are produced using Matlab.

Stability analysis is performed and the impact of vaccination is analysed. This thesis

was written in LaTeX and MATLAB was used for the programming. Appendix

contains the Matlab code used in simulating the model.
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Chapter 1

INTRODUCTION

1.1 A Mathematical Model

A mathematical model is a simplified or idealized description of a system or process in

mathematical terms, devised to facilitate calculation and prediction. As a schematic

description of a system, process or phenomenon, a mathematical model accounts for

the known or inferred properties of the system and may be used to further study

its characteristics. The usefulness of a model lies in the fact that it allows for the

understanding and prediction of a phenomena without the work of performing the

complex and expensive experiments (Allman and John, 2004 ).

Understanding the dynamics of disease transmission is essential to addressing

them. Mathematical modeling plays an important role in providing this understand-

ing. Once a model that captures the main features of the progression and transmission

of a particular disease in a population has been formulated, it can be used to predict

the effects of different strategies for disease eradication or control. The world wide

eradication of small pox, through a carefully developed vaccination campaign initi-

ated by the World Health Organization in 1967, is a remarkable example of what can

be achieved with a well-designed plan (Allman and John, 2004 ).
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Infectious disease modeling, though often inexact, has enormous potential to help

improve human lives as models aids in the understanding and prediction of the phe-

nomena (Brauer et al., 2008 ).

1.1.1 History and Myths about Rabies

One of the most dreadful diseases that could be transmitted from animals to man is

rabies. Rabies was recognized since 2003 BC in ancient Babylonian, early Greek and

Egyptian civilizations times. Aristotle, a renowned Greek philosopher first identified

rabies as a disease caused by the bite from a rabid dog. It was widely believed at that

time that the disease was as a result of eating hot food, the fear of water or the lack

of it. It was also attributed sometimes to severe hot weather condition or nervous

excitement. Those who believe in stars and planets had influence on life on earth also

attributed rabies to the influence of a star which they named DOG STAR.

The first written record of rabies was in the Mesopotamian Codex of Eshnunna

which dictated that the owner of a dog showing symptoms of rabies should take

preventive measure against bites. Fear of rabies related to methods of transmissions

was almost irrational; however, this gave Louis Pasteur ample opportunity to test

post-exposure treatments from 1885.

In 1903, a researcher called Negri discovered certain strange particles in the brain

cell of a dead rabid animal. The particles were found in the cytoplasm of nerve cells.

Today these are referred to as NEGRI BODIES. The presence of Negri bodies in

nerve cells has become the criteria for diagnosing rabies worldwide.

It is endemic in most African and Asian countries except for a few countries that

have eradicated or remained free of rabies due to their natural protection as islands
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or peninsula and by enforcing rigorous quarantine routines e.g. Ireland, Australia,

Japan, Fiji, Korea, New Zealand, Sweden, Finland, Hawaii, Singapore etc. It is es-

timated to cause about 55000 deaths worldwide annually, 56% of these deaths occur

in Asia and 44% in Africa (mostly rural areas). 30-50% of reported deaths occur

in children below 15 years and an estimated 10 million people receive post-exposure

treatment worldwide.

1.1.2 What is Rabies?

Rabies is a Latin word which means madness, fury or rage. It is sometimes called

hydrophobia because one of the symptoms of rabies is an inability by the infected

individual to swallow water. It is also known in some local Ghanaian languages as

Babaso in Akan, Bayinyaa in Dagbani, and Kakru-chuchoo in the Kasena. Rabies

is caused by a virus known as rhabdovirus or Rabies virus (RABV). Rabies, which

is a neuroinvasive disease, causes acute encephalitis (inflammation of the brain) in

mammals. It is mostly caused by a bite from an infected animal but occasionally

by other form of contact. It is a natural disease of dogs, cats, bats, raccoons, foxes,

skunks, wolves and other warm blooded organisms (T. Nuertey, 2007; S. Johnson,

2007 ).

1.1.3 Mode of Transmission of Rabies

Any warm-blooded animal (including humans) may become infected with the rabies

virus and develop symptoms. The virus is transmitted to the victim when virus-laden

saliva is introduced through a bite or a scratch from a rabid animal. The virus may

be recovered from the Central Nervous System and salivary glands as well as most

tissues of infected animals. During this phase, the virus cannot be easily detected

within the host, and vaccination may still confer cell-mediated immunity to prevent
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symptomatic rabies. In nature it is transmitted from animal to animal by means of

a bite introducing the saliva bearing the virus. Rarely, rabies may be transmitted by

viral contamination of fresh, already existing wounds. Virus may be present in the

saliva and be transmitted by an infected animal several days prior to the onset of clin-

ical signs. Research indicates that the rabies virus can also enter mucous membranes

such as those lining the nose and eyes, also people and other mammals can develop

rabies after breathing air in caves that house large number of bats which may carry

the rabies virus.

The motor pathway to the spinal cord is the primary pathway of spread. Once the

rabies virus infects the spinal cord, neuron dessemination proceeds quickly throughout

the central nervous system. The brain infection results in behavioural changes, likely

due to infection of neurons in limbis areas and this facilitates transmission by biting in

rabies vectors. Subsequently, there is spread of the rabies virus away from the central

nervous system along neuronal pathways particularly involing the parasympathetic

nervous system to multiple organs including the heart, gastrointestinal tract, adrenal

medulla, skin and salivary glands. Salivary infection is important in rabies because

the rabies virus is secreted in high titer in the saliva which allows transmission to

additional hosts by biting. Once the patient becomes symptomatic, treatment is

almost never effective and mortality is over 99% Rabies may also inflame the spinal

cord, producing transverse myelitis.

RABV progresses through four stages upon introduction into the mammal. These

stages are described briefly as;

1.1.3.1 The Incubation period

The period from the time from infection to the onset of symptoms is known as the

rabies incubation period. The rabies virus makes its way to the brain from the site

of infection by following the peripheral nerves. During the rabies incubation period,
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a bite by the infected animal does not carry a risk of rabies because the virus is not

yet in the saliva. Only late in the disease, after the rabies virus has reached the

brain and multiplied there to cause encephalitis, does the virus move from the brain

to the salivary glands and saliva. The incubation period of the disease depends on

how far the virus must travel to reach the Central Nervous System. The incubation

period varies but generally within 3 to 7 weeks. During this time, the rabies virus

is multiplying within the body. The incubation periods usually depends on these

factors:

1. Wound severity

2. Wound site in relation to nerve supply

3. Distance from brain

4. Amount and strain of virus

5. Protection provided by clothing

6. Immune status

1.1.3.2 Prodromal stage

At the beginning, there is change of behavior in animal which often may be slight

and thus overlooked. It includes shyness, nervousness, difficulty in swallowing and

sometimes salivation. There is frequent irritation or stimulation of the urogenital

tracts as evidenced by frequent urination, erection in the male and sexual desire. The

animal may also stop eating and drinking and seek solitude. The prodromal period

last for 1 to 3 days.

1.1.3.3 Excitative stage

This stage which is also known as raging fury or mad-dog syndrome stage is charac-

terized by irrational and vicious aggressiveness, restlessness, excitement and mania

5



for biting and snapping. The facial expression is one of alertness and anxiety with

pupils dilated. Noise invites attack. There is loss of caution and fear of natural

enemies. They roam streets and highways biting other animals, people,any moving

object and swallowing of foreign bodies etc. During this stage the saliva is highly

infectious. As the disease progresses muscular incoordination and convulsive seizures

become common that is, the muscles of the body and legs begin to tremble making

it unable to walk steadily and breathing becomes very difficult.

1.1.3.4 Dumb or paralytic stage

This appears shortly before death. It includes paralysis of the muscles of the throat,

face, trunk and the limbs. There is profuse salivation and inability to swallow, drop-

ping of the lower jaw, rarely attempt or are able to bite. Animals with dumb rabies

appear depressed, lethargic and uncoordinated. Gradually they become completely

paralysed. If paralysis is prominent, this stage is also called silent fury. Paralysis

progresses to all parts of the body with coma and death in a few hours.

1.1.4 Signs and symptoms of Rabies

If the virus enters the spinal cord it induces paralysis whereas if it enters the limbic

system it induces transient aggression. Among the first symptoms are pains, burning

or numbness at the site of the infection. Soon after, the symptoms expand to slight

or partial paralysis, cerebral dysfunction, anxiety, insomnia, confusion, agitation,

abnormal behavior, paranoia, terror, hallucinations, progressing to delirium.

The production of large quantities of saliva and tears coupled with an inability to

speak or swallow are typical during the later stages of the disease; this can result

in hydrophobia, in which the dog has difficulty swallowing because the throat and

jaw become slowly paralyzed, shows panic when presented with liquids to drink,

and cannot quench his or her thirst. In the final stage, the patient begins to have

periods of mania and lethargy and coma. Deaths generally occur due to respiratory
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insufficiency. An intention to treat analysis has since found that this protocol has a

survival rate of about 8%.

1.1.5 Treatment

The first step in treating a person bitten by any animal is to wash the wound with

soap and water. Dangerous as it is, the rabies virus also happens to be one of the

most delicate organisms known. It dies in dried saliva within a few hours. It is also

killed by ordinary sunlight, heat, household detergent and disinfectants. Pure iodine

and hydrogen peroxide, however have no effect on the virus. The animal should either

be caged and watched for signs of rabies or killed and its brain tissues watched for

signs of rabies.

Because there is no cure and death is almost certain when the symptoms begin

to show up, treatment for rabies involves supportive care. However, if a dog or a

person is bitten by a rabid animal and has not yet experienced symptoms, there is

an extremely effective post-exposure treatment. Most of the time, stitches should not

be used for animal bite wounds. There are vaccines that are derived from a variety

of tissue culture or chicken embryo origins in live or inactivated forms which are used

for treating rabies. Some of these require revaccination,others protect adequately for

three years.

1.1.5.1 Rabies vaccine

Rabies research scientists have developed an extremely effective rabies vaccine regimen

that provides protection against rabies. This vaccine works in two ways; either after

an exposure or for before an exposure. A person who becomes infected with rabies

and does not obtain treatment before the symptoms occur, dies in a short period

after experiencing convulsions and other violent nervous symptoms. Dogs continue

to be the main carrier of rabies in Africa and Asia and are responsible for most of

the human rabies deaths worldwide.
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1.1.5.2 Pre and Post-Exposure vaccine:

Pre-exposure rabies vaccines are available for dogs, cats, ferrets, horses, sheep, and

all other mammals. To be effective, these rabies vaccines must be injected before an

animal is exposed to rabies. Although pre-exposure vaccination does not eliminate

the need for additional medical attention after a rabies exposure, it simplifies therapy

and decreases the number of rabies vaccine doses needed. Secondly, it may enhance

immunity in dogs whose post-exposure rabies treatment might be delayed. Finally,

it may provide protection to dogs with unapparent exposures to rabies.

If exposed, the dog should get a booster shot. Post-exposure treatment for rabies

should begin as soon as possible after an exposure. Administration of rabies vac-

cine is a medical urgency, not a medical emergency. Post-exposure rabies treatment

consists of a regimen of one dose of rabies immune globulin and five doses of rabies

vaccine given over a 28-day period. Rabies immune globulin and the first dose of

rabies vaccine should be given as soon as possible after exposure.

Rabies immune globulin contains antibodies from blood donors who were given

rabies vaccine. The antibodies provide interim protection until the exposed mam-

mal’s own antibodies develop in response to the vaccine. In addition, injecting rabies

immune globulin at the site of injury reduces the amount of virus that is able to enter

the nerve cells and potentially initiate an active infection. The rabies vaccine works

by stimulating a mammal’s immune system to produce antibodies that neutralize the

virus. The mammal develops a protective immune response before the virus reaches

the brain and begins to actively replicate.

Possible side effects of the rabies vaccine can include Low-grade fever, Pain, redness,

swelling, or itching at the injection site, Headache, Nausea, Abdominal pain, Muscle

aches, Dizziness.
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1.1.6 Statement of the problem

Although elimination of human rabies transmission from dog-to-dog rabies cycle has

been accomplished in most parts of the world, it still exists in some large geographical

areas especially in Africa and Asia. World Health Organisation (WHO) statistics in-

dicate that the 55,000 human deaths recorded around the world annually is caused by

rabies. Out of this number, children are the most affected victims, according to the

reports. Rabies has a human mortality of 100% once symptoms of the disease develop.

Dog rabies is estimated to cause 24,000 human deaths per year in Africa, while

Africa is the second continent mostly affected by the disease. However, this estimate

is still considered to be conservative. 30 to 60% of dog bite victims in dog-endemic

areas are children less than 15 years of age. Unfortunately, the majority of these cases

go unreported to parents or health officials.

The viral rabies disease has been within the dog population of Ghana for decades,

with the domestic dog (Canis familiaris) being the principal vector. In the first 6

months of 1975, canine cases almost doubled over the period average (Belcher et al.,

1976 ). Dogs are the most important reservoir for the rabid virus and have been the

source of transmitting it to about 99% of all reported human cases. In Ghana, 25

human rabies deaths were recorded between January 2009 and July 2011.

Currently in Ghana, there is an upsurge of rabies among dogs and humans after

the free anti-rabies immunisation campaign funded by the Ministry of Food and Agri-

culture (MOFA) and implemented by the Veterinary Services Department ended in

1998. Rabies is well established in Accra and Bongo in the Upper East Region and

there has been no decline in canine or human cases during the past 5 years.

While Ghana recorded 144 rabies deaths countrywide between 1986 and 2003 due
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to dog bites, Greater Accra region alone recorded 2,620 dog bites between 2003 and

2008. Out of these bites, 232 which represent 8.9% were detected positive for rabies.

From January to August 2009, out of 428 dog bites, 53 were positive. The Bongo

hospital has recorded about 101 suspected rabies cases of which 47 have been treated

and discharged with five people losing their lives.In December 2011, 19 dog bites were

recorded.

In 1993 when Ghana had anti-rabies vaccination campaign there were only five

outbreaks as against 41 in 1994 when there was no mass vaccination. From 1998 to

2006 there has not been any mass vaccination the outbreak cases rose to 108. In 2002,

56 rabies positive cases were diagnosed in the laboratories, 2003 (61 cases), 2004 (72

cases), 2005 (78 cases), 2006 (84 cases). The increase in the incidence of rabies in

several parts of Ghana lately has been blamed on the unwillingness of pet owners to

vaccinate their animals and the continuous presence of too many stray pets whose

owners cannot be identified.

Previously, control methods including dog vaccination and stray dog removal have

been intermittent and not sustained. Unfortunately, as in several other developing

African countries, the patronage of rabies vaccination within the Ghanaian veterinary

services is worryingly on the low. Also, unavailability of the vaccine has compelled

hospitals and pharmaceutical outlets to sell them at exorbitant prices. Those who

are unable to afford it are left to their fate as they are turned away by helpless health

officers who can do little about the situation.

The Veterinary Central Laboratory in Accra diagnoses 10 positive cases of rabies

in dogs monthly. Globally, about 60,000 people especially, children die of rabies annu-

ally, hence the need to address the problem, which seems to be neglected. According

to records from the Bongo District Hospital at Bongo in December 2011, dog rabies
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is a major disease amongst dogs in the district.

1.1.7 Objectives of the thesis

The main objectives of the study are.

1. To formulate a time-dependent mathematical model that will mimic the behav-

ior of the spread of rabies and simulate the model.

2. To find out the mode of transmission of rabies.

3. To determine the effect of vaccination on the spread of the Rabies disease.

1.1.8 Methodology

The mathematical model will be formulated using differential equations. The com-

puter software Matlab 7.8.0 (R20009a) will be used to simulate the model. The

resources to be used are the KNUST school library and the internet.

1.1.9 Justification of the thesis

This thesis will contribute to the research information on Rabies in the country, so

that it can help in further work in the further research work in this area.

The thesis seeks to predict whether or not the measures put in place so far to check

the spread of Rabies is enough or more still needs to be done in order to prevent it

from becoming endemic.

1.1.10 Organization of the thesis

The thesis is organised as follows: Chapter one presents the biological background of

the thesis, statement problem, the objectives of the thesis, the methhodology that will
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be used for the thesis, thesis justification and organization of the thesis. Chapter two

examines the previous work related to the thesis. Chapter three is about the method-

ology. Chapter four is the discussion of results and analysis of the model. Finally,

Chapter five contains the conclusions drawn from the model and reccomendations.
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Chapter 2

REVIEW OF RELATED

LITERATURE

2.1 Introduction

Mathematical models associated with the study of rabies in various countries have

existed over the years. However, mathematical models have not been used to study

the spread of the disease in Ghana.

Early models of rabies dynamics followed the SEIR framework where populations

were subdivided into specific classes corresponding to susceptible (S), exposed (E),

infectious (I), and removed (R) individuals (Anderson et al., 1991 ). The dynamics

were encapsulated through the construction of a system of ordinary differencial equa-

tions (ODEs) representing either single populatioins or linked metapopulations from

which a variety of predictions can be drawn concerning temporal and spatial pattern.

These early models made use of the basic SEIR compartmental framework and

these models were used to derive several critical features of disease emergence and

spread. The models were used to calculate the critical threshold for epidemic emer-

gence and the basic reproductive number (R0) for the virus. When R0 is greater than
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1, the infection will spread and an epidermic will result. Using R0, it is possible to

suggest what level of population culling would be necessary in order to bring thresh-

old density below epizootic level.

Although the construction of their model followed the SEIR compartmental frame-

work, they failed to include the R class since there was evidence of natural recovery or

development of natural immunity and vaccination which translates susceptibles into

the removed category was not considered by then.

Translating the dynamics protrayed in the flow chart into the following set of

ODEs gave them;

dS/dt = rS − γSN − βSI (2.1)

dE/dt βSI − (σ +B + γN)E (2.2)

dI/dt = σE − (α +B + γN) (2.3)

N = S + E + I (2.4)

where S, E, and I represented densities of susceptible hosts, exposed, and infec-

tious individuals respectively. r = a − b, was indicated as the intrinsic per capita

growth is with a being the per capita birth rate and 1/b, the mean life expectancy.

The rate at which individuals were exposed(E) in the population is proportional to

the densities of susceptibles and infectious individual, βSI. Here β is the disease

transmission parameter and the average length time a fox remains in the exposed

class before becoming infectious is 1/σ.

Anderson et al., 1981 utilized the available estimates from then recent descriptive

studies (Macdonald et al., 1981 ). The situation they considered in their models was

the introduction of a few rabid foxes into a native population. In order to deter-

mine R0 and the corresponding minimum density of foxes (St) necessary for rabies to
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spread, they also assumed that the host population prior to the introduction of rabies

was at a stable equilibrium which was represented as K = a/b. So at the onset of the

epidermic, at time t=0, the population size of susceptibles is then S(t = 0) = K. They

determined that the criteria for epidermic (dI/dt > 0), for the equilibrium population

size K, at the onset of the first infections is K > St, where St = (σ + a)(α + a)/βσ

and the relationship between K and St can be reformulated to define R0:

R0 = K
St

= Kβα
(σ+a)(α+a)

.

Based on the available data, Anderson et al., 1981 determined that the mini-

mum threshold density was St 0.99 foxes/km2. Subsequent to their analysis, it was

confirmed that almost all areas of Europe that had seen outbreaks had densities in

excess of this mumber. Oral vaccines for rabies had not yet been developed, so the

reccommended control stractegy was culling of fox populations in areas with densities

above the threshold,St.

At the same time of when this model by Anderson et al., 1981 was developed, fox

rabies was continuing to advance southwesternly into France and Switzerland. De-

scriptive studies then begun to investigate ecological factors that could influence the

spatial propagation of virus, such as habit quality or fox densities (Macdonald et al.,

1981;D. MacDonald, 1980 ). Following these studies, Murray et al., 1986 developed

a reaction-diffusion model to describe the behaviour of this propagating wave. This

model allowed predictive modelling of how a transmission barrier might be imple-

mented at the wave front in order to halt the expansion of the epizootic.

From the work of Anderson et al., 1981, a minimum density for preventing epi-

zootic within a population had already been determined. From a practical standpoint,

implementation of such large-scale culling or vaccine distribution across Europe ahead
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of the wave front would not be possible. However, the model developed by Murray

et al., 1986 allowed for the estimation of movement rates for rabid foxes. It was now

possible to suggest how wide and where a break could be implemented in order to

halt the spatial propagation of the epidemic.

The framework of the reaction diffusion fromulation used by Murray et al. con-

sisted of coupled partial differncial equations (PDEs) which were one-dimensional

reaction diffusion framework identical to the model of (Anderson et al., 1981 ).Their

implement density dependence was in terms of an environmental carrying capacity

κ, rather than the parameter γ which determined the strength of density depen-

dence. The reaction diffusion famework included a diffusion term which described

the movement of infectious foxes across the landscape. It was estimated that the rate

of movement of rabid foxes was D 50km2/year (Andral et al., 1982; Murray et al.,

1986 ). An epidermic wave propagating at a velocity ν in a homogenous environment

will maintain the same shape as it traverses space.

Mathematically this allows us to consider a solution in the form f(x, t) = f(x−νt)

which can give a nontrivial solution as it is important to solve all solutions. Some

solutions may describe unrealistic biological scenarios, whereas others may describe

the oscillations of standing waves that occur after a significant time has passed.

Smith et al.,2002 developed an interactive network model that incorporated local

heterogenities in an attempt to better understand the irregular spread of rabies wave

front across Connecticut in the early 1990s. The model used by Smith et al.,2002 con-

sidered the landscape as a network of connected townships where habitat differences

among townships could be approximated as variation in local transmission rates be-

tween neighboring townships(λi,j) and global transmission among all townships(µi,j).
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The parameters µi and λi,j were fixed throughout the course of any simulation,

but some degree of stochasticity was implemented since the order in which townships

were chosen was based on a uniform random distribution. Smith et al.,2002 showed

convincingly that landscape heterogeneity could help explain the irregular spread of

the raccon rabies virus across Connecticut, something which reaction diffusion frame-

works had difficulty achieving.

A stochastic spatial model developed by Smith et al.,2002 described the spread

of rabies in Connecticut. Predicting the Spatial Dynamics of Rabies Epidemics on

Heterogeneous Landscapes. Results from this model suggested that rivers act as a

semipermeable barrier to the spread of rabies resulting in a seven fold reduction in

the rate of spread. Analysis of the Connecticut data again, the influence of habitat

and long-distance translocation events were used to assess the role of long-distance

translocation and spatial heterogeneity in the raccoon rabies epidemic in Connecti-

cut. The results of the reanalysis suggested that rivers interact to further reduce the

spatial spread of raccoon rabies (Smith et al.,2002 ).

The stochastic spatial model was used by Russell et al. to analyse data from Ohio.

Members of this team later authored another paper using an ODE model to show that

the spread of rabies may be controlled by distributing vaccine behind barriers such

as rivers. This SIR model included the three classes in nine spatial compartments

giving a total of 27 ODEs. Results showed that a higher rate of vaccination is needed

for a large population and a lower rate with a higher cost.

Optimal control has been recently applied to an epidemic model for rabies in rac-

coons using an SIR metapopulation model. Space is included through subpopulation

arrangement connected by movement. The optimal control vector gives the rate of

vaccination in each subpopulation that minimizes the infected class over all subpop-
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ulations, accounting as well for the cost of administering the vaccine (asano et al.,

2008 ).

Taking into account the actual situation of rabies spreading in China, Zhang et

al., 2011 formulated two mathematical models to study both the spreading dynamics

of rabies in dogs and human, and the control strategies. They compared the efficiency

of three strategies for controlling rabies: culling, vaccination, culling and vaccination

and found that vaccination is the best choice to control rabies. Hong-tao et al es-

tablished mathematical model of rabies with similar controlling strategies in China.

This result emphasis to people infected by exposed dogs, infected dogs and seemingly

healthy dogs carrying the virus. Their mathematical analysis and simulation indi-

cated the culling strategy of is the most efficient, vaccination is the intermediate and

culling and vaccination is the last effective (Zhang et al., 2011 ).

According to Zhang et al., 2011, human rabies is one of the major public-health

problems in China. They came out with a model in order to explore effective control

and prevention measures we propose a deterministic model to study the transmission

dynamics of rabies in China. The model consists of susceptible, exposed, infectious,

and recovered subpopulations of both dogs and humans and describes the spread of

rabies among dogs and from infectious dogs to humans.

The model simulations agree with the human rabies data reported by the Chinese

Ministry of Health. They estimated that the basic reproduction number R0 = 2 for

the rabies transmission in China and predict that the number of the human rabies is

decreasing but may reach another peak around 2030. They also perform some sen-

sitivity analysis of R0 in terms of the model parameters and compared the effects of

culling and immunization of dogs. Their study demonstrated that reducing dog birth

rate and increasing dog immunization coverage rate are the most effective methods for
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controlling rabies in China and large scale culling of susceptible dogs can be replaced

by immunization of them.

A combined approach is cheaper only when the per capita cost of vaccination

is less then 20% of the per capita cost of culling. Voigt et al., 1985 discussed the

global incidence of the disease and list the main animal carriers in the world scene.

During the past few hundred years, Europe has been repeatedly subjected to rabies

epidermics. It is not known why rabies died out some 50 years or so years before the

current epidermic started. The analysis of the models here, however, will provide a

possible scenario. The incidence of rabies in man, at least in Europe and America is

now rare with only very few deaths a year, but with considerably more in underde-

veloped countries. It is particularly horrifying disease for which there is no known

cause of a recovery once the disease has reached clinical stage (Murray et al., 1986;

J.D. Murray, 1989 ).

The optimization criterion is to minimize the number of infected raccoons while

minimizing the cost of distributing the vaccine. Using an optimal control setting,

numerical results illustrate strategies for distributing the vaccine depending on the

timing of the infection outbreak with respect to the birth pulse (Tim et al., 2010 ).

The model takes explicit account of the development of natural immunity to rabies

and was used to evaluate culling and vaccination elimination strategies.

For habitats typical of the mid-Atlantic states, and given the assumptions of the

model, it was estimated that elimination of rabies in raccoons by culling may involve

the annual removal of over 32% of the raccoon population or the yearly vaccination

of up to 99% of the susceptible fraction. Assuming a constant marginal cost for both

culling and vaccination, the model suggests that, whatever the actual cost of each

method, the cheapest strategy will always involve either culling or vaccination alone.
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A combined strategy of culling and vaccination will be cheaper than culling alone

only when the per capita cost of vaccination is around one-fifth or less the per capita

cost of culling.

The models above are other peoples work and do not apply to Ghana. I therefore

want to introduce my model which is not as complex as the ones above and also

applies to Bongo District in Ghana.
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Chapter 3

MATHEMATICAL MODEL

3.1 Introduction

In this chapter, we represent mathematical models that mimics the prominent aspects

of epidemiology of rabies in the Bongo district in Ghana. These models will assist in

predicting the spread of the disease in the district. Two variations of the standard

Susceptible-Exposed-Infected-Removed (SEIR) epidemiological model are utilized to

study and analyse the disease.

These are the simple SEIR model to explain the spread of the rabies in Bongo district,

followed by the modeling rabies with vaccination in the district.

Bongo District is one of the nine districts in the Upper East Region, with Bongo

Township as its district capital. It shares boundaries with Burkina Faso to the north

and east, Kassena-Nankana District to the West and Bolgatanga Municipal in the

south. The total area is 459 square kilometers. The predominant occupation is sub-

sistence farming along with some handicraft production. In 2000 the population was

estimated at 77,885. Making a population density of 1.83 per square kilometers. Be-

low is the map of the Bongo District
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Figure 3.1: Map of Bongo District within the map of Upper East Region of Ghana.

The consumption of the dog meat has gone up in recent times in the district with

residents now desiring for it during their leisure times. Dogs suspected to carry rabies

among the people are killed and eaten including the heads that are usually that part

that is used to examine the presence of rabies. Dog census conducted put the number

in the Bongo District at 8,217. The district was choosen for study because it is one

of the districts where dog rabies is considered endemic.

22



3.1.1 Description of SEIR model of Rabies without vaccina-

tion

In a standard SEIR model, the population is divided into four compartments. These

are the susceptible class(S) which refers to the healthy dogs that have not yet caught

the rabies virus but are likely to contract the disease. Dogs that have been bitten

by infected dogs but are not infectious make up the exposed class(E). Dogs that

are infected with rabies virus and are contagious make up the infective class(I). The

removed class(R) constitute dogs which have died from the infection. The proportions

of individuals in the compartments S, E, I, R, at time t, is denoted as S(t), E(t), I(t)

and R(t) respectively. The flow chart in Fig 3.3 is the flow chart of SEIR model.

Figure 3.2: Flow chart for SEIR model without vaccination

Here,

β = Transmission coefficient between dogs

λ = Latency(incubation) rate in dogs

γ = Death rate in dogs

3.1.2 Model Asumption

1. The dogs mix homogenously. This happens because the dog owners walk or ride

freely on their bicycles within the district to their farms so the dogs interact with

each other and also for shorter distances between 0-5 miles, dogs run around

free-range style on their own for mating and other purposes. Because of the
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territorial nature of dogs, they always engage in fights as a new dog enters

another’s territory. It is therefore easy for an infective to pass the disease on to

a susceptible dog.

2. All infected dogs die because dogs showing symptoms of sickness are clubbed

to death and their meat are used as meal.

3. Age, sex and type of the dog coupled with the climatic conditions in the district

does not affect the probability of a dog being infected.

4. The disease spread in a closed environment; that is there is no emigration or

immigration, and there is neither birth nor death in the population, so the to-

tal population of dogs in the district remains a constant(N) for all t; that is

S(t) + E(t) + I(t) +R(t) = N .

If we let s(t) = S(t)
N
, e(t) = E(t)

N
, i(t) = I(t)

N
, r(t) = R(t)

N
, then s(t) + e(t) + i(t) +

r(t) = 1, where s(t), e(t), i(t) and r(t) are susceptible, exposed, infected and

recovered fractions of the population respectively.

The rate at which the susceptible class changes is equal to the rate at which

infection takes place. Infection occurs when the disease is passed from an infective

dog to a susceptible dog. The number of susceptible-infective contacts is proportional

to the product of S(t) and I(t). Of these contacts, a proportion will catch the disease.

Therefore, the rate of change in the susceptible population of dogs is given by:

dS/dt = −βSI

Where βSI is the force of infection. This term is negative because during infection,

the numbers of susceptible dogs decrease. Members of the susceptible class who

become exposed to the virus increase the number in the exposed class. The rate

at which dogs leave the susceptible class is equal to the rate at which they join the
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exposed class. We will assume that the numbers of dogs leaving the exposed class(E)

for infective classes are some proportion of the exposed class size. If we let λE denote

the proportion of dogs leaving the exposed class(E) for the Infective class(I), the rate

of change of the exposed class(E) will be given by:

dE/dt = βSI + λE

Assuming the number of dogs leaving the exposed class for the infective class is

some proportion of the exposed class size. If we let λE denote the proportion of dogs

leaving the exposed class for the infected class and γI to represent the disease induced

mortality of the infected dogs, the rate of change of the infective class will be given

by:

dI/dt = λE − γI

We also need to consider the number of dogs who die from Rabies in our analysis.

R increases at a rate proportional to the proportion of infected dogs that die from

the disease. Therefore, the rate of change in the removed population is given by:

dR/dt = γI

3.2 Model Equations

dS/dt = −βSI (3.1)

dE/dt = βSI − λE (3.2)

dI/dt = λE − γI (3.3)

dR/dt = γI (3.4)
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3.2.1 SEIR model of Rabies transmission with vaccination

3.2.1.1 Model Assumptions

1. Here, the R compartment constitute dogs which have recovered from the in-

fection upon administration of the rabies vaccine. This we call the Recovered

class(R).

2. A portion αS of the susceptibles go to the recovered class(R) directly due to

pre-exposure vaccination.

3. A portion αE of the exposed go to the recovered class(R) directly due to post-

exposure vaccination.

4. A portion κR of the recovered go to the susceptible class(S) directly due to the

waning immunity of the rabies vaccine.

5. All infective dogs die so there is no chance that they will progress to the recov-

ered class(R).

6. The birth rate of dogs is equal to their death rate so the population under

consideration is closed.

Here,

δ = Birth rate of dogs

β = Transmission coefficient between dogs

λ = Latency(incubation) rate in dogs

µ = Death rate in dogs

α = Vaccination rate coefficient

ε = Disease induced mortality of dogs

κ = Waning immunity in dogs
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Figure 3.3: Flow chart for SEIR model with vaccination

The model equations are given as follows

dS

dt
= δ + κR− βSI − αS − µS (3.5)

dE

dt
= βSI − αE − µE − νE (3.6)

dI

dt
= νE − µI − εI (3.7)

dR

dt
= αS + αE − µR− κR (3.8)

Here, we also have S + E + I +R = N .
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3.2.2 Basic Reproductive Ratio(R0) of Rabies Transmission

Without Vaccination Using The Next Generation Ma-

trix Approach

The basic reproductive number, R0, is defined as the expected number of secondary

cases produced by a single infection in a completely susceptible population. R0 is a

dimensionless number. If more than one secondary infection is produced from one

primary infection, that is, Ro > 1, then an epidemic occurs. When Ro < 1, then

there is no epidemic, meaning the disease dies out. When Ro = 1, then the disease

becomes endemic, meaning the disease remains in the population at a constant rate,

as one infected dog transmits the disease to one susceptible (H. W. Hethcote, 2006 ).

We can calculate our R0 using the Next Generation Matrix Approach. The Next

Generation Matrix comprises two matrices F and V. The elements in matrix F consti-

tute the new infections that will arise, while that of matrix V constitute the transfer

of infections from one compartment to another. R0 here is a dorminant eigen value

of the matrix G = FV −1

Linearizing about the disease-free equilibrium, re-ordering the states E, I, S, R

and separating new infections F from other transitions V. We get

dE
dt

= β
(
S
N

)
I − νE ..... A(E, I, S,R)

dI
dt

= νE − γI ..... B(E, I, S,R)

dS
dt

= −β
(
S
N

)
I − νE ..... C(E, I, S,R)

dR
dt

= γI ..... D(E, I, S,R)

(3.9)

Linearization of the SEIR model gives the Generation matrix (G) evaluated at
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the Disease Free Equilibrium.

G=


AE AI AS AR

BE BI BS BR

CE CI CS CR

DE DI DS DR



According to the Next Generation Matrix Approach, the G-matrix above can be

divided into four 2x2 submatrices. Elements in the top left submatrix is said to be

F-V, the upper right submatrix is always a zero matrix, Elements in the lower left

submatrix gives us J1 and the lower right submatrix is termed J2.

G =

 F − V 0

J1 J2


From equation (3.11) above we get our Generation matix as

G =


−ν β 0 0

ν −γ 0 0

0 −β 0 0

0 γ 0 0


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F − V =

 −ν β

ν −γ



=

 0 β

0 0

−
 ν 0

−ν γ



F =

 0 β

0 0

 and V =

 ν 0

−ν γ


(3.10)

V −1 = 1
νγ

 γ 0

ν ν


V −1 =

 1
ν

0

1
γ

1
γ



FV −1 =

 0 β

0 0

 1
ν

0

1
γ

1
γ



FV −1 =

 β
γ

0

0 0


R0 = β

γ

(3.11)
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If β > γ, then R0 > 1

If γ < β, then R0 < 1

3.2.3 Basic reproductive ratio(R0) of Rabies transmission with

vaccination

Using the Next Generation Matrix Approach, we re-order the states E, I, S, R for

the model equations for rabies transmission with vaccination and linearize the model

equations to get

dE

dt
= β

(
S

N

)
I − (α + µ+ ν)E ..... A(E, I, S,R)

dI

dt
= νE − (µ+ ε)I ..... B(E, I, S,R)

dS

dt
= δ + κR− β

(
S

N

)
I − (α + µ)S ..... C(E, I, S,R)

dR

dt
= αS + αE − (µ+ κ)R ..... D(E, I, S,R)

This gives us the Generation matrix

G =


−α− µ− ν β 0 0

ν −µ− ε 0 0

0 −β −α− µ κ

α 0 α −µ− κ


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F − V =

 −α− µ− ν β

ν −µ− ε



=

 0 β

0 0

−
 α + µ+ ν 0

−ν −µ+ ε



F =

 0 β

0 0



V =

 α + µ+ ν 0

−ν −µ+ ε



V −1 = 1
(α+µ+ν)(µ+ε)

 µ+ ε 0

ν α+ µ+ ν



V −1 =

 1
α+µ+ν

0

ν
α+µ+ν

1
µ+ε



FV −1 =

 0 β

0 0

 1
α+µ+ν

0

ν
(α+µ+ν)(µ+ε)

1
µ+ε



FV −1 =

 βν
(α+µ+ν)(µ+ε)

β
µ+ε

0 0


R0 = βν

(α+µ+ν)(µ+ε)

(3.12)
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3.3 Equilbrium points of Rabies Model with vac-

cination

In order to determine the stability of the model, we first evaluate the equilibrium

points or steady states of the ordinary differential equations (3.7), (3.8), (3.9) and

(3.10). The points to be determined are disease-free (where I = 0) and endemic

(where I 6= 0). We set the right hand side of equations (3.7), (3.8), (3.9) and (3.10)

to zero and solve for the values of S, E, I and R. At the steady state, dS/dt = 0,

dE/dt = 0, dI/dt = 0, dR/dt = 0

This makes

δ + κR− βSI − αS − µS = 0 (3.13)

βSI − αE − µE − νE = 0 (3.14)

νE − µI − εI = 0 (3.15)

αS + αE − µR− κR = 0 (3.16)

From (3.17),

I =

(
ν

µ+ ε

)
E (3.17)

From equation(3.16),

βSI = (α + µ+ ν)E

SI =

(
α + µ+ ν

β

)
E

⇒ S =
α + µ+ ν

βI

insert I into S above

S =

(
α + µ+ ν

β

)
×
(
µ+ ε

ν

)
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⇒ S =
(α + µ+ ν)(µ+ ε)

βν
(3.18)

From (3.18),

R =
αS + αE

µ+ κ

Insert (3.20) into R above

R =

(
α(α+µ+ν)(µ+ε)

βν

)
+ αE

µ+ κ

R =
α(α + µ+ ν)(µ+ ε)

βν(µ+ κ)
+

αE

µ+ κ
(3.19)

we know βSI = (α + ν + µ)E so we then insert (3.20) into (3.15)

⇒ δ + κR− (α + µ+ ν)E − (α + µ)(α + µ+ ν)(µ+ ε)

βν
= 0

(α + µ+ ν)E − κR = δ − (α + µ)(α + µ+ ν)(µ+ ε)

βν

=
δβν − (α + µ)(α + µ+ ν)(µ+ ε)

βν

Insert (3.21) into the above equation and grouping like terms, we get

(α + µ+ ν)E − αE

µ+ κ
=
δβν − (α + µ)(α + µ+ ν)(µ+ ε)

βν
+ κ

α(α + µ+ ν)(µ+ ε)

βν

((µ+ κ)(α + µ+ ν)− α)E = δ + (κα− µ− α)

(
(α + µ+ ν)(µ+ ε)

βν

)
= δ − (α(κ− 1) + µ)(α + µ+ ν)(µ+ ε)

βν

=
δβν − (α(κ− 1) + µ)(α + µ+ ν)(µ+ ε)

βν

E =
δβν − (α(κ− 1) + µ)(α + µ+ ν)(µ+ ε)

βν(α + µ+ ν)(µ+ ε)− αβν
(3.20)
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From (3.19)

I =

(
ν

µ+ ε

)
E

I =
δβν2 − (αν(κ− 1) + µν)(α + µ+ ν)(µ+ ε)

(µ+ ε)(βν(α + µ+ ν)(µ+ ε)− αβν)
(3.21)

Insert E into (3.21)

R =
α(α + µ+ ν)(µ+ ε)

(µ+ κ)(βν)
+

α

µ+ κ

(
δβν − µ(α + µ+ ν)(µ+ ε)

βν(α + µ+ ν)(µ+ ε)− αβν

)

R =
1

(µ+ κ)(βν)

(
α(α + µ+ ν)(µ+ ε) +

αδβν

(µ+ κ)(α + µ+ ν)− α
− µα(α + µ+ ν)(µ+ ε)

(α + µ+ ν)(µ+ κ)

)
R =

1

(µ+ κ)(βν)

(
α(µ+ ε)(α + µ+ ν − µ

µ+ κ
) +

αδβµ

(µ+ κ)(α + µ+ ν)− α

)
R =

1

(µ+ κ)(βν)

(
α(µ+ ε)(

(α + µ+ ν)(µ+ κ)− µ
µ+ κ

) +
αδβµ

(µ+ κ)(α + µ+ ν)− α

)
R =

αµ+ αε(α + µ+ ν)(µ+ κ)− µ
(µ+ κ)βν

+
αδβν

βν(µ+ κ)(α + µ+ ν)− α(µ+ κ)βν

R =
1

µ+ κ

(
α(µ+ ε)(α + µ+ ν)− µ

βν(µ+ κ)
+

αδ

(µ+ κ)(α + µ+ ν)− α

)
(3.22)

The equilibrium point is given as (S∗, E∗, I∗, R∗) =

(
(α+µ+ν)(µ+ε)

βν , δβν−µ(α+µ+ν)(µ+ε)
βν(α+µ+ν)(µ+ε)−αβν ,

δβν−µν(α+µ+ν)(µ+ε)
(µ+ε)(βν(α+µ+ν)(µ+ε)−αβν) ,

1
µ+κ

(
α(µ+ε)(α+µ+ν)−µ

βν(µ+κ) + αδ
(µ+κ)(α+µ+ν)−α

))
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3.4 The Disease-Free Equilibrium point of Rabies

model with vaccination

At the disease-free equilibrium, we consider the case where there is no infection.

Since there are no new infections, we let E = 0 and I = 0. Putting dS/dt = 0 and

dR/dt = 0, we solve for the values of S and R.

dS/dt = 0

δ + κR− βSI − (α + µ)S = 0

δ + κR− βS(0)− (α + µ)S = 0

δ + κR− (α + µ)S = 0

κR− (α + µ)S = −δ

−(α + µ)S + κR = −δ

(α + µ)S − κR = δ (3.23)

dR/dt = 0

αS + αE − (µ+ κ)R = 0

αS + αE(0)− (µ+ κR) = 0

αS − (µ+ κ)R = 0 (3.24)

We proceed to solve (3.25) and (3.26) simulteneously. From (3.25),

S =

(
µ+ κ

α

)
R (3.25)
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insert (3.26) into (3.24)

(α + µ)

(
µ+ κ

α

)
R− κR = δ

(α + µ)(µ+ κ)R− ακR = αδ

R (α + µ)(µ+ κ))− ακ) = αδ

R =
αδ

µ2 + (α + κ)µ
(3.26)

insert (3.27) into (3.26)

S =

(
µ+ κ

α

)(
αδ

(µ2 + (α + κ)µ)

)
S =

(
(µ+ κ)δ

(µ2 + (α + κ)µ)

)

At Disease-Free Equilibrium,

(S,E, I, R) =

(
(µ+ κ)δ

(µ2 + (α + κ)µ)
, 0 , 0 ,

αδ

(µ2 + (α + κ)µ)

)
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3.5 Stability analysis of Disease-Free Equilibrium

point of Rabies transmission with vaccination

To determine the stability of the system at the disease-free equilibrium, we will con-

sider the linearized system of equations below about the equilibrium point.

dS

dt
= δ + κR− β

(
S

N

)
I − (α + µ)S

dE

dt
= β

(
S

N

)
I − (α + µ+ ν)E

dI

dt
= νE − (µ+ ε)I

dR

dt
= αS + αE − (µ+ κ)R

The Jacobian is therefore given by

J =


−α− µ− βI 0 −βS κ

βI −α− µ− ν βS 0

0 ν −µ− ε 0

α α 0 −µ− κ


Since S=1 and I=0 at disease-free equilibrium, the Jacobian matrix becomes

J =


−α− µ 0 −β κ

0 −α− µ− ν β 0

0 ν −µ− ε 0

α α 0 −µ− κ


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J − λI =


−α− µ 0 −β κ

0 −α− µ− ν β 0

0 ν −µ− ε 0

α α 0 −µ− κ

−

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ



J − λI =


−α− µ− λ 0 −β κ

0 −α− µ− ν − λ β 0

0 ν −µ− ε− λ 0

α α 0 −µ− κ− λ



To find the characteristic equation of the matrix, we set the determinant of J-λI

to zero.

det(J − λI) =


−α− µ− λ 0 −β κ

0 −α− µ− ν − λ β 0

0 ν −µ− ε− λ 0

α α 0 −µ− κ− λ

 = 0

To compute the determinant of the above matrix, we divide the above matrix into

four 3X3 matrices and find their determinants.

d1 =


−α− µ− ν − λ β 0

ν −µ− ε− λ 0

α 0 −µ− κ− λ

 d2 =


0 β 0

0 −µ− ε− λ 0

α 0 −µ− κ− λ


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d3 =


0 −α− µ− ν − λ 0

0 ν 0

α α −µ− κ− λ

 d4 =


0 −α− µ− ν − λ β

0 ν −µ− ε− λ

α α 0



det(J − λI) = (−α− µ− λ)× d1 − (0× d2)− (β × d3) + (κ× d4)

= (−α− µ− λ)× d1 + (κ× d4)

Solving for the determinant of the four submatices above, we get

d1 = ((−α− µ− ν − λ)(−µ− ε− λ)(−µ− κ− λ)− βν(−µ− κ− λ))

d2 = 0

d3 = 0

d4 = (α + µ+ ν + λ)α(−µ− ε− κ) + βαν

We proceed by inserting the values of d1, d2, d3 and d4 into the above formula

for finding the determinant of a 4 × 4 matrix to get (−α − µ − λ) × d1 = (−α − µ −

λ) ((−α− µ− ν − λ)(−µ− ε− λ)(−µ− κ− λ)− βν(−µ− κ− λ))

κ× d4 = κ× (α + µ+ ν + λ)α(µ− ε− κ)− κβαν

Adding the two equations above, we get

(−α−µ−λ)((−α−µ− ν−λ)(−µ− ε−λ)(−µ−κ−λ)−βλ(−µ−κ−λ)) + (ακ×

(α + µ+ ν + λ)α(µ+ ε+ κ)− βαλ)
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We now factorize (−µ− ε− λ) out, we will be left with

((−α− µ− λ)(−α− µ− ν − λ)(−µ− κ− λ)− βλ(−µ− κ− λ))+(ακ(α + µ+ ν − λ) + ακβν)

to expand and group the like terms.

Expanding the first term, we get

(−α−µ−λ)(αµ+ακ+αλ+µ2+µκ+µλ+µν+νκ+νλ+λµ+λκ+λ2+βνκ+βνµ+βνλ)

Multiplying (−α− µ− λ) through, we get

(−α2µ− α2κ− α2λ− αµ2 − αµκ− αµλ− ανµ− ανκ− ανλ− αλµ− αλκ− αλ2 −

αβνµ−αβνκ−αβνλ) + (−αµ2−αµκ−αµλ−µ3−µ2κ−µ2λ− νµ2−µνκ− νλµ−

λµ2 − µλκ− µλ2 − βνµ2 − µβνκ− µβλ) + (−λαµ− αλκ− αλ2 − λµ2 − λµκ− λ2 −

λνµ− λµκ− νλ2 − λ2µ− λ2κ− λ3 − λβνµ− λβνκ− βνλ2)

Expanding the second term, we get

(α2κ+ ακµ+ ακν − ακλ+ βακν)

Adding the two terms and grouping like terms we finall get

λ3 + (3µ+ 2α+βν+ ν+κ)λ2 + (3µ2 + (4α+ 3κ+ 2ν−βν)µ+ 2ακ+α2 +αν+

αβν + βνκ)λ + (µ3 + (2α+ βν + κ+ ν)µ2 + (α2 + αν + αβν + ακ+ νκ+ βνκ)µ)

det(J − λI) = 0, so

(−µ−ε−λ)(λ3+(3µ+2α+βν+ν+κ)λ2+(3µ2+(4α+3κ+2ν−βν)µ+2ακ+α2+

αν+αβν+βνκ)λ+(µ3+(2α+βν+κ+ν)µ2+(α2+αν+αβν+ακ+νκ+βνκ)µ)) = 0
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To solve the cubic equation, we let

p = (3µ+ 2α + βν + ν + κ)

q = (3µ2 + (4α + 3κ+ 2ν − βν)µ+ 2ακ+ α2 + αν + αβν + βνκ)

r = (µ3 + (2α + βν + κ+ ν)µ2 + (α2 + αν + αβν + ακ+ νκ+ βνκ)µ)

Inserting p, q and r into the above cubic equation gives us λ3 +pλ2 +qλ+r. Since

det(J − λI) = λ3 + pλ2 + qλ + r = 0, it follows that λ3 + pλ2 + qλ + r = 0. Solving

the cubic equation gives us three eigen values (λ2 , λ3 andλ4). The above equation

has discriminant ∆ = p2q2 − 4q3 − 4p3r − 27r2 + 18pqr

The following cases need to be considered

1. If ∆ > 0, then the equation has three distinct real roots.

2. If ∆ = 0, then the equation has a multiple root and all its roots are real.

3. If ∆ < 0, then the equation has one real root and two nonreal complex conjugate

roots.

To find the roots of the cubic equation, let the coefficient of λ3 which in this case

is equal to 1 be a. Our new cubic equation now becomes aλ3 + pλ2 + qλ + d =

0. If the cubic equation aλ3 + pλ2 + qλ + d = 0 with integer coefficients has a

rational real root, it can be found using the rational root test.If r is any root of

the cubic, then we may factor out (λ − r) using polynomial long division to obtain

(λ− r)(aλ2 + (p+ aλ)λ+ q + pr + ar2) = aλ3 + pλ2 + qλ+ d. Hence if we know one

root we can find the other two by using the quadratic formula to solve the quadratic

(aλ2 + (p+ aλ)λ+ q+ pr+ ar2) = aλ3 + pλ2 + qλ+ d giving
−p−ra±

√
p2−4aq−2apr−3a2r2

2a

for the other two roots.
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3.5.1 Geometric interpretation of the roots

3.5.1.1 Three real roots

Here arccos (3q
2p

√
−3
p

) is an angle in the unit circle; taking 1
3

of that angle corresponds

to taking a cube root of a complex number; adding −k 2π
3

for k = 1, 2 finds the other

cube roots; and multiplying the cosines of these resulting angles by 2
√
−p

3
corrects

for scale.

Figure 3.4: For the cubic function with three real roots, the roots form an equilateral

triangle with vertices A, B, and C in the circle.

3.5.2 One real and two complex roots

In the Cartesian plane,if a cubic is plotted in the Cartesian plane, the real root can be

seen graphically as the horizontal intercept of the curve. But further, if the complex

conjugate roots are written as g + hi, then g is the abscissa (the positive or negative
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Figure 3.5: Graph of a cubic function with 3 real roots (where the curve crosses the

horizontal axis-where y = 0). It has 2 critical points

horizontal distance from the origin) of the tangency point of a line that is tangent to

the cubic curve and intersects the horizontal axis at the same place as does the cubic

curve; and |h| is the square root of the tangent of the angle between this line and the

horizontal axis. In the complex plane, with one real and two complex roots, the three

roots can be represented as points in the complex plane, as can the two roots of the

cubic’s derivative.

The points in the complex plane representing the three roots serve as the vertices

of an isosceles triangle. (The triangle is isosceles because one root is on the horizontal

(real) axis and the other two roots, being complex conjugates, appear symmetrically

above and below the real axis.) Marden’s Theorem says that the points representing

the roots of the derivative of the cubic are the foci of the Steiner inellipse of the tri-

anglethe unique ellipse that is tangent to the triangle at the midpoints of its sides. If

the angle at the vertex on the real axis is less than π
3

then the major axis of the ellipse

lies on the real axis, as do its foci and hence the roots of the derivative. If that angle

is greater than π
3
, the major axis is vertical and its foci, the roots of the derivative,

are complex. And if that angle is π
3
, the triangle is equilateral, the Steiner inellipse is

44



simply the triangle’s incircle, its foci coincide with each other at the incenter, which

lies on the real axis, and hence the derivative has duplicate real roots.

3.5.2.1 Omar Khayym’s solution

As shown in this graph, to solve the third-degree equation x3+a2x = b Omar Khayym

constructed the parabola x2 = ay, a circle with diameter b
a2

, and a vertical line

through an intersection point. The solution is given by the length of the horizontal

line segment from the origin to the intersection of the vertical line and the x-axis.

Figure 3.6: Omar Khayym’s geometric solution of a cubic equation

We can clearly see that (−µ− ε−λ) = 0. This implies λ1 = −µ− ε < 0. If ∆ > 0

and all the three distinct roots are negative,we say the system is asymptotically stable.

On the other hand, the system is unstable if any of the other three roots of the

cubic equation is not negative, then the disease free equilibrium is said to be unstable.
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3.6 Stability Analysis of Disease-Free Equilibrium

point of Rabies transmission without vaccina-

tion

linearizing the model equations of the rabies transmission without vaccination we get,

dS

dt
= −β(

S

N
)I

dE

dt
= β(

S

N
)I − λE

dI

dt
= λE − γI = 0

dR

dt
= γI = 0

The Jacobian matrix is given as

J =


0 0 −β 0

0 −λ β 0

0 λ −γ 0

0 0 γ 0


det(J − λI)=0, So

det(J − λI) =


0 0 −β 0

0 −λ β 0

0 λ −γ 0

0 0 γ 0

 -


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

= 0

det(J − λI) =


0− λ 0 −β 0

0 −λ− λ β 0

0 λ −γ − λ 0

0 0 γ 0− λ

=0
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det(J − λI) =


−λ 0 −β 0

0 −2λ β 0

0 λ −γ − λ 0

0 0 γ −λ


dividing the above matrix into four 3× 3 square submatrices, we get

d1 =


−2λ β 0

λ −γ − λ 0

0 γ −λ



d2 =


0 β 0

0 −γ − λ 0

0 γ −λ



d3 =


0 −2λ 0

0 λ 0

0 0 −λ



d4 =


0 −2λ β

0 −λ −γ − λ

0 0 γ − λ


det(J − λI) = −λ× |d1| − 0× |d2| − β × |d3| − 0× |d4|. Since d2 and d4 are being

multiplied by zero, we find only the determinants for the submatrices d1 and d3 only.

|d1| = −2λ((−γ − λ)λ− 0)− β(λ2 − 0)

= −2λ(−γλ− λ2)− β(λ2)

= 2γλ2 + 2λ3 − βλ2

|d3| = 0(−λ2 − 0) + 2λ(0− 0) + 0(0− 0)=0
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det(J − λI) = −λ(2γλ2 + 2λ3 − βλ2)

det(J − λI) = −2γλ3 − 2λ4 + βλ3

det(J − λI) = −2λ4 − (2γ − β)λ3

det(J − λI) = λ4 + 2γ−β
2
λ3

Since det(J−λI)=0, it follows that λ4+ 2γ−β
2
λ3=0. To solve our quartic equation,

lets represent λ4 + 2γ−β
2
λ3 = 0 as λ4 + bλ3 + cλ2 + dλ = 0. Then,

b = 2γ−β
2

c = 0

d = 0

e = o

We can solve the above by the Factorization Into Quadratics Method which fac-

tors it into a product of two quadratics.

0 = λ4 + bλ3 + cλ2 + dλ+ e = (λ2 + pλ+ q)(λ2 + rλ+ s)

= λ4 + (p+ r)λ3 + (q + s+ pr)λ2 + (ps+ qr)λ+ qs

By equating coefficients, this results in the following set of simultaneous equations:

b = p+ r

c = q + s+ pr

d = ps+ qr

e = qs

This can be simplified by starting again with a depressed quartic where b = 0,

which can be obtained by substituting (−b
4

) for λ, then r = −p, and: c+ p2 = s+ q

d/p = s− q

e = sq

Elimination of s and q gives us: (c+ p2)2 − (d/p)2 = (s+ q)2 − (s− q)2
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= 4sq

=4e

If we set P = p2, then this equation turns into the resolvent cubic equation

P 3 + 2cP 2 + (c2 − 4e)P − d2 = 0

Then r = −p

2s = c+ p2 + d/p

2q = c+ p2 + d
p

There are three roots of the cubic, corresponding to the three ways that a quar-

tic can be factored into two quadratics, and choosing positive or negative values of

p for the square root of P merely exchanges the two quadratics with one another.

The above solution shows that the quartic polynomial with a zero coefficient on the

cubic term is factorable into quadratics with rational coefficients if and only if the

resolvent cubic P 3+2cP 2+(c2−4e)P−d2 has a root which is the square of a rational.

Depending on the roots, we can determine if the system is stable if all the roots

are negative else we consider the system unstable.
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3.6.1 Endemic equilibrium point of Rabies transmission with

vaccination and its stability analysis

If R0 > 1, then the system has an endemic infection because of the introduction of

those with secondary infection. Here, we consider the case where I 6= 0. The Jacobian

of the linearised matrix gives us

dS

dt
= δ + κR− β

(
S

N

)
I − (α + µ)S

dE

dt
= β

(
S

N

)
I − (α + µ+ ν)E

dI

dt
= νE − (µ+ ε)I

J=


−βI − (α + µ) 0 −βS

βI −(α + µ+ ν) βS

0 ν −(µ+ ε)



J-λI =


−βI − (α + µ)− λ 0 −βS

βI −(α + µ+ ν)− λ βS

0 ν −(µ+ ε)− λ



det(J − λI) =


−βI − (α + µ)− λ 0 −βS

βI −(α + µ+ ν)− λ βS

0 ν −(µ+ ε)− λ


We solve for the eigen values then we substitute the values of S and I to get the

eigen values.

= −βI − (α + µ)− λ((−α− µ− ν)− λ)(((−µ− ε)− λ)− νβS) + 0− βS(νβI)

= λ+ (βI + α+ µ) [λ2 + (2µ+ ε+ α + ν)λ+ (µ+ ε)(α + µ+ ν)− νβS]− νβ2SI
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= λ3 + (2µ+ ε+α+ ν)λ2 + ((µ+ ε)(α+µ+ ν)− νβS)λ+ (βI + (α+µ)λ2 + (βI +

α + µ)(2µ+ ε+ α + ν)λ+ (βI + α + µ)(µ+ ε)(α + µ+ ν)− νβS))− νβ2SI

= λ3 + (3µ+ 2α+ ν+ ε+βI)λ2 + ((µ+ ε)(α+µ+ ν)− νβS+ (βI + (α+µ))(2µ+

ε+α+ν)λ+(α+µ)[(µ+ε)(α+µ+ν)−νβS]+βI(µ+ε)(α+µ+ν)+νβ2−νβ2 (3.29)

We know

S =
(µ+ ε)(α + ν + µ)

βν

βS =
(µ+ ε)(α + ν + µ)

ν

νβS = (µ+ ε)(α + ν + µ)

Inserting νβS into (3.25) gives us

λ3+(3µ+2α+ν+ε+βI)λ2+((βI + α + µ)(2µ+ ε+ α + ν))λ+βI(µ+ε)(α+µ+ν)

(3.26)

Also,

I =
δβν − µν(α + µ+ ν)(µ+ ε)

(µ+ ε)(βν(α + µ+ ν)(µ+ ε)− αβν)

So

βI =
δβν − µ(α + µ+ ν)(µ+ ε)

(µ+ ε)(α + µ+ ν)(µ+ κ)− α

Insert βI into (3.26),our quadratic equation becomes

λ3+
(

3µ+ 2α+ ν + ε+ δβν−µ(α+µ+ν)(µ+ε)
(µ+ε)(α+µ+ν)(µ+κ)−α

)
λ2+

((
δβν−µ(α+µ+ν)(µ+ε)

(µ+ε)(α+µ+ν)(µ+κ)−α + α+ µ
)

(2µ+ ε+ α+ ν)
)
λ+((

δβν−µ(α+µ+ν)(µ+ε)
(µ+ε)(α+µ+ν)(µ+κ)−α

)
(µ+ ε)(α+ µ+ ν)

)

51



let

p =

(
3µ+ 2α + ν + ε+

δβν − µ(α + µ+ ν)(µ+ ε)

(µ+ ε)(α + µ+ ν)(µ+ κ)− α

)
q =

((
δβν − µ(α + µ+ ν)(µ+ ε)

(µ+ ε)(α + µ+ ν)(µ+ κ)− α
+ α + µ

)
(2µ+ ε+ α + ν)

)
r =

((
δβν − µ(α + µ+ ν)(µ+ ε)

(µ+ ε)(α + µ+ ν)(µ+ κ)− α

)
(µ+ ε)(α + µ+ ν)

)
where (µ+ ε)(α + µ+ ν)(µ+ κ)− α 6= 0

Giving us λ3 + pλ2 + qλ+ r.

Since det(J − λI) = λ3 + pλ2 + qλ + r = 0, it follows that λ3 + pλ2 + qλ + r = 0.

Solving the quadratic equation gives us three eigen values (λ1 , λ2 andλ3).

The above equation has discriminant ∆ = p2q2 − 4q3 − 4p3r − 27r2 + 18pqr

The following cases need to be considered

• If ∆ > 0, then the equation has three distinct real roots.

• If ∆ = 0, then the equation has a multiple root and all its roots are real.

• If ∆ < 0, then the equation has one real root and two nonreal complex conjugate

roots.

Using the Factor Method, we can find the roots of the cubic equation. If all the roots

are negative, we say the system is stable else its unstable.
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3.7 Endemic Equilibrium point of Rabies trans-

mission without vaccination and its stability

analysis

If R0 > 1, then the system has an endemic infection because of the introduction of

those with secondary infection. Here, we consider the case where I 6= 0. The Jacobian

of the linearised matrix gives us

J =


−βI 0 −βS 0

βI −λ βS 0

0 λ −γ 0

0 0 γ 0

 (3.27)

det(J − λI) =


−βI 0 −βS 0

βI −λ βS 0

0 λ −γ 0

0 0 γ 0

−

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ



det(J − λI) =


−βI 0 −βS 0

βI −2λ βS 0

0 0 −γ − λ 0

0 0 0 −λ


To find the determinant of the above matrix, we divide it into four 3× 3 square

submatrices which we denote as d1,d2,d3,d4.

d1 =


−2λ βS 0

0 −γ − λ 0

0 0 −λ


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d2 =


βI βS 0

0 −γ − λ 0

0 0 −λ



d3 =


βI −2λ 0

0 0 0

0 0 −λ



d4 =


βI −2λ βS

0 0 −γ − λ

0 0 0


det(J − λI) = (−βI − λ)× |d1| − 0× |d2| − βS × |d3| − 0× |d4| . Since d2and d4

are both being multiplied by zero, we find the determinants of d1 and d4.

|d1| = −2λ((−γ − λ)(−λ)− 0)− βS(0− 0)

|d1| = −2λ(γλ+ λ2)

|d1| = −2γλ2 − 2λ3

|d3| = βI(0− 0) + 2λ(0− 0) + 0

|d3| = 0 + 0 + 0

|d3| = 0

det(J − λI) = −βI − λ(−2γλ2 − 2λ3)

det(J − λI) = 2γβIλ2 + 2βIλ3 + 2γλ3 + 2λ4

det(J − λI) = 2λ4 + 2γλ3 + 2βIλ3 + 2γβIλ2

det(J − λI) = λ4 + γλ3 + βIλ3 + γβIλ2

det(J − λI) = λ4 + (γ + βI)λ3 + γβIλ2

From the equilibrium point,I=0. So

det(J − λI) = λ4 + γλ3 = 0. This implies that λ4 + γλ3 = 0. We then proceed to
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find its roots. Using the Factorization Into Quadratics Method, the system is said to

be stable if all the roots are negative, else, it is said to be unstable.

3.7.1 Herd Immunity Ratio for Rabies transmission with vac-

cination

This is the percentage of the population that needs to be immuned to control trans-

mission of the disease. The equation given by Diekmann and Heesterbeek for the

Herd Immunity Threshold denoted by H1 is

H1 = 1− 1

R0

= 1− 1
βν

(α+µ+ν)(µ+ε)

= 1− (α + µ+ ν)(µ+ ε)

βν

H1 =
βν − (α + µ+ ν)(µ+ ε)

βν
(3.30)
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Chapter 4

MODEL ANALYSIS AND

RESULTS

4.1 Introduction

Currently in Bongo District, there has been an upsurge of rabies positive cases among

dogs after the free anti-rabies immunization campaign ended in 1998.

In this thesis, standard values for the ODE parameters used were obtained from

Ghana Veterinary Medical Association Report, 2010. The simulations and analysis

made are based on these standard values which are displayed below in Table 4.1.
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PARAMETER DESCRIPTION STANDARD VALUE

β Transmission coefficient 3.0417× 10−3(Dogsmonth)−1

ν Latency Rate 2.1429× 10−3month−1

γ Death Rate 2.293× 10−3month−1

δ Birth rate 0.1975Kits/female month−1

ε Disease Induced Mortality Rate 4.9167× 10−3month−1

κ Wanning Immunity Rate 1.9177× 10−3month−1

α Vaccination rate 2.975× 10−3month−1

µ Death rate 2.293× 10−3month−1

Table 4.1: Parameter description for the ODEs

4.1.1 Estimating the Basic reproductive ratio(R0) of Rabies

transmission without vaccination

From the SEIR model equation in chapter three, we had the Basic Reproductive ratio

of Rabies Transmission without vaccination as

R0 =
β

γ

=
3.0417× 10−3

2.293× 10−3

= 1.3267 > 1

Since R0 > 1, the prevalence of Rabies is considered an epidemic. This is because the

transmission coefficient between dogs exceeds the death rate in dogs.
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4.1.2 Estimating the Bacic reproductive ratio(R0) of Rabies

transmission with vaccination

According to this model, the Basic Reproductive Ratio of Rabies transmission with

vaccination is

R0 =
βν

(α + µ+ ν)(µ+ ε)

=
(3.0417× 10−3)(2.1429× 10−3)

(2.975× 10−3 + 2.293× 10−3 + 2.9750× 10−3)(2.293× 10−3 + 4.9167× 10−3)

=
6.5181× 10−6

(7.4109× 10−3)(2.3422× 10−3)

=
6.51881× 10−6

1.7358× 10−5

= 0.3755 < 1

4.1.3 Stability analysis of equilibrium points

4.1.3.1 Stability Analysis Of The Disease Free Equilibrium Point of Ra-

bies Transmission With Vacciantion

(S,E, I, R) =

(
(µ+ κ)δ

(µ2 + (α + κ)µ)
, 0 , 0 ,

αδ

(µ2 + (α + κ)µ)

)

=
(

(2.293×10−3+1.9177×10−6)0.1975
(2.293×10−6+(2.9752.975×10−3+1.9177×10−3)2.293×10−3) , 0, 0,

(2.9752.975×10−3)(0.1975)
(2.293×10−6+(2.9752.975×10−3+1.9177×10−3)2.293×10−3)

)

=

(
4.5325× 10−4

1.2084× 10−5
, 0 , 0 ,

5.8756× 10−4

1.2084× 10−5

)
= (37.5085, 0 , 0 , 48.6233)
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From Chapter three, we know that the Jacobian was given as

J =


−α− µ 0 −β κ

0 −α− µ− ν β 0

0 ν −µ− ε 0

α α 0 −µ− κ



det(J − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−α− µ− λ 0 −β κ

0 −α− µ− ν − λ β 0

0 ν −µ− ε− λ 0

α α 0 −µ− κ− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Inserting the values of α, µ, κ, β, ε and ν into the above,we get

det(J − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−5.268× 10−3 − λ 0 −3.0417× 10−3 1.9177× 10−3

0 −7.4109× 10−3 − λ 3.0417× 10−3 0

0 2.1429× 10−3 −2.3421× 10−3 − λ 0

2.975× 10−3 2.975× 10−3 0 −2.2949× 10−3 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We divide the above matrix into four 3× 3 submatrices d1, d2, d3 and d4

d1 =

∣∣∣∣∣∣∣∣∣
−7.4109× 10−3 − λ 3.0417× 10−3 0

2.1429× 10−3 −2.3421× 10−3 − λ 0

2.975× 10−3 0 −2.2949× 10−3 − λ

∣∣∣∣∣∣∣∣∣

d2 =

∣∣∣∣∣∣∣∣∣
0 3.0417× 10−3 0

0 −2.3421× 10−3 − λ 0

2.975× 10−3 0 −2.2949× 10−3 − λ

∣∣∣∣∣∣∣∣∣
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d3 =

∣∣∣∣∣∣∣∣∣
0 −7.4109× 10−3 − λ 0

0 2.1429× 10−3 0

2.975× 10−3 2.975× 10−3 −2.2949× 10−3 − λ

∣∣∣∣∣∣∣∣∣

d4 =

∣∣∣∣∣∣∣∣∣
0 −7.4109× 10−3 − λ 3.0417× 10−3

0 2.1429× 10−3 −2.3421× 10−3 − λ

2.975× 10−3 2.975× 10−3 0

∣∣∣∣∣∣∣∣∣

We now determine the determinants of all the submatrices

d1 = (−7.4109× 10−3 − λ)(−2.3421× 10−3 − λ)(−2.2949× 10−3 − λ)−

. (3.0417× 10−3)(2.1429× 10−3)(2.2949× 10−3 − λ)

= (−7.4109× 10−3 − λ)(−2.3421× 10−3 − λ)(−2.2949× 10−3 − λ)−

. (6.5181× 10−6)(2.2949× 10−3 − λ)

= (−7.4109× 10−3 − λ)(−2.3421× 10−3 − λ)(−2.2949× 10−3 − λ) + 1.4958× 10−8λ

= (−7.4109× 10−3 − λ)(λ2 + 4.637× 10−3λ+ 5.3749× 10−6) + 1.4958× 10−8λ

= (−λ3 − 0.01205λ2 − 3.9734× 10−5λ− 3.9822× 10−5) + 1.4958× 10−8λ

= −λ3 − 0.01205λ2 − 3.9719× 10−5λ− 3.9822× 10−5
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d2 = 0

d3 = 0

d4 = (7.4109× 10−3 + λ)(2.975× 10−3)(−2.3421× 10−3 − λ)+

. (3.0417× 10−3)(2.1429× 10−3)(2.975× 10−3)

= (2.975× 10−3)(7.4109× 10−3 + λ)(−2.3421× 10−3 − λ) + 1.9391× 10−8

= (2.975× 10−3)(−λ2 − 9.744× 10−3λ− 1.7357× 10−5) + 1.9391× 10−8

= −2.975× 10−3λ2 − 2.899× 10−5λ− 3.225× 10−8

The determinant is given by (−5.268× 10−3 − λ)d1 + (1.9177× 10−6)d2.

= (−5.268× 10−3 − λ)d1

= (−5.268× 10−3 − λ)(−λ3 − 0.01205λ2 − 3.9719× 10−5λ− 3.9822× 10−5)

= λ4 + 0.0155λ3 + 1.0320× 10−4λ2 + 4.004× 10−5λ+ 2− 0984× 10−7

(4.1)

= (1.9177× 10−6)d2

= (1.9177× 10−6)(−2.975× 10−3λ2 − 2.899× 10−5λ− 3.225× 10−8)

= 5.7052λ2 + 5.5594× 10−3λ+ 6.1845× 10−11

= λ2 + 9.7444× 10−3λ+ 0.0108

(4.2)

Adding equation(4.1) to equation(4.2), we end up with

det(J − λI) = λ4 + 0.0155λ3 + 1.0001λ2 + 9.7844× 10−3λ+ 0.0108 = 0

Using the Factorization Into Quadratics Method, we end up with

(−2.835×10−3 + 0.9945i−λ1)(−4.91×10−3 + 0.1044i−λ2)(−4.91×10−3−0.1044i−
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λ3)(−2.8353− 0.9945i− λ4)

λ1 = −2.835× 10−3 + 0.9945i

λ2 = −4.91× 10−3 + 0.1044i

λ3 = −4.91× 10−3 − 0.1044i

λ4 = −2.8353− 0.9945i

Since all the roots are complex, we therefore say that the equilibrium point is therefore

unstable.

4.1.3.2 Stability Analysis of Disease-Free Equilibrium Point of Rabies

Transmission Without Vaccination

(S, E, I, R)= ( γ
β
, 0, 0, 0) and (0 , 0 , 0 , 0 ).

=

(
2.293× 10−3

3.0417× 10−3
, 0, 0, 0

)

=

(
2.293× 10−3

3.0417× 10−3
, 0, 0, 0

)

= (0.7539, 0, 0, 0)

From chapter three, we know that
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J =


0 0 −β 0

0 −λ β 0

0 λ −γ 0

0 0 γ 0



det(J − λI) =


−λ 0 −β 0

0 −2λ β 0

0 λ −γ − λ 0

0 0 γ −λ

 = 0

inserting the values of λ, β, γ into the above, we get

det(J − λI) =


−λ 0 −3.0417× 10−3 0

0 −2λ 3.0417× 10−3 0

0 λ −2.293× 10−3 − λ 0

0 0 2.293× 10−3 −λ

 = 0

dividing the above Jacobian matrix into four 3× 3 submatrices gives us

d1 =

∣∣∣∣∣∣∣∣∣
−2λ 3.0417× 10−3 0

λ −2.293× 10−3 − λ 0

0 2.293× 10−3 −λ

∣∣∣∣∣∣∣∣∣ d2 =

∣∣∣∣∣∣∣∣∣
0 3.0417× 10−3 0

0 −2.293× 10−3 − λ 0

0 2.293× 10−3 −λ

∣∣∣∣∣∣∣∣∣

d3 =

∣∣∣∣∣∣∣∣∣
0 −2λ 0

0 λ 0

0 0 −λ

∣∣∣∣∣∣∣∣∣ d4 =

∣∣∣∣∣∣∣∣∣
0 −2λ 3.0417× 10−3

0 −λ −2.293× 10−3 − λ

0 0 2.293× 10−3 − λ

∣∣∣∣∣∣∣∣∣
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det(J − λI) = −λ× |d1| − 0× |d2| − β × |d3| − 0× |d4|. Since d2 and d4 are being

multiplied by zero, we find only the determinants for the submatrices d1 and d3 only.

|d1| = −2λ((−2.293× 10−3 − λ)λ− 0)− 3.0417× 10−3(λ2 − 0)

= −2λ(−2.293× 10−3λ− λ2)− 3.0417× 10−3(λ2)

= 2(2.293× 10−3)λ2 + 2λ3 − 3.0417× 10−3λ2

= 4.586× 10−3λ2 + 2λ3 − 3.0417× 10−3λ2

|d3| = 0(−λ2 − 0) + 2λ(0− 0) + 0(0− 0)=0

det(J − λI) = −λ(4.586× 10−3λ2 + 2λ3 − 3.0417× 10−3λ2)

det(J − λI) = −4.586× 10−3λ3 − 2λ4 − 3.0417× 10−3λ3

det(J − λI) = −2λ4 − (4.586× 10−3 + 3.0417× 10−3)λ3

det(J − λI) = −2λ4 − (7.6277× 10−3)λ3

det(J − λI) = λ4 + 3.8139× 10−3λ3

Since det(J − λI)=0, it follows that λ4 + 3.8139× 10−3λ3=0

Using the Factorization Into Quadratics Method, we get

(8.6118 × 10−9 − λ1)(−4.306 × 10−9 + 4.405 × 10−9i − λ2)(−4.306 × 10−9 − 4.405 ×

10−9i− λ3)(−3.814× 10−3 − λ4)

λ1 = 8.6118× 10−9

λ2 = −4.306× 10−9 + 4.405× 10−9i

λ3 = −4.306× 10−9 − 4.405× 10−9i

λ4 = −3.814× 10−3

Since all the roots of the equation are not negative,we therefore say that the system

is unstable.
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4.1.3.3 Stability Analysis Of The Endemic Equilibrium Point of Rabies

Transmission With Vaccination

The determinants of the Jacobian matrix of the endemic eqiulibrium in Chapter Three

was given as

det(J − λI) =

∣∣∣∣∣∣∣∣∣
−βI − (α + µ)− λ 0 −βS

βI −(α + µ+ ν)− λ βS

0 ν −(µ+ ε)− λ

∣∣∣∣∣∣∣∣∣ = 0

We know from equation(3.19) that

I =
δβν2 − (αν(κ− 1) + µν)(α + µ+ ν)(µ+ ε)

(µ+ ε)(βν(α + µ+ ν)(µ+ ε)− αβν)

I =
(2.7586× 10−9 + 1.4614× 10−6)(1.7357× 10−5)

(2.3421× 10−3)(1.1314× 10−10)− (1.9391× 10−8)

=
(1.4642× 10−6)(1.735× 10−5)

2.6499× 10−13 − 1.9391× 10−8

=
(2.5411× 10−11)

−1.9391× 10−8

= −1.3104× 10−3

βI = (3.0417× 10−3)(−1.3104× 10−3)

βI = −3.9859× 10−6

We also know that

S =
(α + µ+ ν)(µ+ ε)

βν

S =
(7.4109× 10−3)(2.342× 10−3)

6.5181× 10−6

=
1.7358× 10−5

6.5181× 10−6

= 2.6630

βS = (3.0417× 10−3)(2.6630)

βS = 8.1× 10−3
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Insert βI and βS into the Jacobian matrix

det(J − λI) =


−5.264× 10−3 − λ 0 −8.1× 10−3

−3.9859× 10−6 −7.4109× 10−3 − λ −8.1× 10−3

0 2.1429× 10−3 −2.3422× 10−3 − λ


= (−5.264× 10−3 − λ)((−7.4109× 10−3 − λ)(−2.3422× 10−3 − λ)−

. (2.1429× 10−3)(8.1× 10−3)− (8.1× 10−3)(−3.9859× 10−6)

= (−5.264× 10−3 − λ)((−7.4109× 10−3 − λ)(−2.3422× 10−3 − λ)− 1.7357× 10−5)

= (−5.264× 10−3 − λ)(λ2 + 9.7531× 10−3λ+ 1.0× 10−9)

= −λ3 − 0.0150λ2 − 5.1340× 10−3λ− 5.1340× 10−5

= λ3 + 0.0150λ2 + 5.1340× 10−3λ+ 5.1340× 10−5

λ3 + 0.0150λ2 + 5.1340× 10−3λ+ 5.1340× 10−5 = 0 , since det(J − λI) = 0

(−1.0253× 10−9 − λ)(−7.8× 10−3 − λ)2 = 0

(−1.0253× 10−9 − λ1)(−7.8× 10−3 − λ2)(−7.8× 10−3 − λ3) = 0

λ1 = −1.0253× 10−9

λ2 = −7.8× 10−3

λ3 = −7.8× 10−3

Since all the roots of the equation are negative, our equilibrium point is said to be

stable.
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4.1.3.4 Stability Analysis Of The Endemic Equilibrium Point of Rabies

Transmission Without Vaccination

Equations(3.7) to (3.10) in Chapter three gives us the Jacobian,

J =


−βI 0 −βS 0

βI −λ βS 0

0 λ −γ 0

0 0 γ 0



det(J − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−βI 0 −βS 0

βI −2λ βS 0

0 0 −γ − λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣

det(J − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

3.0417× 10−3I − λ 0 3.0417× 10−3S 0

3.0417× 10−3I −2λ 3.0417× 10−3S 0

0 0 −2.293× 10−3 − λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
To find the determinant of the above matrix, we divide it into four 3× 3 square

submatrices which we denote as d1,d2,d3,d4.

d1 =


−2λ 3.0417× 10−3S 0

0 −2.293× 10−3 − λ 0

0 0 −λ



d2 =


3.0417× 10−3I 3.0417× 10−3S 0

0 −2.293× 10−3 − λ 0

0 0 −λ


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d3 =


3.0417× 10−3I −2λ 0

0 0 0

0 0 −λ



d4 =


3.0417× 10−3I −2λ 3.0417× 10−3S

0 0 −2.293× 10−3 − λ

0 0 0



det(J−λI) = (−3.0417×10−3I−λ)×|d1|−0×|d2|−3.0417×10−3S×|d3|−0×|d4| .

Since d2and d4 are both being multiplied by zero, we find the determinants of d1 and

d4.

|d1| = −2λ((−2.293× 10−3 − λ)(−λ)− 0)− 3.0417× 10−3S(0− 0)

|d1| = −2λ(2.293× 10−3λ+ λ2)

|d1| = −2(2.293× 10−3)λ2 − 2λ3

|d1| = −4.586× 10−3λ2 − 2λ3

|d3| = 3.0417× 10−3I(0− 0) + 2λ(0− 0) + 0

|d3| = 0 + 0 + 0

|d3| = 0

det(J − λI) = (−3.0417× 10−3I − λ)(−4.586× 10−3λ2 − 2λ3)

det(J − λI) = (1.3945× 10−6Iλ2 + 6.0834× 10−3Iλ3I + 4.586× 10−3λ3 + 2λ4)

det(J − λI) = 2λ4 + (6.0834× 10−3I + 4.586× 10−3)λ3 + 1.3945× 10−6Iλ2

det(J − λI) = λ4 + (3.0417× 10−3I + 2.293× 10−3)λ3 + 6.9725× 10−7Iλ2

From the equilibrium point,I=0. So

det(J − λI) = λ4 + 2.293× 10−3λ3 = 0. This implies that λ4 + 2.293× 10−3λ3 = 0.
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We then proceed to find its roots. Using the Factorization Into Quadratics Method,

we get

(8.6736× 10−19− λ1)(−4.3368× 10−19− λ2)(−4.3368× 10−19− λ3)(−0.002393− λ4)

λ1 = 8.6736× 10−19

λ2 = −4.3368× 10−19

λ3 = −4.3368× 10−19

λ4 = −0.002393

All the roots here are not negative so our equilibrium point here is said to be unstable.

4.1.4 The Herd Immunity Threshold(H1) estimation

Herd Immunity Theory proposes that in contagious diseases that are transmitted

from individual to individual, chains of infection are likely to be disrupted when large

numbers of a population are immune or less susceptible to the disease. Using the

equation given by Diekmann and Heesterbeek for the Herd Immunity Threshold, we

estimate our H1.

H1 = 1− 1

R0

= 1− 1

1.3267

= 1− 0.7537

= 0.2463

Therefore, to control the epidemic, about 24.63% of the population need to be vacci-

nated.
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4.2 Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a model can

be apportioned to different sources of uncertainty in the model input.

It is a technique used to determine how different values of an independent variable

will impact a particular dependent variable under a given set of assumptions. This

technique is used within specific boundaries that will depend on one or more input

variables. In more general terms uncertainty and sensitivity analysis investigate the

robustness of a study.

4.2.1 Sensitivity Analysis of the R0 of Rabies Transmission

without Vaccination

1. If β is reduced and γ remains the same, that is β = 1.908 × 103 and γ =

2.293× 10−3

R0 = β
γ

= 1.908×10−3

2.293×10−3 = 0.8321 < 1

That is to say that keeping γ the same, any number for β that is less than

2.293× 10−3 will make our R0 < 1

2. If γ is increased and β remains the same, that is β = 3.0417 × 103 and

γ = 3.9293× 10−3

R0 = β
γ

= 3.0417×10−3

3.9293×10−3 = 0.0.7741 < 1

That is to say that keeping β the same, any number for γthat is greater than

3.0417× 10−3 will make our R0 < 1.
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4.2.2 Sensitivity Analysis of the R0 of Rabies Transmission

with Vaccination

Keeping the values of α, µ, ν, ε the same, if β is increased to 8.802× 10−3,

R0 =
βν

(α + µ+ ν)(µ+ ε)

=
(8.802× 10−3)(2.1429× 10−3)

(2.975× 10−3 + 2.293× 10−3 + 2.9750× 10−3)(2.293× 10−3 + 4.9167× 10−3)

=
1.8915× 10−6

(7.4109× 10−3)(2.3422× 10−3)

=
1.8915× 10−6

1.7358× 10−5

= 1.0897 > 1

That is to say that when values of α, µ, ν, ε are kept the same, any value of β ≥

8.102× 10−3 will make our R0 ≥ 1

4.2.2.1 Sensitivity Analysis of Disease-Free Equilibrium Point of Rabies

Transmission With Vaccination

We know the Jacobian of the disease-free equilibrium point as given in Chapter three

as

J =


−α− µ 0 −β κ

0 −α− µ− ν β 0

0 ν −µ− ε 0

α α 0 −µ− κ



Decoupling the above Jacobian Matrix, we get
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J =


−α− µ 0 −β

0 −α− µ− ν β

0 ν −µ− ε



det(J − λI) =

∣∣∣∣∣∣∣∣∣
−α− µ− λ 0 −β

0 −α− µ− ν − λ β

0 ν −µ− ε− λ

∣∣∣∣∣∣∣∣∣ = 0

Inserting the values of α, µ, β, ε and ν into the above,we get

det(J − λI) =

∣∣∣∣∣∣∣∣∣
−5.268× 10−3 − λ 0 −3.0417× 10−3

0 −7.4109× 10−3 − λ 3.0417× 10−3

0 2.1429× 10−3 −2.3421× 10−3 − λ

∣∣∣∣∣∣∣∣∣ = 0

(det(J − λI) = −5.268× 10−3 − λ((−7.4109× 10−3 − λ)(2.3421× 10−3 − λ)−

. 2.1429× 10−3)(3.0417× 10−3)− 0 + 0

(det(J − λI) = −5.268× 10−3 − λ(1.7357× 10−5 + 7.4109× 10−3λ+ 2.3421× 10−3 +

. λ2 − 6.5181× 10−3)

(det(J − λI) = −5.268× 10−3 − λ(λ2 + 9.753× 10−3λ+ 1.0839× 10−5)

(det(J − λI) = (−λ3 − 9.753× 10−3 − 1.0839× 10−5 − 5.268× 10−3λ2 − 5.8000× 10−5λ)

(det(J − λI) = (−λ3 − 0.015021λ2 − 6.2228× 10−3λ− 5.8000× 10−8)

(det(J − λI) = (λ3 + 0.015021λ2 + 6.2228× 10−3λ+ 5.8000× 10−8)
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(det(J − λI) = (−1.4741× 10−3 − λ)(−6.7734× 10−3 − λ)(−6.77× 10−3 − λ)

λ1 = −1.4741× 10−3

λ2 = −6.7734× 10−3

λ3 = −6.7734× 10−3

Since all the roots are negative, we conclude that the Disease-Free equilibrium point for Rabies

transmission with vaccination is stable
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4.2.3 Sensitivity Analysis of Rabies Transmission Without

Vaccination by Simulation

We proceed in this thesis to simulate our model with Matlab 7.8.0 (R2009a) using the data displayed

in Table 4.1. The values of S, E, I and R are altered and the changes that occur in model are observed.

Considering a period of six months, we plot graphs for each compartment of the rabies model

without vaccination for S = 500, E = 0, I = 0 and R = 0, as displayed in Figure 4.1.

The number of susceptible dogs is observed to remain at 500 throughout the six months period.

The graphs for the number of exposed, infected and removed dogs in Figure 4.1 remain at zero

during the same period.

Figure 4.1: Graphs for S=500, E=0, I=0, R=0

Introducing one (1) infective dog into our system, the number of susceptibles as shown Figure

74



4.2 decrease to zero within a period of one month.

The number of exposed dogs increase in Figure 4.2 form 0 to 450 dogs where it reaches its peak

within the first month and starts reducing. By the begining of the sixth month, the number of

exposed dogs will be about 160 dogs.

The number of infected dogs as seen in Figure 4.2, increases gradually for the first fifteen days

then it rises rapidly to about the fourth month and starts increasing gradually till it reachs a peak

of about 170 dogs by the fifth month then it starts reducing.

The removed dogs in Figure 4.2, increase gradually within the first month then it rises rapidly

to about 170 dogs by the begining of the first month.

Figure 4.2: Graphs for S, E, I and R representing the model after the introduction of

one(1) infective.

The number of infectives is increased to ten (10) in Figure 4.3. The number of exposed rise

rapidly to about 470 dogs within the first ten days where it arrives at its peak then it starts reducing
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Figure 4.3: Graphs for S, E, I and R after the introduction of ten(10) infectives

to about 150 dogs by the begining of the sixth month.

The number of infectives rise continuously about 182 dogs by the 17th and starts decreasing. The

removed dogs increase to about 200 dogs by the begining of the sixth month.

4.2.4 Sensitivity Analysis of Rabies Transmission With Vac-

cination by Simulation

Figure 4.4 gives us the graphs for all four compartments (S, E , I and R) assuming the number

susceptible dogs in our population is 500 with no exposed dogs and no infective dogs.

You will observe that the number of susceptibles remain at 500 through the time period. The

number of exposed and infective dogs remain at zero through out the entire period.

Assuming 100 dogs in the population have been vaccinated, one (1) infective dog is introduced.

Graphs for the various compartments as shown in Figure 4.5 shows a rise in the number of exposed
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Figure 4.4: Graphs for S=500, E=0, I=0, R=0
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to about 350 dogs by the first month and reduces to about 120 by the begining of the sixth month.

The number of infectives rise continuously to about 140 by the begining of the 6th month and

starts decreasing. It is important to observe the number of dogs which have recovered increase to

about 232 dogs by the begining of the sixth month.

Figure 4.5: Graphs for S, E, I and R with 100 vaccinated dogs and one(1) infective

dog

Increasing the number dogs which have been vaccinated to 200 dogs, it is observed in Figure

4.6 that by a period of 6 weeks, the number of exposed dogs decrease form 350 dogs in our previous

simulation to 250 dogs within the six weeks and starts reducing. By the begining of the sixth month,

the number of exposed dogs will be about 100 dogs.

The number of infected dogs decrease from 140 dogs as seen in Figure 4.5 to about 105 dogs
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and the number of recovered dogs increase from 232 dogs in Figure 5 to about 298 dogs.

Figure 4.6: Graphs for S, E, I and R with 200 vaccinated dogs and one(1) infective

dog

Increasing the number of vaccinated dogs to 400, with still an infective introduced in the sys-

tem, it is observed in Figure 4.7 that it takes about two(2) months for the number of susceptibles

to decreased to zero.

The number of exposed dogs decrease form 250 dogs in Figure 6 to 80 dogs within two months. By

the begining of the sixth month, the number of exposed dogs will have decreased to about 35 dogs.

The recovered dogs increase form 298 dogs in Figure 6 to about 450 dogs.
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Figure 4.7: Graphs for S, E, I and R with 400 vaccinated dogs and one(1) infective

dog
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4.2.5 Discussion of results

In this thesis, we attempted to use standard SEIR differential equation model to predict the spread

of Rabies in Bongo District. We discussed the existence and stability of the disease free and disease

endemic equilibria of the model and performed sensitivity analysis of the model by varying the num-

bers of the number of infectious dogs which are introduced into the model and the number of dogs

which have been vaccinated. We also considered Herd immunity as the sole immunization stractegy

in the thesis.

Based on the data displayed in Table 4.1, we estimated the basic reroductive number of the

rabies transmission without vaccination to be R0 = 1.3267. This indicates an epidemic.

The basic reproductive number (R0) of rabies transmission with vaccination was estimated to be

R0 = 0.3755. The decrease in the value of the R0 is due to the introduction of vaccination in the

model. Therefore if vaccination is intensified, it will further reduce the spread of rabies.

In the sensitivity analysis of basic reproductive number of rabies transmission without vaccina-

tion, it is obsereved that keeping γ constant, any value of β which is less than 2.293 × 10−3 will

make R0 < 1. Also, keeping β constant, any value of γ which is greater than 3.0417 × 10−3 will

make our R0 > 1. That is to say that if dogs are kept within the confinement of their households,

the interaction between infective and suscetible dogs will decrease.

Increasing the number of infectives directly reduces the number of susceptibles but the num-

ber of exposed and infected dogs also increase alongside. That is to conclude that the disease will

spread if the stakeholders of the nation fail to put proper measures in place to curb it and if the

vaccination programs are intensified, throughout the whole nation, the disease will eventually die out.

According to the estimated Herd Immunity Threshold in the thesis, 24.63% of the population

need to be vaccinated in order to control the spread of the disease. Unvaccinated individuals are

indirectly protected by vaccinated individuals, as latter will not contract and transmit the disease

between infected and susceptible individuals.

Since only a fraction of the population would be left unvaccinated for this method to be effective,

it is considered best left for dogs which cannot safely receive vaccines because of their location within

the District. No rabies vaccine offers permanent immunity, but the spread of disease form dog to

dog and on a serious note, from dog to man is much higher in those who remain unvaccinated (De la
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Sen et al., 1992 ). If the proportion of immmune individuals exceed the Herd Immuntity Threshold

level by mass vaccination, the disease will die out. Thus 24.63% represents the minimum propor-

tion of the population that must be immunised regularly for the infection to die out in the population.

If the vaccine used is insufficiently effective or the required coverage cannot be reached, the

programme may not be able to exceed the herd immunity threshold, it can, however, disturb the

balance of the infection without eliminating it. This change occurs simply because there are now

fewer susceptibles in the population who can be infected. On the other hand, if the vaccination exer-

cise causes the proportion of immune dogs in a population to exceed the Herd Immunity Threshold

for a significant length of time, transmission of the rabies disease in that population will gradually

come to a halt. This is known as elimination of the infection (T. J. John and R. Samuel, 2004 ).

Also from our simulations in this thesis, it was found that when the number of vaccinated dogs

are increased, the number of dogs that will attained a level of immunity also increase. If vaccination

is done on regular basis, then we are sure to have a lot of rabies immuned dogs in our system thereby

decreasing the spread rabies amongst dogs and humans at large.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Conclusion

In conclusion, we found out that Rabies is an acute fatal disease caused by a virus and the sole

mode of transmission of rabies in dogs is through the bite of a rabid animal. It is characterised by

disturbed consciousness, increased nerve irritability and subsequent symptoms of paralysis.

In this thesis, when sensitivity analysis was performed on the rabies transmission with vaccina-

tion, we saw that increasing the use of rabies vaccine had a significant impact on the rate of spread

of Rabies transmission by increasing the number of recovered in the model and reducing the use of

the rabies vaccine increased the number of recovered in the model.

Increasing the Rabies vaccination coverage in Ghana will decrease the prevalence and spread of

Rabies even if the number of infected dogs in a particular locality should increase. Decreasing the

vaccination coverage will increase in the rate of transmission of rabies in that locality and Ghana as

a whole.

Even though this model did not consider mass vaccination as one of the methods to prevent

the prevalence of Rabies in Ghana but concentrated on the herd immunity due to the huge sum of

money that needs to be spent in carrying it out, the results from the herd immunity can also be

83



used as a tool to aid the introduction of rabies vaccination in the district.

Due to the waning immunity of the rabies vaccine, it is important to re-vaccinate all dogs in

the district at the right time since vaccinated dogs lose their immunity with time and any encounter

with a rabid dog thereafter will lead to the spread of the disease.

5.1.1 Recomendation

To eradicate rabies from Ghana we recommend that

1. Government should be urged to reintroduce the free anti-rabies vaccination program to un-

dertake a mass vaccination exercise which should be followed by the consistent re-vaccination

of dogs in the Bongo district.

2. Government should commit funds to procure anti-rabies vaccines which is cheaper instead of

importing millions of doses of post-exposure rabies vaccines in anticipation of an exposure.

3. There should be enforcement of laws on dog owners to ensure regular vaccination of their

dogs.
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Appendix

5.1.1.1 M-File for Rabies Model without Vaccination

function dy=model(t,y,beta,gamma,nu)

dy=zeros(4,1);

dy(1)= -beta*y(1)*y(3);

dy(2)= beta*y(1)*y(3)-nu*y(2);

dy(3)= nu*y(2)-gamma*y(3);

dy(4)= gamma*y(3);

5.1.1.2 M-File for Rabies Model with Vaccination

function dy=model(t,y,beta,gamma,nu,delta,kappa,alpha,mu,epsilon)

dy=zeros(4,1);

dy(1)= delta+kappa*y(4)-beta*y(1)*y(3)-alpha*y(1)-mu*y(1);

dy(2)= beta*y(1)*y(3)-alpha*y(2)-mu*y(2)-nu*y(2);

dy(3)= nu*y(2)-mu*y(3)-epsilon*y(3);

dy(4)= alpha*y(1)+alpha*y(2)-mu*y(4)-kappa*y(4);

5.1.1.3 Scripts Used in Calling the M-Files for Rabies Models

delta=0.1975;

kappa = 1.977× 10−3;

alpha = 2.975× 10−3;

mu = 2.293× 10−3;

epsilon = 4.9167× 10−3;

beta = 3.0417× 10−3;

gamma = 0.0948;

nu = 2.1429× 10−3;

options = odeset(’RelTol’,1e-9,’AbsTol’,1e-9); [T,Y] = ode45(@seir,[0 6],[500 5 10 300],options,

beta,gamma,nu);

figure(1)
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plot(T,Y(:,1),’.’)

legend(’SUSCEPTIBLE DOGS’)

xlabel(’Time(Months)’);ylabel(’POPULATION OF SUSCEPTIBLE DOGS’);

figure(2)

plot(T,Y(:,2),’.’)

legend(’EXPOSED DOGS’)

xlabel(’Time(Months)’);ylabel(’POPULATION OF EXPOSED DOGS’);

figure(3)

plot(T,Y(:,3),’.’)

legend(’INFECTED DOGS’)

xlabel(’Time(Months)’);ylabel(’POPULATION OF INFECTED DOGS’);

figure(4)

plot(T,Y(:,4),’.’)

legend(’REMOVED DOGS’)

xlabel(’TIME (MONTHS)’);ylabel(’POPULATION OF REMOVED DOGS’);
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