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Summary 

Filarial infections caused by Wuchereria bancrofti and Brugia species (lymphatic filariasis (LF)) 

and Onchocerca volvulus (onchocerciasis) affect almost 200 million individuals worldwide and 

pose major public health challenges in endemic regions. Indeed, the collective DALYs 

(disability-adjusted life years) for both infections is 3.3 million. Infections with these thread-like 

nematodes are chronic and although most individuals develop a regulated state, a portion 

develop severe forms of pathology. Mass drug administration (MDA) programmes on endemic 

populations focus on reducing prevalence levels of people with microfilariae (MF), the worm's 

offspring in the blood to less than 1%. Although this has been successful in some areas, studies 

show that MDA will be required for longer than initially conceived. Thus, there is still a 

requirement for better drugs or vaccines. W. bancrofti-infected individuals without pathology 

(asymptomatic) can be subdivided into two groups that are patent (MF+) or latent (MF-). Patent 

infections are associated with an immunologically tolerant phenotype state that favours worm 

survival and in addition does not provoke overt pathology in the host. Latent infections are 

characterized by the lack of MF in the periphery, despite the presence of adult worms, and their 

immune profiles show markers of immune-mediated MF control. In O. volvulus infection 

however, the majority of individuals have dermal-residing MF and amicrofilaridermic (a-MF) 

individuals appear to be the consequences of repeated MDA treatment. Interestingly, recent 

research revealed that O. volvulus endemic areas, with a lowered infection pressure due to 

MDA, appear to influence bystander responses to Plasmodium-derived antigens in community 

members even if they have not regularly participated in the therapy. Pathology that arises in 

either filarial infection is associated with dampened regulatory T cell responses (Treg) and IL-10 

but elevated Th17 responses. Thus, identifying immune determinants that drive these different 

infection states has the potential to guide the development of improved anti-filarial drugs and 

vaccines. In this study, microarray and cellular profiling approaches were used to evaluate gene 

expression patterns and to reveal genetic pathways specific to W. bancrofti or O. volvulus 

infection.  Individuals with latent LF infections showed an enhanced gene expression profile, 

including genes involved in Actin Nucleation by ARP-WASP Complex, Rac signaling, Cdc42 

signaling, RhoGD1 signaling, eosinophil effector functions and CD28 signaling in T helper cell 

pathways. Interestingly, the Charcot-Leyden crystal/galectin-10 (CLC/Gal-10), an 

immunosuppressive molecule, was among the top commonly expressed genes in both 

infections and elevated levels were also detected in plasma. Moreover, compared to healthy 

volunteers, T cells recovered from W. bancrofti-infected individuals secreted higher levels of 

CLC/Gal-10 and were even higher in MF+ individuals: by complementing their elevated Treg 

responses (Foxp3/IL-10). Latent W. bancrofti-infected individuals on the other hand had 

pronounced Th1, Th2 and Th17 responses. With regards to filarial-specific antibody responses, 

IgG4, IgE and IgA in plasma were associated with MF+, MF- and endemic normals, 

respectively. Overall, the transcriptome profiling revealed overlapping genes in both infections: 

CLC/Gal-10, ribonuclease RNase A family, 2 (RNASE2) and ribosomal protein S4, y-linked 1 

(RPS4Y1). Thus, the study offers insight into filarial-specific genes, signaling pathways and 
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immune determinants, which may be central targets towards the development of new anti-filarial 

interventions. 
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Zusammenfassung 

Infektionen, die durch die Filarien Wuchereria bancrofti und Brugia Spezies (Lymphatische 

Filariose, LF) und durch Onchocerca volvulus (Onchozerkose) hervorgerufen werden, 

beeinträchtigen weltweit nahezu 200 Millionen Menschen. Diese Erkrankungen stellen für die 

betroffenen endemischen Regionen eine große Herausforderung ihres Gesundheitssystems 

dar, da insgesamt für beide Erkrankungen zusammen die Anzahl der DALYs (disability-adjusted 

life years) 3,3 Millionen beträgt. Infektionen mit diesen Fadenwürmern sind chronisch und 

obwohl die meisten Individuen eine moderate Form der Erkrankung entwickeln, weist doch eine 

erhebliche Anzahl eine schwerwiegende Pathologie auf. Massentherapiebehandlungen (Mass 

drug administration, MDA) in Endemiegebieten konzentrieren sich auf eine Reduzierung der 

Wurmnachkommen, der sogenannten Mikrofilarien (MF), unter ein Transmissionsniveau von 

1%. Obwohl die MDA Programme bereits in einigen Gebieten erfolgreich waren, haben Studien 

gezeigt, dass diese Programme für längere Zeit durchgeführt werden müssen als ursprünglich 

geplant war. Demzufolge besteht immer noch ein Bedarf an wirksameren Medikamenten oder 

Impfungen. Wuchereria bancrofti infizierte Individuen ohne Pathologie (asymptomatischer 

Verlauf) können in Abhängigkeit von der Anwesenheit der MF in zwei Gruppen unterteilt 

werden: patent (MF+) und latent (MF-) infizierte Patienten. Patente Infektionen sind mit einem 

immunologisch toleranten Phänotyp assoziiert, welcher das Überleben der Würmer begünstigt 

und zusätzlich eine sichtbare Pathologie des Wirtes verhindert. Latente Infektionen sind trotz 

der Präsenz adulter Würmer durch ein Fehlen peripherer MF charakterisiert. Latent infizierte 

Individuen weisen zudem immunologische Marker auf, die mit einer Suppression der 

Filarientransmission verbunden sind. Im Gegensatz dazu verfügt die Mehrheit der O. volvulus 

infizierten Individuen über MF, die sich in der Haut befinden, während amikrofilaridermische (a-

MF) Individuen das Ergebnis wiederholter MDA Behandlungen zu sein scheinen. 

Interessanterweise haben kürzlich publizierte Forschungsarbeiten gezeigt, dass in O. volvulus 

Endemiegebieten, die einen niedrigeren Infektionsdruck aufgrund wiederholter MDA aufweisen, 

die Immunantworten gegen Plasmodium Antigene beeinflusst werden und zwar auch in 

Gemeindemitgliedern, die nicht regelmäßig an der Therapie teilgenommen haben. In beiden 

Filarieninfektionen ist eine Pathologie mit einer verminderten Antwort regulatorischer T-Zellen 

(Treg) und herabgesetzten IL-10 Spiegeln verbunden, gleichzeitig aber auch mit einer erhöhten 

Th17 Antwort. Eine Identifizierung immunologischer Faktoren, welche diese unterschiedlichen 

Infektionszustände bedingen, bietet die Möglichkeit verbesserte Medikamente und Impfungen 

gegen Filarieninfektionen zu entwickeln. In der vorliegenden Arbeit wurde mit Hilfe von 

Microarrays und Zellprofilanalyse spezifische Genexpressionsmuster evaluiert, um W. bancrofti 

und O. volvulus spezifische Gensignalwege aufzudecken. Individuen mit einer latenten LF 

Infektion zeigten verstärkte Genexpressionsprofile, darunter Gene, die an der Aktin Nukleation 

durch den ARP-WASP Komplex beteiligt waren sowie am Signalweg von Rac, Cdc42, RhoGD1, 

an Effektorfunktionen von Eosinophilen und am Signalweg von CD28 in T-Helferzellen. 

Interessanterweise war in beiden Infektionen das immunsuppressive Charcot-Leyden 

crystal/galectin-10 (CLC/Gal-10) Molekül unter den am stärksten exprimierten Genen und 

dessen erhöhte Spiegel wurden auch im Patientenplasma detektiert. Darüber hinaus konnte 

gezeigt werden, dass T-Zellen von W. bancrofti infizierten Individuen im Vergleich zu denen von 

gesunden Freiwilligen höhere Mengen von CLC/Gal-10 sezernierten. Besonders hoch waren 
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diese Spiegel in MF+ Individuen, was deren erhöhte Treg Antworten (Foxp3/IL-10) ergänzte. Im 

Gegensatz dazu wiesen latent infizierte W. bancrofti Individuen ausgeprägte Th1, Th2 und Th17 

Antworten auf. Im Hinblick auf filarienspezifische Antikörperantworten waren MF+ Individuen mit 

IgG4, MF- Individuen mit IgE und Endemisch Normale mit IgA assoziiert. Ingesamt konnte in 

beiden Infektionen mit Hilfe der Transkriptomsanalyse folgende überlappende Gene detektiert 

werden: CLC/Gal-10, Ribonuclease, RNase A Familie, 2 (RNASE2) und Ribosomales Protein 

S4, y-linked 1 (RPS4Y1). Somit konnte die vorliegende Studie Einblicke in filarienspezifische 

Gene, Signalwege und immunologische Faktoren aufzeigen, die zukünftig als zentrale 

Zielmoleküle bei der Entwicklung neuer Interventionen gegen Filarieninfektionen dienen 

könnten. 
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1 INTRODUCTION 
 
1.1 Background 

Clinically important filarial nematodes in humans include blood-dwelling Wuchereria bancrofti, 

Brugia malayi and Brugia timori that elicit lymphatic filariasis (LF), and the tissue-dwelling 

nematodes Onchocerca volvulus and Loa loa that induce onchocerciasis and loaisis. In addition, 

individuals can be infected with Mansonella species, which do not provoke any overt 

pathological symptoms, reviewed in [1]. Filarial infections present a diverse array of clinical 

manifestations ranging from asymptomatic conditions to chronic states of severe pathology. 

Aside from causing debilitating chronic pathologies in some individuals, human filariasis 

presents a huge economic burden to endemic countries of which the majority are in the 

developing world [2]. 

1.2 Epidemiology and distribution of lymphatic filariasis and onchocerciasis  

Lymphatic filariasis caused by W. bancrofti and Brugia spp. is the second largest cause of 

disability in the world. Depending on the species, disease morbidity may range from transient 

fevers or immobilizing edema of the limbs (lymphedema) and (hydrocele). Globally, over 1.4 

million individuals are at risk of infection (WHO, 2015). In LF, adult worms inhabit lymphatic 

vessels or scrotal areas and produce their offspring, microfilariae (MF), which are defined as the 

larval stage, in peripheral blood. LF has recently been estimated to infect 67.88 million 

individuals living in 73 endemic countries in Africa, Asia, and South America [3]. Current 

estimates suggest that 36.45 million individuals carry MF+, whilst the same estimates apply to 

MF- since asymptomatic groups are reported to be 50:50. Individuals presenting chronic 

pathologies such as lymphedema (dilation of the lymphatic vessels and extravasation of lymph 

fluid in the surrounding tissues) and/or hydrocele (accumulation of lymph fluid in the tunica 

vaginalis) affect 16.68 and 19.43 million individuals, respectively [1]. About 90% of lymphatic 

filariasis cases are caused by W. bancrofti with the widest geographical distribution in Africa, 

while the remaining cases are caused by Brugia spp. in Asia. Approximately, 40% of the global 

disease burden of lymphatic filariasis occurs in Africa, and the global target for the elimination of 

LF is set for 2020.  

Human onchocerciasis caused by Onchocerca volvulus, is found exclusively in man. In 

onchocerciasis, adult worms inhabit subcutaneous regions called nodules and release MF into 

dermal layers, leading to varying forms of dermal pathology. In addition, infection can lead to 
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blindness and in the 37 million infected individuals worldwide, over 460,000 lose their vision 

every year [4] with an estimated burden of about 1 million daily disability adjusted annual life 

years (DALYs) [5]. Hence, onchocerciasis is noted as the second-leading cause of blindness.  

About 99% of cases occur in Africa with a few pockets of endemic areas in South America. The 

disease has been targeted for elimination by 2025. Recently, onchocercal infections have been 

further implicated in promoting epileptic seizures [6], increasing the repute of the already 

associated stigma in most endemic regions [7]. The different disease forms are discussed 

further in the following sections. Areas endemic for onchocerciasis are close to fast flowing 

rivers or forests depending on the vector host. The pattern of infection may vary between 

savannah and forest regions. For instance, in most savannah regions, ocular onchocerciasis 

leads to blindness, whereas in forest areas onchocercal skin diseases predominate. In West 

Africa, vectors prefer biting lower limbs, resulting in high nodule (made up of connective tissues 

in which female adult worms aggregate) density and MF load [8]. Both filarial diseases are 

distributed throughout tropical and subtropical regions with ambient temperatures, which 

promote breeding of transmission vectors. In most parts of Africa and South America, lymphatic 

filariasis and onchocerciasis are co-endemic (Figure 1.1). The majority of these infections are 

found in sub-Saharan Africa. 

 

Figure 1.1: Global distribution of lymphatic filariasis and onchocerciasis (Adapted from WHO. 
http:/who.int/dr/). 
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1.3 Life-cycle of filarial parasites (W. bancrofti and O. volvulus)  

The life-cycles of filarial parasites are relatively complex with several distinct morphological 

stages in both vector and mammalian hosts. The life-cycle begins when an infected female 

vector takes a blood meal from a human host simultaneously injecting the infective larvae 

(known as L3) into the dermis (Figure 1.2). The vectors for LF and O. volvulus are mosquitoes 

and black flies, respectively. The vector penetrates the superficial layers of the skin with its 

proboscis, after which the released larvae begin to migrate and develop into further larval 

stages and eventually adult worms in the body over a period of 6-12 months. In individuals with 

LF, mature worms reside in the afferent lymphatic vessels, scrotal regions in men or breast 

areas of females. In O. volvulus-infected patients, worms remain in the dermal regions and form 

nodules, termed onchocercomas.  

 

 

Figure 1.2: Schematic representation of the life-cycle of filarial parasites: 

During a blood meal, infective larvae (L3) are transmitted by vectors to the human host. L3 migrate to specific 
locations (lymphatic vessels, scrotal regions or dermis) and develop into adult male and female worms within 12 
months. After mating, females produce first stage larvae (MF), which are released into blood or skin depending on the 
filarial species and are subsequently ingested, and undergo several developmental stages in the vector (Kwarteng A., 
University of Bonn, 2015). 
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In both cases, fertilized female worms produce first stage larvae, termed MF, which have an 

average lifespan of 1.5 years. On subsequent biting, the specific vector ingests MF, which 

enters the stomach (10-12 days), where most of them are digested and destroyed. Surviving MF 

moult twice to become infective larvae [1]. These latter forms migrate to the mouthparts and are 

transmitted to a human host during a subsequent blood meal. Regarding transmission, 

circulating MF are the key life-cycle stage of the parasite, therefore identifying strategies that 

successfully reduce MF levels has the potential to reduce transmission of filarial infections in 

endemic regions.  MF in LF [9] have a periodic state but not in onchocerciasis. Later sections of 

this chapter focus on current treatment regimens. 

 

1.4 Infection phenotypes in lymphatic filariasis 

In endemic regions of LF, only a small portion of infected individuals develop severe clinical 

conditions, suggesting a differential response to the parasitic nematode. Infection phenotypes 

range from asymptomatic infections to chronic pathology [10]. Asymptomatic infections can be 

further categorized into patent (MF+) and latent (MF-) states with the former presenting high 

levels of circulating MF, whilst the latter are positive for adult worms but amicrofilaremic. These 

asymptomatic states represent the majority of infected individuals and are associated with an 

immune permissive state that favours the survival of adult worms to produce MF in an 

immunologically tolerant host [11]. The presence of peripheral MF and circulating filarial antigen 

(CFA) in infected individuals defines a patent state. However, the drivers of patent infection are 

currently unknown and appear to be promoted by several factors; given that predisposition to 

infection and susceptibility to disease is mediated by genetics [12]. Latent infections on the 

other hand are a disease phenotype that inhibits productive transmission of the disease and 

hence represents a dead end for the parasite [13]. However, the mechanism behind this latter 

phenotype remains unclear including whether female worms are simply infertile or whether the 

MF are eliminated from the host. 

Indeed, these two groups appear in equal proportions in endemic regions, and even after 

several years of follow-up do not develop severe pathological manifestations [14]. The two 

populations were distinguished from one another by the development of the CFA test. Recently, 

Arndts et al showed some differences at the cellular level between the two groups [13]. 

However, much remains to be studied regarding the regulation of the immune responses, 

particularly at the gene expression level. Individuals presenting pathology, i.e. lymphedema 

(Figure 1.3 A), elephantiasis (Figure 1.3 B)  and hydrocele (Figure 1.3 C) in the extremities are 
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usually MF negative and have eradicated the worms and the etiological reasons behind the 

development of these groups are also unclear [15].  

In addition to infected persons, there are individuals who fail to show parasitological or 

pathological manifestations despite prolonged exposure to infections (lack MF and 

antigenaemia): these are known as endemic normals. Why these individuals fail to acquire 

filarial infection, despite having lived in endemic regions, suggests a display of protective 

immunity. Indeed, this subset of individuals is crucial towards understanding the immune 

disposition of the host. However, the immune mediators and pathways, which drive the different 

infection states, require further characterization. 

(A)    (B)    (C) 

   
Figure 1.3:  Developing pathologies in lymphatic filariasis  

(A) early stages of LE (B) advanced LE and (C) advanced hydrocele caused by W. bancrofti. 
Images (courtesy of Prof. D.W. Buttner). 
 
 
1.5 Infection phenotypes in onchocerciasis  

In onchocerciasis, two main forms of infection have been categorized: generalized 

onchocerciasis (GEO) (Figure 1.4 A) and hyperreactive onchocerciasis (HO) (Figure 1.4 B). 

Individuals with generalized onchocerciasis harbour high worm and MF loads and are 

associated with a regulatory immune phenotype resulting in the suppression of proinflammatory 

responses [16]. On the other hand, individuals with hyperreactive forms have dominant 

inflammatory immune responses [17]. However, between the two polar forms, is another group, 

without MF, i.e. amicrofilaridermic (a-MF). This phenotype in onchocerciasis may be either from 

a) pre-patent infection b) no longer fertile worms or c) ivermectin treatment [18].  

In onchocerciasis endemic areas, heavy skin MF burdens may induce skin irritations with 

intense itching and associated dermatitis, as shown in (Figure 1.4 B). In a few individuals, a 

unilateral dermal pathology can occur which is referred to as sowda. Biopsies from sowda 

patients show an increased presence of cellular infiltrates believed to mediate MF killing and 
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clearance. In subjects with a high MF load, MF can invade the conjunctiva, the cornea and 

posterior regions of the eye. Increasing numbers of degenerating MF in the eye lead to the 

release of multiple antigens that can induce inflammatory responses through a breakdown of 

the so-called immune privilege, normally preventing inflammation in the eye [5]. Heavy MF 

degeneration in the conjunctiva may result in the release of Wolbachia, which induces strong 

immune responses and cellular infiltration leading to visual impairment (Figure 1.4 C) [19]. 

Chronic inflammation and vascularization eventually results in the opacification of the cornea, 

hence the colloquial term of infection "river-blindness". As in LF, individuals in O. volvulus 

endemic regions can remain infection free, despite continued exposure to the bites of black flies 

that may carry the infection: these are also referred to as putative immune. 

 

1.6 Pathogenesis and clinical presentations in lymphatic filariasis and onchocerciasis  

In LF, two pathological pathways have been suggested to lead to the development of pathology. 

The first pathway emphasizes dilatation of lymphatic vessels as the key lesion that precedes the 

development of clinically evident filariasis [1]. Filarial worms appear to be capable of inducing 

endothelial cell proliferation and lymphatic dilatation via mechanisms that do not involve 

lymphatic obstruction. Dilatation may result from host proteins such as vascular endothelial 

growth factors, angiopoietin and matrix metalloproteinase [20]. In the second pathway, products 

released from dead or dying adult worms and Wolbachia have been shown to trigger innate 

immune response of the host, resulting in the release of proinflammatory determinants that 

promote chronic disease [5, 21]. Persistent proinflammatory responses may lead to dilation of 

 

(A)                                          (B)                                              (C) 

                     

Figure 1.4: Differing forms of pathology in onchocerciasis 
(A) O. volvulus nodule (GEO)   (B) Papular skin lesions (HO)   (C) Advanced sclerosing keratitis.  

Images (courtesy of Prof. D. W. Buttner). 
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lymphatic vessels, lymphatic obstruction as well as enhanced trafficking of immune cells leading 

to granuloma formation. In cases where such responses are not regulated, the integrity of the 

lymphatic vessels may be altered resulting in the accumulation of lymph fluid and extravasation 

of fluid from neighbouring tissues leading to lymphedema (LE) and/or hydrocele development 

[15]. The development of lymphedema may take many years and is often characterised with 

acute dermatolymphangioadenitis (ADLA) due to skin injuries and bacterial infections [22]. 

According to Dreyer, LE of the limbs can be graded as follows: (1) swelling is reversible 

overnight, (2) swelling is not reversible overnight, (3) shallow skin folds are reversible, (4) 

appearance of knobs, (5) knobs and deep skin folds are present, (6) presence of  lesions, and 

(7) patients are unable to perform daily tasks [23]. In contrast to hydrocele patients, LE-affected 

individuals are more vulnerable to opportunistic microorganisms that may enter the lymphatics 

through smaller wounds [15]. With regard to hydrocele, grading of dilation is described by 

Debrah et al [24]. Figure 1.3 shows some clinical presentations of LF caused by W. bancrofti, 

which include lymphedema (LE) (A), elephantiasis (advanced LE) (B) and hydrocele (C). 

In onchocerciasis, pathology appears in several forms, i.e., skin (dermatitis) and ocular 

pathology. Grading of dermatitis is described by Murdoch et al [25]. While clinically significant 

onchocerciasis is caused by inflammatory responses to MF in the skin and eye, adult worms 

initiate nodule formation but these may not induce overt response [1]. Skin pathology normally 

arises when the host reacts vigorously to MF. Not only are individuals with hyperreactive 

onchocerciasis characterized by low numbers of parasites but also this infection phenotype has 

reduced frequencies of nodules. Since structural deformities associated with filarial infections 

are often not easily reversible, elucidating the mechanisms that promote protective immunity is 

important. 

1.7 Diagnosis of lymphatic filariasis and onchocerciasis 

 

Diagnosis of human filariasis consists of physical examinations and parasitological tests. In 

endemic areas of LF, knowledge on the periodicity of MF in blood is required for correct 

sampling. MF are detected in blood smears following standard Giemsa staining after filtering 

blood to concentrate the MF. To determine the presence of adult worms, CFA tests are used in 

W. bancrofti infection [26] or specific enzyme linked immunosorbent assay ELISA (Og4C3) are 

performed [27]. CFA tests have shown that in W. bancrofti endemic communities there are 

almost equal proportions of MF+ and MF- individuals and due to the absence of overt clinical 

manifestations, the latter group remained largely undetected and were excluded from most 
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previous studies. In infections caused by Brugia spp., anti-filarial IgG4-specific ELISA tests are 

used [28]. Furthermore, the advent of high sensitive ultrasonography (USG) technology has 

allowed the detection of moving filarial worms, i.e. filarial dance sign (FDS) [29, 30]. The FDS in 

the scrotal regions of male hosts detects worm nests since the worms remain in the same area 

for long periods of time [29]. Moreover, Mand et al showed that USG is imperative in diagnosing 

early stages of hydrocele [31]. In recent times, polymerase chain reaction (PCR) assays have 

become a mainstay diagnostic parameter to detect filarial DNA in blood samples [32].  Recently, 

computer-based approaches for assessing the motility of larger nematode stages have been 

developed. This technique works by converting the motion of nematodes through a light-

scattering system into an electrical waveform, for the estimation of the number of nematode 

worms of different forms and sizes [33]. 

In onchocerciasis, the primary method of diagnosis remains the presence of nodules in the skin. 

In addition, MF are detected from skin snips and the site of infection for a skin snip depends 

primarily on geographical area as mentioned in (section 1.2). For example, skin snips are 

obtained from the iliac crests of patients in Africa [1]. Another diagnostic parameter in detecting 

Onchocerca infection is a diethlycarbamazine (DEC) patch test or Mazzotti reaction [34], which 

although less invasive, is not very specific compared to the skin skip. Moreover, it can be life-

threatening so current applications use topical administrations of DEC that result in locally 

contained acute dermatitis [35]. Additionally, anti-filarial tests have been developed to detect 

IgG4 antibodies against recombinant O. volvulus; yet it remains to be produced on a 

commercial scale. Furthermore, qPCR based assays with increased sensitivity and specificity 

have been developed to detect O. volvulus adult worm DNA and skin MF [36]. 

 

1.8 Wolbachia endosymbionts  

Knowledge of the symbiosis between Wolbachia and filarial nematodes has grown rapidly in 

recent years. Phylogenetic analyses, which highlight a co-evolutionary pattern for filarial 

nematodes and their Wolbachia, and molecular evolutionary analyses [37], are both in line with 

the notion that Wolbachia has evolved a mutualistic association with its hosts [38]. Filarial 

nematodes, which elicit LF and onchocerciasis, live in symbiosis with Wolbachia endobacteria 

that belong to the order Rickettsiales. While in most arthropod-Wolbachia interactions, 

Wolbachia have parasitic habits, the endosymbiosis of W. bancrofti, B. malayi, B. timori and O. 

volvulus with Wolbachia is obligate, suggesting an indispensable role of the endobacteria for 

fertility, reproduction, larval moulting and the survival of the helminths [39]. Wolbachia reside 
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intracellularly, within host-derived vacuoles, throughout the syncytial hypodermal cord cells [40]; 

and are transmitted vertically by adult females. They can be detected in ovarian tissues, 

oogonia, oocytes and developing embryos within the uterus [41]. Several studies have 

demonstrated that these endosymbionts are a strong inducer of innate immune responses 

through the activation of macrophages as well as the recruitment of neutrophils. Wolbachia 

achieve this fate through activation of the Toll like receptor 2 (TLR-2) pathway on these innate 

immune cells and result in increased production of pro-inflammatory cytokines such as IL-6, IL-

1β and TNF-α [42, 43]. Elevated levels of these cytokines on the other hand are believed to 

activate the vascular endothelial growth factor pathways (VEGFs), which have been implicated 

in filarial pathologies as reviewed in [15]. Interestingly, depletion of Wolbachia from all infected 

filarial nematodes with tetracyclines remarkably precludes or blocks the development of larval 

and embryonic stages with long term effects on adult worm fertility and viability [44]. This 

suggests that the nematodes have evolved to become dependent on the bacteria for a diverse 

range of biological processes. 

 

1.9 Treatment options in lymphatic filariasis and onchocerciasis 

 

In accordance with current mass drug administration (MDA) programs, the mainstay 

chemotherapy against lymphatic filariasis and onchocerciasis are combinations of ivermectin 

(IVM), diethlycarbamazine (DEC) with Albendazole (ALB) for LF and IVM for onchocerciasis. 

The activity of these drugs is seen in their profound ability to kill MF as well as late embryonic 

stages inside the adult female worms. However, these therapies have little effect on adult 

worms themselves and therefore, the aim of MDA is to break transmission [1].  

Ivermectin is a macrocyclic lactone with broad spectrum activity on parasites. The drug interacts 

with postsynaptic glutamate-gated chloride channels (GluCl) which results in paralysis of the 

MF. These targeted proteins (GluCl) are encoded exclusively in genome of Nematoda and 

Arthropoda, restricting the effects of this IVM to these organisms [45]. In filarial infections, IVM 

exhibits profound microfilaricidal effects, i.e. it kills MF in the human body [46]. However, 

observations in in vitro settings of Acanthocheilonema viteae model system with IVM show a 

weaker activity compared to the potent killing patterns in parasite infected hosts [46], 

emphasizing the role of host immune responses in controlling the parasite. Albendazole (ALB) is 

a carbamate benzimidazole, broad-spectrum anthelminthic drug against flatworms, nematodes 

and cestodes that inhibits the polymerization of worm β-tubulin and microtubule formation [47]. 



Kwarteng A.                Introduction  

 

 

10 

 

Whether ALB has demonstrable antifilarial effects is still unclear [48]. But it has been reported to 

increase compliance of MDA program because of its direct effect on other gastrointestinal 

helminths.  

Finally, DEC is a piperazine derivative, which attacks all life-cycle stages of the filarial parasites, 

but till date, the exact mechanism of DEC remains to be elucidated. Elsewhere, DEC has been 

shown to inhibit the cyclooxygenase pathway of parasites resulting in MF death and when 

administered to infected subjects results in a sharp decline in MF loads and an estimated 

adulticidal effect of 40% [49]. However, due to its severe adverse effects, DEC is not 

recommended as MDA in onchocerciasis endemic areas where it may induce local inflammation 

in subjects with ocular MF [50]. 

Given the unique activities of each of the above mentioned drugs, specific combination 

therapies are used in filarial endemic regions. As mentioned above, to treat lymphatic filariasis, 

IVM or DEC in combination with ALB is used by the global program to eliminate LF (GPELF), 

whereas IVM is primarily used to treat onchocerciasis. Surprisingly, despite the microfilaricidal 

effects of these classical antifilarial drugs, they show minimal macrofilaricidal effects [51]. While 

IVM rapidly eliminates MF, this transmission life-stage has been reported in some endemic 

communities to reappear after 3 months [52], suggesting that several rounds of treatment are 

required to bring the MF threshold to a level below which transmission can be successfully 

interrupted.  

As mentioned in section 1.8, Wolbachia is essential for the growth and survival of most filarial 

worms. This endosymbiotic relationship has become the focus of alternative therapy; the 

application of tetracycline antibiotics from field studies has shown that 200 mg of doxycycline 

therapy for 4-6 weeks eliminates adult worms [53, 54]. Doxycycline is the first and, so far, only 

macrofilaricidal drug against onchocerciasis. Recent studies have also shown that rifampicin 

exhibits macrofilaricidal activities [55]. More importantly, Mand et al have observed that 

doxycycline has an additive effect in patients without active infection since it demonstrated 

exceptional anti-proliferative activity leading to improved pathology conditions [24, 56]. This 

suggests the use of this drug as an effective tool for individuals drug treatment in filarial 

endemic areas [57, 58]. While doxycycline application in field studies has shown macrofilaricidal 

effects compared to the conventional antifilarial drugs [54], it is obstructed by contraindications 

since it is not suitable for pregnant women or children under 9 nine years. This coupled with 

current reports of IVM resistance in some endemic communities [59] calls for the development 
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of new and effective antifilarial drugs or vaccines if the goal to eliminate LF and onchocerciasis 

is to be achieved by 2020 and 2025, respectively. Infections of filarial nematodes are successful 

because they have the ability to initiate regulatory pathways. Bypassing this regulation may be 

key to developing an effective vaccine for filarial control. This will require a complete 

appreciation of how the parasite induces regulation and identification of the targets and 

processes that mediate protective responses. Such an approach could in the first place protect 

individuals since proteins that are expressed during infection may represent the most likely 

protective vaccine components [60]. In the following section, the different immune profiles in W. 

bancrofti- and O. volvulus-infected individuals are reviewed. 

 

1.10 Immune profiles in filarial infected individuals 

The immune response against filarial nematodes involves a remarkable range of innate and 

adaptive pathways. In fact, persons living in LF and onchocerciasis endemic areas are 

challenged with persistent exposure to incoming larvae, filarial derived products from both living 

and dead worms as well as to Wolbachia endosymbionts. While these factors induce innate 

immune responses, which proceed to activate and shape adaptive immunity, the intensity of the 

host’s reactivity has been associated with the infection phenotype.  

As with many infections, dendritic cells and macrophages serve as the first line of defence and 

react strongly to filarial nematodes as well as their derived products in order to activate the 

appropriate adaptive immune responses to clear invading parasites. The activation of innate 

cells is provoked by pathogen receptor recognition through an array of different receptor such 

as the Toll-like receptor (TLR) or C-type lectin families. Previous studies have demonstrated 

that filarial extracts trigger TLR-2 and TLR-6 [61], which results in the secretion of cytokines, 

such as IL-6 and TNF-α by macrophages. Alternatively, macrophages that are activated by IL-4 

and IL-13 may develop an alternative phenotype characterized by the production of arginase-1. 

The catalytic properties of arginase-1 promotes the repair of tissues damaged by helminths and 

coincides with the immunoregulatory state exhibited in MF+ individuals [62].    

Innate immunity comprises several other cell types including natural killer cells, neutrophils and 

eosinophils. Natural killer cells are large lymphocytes that are principally cytotoxic but have a 

high immunomodulatory capacity as well since they secrete mediators that influence immune 

responses when activated. NK cells play an important role during infection, especially toward 

intracellular microorganisms. Although a recent study has shown that both CD16bright and 



Kwarteng A.                Introduction  

 

 

12 

 

CD56dim and CD16dim and CD56bright NK cell populations are higher in EN when compared to 

individuals with generalized onchocerciasis and hypereactive groups [17], their characterisation 

in other filarial infections and their function requires further study. Granulocytes are generated 

from hematopoietic stems cells and subsequently differentiate into myeloid progenitor lineages. 

In fact, in circulating leucocytes of healthy humans, granulocytes consist of approximately 50% 

neutrophils, whereas eosinophils and basophils make up 2-5% and 1%, respectively. Largely 

these cells are considered as friends or foes of helminths because they are normally induced 

during helminth infections [63]. The role of granulocytes in filariasis appears to be diverse. They 

are believed to either promote protective immunity or even facilitate parasite establishment. 

Interestingly, eosinophils are not only associated with helminth infections but are hallmarks of 

allergic responses, asthma and viral infections too. Peripheral eosinophil counts may reach up 

to 75% during filarial infections and can induce tropical pulmonary eosinophil (TPE) in W. 

bancrofti- and B. malayi-infected individuals. Eosinophils contribute to the destruction of 

helminths by antibody-dependent cytotoxicity [64]. Activated eosinophils release granule 

proteins, such as ribonuclease (RNAS2 and RNASE3), Eosinophil Cationic Protein (ECP), 

Major Basic Protein (MBP) and Eosinophil Peroxidase (EPO). Studies in EPO and MBP 

knockout mice have demonstrated that, through their granule contents, eosinophils facilitate 

Litomosoides sigmodontis larval clearance since in their absence worms develop faster [65]. 

Others have suggested that eosinophils are essential for early worm development [66].  

In addition to the above granules, activated eosinophils release the carbohydrate binding 

proteins called galectins. Galectins are β-galactoside-binding animal lectins, and are 

characterized by conserved amino acid sequences in the carbohydrate recognition domain 

(CRD) with high affinity for β-galactosides [67]. Currently, 15 galectins have been characterised 

and although primarily localized in the cytoplasm or extracellular space [67], under certain 

physiological conditions, they can translocate into the nucleus or associate with intracellular 

vesicles. While galectins may not have specific individual receptors, each can bind to a set of 

cell-surface glycoproteins containing suitable oligosaccharides through lectin-carbohydrate 

interactions [68]. Galectins are commonly produced by eosinophils, however, recent studies 

have demonstrated that the Charcot Leyden crystal protein also referred to as galectin-10 

(CLC/Gal-10) is highly expressed in human CD25+ Treg cells, indicating that the expression of 

this protein is involved in regulatory T cell functions [69].  

In O. volvulus infection, eosinophil infiltration in nodules is dependent on MF released from 

adults worms [70] and has been shown to target skin-residing MF, which possibly reflects their 



Kwarteng A.                Introduction  

 

 

13 

 

functional role in host defence strategy [71]. As with most infections, neutrophils are among the 

first cells to be recruited during filarial infections. Similar to eosinophils, studies in BALB/c 

laboratory mice have shown that neutrophils control filarial nematodes in an IL-5 dependent 

manner: L. sigmodontis infections in mice with an impaired capacity to activate neutrophils 

exhibited diminished parasite clearance [72]. In onchocerciasis, neutrophils are recruited to the 

site of infection and are influenced by the presence of Wolbachia endosymbionts [45]. In that 

study, neutrophils were found to accumulate around nodules obtained from placebo treated 

subjects compared to doxycycline treated counterparts. Basophils are a key cell type in the 

initiation of Th2 immune response since they produce IL-4. Studies in mice with L. sigmodontis 

infection showed that IL-4 is produced by basophils and that depletion of basophils resulted in 

drastic reduction in eosinophils and CD4+ T cell proliferation [73]. 

Since filarial infections are chronic, much research has focused on adaptive immune responses 

(T and B cell responses). CD4+ helper T cells form the majority of T lymphocyte responses and 

following activation differentiate into effector Th1, Th2, Th17 and regulatory T cell subsets 

depending on the source of antigen and surrounding cytokine milieu as reviewed in [74]. These 

T helper cell lineages are regulated by T-bet (Th1), GATA-3 (Th2), RORC2 (Th17) and FOXP3 

(Tregs), respectively. These distinct effector T cell subsets play diverse roles in mediating 

immune responses through the secretion of cytokines and interactions with different cell types.  

In LF, the immune response of MF+ individuals are characterised by T cell hypo-

responsiveness which is accompanied by diminished production of IFN- and IL-2 [75]. In 

addition, when compared to individuals with chronic pathology, associations have been 

observed regarding the reduced frequencies of parasite-specific T and B cells and an overall 

immune suppression [76]. This hypo-responsiveness in MF+ persons is mediated by factors, 

such as IL-10, TGF-β as well as increased regulatory T cells. In fact, PBMCs from MF+ 

individuals spontaneously release antigen-specific IL-10 compared to pathology patients [77]. 

When comparing MF+ and MF- individuals in bancroftian filariasis, our recent studies showed 

that MF- individuals presented elevated adaptive immune responses, such as TNF-α and IL-17 

production compared to MF+ subjects [13]. Further studies in O. volvulus infection showed that 

MF+ individuals or generalized onchocerciasis (GEO) exhibit mild skin dermatitis [5] with 

increased IL-10 levels compared to a-MF individuals [18]. Indeed, CD4+ T cells have been 

shown to be the main source of IL-10 in onchocerciasis [78]. Additionally, the promoter 

haplotype of IL-10 has been shown to influence filarial-specific proliferative capacity [56]. 

Furthermore, Korten et al described that a-MF individuals present a somewhat low hypo-
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responsiveness state as reflected in the diminished production of TGF-β accompanied with 

moderate Th2 responses [79] and that repeated ivermectin treatment in a-MF subjects was 

unable to restore the Th1-Th2 balance [80]. 

While immune responses in individuals with asymptomatic infections may be somewhat 

regulated (albeit with mild disease), chronic pathology patients are characterised by heightened 

proinflammatory responses [81]. Previous studies showed that higher frequencies of Th1 and 

Th17 cells were associated with lymphedema patients, alongside reduced MF load and a 

dampened regulatory T cell phenotype [82]. The apparent sustained proinflammatory condition 

in pathology patients is believed to be exacerbated by the presence of Wolbachia, (see section 

1.8) which are potent activators of innate immune responses via TLR activation [83]. Indeed 

these endosymbionts promote increased production of proinflammatory cytokines that can 

further instigate the induction of vascular endothelial growth factors and their receptors 

(VEGFs/VEGFR); factors known to be linked with lymphangiogenesis and vascular permeability 

leading to filarial pathology [20, 56, 84].  

In O. volvulus infection, sowda patients appear to have a very effective defence mechanism 

which is able to kill the worms albeit at the expense of the host’s immune system. Therefore, 

while this approach is necessary, future investigations underlying such scenarios are warranted. 

More recently, studies in onchocerciasis showed a strong association of Th2 and Th17 

responses in individuals presenting hyper-reactive onchocerciasis (HO) [17]. In that study, HO 

patients presented a reduced regulatory phenotype when compared to GEO individuals, and it 

was shown that in comparison to infected individuals, EN exhibited a pronounced Th1 

phenotype since the frequency of IFN- producing CD4+ T cells and released IFN- upon filarial-

specific re-stimulation of PBMCs were both elevated. As mentioned above, this group remains 

infection-free, despite permanent exposure to biting vectors.  

T helper cell responses are controlled by regulatory T cells and the induction of helminth-

specific Treg responses has been the focus of many filarial studies in man and mouse [85, 86].  

Almost a decade ago a major stride was made in the field of filarial regulatory T cell biology 

when Satoguina et al demonstrated that Tr1 clones in O. volvulus-infected subjects produced 

elevated amounts of IL-10 and TGF-β when stimulated with filarial-specific antigens [87]. 

Regulatory T cell subsets can modulate responses through a number of different mechanisms 

such as cell-cell contact, through increased expression of glucocorticoid-induced tumour-

necrosis factor receptor-related protein (GITR) or cytotoxic T lymphocyte antigen 4 (CTLA-4) or 
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via the secretion of regulatory cytokines (like IL-10 and TGF-β) [88]. Further in vitro studies from 

Satoguina et al found that GITR-GITRL interactions between B cells and Tregs were necessary 

to stimulate IgG4 production from B cells, which was also dependent on TGF-β, suggesting that 

the amount of circulating IgG4 in MF+ persons may reflect enhanced Treg function [89]. 

Interestingly, the contents of nodules from GEO individuals also reflects this pattern since 

immunohistochemistry showed increased IL-10, TGF-β, FOXP3 and IgG4 expression[90]. 

Interestingly, nodules from sowda individuals had very little FOXP3 and regulatory cytokines 

showing that within the nodules themselves the peripheral regulatory profiles in the different O. 

volvulus-infected groups are in play. [55]. Therefore, in MF+ individuals the induction of IgG4, 

elevated IL-10 and a skewed balance between Th1 and Th2 immunity and regulatory T-cell 

networks represent the major mechanisms used by filarial parasites to evade destruction and 

prevent the onset of severe pathology [89], and in doing so, the host tolerates high worm 

burden. 

Tregs may also mediate cellular responses through the release of granzymes. Granzymes are 

serine proteases found in the granules of NK cells and T lymphocytes in addition to regulatory T 

cells and are associated with important immune functions and surveillance. There are five 

granzymes in humans, among which, granzyme A (GZMA) and granzyme B (GZMB) are the 

most abundant and well-characterized [91]. Conventionally, GZMA and GZMB kill cells via the 

activation of cell death pathways during viral or other intracellular infections [92]. Studies have 

shown that other immune cells, such as macrophages [93] and regulatory T cells [94] secrete 

GZMA/GZMB. In fact, GZMB-producing Tregs have been found to suppress antigen-specific 

CD8+ T cells in viral infection [95].  Whether a similar suppression of CD8+ T cells by Treg exists 

in filarial models remains unclear although recent studies in L. sigmodontis-infected laboratory 

mice have also shown that GZMB enhanced susceptibility, whilst GZMA promoted resistance to 

infection [96].  

Aside from T helper cells and B cells, cytotoxic CD8+ T cells are also vital members of adaptive 

immunity. Prominent in cases of infection by intracellular pathogens, the role of CD8+ T cells in 

promoting protective immunity is well established in protozoan infection as reviewed in [97].  

However, paucity of information exists on the functions of CD8+ T cells during multicellular 

parasites, such as filarial nematodes. Previous work has documented a lower proportion of 

CD8+ T cells in PBMCs of patently-infected LF individuals when compared to chronically 

infected individuals [98]. Furthermore, increased levels of CD8+ T cells have been found in limb 

biopsies of patients suffering from chronic LF infection when compared to asymptomatic 
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individuals [99]. In onchocerciasis, elevated frequencies of CD8+ T cells were observed in EN 

individuals when compared to those presenting GEO [17]. Chronic infections are known to 

induce exhaustion on CD8+ T cells, thus impairing their effector activity. For example, chronic 

viral infections have been shown to impair viral specific-CD8+ T cell responses because of 

increased expression of inhibitory markers, such as programmed death cell, PD-1 [100, 101]. 

While the phenotypic characterization of CD8+ T cell subtypes is highly advanced, little is known 

about their activity in filarial infections. It is also unclear whether filarial infections also give rise 

to CD8+ T cell exhaustion given the general ability of helminths to suppress host immune 

responses in order to promote their survival. Alternatively, CD8+ T cell responses could be 

suppressed by the regulatory responses induced by the helminth. In schistosomiasis, a chronic 

helminth infection that affects the liver, co-infection with hepatitis C virus leads to exaggerated 

pathology and elevated viral titres. Recent findings have also shown that this cohort has 

elevated Granzyme B suppressing cells and perhaps this stronger activation of Treg suppresses 

essential CD8 responses that are required for controlling the infection [102].  

As mentioned above, B cell responses are the other important branch of the adaptive immune 

system. In addition to cytokine production and antigen presentation, B cells can differentiate into 

educated plasma cells and produce immunoglobulins (Igs). Elevated levels of IgE is a hallmark 

of helminth infections and since IgG4 and IgE respond through the same receptor, studying the 

ratio of these two Igs in human filarial infections revealed that IgG4 is predominant in 

asymptomatic LF infected MF+ persons when compared to latent individuals [103]. This 

scenario also reflected studying GEO and HO group [89, 104]. Thus, alongside IL-10 and 

regulatory T cells, the production of IgG4 is linked to a regulated immune response in filarial-

infected patients [89]. In LF, individuals with pathology have elevated levels of filarial-specific 

IgG1 antibodies, whilst the levels of IgG2 and IgG3 were lowly expressed in MF+ subjects [105]. 

In endemic normals, while increased levels of plasma IgG1 and IgG2 have been observed, the 

amount of IgG4 was reduced when compared to MF+ individuals [106]. Recently, studies in 

India have associated filarial-specific IgA, (an Ig associated with mucosal immunology) 

expression with protective immunity since higher levels were measured in EN when compared 

to individuals with asymptomatic LF infection [107]. However, the mechanisms underlying the 

function of IgA in filarial infection remain to be understood.  
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1.10.1 Immunomodulation in filarial infections 

Filarial nematodes have an inherent ability to induce Th2 responses characterised by IL-4, IL-5 

IL-19, IL-10 and IL-13, increased eosinophilia, elevated IgE and IgG4 [103]. Apart from the fact 

that Th2 responses elicited by nematode parasites is a stereotypic response of the host, the 

initiation, progression and maintenance of this response requires interaction with many other 

immune cells, such as antigen presenting cells, lymphocytes and granulocytes [108]. More 

interestingly, host-parasite interactions may eventually result in a myriad of modulated immune 

responses such as the expansion of Tregs, regulatory B cells, alternatively activated 

macrophages and other suppressive subsets such as myeloid suppressive dendritic cells [109, 

110]. Additionally, filarial nematodes have been shown to suppress dendritic cell maturation and 

function [75] such as the down-regulation of Toll-like receptors on APCs and T cells [111]. This 

modulation of immune responses by filarial nematodes seems to have several benefits for 

individuals living in endemic areas, since many infected persons are protected from developing 

allergy and asthma [112] giving credence to the hygiene hypothesis. Similarly, in experimental 

models, mice exposed to nematode parasites were less likely to develop Th1 mediated 

diseases as reviewed in [113]. However, since filarial infections induce a state of 

unresponsiveness, this potentially impacts immune responses to non-filarial antigens, i.e. 

bystander antigens and research has shown that this modulation occurs in an IL-10 and TGF-β 

dependent manner [114]. This scenario therefore, may pose a challenge for the effectiveness of 

vaccination programs in helminth endemic regions. 

 

1.11 Genetic associations in filarial infections 

Heterogeneity characterizes filarial infections and disease states. Such phenomenon appears to 

be driven by several factors, amongst which is host immunogenetics. There are only a limited 

number of reports that correlate host genetics with a predisposition of filarial infections and/or 

disease. Studies in human onchocerciasis by Hoerauf et al, for example showed that the IL-13 

variant, Arg110GIn was significantly associated with sowda patients, whilst the frequency of the 

variant was remarkably reduced in individuals with GEO [115]. In that study, IL-13 was 

established as an essential player in Th2-like immune reactions in O. volvulus infection. 

Furthermore, a significant association has been revealed between VEGF-A gene promoter 

polymorphism and increased susceptibility for hydrocele development [24]. In individuals with 

W. bancrofti infection, Debrah et al showed that, compared with asymptomatic individuals, 

chronic pathology patients possessed different single nucleotide polymorphism (SNPs) for TGF-
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β, indicating that genetic traits may also be responsible for these excessive reactions observed 

in patients with pathology [116]. Recently, significant associations were revealed in soluble 

plasma levels of tumour necrosis factor receptor II (TNFR-II) and endothelia-1 (ET-1) with 

lymphedema and hydrocele cases, respectively [117]. In that study, polymorphism at codon 196 

of the TNFR-II resulted in an amino acid change of methionine to arginine. While in general, 

immunological responses are genetically mediated [118] and fairly established in individuals 

with filarial pathology, the contribution of host genetics, i.e. nature and pattern of gene 

regulation and expression that lead to the development of patent and latent infection 

phenotypes are yet to be characterized. 

 

1.11.1 Transcriptomics   

Blood serves as an integrative tissue whereby its cells and associated signaling and cytokine 

networks relay or enhance the contribution made by sites of infection or tissue damage, to effect 

protection or cell injury repair responses. Infections not only elicit but also modify, in a pathogen 

specific manner, immune inflammatory responses at both the infected cell and the systemic host 

response level. Systemic responses can be seen in altered cytokine levels, specific lymphocyte 

responses and alterations in host RNA phenotype in response to infection. Such biological 

pathways provide a central level of physiological organization.  

The transcriptome is the total set of RNA species, including coding and non-coding RNAs 

(ncRNAs), that are transcribed in a given cell type, tissue or organ at any given time under 

normal physiological or pathological conditions. The study of the transcriptome, termed 

transcriptomics [112], represents a promising technique for elucidating and interpreting the 

mechanistic role of host gene expression in the pathogenesis of infectious diseases. The 

approach, based on the large-scale measurement of mRNA, has become the method of choice 

among the emerging technologies of so-called “functional genomics”, primarily because this 

method offers a more comprehensive view of what is really happening in the cell [120]. The 

mRNA transcriptome diversity and the abundance of the transcripts, then characterizes a cell at 

a particular time or under a particular condition. Thus, by comparing transcriptomes under 

different conditions, i.e. infected vs control, differences in the abundance of transcripts may 

become associated with changes in disease phenotype. Moreover, such studies may reveal the 

functional roles of these transcripts, thereby providing more insights into molecular mechanisms 

of infection and allowing identification of distinct gene expression profiles associated with the 

outcome of infection. 
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Gene expression is the process by which genomic information is turned into proteins [121] and 

is divided into two main steps: transcription and translation. In transcription, portions of DNA 

sequences are copied into molecules of messenger-RNA (mRNA) (Figure 1.5). RNA 

polymerase and transcription factors are the main players leading this process. The next step is 

translation into protein, which occurs on ribosomes, macromolecular complexes composed of 

proteins and RNA. Thereafter, the mRNA sequence is read by the ribosome, codon by codon, in 

order to produce polypeptide chains. When the translation is completed, the mature protein is 

released by the ribosome. Translation of mRNAs is regulated by these regions, thus making 

them particularly important.  

 

 

Figure 1.5: Gene expression of eukaryotic DNA 

This occurs when an RNA polymerase II unwinds the double stranded DNA helix to generate primary transcripts. This 
is further processed via splicing into mRNA species, which finally translocates to the cytosol where protein synthesis 
occurs (Kwarteng. A, University of Bonn, 2015). 

 

Microarray technology is a system used to evaluate genomic expression. This technique offers 

a snapshot of the entire genome with a resolution that would have been inconceivable some 

years ago. Microarrays have identified several disease associated biomarkers and hidden 

underlying networks as observed in bacterial [122] and viral infections [123]. In terms of human 

filarial infections, large scale microarray surveys have not been performed. A study on 

individuals infected with Loa loa revealed that  CD4+ and CD8+ T cells-associated networks and 

molecules are highly regulated in chronic infected individuals compared to subjects without 
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chronic infection [124]. To date, no survey on W. bancrofti or O. volvulus patients have been 

performed and as described in the section below, was a primary focus of this thesis work.   

 

1.12 Aims and objectives of the study 

Lymphatic filariasis and onchocerciasis pose major public health concerns and socioeconomic 

problems across the tropics, despite considerable effort to reduce disease burden or regionally 

eliminate the infection. Presently, abundant evidence shows the existence of immunity in hyper-

endemic areas where a proportion of individuals live for many years with constant exposure to 

filarial infection yet never present either clinical or parasitological signs of infection or even when 

infected are able to induce an immune response that kills the transmission stage of the parasite 

(MF). However, knowledge that points to such protective immune responses is still elementary 

and for the past years has depended heavily on by-products of serological studies. Indeed, 

several studies have focused mainly on the association between immunology and the induction 

of pathology [20], but whether there are differences in host gene expression associated with 

filarial infections and/or as to what extent the differences in gene expression fall into distinct 

biological categories remains to be delineated. Thus, the molecular determinants at the 

transcriptome level that drive latent and patent filarial infection states are elusive and remain to 

be studied. Therefore, there is a need for a comprehensive investigation of the host-parasite 

interactions at the genomic level, alongside profiling the cellular immune responses of 

individuals presenting the various filarial infection phenotypes. Hence, this study investigated 

differentially expressed genes that point to protective immunity during W. bancrofti and O. 

volvulus infections. Additionally, it examined immune signaling pathways measured in whole 

blood at the mRNA level to distinguish different infection phenotypes. These studies 

complemented studies on immunological characteristics of peripheral blood mononuclear cells 

(PBMCs) from MF+ and MF- individuals as well as endemic normals under in vitro conditions. 

The study further investigated in vitro T cell subpopulations (CD4+ and CD8+ T cells) from MF+ 

and MF- W. bancrofti-infected individuals as well as uninfected controls. Further, a 

characterization of GZMA and GZMB expressing CD4+ and CD8+ T cells in W. bancrofti-infected 

was performed since previous studies in the murine filarial model have highlighted their potential 

to influence filarial infection outcome. In addition, the study assessed the total and filarial-

specific immunoglobulin responses in W. bancrofti individuals in order to establish which 

antibody contribute to protection or immunosuppression. Collectively, using comprehensive 

transcriptomics in specimens from individuals exposed to filariae but protected from chronic 
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pathology might provide information that can be mined to identify new vaccine candidates. 

Additionally, the study would give a hint which immune determinants or molecules are important 

in supporting latency as well as which molecules could be key targets for future studies with 

regards to the development of new therapeutic strategies as well as control interventions. 
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2 MATERIALS AND METHODS 
 

2.1 Patients, Materials and Methods 

 
2.1.1 Ethical clearance  

Informed consent was obtained from all study participants after a careful explanation of study 

procedures and purposes in their local dialect (Akan). Ethical clearance for this study was given 

by the Committee on Human Research, Publication and Ethics of The Kwame Nkrumah 

University of Science and Technology (KNUST), Ghana; the Ethics Commission at the 

Rheinische Friedrich-Wilhelms-University of Bonn, Germany; and the University of Edinburgh, 

UK. Permission to conduct studies in the selected communities  of LF and onchocerciasis 

endemic areas were sought from the Districts Health Directorate of Ahanta West and Nzema 

East in the Western Region, Ghana as well as the Adansi South and North of the Ashanti 

Region, Ghana. Individuals recruited for this study entitled "Enhanced Protective Immunity 

Against Filariasis (EPIAF)", (http://www.filaria.eu/projects/projects/epiaf.html) included adult men 

and women of age (18-55).  Exclusion criteria for both studies were abnormal levels of renal and 

hepatic profiles (creatinine>1.2mg/100ml; gamma glutamyltransferase >28U/l; and alanine 

aminotransferase >30 U/l) measured by dip-stick chemistry (Reflotron, Roche Diagnostics, 

Mannheim, Germany). In addition, individuals were not recruited into the study if they were 

pregnant, breastfeeding, on chronic medication, alcohol or drug abuse or showed signs of 

chronic filarial pathology, such as lymphedema and hydrocele (LF) or dermal pathologies 

(onchocerciasis). 

2.2 Patients: 

 
2.2.1 Lymphatic filariasis: sample collection and patients allocation   

One hundred and eighty-four (184) individuals were recruited from 25 endemic communities for 

lymphatic filariasis within the Ahanta West and Nzema East districts in the Western Region of 

Ghana [125]. Dunyo et al previously identified these communities with MF prevalence ranging 

from 5 to 20% in average of 500-800 of the population [125]. Since MF have a periodic cycle 

night, aliquots of blood (9ml x1 and 2.5ml x1) were collected from each individual between 9:00 

pm and midnight. The 9ml aliquot of blood was collected in EDTA tubes (Sarstedt, Numbrecht, 

Germany), whilst 2.5ml aliquot was collected in a pre-filled stabilizer PAXgene™ blood RNA 

http://www.filaria.eu/projects/projects/epiaf.html
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tube (PreAnalytiX, Cat No. 762165 from BD Biosciences) that was subsequently used for 

microarray studies.  

Infections with W. bancrofti were first screened using an immunochromatography assay (ICT). 

The levels of circulating filarial antigen (CFA) in blood was qualitatively assessed using ICT, 

BinaxNOW® Filariasis, (Alere, Sinnamon Park, Australia) according to the manufacturer’s 

specification [26]. Briefly, 100µL of blood was collected from each volunteer by finger prick into 

a calibrated capillary tube coated with an anticoagulant, EDTA. The blood sample was added 

slowly to the white portion of the sample pad and firmly closed after removing the adhesive liner. 

Test samples were incubated for 10 min at room temperature before analysis.  Samples were 

positive when both control and test lines appeared pink.  

To distinguish MF+ from MF- patients, 100µl of each patient’s blood was diluted in 900µl of 3% 

acetic acid and counted in a Sedgewick counting chamber for MF load expressed as MF/ml of 

blood [53]. As confirmation, 100µl or 1000µl (depending on the Sedgewick count) of blood was 

diluted in distilled water and filtered through a Whatman Nucleopore filter (5 m pores; Karl 

Roth, Karlsruhe, Germany) to retain the MF. MF were stained using the standard Giemsa 

methods and were counted using a microscope (Leica Microsystems GmbH, Wetzlar, 

Germany). Geometric mean of MF/ml is shown in Table 3.1.1. Study subjects were grouped as 

patently infected: (CFA+/MF+), latently infected: (CFA+/MF-) and endemic Normals (EN): (CFA-

/MF-). 

 

2.2.2 Onchocerciasis: sample collection and patients allocation 

For the study on onchocerciasis, 224 individuals were recruited in 23 endemic communities in 

the Central Region of Ghana (Upper-and Lower Denkyira Districts, Dunkwa-on-Offin; Amansie 

Central and Adansi South Districts, Ashanti Region). Blood sampling was the same as 

described in section 2.2.1 except that here, samples were obtained during the day from patients 

infected with O. volvulus. Infection is characterized by the presence of palpable nodules in the 

skin, therefore palpation of nodules is one of the most common diagnostic practices to ascertain 

O. volvulus infection [126]. In order to determine the MF load in these individuals, two skin snips 

(1-2mg) were taken from the iliac crest of each buttock with a corneoscleral (Holth) punch 

(Koch, Hamburg, Germany). Skin snips were placed in individual wells of a 96-well microtitre 

plates (U-shaped, Greiner Bio-one Frickenhausen, Germany) and incubated in 100μl 0.9% NaCl 

at RT. The MF migrate out of the skin and were counted 24 hrs at 63-fold magnification using a 

microscope (Leica Microsystems GmbH, Wetzlar, Germany).  In order to estimate the skin 
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MF/mg, each skin snip was weighed using an analytical balance (Sartorius electronic balance, 

Göttingen, Germany) and MF load calculated per mg of skin [18] as shown in Table 3.1.1. Study 

participants were grouped into nodule+/MF+ and nodule+/MF-, i.e., amicrofilaridermic (a-MF). 

All participants selected for the onchocerciasis study had at least one palpable nodule. For 

comparison, O. volvulus infection free subjects (absence of palpable nodules and dermal MF) 

living in the same endemic communities for 10 years or more were also recruited. 

2.2.3 Determination of parasitic co-infections  

To determine whether recruited subjects were co-infected with intestinal helminths or protozoa, 

fresh stool and urine samples from all participants were screened using standard methods. 

Additional, helminth infections were determined by screening for eggs via Kato-Katz 

concentration methods. Of the 184 individuals recruited for LF, 30 were co-infected with other 

helminth infections after performing stool and urine analysis. In the onchocerciasis cohort, 10 

patients had further gastro-intestinal parasites. For active plasmodium infection (NADAL 

Medical test, nal von minden Moers, Germany), 8 and 30 were positive in the LF and 

onchocerciasis cohort, respectively.  

 

2.3 Materials 

 
2.3.1 Plastic and glassware 

Unless otherwise stated, all plastic and glassware equipment were supplied by one of the 

following companies: Eppendorf (Hamburg, Germany), Becton Dickinson (Heidelberg, 

Germany), Nunc (Roskilde, Denmark) or Greiner (Frickenhausen, Germany). 

2.3.2 Antibodies and microbeads 

Human T-cell activator, anti-human CD3 and anti-human CD28 monoclonal antibody 

microbeads (αCD3/αCD28) were obtained from Invitrogen (Carlsbad, USA). FACS staining 

antibodies: anti-human CD4-APC, CD4-PECy7, CD8-APC, CD8-PECy-7, CD25-APC, CD25-

PE, CD107A-FITC, CD244-APC, FOXP3-APC, Foxp3-FITC, T-bet-PE, GATA3-PE, RORC2-PE, 

EOMES-FITC, IFN--FITC, IL-4-FITC, IL-10-PE and IL-17-FITC, were purchased from 

(eBioscience, USA) and immunoTools (Friesoythe, Germany). In addition, anti-human GZMA-

FITC, anti-human GZMB-PE (R&D Systems, UK), goat anti-human galectin-10 (primary 
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antibody) and donkey anti-goat IgG (H+L) carboyxfluorescein (secondary antibody) were 

obtained from R&D Systems (USA). 

2.3.3 Brugia malayi extract preparation (B.m. extract) 

Since W. bancrofti infections are not viable in rodent hosts and cannot be easily obtained from 

humans, B. malayi worms were used as alternative source, given that both worm species are 

closely related. Adult worms of the human filarial parasite B. malayi were isolated from infected 

jirds (Meriones unguiculatus). B. malayi worms were obtained from NAID Filariasis Research 

Reagent Resource, FR3 (University of Georgia, Athens, GA). To prepare soluble B. malayi 

extract, frozen adult worms were thawed and transferred to a Petri dish pre-filled with sterile 

PBS. Following several washes in 1x PBS (PAA Laboratories GmbH, Pasching, Austria), worms 

were then placed inside a glass mortar (VWR, Langenfeld, Germany).  Based on the amount of 

worms, 3-5 ml of medium (RPMI 1640 without supplements) was added and worms were 

crushed until the dispersion was homogenous. The extract was then centrifuged for 10 minutes 

at 300 x g (4°C) in order to remove larger insoluble material and the supernatant was carefully 

transferred into a new tube. The protein concentration was determined and aliquots of the 

extract were stored at -80°C until use. All procedures were conducted on ice. To determine the 

optimal concentration of the B. malayi antigen for in vitro assays, titration experiments were 

performed using PBMCs from infected patients.  

2.4 Methods 

 
2.4.1 Microarray 

 
2.4.1.1  Microarray platform and method of analysis 

One hundred and eighty four (184) whole blood samples from the lymphatic filariasis cohort 

(filarial infected plus endemic normals) and 167 samples from the O. volvulus study were added 

to PAX gene blood RNA tubes (PreAnalytiX BD, Biosciences) directly in the field. After shipping 

to Edinburgh, RNA was extracted and hybridized to Illumina arrays. The arrays used in the 

experiment were Human HT-12 version 4 Expression Bead Chips (Illumina, San Diego, CA), 

which comprised of 46,862 genes for LF, and 46,698 features for onchocerciasis. In short, 

100ng total RNA was transcribed into double-stranded cDNA, followed by an amplification step 

(in vitro transcription) to generate labeled cRNA, using the Ambion Illumina TotalPrep-96 RNA 

Amplification Kit. This resulted in a pool of biotin-labeled cRNA corresponding to the 

polyadenylated (mRNA) fraction. The cRNA was quantified using OD (nanodrop), normalized 
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and hybridized onto the Illumina HT-12 arrays for 14-20 hours at 58°C. The unhybridized and 

non-specifically hybridized cRNA was washed and staining with Cy3-Streptavidin was 

subsequently performed to bind to the analytical probes that had been hybridized to the array. 

This allowed for the differential detection of signals when the arrays were scanned. The Illumina 

IScan scanner is a two-colour laser (532 nm/658 nm) fluorescent scanner with a 0.53 µm spatial 

resolution capable of exciting the fluorophores generated during the staining step of the 

protocol. Light emissions from these fluorophores were recorded in high-resolution images of 

the Array sections. The intensities of the images were extracted using Genome Studio (2010.3) 

Gene Expression Module (1.8.0) software. 

 

2.4.1.2  Analysis of microarray data 

The 184 and 167 array studied from both infections were analyzed using the array Quality 

Metrics package using R and Bio-conductor. The raw data were transformed using a variance 

stabilizing transformation (VST) method [127], log-transformed and normalised using the robust 

spline normalisation (RSN) method. Pairwise comparisons were made using a linear fitting 

model. Empirical Bayesian analysis was then applied (including vertical (within a given 

comparison)) and p-values were adjusted for multiple testing to control for false discovery rate. 

For each comparison, the null hypothesis was that there was no difference between the groups 

being compared at adjusted p<0.05. The Bio-conductor package limma was used to identify 

statistically significant fold-changes between groups. 

 

2.4.1.3  Determination of gene expression fold change in study subjects 

To identify differentially regulated genes of interest in a transcriptome data set, several 

approaches can be used. These include a fold-change or statistical tests or both [128]. Fold 

change is the ratio of the mean of the log control sample to the mean infected sample. In the 

present study, two strategies were employed in analyzing differentially expressed genes. First, 

the study employed fold change expression and statistical significance i.e. ((FC) ≥1. 3; adj. p-

value <0.05) to select transcripts with biological relevance. However, it was realized that most 

genes were below the cut-off (Fold change (FC) ≥1. 3; adj. p-value <0.05) after multiple 

correction methods. Hence, a second analysis strategy was used where all genes exceeding 

the expression greater than or equal to 1.3 fold were considered without adjusted p-values as 

described elsewhere [129, 130].  
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2.4.2 Isolation of peripheral blood mononuclear cells (PBMC)  

After venous blood collection as described by Arndts et al [13] samples were quickly transported 

to the field lab and peripheral blood mononuclear cells (PBMC) were isolated using the ficoll-

based density gradient separation method. To increase cell viability, the entire isolation 

procedure was performed on ice. In short about 7 ml, of patient blood was poured into the 

leucosep tubes (Greiner Frickenhausen, Germany) and centrifuged for 20 minutes, 800 x g at 

4°C. Plasma was removed from the upper phase of the gradient, first stored at -20°C in 1.8 ml 

cryo-tubes (Nunc, Roskilde, Denmark) and then transferred to liquid nitrogen. The interphase 

containing the PBMCs was also collected and transferred into a new 15 ml falcon tube. In order 

to remove residual traces of ficoll, cell suspensions were washed with complete medium for 8 

minutes at 400 x g and 4°C. The supernatant was discarded and the washing step repeated 

after which the cells were re-suspended in 10 ml cell culture medium. Cell concentration was 

estimated and isolated PBMCs were immediately used or cryo-preserved. Refer to section 

2.4.2.2 for detailed description. Cryo-processed samples and plasma were shipped back to 

Germany for further analysis. 

 

2.4.2.1  Determining cell viability and concentration 

To determine the number of viable cells, the trypan blue (Sigma-Aldrich, Munich, Germany) 

exclusion method was used. Cells were diluted 1:5 or 1:10 with 0.4% trypan blue. 10µl of diluted 

samples was then transferred to a haemocytometer (LO Laboroptik GmbH, Bad Homburg, 

Germany). Viable cells (unstained) were estimated and expressed as cell number per ml. 

 

2.4.2.2  Freezing of cells/cryopreservation 

After determining the cell concentration, cells were carefully prepared for freezing. All steps 

were carried out on ice under a sterile hood. Freezing medium containing 80% fetal calf serum, 

FCS (PAA) plus 20% DMSO (Sigma-Aldrich GmbH, Munich, Germany) was freshly prepared 

and 1 ml added drop-wise to 1 ml of cells. Next, cell suspensions were gently mixed and 2 ml of 

cell suspensions were quickly pipetted into labeled Cryo tubes and optimally frozen at -80°C but 

on the field, samples were first frozen at -20°C for 24hrs and then transferred to liquid nitrogen 

(N2).     
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2.4.2.3 Cell thawing process 

In order to thaw frozen cells successfully, cryo-tubes containing frozen cells were collected from 

the liquid nitrogen and gently moved between the palms until re-thawed. Thawed cell 

suspensions were transferred into 15 ml falcon tubes (Greiner, Frickenhausen, Germany) and 

then filled up slowly with 10 ml of pre-cooled complete medium under frequent mixing. RPMI 

1640 medium (PAA GmbH, Pasching, Austria) was supplemented with 10% FCS and 50µg/ml 

of gentamycin (PAA), penicillin/streptomycin (50µg/ml, PAA) and L-glutamine (292.3 µg/ml, 

PAA). After centrifuging for 8 minutes at 400 x g (4°C), the cells were re-washed to remove 

residual freezing medium, which is toxic to the cells. The final resulting supernatant was 

discarded and cells were re-suspended in 1 ml of complete cell culture medium, counted and 

used for further experiments. 

 

2.4.3 Preparation of patient blood smears for white blood cell counts 

To determine the differential cell count (white blood cells) of the study participants, smears were 

prepared from fresh blood in EDTA tubes (Sarstedt). In brief, 2µL of well mixed blood was 

pipetted into a centre of the labeled specimen slide. A clean spreader slide was held at a 45 

and used to spread the drop of blood along the entire width of the specimen slide. Slides were 

then dried for at least 1hr at RT and then stained as described in the following section. 

 

2.4.4 May-Grünwald-Giemsa staining and determination of absolute cell counts 

To estimate the total leukocyte count in the smears, specimen slides were first fixed in methanol 

(Merck, Darmstadt, Germany) for 5min, after which they were stained for 10 min in a 1:2 pre-

diluted solution of 1x PBS, (PAA Laboratories GmbH, Pasching, Austria) and May-Grünwald 

solution (Carl Roth, Karlsruhe, Germany). The slides were then dipped in a 1:10 pre-diluted 

mixture of (1x PBS) and Giemsa solution (Merck, Darmstadt, Germany) for 10 min. Slides were 

rinsed with aqua dest. and dried for 5 min. To determine cells differentially, the percentage of 

different cell types of on the slide specimen, were counted with a manual tally counter 

(Denominator, Connecticut, USA) using a light microscope with an objective lens of x100 under 

oil (ZEISS, Azioskope, Germany). To determine the absolute count, the percentage of each 

white blood cell was multiplied by the total white blood count. 
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2.4.5 Determination of protein with Bradford Assay 

To measure the protein concentration in B. malayi extract, was performed Bradford protein 

assay as described by the manufacturer’s protocol. In brief, serial dilutions of BSA (PAA) were 

used as standards and samples were diluted in RPMI1640 (PAA). Following this, 300µl per well 

of Coomassie blue G (Cytoskeleton, Denver, USA) reagent was distributed in duplicate in the 

wells of an  ELISA plate and 3µl of standard and samples were added accordingly. The protein 

concentration was quantified at 590 nm using a plate reader SpectraMax 340 Pc (Molecular 

Devices). Data were analyzed with SOFTmax Pro 3.0 software. 

2.4.6 Quantification of endotoxin levels in B. malayi extract 

To test for endotoxin levels in the B.m. extract, the Pierce Limulus amoebocyte lysate (LAL) 

Chromogenic quantification kit (88282) (Thermo Fisher Scientific, Schwerte, Germany) was 

used according to the manufacturer’s instruction. Here, 50µL of each standard and unknown 

sample were added to respective wells and incubated for 5 min at 37°C. After this, 50µL of LAL 

was added to each well; the plate was shaken for 10 seconds and incubated at 37°C for 10 min. 

Next, 100 µL of substrate solution (Chromogenic) was added and incubated for 6 min at 37°C. 

To stop the reaction, 50µL of 25% acetic acid was added to the plate and immediately 

measured at an absorbance of 405-410 nm on the SpectraMax 340 Pc (Molecular Devices, 

Sunnyvale, USA). The B. m. extract was used for further assays when endotoxin levels were 

below 0.1 EU/ml. 

 

2.4.7 Quantifying filarial-specific immunoglobulins by ELISA in plasma  

To assess filarial-specific immunoglobulin profile during filarial infection, plasma from all study 

participants in the LF cohort was screened for levels of filarial-specific IgA, IgE and IgG1-4. 

Polysorb plates (96-wells, Nunc, Roskilde, Denmark) were coated overnight at 4°C with 50 

µl/well of 10 µg/ml B. malayi extract diluted in 1% BSA/PBS at pH 9.6. Plates were washed 3 

times with washing buffer and once in PBS. Plates were blocked with 200 µl/well 1% BSA/PBS 

for one hour at RT. Following an additional washing step, 50µl/well of diluted plasma was added 

(1:500 for specific IgG1-4, IgA and 1:20 for specific IgE) and incubated overnight at 4°C. After 

the next washing step, 50 l/well of the biotinylated secondary antibodies were added for two 

hours at RT (IgG1-4, Sigma-Aldrich, Germany, IgG1 1: 1,000, IgG2 1:15,000, IgG3, 1:4,000, 

IgG4 1:15,000; IgA 1:15,000; and IgE Southern Biotechnology, AL, USA 1:1,000). Following 
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another washing step, 50µl/well of Streptavidin-HRP (eBioscience, Frankfurt, Germany; 1:250) 

were incubated for 45 minutes at RT. After the last wash, 50µl/well of substrate solution 

containing TMB (Sigma-Aldrich GmbH, Germany) was added to the wells for 15 minutes and 

thereafter the reaction was stopped with 25µl/well of 2N H2SO4 (Merck KGAA, Darmstadt, 

Germany). Pooled plasma samples from 10 infected patients were used for the generation of 

calibration curves and assigned in optical density (OD) for the specific anti-filarial antibodies. 

Data were analyzed with SOFTmax Pro 3.0 software. 

 

2.4.8 Determination of charcot leyden crystal/galectin-10 (CLC/Gal-10) in plasma  

Plasma from all study individuals was screened for the presence of CLC/Gal-10 using 

commercially available ELISA kits (CLC, Cloud-Clone Corp. Houston, USA). In short, 50µl/well 

of each dilution of standard, blank and samples (diluted 1:4) was pipetted into a pre-coated 96 

well plate. Plates were covered and incubated for 2hrs at 37°C, after which the liquid in each 

well was carefully discarded. Without washing, 50µl/well of a biotinylated detection antibody 

specific for CLC was added to each well. The plates were then covered and incubated for 1hr at 

37°C. Thereafter, plates were washed three times with wash buffer (350µl/well), following which 

50µl/well of Horseradish Peroxidase conjugate was added to each well. The plates were then 

incubated for 30 min at 37°C after being covered with a plate sealer. The washing step was then 

repeated five times, after which 45µl/well of Substrate Solution (TMB) was added to each well 

and incubated in the dark for 15 min. Finally, 30µl/well of Stop Solution was added and plates 

were immediately read at 450nm using the SpectraMax Pc (Molecular devices) with wavelength 

correction (450 nm and 570 nm). Data were analyzed with SOFTmax Pro 3.0 software. 

 

2.4.9 Cellular characterization of flow cytometry 

To analyse the immune cell profile in PBMCs from W. bancrofti-infected individuals, flow 

cytometry was used.  Flow cytometry has become a mainstay technique in life sciences used for 

analyzing multiple parameters of individual cells within heterogeneous populations. The 

technique performs analysis by passing thousands of cells per second through a laser beam 

and capturing the light that emerges from each cell as it passes through. In flow cytometry, a 

laser and a sample intersect and optics collects the resulting scatter and fluorescence. Data 

generated can be analyzed statistically on flow cytometer software to report cellular 

characteristics, such as size, granularity and phenotype.  
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2.4.9.1  Characterization of surface markers 

All reagents were obtained from eBioscience, ImmunoTools and R&D systems. Staining was 

done as previously described [131]. To determine the frequency of different lymphocyte 

populations in W. bancrofti-infected individuals and EN volunteers, 1×105cells/100µl staining 

buffer were incubated in FACS buffer PBS/2% FCS for 30 min at 4°C with 1) CD4-PeCy7 

(clone: RPA-T4)  for CD4 T cells,  PD-1-FITC (clone: MHA) for PD-1, CTLA-4-PE (clone: I4D3) 

for CTLA-4, CD107a-FITC (clone: eBioH4A3) for CD107a, CD244-APC (clone: eBioDM244)  for  

CD244, and CD25-PE (clone:) for CD25 T cells; 2) CD8-APC (clone: SK1) for CD8+ T cells and 

as well as all the markers mentioned for CD4 T cells staining. Cells were acquired on a 

FACSCanto (BDTM, Heidelberg, Germany). 

2.4.9.2  Characterization of intracellular markers 

Following the surface staining, intracellular staining was performed on PBMCs from W. 

bancrofti-infected and endemic normals either directly or following activation with a Cells 

Stimulation Cocktail (eBioscience, Frankfurt, Germany) containing phorbol 12-myristate 13-

acetate (PMA), Ionomycin, Brefeldin A, and Monensin for 6hrs. Thereafter, staining was 

performed using in 4 distinct panels; single stain panels Th1, Th2 and Th17 and CD25-PECy7 

(clone: BC96) for regulatory T cell panels for both CD4+ and CD8+ T cells. After 30 min 

incubation at 4°C, cells were washed once in FACS buffer. After fixation and permeabilization in 

x1/4 Fix-Perm reagent (eBioscience), cells were incubated at 4°C for 30 min with either 1) anti-

human T-bet-PE (clone: eBio4B10) and IFN--FITC (clone: 4S.B3), for Th1 panel; 2) GATA3-PE 

(clone: TWAJ); IL-4-FITC (clone: B-S4) for Th2; 3) IL-17A-FITC (clone: eBio64DEC17); 

RORC2-PE (clone: AFKJS-9) or 4) Foxp3-FITC (clone: 236A/E7); IL-10-PE (clone: JES3-9D7) 

for regulatory T cells. Cells were again washed two times and thereafter re-suspended in fix-

perm buffer (eBioscience). To avoid unspecific binding, 3µl of Human Fc block (eBioscience) 

was used and for spectral overlap correction, fluorescence compensation was done using 

UltraComp ebeads (eBioscience). Data were acquired and analyzed on a FACSCanto flow 

cytometer (BD™) using DIVA software.  

2.4.9.3  Determination of intracellular proteins (granzymes and galectin-10) 

Granzyme-expressing CD4+ and CD8+ T cells in the PBMCs from W. bancrofti-infected 

individuals and uninfected controls were assessed directly or after activation with a Cells 
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Stimulation Cocktail (eBioscience) containing PMA, Ionomycin, Brefeldin A, and Monensin for 6 

hours.  Thereafter, surface staining was performed using anti-human CD4-APC (clone: OKT4) 

for CD4 and CD8-PeCy7 (clone: RPA-T8) for CD8 for 2 distinct panels 1) GZMA-FITC (BD 

Pharmingin 558905) or GZMA-PeCy7 (clone: CB9) for granzyme A; and 2) GZMB-PE (clone: 

GB11) for granzyme B. Furthermore, CLC/galectin-10 expressing-CD4+ and CD8+ T cells were 

evaluated by staining cells with anti-human galectin-10 antibodies (clone: AF5447) and later 

with secondary anti-goat galectin-10 antibody-Fluorescein (clone: F0109). Data were acquired 

and analyzed on a FACSCanto flow cytometer (BDTM). 

2.4.10 In vitro cultures 

 
2.4.10.1 Antigen-specific stimulation of PBMCs from the study subjects 

Frozen PBMCs from the LF study cohorts were thawed and washed in complete RPMI 1640 

medium with supplements (Appendix). PBMCs were cultured in 96-well plates (U-shaped, 

Greiner Bio-one, Frickenhausen, Germany) and left either unstimulated, for spontaneous 

cytokine secretion, or stimulated with either i) adult Brugia malayi extract (40µg/ml) or ii) 

αCD3/αCD28 (10000 beads/well, Invitrogen) or the combination of iii) BmAg and αCD3/αCD28 

in duplicate for 7 days at 37°C under 5% CO2. 

2.4.11 Statistical analysis 

Statistical analyses were performed using the software PRISM 5.02 (GraphPad Software, Inc., 

La Jolla, USA). Statistical differences were observed using a Kruskal-Wallis-test with Dunn’s 

correction for multiple comparisons or ANOVA and where necessary a Mann-Whitney-U test for 

a further comparison of two groups. P-value of 0.05 or less were considered significant (*p<0. 

05, **p<0.01 and ***p<0.001. 
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3 RESULTS 
 

3.1 Wuchereria bancrofti infection  

 

3.1.1 Characterization of the study population 

In total, 184 subjects were recruited for the W. bancrofti study and grouped into endemic 

normals (EN, n=57), patently infected (MF+, n=52) and latently infected (MF-, n= 75) individuals 

based on the presence of peripheral MF diagnosis. The study comprised of adult otherwise 

clinically healthy adults, of which 26.6% were female and 73.4% were male, with an age range 

from 18-55. Following the determination of adult worm burden, 127 (69 %) of the study subjects 

were positive for the CFA test, whereas 57 (31%) were negative. The geometric mean of MF in 

the patently infected individuals ranged from 1-3620 MF/ml (Table 3.1.1). 

 

In total, 103 (55.9%) study participants had not participated in (MDA) programmes beforehand 

and in those that had received IVM treatment, 69 (37.5%) had had 1 round and 12 (6%) had 

had 2 rounds.  The percentage of rounds of IVM intake for 0/1/2 round(s) for EN: 49.2%, 50.8% 

and 0%; MF+: = 67.3%, 30.7%, 2%; MF- : 53.3%, 32.0%, 14.7%, as shown in Table 3.1.1. Out 

of 184 subjects, 31 (16.8%) were co-infected with other known infections, such as helminth, 

protozoa and malaria.  Of these, the number of co-infected individuals in EN, MF+ and MF- was 

4 (7%), 7 (13.4%) and 19 (25.3%), respectively. Of note, co-infection with Ascaris lumbricuides 

was recorded in 11 individuals (6.0%), followed by Plasmodium spp. 9 (4.9%), Giardia lamblia 6 

(3.2%), Hookworm 5 (2.7%) and Trichuris trichiura 4 (2.1%), whilst co-infection with 

Schistosoma mansoni 1 (0.5%) was the lowest. 

 
Table 3.1.1: Characteristics of the study population: W. bancrofti-infection 

 EN (n=57) MF+ (n=52) MF- (n=75) 

Age (median) 32.0 (18-50) 28 (18-53) 30 (18-55) 

Sex (F/M) 24/29  4/48 21/54 

CFA negative positive positive 

GM MF  (MF/ml) - 382 (1-3,620)  

Rounds of IVM (0/1/2)  28/29/0 35/16/1   40/24/11 

Co-infections  4  7 19 

Age: median (range); sex: number of (female/male); IVM: rounds (1 or 2 X), GM (geometric 
mean); MF count: mean (range); CFA=Circulating Filarial Antigen; MF=microfilaria; 
EN=endemic normals 
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3.1.2 Transcriptome profile of W. bancrofti-infected individuals and endemic controls 

using ingenuity pathway analysis (IPA) 

Genes are the molecular units in living organisms, which carry the important biological 

information to produce proteins. Interactions amongst genes are complicated, some of which 

may regulate the behavior of others. To explore the biological meaning of expressed genes 

during W. bancrofti and O. volvulus infections, normalized whole blood was drawn from infected 

or uninfected individuals and mRNA was isolated. Expression of genes was measured using 

Illumina Human HT-12 version 4 (San Diego, CA). Up- and down-regulated genes, which 

showed at least a 1.3 fold-expression difference, were uploaded on IPA (IngenuitySystem.com, 

Redwood City, USA) application. Analysis of canonical pathways and molecular networks was 

subsequently performed. 

Canonical pathway analysis identifies molecular pathways from the IPA library of canonical 

pathways (part of the Ingenuity Pathway Knowledge Base, IPKB) that were most significant to 

the data set. Genes from the data set that were associated with a canonical pathway in the 

IPKB were considered for the analysis. The significance of the association between the genes 

from the dataset and the canonical pathway (in the IPKB) was measured in two ways as 

described in IPA documentation: 1) A ratio was calculated of the number of genes from the 

dataset in a given pathway divided by the total number of molecules that make up the canonical 

pathway; 2) Fisher's exact test was used to calculate a p-value determining the probability that 

there is an association between the genes in the dataset and the canonical pathway that cannot 

be explained by chance alone. A pathway was considered significant if the p-value was less 

than <0.05, as determined by Fisher exact test.  

Different to canonical pathway analysis (in which a set of differentially expressed genes can 

only be associated to genes of known functions based on the literature), in network analysis, 

networks of genes are algorithmically generated based on their connectivity. In this study, 

network analysis, was undertaken to identify clusters of coordinately expressed genes, and 

subsequently mapped to functional groupings, including pathways. Particular emphasis was 

placed on exploring loci associated with immunological response as well as others that could 

plausibly contribute, directly or otherwise, to the host response to infection. Networks are 

formed de novo, i.e., depending on the gene/molecule interaction with other gene/molecules 

within the data set.  The IPA generates networks and overlays these networks with a score. The 

score is derived from a p-value and indicates the probability of the focus genes in a network 
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being found together due to random chance. For instance, suppose that a network of 35 

molecules has a Fisher Exact Test result of 1x10-6. The networks score = -log (Fisher's Exact 

test result) = 6. This can be interpreted as, "There is a 1 in a million chance of getting a network 

containing at least the same number of focus genes by chance when randomly picking 35 

molecules that can be in networks from the Ingenuity Knowledge Base. Therefore, it stands to 

reason that the higher the score, the higher the confidence level of the network not being 

generated by random chance alone. In this study, each network was arbitrarily set to 35 focus 

genes with networks of direct relationship selected. Gene products were represented as nodes 

and the biological relationship between the nodes is shown as edges. The intensity of a node 

indicates the degree of up (red) or down (green) or non-regulated (gray). A functional analysis of 

the associated network was identified by the biological function and/or disease that were most 

significant to the genes in a network. Differentially expressed genes may not directly be 

translated to have biological relevance. To understand the underlying molecular mechanisms 

and signaling pathways involving host response to filarial infections, in-depth analyses were 

performed on the transcriptomics data on filarial infected subjects using IPA application. The 

study focused on regulated genes, canonical pathways and regulatory networks as well as 

predicted biological functions. Gene expression analyses showed that most genes were below 

the cut-off (Fold change (FC) ≥1. 3; adj. p-value <0.05) after multiple correction methods, as 

shown in Table 3.1.2.   

 

Table 3.1.2: Proportion of differentially expressed genes identified across comparisons in W. bancrofti-
infected compared to EN 

 adj. p<0.05;FC≥ 1.3 FC≥ 1.3                    

Infected vs EN 12 23 

MF+ vs  MF- 0 5 

MF+ vs  EN 0 33 

MF- vs  EN 12 25 

The table lists the number of genes whose expression, in the filarial infected groups, exceeded that of endemic 
normals 1.3 fold (FC ≥1.3) EN. Microarray data are denoted for those genes that demonstrated a False Discovery 
Rate (FDR) less than 0.05; associated with or without adjusted (adj) p-value. FC, Fold change.  

 

In general, 12 genes were significantly regulated in W. bancrofti-infected compared to EN. 

Coincidentally, 12 genes were also significantly upregulated between MF- individuals and EN, 

while no differences were observed between MF+ and EN. Thus, the number of regulated 
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genes appeared to be less.  To this end, a second analysis strategy was employed in which all 

genes expressed greater than or equal to 1.3 fold were considered without adjusted p-value as 

described elsewhere [129, 130, 132, 133]. The number of regulated genes is shown in Table 

3.1.2. Without adjusted p-value, 23 genes were found to be regulated in the W. bancrofti-

infected groups relative to EN, 5 genes were found in MF+ compared to MF-, 33 genes in MF+ 

relative to EN, and 25 genes were identified in MF- compared against EN (see Table 3.1.2). 

 

3.1.3 Comparison of regulated genes, canonical pathways and networks of W. 

bancrofti-infected individuals vs EN  

In order to elucidate the underlying mechanism induced during W. bancrofti infection, the whole 

blood transcriptome of filarial infected individuals was compared against EN. Here,12 genes 

were upregulated, of which the top ten most up-regulated genes at (FC ≥1.3 and adj. p< 0.05) 

include nuclear localized genes, such as zinc finger, AN1-type domain 5 (ZFAND5) and 

probable ATP-dependent RNA helicase (DDX5), cytoplasmic localized genes such as Gamma-

adducin (ADD3), calcium-binding protein 39 (CAB39), cathepsin Z (CTSZ), integrin-ß-1(ITGB1), 

transmembrane protein 66 (TMEM66) and O-linked N-acetylglucosamine transferase (OGT), 

whereas the location of ubiquitin-conjugating enzyme E2D 3 (UBE2D3), arginine and glutamate 

rich 1 (ARGLU1) is yet to be defined (Table 3.1.3). Most of these upregulated genes are 

associated with inflammatory responses as well as immune cell migration. There were no 

downregulated genes identified in this comparison at the set threshold. Analysis of regulated 

genes without adjusted p-value revealed 23 genes of which most were associated with the 

development and function of eosinophils (Table 3.1.3). Amongst the top 10 genes in the 

analysis without adjusted p-value, 6 genes matched those identified in the analysis with 

adjusted p-value, whilst the rest differed. Interestingly, it was also observed that analyses 

without adjusted p-value led to the identification of genes with higher intensity of expression, but 

were submerged by stringent statistics approach. These included genes, such as the Charcot-

Leyden crystal protein (CLC/Gal-10), being the most highly regulated followed by major 

histocompatibility complex class II (MHC II), DR beta 1 (HLA-DBR1), ribosomal protein S4, y-

linked 1 (RPS4Y1) and ribonuclease, RNase A family, 2 (RNASE2) as shown in Table 3.1.3. 

Interestingly, pathway response analyses based on the regulated genes between W. bancrofti-

infected and EN, revealed 14 significant canonical pathways (Fisher’s exact test, p<0.05). 
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Among the top five were the Actin Nucleation by ARP-WASP Complex (p<7.55E-04), Cdc42 

signaling (p<3.58E-03), Rac signaling (p<2.53E-03), RhoGD1 signaling (p<6.88E-03), which 

primarily associates with ITGB1, a gene that codes for integrin beta proteins; whilst the Ephrin 

receptor signaling (p<6.88E-03) is activated by ARGLU1 as shown in Table 3.1.4. These 

canonical pathways relate to cell-cell communication, cell migration as well as immune cell 

trafficking (Figure 3.1).  

   

  
Figure 3.1: Cell-to-cell migration and signaling interaction network in infected relative to EN using 
ingenuity pathway analysis. 

Genes were differentially expressed at FC≥1. 3, p< 0.05 adjusted for multiple comparisons using the Benjamini-
Hochberg correction and False Discovery Rate (FDR<0.05). Lines represent direct relationships between 
molecules. Up-regulated genes highlighted in red, white/gray indicate genes not differentially expressed, but with 
defined relation to other genes in the network. (Key: circle=transcriptional regulator, upright diamond= enzyme, 
tranverse diamond=peptidase, rectangle=G protein coupled receptor, trapezoid= transporter, oval= 
transmembrane receptor). 
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In a further analysis without the adjusted p-value between W. bancrofti-infected and EN, 21 

canonical pathways were identified. Among these were the CD28 signaling in T helper cells (p< 

6.67E-03) which is essential for T cell activation and is associated with HLA-DRB1 and 

ZFAND5, whereas DDX5 is involved in the Regulation of eIF4 and p70S6K signaling (p<1.13E-

02), which modulates translation of mRNAs as well as cell proliferation.The regulated networks 

revealed the cell-to-cell migration and signaling interaction network with a score of 33 when 

analysed with adjusted p-value (Figure 3.1) and (Table 3.1.5), whilst the hematological disease 

and cell-to-cell signaling interaction as well as the post translational modification networks were 

identified following analysis without adjusted p-value (Table 3.1.5). These networks associate 

with bio-functions, such as inflammatory response, phagocytic activity; molecular and cellular 

functions, such as cell cycle cell death and survival, cell morphology and carbohydrate 

metabolism. 

 

3.1.4 Comparison of regulated genes, canonical pathways and networks of patently 

(MF+) vs latently (MF-) infected individuals 

Asymptomatic W. bancrofti-infected individuals can be subdivided into two groups. A patent 

infection represents an immune permissive state that favours the survival of adult worms to 

produce MF in an immunologically tolerant host [11]. The immune profile of this infection 

phenotype has been associated with a regulatory phenotype in order to facilitate survival within 

the host. In contrast, a latent infection is characterized by presence of adult worms but the 

absence of MF in the periphery. Since cellular immune responses of this group are 

characterised by enhanced adaptive immune response [13], it is postulated that these 

responses lead to MF clearance. Thus, identifying expressed genes that differ between the two 

infection phenotypes can be important for the search of new effective antifilarial drugs or 

vaccines. To this end, a comparison on regulated genes between the two asymptomatic groups 

was performed. None of the genes passed the analysis with adjusted p-value; however, without 

adjusted p-value, five genes were up-regulated, composed of the ribosomal protein s4, y-linked 

1 (RPS4Y1), whereas carbonic anhydrase 1 (CA1) and aminolevulinate, delta-, synthase 2 

(ALAS2) and two unknown genes were down-regulated as shown in Table 3.1.3.  

To explore the molecular interactions induced in the two infection phenotypes, pathway analysis 

was performed. The top 5 canonical pathways included the down-regulated tetrapyrrole 

biosynthesis II (p<1.03E-03) and heme biosynthesis II pathways (p<1.85E-03), which is 
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associated with ALAS2, whilst RPS4Y1 is involved in the regulation of eIF4 and p70S6K 

(p<2.89E-02), eIF2 (p<3.48E-02) and mTOR signaling (p<3.70E-02) pathways (Table 3.1.4). 

In order to determine the unknown underlying molecular events that differ between patent and 

latent infection, network analysis was performed. Here, the cell morphology and development 

network was upregulated in the patently infected subjects relative to the latent group as shown 

in Table 3.1.5. This network associates with molecular and cellular functions, such as molecular 

transport, small molecular biochemistry, cell function and maintenance, cell development and 

gene expression.  

 

3.1.5 Comparison of regulated genes, canonical pathways and networks of patently 

(MF+) infected individuals vs endemic normals (EN) 

As opposed to infected individuals, EN include individuals living in the same endemic region and 

despite their persistent exposure to parasite transmission do not develop an infection. 

Therefore, comparing the transcriptome between patent and EN group is expected to unravel 

how filarial parasites modulate the apparent divergent immune responses in these groups. 

There were no significantly expressed genes between individuals with patent infection and EN 

after analysis with adjusted p-value. However, after analysis without adjusted p-value, 33 genes 

were found. The 10 most up-regulated transcripts included ribosomal protein S4, y-linked 1 

(RPS4Y1), major histocompatibility complex class II, DR beta 1 (HLA-DRB1), arginine and 

glutamate-rich protein 1 (ARGLU1), neuroblastoma breakpoint family, member 15 (NBPF15), 

adducin gamma 3 (ADD3), zinc finger and AN1-type domain 5 (ZFAND5), integrin binding 

protein beta 1 (ITGB1), cathepsin Z (CTSZ), calcium binding protein 39 (CAB39) and signal 

transducer and activator of transcription 1 (STAT1), whereas the most down-regulated genes 

are aminolevulinate, delta-, synthase 2 (ALAS2), carbonic anhydrase 1 (CA1), selenium binding 

protein 1 (SELENBP1), biliverdin reductase B (BLVRB), erythrocyte membrane protein band 42 

(EPB42), interferon, alpha-inducible protein 27 (IFI27), alpha hemoglobin stabilizing protein 

(AHSP), family with sequence similarity 46, member C (FAM46C), cell division cycle 34 

(CDC34), and peptidase inhibitor 3 (PI3), as shown in Table 3.1.3 as well as in Figure 3.2.  

In pathway analysis between patently infected and EN, 8 canonical pathways were identified. 

Among the top five activated pathways found were the T helper cell differentiation (p<3.89E-03) 

which associates with HLA-DRB1 and STAT1; hypoxia signaling (p<4.01E-03) associates with 

genes, such as CDC34 and UBE2D3; heme degradation pathway (p<6.02E-03) and tetrapyrrole 
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biosynthesis (p<7.52E-03) II involves BLVRB, whereas the heme biosynthesis II pathways 

(p<1.35E-02) is regulated by ALAS2 as shown Table 3.1.4.  

   

 Figure 3.2: Hematological disease, development and function regulatory network in patent infected relative 
to EN. 

Genes were differentially expressed at FC≥1. 3. Lines represent direct (solid lines) and indirect (dashed lines) 
relationships between molecules. Up-regulated genes are highlighted in red, down-regulated genes are shown in 
green; whereas gray indicates genes not differentially expressed but with defined relation to other genes in the 
network. (Key: circle=transcriptional regulator, upright diamond=enzyme, transverse diamond=peptidase, 
oval=transmembrane receptor, trapezoid= transporter, small circle=other). 

 

 

Network analysis revealed the hematological disease, development and function (Figure 3.2), 

the tissue morphology and post translational modification and increased level of potassium 

regulatory network to be altered between the patently and EN group as shown in (Table 3.1.5). 
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Both regulatory networks associate with molecular functions, inflammation, cellular growth and 

proliferation of immune cells. 

 

3.1.6 Comparison of regulated genes, canonical pathways and networks of latent vs EN  

Having addressed the comparison between all infected individuals towards EN, patent vs latent, 

patent vs EN, gene expression profiles between latently infected individuals and EN were 

considered. The 10 most regulated genes in this comparison following analysis with adjusted p-

value included adducin 3 (gamma) (ADD3), arginine and glutamate-rich protein 1(ARGLU1), 

calcium binding protein 39 (CAB39), zinc finger and AN1-Type domain 5 (ZFAND5), 

transmembrane protein 66 (TMEM66), actin related protein 2/3 complex (ARPC3), 

transmembrane protein 123 (TMEM123), ubiquitin-conjugating enzyme E2D 3 (UBE2D3), 

catalase (CAT) and cathepsin Z (CTSZ). After analysis without adjusted p-value, genes such as 

Charcot-Leyden crystal protein (CLC), ribonuclease, RNase A family, 2 (RNASE2), major 

histocompatibility complex, class II, DR beta 1 (HLA-DBR1), DEAD helicase 5 (DDX5), and o-

linked Nacetylglucosamine (GlcNAc) transferase (OGT) were identified and differed from those 

found in the adjusted p-value category (Table 3.1.3). The majority of these regulated genes 

associate with inflammation, cell migration, cell movement and most notably eosinophil 

development and activity. Among these were CLC and RNASE2, which are associated to the 

development and functionality of eosinophils [134], (Table 3.1.3). To determine the immune 

pathways, which differ between latent infection relative to EN, a comparative analysis revealed 

20 canonical pathways. The top five of these canonical pathways were Actin Nucleation by 

ARP-WASP Complex (p<7.55E-04), Rac signaling (p<2.53E-03), Cdc42 signaling (p<3.58E-03), 

RhoGD1 signaling (p<6.88E-03) which are regulated by ARGLU1 and ARPC3. Genes such as 

ZFAND5, HLA-DRB1, TMEM66 and TMEM123 are involved in CD28 signaling in T helper cells 

(p<6.67E-03) as described in Table 3.1.4. In comparative analysis on regulated genes without 

adjusted p-value, 22 canonical pathways were identified (Table 3.1.4).  

The two regulatory networks identified include the cell death and survival with a score of 28 and  

cell-to-cell signaling interaction, post-translational and modification, cellular assembly and 

organization with network score of 2 (Table 3.1.5). In a further comparison without adjusted p-

value, two different regulatory networks were identified. These are the cell-to-cell signaling 

interaction and immune trafficking with a score of 24, and the tissue morphology and post 

translational modification with a predicted score of 22. Thus, the activation of these immune 
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regulatory networks suggests that stronger immune activation is associated with the latent 

infection in which individuals do not have peripheral MF. 

 

Table 3.1.3:  Regulated genes in W. bancrofti-infected groups and EN 

Inf. vs 

EN
1
 

FC Inf. vs 

EN
2
 

FC MF+ vs 

MF-
2
 

FC MF+ vs 

EN
2 

FC MF-vs 

EN
1
 

FC MF-vs 

EN
2
 

FC 

UPREGULATED 

ADD3 1.39 CLC 1.46 RPS4Y1 1.35 RPS4Y1 1.73 ADD3 1.40 CLC 1.58 

ARGLU1 1.38 HLA-

DRB1 

1.45   HLA-

DRB1 

1.49 ARGLU1 1.38 RNASE2  1.49 

ZFAND5 1.36 RPS4Y1 1.44   ARGLU1 1.39 CAB39 1.37 HLA-

DRB1 

1.43 

CAB39 1.35 RNASE2 1.44   NBPF10 1.39 ZFAND5 1.37 ADD3 1.40     

ITGB1 1.32 ADD3 1.39   ADD3 1.38 TMEM66 1.34 ARGLU1 1.39 

DDX5 1.32 ARGLU1 1.38   HLA-H 1.38 ARPC3 1.32 CAB39 1.37 

CTSZ 1.32 ZFAND5 1.36   ITGB1 1.37 TMEM123 1.32 ZFAND5 1.37 

TMEM66 1.32 CAB39 1.35   ZFAND5 1.37 UBE2D3 1.32 DDX5 1.36 

OGT 1.31 DDX5 1.32   CTSZ 1.36 CAT 1.31 TMEM66 1.34 

UBE2D3 1.31 CTSZ 1.32   CAB39 1.34 CTSZ 1.31 OGT 1.31 

 

DOWNREGULATED 

    Unknown -1.44 CA1 -1.45     

    CA1 -1.43 ALAS2 -1.48     

    Unknown -1.38 Unknown -1.61     

    ALAS2 -1.38       

The table lists genes whose expression, in the filarial infected patients, exceeded that of endemic normals 1.3 fold 
(FC ≥1.3). Inf: Infected, MF: microfilariae, EN: endemic normals, FC: fold change, ¹ (FC≥1. 3, adj. p<0.05),  ² (FC 
≥1. 3) 

 

With regard to all regulated genes in the various comparisons, there were some similarities and 

differences in the pattern of gene expression after analysis with adjusted p-value as well as 

following analysis without adjusted p-value. For instance, among the 10 most regulated genes in 

the infected vs EN, 8 of these were also found in the comparison between MF- vs EN, however, 

there were no regulated genes in comparison between MF+ vs MF-. In the analysis without 

adjusted p-value in the infected vs EN, 6 genes were similarly expressed in MF+ vs EN, while 7 

were also found to be similarly expressed in MF- vs EN. Interestingly, it was observed that in the 

analysis without adjusted p-value, genes such as CLC/Gal-10 and RNASE2 were highly 

upregulated in the infected individuals when compared to the EN group, as well as MF- vs EN 

as shown in Table 3.1.3.  
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Table 3.1.4: Predicted canonical pathways in W. bancrofti-infected groups and EN 

Inf. vs EN
1 

Inf. vs EN
2
 MF+ vs MF-

2
 MF+ vs EN

2
 MF- vs EN

1 
MF- vs EN

2 

Actin 

Nucleation 

by ARP-

WASP 

Complex 

Cdc42 

signaling 

Tetrapyrrole 

Biosynthesis II  

T helper cell 

differentiation 

Actin 

Nucleation by 

ARP-WASP 

Complex 

Cdc42 signaling 

Cdc42 

signaling 

Actin 

Nucleation by 

ARP-WASP 

Complex 

Heme 

Biosynthesis II  

Hypoxia 

signaling 

Rac signaling Actin Nucleation by 

ARP-WASP Complex 

Rac signaling Rac signaling Regulation of 

eIF4 and 

p70S6K 

signaling  

Heme 

Degradation 

Cdc42 

signaling 

Rac signaling 

RhoGD1 

signaling 

CD28 

signaling in T 

helper Cells 

EIF2 signaling  Tetrapyrrole 

Biosynthesis II 

RhoGD1 

signaling 

Superoxide Radicals 

Degradation 

Ephrin 

receptor 

signaling 

Regulation of 

eIF4 and 

p70S6K 

signaling 

 Heme 

Biosynthesis 

CD28 signaling 

in T helper 

Cells 

CD28 signaling in T 

helper Cells 

Inf: Infected, MF: microfilariae, EN: endemic normals, ¹ (FC≥1. 3, adj. p<0.05),  ² (FC ≥1. 3). 

 

Similar to the regulated genes, there were some similarities and differences, with regard to 

pathway analysis in this study. Interestingly, out of the top 5 pathways, when comparing infected 

vs EN, 4 were also found in MF- vs EN, while none of these were identified in comparison 

between MF+ vs MF-. These regulated pathways in infected vs EN as well as in MF- vs EN 

indicate active immune response in these groups and reflect the increased transcripts, which 

associate with immune cell migration and cellular trafficking. In contrast, the pathways found in 

comparison between MF+ vs MF- were tetrapyrrole biosynthesis, heme biosynthesis and 

regulation of eIF4 and p70S6K signaling (Table 3.1.4). In network analysis, there were 

similarities in the networks identified in the infected vs EN as well as MF- vs EN and 

predominantly associate with cell to-cell signaling and interaction, whilst between MF+ vs MF- 

the cell morphology and development network was revealed.  
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Table 3.1.5: Regulated networks in W. bancrofti-infected groups and EN 

Inf. vs EN
1 

SC Inf. vs EN
2
 SC MF+ vs MF-

2 
SC MF+ vs EN

2
 SC MF- vs EN

1 
SC MF- vs EN

2
 SC 

Cell-To-Cell 
migration 
and signaling 
interaction 

33 Hematological 
diseases and 
cell to  cell 
signaling 
interaction 

28 Cell 
Morphology 
and 
Development 

9 Hematologic
al disease, 
development 
and function 

35 Cell death and 
survival 

28 Cell-To-Cell 
signaling 
interaction 
and immune  
trafficking 

24 

  Post-
translational 
modification  

14   Tissue 
morphology 
and post 
translational 
modification, 
increased 
level of 
potassium 

24 Cell-To- Cell 
signaling and 
interaction 
post-
translational 
and 
modification, 
Cellular 
assembly and 
organization 

2 

 

 
 

Inf: Infected, MF: microfilariae, EN: endemic normals, SC: score, ¹ (FC≥1. 3, adj. p<0.05),  ² (FC ≥1. 3). 
 
 

3.1.7 Impact of confounding factors: Comparison of regulated genes, canonical 

pathways and networks of regional differences  

Given that gene expression patterns may be significantly altered by a number of factors, the 

study further determined whether regional differences influenced the gene expression profile. 

The W. bancrofti study was conducted in the two regional areas, i.e. Ahanta West and Nzema 

East districts. Although, communities within the two regions are close to each other, the 

intensity and transmission of W. bancrofti infection, as well as rounds of ivermectin treatment 

(MDA programme) are expected to vary from one community/region to another. Further 

comparative analysis showed that the single factor that strongly influenced gene expression 

profiles in this study was whether the participants originated from Ahanta West or Nzema East. 

Remarkably, 197 genes were differentially regulated using the first analysis strategy, while 267 

genes were found to be regulated using the second comparison approach as shown in Table 

3.1.6. 

Table 3.1.6: Number of differentially expressed genes identified in Ahanta West relative to Nzema East 

W. bancrofti infection adj. p<0.05;FC≥ 1.3 FC≥1.3 

Ahanta West vs Nzema East 197 267 

The table presents the number of regulated genes in the Ahanta West samples compared Nzema East. 

Among the top 10 up-regulated genes (in Ahanta West samples relative to Nzema East 

samples) were the family with sequence similarity 73, member A (FAM73A), zinc finger protein 

682 (ZNF682), solute carrier family 4, sodium bicarbonate co-transporter, member 5 (SLC4A5), 
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zinc finger protein 223 (ZNF223), dopey family member 2 (DOPEY2), family with sequence 

similarity 175, member A (FAM175), HAUS augmin-like complex, subunit 2 (HAUS2), small 

integral membrane protein 14 (SMIM14), X-ray repair complementing defective repair in chinese 

hamster cells 2 (XRCC2) and protein tyrosine phosphatase-like A domain containing 2 

(PTPLAD2). On the contrary, genes such as RPS4Y1, ARGLU1, CAB39, OGT, ADD3, 

TMEM66, UBE2D3, ZFAND5, ribosomal protein L17 (RPL17) as well as protein kinase, cAMP-

dependent, regulatory type I alpha (PRKAR1A) were down-regulated in the Ahanta West 

samples compared to Nzema East (Table 3.1.7). 

 

Table 3.1.7: Top 10 significantly regulated genes based on study regions 

AW vs NZ
1 

FC AW vs NZ
2
 FC  

UP-REGULATED 

FAM73A 1.44 SEMA3E 1.46 

ZNF682 1.41 FAM73A 1.44 

SLC4A5 1.40 SNAPC1  1.42 

ZNF223 1.40 BLZF1 1.41 

DOPEY2 1.39 CHRNA5  1.41 

FAM175A 1.39 ZNF682 1.41 

HAUS2 1.39 SLC4A5 1.40 

SMIM14 1.39 ZNF223 1.40 

XRCC2 1.39 BLOC1S6  1.39 

PTPLAD2 1.37 C11orf63 1.39 
 

DOWN-REGULATED 

RPS4Y1 -1.53 RPS4Y1 -1.53 

ARGLU1 -1.46 ARGLU1 -1.46 

CAB39 -1.46 CAB39 -1.46 

OGT -1.41 OGT -1.41 

ADD3 -1,40 ADD3 -1,40 

TMEM66 -1.39 TMEM66 -1.39 

UBE2D3 -1.37 UBE2D3 -1.37 

ZFAND5 -1.36 ZFAND5 -1.36 

RPL17 -1.36 RPL17 -1.36 

PRKARIA -1.36 PRKARIA -1.36 

The table lists the genes whose expression fold change exceeded ¹ (FC≥1. 3, adj. p<0.05) and (FC≥1. 3) in the 
Ahanta West (AW), compared to the, Nzema East (NE) samples. The gene expression data are denoted as the fold 
change for those genes that demonstrated an FDR of less than 0.05; associated with or without adjusted p-values as 

shown in parentheses. Fold change (FC). 
 

Next, canonical pathway analysis was performed and surprisingly among the regulated 

pathways, the top five (5) were all down-regulated in Ahanta West compared to Nzema East. 

These included eIF2 signaling (p<8.7E-05) associated with genes, such as EIFA42, PP1CC, 

RPL17, RPS3A and RPS4Y1, the chondroitin sulfate degradation (p<4.52E-04) and dermatan 
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sulfate degradation (p<5.33E-04) involved with CD44 and MGEA5, the regulation of eIF4 and 

p70S6K (p<5.43E-04) linked with EIFA2, PAIP2, RPS3A and RPS4Y1, whereas CREB1, 

PPP1CC, PRKAR1A, YWHAQ are associated with the ERK/MAPK  signaling (p<1.43E-03) 

(Table 3.1.7). 

Such strong differences in gene expression between the two study areas were highly 

unexpected. To determine whether such a similar scenario reflects the activity of regulatory 

networks between the two areas, a comparative analysis was performed. In all, the regulated 

networks included the cell and organ morphology, reproductive system development and 

function, the cellular assembly and organization, cellular function and maintenance, cell cycle 

and the protein synthesis, gene expression, cell death and survival (Table 3.1.8). The 

predominant molecular and cellular functions associated with these networks included cell 

growth and proliferation, gene expression, protein synthesis, cell morphology and post-

translational modification. In analysis without adjusted p-value, activated networks are listed in 

Table 3.1.8.  

Table 3.1.8: Regulated networks in study regions 

AW vs EN
1 

SC AW vs EN
2
 SC 

Cell Morphology and 

Organization Morphology 

39 Amino Acid Metabolism, Small Molecule Biochemistry, 

DNA Replication, Recombination, and Repair 

37 

Cellular Assembly and 

Organization 

31 Nutritional Disease, Psychological Disorders, Cellular  

Assembly and Organization 

30 

Protein synthesis and Gene 

Expression 

30 Cellular Assembly and Organization, Cellular Function and 

Maintenance, Cell Cycle 

30 

  Cell Morphology, Organ Morphology, Reproductive System 

Development and Function 

29 

  Cellular Assembly and Organization, Cellular Function and  

Maintenance, Development and Function 

27 

The table presents lists of regulatory networks activated in the Ahanta West compared Nzema East. ¹ (FC≥1. 3, adj. 
p<0.05) and ² (FC≥1. 3). 

 

3.1.8 Impact of confounding factors: after removal of individuals with IVM treatment and 

/ or other parasite infections  

Almost 57.6% of the study participants (EN, n =31, MF+, n =24, MF-, n =51) were co-infected 

with other known parasites such as helminths or protozoa and had had prior MDA treatment 

(Table 3.1.9). Thus, to explore whether gene expression profiles were significantly altered after 

the removal of individuals with other known infections and/or had IVM treatment, further group-

wise analysis was performed. While there were no differences in the gene expression pattern at 
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adjusted p-value of 0.05 and FC ≥1.3; across group comparisons, some genes were detected at 

FC ≥1.3, without adjusted p-value in the various groups as shown in Table 3.1.10. 

Table 3.1.9: Rounds of IVM intake and proportion of other known parasites across study groups 

 Total (N=184) EN (N=57) MF+ (N=52) MF- (75) 

Without IVM N=103 N=28 N=35 N=40 

1 round of IVM treatment  N=69 N=29 N=16 N=24 

2 rounds of IVM treatment  N=12 - N=1 N=11 

Plasmodium falciparum N=5 N=2 - N=3 

P. falciparum + Giardia N=2 - - N=2 

P. falciparum + Ascaris N=1 - - N=1 

P. vivax N=1 - - N=1 

Giardia  N=4 - N=1 N=3 

Ascaris N=8 N=2 N=2 N=4 

Ascaris + Hookworm N=2 - - N=2 

Trichuris  N=4 - N=1 N=3 

Hookworm N=3 - N=3 - 

Schistosoma N=1 - - N=1 

No other infection or round of 

IVM 

N=78 N=26 N=28 N=24 

The table describes rounds of ivermectin (IVM) intake and the number (N) other parasites across study groups. 

 

Table 3.1.10: Regulated genes in W. bancrofti-infected groups and EN individuals without co-infection 
and/or IVM treatment 

Groups  FC≥3;adj.p<0.05 FC≥3 

Patent v latent 0 204 

Patent v EN 0 94 

Latent v EN 0 139 

The table describes differentially expressed genes across study groups after removal of individuals who have other 
known infections (Helminth, Protozoa or Malaria) and had IVM treatment. 

3.1.8.1 Comparison of regulated genes, canonical pathways and networks of patent and 

latent infection after removal of individuals with IVM treatment and/or had other 

parasite infections  

The classification into patent and latent groups provides a framework for understanding the 

immune regulation in infected individuals. Since the primary aim of this study was to identify the 

factors that drive these two infection phenotypes, further analyses were performed to explore W. 

bancrofti-specific determinants between these groups. Here, the top 5 highly regulated genes 

are described. When compared to latent infected individuals, genes such as granzyme B 

(GZMB), granzyme A (GZMA), granzyme H (GZMH), granulysin (GNLY), myomesin 2 
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(MYOM2), chemokine ligand 5 (CCL5) were upregulated in patently infected, whilst carbonic 

anhydrase 1 (CA1), membrane protein palmitoylated 1 (MPP1), aminolevulinate, delta-synthase 

2 (ALAS2) and interferon, alpha-inducible protein 27 (IF127) were down regulated in the 

patently infected individuals as shown in Table 3.1.11.  

 
Table 3.1.11: Number of statistically significant differentially expressed genes identified across 
comparisons in individuals without IVM treatment 

 
MF+ vs MF-

2
 FC MF+ vs EN

2 
FC MF- vs EN

2
 FC 

UP-REGULATED 

 GZMB 1.84 HLA-DRB1 1.97 HLA-DRB1 1.91 

 GZMH 1.67 RPS4Y1 1.73 Unknown 1.52 

 GNLY 1.61 Unknown 1.61 RPS4Y1 1.51 

 MYOM2 1.61 LOC644936 1.46 LYZ 1.49 

 Unknown 1.53 LOC100133678 1.43 LYZ 1.47 

 FGFBP2 1.52 Unknown 1.42 S100A8 1.43 

 LOC100133678 1.51 ZFAND5 1.41 C1orf128 1.40 

 GZMA 1.49 RPS29 1.41 CA1 1.40 

 RASSF6 1.46 CTSZ 1.4 MPP1 1.39 

 CCL5 1.46 ARGLU1 1.4 LOC644936 1.39 

 

DOWN-REGULATED 

 Unknown -2.00 Unknown -1.97 GZMH -1.78 

 CA1 -1.93 SPRYD3 -1.75 GZMB -1.62 

 MPP1 -1.85 Unknown -1.74 GNLY -1.56 

 ALAS2 -1.80 DPYSL5 -1.71 BLZF1 -1.48 

 IFI27 -1.78 Unknown -1.65 TNFSF15 -1.45 

 SNCA -1.78 MUC6 -1.62 ZNF577 -1.44 

 SELENBP1 -1.77 LOC100131391 -1.60 TRIM13 -1.44 

 C1orf128 -1.66 RN18S1 -1.59 SEMA3E -1.42 

 SLC4A1 -1.65 Unknown -1.56 LOC100128288 -1.42 

 EPB42 -1.60 IFI27 -1.54 GZMA -1.42 

Table lists regulated genes in patent, latent infected and EN (after removal of individuals with other helminths and 
had IVM treatment) in which expression had exceeded 1.3 fold ² (FC≥1. 3). 
 

 

Canonical pathways predicted on IPA to be involved in the patently infected relative to latently 

infected were the chemokine signaling (p<1.40E-03), which associates with CCL5, granzyme B 

signaling (p<5.66E-03) which happens to be activated by GZMB. The granzyme A signaling 

(p<6.38E-03) pathway known to be regulated by GZMA, while calcium signaling (p<7.38E-03) 

and NFAT signaling (p<8.31E-03) associate with MYOM2 (Table 3.1.12). 

 



Kwarteng A.                                                                         Results  

 

49 

 

Table 3.1.12: Regulated pathways in W. bancrofti-infected and EN individuals without co-infection and IVM 
treatment 

 

Table 3.1.13: Regulated networks in W. bancrofti-infected and EN individuals without co-infection and/or 
IVM treatment 

MF+ vs MF-
2 

SC MF+ vs EN
2
 SC MF- vs EN

2
 SC 

Antimicrobial Response 46 Cell Death and Survival, 
Cellular Assembly and 
Organization, Cellular 
Compromise  

39 Cellular Development, 
Organismal Survival, Nervous 
System Development and 
Function 

20 

Amino Acid Metabolism    
Small molecules 

36 Cell Morphology, Cellular 
Function and Maintenance, 
DNA Replication, 
Recombination, and Repair 

34   

 Dermatological diseases 33 Nervous System 
Development and Function, 
Tissue Development, Tissue 
Morphology  

30   

Metabolism Disease, 
Cellular  Compromise 

29 Carbohydrate Metabolism, 
Developmental Disorder, 
Gastrointestinal Disease 

26   

Small Molecular , Nucleic 
acid Metabolism Cellular 
Movement 

27 Cell Death and Survival, 
Cellular Assembly and 
Organization, Cellular 
Compromise  

2   

The table lists networks activated in comparisons of these groups: MF+, MF+ and EN ² (FC≥1. 3). SC: score. 

 

Activation of these pathways suggests enhanced innate and adaptive immune responses in 

patently infected individuals with only W. bancrofti infection. On regulated networks, the 

antimicrobial response network was identified with a score of 46 (Figure 3.3) and (Table 3.1.13), 

while the amino acid metabolism small molecules network had the second highest score of 36. 

The third, fourth and fifth networks had scores of 33, 29 and 27, respectively as shown in Table 

3.1.13. These networks correlate with antimicrobial activity, small molecules biochemistry, 

phagocytosis, nucleic acid metabolism, cell-to-cell signaling and interactions, cell death and 

survival. 

 

MF+ vs MF-
2
 MF+ vs EN

2
 MF- vs EN

2 

Chemokine signaling  Regulation of eIF4 and p70S6K 
Signaling 

Superoxide Radicals Degradation  

Granzyme B signaling  EIF2 signaling Ethanol Degradation IV 

Granzyme A signaling  T helper Cell Differentiation Semaphorin signaling in Neurons 

Calcium signaling  B Cell Development Amyotrophic Lateral Sclerosis 
signaling 

NFAT signaling Crosstalk between Dendritic Cells 
and Natural Killer Cells 
 

Mitochondrial Dysfunction 

The table describes the canonical pathways for genes whose fold change exceeded (FC ≥1.3) in the MF+, MF- and 
EN groups, ² (FC≥1. 3). 
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Figure 3.3: Antimicrobial response network in patent relative to latent infected individuals. 

Genes were differentially expressed at FC≥1. 3. Lines represent direct relationships between molecules. Up-
regulated genes are highlighted in red, down-regulated genes are shown in green; whereas gray indicates genes 
not differentially expressed but with defined relation to other genes in the network. (Key: circle=transcriptional 
regulator, upright diamond=enzyme, tranverse diamond=peptidase, rectangle=G protein coupled receptor, 
trapezoid= transporter, oval= transmembrane receptor, square=cytokine, triangle=phosphatase, small circle=other) 

 

 

3.2 Onchocerca volvulus infection  

 
3.2.1 Characteristics of study population: Onchocera volvulus infection 

Similarly, 224 individuals were recruited for the O. volvulus study. Study subjects were 

categorized as EN (n =58), MF+ (n= 114) and a-MF (n=52), depending on skin MF and nodule. 

Of these, 102 (45.5%) were female and 122 (54.5%) were male. The median age for individuals 

in this study was similar as described for the W. bancrofti study. The proportion of MF/skin mg 

ranged from 0.1-86.10 MF/mg. The number of nodules was higher in MF+ compared to a-MF 
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individuals. In this study, percentage of rounds of IVM intake for 0/1 is for EN: 69% and 31%, 

MF+ = 60.5% and 39.5%, a-MF= 53.8% and 48.2%. The number of individuals with co-infection 

is also indicated in Table 3.2.1. For the O. volvulus infection study, microarray experiments were 

only performed between the EN and MF+ groups. 

 

Table 3.2.1: Characteristics of the study population O. volvulus infection 

 EN (n=58) MF+ (n=114) a-MF (n=52) 

Age (median) 40 (18-55) 40 (19-55) 38.5 (19-55) 

Sex (F/M) 37/21 42/72 23/29 

MF load (mg/skin) - 8.99 (0.1-86.10)  - 

Number of nodules - 1.97 (1-9) 1.16 (1-5) 

Rounds of IVM (0/1) 40/18  69/45  28/24 

Co-infections  11  20 9 

Age: median (range); sex: number of (F/M=female/male); IVM: rounds (0, or 1); MF count: mean (range); EN: 
endemic normals; MF: microfilaria, amicrofilaridermia: a-MF. 

 

3.2.2 Transcriptomics of O. volvulus-infected compared to EN using ingenuity pathway 

analysis (IPA) 

Analysis of the transcriptome was performed on whole blood derived from O. volvulus-infected 

individuals. The methods are equal to those described for the W. bancrofti infection. In the first 

comparison, none of the genes exceeded the cut-off as described in section 3.1.2. Therefore, 

the second comparative analysis approach was applied, after which 10 genes were identified 

(Table 3.2.2).  

Table 3.2.2: Differentially expressed genes identified across comparisons in O. volvulus-infected compared 
to EN. 

O. volvulus infection adj. p<0.05;FC≥ 1.3 FC≥1.3 

Infected (MF+) vs EN 0 10 

The table presents the number of genes whose expression in the O.volvulus-infected compared to EN exceeded 1.3 

fold (FC ≥1.3). Microarray data are denoted for those genes that demonstrated an FDR less than 0.05; associated 
with or without adjusted p-values. 

 

3.2.3 Comparison of regulated genes, canonical pathways and networks of O. volvulus-

infected vs EN 

A fascinating feature that characterizes onchocerciasis infection lies in the fact that the majority 

of infected individuals harbours relatively high parasite loads with an average of approximately 

1-500 MF/mg skin [5]. This infection phenotype suggests a more compromised immune 

response hence promoting adult worm development. Transmission of infection is facilitated by 
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the large number of MF released by the worm over its average life expectancy of 10 years and 

the immunoregulatory mechanisms by the worm which facilitates MF survival. To delineate the 

underlying molecular mechanisms in this infection, the transcriptome data between the O. 

volvulus-infected was compared to endemic normals.  Ten (10) genes were found to be 

expressed exceeding a cut-off at 1.3 fold (FC≥1.3) (see Table 3.2.3). Most of these up-regulated 

genes have a strong association with effector functions of eosinophils and include: Charcot-

Leyden crystal protein (CLC), ribonuclease, RNase A family, 2 (RNASE2), ribonuclease, RNase 

A family, 3 (RNASE3), chemokine receptor 3 (CCR3) and CD24 molecule (CD24) and 

neutrophils which comprise of: catalase (CAT), defensin, alpha 1 (DEFA1) and cathelicidin 

antimicrobial peptide (CAMP), defensin, beta1 (DEFB1). Interestingly, it was observed that 

genes, such as CLC, RNASE2 and RPS4Y1 were the most commonly up-regulated transcripts 

which popped-up across the comparisons in the W. bancrofti infection as described in Table 

3.1.3. 

 

Table 3.2.3: Differentially expressed genes in O. volvulus-infected relative to EN 

(Infected vs EN)² UP-REGULATED GENES   FC 

 
 

CLC  1.89 

 RNASE2  1.68 

 RPS4Y1  1.65 

 DEFA1  1.55 

 RNASE3  1.47 

 CAT  1.40 

 CCR3  1.37 

 CD24  1.36 

 CAMP  1.34 

 DEFB1  1.33 

This table shows genes whose expression in the O. volvulus-infected patients exceeded that of endemic normals 

1.3 fold ² (FC ≥1. 3), Endemic normals. Microarray data are denoted for those genes that demonstrated an FDR of 
less than 0.05; without adjusted p- values. FC, Fold change. 

 

Within this comparison, 10 canonical pathways were predicted by IPA. Among the top 8 

regulated canonical pathways identified in the O. volvulus-infected subjects included the 

chemokine signaling (p<4.06E-02) and CCR3 signaling in eosinophils (p<6.60E-02), which 

supports the involvement of eosinophils in O. volvulus infection. In addition, pathways such as 

superoxide radicals degradation (p<3.64E-03) [135], ethanol degradation IV (p<1.03E-02) 

associate with eosinophil metabolism as well as the protein synthesis regulatory signaling, 
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whereas VDR/RXR Activation (p<4.58E-02) promotes Th2 differentiation. Th2 responses and 

eosinophil function are important players in the defence against helminth parasites, such as 

filariae. Regulation of eIF4 and p70S6K signaling (p<8.30E-02) and EIF2 signaling (p<9.92E-02) 

involved in protein synthesis were also found to be up-regulated in the infected group compared 

to endemic normals Table 3.2.4. 

Table 3.2.4:  Regulated canonical pathways in O. volvulus-infected relative to EN 

(Infected vs. EN) ²  Superoxide Radicals Degradation   

 Ethanol Degradation IV   

 Chemokine signaling   

 VDR/RXR Activation   

 Amyotrophic Lateral Sclerosis signaling   

 CCR3 signaling in Eosinophils  

 Regulation of eIF4 and p70S6K signaling  

 EIF2 signaling  

The table describes the canonical pathways for genes whose folds change exceeded ² (FC ≥1. 3) in O. volvulus-
infected patients relative to endemic normals (EN). P-values were determined using the two-sided Fisher's exact 

test [137]. 

As described for W. bancrofti infection, the regulatory networks induced in O. volvulus-infected 

individuals compared to EN group were determined. Regulatory networks between the infected 

versus EN identified included the infectious diseases, respiratory diseases and cellular 

movement, hematological system development and function, hypersensitivity responses (Table 

3.2.5).  

 
Table 3.2.5: Regulated networks in O. volvulus-infected relative to EN 

(Infected vs EN)² Networks SC 

 Infectious Disease, Respiratory Disease, Cellular 
Movement 23 

   Cellular Movement, Hematological System   
Development and Function, Hypersensitivity 
Response 

2 

The table shows regulatory networks activated in the O.volvulus-infected individuals against EN. ² (FC≥1. 3). SC: 
score. 

 

These networks associate with bio-functions, such as chemotaxis of eosinophils, neutrophils as 

well as cell movement of phagocytes. In the first regulatory network, although not being 

themselves activated, the main nuclear localized transcriptional factors were NF-kappa B 

complex and STAT3 seem to contribute essential to the function of this network (Figure 3.4) as 

they are known to involve in p38MAPK and ERK1/2 phosphorylation resulting in increased NF-
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kappa B activity [136]. Interesting among the activated genes in this network was CLC. CLC 

regulate important cytokine signaling proteins, such as JAK1, JAK2 and STAT3 and were 

themselves regulated by the IL-6 signal transduction. These genes associate with the function 

and development of eosinophil and neutrophil activated, indicating the importance of these cells 

during O. volvulus infection. 

 

 

 

 Figure 3.4: Infectious disease, respiratory diseases and cellular movement network in O. volvulus-infected 
patients relative to EN. 

Genes were differentially expressed at FC≥1. 3. Lines represent direct (solid lines) and indirect (dashed lines) 
relationships between molecules. Up-regulated genes are highlighted in red, whereas gray indicates genes not 
differentially expressed but with defined relation to other genes in the network. (Key: circle=transcriptional 
regulator, upright diamond=enzyme, rectangle=G protein coupled receptor, oval=transmembrane receptor, 
square=cytokine, triangle=phosphatase, double circle=complex group, small=other) 
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3.2.4 Impact of confounding factors 

Similarly, gene expression profiles from individuals with O. volvulus infection were performed to 

determine whether other confounding factors influenced our gene expression data. However, 

none of the factors analysed was found to influence the transcriptomic data in these cohorts. 

3.2.5 Summary of the top ten differentially regulated genes in W. bancrofti and O. 

volvulus-infected subjects 

Comparative transcriptome analysis across the various infection groups revealed that inasmuch 

as both filarial parasites induced several different sets of genes, three genes were similarly 

expressed. While more genes were regulated in W. bancrofti-infected individuals, the intensity 

of expression (fold change) was stronger in the O. volvulus-infected group. Such differential 

regulation suggests that different filarial parasites induce specific immune responses despite 

their evolutionary similarities. Genes induced by W. bancrofti-infected are shown in the left 

circle, whereas the right circle contains set of genes highly expressed in O. volvulus-infected 

subjects (Figure 3.5). Two of the three differentially expressed genes (CLC and RNASE-2) are 

known to enhance both the development and functions of eosinophils, while the third gene, 

RPS4Y1 associates with gender clustering in the data set. Such regulations reliably confirm 

previous reports on the role eosinophils in filarial biology. The next section of the results will 

focus on selected genes regulated in the transcriptome data, such as CLC/Gal-10, GZMB and 

GZMA among others that were further characterized at the in vitro level in order to establish 

their role in filarial infections. 
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Figure 3.5: Ten most highly regulated genes in W. bancrofti and O. volvulus 

 
 
3.3 Higher levels of CLC/Galectin-10 protein in plasma from MF+ infected individuals 

To confirm the up-regulation of the CLC/Gal-10 gene in the microarray data (W. bancrofti and O. 

volvulus), see Tables 3.1.3 and 3.2.3, CLC/Gal-10 was further investigated at the protein level. 

To this, CLC/Gal-10 protein levels in plasma from the study participants (in both infection 

cohorts) whose blood was previously subjected to the transcriptome study were measured by 

ELISA. In keeping with the gene expression data, there were significantly higher levels of 

CLC/Gal-10 in the plasma of both W. bancrofti and O. volvulus-infected individuals when 

compared to levels in EN (Figures 3.6 A and B), respectively. 
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 Figure 3.6: Plasma levels of CLC/Gal-10 protein in filarial-infected subjects compared to the EN group. 
A and B represent the amount of plasma CLC/Gal-10 in individuals with W. bancrofti and O. volvulus infections 
compared to EN, respectively, whereas C and D depict levels CLC/Gal-10 in subjects with W. bancrofti (EN=47, 
MF+=48, MF+ n=70) and O. volvulus (EN n=58, MF+ n=114, MF- n=52) based on infection status. The levels of 
CLC/Gal-10 (pg/ml) were measured using ELISA. Graphs show box whiskers with outliers. Data of each group were 
compared using Kruskal-Wallis test and Mann-Whitney test and significant differences are given as *p< 0.05, **p< 0. 
01 and ***p<0.001. 

 

 

A subsequent analysis within the groups based on MF status showed increased levels of 

plasma CLC/Gal-10 protein in infected individuals that were MF+ when compared to EN or 

those not presenting MF in both infections (Figures 3.6 C and D). The level of CLC/Gal-10 was 

also significantly higher in MF- or a-MF patients when compared to the EN group. In contrast to 

the protein expression data, the level of CLC/Gal-10 in the gene expression data was higher in 

MF- when compared to MF+ (Table 3.1.3). 

 



Kwarteng A.                                                                         Results  

 

58 

 

0
50

00

10
00

0

15
00

0

20
00

0
0

1000

2000

3000

4000 r=-0.07371
p=0.6185

A

CLC [pg/ml]

W
. 

ba
nc

ro
ft

i
M

F
/m

l

0
50

00

10
00

0

15
00

0

20
00

0
0

20

40

60

80

100
   r=-0.01407

 p=0.8819

B

CLC [pg/ml]

O
. 

vo
lv

ul
us

  
 M

F
/m

g

3.3.1 Relationship between levels of CLC/Gal-10 protein in plasma and peripheral blood 

or skin MF 

The role of CLC/Gal-10 protein continues to be debated. While it is believed to have protective 

immunity, recent studies have attributed it with regulatory functions [69].  In filariasis, individuals 

without MF have enhanced adaptive immune responses, while the presence of MF is 

associated with immunosuppression. Since the data described above showed that CLC/ Gal-10 

levels are higher in infected individuals and more importantly in MF+ patients, further 

investigations were performed, namely a correlation between the CLC/Gal-10 level and the 

number of MF. Albeit being highly expressed in MF+ individuals, there was no correlation 

between MF levels and the plasma levels of CLC/Gal-10 (Figures 3.7 A and B) using the 

Spearman correlation test. This was consistent for both infections. It has to be noted that MF 

load of patients does not reflect the adult parasite load, as they do undergo reproductive cycles, 

leading to varying MF levels in the periphery. 

   

 Figure 3.7: CLC/Gal-10 protein levels in plasma do not correlate with peripheral MF. 

The levels of CLC/Gal-10 protein in plasma and peripheral blood or dermal MF counts were correlated for both 
sets of filarial-infected individuals as shown in (A) W. bancrofti (r=-0.07371; p=0. 6185), and (B) O. volvulus (r=-
0.01407; p=0. 8819), respectively. As indicated, there was no correlation between CLC/Gal-10 protein and 
peripheral blood or skin MF in both infections using non-parametric Spearman test. 

 

 
3.3.2 Increased frequency of peripheral eosinophil in absence of MF 

Increased expression of eosinophil and neutrophil-associated transcripts were observed in the 

transcriptome data. Interestingly, the most commonly regulated transcript (CLC/Gal-10) in the 

transcriptome of both studies is primarily produced by eosinophils. Eosinophils promote 

protective immunity in filarial infections [137] and as such contribute significantly to filarial 

infection outcome. Eosinophils in addition to basophils and mast cells contain granules and are 

the cells, which attack extracellular large parasites. To investigate whether filarial nematodes 
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lead to alterations in blood cell types, blood smears of study subjects were assessed for the 

absolute cell counts of eosinophils and neutrophils using standard Grünwald-Giemsa staining 

procedure.  

 

 

 

 Figure 3.8: Frequencies of blood eosinophils and neutrophils in individuals with filarial infections. 

Total white blood counts were determined with a haemocytometer. The absolute numbers of leukocytes were 
determined from differential counts in peripheral blood smears stained with a pre-diluted May-Grünwald solution (Carl 
Roth, Karlsruhe, Germany) and Giemsa solution (Merck, Darmstadt, Germany). The absolute number was calculated 
from the white blood cell count and differential count. Results show increased eosinophil and neutrophil numbers in 
the W. bancrofti-and O. volvulus-infected individuals compared to their endemic normals. Frequencies of eosinophils 
in W. bancrofti study (EN=49, MF+=46, MF-=73) (A) and neutrophils in W. bancrofti study (EN=51, MF+=52, MF-=73) 
(B) are described.  Similarly, in O. volvulus infection, frequencies of eosinophils (EN=55, MF+=89, a-MF=38) (C) and 

neutrophil (EN=55, MF+=89, a-MF=38) (D) are shown. Graphs show box whiskers with outliers. Data of each group 
were compared using Kruskal-Wallis test and Mann-Whitney test and significant differences are given as *p< 0. 05. 

 

 

 

In the W. bancrofti-infected subjects, there was a significant difference in eosinophil numbers 

between MF- and EN (Figure 3.8 A), but no differences in the neutrophil population were 

observed (Figure 3.8 B). In the onchocerciasis study, significant differences were observed in 

eosinophil and neutrophil numbers (Figures 3.8C and D) when the a-MF group was compared 

to EN. Again, the number of eosinophils was highly distinct in the MF+ individuals relative to EN. 

In this study, while the number of eosinophils and neutrophils was elevated in individuals 

without MF in both infections compared to EN, there was no significant difference in 

Eosinophils

EN (n=49) MF+ (n=46) MF-(n=73)
0

2

4

6

8 *

A

A
b
s
o
lu

te
 c

o
u
n
t 
x1

0
^9

/L

Neutrophils

EN (n=51) MF+ (n=52) MF- (n=73)
0

5

10

15

B

A
b
s
o
lu

te
 c

o
u
n
t 
x1

0
^9

/L

Eosinophils

EN (n=55) MF+ (n=89) a-MF (n=38)
0

5

10

15

20 *

*

C

A
b
s
o
lu

te
 c

o
u
n
t 
x1

0
^9

/L

Neutrophils

EN (n=55) MF+ (=89) a-MF(n=38)
0

5

10

15

20

25 *

D

A
b
s
o
lu

te
 c

o
u
n
t 
x1

0
^9

/L



Kwarteng A.                                                                         Results  

 

60 

 

lymphocytes, and monocytes populations among the study groups (data not shown). The higher 

levels of eosinophils and neutrophils in a-MF O.volvulus-infected patients may suggest 

protective function against MF themselves or MF production/embryogenesis. To establish 

whether the presence of eosinophils and neutrophils associates with MF load in both infections, 

the levels of these cells were assessed. While a moderate correlation between blood 

eosinophils and skin MF was found in the onchocerciasis study, no association was found in 

eosinophil and neutrophil numbers with MF counts in either infection cohort, (data not shown). 

The findings confirm that filarial infections actively induce peripheral eosinophils, albeit not very 

strongly. 

 

3.4 Characterization of T lymphocytes in PBMCs from individuals with W. bancrofti 

infection: Ex-vivo (Base line) expression pattern  

 
3.4.1 Increased frequencies of CD4+ and CD8+ T cells in individuals with Wuchereria 

bancrofti infection 

Results in this study showed elevated numbers of peripheral eosinophils but not neutrophils in 

subjects with W. bancrofti infection, while in the onchocerciasis study both eosinophils and 

neutrophils were higher in infected individuals compared to EN individuals. Since eosinophils 

are the main source of CLC/Gal-10, it was of interest to further characterize the expression of 

this molecule in eosinophils under in vitro settings. However, this was not possible in this study 

because of the challenge associated with obtaining eosinophils from the study patients. 

Additionally, eosinophils are known to release many granules following activation, hence in vitro 

detection of eosinophil-producing molecules such as CLC/Gal-10 may be associated with the 

issue of non-specific binding. However, recent studies have shown that in addition to 

eosinophils, T cells are a potential source of CLC/Gal-10 in human PBMCs. In general, T cells 

are essential for host immunity and are primarily divided in two main subtypes: T helper (CD4) 

and cytotoxic (CD8) T cells. Therefore, the study used T cell lymphocytes as surrogate cells to 

investigate cytokines which support granulocyte recruitment during filarial infection. For in vitro 

assessment of T cell responses, 10 samples from each group were randomly selected from the 

W. bancrofti study. To investigate whether W. bancrofti infection alters the differentiation of T 

lymphocytes, the frequencies of CD4+ and CD8+ T cells in PBMCs from MF+, MF- and EN 

individuals were determined. In short, without prior stimulation, PBMCs were stained with anti-

CD4 and anti-CD8 surface antibodies and analysed using flow cytometry. 
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 Figure 3.9: Increased frequencies of CD4
+
 and CD8

+ 
T cells in W. bancrofti-infected individuals. 

PBMCs from EN and MF+ and MF- subjects were stained for CD4
+
 and CD8

+
 T cells (A and B) EN verses Wb-

infected individuals, respectively. Similarly, based on infection status, CD4
+
 and CD8

+
 T cells (C and D) are shown. 

Cell population frequencies were determined via flow cytometry. Graphs show percentages of box whiskers with 
outliers from (EN n=10, MF+ n=10 and MF- n=10). Data of each group were compared using ANOVA (Bonferroni’s 
multiple comparison test and T test); significant differences are given as *p<0.05, **p<0.01 and ***p<0.001. 

 

As shown in Figure 3.9A and B, when compared to EN, there were significantly higher 

frequencies of CD4+ T cells but not CD8+ T cells in W. bancrofti-infected individuals.  

Interestingly, upon further analysis and based on infection status, MF- and MF+ persons 

presented significantly higher frequencies of CD4+ T cells compared to EN but frequencies in 

the infected groups were comparable (Figure 3.9C). With regard to CD8+ T cells, MF+ 

individuals exhibited significantly higher frequencies of CD8+ T cells when compared to EN and 

latently-infected individuals (Figure 3.9D). These results indicate that infections with W. bancrofti 

induce high proportions CD4+ and CD8+ T cells, which may influence outcome of infection. 
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3.4.2 Increased frequencies of T-bet+, GATA-3+ and RORC2+ in MF- subjects, whereas 

FOXP3+ is pronounced in the CD4 T cells in MF+ individuals 

Having observed the cytokine profiles in all three study cohorts, we were interested in the 

patterns of T cell lineage transcriptional factors. To do this, the baseline expression profiles of 

Th1 (Tbet), Th2 (GATA-3), Th17 (RORC2) and Tregs (FOXP3) transcriptional factors were 

determined in all study groups. There were no significant differences in the expression levels of 

CD4+Tbet+ T cells in all study groups, however there was a tendency of increased expression in 

MF- subjects (Figure 3.10A).  

   

 Figure 3.10: Elevated frequency of FOXP3 in CD4
+ 

T cells from MF+ infected subjects, while T-bet, GATA-3 
and RORC-2 were enhanced in MF- individuals. 

PBMCs were isolated from EN and MF+ and MF- subjects and stained for CD4 and transcriptional factors, T-bet 
(A), GATA-3 (B), RORC-2 (C) and FOXP3 (D) in each individuals (EN n=8, MF+ n=8 and MF- n=8). Cell 
population frequencies were determined with flow cytometry. Graphs show percentages of box whiskers plot with 
outliers. Data of each group were compared using ANOVA (Bonferroni’s multiple comparison test); and significant 
differences are given as *p<0.05 and **p<0.01. 

 

It was observed however that the CD4+GATA-3+ T cells were significantly higher in MF- 

individuals compared to EN, while there were no differences between the MF+ persons (Figure 

3.10B). Additionally, there were no distinct differences in the expression levels of the Th17 

transcriptional factor, RORC2 in all study groups, but again, there was an increased tendency in 

the MF- individuals (Figure 3.10C). When compared to the EN, the expression frequency of 
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CD4+FOXP3+ T cells was significantly distinct in MF+ (Figure 3.10D). Thus, the results shown 

demonstrate that MF- individuals have a strongly increased Th2 profile with elevated Th1 and 

Th17 lineages too whereas MF+ individuals had a strong FOXP3 expression. These findings 

are consistent with the cytokine data which showed elevated IL-17 and slight increase in IL-4 

although not significant in MF- individuals; while IL-10 was predominant in the MF+ persons 

(section 3.5.1). 

 

3.4.3 Elevated frequencies of CLC/Gal-10 expressing CD4+ and CD8+ T cells in patently-

infected W. bancrofti individuals  

Although, CLC/Gal-10 is primarily produced by eosinophils, T cells have also been shown to 

secrete this molecule [69]. Thus, following the up-regulation of the CLC/Gal-10 gene in our 

microarray data (W. bancrofti and O. volvulus, see sections 3.1.4 and 3.2.3), the intracellular 

expression CLC/Gal-10 in CD4+ and CD8+ T cells in PBMCs from W. bancrofti-infected and EN 

individuals was determined using flow cytometry. When compared to levels in EN, CLC/Gal-10-

expressing CD4+ T cells were higher in individuals with W. bancrofti infection (Figure 3.11A).  

   

 Figure 3.11: Increased frequencies of CLC/Gal-10-expressing CD4
+
 T cells in individuals with W. bancrofti 

infection. 

PBMCs were isolated from EN and MF+ and MF- subjects and stained with antibodies to determine the 
frequencies of CD4

+
 and CD8

+
 expressing CLC/Gal-10 T cells by flow cytometry. (A) presents frequencies of CD4

+
 

T expressing CLC/Gal-10 T cells, comparing EN and W. bancrofti-infected group, whilst (B) shows frequencies of 
CD4

+
 T expressing CLC/Gal-10 based on infection status. Graphs show percentages of box whiskers plots with 

outliers from EN n=10, MF+ n=10 and MF- n=10. Data of each group were compared using ANOVA (Bonferroni’s 
multiple comparison test) and significant differences are given as *p< 0. 05. 

 

Further investigation revealed that the frequency CLC/Gal-10 expressing CD4+ T cells was 

more predominant in the MF+ individuals when compared to EN individuals (Figure 3.11B). The 

frequency of CLC/Gal-10-expressing CD8+ T cells was comparable to CD4 T cells (data not 

shown). These results demonstrate that not only is CLC/Gal-10 detectable at the mRNA level, 

but at the peripheral protein level and most importantly, it associates with patent infections. 
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3.4.4 Baseline frequencies of GZMA and GZMB in individuals with W. bancrofti infection 

The transcriptome data described in (section 3.1.8.1) showed increased granzyme expression 

in the patently infected subjects compared to latently infected after removal of individuals with 

other known infections, such as helminth and protozoa and/or had IVM treatment of the gene 

expression data (Tables 3.1.12). Granzyme A and B have been shown to play crucial role in L. 

sigmodontis infection outcome [96], however, their importance in W. bancrofti infection remains 

to be fully characterized. To determine the frequencies of human granzyme A and B in W. 

bancrofti-infected individuals and EN, FACS staining was performed on PBMCs from study 

groups and measured with flow cytometer. As shown in Figure 3.12, the frequencies of CD4+ 

and CD8+ T cells expressing GZMB were significantly higher in W. bancrofti-infected subjects 

when compared to EN (Figures 3.12 A and B).  

To further establish whether CD4+ and CD8+ T cells expressing GZMB were dependent on the 

infection status, group-wise comparisons were performed. Interestingly, significantly increased 

frequencies of CD4+GZMB+ and CD8+GZMB+ expressing T cells were observed in the MF+ 

population when compared to EN (Figures 3.12 C and D).  In contrast, there were no significant 

differences in the frequencies of CD4+ or CD8+ T cells expressing GZMA when comparing EN 

and W. bancrofti-infected persons (Figures 3.12 E and F). However, upon further analysis, 

GZMA+-producing CD4+ T cells were significantly increased in MF- individuals when compared 

to both EN and MF+ individuals (Figure 3.12 G). CD8+GZMA+ T cells were also significantly 

elevated in latently-infected participants when compared to MF+ individuals (Figure 3.12 H). In 

general the proportion of CD8+GZMA+ expressing T cells was almost 2 fold higher than that of 

CD4+GZMA+-expressing T cells. The results demonstrate that individuals with patent infection 

present increased frequencies of GZMB-producing CD4+ and CD8+ T cells, whereas MF- 

individuals present upregulated levels of GZMA. 
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 Figure 3.12: Increased frequencies of CD4
+
 and CD8

+ 
T cells expressing GZMB is associated with MF 

status, while GZMA is enhanced in individuals with latent infection. 

PBMCs from study subjects were stained with antibodies against surface markers, and then fixed, permeabilized, 
and stained with anti-human granzyme specific antibodies at ex vivo. Frequencies of CD4

+
 and CD8

+
 T cells 

expressing GZMB and GZMA were determined. Here, A and B show CD4
+
 and CD8

+
 T cells expressing GZMB, 

whereas C and D present frequencies of CD4
+
 and CD8

+ 
T expressing GZMB based on the various infection 

phenotypes. Similarly, E and F present the frequencies of CD4
+
 and CD8

+ 
T cells expressing GZMA in EN verses 

Wb-infected groups, whilst the frequencies of CD4
+
 and CD8

+ 
T cells-expressing GZMA are shown in G and H. 

Cell population frequencies were determined via flow cytometry. Graphs show percentages of box whiskers plots 
with outliers from, EN n=10, MF+ n=10 and MF- n=10. Data of each group were compared using ANOVA 
(Bonferroni’s multiple comparison test and T test); significant differences are given as *p<0.05, **p<0.01 and 
***p<0.001. 
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3.4.5 Increased frequencies of PD-1+CD4+ and CTLA-4+CD4+T cells in microfilaremic 

individuals  

In addition to producing GZMB and GZMA, recent genomic studies in T cells have shown 

increased frequency of exhaustion markers, such as program death-1 (PD-1) and CTLA-4 in T 

cells after persistent exposure to viral infection [101] as well as cancer related infections [139]. 

Exhausted T cells are less effective in fighting against chronic infections. Since filarial 

nematodes cause chronic infections, it was of interest to investigate whether W. bancrofti 

infection alters CD4+ and CD8+ T cells activity via the expression of these inhibitory markers. 

Hence, the frequency of programmed death-1 (PD-1) and CTLA-4 on CD4+ and CD8+ T cells 

from PBMCs of EN, MF+ and MF- was determined ex vivo using flow cytometry. As shown in 

(Figure 3.13 A), W. bancrofti-infected individuals exhibited significantly higher frequencies of 

CD4+-expressing PD-1 T cells compared to EN.  

   

 Figure 3.13: Patent filarial infections are associated with increased frequencies of PD-1-and CTLA-4- 
expressing CD4

+ 
and CD8

+
 T cells. 

PBMCs from EN, MF+ and MF- subjects were stained with antibodies to determine the frequencies of PD-1- 
expressing CD4

+ 
T cells. (A) presents the frequencies of CD4

+
 T expressing PD-1, whilst (B) shows frequencies of 

CD4
+ 

T expressing PD-1 based on infection status. Frequency of CD4
+
 T-expressing CTLA-4 (EN verses Wb-

Infected) is shown in (C), whilst (D) shows CD4
+ 

T-expressing CTLA-4 based on infection status. Graphs depict 
box whiskers with outliers from (EN n=10, MF+ n=10 and MF- n=10). Data of each group were compared using 
ANOVA (Bonferroni’s multiple comparison test) and significant differences are given as *p<0.05 and **p<0.01. 

 

Following a further group-wise comparison, percentages of CD4+ T cells expressing PD-1 were 

found to be significantly higher in MF+ persons compared to EN as shown in (Figure 3.13 B). 

More interestingly, frequencies of CD8+ T cells expressing PD-1+ in the infection groups were 
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similar to the pattern observed in CD4+ T cells (data not shown). Furthermore, W. bancrofti-

infected individuals exhibited significantly higher frequencies of CD4+CTLA-4+-expressing T 

cells when compared to EN, as shown in (Figure 3.13 C). To explore whether CTLA-4 

associates with infection status, a group-wise comparison was performed. Consistent with the 

percentage of PD-1, CTLA-4-expressing CD4+ T cells were significantly higher in patently 

infected compared to MF- and EN as shown in (Figure 3.13 D). Furthermore, percentage of 

CTLA-4 expressing CD8+ T cells in the study groups patterned after CTLA-4-expressing CD4+ T 

cells. Taken together, these results show a higher frequency of PD-1 and CTLA-4 T cells in 

MF+ persons compared to MF- and EN groups, suggesting that these inhibitory markers may be 

altered in the presence of MF.  

3.5 Intracellular staining after 6hrs of PMA/Ionomycin stimulation 

 
3.5.1 Microfilaraemic individuals show predominant IL-10+producing T cells, whereas 

          MF- subjects exhibit increased frequencies of IFN-+, IL-4 and IL-17A CD4+ T cells 

To study T cell responses, stimulated PBMCs were investigated for IFN-IL-4, IL-17A and IL-10 

production given that susceptibility or resistance to infection is characterized by these cytokines. 

As shown in A and B, PMA/Ionomycin treatment resulted in a significantly higher frequency of 

CD4+ IFN-+producing T cells in EN and MF- individuals than in MF+ subjects (Figure 3.14 A). 

With regard to CD4+ T cells producing IL-4, there were no differences in frequencies in all study 

groups; however, there was a tendency of high occurrence in MF- subjects (Figure 3.14 B). A 

further analysis in the IL-17A-producing CD4+ T cells showed increased frequencies in MF- 

individuals compared to EN and MF+ groups (Figure 3.14C), which is consistent with a recent 

finding in O. volvulus infection, where increased IL-17A-producing CD4+ T cells characterised 

individuals without MF and pathology [17]. Interestingly and consistent with previous studies, 

elevated frequencies of CD4+IL-10+ T cells associated with MF+ individuals compared to EN 

and MF- groups (Figure 3.14 D). This trend was mirrored by the CD4+ T cells in all study 

groups. Interestingly, IFN-, IL-4, IL-17A and IL-10 frequencies in CD8+ T cells were comparable 

to CD4+ T cells (data not shown). These results demonstrate that, while patent infection is 

characterized by pronounced IL-10+-producing CD4+ and CD8+ T cells, latently infected 

individuals exhibit increased frequency of IFN-, IL-4 and IL-17A.  
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 Figure 3.14: Increased frequencies of IFN- characterises EN groups 

IL-10 is pronounced in MF+ subjects while in the absence MF- individuals present mixed responses characterised 

by higher IFN-, IL-4 and IL-17A CD4
+ 

T cells. Isolated PBMCs from EN and MF+ and MF- subjects were treated 
with PMA, Ionomycin, Brefeldin A and Monensin for 6hrs. Thereafter, cells stained for CD4

+
 T cells producing IFN-

 (A), IL-4 (B), IL-17A (C) and IL-10 (D) in each individual (EN n=8, MF+ n=8 and MF- n=8). Graphs show 
percentages of box whiskers with outliers. Data of each group were compared using ANOVA (Bonferroni’s multiple 
comparison test and T test); significant differences are given as**p<0.01 and ***p<0.001. 

 

 

3.5.2 W. bancrofti infection is associated with elevated CD4+Gal-10+IL-10+ producing T 

cells   

In section 3.4.3, it was observed that CD4+ and CD8+ T cells from MF+ individuals expressed 

higher frequencies of CLC/Gal-10 after baseline expression analysis. To determine the 

phenotype of CLC/Gal-10 in filarial infections, PBMCs from EN, MF+ and MF- were treated with 

PMA/Ionomycin and subsequently assessed whether T cells co-express Gal-10 and IL-10. 

Consistent with the mRNA and peripheral protein levels, the frequency of CD4+Gal-10+IL-10+ 

producing T cells was significantly higher in W. bancrofti-infected compared to EN individuals, 

(Figure 3.15A). Based on infection status, it was observed that CD4+Gal-10+/IL-10+ double 

positive T cells were significantly higher in MF+ compared to EN, whereas no significant 

differences were revealed  when comparing  to MF-groups (Figure 3.15B). In a similar way, 

CD8+Gal-10+IL-10+ producing T cells mirrored that of CD4 T cells (data not shown). The findings 

suggest that W. bancrofti infection has a tendency to induce CD4+ and CD8+ T cells co-



Kwarteng A.                                                                         Results  

 

69 

 

EN Wb-Infected
0

5

10

15

20 **

A

%
 C

D
4

+
G

al
-1

0
+
IL

-1
0

+
 T

 c
el

ls

EN MF+ MF-
0

5

10

15

20 **

B

%
 C

D
4

+
G

al
-1

0
+
IL

-1
0

+
 T

 c
el

ls

expressing Gal-10+ and IL-10+. Thus, these two molecules expressed by both, CD4+ and CD8+ 

T cells at the same time and both of them being involved in immune suppression pathways, 

adds another potential molecular mechanism to the pathways induced by parasites in order to 

survive within their hosts.  

 

 

 

 Figure 3.15: Increased proportions of Gal-10
+
IL-10

+
 expressing CD4

+
 T cells in individuals with W. bancrofti 

infection. 

PBMCs were isolated from EN and MF+ and MF- subjects and stained with antibodies to determine the 
frequencies of CD4

+
Gal-10

+
IL-10

+
 T cells. Frequencies of CD4

+
Gal-10

+
IL-10

+ 
T cells in EN and W. bancrofti 

infected individuals (A), and based on infection status (B). Cell population frequencies were analysed with flow 
cytometry. Graphs show percentages of box whiskers with outliers (EN n=8, MF+ n=8 and MF- n=8). Data of each 
group were compared using ANOVA (Bonferroni’s multiple comparison test and T test); and significant differences 
are given as *p<0.05 and **p<0.01. 

 

 

3.5.3 Increased frequencies of CD4+ and CD8+ T cells co-expressing GZMB and IL-10 in 

microfilaremic individuals  

As shown in the previous section, the frequency of GZMB was significantly higher in both CD4+ 

and CD8+ T cells in patently infected individuals compared to EN.  To further characterize these 

T cells, the frequencies of CD4+ and CD8+ T cells co-expressing GZMB and IL-10 were 

determined after stimulating PBMCs from EN, MF+ and MF- with PMA, Ionomycin, Brefeldin A 

and Monensin. As shown in (Figures 3.16 A and B), the frequencies of CD4+GZMB+IL-10+ and 

CD8+GZMB+IL-10+ T cells were significantly higher in W. bancrofti-infected when compared to in 

the EN group. More interestingly, based on infection phenotype, CD4+ and CD8+ T cells in MF+ 

persons presented significantly high proportions of GZMB+IL-10+ compared to EN. No significant 

differences were observed in both cell types when compared to MF- subjects as described in 

(Figures 3.16 C and D). These results support our transcriptome data and demonstrate that W. 

bancrofti infection induces high frequencies of CD4+ and CD8+ producing GZMB and IL-10 T 

cells, which are apparently associated with patency. 
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 Figure 3.16: Patent infections are associated with increased frequencies of CD4
+
 and CD8

+
 T cell 

producing GZMB and IL-10. 

PBMCs from study subjects were stained with antibodies against surface markers, and then fixed, permeabilized, 
and stained with anti-human granzyme specific and anti-human IL-10 antibodies following Cell Stimulation Cocktail 
(PMA, Ionomycin, Brefeldin A and Monensin) treatment for 6hrs. The frequencies of CD4

+
 and CD8

+ 
T cells co-

expressing GZMB and IL-10 were determined intracellularly through flow cytometry. A and B present the 
frequencies of CD4

+
 and CD8

+
T cells co-expressing GZMB and IL-10 in EN verses infected, C and D  depict CD4

+
 

and CD8
+ 

T cells co-expressing GZMB and IL-10 in EN vs MF+ vs MF-. Graphs show percentages of box whiskers 
with outliers from (EN n=8, MF+ n=8 and MF- n=8). Data of each group were compared using ANOVA 
(Bonferroni’s multiple comparison test and T test; significant differences are given as *p< 0. 05, **p< 0. 01 and 
***p< 0. 001. 

 

 

3.5.4 Elevated frequencies of PD-1+IL-10+ expressing CD4+ and CD8+ T cells in patently 

infected 

Since the above section noted a higher frequency of PD1+CD4+ and CD8+ T cells in MF+ 

individuals, and to further characterize the phenotype of these cells, PBMCs from EN, MF+ and 

MF- were assessed for CD4+ and CD8+ T cells co-expressing PD-1 and IL-10. PD-1+IL-10+-

expressing CD4+ and CD8+ T cells were analyzed in study groups. In line with baseline 

expression, higher frequencies of CD4+ PD-1+IL-10+ (Figure 3.17 A) and CD8+ PD-1+IL-10+ 

expressing T cells (Figure 3.17 B) were found in W. bancrofti-infected individuals compared to 

EN after stimulation.  Further analysis showed that MF+ persons exhibited higher frequencies of 
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CD4+PD-1+IL-10+ and CD8+PD-1+IL-10+ expressing T cells compared to EN. IL-10 is an 

essential immunoregulatory molecule, which has been found to be spontaneously released by 

MF+ individuals [77]. While these results may not be entirely conclusive in establishing the 

underlying mechanism, they point to the fact that T cell exhaustion during W. bancrofti infection 

maybe MF-mediated via up-regulating PD-1 and IL-10 pathways.  

 

 

 

 Figure 3.17: Markers of T cell exhaustion are up-regulated in CD4
+
 and CD8

+
 T cells in MF+ individuals. 

PBMCs from study subjects were stained with antibodies against surface markers, and then fixed, permeabilized, 
and stained with anti-human PD-1 and anti-human IL-10 antibodies following Cell Stimulation Cocktail (PMA, 
Ionomycin, Brefeldin A and Monensin) treatment for 6hrs. The frequencies of CD4

+
 and CD8

+  
T cells co-

expressing PD-1 and IL-10 were determined through intracellular flow cytometry. A and B present the frequencies 
of CD4

+
 and CD8

+ 
T cells co-expressing PD-1 and IL-10 in EN vs. infected individuals. C and D depict the 

frequencies when separated into their respective infections status. Graphs show percentages of box whiskers with 
outliers from EN n=8, MF+ n=8 and MF- n=8. Data of each group were compared using ANOVA (Bonferroni’s 
multiple comparison test and T test) ; significant differences are given as *p<0.05 and  **p<0.01. 

 

 

3.5.5 Filarial infections are associated with increased frequency of CD244 and CD107a 

expressing T cells 

Since the frequencies of CD4+ and CD8+ T cells expressing PD-1 were higher in MF+ compared 

to MF- as described in the previous sections, the potential involvement of CD244 (2B4) in 

cytolysis was assessed in the study subjects by measuring levels of the degranulation marker, 
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CD107a (LAMP-1) in CD4+ and CD8+ T cells from PBMCs from study groups after 

PMA/Ionomycin stimulation. For instance, CD107a is a protein detectable by flow cytometry 

surface staining after transient lysosomal fusion to the cellular membrane and release of 

granule proteins during T cell activation. Surface expression of CD107a is also associated with 

granule release by human CD4+ and CD8+ T cells, and correlates with CTL effector function 

[140]. High expression of these markers associates with exhausted T cells and impair 

responses needed to combat viral infections [100, 101]. However, their frequencies remain to be 

defined in filarial infections. Therefore, to determine whether the functional activity of CD4+ and 

CD8+ T cells are altered in W. bancrofti infection on, the frequencies of CD244 and CD107a 

were assessed in PBMC from study subjects after PMA/Ionomycin treatment.  

 

 

 

 Figure 3.18: Patent infected individuals present higher frequencies of CD107a
+
 

Patent infected individuals present higher frequencies of CD107a
+
 expressing CD4

+
 and CD8

+
 T cells in W. 

bancrofti-infected, while CD244 is highly expressed in latent infection. PBMCs from study subjects were stimulated 
with Cell Stimulation Cocktail (PMA, Ionomycin, Brefeldin A and Monensin) for 6hrs. Cells were stained for CD4 
expressing CD244 (A), CD8 expressing CD244 (B). Similarly, CD4 expressing CD107a (C) and CD8 expressing 
CD107a (D) were also stained in each individuals (EN n=8, MF+ n=8 and MF- n=8). Cell population frequencies 
were determined via flow cytometry. Graphs show percentages of box whiskers with outliers. Data of each group 
were compared using ANOVA (Bonferroni’s multiple comparison test and T test); significant differences are given 
as *p< 0. 05. 

 

 
In this study, it was observed that the percentage of CD4+ T cells expressing CD244 was highly 

significant in MF- subjects compared to MF+ and EN (Figure 3.18 A), while there were no 

distinct differences in the CD244-expressing CD8+ T cells (Figure 3.18 B). There were no 
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significant differences observed in the percentage CD107a on CD4+ T cells (Figure 3.18C). In 

contrast, the frequency of CD8+ T cell-expressing CD107a was distinctly higher in MF+ 

compared to MF- (Figure 3.18 D). These results demonstrate that CD244-expressing CD4+ and 

CD8+ T cells are enhanced during filarial infection as well as support the hypothesis that W. 

bancrofti infection induces degranulation of both CD4+ and CD8+ T cells as evidenced by the 

increased degranulation as evidence by higher proportions of CD107a in MF+ subjects 

compared to EN. 

 

3.6 Cell culture 

 
3.6.1 Filarial antigen suppresses TCR-specific activation 

In the previous sections, the frequencies of CLC/Ga-10, GZMB/GZMA, PD-1 as well as T helper 

related cytokines were shown to higher in the PBMCs of W. bancrofti-infected groups compared 

to EN after PMA/Ionomycin treatment. One of the hallmarks of filarial infection is the modulation 

of host immune responses in the presence of active infection.  

 

 

 

 Figure 3.19: Activation of CD4
+
 T and CD8

+
 T cells after filarial and/or TCR-antigen specific stimulation. 

PBMCs from EN (n=6) were left unstimulated (med) or stimulated with B. malayi extract (BmAg at 10µg/ml, 
40µg/ml), (αCD3/αCD28, 10000 beads/well) or combinations of TCR activation and BmAg. After 24 hours, levels of 
CD69 were measured on CD4

+
 and CD8

+
 T cells by FACS. A and B present percentages of CD4

+
CD69

+ 
T and 

CD8
+
CD69

+
 T cells were assessed. Each bar represents mean percentage ± SEM of CD69 expression on CD4

+
 T 

and CD8
+
 T cells. Data were compared using Kruskal-Wallis test and Mann-Whitney test and significant 

differences are given as *p<0. 05, **p<0.01 and ***p<0.001. 

 

 

To further investigate the immunomodulatory capacity of filarial antigens and to obtain a better 

understanding of the physiological nature of the host-parasite interaction that occurs in vivo, 
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PBMCs from patients were studied for filarial-specific responses. To do this, it was necessary to 

establish assays with the right concentrations of filarial antigen by determining the optimum 

concentration of B. malayi extract needed for in vitro experiments. Here, 10µg/ml and 40µg/ml 

of BmAg were used to stimulate the cells. The activation of BmAg, αCD3/αCD28 or 

combinations of BmAg and αCD3/αCD28 was determined. It was noted that stimulation of 

PBMCs from EN with αCD3/αCD28 led to an increased in the frequency of activate CD69+CD4+ 

T and CD69+CD8+ T cells using FACS (bars 4 in Figures 3.19A and B), respectively. In the 

presence of 10µg and 40µg of B. malayi-antigen, TCR-specific activation was reduced in both T 

cell populations (Figures 3.19 A and B bars 2, 3). Interestingly, cultures of TCR-activated cells 

and BmAg results in suppressed activation of both T cell subsets (indicated by arrows on 

graph). Moreover, whereas increasing the dose of BmAg down-regulated CD4+ T cell activation, 

both concentrations equally suppressed CD8+ T cell activation. Based on these results, 40µg of 

BmAg was chosen for in vitro co-culture assays. 

 

3.6.2 CLC/Gal-10+IL-10+-producing CD4+ and CD8+ T cell responses from infected 

individuals are increased upon filarial-specific stimulation in MF+ individuals 

To investigate whether the induction of CLC/Gal-10 proteins is associated with filarial-specific 

immune responses with possible immunoregulatory functions (i.e. IL-10 secretion), cultures of 

PBMCs from MF+, MF- and EN were either left alone or activated with either BmAg, 

αCD3/αCD28 or  combinations of αCD3/αCD28 and  BmAg. After 7 days, cells were harvested 

and analyzed by FACS. When compared to medium control, the stimulation of PBMC with 

BmAg resulted in significantly higher proportions of CD4+ T cells producing CLC/Gal-10+IL-10+ in 

MF+ and MF-, but not EN individuals (Figure 3.20 A). There was no significant difference in the 

frequencies of CD4+ T cells expressing Gal-10 and IL-10 after TCR stimulation in study groups 

(Figure 3.20 A), but with regards to CD8+ T cells, significant differences were observed 

compared to control (Figure 3.20 B). In the presence of BmAg and αCD3/αCD28, the 

percentage of CD4+CLC/Gal-10+IL-10+T cells was slightly reduced compared to TCR stimulation 

alone, albeit non-significant. More interestingly, the pattern of CD8+CLC/Gal-10+IL-10+ 

producing T cells (Figure 3.20 B) was comparable to that of CD4 T cells. This observation is 

consistent with previous protein expression data and demonstrates that CD4+ and CD8+ co-

expressing CLC/Gal-10+IL-10+-producing T cells may be considered as key immunomodulatory 

participants in filarial-host interactions. 
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 Figure 3.20: Re-stimulation of PBMCs from infected individuals with filarial antigen increases the 
frequencies of IL-10

+
CLC/Gal-10

+
 producing CD4

+
 and CD8

+
 T cells in vitro. 

PBMCs from study subjects were left unstimulated (Ctrl) or activated with either Brugia malayi extract (BmAg, 
40µg/ml), (αCD3/αCD28, 10000 beads/well) or a combination of BmAg and αCD3/αCD28 for 7 days. Thereafter 
cells were stimulated with PMA, Ionomycin, Brefeldin A and Monensin for 6hrs and stained for CD4

+
Gal-10

+
IL-10

+
  T 

(A) and CD8
+
Gal-10

+
IL-10

+
 T cells (B) in each individual (EN n=8, MF+ n=8 and MF- n=8). Cell population 

frequencies were determined via flow cytometry. Bars represent mean percentage ± SEM of CD4
+
Gal-10

+
IL-10

+
 and 

CD8
+
Gal-10

+
IL-10

+
T cells. Data of each group were compared using Mann-Whitney test (stimulus vs internal 

control) and significant differences are given as *p< 0. 05 and **p< 0. 01. 

 

 

3.6.3 Increased frequencies of filarial-specific Th1 responses associate with EN; higher 

regulatory T phenotype accompanied with diminished Th1 and Th17 responses 

characterised MF+ persons, while a mixed Th1, Th2, Th17 and Treg responses 

were enhanced in latently infected individuals 

 

Given that T cells play a critical role in regulating the immune response to nematode parasites, 

understanding of specificity of the T cell responses is essential for the elucidation of the 

mechanisms that underlie susceptibility and resistance to infection. Results from mitogen 

stimulation, i.e. PMA/Ionomycin of PBMCs from study subjects showed increased frequencies of 

IFN-in EN individuals; IL-10 was highly detected in MF+ individuals, whilst IL-4 and IL-17A 

frequencies were higher in MF- subjects. To define whether this observation was filarial-specific, 

PBMCs from MF+, MF- and EN were either left alone or activated with αCD3/αCD28 or BmAg 

or in combinations of αCD3/αCD28 and BmAg. When compared to control, the frequency of 

IFN-was higher in EN and MF- groups, but not in MF+ persons following BmAg, αCD3/αCD28 

as well as in the presence of αCD3/αCD28 and BmAg compared to control (Figure 3.21 A). 

After TCR stimulation via αCD3/αCD28, and in the presence of both αCD3/αCD28 and BmAg, 

percentages of CD4+IFN-+ T cells were highly significant in all study groups. With regards to IL-
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4, no distinct differences were observed in the frequency of CD4+IL-4+ T cells in EN groups 

under all conditions. While the percentage of CD4+IL-4+ T cells was significant in infected 

subjects, it was remarkably higher in MF- after BmAg, αCD3/αCD28 and in the presence of 

αCD3/αCD28 and BmAg after stimulation compared to control (Figure 3.21 B). Again, compared 

to control, filarial-specific frequencies of IL-17A-secreting CD4+ T cells were higher in the MF- 

compared to MF+ and EN following BmAg stimulation. After αCD3/αCD28 activation and in the 

presence of αCD3/αCD28 and BmAg, there was an increase in the frequency of CD4+IL-17A-

secreting T cells in all study groups. Of note, this was more pronounced in the MF- individuals 

(Figure 3.21 C).  

 

 

 

 Figure 3.21: MF+ individuals present elevated frequencies of filarial-specific CD4
+
IL-10

+
 T cells, while MF- 

subjects exhibit pronounced frequencies of CD4
+
IFN-

+
, CD4

+
IL-4

+
, CD4

+
IL-17

+
 T cell phenotypes. 

Isolated PBMCs (1 x10
5 

cells/100µl) from study subjects were left unstimulated (Ctrl) or activated with either B. 
malayi extract (BmAg, 40µg/ml), αCD3/αCD28 (10000 beads/well) or combinations of both and cultured for 7 days. 

Cells were stained for CD4 T cell signature cytokines, IFN- (A), IL-4 (B), IL-17A (C) and IL-10  T cells (D) in each 
subject (EN n=8, MF+ n=8 and MF- n=8). Cell populations were determined with flow cytometry. Each bar 

represents the mean percentage ± SEM of IFN-, IL-4, IL-17A and IL-10. Data of each group were compared using 
Mann-Whitney test (stimulus vs internal control) and significant differences are given as *p< 0. 05, **p<0. 01 and 
***p<0.001. 

 

 

In this study, a spontaneous secretion of IL-10 was observed in all study groups following 

BmAg, αCD3/αCD28 as well as in the presence of αCD3/αCD28 and BmAg compared to 

medium control. Interestingly, the percentage of CD4+IL-10+ T cells was higher in MF+ persons 
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(Figure 3.21 D). To determine whether T cell cytokine responses are modulated by filarial 

worms, the frequency of these cytokines in the presence of αCD3/αCD28 and BmAg was 

assessed. BmAg additional to αCD3/αCD28 stimulation resulted in slightly reduced frequencies 

of cytokines in all cohorts. These results show that higher IL-10 production is associated with 

MF+ individuals, whilst IFN-, IL-4 and IL-17-producing CD4+ T cells characterize individuals 

with latent infection and further support the hypothesis that differential cellular immune 

responses in asymptomatic individuals are filarial antigen-specific. 

 

3.6.4 Frequency of FOXP3 is enhanced in patently infected, whilst T-bet, GATA-3 and 

RORC2 were highly exhibited in individuals with latent infection after BmAg 

stimulation  

Having investigated the T cell responses in cell culture of the study subjects, it was of interest to 

assess the effect of filarial-specific stimulation on the T cell lineage transcriptional factors, which 

regulates these cytokines described in section 3.6.3. To do this, PBMCs from EN, MF+, and 

MF- were cultured and left alone or activated with either αCD3/αCD28 or BmAg and in the 

presence of αCD3/αCD28 and BmAg. After 7 days, cells were harvested and analyzed by 

FACS. The percentage of CD4+T-bet+ T cells was significantly distinct in all groups after 

activation with BmAg, αCD3/αCD28 as well as in the presence of both αCD3/αCD28 and BmAg 

compared to medium control (Figure 3.22 A). Clearly, the frequency of T-bet was pronounced in 

EN and MF- groups than in MF+ subjects and patterned after the ex-vivo expression data.  With 

regard to CD4+GATA-3+ T cells, there were significant differences found in the frequencies in 

MF- subjects after BmAg activation compared to the medium control, while no differences were 

observed in both EN and MF+ subjects. However, after TCR specific stimulation and in the 

presence of both αCD3/αCD28 and BmAg, the percentage of GATA-3+-expressing CD4+ T cells 

was highly significant in all study groups when compared to medium control (Figure 3.22 B). 

Analysis on CD4+RORC2+ T cells showed increased frequency in MF- individuals after BmAg 

activation, but this was not the case for both EN and MF+ since no differences were observed. 

Following activation of PBMCs with αCD3/αCD28 as well as in the presence of BmAg in 

addition to αCD3/αCD28, the percentage of CD4+ T cells-expressing RORC2 was significantly 

elevated in all study groups, but higher frequencies were detected in MF- subjects (Figure 3.22 

C). Since filarial nematodes are hallmarked for immune suppression, the impact of filarial-

specific activation on FOXP3 frequency, the master regulator of regulatory T cells was 

assessed. Interestingly and consistent with the baseline data, the percentage of 
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CD4+CD25hiFOXP3+ was higher in MF+ subjects following BmAg compared to medium control. 

While, there were no distinct differences in the percentages of CD4+CD25hiFOXP3+ T cells in 

both EN and MF- subjects after BmAg stimulation, this T cell phenotype was slightly higher in 

MF- than EN. After TCR specific stimulation, percentage of CD4+CD25hiFOXP3+ T cells were 

significantly recorded in MF+ and MF- groups, compared to medium control, whereas no 

differences were found in the EN group (Figure 3.22 D). Moreover, it was observed that BmAg 

in addition to αCD3/αCD28 activation caused a moderate reduction in the frequencies of these 

transcriptional factors, particularly in the W. bancrofti-infected individuals.   

 

 

 

 Figure 3.22: Microfilaraemics present higher frequencies of filarial antigen-specific CD4
+
CD25

hi
FOXP3

+ 
T 

cells, while MF- individuals exhibit increased frequencies of CD4
+
T-bet

+
, CD4

+
GATA-3

+
, CD4

+
RORC2

+
 T cell 

phenotypes. 

Isolated PBMCs (1x10
5 

cells/100µl) from study subjects were left alone (Ctrl), stimulated with either BmAg (40µg/ml), 
αCD3/αCD28 (10000 beads/well) or combinations of αCD3/αCD28 and BmAg for 7 days. Thereafter cells stimulated 
with PMA, Ionomycin, Brefeldin A and Monensin for 6hrs and stained for CD4 and the transcriptional factors, T-bet 
(A), GATA-3 (B), RORC2 (C) and CD4

+
CD25

hi
FOXP3 (D) in each individual (EN n=8, MF+ n=8 and MF- n=8). Cell 

population frequencies were analysed with Diva software. Bars represent the mean percentage ± SEM of each 
transcriptional factor expression. Data of each group were compared using Mann-Whitney test (stimulus vs internal 

control) and significant differences are given as *p<0.05, **p<0.01 and ***p<0.001. 
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3.6.5 Predominant release of GZMB by CD8+ T and CD4+ T cells in MF+ individuals upon 

BmAg re-stimulation  

Since FACS analysis following direct ex vivo (Figure 3.12) revealed increased frequencies of 

GZMA-producing CD4+ and CD8+ T cells in individuals with latent infection, further 

investigations were performed to establish whether GZMA producing T cells could be triggered 

by activation with filarial antigens. Hence, PBMCs from MF+, MF- and EN were left alone or 

activated with either αCD3/αCD28 or BmAg or a combination of αCD3/αCD28 plus BmAg.  

 

 

 

 Figure 3.23: BmAg increases the frequency of GZMB expressing T cells in vitro 

Isolated PBMCs (1 x10
5 

cells/100µl) from study subjects were left unstimulated (Ctrl) or activated with either Brugia 
malayi extract (BmAg, 40µg/ml), αCD3/αCD28 (10000 beads/well) or combinations of both and cultured for 7 days. 

Thereafter cells stained for CD8
+
GZMB

+
 T cells (A) and CD4

+
GZMB

+
 T cells (B). Similarly, cells were stained for 

CD8
+
GZMA

+
 T cells (C) and CD4

+
GZMA

+
 T cells (D) in each individual (EN n=8, MF+ n=8 and MF- n=8). Cell 

population frequencies were determined with flow cytometry. Each bar shows the mean percentage ± SEM of 
CD8

+
GZMB

+
 and CD4

+
GZMB

+
 T cells. Data of each group were compared using Mann-Whitney test (stimulus vs 

internal control) and significant differences are given as *p<0.05, **p<0.01 and ***p<0.001. 

 

After 7 days, cells were harvested and analyzed by FACS. BmAg triggered the up-regulation of 

GZMB in CD8+ T cells in all group in a comparable manner (Figure 3.23A). Frequencies of CD8+ 
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producing GZMB T cells in infected groups were significantly elevated upon αCD3/αCD28 

stimulation alone and the addition of BmAg did not dramatically alter these levels (Figure 

3.23A). When compared to medium controls, the stimulation of PBMC with BmAg induced 

significantly elevated levels of CD4+GZMB+ producing T cells in MF+ individuals and levels were 

also significant (Figure 3.23B). Activation of T cells with αCD3/αCD28 elicited stronger and 

significantly higher levels of GZMB+CD4+ T cells in MF+ individuals which were lower in the 

presence of both αCD3/αCD28 and BmAg (Figure 3.23B).  When compared to medium control, 

BmAg activation resulted in significant differences in the percentage of GZMA-producing CD8+ 

T cells in MF- persons but not in EN and MF+ groups (Figure 3.23 C). After TCR-specific 

activation, the proportion of GZMA-producing CD8+ T cells in MF- and EN was significantly 

highly, but not in MF+ subjects. Addition of BmAg to αCD3/αCD28 stimulation resulted in 

significant differences in GZMA-producing CD8+ T cells compared to controls in MF- individuals, 

but did not dramatically alter these levels in EN and MF+ groups. With regard to the frequency 

of GZMA+-producing CD4+ T cells, there was no significant difference after BmAg stimulation in 

all the groups, however, following activation of T cells with αCD3/αCD28, significantly higher 

levels were found in EN and MF-, but not in the MF+ individuals (Figure 3.23 D). The results 

demonstrate that GZMB associates with individuals with patent infection, whereas GZMA 

characterizes with subjects without MF. 

 

3.6.6 Increased B. malayi specific PD-1+IL-10+ expressing CD4+ and CD8+ T cells in co-

cultures of PBMCs from W. bancrofti infected individuals 

To investigate the effect of filarial-specific regulation on PD-1 producing T cells during filarial 

infection, PBMCs from W. bancrofti-infected individuals and EN were stimulated with B. malayi 

antigen and cultured for 7 days. When compared to medium control, BmAg activation induced 

increased frequency of CD4+ and CD8+ PD-1+IL-10+ producing T cells which was highly 

significant in all the groups (Figures 3.24 A and B ).  TCR specific activation with αCD3/αCD28 

resulted in a moderate upregulation of CD4+ or CD8+ T cells expressing PD-1+ and IL-10+ in all 

groups and this was not altered upon the addition of BmAg. The increased expression of PD1 

and IL-10 producing CD4+ and CD8+ T cells upon BmAg stimulation in vitro suggests that PD-1 

and IL-10 signaling pathways are mediated by filarial nematodes in order to modulate host 

immune response. 
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 Figure 3.24: Filarial-specific induction of PD1
+
IL-10

+
-secreting CD4

+
 and CD8

+
 T cells in Wb-infected 

individuals. 

Isolated PBMCs (1x10
5 

cells/100µl) from study subjects were left unstimulated (Ctrl) or activated with either Brugia 
malayi extract (BmAg, 40µg/ml), αCD3/αCD28 (10000 beads/well) or combinations of both and cultured for 7 days. 
Thereafter cells were stained for CD4

+
PD-1

+
IL-10

+
 (A) or CD8

+
PD-1

+
IL-10

+ 
(B) in each individual (EN n=8, MF+ n=8 

and MF- n=8). Cell populations were analysed via flow cytometry. Bars present the mean percentage ± SEM of 
CD4

+
PD-1

+
IL-10

+
 and CD8

+
PD-1

+
IL-10

+ 
T cells. Data of each group were compared using Mann-Whitney test and 

significant differences are given as *p<0.05,**p< 0.01 and ***p<0.001. 

 

 

3.7 Determination of total immunoglobulin levels in W. bancrofti-infected individuals 

 

As mentioned in the previous introductory section (sections 1.4 and 1.6) W. bancrofti infections 

can give rise to an asymptomatic state or develop into lymphedema, hydrocele or urinary 

infections. Asymptomatic individuals usually present a regulated phenotype including high levels 

of IgG4 whereas those with pathology have higher levels of IgE. Thus, given the diverse role of 

antibodies during infection, plasma from EN, MF+ and MF- individuals were screened for levels 

of IgA, IgG1, IgG2, IgG3, IgG4, IgM and IgE using a human multiplex immunoglobulin kits. 

While significantly elevated levels of total IgA (Figure 3.25 A), IgG1 (Figure 3.25 B) and IgG3 

(Figure 3.25 D) were observed in EN, there was no significant difference in the amount of IgG2 

(Figure 3.25 C) or IgM (data not shown). Interestingly, the total antibody level of IgG4 was more 

pronounced in the patently infected individuals (Figure 3.25 E). Furthermore, significantly 

elevated amounts of total IgE was observed in MF- and MF+ groups when compared to EN 

subjects as shown in (Figure 3.25 F).  
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 Figure 3.25: Immunoglobulin levels in individuals with filarial infection 

Total antibodies were determined in plasma from W. bancrofti individuals via ELISA.  The level of IgA (A), IgG1 (B), 
IgG2 (C), IgG3 (D), IgG4 and IgE (F) in EN, MF+ and MF- is shown. Graphs show box whiskers with outliers. Data of 
each group were compared using Kruskal-Wallis and Mann-Whitney test and significant differences are given as 

*p<0, 05, **p<0, 01 and ***p<0,001. 

 

 

3.8 Filarial-specific IgG4, IgA and IgE in plasma can be associated with patent 

infections, no infection and latent infection respectively. 

To investigate filarial-specific antibody levels induced during asymptomatic W. bancrofti 

infection, plasma from EN, MF+ and MF- individuals were screened using specific-Ig ELISA. 

The results showed no significant differences between the groups in terms of IgG1 levels 

(Figure 3.26 A). However, the levels of IgG2 were significantly increased in MF+ and MF- 

groups when compared to EN (Figure 3.26 B), while no significant differences were observed in 

the study groups regarding IgG3 (Figure 3.26 C) levels. More interestingly, and in keeping with 

previous studies [13] significant levels of IgG4 (Figure 3.26 D) were found in MF+ subjects when 

compared to either MF- or EN group. Furthermore, consistent with the total antibody data shown 

in section 3.7, increased amount of filarial-specific IgA in was measured in EN compared to 

individuals with asymptomatic filarial infection (Figure 3.26 E). Finally, latently infected 

individuals showed significantly higher levels of filarial-specific IgE when compared to both EN 

and MF+ groups (Figure 3.26 F). The results indicate that while IgG4 characterises with MF+ 

individuals, IgA associates primarily with subjects without W. bancrofti infection. 
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 Figure 3.26: Increased filarial-specific IgG4 and IgG2 expression in microfilaraemic individuals; whilst 
endemic normals exhibit higher levels of filarial-specific IgA. 

Plasma was obtained from EN, MF+ and MF- filarial-specific antibodies were determined through ELISA using BmAg. 
Figures A-F represent IgG1, IgG2, IgG3, IgG4, IgA and IgE, respectively. Graphs show box whiskers with outliers and 
asterisks show statistical differences (Kruskal-Wallis and Mann Whitney test) between the groups indicated by the 
brackets (*p<0.05, **p<0.01, ***p<0.001). 
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4 DISCUSSION 
 
4.1 Transcriptomics in lymphatic filariasis and onchocerciasis  

Filarial infections affect almost 200 million individuals and pose a major public health challenge 

in several endemic regions. Suboptimal responses to antifilarial drugs, such as ivermectin, has 

been documented in field studies [52, 59] coupled with the modelling data showing that 

ivermectin is to be given for a much longer time in other to achieve elimination goals by 

2020/2025 in LF and onchocerciasis, respectively [141]. Current treatment options all have their 

obstacles and either do not kill adult worms, or as in the case for doxycycline, a macrofilaricidal 

treatment, require a longer treatment regimen and are not appropriate for pregnant women or 

children under 9 years. All these hurdles suggest the need to develop improved interventions. 

Therefore, one of the central goals in the fight against human filarial infections is the 

development of strategies that lead to the inhibition of MF transmission. Keeping MF within 

endemic populations under a certain threshold will stop transmission and eliminate the infection. 

Amongst the different approaches being discussed is the development of an effective vaccine. 

Anti-filarial vaccines would significantly reduce a major health burden in the tropics and could 

also become a promising tool for the elimination of filarial infections. Indeed effective vaccines 

have been hypothesized to improve economic development in endemic regions and thus, have 

a positive impact on health [142]. In various animal models and in life stock, vaccines against 

nematodes have been successfully tested [143]. Indeed, the use of two excretory-secretory 

antigens from Heamonchus contortus in sheep resulted in a significant decrease in faecal egg 

counts compared to an un-vaccinated control group [144]. Recently, the human hookworm 

vaccine initiative carried out a Phase 1 trial [145]. In the pursuit of developing a filarial vaccine, 

studying naturally occurring protective host immune responses against these nematodes may 

be highly informative. Towards this goal, the primary objective was to compare the immune 

responses in different phenotypes of W. bancrofti infection as well as O. volvulus infection. One 

phenotype is characterized by the absence of MF from peripheral blood or skin suggesting 

presence of immune responses that permit the circulation of MF. To identify factors of the 

immune response, the microarray technique has been used to elucidate gene regulation in the 

particular disease phenotypes. Recently, human microarray studies in L. loa infection have 

shown that CD4+ and CD8+ T cell associated networks and molecules are highly regulated in 

chronic infected individuals compared to subjects without chronic infection [124]. Yet, this 

technology has not been fully explored in human filarial infections. Therefore, in this study, 

transcriptome analyses using whole blood from O. volvulus and asymptomatic W. bancrofti-
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infected individuals and endemic normals was performed and confirmation on the cellular level 

was performed. 

The current study comprised of healthy adult individuals with either asymptomatic W. bancrofti 

or O. volvulus infection recruited from endemic regions of Ghana. For purposes of comparison, 

individuals who lived in the same communities but without infection were also recruited. In the 

LF study, patients were grouped on the basis of the presence of MF, absence of MF but positive 

for circulating filarial antigen (CFA) or MF- and CFA-. Most study participants belonged to either 

the Nzema or Ahanta ethnic groups. The Nzema East district has a population of about 60,000 

with economic activities including fishing, farming, trading and small-scale mining. It is mainly 

made up rural communities with third class roads, which makes travelling difficult especially in 

wet seasons. On the other hand, the Ahanta West district has a population of 106,000 with 

similar economic activities as mentioned for Nzema East district. However, communities in the 

Ahanta West district are larger and closer to each other making travelling relatively easier. The 

median age of the study participants did not vary across the groups. The number of males 

infected was higher than the females, particularly in the patently infected group. Most of the 

males were involved in fishing, small-scale mining and thus happen to stay late in the night, 

which coincides with the biting time of the transmission vector, whereas the females were 

predominantly fish mongers, traders and farmers. In the O. volvulus study, participants were 

either positive for adult worm (nodules) in addition to MF, or positive of adult worm (nodules) but 

no MF as well as individuals without infection. Participants were involved in economic activities 

such as farming, trading and small-scale mining. There was a fair distribution in the median age 

of the study participants and almost half had participated (1x) in MDA programmes. Similar to 

the LF study, more males were found to be infected compared to females. The impact of host 

immune responses on confounding factors such as co-infections and IVM intake will be 

discussed in the later sections. 

 

4.2 Genes and pathways regulation in filarial infections  

In the present study, two consecutive strategies were employed to performed gene expression 

analysis. This is because following analysis with the fist strategy: FC and statistics (FC ≥1. 3, 

adj. p<0.05) few transcripts were found to be regulated. This led to the use of a second strategy 

which considered genes regulated with an change in expression exceeding 1.3 fold (without 

adjusted p-value) as described elsewhere [146]. Both approaches provided new insights that 

are likely of biological relevance. For instance, out of the 46,862 genes for LF, and 46,698 
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genes for onchocerciasis, 42 and 10 genes were regulated in LF and onchocerciasis, 

respectively, when compared to EN. The number of regulated genes across group comparison 

was found to be increased in both infections when a second analysis strategy, i.e. without 

adjusted p-value was applied as shown in Table 3.1.3. Interestingly, after analysis without 

adjusted p-value, genes such as CLC, RNASE2, RNASE3 and HLA-DBR1 were regulated in 

infected vs EN as well as MF- vs EN.  

In the O. volvulus infection, no gene popped up when stringent analysis was applied in a 

comparison between infected (MF+) and EN. However, following gene expression analysis 

without adjusted p-value genes, such as CLC, RNASE2, RNASE3 among others, were 

upregulated. CLC are proteins released predominantly by activated eosinophils, basophils and 

regulated T cells. In this study we found increased mRNA CLC levels in individuals with filarial 

infection compared to EN (discussed below). Pathways such as Actin Nucleation by ARP-

WASP Complex, Cdc42 signaling, Rac signaling, CD28 signaling in helper T cells, heme 

biosynthesis and tetrapyrrole biosynthesis were found relevant in immune cell activation, 

recruitment and heme metabolism in individuals with LF. In comparison superoxide radical 

degradation, chemokine signaling, CCR3 signaling in eosinophils, regulation of eIF4 and 

p70S6K signaling and EIF2 signaling associated with eosinophil recruitment and metabolism, 

cellular movement, and protein synthesis were activated in persons with onchocerciasis when 

compared to EN. These pathways were previously unknown to be involved in filarial infections. 

Although there was an overall low gene expression, this is thought to be a technical issue due to 

the presence of globin mRNA in total RNA, which interferes with the amount of gene transcripts 

[147, 148]. In order to reduce this potential skewing, blood samples from study subjects were 

collected using PAXgene tubes, because this approach has been shown to efficiently preserve 

cellular RNA species at the state of blood sampling which maintains the transcriptome profile 

[149]. Therefore, it is not clear what accounted for the low transcriptome pattern observed in this 

study. In another infection scenario, gene expression in Loa loa-infected individuals revealed a 

higher number of regulated genes; however, in that study, the expression profile was performed 

in CD4+ and CD8 + T cells from PBMCs [124] and not directly on whole blood. 
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4.3 Latently infected individuals show a stronger transcriptome regulation in W. 

bancrofti infection 

In the LF study, 12 genes were significantly regulated in W. bancrofti-infected compared to EN. 

Coincidentally, 12 genes were also up-regulated in the latently infected when compared to EN, 

whereas no gene was down-regulated and therefore suggesting an elevated host gene 

response in this group. Subdividing the infected individuals by their MF status revealed that the 

number of genes upregulated was higher in the MF- persons versus EN compared to MF+ 

versus EN with most of the regulated genes in MF- comprising the regulated genes in the 

infected vs EN comparison. This suggests that the absence of MF in latent infected individuals 

may be due to immune responses, acting specifically against this life-cycle stage. Indeed, most 

of these regulated genes are associated with inflammatory responses as well as immune cell 

migration. For instance, amongst the highly up-regulated genes in the MF- group relative to EN 

was the transcription factor ZFAND5.  ZFAND5 protein enhances the stability of TNF-α mRNA 

by suppressing deadenylation [150]. Suggesting that the increased expression of this gene and 

apparently the protein form could contribute to the stability of proinflammatory cytokines such as 

TNF-α, since ZFAND5 proteins bind to ARETNF-α mRNA and competes with the mRNA 

destabilising protein tristetraprolin. Vice versa, such observations suggest that the presence of 

MF is associated with a weaker transcriptional regulation/host response, supporting previous 

studies, in which immunoepidemiology profiling of MF+ and MF- individuals revealed that MF- 

persons had elevated immune response [13]. This phenomenon could also be modelled in 

animal experiments, in which the susceptibility of the rodent is associated with regulatory 

responses accompanied by IL-10 and FOXP3 whereas resistance is observed in Th1/Th2 

settings [151, 152]. Thus, in humans susceptibility might be part of an immunosuppressive 

effect triggered by the patent infection or, alternatively, the weaker response to infection in these 

individuals allows the development of MF.  

The present transcriptomics data emphasizes that W. bancrofti infection induces increased 

upregulation of cell migration and trafficking genes and pathways in the latent infected group 

compared to the patently infected individuals. Heightened expression of cell migration related 

genes might reflect recruitment of functional leukocytes to the site of infection. This observation 

may represent an active immunity in the latent infected persons compared to the microfilaremic 

counterparts. Immune cell migration is generally associated with inflammation as part of an 

immune response [153, 154] and ongoing infection [155].  
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In addition, Cdc42 signaling was highly activated in the MF- group compared to those with MF+ 

infection. Cdc42 protein modulates actin polymerization through its direct binding to Wiskott-

Aldrich syndrome protein (WASP), which in turn activates the Arp2/3 complex through an 

associated-controlled mechanism [156]. Cdc42 promotes host defense against upper 

respiratory infections [157] and its loss leads to impaired migration in fibroblast and astrocytes 

[158]. Further, the activation of CD28 signaling in T helper cells in the latent compared against 

EN, suggests that latent infections fundamentally impacts the host adaptive immune response 

at the gene transcription level, whereas MF have been shown to block leukocyte migration 

[159]. Together, the robust genomic regulation in the latently infected individuals shows that cell 

migration is predominantly a feature of the on-going immune response directed against adult 

worms as described in previous studies [13].  

In contrast, the MF+ cohort was the only group where 4 genes (2 annotated and 2 unknown) 

were downregulated when compared to MF- and EN groups indicating overall low host 

responses. These genes include the delta-Aminolevulinate synthase 2 (ALAS2) and carbonic 

anhydrase 1 (CA1), Table 3.1.4.  Of ALAS two isoforms exist, which catalyze the conversion of 

glycine and succinyl-coenenzyme A to 5-aminolevulinic acid (ALA) as the first and rate-limiting 

enzyme in the mammalian heme biosynthesis pathway [160, 161]. ALAS1 is found in all body 

cells, whereas ALAS2 produces heme precursors for the production of hemoglobin [161]. 

Further, CA1 encodes cytosolic enzyme carbonic anhydrase (CA1), which catalyzes the 

reversible hydration of carbon (IV) dioxide to bicarbonate. Due to its potential harmful effects, 

the synthesis and catabolism of free heme is highly regulated. This is because free heme has 

been shown to promote inflammatory reactions associated with vascular injuries [162]. Reasons 

for downregulating the heme and tetrapyrrole biosynthesis pathways in the MF+ subjects are 

currently not clear, but may reflect a host/parasite compromised response that could leads to 

the inhibition of pathology development. 

Interestingly, filarial worms need heme as a cofactor for the production of ecdysteroid-like 

hormone that regulate filarial moulting and embryogenesis [163]. As they are not able to 

produce heme, filarial nematodes obtain this molecule from their endosymbionts. However, the 

Wolbachia endosymbionts have retained this ability and might supply its host with tetrapyrroles 

[163-165]. Interestingly, the Wolbachia heme synthesis pathway has recently been exploited for 

the development of novel anti-filarial drug candidates [164, 165]. Yet, the Wolbachia-free filariae 

L. loa is incapable of de novo heme biosynthesis and apparently depends on the uptake of 

heme or precursors from the host, a scenario that may also apply for Wolbachia-harbouring 
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filarial nematodes [166]. The use of heme biosynthesis inhibitors, succinyl acetone, and N-

methyl mesoporphyrin, which target aminolevulinic acid dehydratase (ALAD) and Wolbachia-

ALAD inhibitors have been shown to affect both endosymbionts and adult worm viability leading 

to death [165]. However, heme biosynthesis may not be unique to filarial parasites, since it is 

present in certain parasites, such as Plasmodium infections and has been regarded as a 

potential drug target [167]. The findings therefore suggest targeting of the Wolbachia heme 

biosynthetic pathway as a suitable therapeutic intervention in the fight against filarial infections. 

As already mentioned, CA1 was markedly downregulated in MF+ compared to MF- infected 

persons. CA1 regulates several physiological processes, including the transport of CO2 and 

bicarbonate between metabolizing tissues and lungs among others [168]. The regulation of CO2 

and bicarbonate concentration could influence periodicity of MF, a phenomenon which 

characterises W. bancrofti infection. Periodicity of MF in the blood have been associated with 

the different levels of oxygen pressure in the lungs [169]. Hence, suppressing CA1 in MF+ could 

be a strategy that permits MF in peripheral blood at night; yet further transcriptomics 

investigation may be required in order to elucidate the mechanism underlying nocturnal 

periodicity in lymphatic filariasis.  

 

4.4 Impact of confounding factors on host immune responses 

Given that the study was conducted in communities not only endemic for filarial, but also 

protozoan and other helminth infections, further analyses were performed to establish whether 

confounding factors such as study regions, co-infection and/or IVM intake impacted gene 

expression profile in the study. Following the removal of individuals that had co-infection and/or 

had participated in IVM intake, it remained with a population who were only infected with W. 

bancrofti. In this population, gene expression analysis showed that lymphoid associated 

markers such as GZMA and GZMB were strongly up-regulated in patently infected individuals 

and were contrastingly strongly down-regulated in subjects with latent infection. Granzymes are 

serine proteases which are secreted by many cell types such as CD8, NK and regulatory T cells 

and are discussed below.  Additionally, with regards to impact as a result of study region, 

increased gene expression was associated with subjects from Nzema East district compared to 

those from Ahanta West district. A closer look at the transcriptomics data showed that most of 

the up-regulated genes in the Nzema East samples were similar to those identified in latently 

infected subjects. Reasons for this finding could be many. More potent immune response in 

these individuals are possible, but also altered infection intensity or transmission in the Nzema 
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East communities. It was also observed that the majority of the individuals in the Nzema East 

district had at least one or two round(s) of ivermectin when compared to those in the Ahanta 

West district. What accounts for differences in the rounds of ivermectin intake between the two 

districts is unclear since the LF elimination programme apparently began in the year 2001 in the 

Ahanta West district and subsequently in the Nzema East district in 2002. The LF elimination 

programme in these districts is managed on sub-district level by community health officers 

supported by village workers. Low remuneration for village workers or increased commuting of 

individuals in the Ahanta Districts may account for different MDA distribution. In addition, the 

Ahanta District is has a huge population size, and difficulties in achieving necessary coverages 

of IVM distribution could explain the dependency. Thus, different environmental pressure may 

affect parasite and host population, resulting in altered immune responses. Indeed, infection 

intensity has been observed to vary from one community to another [170, 171]. Furthermore, 

this study population has not been characterized with regard to the family history and therefore 

we cannot fully exclude the possibility of genetic divergence within the two ethnic groups in 

response to W. bancrofti infection. On the other hand, we also observed increased regulation of 

genes in the MF- individuals who had coinfections and/or had participated in IVM treatment 

more than their MF+ counterparts. Genes such as basic helix-loop-helix family, member e40 

(BHLHE40), natural killer-tumor recognition sequence (NKTR), ELOVL family member 5, 

elongation of long chain fatty acids (ELOVL5) were highly expressed in MF- group. These 

genes were associated with pathways such as spliceosome, protein processing in endoplasmic 

reticulum, ubiquitin mediated proteolysis and circadian rhythm. Obviously, in this context, 

caution is required when handling human gene expression data since several factors such as 

ethnic background [172-174], previous treatment history and infection intensities among others 

could potentially impact expression pattern. In the O. volvulus infection there were no genes 

detected following analyses with respect to coinfection or IVM intake.  

 

4.5 Evidence of increased numbers of peripheral eosinophils and neutrophils in 

latently infected individuals 

To investigate differences between the study groups on the cellular level, we analysed blood 

smears for granulocytes, cells that are strongly involved in the defence mechanisms against 

parasitic nematodes. In the W. bancrofti study, an increase in eosinophil counts was observed 

in the MF- individuals but not in EN and MF groups, whilst neutrophil counts were not distinct 

between the study groups. In the O. volvulus study, there were significant differences in 
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eosinophils between MF+ subjects and EN as well as a-MF individuals and EN, whilst neutrophil 

counts were higher in a-MF individuals when compared to EN groups, but not in MF+ 

individuals. Furthermore, there was no association between MF counts and eosinophil and 

neutrophil numbers in the bancroftian infection, whilst MF counts significantly correlated with 

peripheral eosinophils but not neutrophils in O. volvulus study. In contrast, an association 

between blood eosinophil count and MF+ subjects but not in their MF- counterparts in an O. 

volvulus-infected population has been observed [18].  The peripheral leucocyte counts in both 

infections compared to EN are consisted with the transcriptome data presented in this study, i.e. 

upregulation of the eosinophil-associated CCR3-signaling pathway was observed in filarial 

infected individuals when compared to EN.  In a mouse model, CCR3 promoted L3 larvae killing 

in O. volvulus infection [138], whereas CCR3 knockout mice sustained elevated muscle larvae 

burden in Tricuris spiralis infection [175]. However, the expression of CCR3 is not restricted to 

eosinophils alone, but also in cells, such as neutrophils [176] and basophils [177]. The activation 

of this signaling pathway indicates migration of eosinophils to site of infection. 

Equally important, the transcriptome data give credence to a recent observation by Gentil et al, 

where in a mouse model of filarial infection, Eotaxin-1 (chemokine, which binds to CCR3) was 

found to modulate activation of inflammatory cells leading to helminth clearance [178], thus 

further confirming the protective functions of eosinophils during filarial infection. However, 

eosinophil activity in another study demonstrated their contribution to L. sigmodontis 

development [66], a scenario which needs to be carefully considered in human vaccine 

programmes to control helminth infections. Together, the current study shows direct evidence 

that the activation and recruitment of eosinophils and neutrophils and their secreted proteins 

could be linked with protection since eosinophils in (LF) and eosinophils and neutrophils in 

onchocerciasis infections were significantly expressed in subjects without MF; hence suggesting 

their important in determining filarial infection outcome. 

 

4.6 Profiling immune response in individuals with W. bancrofti infection 

Generally, filarial nematodes dampen the host’s immune response in order to coexist for several 

years. However, in endemic regions, a few infected individuals develop severe clinical 

manifestations. This study focused on deciphering the underlying molecular mechanisms, which 

drive the two asymptomatic infection phenotypes, i.e. MF+ and MF-. To do this, the adaptive 

immunological profiles of MF+, MF- and EN (in the case of W. bancrofti infection) were 

performed in vitro by characterizing CD4+ and CD8+ T cells within PBMCs from study subjects. 
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4.7 Human filarial infection is associated with increased CLC/Gal-10 levels 

CLC/Gal-10 was highly expressed on the mRNA level in both W. bancrofti and O. volvulus 

infections compared to endemic normals; therefore, we further investigated peripheral protein 

levels in study subjects. When compared to EN, CLC/Gal-10 expression was found to be 

enhanced in filariae-infected individuals on protein levels in CD4+ and CD8+ T cells. CLC/Gal-10 

is produced by regulatory T cells and is released following activation [69]. Furthermore, 

following intracellular staining by flow cytometry, W. bancrofti-infected individuals exhibited an 

increased frequency of CLC/Gal-10-producing CD4+ and CD8+ T cells when compared to levels 

in T cells from EN. Additionally, filarial-specific stimulation of PBMC resulted in an increased 

secretion of CLC/Gal-10+IL-10 by CD4+ T cells in MF+ persons when compared with EN and 

MF- individuals. The expression pattern of CLC/Gal-10+IL-10+-producing CD8+ T cell was 

comparable to CD4+ T cells. In addition, eosinophils could be a potential source of CLC/Gal-10, 

as it constitutes approximately 10% of the total cellular protein in human eosinophils  [179], 

whilst its percentage in Tregs remains to be characterised. Based on the literature, CLC/Gal-10 

appears to have a dual role with both protective and immunosuppressive effects. CLC/Gal-10 

has been reported to possess IgE binding activities [180] and although there is currently no 

available data, this may contribute to filarial clearance upon IgE binding. This hypothesis is 

supported by studies on other cytotoxic factors, such as eosinophil peroxidase (EPO) and major 

basic protein 1 (MBP) whose importance was reported using filarial murine model by Specht et 

al., [65]. On the other hand, CLC/Gal-10 protein appears to also have immunosuppressive 

functions, since it enhanced the suppressive capacity of regulatory T cells [69]. The current data 

bring us one step closer to deciphering the role of CLC/Gal-10 in filarial infection since in both 

infections MF+ individuals had higher levels, therefore such observation could be a secondary 

reaction to the higher MF loads, or immunosuppression, but it is not associated with protection. 

Elsewhere, increased IL-10 and TGF-β are believed to be highly produced in patently infected 

individuals [77, 181]. It may be speculated that post-translational modifications may influence 

the conversion of CLC/Gal-10 mRNA into proteins (splice variants) in the presence of MF during 

W. bancrofti and O. volvulus infection as demonstrated by a recent proteomics study where 3 

variants of CLC/Gal-10 protein were identified [69]. The existence and functions of possible 

isoforms of CLC/Gal-10 proteins during filarial infection are not known and further investigation 

of this molecule may be important. Furthermore, galectin-9 from Toxacaris leonina shares 35% 

homology with human galectin-9 and recombinant forms lead to diminished intestinal 
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inflammation in mice via increased IL-10 and TGFβ [182]. Interestingly, the presence of 

galectin-1 and 9 supported the differentiation of CD4+CD25+ T reg cells in vitro [183, 184], while  

treatment of galectin 1 resulted in the expansion of IL-10 producing T cells and effectively 

suppressed autoimmune inflammation [185]. In this study, we observed higher amounts of 

CLC/Gal-10 MF+ infected individuals compared to EN group. Collectively, these data give rise 

to evidence that the galectin family of proteins may have intrinsic functions associated with 

immunomodulation of host responses and this should be exploited in filarial infection to fully 

characterize the underlying mechanisms.  

 

4.8 Differential regulation of granzyme A and B expression during W. bancrofti 

infection 

When further dissecting the study group by removal of patients with coinfections and those who 

had taken IVM as mentioned in section 4.5., the gene expression data showed increased 

expression of GZMA and GZMB in patently infected individuals compared to control. 

Granzymes are primarily produced by  CD8+ T, NK cells and Tregs [186]. GZMA belongs to the 

tryptase-like serine proteases and cleaves after the basic amino acids Arginine and Lysine, 

whilst GZMB has aspase activity and cleaves substrates at key aspartic acid residues. In the 

current study, the increased frequencies of CD4+ and CD8+ T-secreting GZMA were associated 

with MF- individuals, whereas the higher amounts of GZMB producing T cells were observed in 

MF+ subjects. Again, the pattern of GZMB but not GZMA in T cells in the MF+ individuals was in 

line with the transcriptome data following the removal of subjects with co-infection and/or with 

IVM intake. Additionally, we observed significantly increased frequencies of GZMB+IL10+-

producing CD4+ and CD8+ T cells in MF+ subjects when compared to MF- individuals. These 

CD4+ and CD8+ T cells-producing GZMB+IL-10+-phenotype may have immunoregulatory 

properties in MF+ individuals but further studies are required to address this. Previous studies in 

onchocerciasis showed that FOXP3+T cells interact with both GZMA/B following doxycycline 

treatment [104]. The authors found that an increased frequency of FOXP3+T cells expressing 

GZMA and GZMB, which in turn inhibited the activity of effector cells. In the same study, GZMB 

expression was found to be distinct when study subjects were compared on a regional basis. 

However, this was not the case in the present study. Whether such differential expression of 

granzymes, has a genetic basis is currently unclear, and requires further investigation. 

Interestingly, studies in mice with different genetic background have shown that GZMB is 

enhanced in Tregs following activation with inhibitory activity, while GZMB-deficient mice failed 
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to induce suppression [187]. Interestingly, in individuals with tumor, GZMB-producing Tregs 

have been shown to suppress NK and CD8+ T cells activities [94, 188], as well as attenuate 

host immune responses. Such immune regulation via the release of GZMB could be a further 

immune evasion mechanism induced by filariae parasites, given their inherent ability to dampen 

host immune responses through increased regulatory T cells. Furthermore, antigen-specific 

CD8+ T cells expansion was regulated by GZMB-producing Tregs in a Senai viral (SeV) 

infection model of acute respiratory disease [95], which compromised the ability of CD8+ T cells 

to clear the virus.  

More interestingly, the observations made within this work confirm that of Hartmann and 

colleagues, where they demonstrated that GZMA promotes protective immunity in rodent filarial 

infection with L. sigmodontis, whereas GZMB enhanced susceptibility to infection by 

suppressing Th2-related cytokines [96]. Contrarily, both granzymes have been shown to support 

proinflammatory conditions, i.e. GZMA catalyzes the conversion of IL-1β [189], leading to 

inflammation, while GZMB induces VEGFs from an extracellular cell matrix under inflammatory 

conditions [190, 191]. The increased expression of GZMB in T cells from MF+ individuals in this 

study may suggest its immunoregulatory function as described previously [96, 104], given that 

GZMB was co-expressed with IL-10 following filarial-specific stimulation. Along these lines, 

GZMB-producing IL-10 CD4+ and CD8+ T cells could promote re-infection via immune 

suppression, i.e. complicating current efforts to human eliminate filarial infections.  

 

4.9 T cell responses in individuals with W. bancrofti-infection  

In further characterising the host immune response in individuals with W. bancrofti infection, we 

found that MF+ subjects presented increased regulatory responses (IL-10), whilst MF- persons 

presented Th1, Th2 and Th17 responses accompanied with IFN-, IL-4 and IL-17A, respectively 

in CD4+ T cells. One interesting finding was the increased CD8+ T cells producing IFN- in the 

PBMCs from EN and MF- groups when compared to MF+ individuals. This observation 

corroborates previous findings, which showed that IFN-is upregulated in EN, while IL-4 and IL-

10 producing cells in PBMC from filarial-infected were significantly higher in MF- and MF+ 

groups. Again, MF+ individuals have been shown to exhibit diminished Th1 and Th2 phenotype, 

but increased regulatory phenotype reflected in IL-10 and TGF-β and FOXP3 [77]. IL-10 has 

suppressive activity on cell types, thus attenuating the nature of the immune response. 

Consistent with previous studies, MF- individuals exhibited enhanced pro-inflammatory 
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conditions, which apparently promote protection against MF, but regulated, since individuals in 

this groups have the tendency to produce IL-10 following antigen specific stimulation [13]. One 

remarkable finding in this study is the characterisation of IL-17A producing T cells in 

asymptomatic filarial-infected individuals. The frequencies of CD4+ T cells expressing IL-17A 

were increased in MF- persons compared to MF+ and EN groups, suggesting a protective role 

of this cell type and correlated with the expression level of the Th17 signature cytokines IL-17A. 

In contrast to this finding, Anuradha et al, observed no differences in CD8+ T cells-expressing 

IL-17A in response to PMA and Ionomycin treatment in individuals with Brugia malayi infection 

[191]. This could be explained by several factors such as experimental setup, sample size as 

well as differences in concentration of antigen used in both studies. Recently, IL-17A has been 

implicated in several infections as well as filarial pathology, such as hyperreactive 

onchocerciasis [17] and lymphedema [82]. However, in response to filarial specific or anti-

CD3/anti-CD28 activation, T-bet, GATA-3 and RORC2 were highly expressed in MF- 

individuals, whereas FOXP3 was again elevated in T cells from MF+ subjects. Furthermore, the 

frequency of CD8+ T cells was significantly higher in MF+ persons compared to MF- individuals. 

This corroborates studies in animal models of human filariasis since MF have been reported to 

associate with activated CD8+ T cells [192]. More intriguingly, soluble CD8 in plasma of 

individuals with patent infection was higher when compared to levels in healthy donors, i.e. non 

endemic normals (data not shown), and thus indicates a potential immunomodulation steered by 

MF. It is unclear how CD8+ T cells are activated following W. bancrofti infection, although cross-

presentation of extracellular antigens in the MHC-1 pathway is now a well-documented 

phenomenon [193, 194]. The findings within this study provide evidence that the frequencies 

and cytokine production by CD8+ T cells are altered during W. bancrofti infection.  Together, it 

was observed that while absence of MF associated with active immune response, patently 

infected individuals were characterised by regulatory response. Additionally, this study shows 

that besides CD4+ T cells, CD8+ T cells are implicated in filarial infections; and have a potential 

regulatory function in the establishment of patent infection a condition, which may implicate 

future vaccine program. 

Furthermore, the study demonstrates that to a large extent filarial antigens dampen the activity 

of TCR activation. In the presence of both BmAg and anti-CD3/anti-CD28 compared to anti-

CD3/anti-CD28 alone, the frequency of most expressed markers was slightly diminished in all 

study groups. The findings emphasize the modulatory potential of filarial antigen in the presence 

of TCR stimulation. The suppression was not IL-10 dependent, which indicates that to survive in 
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their host, filarial parasites release products, which suppress the activity of effector cells. This 

scenario may represent competition for binding sites. While the findings in these experiments by 

no means constitute a final analysis of TCR-specific suppression by filarial antigens, they 

suggest a potential immunomodulatory mechanism, which warrants further investigation. 

Elsewhere, the capacity of helminth-derived antigens to modulate innate immunity has been 

demonstrated [195]. The current study demonstrates that filarial antigens moderately modulate 

TCR specific activation, albeit not significantly, an area, which warrants further investigation. 

Such phenomenon suggests that outcome of filarial infection and consequently any resulting 

pathology may be influenced by confounding factors, such as co-infection. 

 

4.10 T cell exhaustion is associated with microfilaremic infection   

T cell exhaustion during chronic infection may impact protective immunity and some of the 

underlying mechanisms are beginning to be revealed.  In this study, it was observed that CD4+ 

and CD8+ T cells in MF+ individuals showed elevated levels of PD-1 and CTLA-4 than 

individuals without MF as well as EN. It was also demonstrated that MF+ persons present 

increased frequencies of PD-1+IL10+-expressing CD4+ and CD8+ T cells compared to the MF- 

and EN groups following PMA/Ionomycin treatment as well as filarial-specific stimulation. 

Persistent antigen stimulation has been shown to result in the co-expression of inhibitory 

markers that lead to exhaustion. In fact, Trichinella spiralis-infected mice treated with anti-CTLA-

4 resulted in an increased Th2 response during infection [197]. The results in this study are 

consistent with a previous study,  which demonstrated that MF+ subjects display increased 

levels of CTLA-4 in PBMCs [198], while IL-5 levels were enhanced after anti-CTLA-4 antibody 

treatment. Intrinsic defects in T cell responses in human filarial infections are linked with 

expression of the T cell-inhibiting receptor, CTLA-4 [198], and neutralisation of CTLA-4 in mice 

results in enhanced L. sigmodontis killing [199]. In addition to this intrinsic T cell hypo-

responsiveness, T cell responses in humans can be dampened by suppressive antigen-

presenting cells [75]. Both mechanisms are operative in the L. sigmodontis model where 

macrophages that block proliferation of T cells are present at the site of infection prior to 

patency but become apparent in the draining lymph nodes only following patency [199]. Studies 

in susceptible BALB/c mice have demonstrated that L sigmodontis survival is dependent on the 

induction of a regulatory T cell populations that induces hypo-responsiveness [200]. This 

corroborates the data from human field studies demonstrating that T regulatory (Treg) cells can 

be isolated from onchocerciasis patients [201], and generalised onchocerciasis is associated 
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with antigen-specific Treg cells that can be found in nodules [202].  Additionally, CTLA-4, 

together with PD-1 have been reported by Babu et al to suppress Th1 and Th17 responses 

during co-infection with tuberculosis and LF [203]. Interestingly, the expression of the inhibitory 

receptor PD-1 in exhausted CD8+ T cells  has been associated with the progression of viral 

infection [204]. In another infection scenario, PD-1 has been shown to suppress protective 

immunity to Streptococcus pneumoniae through a B-cell-mediated manner [205]. However, a 

recent study has shown that in addition to the negative regulatory role attributed to PD-1, a 

phenotype of  tumour reactive cells exists which can be used to predict tumour regression 

following the infiltration of lymphocytes [206]. Further elucidation about the role of PD-1 in filarial 

pathologies may reveal a distinct T cell phenotype and function that may underlie developing 

pathologies. Further profiling of the T cells in this study exposed other exhausted markers too, 

namely CD244 and CD107. The frequencies of these markers were upregulated in the filarial-

infected individuals compared to uninfected controls a phenomena that has been previously 

described in chronic viral infection [207]. Thus, the increased frequency markers related to T cell 

exhaustion in the MF+ subjects may indicate an impaired immune response, which supports MF 

survival. This scenario reflects hypo-responsiveness driven by MF in order to escape the 

protective host responses, and thus suggests developing antifilarial drugs, which inhibit PD-1 

and CTLA-4 regulatory pathways in MF+ persons, may lead to immune responses, which 

control MF. 

 

4.11 Profiling filarial-specific immunoglobulins 

Individuals with filarial infection develop extraordinary diverse antigen immunoglobulin 

responses. In this study, W. bancrofti MF+ subjects produced spontaneous IL-10 and exhibited 

both increased total and filarial-specific IgG4, which also correlated with MF load. The current 

data are consistent with that of Kwan-Lim et al, where they documented that plasma IgG4 levels 

are associated with active infection [208]. A decade ago, elevated IgG4 levels in plasma from 

MF+ individuals was demonstrated in B cell class switching in vitro to be facilitated by IL-10 [87], 

TGF-β and GITR ligation but not CTLA-4 [88].  In this study, increased antigen specific IgG2 

levels were associated with MF+ and MF- subjects when compared to EN group. This was in 

contrast to an earlier report where IgG2 levels were elevated in infection free individuals, 

suggesting protective immunity [209].  Such differences observations call for further work on the 

role of IgG2 in filarial infections. On the other hand, the current data showed that MF- persons 

produced increased IgG3 and IgE. These filarial specific antibody responses may contribute to 
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protective immunity and thus clearance of MF. In onchocercal infections, levels of IgE, IgG1, 

IgG2, IgG3 has been documented to be higher in sera from sowda individuals [210]. 

Interestingly, Peterson et al documented that individuals with W. bancrofti, co-infected with HIV 

showed significantly higher levels of filarial-specific IgG3 before DEC treatment but reduced 

levels of IgG4 following treatment indicating that therapy had a stronger antifilarial effect in 

these subjects [211]. But, since each infection has its own peculiarities, it stands to reason that 

coinfections will have both direct and indirect influences on immunological and pathological 

responses. Remarkably, the lack of pathology normally associated with the MF+ group is 

because IgG4 is monomeric in structure and blocks IgE mediated responses [105]. IgE is known 

to play an important role in the clearance of helminth infections. In the present study, both total 

and antigen-specific IgE levels were elevated in MF- individuals, suggesting its relevance in 

controlling MF. But IgE, has been shown to be more specific but less sensitive than IgG4 for 

instance in the diagnosis of toxocariasis. This is because in a follow-up study after 

chemotherapy, specific serum IgE levels were significantly decreased 1 year after treatment, 

while specific IgG levels declined 4 years post-treatment [212], suggesting the treatment could 

have influence on the levels of antibodies in study subjects.  

More interestingly, it was observed within this work, that both total and filarial-specific IgA was 

elevated in EN normals compared to MF- and MF+. This is in line with a study in India, where a 

similar trend was observed [107]. Furthermore, IgA has been shown to be protective in mice 

lacking poly-immunoglobulin receptor in Giardia infection [213]. Field studies in Sudan also 

showed elevated concentration of IgA was observed in sera from patients with O. volvulus 

infection [214]. Whilst the role of IgA awaits to be delineated, it seems to be associated with the 

clearance of the parasites, an area which warrants further investigation in filarial infections. The 

mechanism underlying increased IgA in EN groups is not clear, but appears to promote 

protection against filarial infection. This finding was unexpected, because TGF-β has been 

shown to enhance switching of IgA in human B cells, in association with Tregs [215], and thus  

defining the role of IgA in human filarial infections may require further studies. 

 

4.12 Conclusion 

The current study aimed to assess the impact of W. bancrofti and O. volvulus parasites on the 

host immune response and specifically, to identify hitherto unknown components of the immune 

response that lead to a protective immune response, where MF are absent from peripheral 

blood or skin compared to immune response, which permits the development and circulation of 
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MF. To date, investigations into mechanisms of protective immunity and identification of vaccine 

candidates largely depend on the assessment of individual components; i.e. the effector 

function of a particular antibody, cell type or cytokine, or the ability of a recombinant antigen to 

prevent infection or reduce morbidity. On the host side and, in the simplest of accounts, 

activation of a protective immune response is under control of many cell types and surface 

markers/receptors, secreted cytokines and antibody responses. Therefore, a high through-put 

microarray and immunological approaches were used to measure immune responses from 

asymptomatic filarial infected (patent and latent) and uninfected individuals in a host-parasite 

relationship. In conclusion, while there was a huge overlap in the transcriptomics profile 

between MF+ and MF- individuals, the results also showed some disparity between patently 

and latently infected individuals. In particular, the gene expression and immunology of patently-

infected individuals are characterised with a weaker and regulated responses (hypo-

responsiveness), associated with the presence of circulating MF. This scenario was confirmed 

by the increased levels of IL-10, CLC/Gal-10, GZMB and IgG4, as well as elevated exhausted T 

cells markers (CTLA-4 and PD-1), which may provide an environment that, support the 

transmission stage of the parasite. In contrast, individuals with asymptomatic latent infection (a 

previously neglected cohort of patients) revealed potent genomic expression, cellular and 

antibody responses, hence may contribute to MF clearance. Such elevated transcriptomics 

profile and immune responses in the MF- group (characterised by elevated IL-4, IFN-IL-17A, 

GZMA and IgE) may provide the key into elucidating alternative therapeutic treatments which 

would essentially block transmission and consequently eliminate the infection.
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6 APPENDICES 
6.1 APPENDIX I: EQUIPMENTS 

Instrument  Supplier 

Analytical scale Sartorius AG, Göttingen, Germany 
Centrifuge (Eppendorf 5415 R) Eppendorf AG, Hamburg, Germany 
Centrifuge (Multifuge 4KR) Heraeus Holding GmbH, Hanau, Germany 
Counting chamber (Neubauer ) LO Laboroptik GmbH, Bad Homburg, Germany 
ELISA plate reader Molecular Devices, Sunnyvale, USA 
DM-RD Fluorescence microscope Leica, Wetzlar, Germany 
FACSCanto flow cytometer™  Becton-Dickinson, Heidelberg , Germany 
HumanHT-12 version 4 Expression Bead Chips Illumina, San Diego, CA, USA 
Incubator Binder GmbH, Tuttlingen, Germany 

Filter (Whatman Nucleopore, 5 m) Carl Roth, Karlsruhe, Germany 

Freezer (-20°C)  Bosch GmbH, Stuttgart, Germany 
Freezer (-80°C)  Heraeus Holding GmbH, Hanau, Germany 
Fridge  Bosch GmbH, Stuttgart, Germany 
Glass mortar VWR, Langenfeld, Germany 
Ice machine (Scotsman AF 80) Gastro Handel GmbH, Wien, Austria 
Microscope (Light) Leica Microsystems GmbH, Wetzlar, Germany 
Microscope (Light) Zeiss,  Germany 
pH-meter Mettler Toledo GmbH, Giessen, Germany 
Pipet boy (pipetus®-akku)  Hirschmann Laborgeräte, Eberstadt, Germany 
Punch (Holth corneoscleral punch 2mm) Koch, Hamburg, Germany 
Reflotron ® Plus Roche Diagnostics, Mannheim, German 
Sedgewick rafter chamber VWR, Langenfeld, Germany 
Tally Counter  Denominator, Connecticut, USA 
Vortex mixer IKA® GmbH & Co.KG, Staufen, Germany 
Water bath VWR, Langenfeld, Germany 
  

 

6.2 APPENDIX II: CHEMICALS AND REAGENTS 

Chemical  Supplier 

Advanced Protein Assay™ Cytoskeleton, Inc., Denver, USA 
Coomassie blue G Cytoskeleton, Inc., Denver, USA 
Dimethyl sulfoxide (DMSO) Sigma-Aldrich GmbH, Munich, Germany 
Disodium hydrogen phosphate 
(Na2HPO4) 

Sigma-Aldrich GmbH, Munich, Germany 

Giemsa  Merck KGAA, Darmstadt, Germany 
Gentamicin PAA Laboratories GmbH, Pasching, Austria 
L-glutamine PAA Laboratories GmbH, Pasching, Austria 
Hydrochloric acid (HCl) Merck KGAA, Darmstadt, Germany 
Methanol Merck KGAA, Darmstadt, Germany 
May-Grünwald  Carl Roth, Karlsruhe, Germany 
Paraformaldehyde Merck KGAA, Darmstadt, Germany 
Penicillin /Streptomycin 100 ml PAA Laboratories GmbH, Pasching, Austria 
Tween-20 Merck KGAA, Darmstadt, Germany 
TMB Sigma-Aldrich GmbH, Munich, Germany 
Stop solution 2N H2SO4  Merck KGAA, Darmstadt, Germany 
Streptavidin-Peroxidase (HRP) eBioscience, Frankfurt, Germany 
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6.3 APPENDIX III:  CONSUMABLES 

Plastic and glass wares Supplier 

Cell culture plates 96 well Greiner, Frickenhausen, Germany 
Cover slip (24 x 32 mm) Marienfeld, Lauda-Konigshofen, Germany 
Cryo tubes (2 ml), Nunc Nunc, Roskilde, Denmark 
Eppendorf tubes (0.5,1.5, 2 ml) Sarstedt, Germany 
FACS tubes BD Pharmingen, Germany 
Falcon sterile centrifuge tubes (15 and 
50 ml) 

Greiner, Frickenhausen, Germany 

Glass pipettes (3,10, 25,50 ml) Greiner, Frickenhausen, Germany 
Microscope slide (75 x 25 x 1mm) Marienfeld, Lauda-Konigshofen, Germany 
Parafilm VWR, Langenfeld, Germany 
Pasteur pipettes Brand 
Pipette tips (10 μl, 200 μl and 1000 μl) Greiner, Frickenhausen, Germany 
PAXgene™ blood RNA tube PreAnalytiX, Switzerland 

 

6.4 APPENDIX IV: BUFFER AND MEDIA  

Buffer or media Ingredient/Supplier 

Bovine serum albumin (BSA) PAA Laboratories GmbH, Pasching, Austria 
Fetal calf serum (FCS) PAA Laboratories GmbH, Pasching, Austria 
Ficoll Sigma-Aldrich GmbH, Munich, Germany 
Leucosep tubes Greiner Frickenhausen, Germany 
Phosphate buffered saline (PBS) PAA Laboratories GmbH, Pasching, Austria 
Normal Rat serum eBioscience, San Diego, USA 
Roswell Park Memorial 
Institute (RPMI 1640) 

PAA Laboratories GmbH, Pasching, Austria 

Trypan Blue  Sigma-Aldrich GmbH, Munich, Germany 

 

6.5 APPENDIX V: ELISA KITS 

Commercially available kits and Reagents Supplier 

BinaxNow® Filariasis Alere, Sinnamon Park, Australia 

ELISA kit Charcot Leyden Crystal (Human) Cloud clone Corp, Huston, USA 
ELISA kits Ready-SET-Go  eBioscience, San Diego, USA 
Cell Fixation/Permealibization Kits for 
Intracellular Cytokine Analysis 

eBioscience, San Diego, USA 

Concentrate and Diluent, 
Permealibization Buffer (10X) 

eBioscience, San Diego, USA 

Malaria test (Nadal® Malaria test 4species) Nal von Minden, Moers, Germany 
Monoclonal Igs (IgG1-4 and IgA)  Sigma-Aldrich GmbH, Munich, Germany 
Monoclonal IgE Southern Biotechnology, AL, USA 
Pierce Limulus amoebocyte lysate (LAL) 
Chromogenic quantification kit (88282) 

Thermo Fisher Scientific, Schwerte, Germany 

Soluble CD8 high platinum ELISA kit (Human) eBioscience, Frankfurt, Germany 
Total Igs (IgA, IgM, IgE and IgG1-IgG4) eBioscience, Frankfurt, Germany 
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6.6 APPENDIX VI: FACS STAINING ANTIBODIES  

Antibody Marker Type (clone) Supplier 

αCD3/αCD28 microbeads  Invitrogen, Carlsbad, USA 
CD4 APC OKT-4 ImmunoTools, Friesoythe, Germany 
CD4 PECy7 RPA-T4 eBioscience, San Diego, USA 
CD8 APC SK1  
CD8 PECy7 RPA-T8 eBioscience, San Diego, USA 
CD25 PE TB-30 ImmunoTools, Friesoythe, Germany 
CD25 APC HI25a ImmunoTools, Friesoythe, Germany 
CD69 APC FN50 ImmunoTools, Friesoythe, Germany 
CD107 FITC eBioH4A3 eBioscience, San Diego, USA 
CD244 APC eBioDM244 eBioscience, San Diego, USA 
CTLA-4 PE I4D3 eBioscience, San Diego, USA 
PD-1 FITC MHA eBioscience, San Diego, USA 

IFN- FITC 4S.B3 eBioscience, San Diego, USA 

IL-4 APC B-S4 eBioscience, San Diego, USA 
IL-10 PE JES3-9D7 eBioscience, San Diego, USA 
IL-17A PE eBio64DEC17 eBioscience, San Diego, USA 
IL-17A FITC  eBioscience, San Diego, USA 
T-bet PE eBio4B10 eBioscience, San Diego, USA 
Eomes FITC  eBioscience, San Diego, USA 
GATA-3 PE TWAJ eBioscience, San Diego, USA 
RORC2  AFKJS-9 eBioscience, San Diego, USA 
FOXP3 FITC 236A/E7 eBioscience, San Diego, USA 

Anti-human Galectin-
10 (1° Ab) 

  R&D Systems, Minneapolis, USA 

Donkey anti-goat 
Galectin-10 (2° Ab) 

Fluorescein F0109 R&D Systems, Minneapolis, USA 

GZMA FITC BD Pharmingin 
558905 

R&D Systems, Abingdon Science 
Park, UK 

GZMA PeCy7 CB9 eBioscience, San Diego, USA 
GZMB PE GB11 R&D Systems, Abingdon Science 

Park, UK 

 

6.7 APENDIX VII: SOFTWARES 

Program (Software) Supplier 

Adobe illustrator 6 Adobe Systems, New York, USA 
BD FACSDiva software 3.0 BD™ Biosciences, Heidelberg, Germany 
Bio-conductor Seattle, WA, USA 
Endnote 4 Thomson Reuters, Philadelphia, USA 
Gene Expression Module (1.8.0) Genome Studio, USA 
Prism 5.02 GraphPad Software, Inc., La Jolla, USA 
Ingenuity Pathway Analysis IPA, Redwood City, USA 
PrimoPDF Nitro PDF, Software , Microsoft, USA 
SoftMax Pro Molecular Devices, Sunnyvale, USA 
Diskus microscope software Carls Hilger Technisches Buro Konigswinter, 

Germany 
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6.8 APPENDIX VIII: MEDIA AND SOLUTION 

 
Fetal calf serum 

FCS used to supplement medium Flow cytometry 
was heated for 30 minutes at 56°C  FACS Buffer 
to inactivate the complement factors.       1XPBS 
Aliquots were then stored at -20°C until       1%FCS 
required. Fixation Buffer 
 1%PBS 
Cell culture reagents 4% paraformaldehyde 
Complete medium 
RPMI 1640 
2 mM L-glutamine 
50µg/ml penicillin/streptomycin 
50µg/ml gentamicin 

Cell culture medium 
RPMI 1640 
2 mM L-glutamine 
50 µg/ml penicillin/streptomycin 
50 µg/ml gentamicin 
10% FCS 
 
Freezing medium 
80% FCS 
20% Dimethyl sulfoxide (DMSO) 
 
ELISA: 
Coating solution 
0.1 M NaHCO3, pH 9.6 
 
Washing buffer 
1x PBS 
0.05% Tween 20 

Blocking solution 
1x PBS 
1% BSA 
 
Substrate buffer 
0.1 M NaH2PO4.2H2O, pH 5.5 
 
Substrate 
3,3’,5,5’ Tetramethylbenzidine, 
 dissolved to a concentration of 
 6 mg/ml in DMSO. 
 
Substrate solution 
12 ml substrate buffer 
200 μl substrate 
1.2 μl 30% H2O2 
 
Stop solution  
2N H2SO4  
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6.9 Supplementary Data  

 

 

Supplementary Figure 1: Increase frequencies of CD4
+
 T cells expressing CLC in MF+ infected 

individuals. 
Gating strategy (A) lymphocytes gate and (B) CD4

+
 T cell gate from total lymphocytes (C) isotype control for 

FITC staining. Cells were stained with anti-CD4 APC antibody and CLC-FITC conjugated antibodies. A-C 
show gating strategy. The bottom dot plots show representative image for each study group. Flow cytometry 
was performed using a BD FACSCanto and analyzed using FACSDiva 5.2 software.  
 

CLC 

CD4 

A 
B C 

8.7% 21.4% 13.5%
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Supplementary Figure 2: Increased frequencies of CD8
+
 T cells expressing GZMA in latent infected 

individuals, whilst GZMB was elevated in microfilaremic subjects. 

PBMCs from study subjects were assessed with FACS.  Cells were stained with anti-CD8 PeCy7 antibody 
and either GZMA-FITC or GZMB-PE conjugated antibodies. Each dot blot is a representative image showing 
the frequency of cells in subjects from the EN (left panel), MF+ (middle) and the MF- (right) groups. Flow 
cytometry was performed using a BD FACSCanto and analyzed using FACSDiva.  
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6.10 Supplementary Tables  

 
Supplementary Table1: List of regulated genes in W. bancrofti-infected individuals vs EN  

Group Gene ID Gene Description FC adj.p<0.05 

Infected vs 
EN  

CLC Charcot-Leyden crystal protein 1.46 0.19 

 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 1.45 0.16 

 RPS4Y1 ribosomal protein S4, Y-linked 1 1.44 0.22 

 RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived 
neurotoxin) 

1.41 0.2 

 ADD3 adducin 3 (gamma) 1.39 0.014 

 ARGLU1 arginine and glutamate rich 1 1.39 0.024 

 ZFAND5 zinc finger, AN1-type domain 5 1.37 0.024 

 CAB39 calcium binding protein 39 1.36 0.024 

 CTSZ cathepsin Z 1.33 0.014 

 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen 
CD29 includes MDF2, MSK12) 

1.33 0.024 

 DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 1.33 0.049 

 TMEM66 transmembrane protein 66 1.32 0.036 

 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast) 1.31 0.024 

 OGT O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-
acetylglucosamine:polypeptide-N-acetylglucosaminyl 
transferase) 

1.31 0.036 

 ARPC3 actin related protein 2/3 complex, subunit 3, 21kDa 1.3 0.03 

 RPL17 ribosomal protein L17 1.3 0.17 

 NBPF10 neuroblastoma breakpoint family, member 10 1.3 0.18 

 RPL17 ribosomal protein L17 1.3 0.19 

 

Supplementary Table2: List of regulated genes in patent infected individuals vs EN  

Group Gene ID Gene description FC 

Patent 

vs EN  

RPS4Y1 ribosomal protein S4, Y-linked 1 1.73 

 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 1.49 

 ARGLU1 arginine and glutamate rich 1 1.39 

 NBPF10 neuroblastoma breakpoint family, member 10 1.39 

 ADD3 adducin 3 (gamma) 1.38 

 HLA-H major histocompatibility complex, class I, H (pseudogene) 1.38 

 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen 

CD29 includes MDF2, MSK12) 

1.37 

 ZFAND5 zinc finger, AN1-type domain 5 1.37 

 CTSZ cathepsin Z 1.36 

 CAB39 calcium binding protein 39 1.34 

 NBPF9 neuroblastoma breakpoint family, member 9 1.33 

 STAT1 signal transducer and activator of transcription 1, 91kDa 1.32 

 MATR3 matrin 3 1.3 
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 LOC100133678 similar to hCG2042724 1.3 

 PI3 peptidase inhibitor 3, skin-derived -1.31 

 CDC34 cell division cycle 34 homolog (S. cerevisiae) -1.33 

 FAM46C family with sequence similarity 46, member C -1.34 

 AHSP alpha hemoglobin stabilizing protein -1.35 

 IFI27 interferon, alpha-inducible protein 27 -1.35 

 EPB42 erythrocyte membrane protein band 4.2 -1.38 

 BLVRB biliverdin reductase B (flavin reductase (NADPH)) -1.39 

 SELENBP1 selenium binding protein 1 -1.43 

 CA1 carbonic anhydrase I -1.45 

 ALAS2 aminolevulinate, delta-, synthase 2 -1.48 

 

Supplementary Table3: List of regulated genes in latent infected individuals vs EN  

Group Gene ID Description FC adj.p<0.05 

Latent vs 
EN   

CLC Charcot-Leyden crystal protein 1.58 0.11 

 RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived 
neurotoxin) 

1.49 0.15 

 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 1.43 0.28 

 ADD3 adducin 3 (gamma) 1.40 0.027 

 ARGLU1 arginine and glutamate rich 1 1.39 0.034 

 ZFAND5 zinc finger, AN1-type domain 5 1.37 0.032 

 CAB39 calcium binding protein 39 1.37 0.034 

 DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 1.36 0.063 

 TMEM66 transmembrane protein 66 1.34 0.05 

 OGT O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-
N-acetylglucosamine:polypeptide-N-acetylglucosaminyl 
transferase) 

1.33 0.051 

 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, 
yeast) 

1.32 0.031 

 TMEM123 transmembrane protein 123 1.32 0.033 

 ARPC3 actin related protein 2/3 complex, subunit 3, 21kDa 1.32 0.039 

 CAT catalase 1.32 0.076 

 RPL17 ribosomal protein L17 1.32 0.21 

 CTSZ cathepsin Z 1.31 0.027 

 CAT catalase 1.31 0.034 

 LOC729841 hypothetical LOC729841 1.31 0.034 

 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, 
antigen CD29 includes MDF2, MSK12) 

1.31 0.045 

 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 1.31 0.051 

 RPL17 ribosomal protein L17 1.30 0.25 
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Supplementary Table 4: List of regulated genes in Ahanta West samples vs Nzema East samples 

Group Gene ID Gene Description FC adj.p<0.05 

AW vs NE  SNAPC1 small nuclear RNA activating complex, polypeptide 1, 

43kDa 

1.46 0.041 

 BLZF1 basic leucine zipper nuclear factor 1 1.45 0.029 

 LOC100128510 hypothetical protein LOC100128510 1.44 0.023 

 SEMA3E sema domain, immunoglobulin domain (Ig), short basic 

domain, secreted, (semaphorin) 3E 

1.44 0.026 

 CHRNA5 cholinergic receptor, nicotinic, alpha 5 1.44 0.03 

 C11orf63 chromosome 11 open reading frame 63 1.44 0.041 

 LOC100130276 hypothetical protein LOC100130276 1.44 0.044 

 PLIN5 perilipin 5 1.43 0.027 

 FAM73A family with sequence similarity 73, member A 1.42 0.024 

 LMOD3 leiomodin 3 (fetal) 1.42 0.033 

 GDPD1 glycerophosphodiester phosphodiesterase domain 

containing 1 

1.42 0.035 

 ZNF577 zinc finger protein 577 1.42 0.038 

 RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.42 0.041 

 RNF213 ring finger protein 213 1.41 0.034 

 PATE2 prostate and testis expressed 2 1.41 0.039 

 LOC730060 hypothetical LOC730060 1.41 0.046 

 ZNF557 zinc finger protein 557 1.41 0.052 

 C6orf170 chromosome 6 open reading frame 170 1.41 0.056 

 SLC5A8 solute carrier family 5 (iodide transporter), member 8 1.41 0.062 

 QRFPR pyroglutamylated RFamide peptide receptor 1.4 0.024 

 LOC100131096 hypothetical LOC100131096 1.4 0.025 

 PLDN pallidin homolog (mouse) 1.4 0.032 

 GPR1 G protein-coupled receptor 1 1.4 0.042 

 PLA2G2D phospholipase A2, group IID 1.4 0.045 

 PCDHB9 protocadherin beta 9 1.4 0.048 

 BMP8B bone morphogenetic protein 8b 1.4 0.05 

 TMEM106A transmembrane protein 106A 1.4 0.052 

 C7orf55 chromosome 7 open reading frame 55 1.4 0.057 

 PTGR2 prostaglandin reductase 2 1.4 0.07 

 TNFSF15 tumor necrosis factor (ligand) superfamily, member 15 1.4 0.074 

 LOC100128460 similar to hCG1793472 1.4 0.087 

 DOPEY2 dopey family member 2 1.39 0.015 

 ZNF223 zinc finger protein 223 1.39 0.016 

 HAUS2 HAUS augmin-like complex, subunit 2 1.39 0.017 

 C4orf34 chromosome 4 open reading frame 34 1.39 0.017 

 XRCC2 X-ray repair complementing defective repair in Chinese 1.39 0.019 



Kwarteng A.                                         Supplementary Tables  

 

 

118 

 

hamster cells 2 

 MBD4 methyl-CpG binding domain protein 4 1.39 0.024 

 DENR density-regulated protein 1.39 0.025 

 LOC440704 hypothetical LOC440704 1.39 0.033 

 FAM40B family with sequence similarity 40, member B 1.39 0.035 

 RAD51 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) 1.39 0.038 

 LOC100134868 hypothetical LOC100134868 1.39 0.04 

 SSTR2 somatostatin receptor 2 1.39 0.045 

 LOC100129269 hypothetical LOC100129269 1.39 0.046 

 GCLM glutamate-cysteine ligase, modifier subunit 1.39 0.056 

 ADAM17 ADAM metallopeptidase domain 17 1.39 0.058 

 TDRD1 tudor domain containing 1 1.39 0.058 

 ZNF860 zinc finger protein 860 1.39 0.068 

 PCYOX1 prenylcysteine oxidase 1 1.39 0.068 

 MRP63 mitochondrial ribosomal protein 63 1.39 0.07 

 LEP leptin 1.39 0.073 

 GSTTP2 glutathione S-transferase theta pseudogene 2 1.39 0.074 

 C2orf56 chromosome 2 open reading frame 56 1.39 0.09 

 SLC4A5 solute carrier family 4, sodium bicarbonate 

cotransporter, member 5 

1.38 0.016 

 LOC728903 hypothetical LOC728903 1.38 0.025 

 LOC100132585 similar to speedy homolog A 1.38 0.028 

 SLC35E1 solute carrier family 35, member E1 1.38 0.031 

 EVI5 ecotropic viral integration site 5 1.38 0.032 

 TDP1 tyrosyl-DNA phosphodiesterase 1 1.38 0.036 

 EIF2AK4 eukaryotic translation initiation factor 2 alpha kinase 4 1.38 0.036 

 VPS41 vacuolar protein sorting 41 homolog (S. cerevisiae) 1.38 0.038 

 ICA1L islet cell autoantigen 1,69kDa-like 1.38 0.039 

 LOC391169 hCG2040210 1.38 0.044 

 TRIM13 tripartite motif-containing 13 1.38 0.044 

 LOC100128274 putative p150 1.38 0.053 

 RASSF6 Ras association (RalGDS/AF-6) domain family member 

6 

1.38 0.064 

 C14orf82 chromosome 14 open reading frame 82 1.38 0.085 

 FAM175A family with sequence similarity 175, member A 1.37 0.016 

 RAX2 retina and anterior neural fold homeobox 2 1.37 0.026 

 SHROOM4 shroom family member 4 1.37 0.031 

 MBTD1 mbt domain containing 1 1.37 0.046 

 TDRD1 tudor domain containing 1 1.37 0.049 

 TNFSF14 tumor necrosis factor (ligand) superfamily, member 14 1.36 0.016 
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 ZNF682 zinc finger protein 682 1.36 0.018 

 PTPLAD2 protein tyrosine phosphatase-like A domain containing 2 1.36 0.021 

 GRIPAP1 GRIP1 associated protein 1 1.36 0.024 

 KIAA1751 KIAA1751 1.36 0.027 

 LOC100129502 hypothetical protein LOC100129502 1.36 0.03 

 FAM153B family with sequence similarity 153, member B 1.36 0.04 

 CCBE1 collagen and calcium binding EGF domains 1 1.36 0.043 

 ZNF320 zinc finger protein 320 1.36 0.053 

 LOC100131541 hypothetical LOC100131541 1.36 0.057 

 FAM63A family with sequence similarity 63, member A 1.36 0.077 

 MYO3B myosin IIIB 1.36 0.088 

 CES2 carboxylesterase 2 (intestine, liver) 1.36 0.094 

 LOC100128288 hypothetical protein LOC100128288 1.35 0.024 

 DEM1 defects in morphology 1 homolog (S. cerevisiae) 1.35 0.026 

 LOC401098 hypothetical LOC401098 1.35 0.028 

 TMEM156 transmembrane protein 156 1.35 0.036 

 SYAP1 synapse associated protein 1 1.35 0.042 

 ZNF626 zinc finger protein 626 1.35 0.074 

   1.35 0.079 

 LLPH LLP homolog, long-term synaptic facilitation (Aplysia) 1.34 0.027 

 ZNF786 zinc finger protein 786 1.34 0.034 

 HNRNPU heterogeneous nuclear ribonucleoprotein U (scaffold 

attachment factor A) 

1.34 0.035 

 BIRC3 baculoviral IAP repeat-containing 3 1.34 0.035 

 DCLRE1C DNA cross-link repair 1C 1.34 0.037 

 ZNF483 zinc finger protein 483 1.34 0.046 

 FCAR Fc fragment of IgA, receptor for 1.34 0.051 

 KLHL28 kelch-like 28 (Drosophila) 1.34 0.074 

 C14orf153 chromosome 14 open reading frame 153 1.33 0.028 

 MFSD11 major facilitator superfamily domain containing 11 1.33 0.045 

 PPP2R3A protein phosphatase 2, regulatory subunit B'', alpha 1.33 0.071 

 LOC100129055 cyclin Y-like pseudogene 1.33 0.076 

 WDR74 WD repeat domain 74 1.33 0.087 

 MAFF v-maf musculoaponeurotic fibrosarcoma oncogene 

homolog F (avian) 

1.33 0.1 

 ZNF600 zinc finger protein 600 1.32 0.067 

 AGPHD1 aminoglycoside phosphotransferase domain containing 

1 

1.32 0.068 

 ATG10 ATG10 autophagy related 10 homolog (S. cerevisiae) 1.32 0.068 

 HSCB HscB iron-sulfur cluster co-chaperone homolog (E. coli) 1.32 0.11 

 ZNF69 zinc finger protein 69 1.31 0.022 
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 CD68 CD68 molecule 1.31 0.022 

 CREB1 cAMP responsive element binding protein 1 1.31 0.024 

 C15orf63 chromosome 15 open reading frame 63 1.31 0.024 

 CATSPER2 cation channel, sperm associated 2 1.31 0.026 

 NLRP8 NLR family, pyrin domain containing 8 1.31 0.031 

 USP49 ubiquitin specific peptidase 49 1.31 0.035 

 CCDC125 coiled-coil domain containing 125 1.31 0.036 

 UBXN2A UBX domain protein 2A 1.31 0.042 

 NUBPL nucleotide binding protein-like 1.31 0.046 

 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 

(transmembrane) 

1.31 0.048 

 GALNT3 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 3 (GalNAc-T3) 

1.31 0.085 

 FKBP14 FK506 binding protein 14, 22 kDa 1.3 0.025 

 ZNF652 zinc finger protein 652 1.3 0.031 

 LRRFIP1 leucine rich repeat (in FLII) interacting protein 1 1.3 0.031 

 N4BP2 NEDD4 binding protein 2 1.3 0.039 

 RUNDC2C RUN domain containing 2C 1.3 0.086 

 SPN sialophorin 1.3 0.089 

 LOC730202 hypothetical protein LOC730202 1.3 0.09 

 LOC644949 hypothetical LOC644949 1.3 0.09 

 IPP intracisternal A particle-promoted polypeptide 1.3 0.096 

 CGGBP1 CGG triplet repeat binding protein 1 -1.3 2.30E-05 

 PIGY phosphatidylinositol glycan anchor biosynthesis, class Y -1.3 7.00E-05 

 C6orf62 chromosome 6 open reading frame 62 -1.3 0.00026 

 ROD1 ROD1 regulator of differentiation 1 (S. pombe) -1.3 0.00027 

 TGFBR2 transforming growth factor, beta receptor II (70/80kDa) -1.3 0.00032 

 ARHGEF3 Rho guanine nucleotide exchange factor (GEF) 3 -1.3 9.00E-04 

 TGFBR2 transforming growth factor, beta receptor II (70/80kDa) -1.3 0.00098 

 MATR3 matrin 3 -1.3 0.0014 

 RPL9 ribosomal protein L9 -1.3 0.025 

 IFIT2 interferon-induced protein with tetratricopeptide repeats 

2 

-1.3 0.028 

 RAB8B RAB8B, member RAS oncogene family -1.31 0.00018 

 IFNGR1 interferon gamma receptor 1 -1.31 0.00022 

 MAT2B methionine adenosyltransferase II, beta -1.31 0.00033 

 RPL15 ribosomal protein L15 -1.31 0.00071 

 GOLGA8B golgin A8 family, member B -1.31 0.00071 

 XBP1 X-box binding protein 1 -1.31 0.001 

 NSA2 NSA2 ribosome biogenesis homolog (S. cerevisiae) -1.31 0.0022 

 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 -1.31 0.0026 
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 SF3B1 splicing factor 3b, subunit 1, 155kDa -1.32 1.90E-05 

 SET SET nuclear oncogene -1.32 0.00018 

 MS4A6A membrane-spanning 4-domains, subfamily A, member 

6A 

-1.32 0.00018 

 CD44 CD44 molecule (Indian blood group) -1.32 0.00023 

 MBNL1 muscleblind-like (Drosophila) -1.32 0.00026 

 RPL5 ribosomal protein L5 -1.32 0.00028 

 PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, 

alpha (tissue specific extinguisher 1) 

-1.32 0.00041 

 ROD1 ROD1 regulator of differentiation 1 (S. pombe) -1.33 3.00E-04 

 FAM120A family with sequence similarity 120A -1.33 0.00032 

 PJA2 praja ring finger 2 -1.33 0.00037 

 YWHAQ tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, theta polypeptide 

-1.33 8.00E-04 

 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, 

antigen CD29 includes MDF2, MSK12) 

-1.33 0.0012 

 ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 

(avian) 

-1.33 0.0014 

 GCA grancalcin, EF-hand calcium binding protein -1.33 0.011 

 PAIP2 poly(A) binding protein interacting protein 2 -1.34 1.90E-05 

 TRAM1 translocation associated membrane protein 1 -1.34 0.00097 

 RTN4 reticulon 4 -1.34 0.0011 

 RPS3A ribosomal protein S3A -1.34 0.0089 

 SUZ12 suppressor of zeste 12 homolog (Drosophila) -1.35 0.00017 

 SRSF2 serine/arginine-rich splicing factor 2 -1.35 0.00019 

 ACTR2 ARP2 actin-related protein 2 homolog (yeast) -1.35 0.00028 

 AP1S2 adaptor-related protein complex 1, sigma 2 subunit -1.35 0.00055 

 MGEA5 meningioma expressed antigen 5 (hyaluronidase) -1.35 0.0018 

 DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 -1.35 0.0054 

 TMEM123 transmembrane protein 123 -1.36 0.00023 

 RPS3A ribosomal protein S3A -1.36 0.013 

 PPP1CC protein phosphatase 1, catalytic subunit, gamma 

isozyme 

-1.37 0.00053 

 EIF4A2 eukaryotic translation initiation factor 4A2 -1.37 0.00062 

 ARL6IP5 ADP-ribosylation-like factor 6 interacting protein 5 -1.37 0.0012 

 CDC42SE2 CDC42 small effector 2 -1.38 9.60E-05 

 SELENBP1 selenoprotein -1.38 0.00016 

 RAB10 RAB10, member RAS oncogene family -1.38 0.00018 

 RPL17 ribosomal protein L17 -1.38 0.011 

 SRP9 signal recognition particle 9kDa -1.39 4.90E-05 

 CHURC1 churchill domain containing 1 -1.39 0.00026 
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 ZFAND5 zinc finger, AN1-type domain 5 -1.39 0.00032 

 AP1S2 adaptor-related protein complex 1, sigma 2 subunit -1.39 0.00041 

 PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, 

alpha (tissue specific extinguisher 1) 

-1.4 1.90E-05 

 RPL17 ribosomal protein L17 -1.4 0.0073 

 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, 

yeast) 

-1.41 1.90E-05 

 TMEM66 transmembrane protein 66 -1.43 0.00018 

 ADD3 adducin 3 (gamma) -1.45 4.00E-05 

 OGT O-linked N-acetylglucosamine (GlcNAc) transferase 

(UDP-N-acetylglucosamine:polypeptide-N-

acetylglucosaminyl transferase) 

-1.45 6.40E-05 

 CAB39 calcium binding protein 39 -1.46 6.40E-05 

 ARGLU1 arginine and glutamate rich 1 -1.53 2.30E-05 

 RPS4Y1 ribosomal protein S4, Y-linked 1 -1.54 0.022 

 
Supplementary Table 5: List of regulated genes in O. volvulus-infected individuals vs EN  

Group Gene ID Gene Description FC 

Infected (MF+ vs EN) CLC Charcot-Leyden crystal protein 1.89 

 RNASE2 Ribonuclease, RNase A 
family, 2 (liver, 
eosinophil-derived neurotoxin) 

1.68 

 RPS4Y1 ribosomal protein S4, Y-linked 1 1.65 

 DEFA1 defensin, alpha 1 1.55 

 RNASE3 ribonuclease, RNase A family, 3 1.47 

 CAT catalase 1.40 

 CCR3 chemokine (C-C motif) receptor 3 1.37 

 CD24 CD24 molecule 1.36 

 CAMP cathelicidin antimicrobial peptide 1.34 

 DEFB1 defensin, beta 1 1.33 
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