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Abstract 

Grain yield is very important in maize production for breeders at the Crops Research 

Institute (CRI) of Ghana. However the yields of most varieties that are high yielding 

released by breeders does not perform so well after some of 

their release. 

This study was carried out to nd what causes the reduction in yield of 

these maize varieties of CRI over the years. 

An autoregressive moving average model (ARMA) was tted using a 20 year 

data (1995-2014) from CRI Fumesua. A multiple linear regression model was also tted 

to study factors a ecting grain yield in maize. Flowering data recorded on a trial eld 

at Fumesua research station in 2014 was used for the regression model. 

The study revealed that ARMA (2, 2) was found to be most suitable model for the di 

erenced series of maize yield. The multiple regression model showed that the factors 

plants height, days to owering and eld weight were statistically signi cant at 0.05 

level. These factors (plants height, the days to ower and eld weight) are signi cant 

factors a ecting maize grain yield in Ghana. 
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Chapter 1 

Introduction 

1.1 INTRODUCTION 

This chapter presents the background of the study, problem statement, its objectives, 

the methodology, and signi cance of the study and the organization 

of the thesis. 

1.2 BACKGROUND OF STUDY 

Agriculture will be faced with major challenges in the next few decades. The number 

of undernourished people was estimated at 868 million for the period 2010 - 2012 

(FAOSTAT, 2013), indicating that food demand has not yet been satis ed in some parts 

of the world. The situation may worsen in the near future due to current 

demographic trends, with the world population likely to reach 9.3 

billion by 2050 (World Population Prospects, 2011; Calderini and Slafer, 1998). 

Several studies have recently shown that, after a period of strong yield 

increase, yield levels are currently stagnating in several countries. The average yield 

of cereal crops increased by more than 98% worldwide, and by more than 187% in 

France from 1960 to 1990. There were several reasons for this positive trend: genetic 

improvement of crop cultivars, increase in the use of chemical 

inputs (fertilizers, insecticides, herbicides and fungicides), mechanization, and 

irrigation. These improvements led to an approximately linear increase in crop yields 

in many countries. However, since the 1990s, yield increases for several major cereal 

crops (wheat, maize, rice, barley or oat) have slowed down. In some countries, yield 

levels have remained constant or have even declined for some crops (Brisson et al, 

2010; Calderini and Slafer, 1998). This is the case for (maize ,wheat) for which several 

authors have recently shown much slower rates of yield increase than the period 
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prior to 1990s, with yield stagnation in several countries, including France (Brisson et 

al, 2010; Lin and Huyber,2012;Ray et al,2012) and Switzerland (Finger R ,2010 ). These 

results have raised signi cant concerns in the scienti c community about the ability of 

agriculture to feed the world in the 

future. 

Statistical analyses play a key role in current research studies on food 

security (Ray et al, 2012), where yield time series analysis is used to estimate past 

yield trends and to predict future yield trends. Various types of statistical models have 

been used for the analysis of yield time series. Linear regression has been used in 

many studies (Brisson et al, 2010; Calderini and Slafer, 1998; Hafner, 2003; Kumar, 

2000). Other regression models, such as quadratic regression, bilinear, tri-linear, and 

linear-plus-plateau models, have been used in a smaller number of papers. Several 

authors have shown that quadratic and linear-plusplateau models tend to perform 

better in cases of yield stagnation Brisson et al, 2010; Finger R ,2010; Hafner ,2003; 

Lin and Huybers , 2012; Ray et al,2012). 

Statistical methods other than regression models have been used to predict 

future yield trends (Kumar, 2000) compared the performances of linear and quadratic 

regression models with those of exponential smoothing (also known as the Holt-

Winters method) and moving averages. Exponential smoothing has been shown to 

perform well in a large range of applications (Kumar, 2013; Brockwell and Davis, 

2002), but (Kumar, 2000) showed that the lowest mean square error (MSE) for yield 

predictions was obtained with the quadratic regression model. However, this result 

was obtained with a small dataset: yield predictions were assessed for three years at 

a speci c location in Canada. The Autoregressive Moving Average Model is a 

developed time series method that can be used to estimate past trends and to predict 

future trends. It has been 

applied in diverse domains, such as econometrics, signal processing, genetics and 

population dynamics ( Petris et al, 2009; Petris ,2010; Prado and West,2010) Their 

values are, therefore, not xed they vary from year to year and could thus account for 
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changes in yield trends (e.g., stagnation, increase or decline in the rate of yield 

increase). 

1.3 PROBLEM STATEMENT 

Most high yielding maize varieties does not perform after some years of their release. 

Several studies have recently shown that, after a period of strong yield increase, yield 

levels are currently stagnating in several countries. The average yield of cereal crops 

increased by more than 98% worldwide, and by more than 187% in France from 1960 

to 1990( FAOSTAT,2013). However, since the 1990s, yield increases for several major 

cereal crops (wheat, maize, rice, barley or oat) have slowed down. In some countries, 

yield levels have remained constant or have even declined for some crops (Brisson et 

al, 2010; Calderini and Slafer, 1998). This is the case for maize, for which several 

authors have recently shown much slower rates of yield increase than the period 

prior to 1990s, with yield stagnation in several countries ( Brisson et al, 2010; Lin and 

Huybers , 2012;Ray et al,2012).These results have raised signi cant concerns in the 

scienti c community about the ability of agriculture to feed the world in the future. 

Scientists are always coming out with maize cultivars whose yields decline after some 

years and it has been a challenge as to what causes yield reduction in all these 

varieties that were giving out high yields sometime ago. I therefore want to take that 

challenge and undertake a study to access the problem and come out with 

appropriate 

recommendations. 

1.4 OBJECTIVES 

1. To t an autoregressive moving average (ARMA) model and forecast maize grain 

yield based on the model 

2. Formulate a multiple linear regression model to nd out factors a ecting 

maize yield. 
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Research Questions 

1. Does the series change signi cantly over time? (Checking for stationarity 

and variability). 

2. Is the empirical distribution of the series and Q-Q plot obtained normal? 

3. Does the Auto Correlation Function and the Partial Auto Correlation Function 

(ACF/PACF) for the returns show dependence in the di erenced 

series? 

Ho : There is a unit root in the series 

HA : There is no unit root in the series 

1.5 SIGNIFICANCE OF THE STUDY 

The thesis results serves as a basis for future studies into modeling of grain yield in 

maize using ARMA models and multiple linear regression. The thesis contributes to 

already literature on factors a ecting grain yield in maize. It will assist Researchers to 

come out with high yielding varieties that are stable and allow developing countries 

to predict short falls in grain yields, with bene ts of food security 

1.6 METHODOLOGY 

The major purpose of this study is modelling grain yield in maize and studying of 

factors a ecting it. The multiple linear regression approach is considered because it 

can be used to predict a quantity of interest depending on known values of other 

quantities .In this case, grain yield will depend on several independent variables such 

plant height, ear height, days to owering and eld weight. 

An autoregressive moving average (ARMA) is a mathematical model which 

consists of two parts, an autoregressive (AR) part and a moving average (MA) part. 

The model is usually then referred to as the ARMA (p, q) where p is the order of the 
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autoregressive part and q is the order of the moving average part. ARMA models can 

also be used to predict behaviour of a time series from past values alone. Such a 

prediction can be used as a baseline to evaluate the 

possible importance of other variables to the system. 

R software will be used for the analyses. Reading materials were sourced 

from KNUST library and CSIR-CRI library as well as the internet. 

1.7 ORGANISATION OF THE THESIS 

The thesis work is made up of ve chapters. Chapter one introduces the problem, 

outlines the objectives of the project, describes the methods used in the work and 

facilities employed. Chapter two reviews literature on similar topics done by other 

researchers. Chapter three is basically the methodology. Chapter four is made of the 

data acquisition and e ectiveness of the technology. Chapter ve looks at the 

conclusions and recommendations. 

Chapter 2 

LITERATURE REVIEW 

Jackson (2004) worked on spatial distribution of surface soil moisture under a corn 

eld. Autocorrelation within surface soil moisture (SSM) data may be used to produce 

high-resolution spatial maps of SSM from point samples. The objective of this study 

was to characterize the temporal and spatial properties of SSM (0-5 cm) in a Beltsville, 

MD corn eld using a capacitance probe. The range of spatial autocorrelation was 

approximately 10 m and the highest sill values were found at water contents (θ) 

between 20-27%. Nugget values represented a signi cant portion of the total variance 

(up to 50% for θ > 20% and 73% for θ < 12%). The patterns of SSM under wet 

conditions exhibited large, continuous polygons while drier conditions resulted in 

smaller, discreet regions. Early season (< 60 days) Auto-Regressive Moving-Average 

(ARMA) forecasts of SSM plotted against observed data resulted in R2 values from 
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0.15-0.26, while late season (> 80 days) forecasts improved to 0.46-0.65. Forecasts 

were improved by autoregressive 

coe cients and additional SSM datasets. 

Lobell et al (2010) came out with the fact that predicting the potential e ects 

of climate change on crop yields requires a model of how crops respond to weather. 

Although the general strengths and weaknesses of statistical models are widely 

understood, there has been little systematic evaluation of their performance relative 

to other methods. Here we use a perfect model approach to examine the ability of 

statistical models to predict yield responses to changes in mean temperature and 

precipitation, as simulated by a process-based crop model. The CERES-Maize model 

was rst used to simulate historical maize 

yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of 

hypothetical future scenarios of 2oC warming and 20% precipitation reduction. 

Statistical models of three types (time series, panel, and cross-sectional models) were 

then trained on the simulated historical variability and used to predict the responses 

to the future climate changes. The agreement between the processbased and 

statistical models’ predictions was then assessed as a measure of how well statistical 

models can capture crop responses to warming or precipitation changes. The 

performance of statistical models di ered by climate variable and spatial scale, with 

time-series statistical models ably reproducing site-speci c yield response to 

precipitation change, but performing less well for temperature responses. In 

contrast, statistical models that relied on information from multiple sites, namely 

panel and cross-sectional models were better at predicting responses to temperature 

change than precipitation change. The models based on multiple sites were also 

much less sensitive to the length of historical period used for training. For all three 

statistical approaches, the performance improved when individual sites were rst 

aggregated to country-level averages. Results suggest that statistical models, as 

compared to CERES-Maize, represent a useful if 
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imperfect tool for projecting future yield responses, with their usefulness higher at 

broader spatial scales. It is also at these broader scales that climate projections are 

most available and reliable, and therefore statistical models are likely to continue to 

play an important role in anticipating future impacts of climate 

change. 

Chen et al (2004) conducted a statistical investigation on yield variability 

as in uenced by climate. One of the issues with respect to climate change involves its 

in uence on the distribution of future crop yields. Many studies have been done 

regarding the e ect on the mean of such distributions but few have addressed the e 

ect on variance. Furthermore, those that have been done generally report the 

variance from crop simulators, not from observations. This paper examines the 

potential e ects of climate change on crop yield variance in the context of current 

observed yields and then extrapolates to the e ects under projected climate change. 

In particular, maximum likelihood panel data estimates of the impacts of climate on 

year-to-year yield variability are constructed for the major U.S. agricultural crops. The 

panel data technique used embodies a variance estimate developed along the lines 

of the stochastic production function approach suggested by Just and Pope. The 

estimation results indicate that changes in climate modify crop yield levels and 

variances in a crop-speci c fashion. For sorghum, rainfall and temperature increases 

are found to increase yield level and variability. On the other hand, precipitation and 

temperature are individually 

found to have opposite e ects on corn yield levels and variability. 

Naylor et al(1972) made more extensive and detailed comparison of 

alternative methods and examined Box-Jenkins approach in contrast to Wharton 

econometric model for the year 1963 through 1967. They observed that the accuracy 

of ARMA models of Box-Jenkins methodology was considerably better 

than the accuracy of Wharton econometric model. 

Nelson (1972) compared econometric (regression) and time-series (ARMA) 

methods for a longer time horizon. He concluded that the simple ARMA models are 
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relatively more robust with respect to post sample predictions than the complex 

econometric models. If the mean square error is an appropriate measure of loss’ an 

unweighted assessment clearly indicated that a decision maker will be better o 

relying simply on ARMA predictions in the post sample period i.e. in 

the forecasting phase. 

Adam (1973) reported that the factors including the number of 

observations in the series, seasonality of the data, the number of periods in the time 

horizon are to be forecast to the extent in which randomness in the series and others 

had a substantial impact on the accuracy and performance of individual 

forecasting models. 

Kimball and Gutterrez (1973) adopted Mincer-Zarnwitz technique of the goal 

of forecasting the minimization of the mean square error (MSE) i.e. the squared di 

erence between the actual and forecast values, which is a measure of dispersion 

around the line of perfect forecast. They indicated that a least square straight line 

must be tted to a scatter diagram of actual realization and estimates. They gave the 

idea that on the overall forecast accuracy, i.e. the square root of the MSE has been 

computed and expressed as a percent of the actual mean value. They also said that 

R2 is not a reliable guide since it merely 

represents errors explained by a linear adjustment of the forecast series. 

Leuthold et.al (1970) in their study of forecasting daily hog price and 

quantities’ used Theil’s inequality coe cient for comparing the predicative accuracy of 

the di erent forecasting approaches. For price forecast to hog market they compared 

econometric model, random walk model, and mean model and for supply forecasts 

they compared econometric model, random walk model, mean model and time-

series models. They concluded that the data required for time series modelling was 

the concerned data on the variable to be forecast, whereas for econometric models 

data are needed on both the regress or and regress and. Therefore the forecasts using 

econometric model are slightly better than those using a stochastic non-casual frame-
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work. Further, the cost of making slightly greater error in using the latter will be less 

than the additional cost involved in 

setting up an econometric model and collecting the data. 

 Chambers et.al. (1971) in their study of ’how to choose the right 

forecasting technique’ discussed time-series analysis also. They discussed the di erent 

forecasting techniques viz, qualitative method, time-series analysis, and projection 

(moving average, exponential smoothing, Box-Jenkins and trend projections), and 

casual methods (regression model, econometric model, Inputoutput model, leading 

indicator and life-cycle analysis). For each method they provided description, 

accuracy, identi cation or turning points, typical application and requirement of data. 

They tried to explain the potential of forecasting to the manager focusing special 

attention on sales forecasting for products of Corning glass works as these have 

matured through the product life cycle. They indicated that the need to-day is not for 

better forecasting methods but the better application of the techniques at hand. 

Similar ndings were also observed by Gross and Rain. 

Both Reid and New bold (1971) concluded that the Box-Jenkins approach of ARIMA 

models gave more accurate results than exponential smoothing or step- 

wise regression methods. 

Soliman (1971) worked out several major relationships that explained the 

behavior of the United States turkey industry in 1946-66. He constructed the model 

that consisted of four structural equations and he also used four di erent estimation 

techniques to derive the values of the structural parameters. He further observed 

that no one method proved superior to another with respect to their 

forecasting ability against the observed data in the post 1966 period. 

Kpongor (2007) evaluated the application of the APSIM-Sorghum model 

version 4.0 to predict grain and biomass yield response of sorghum to inorganic N 

and P fertilizer in a semi-arid region of Ghana under two management systems. The 

model performed well in predicting grain and biomass yield with an average R2 of 

0.81 and 0.86, respectively. 
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Delve et al. (2009) simulated P responses in annual crops on contrasting soil 

types using the APSIM-model for maize and beans in Kenya. The goodness t (r2) 

between simulated and observed grain yield of maize was 0.81 and 0.74, whereas for 

biomass, this was 0.88 on Oxisol and 0.83 on an Andisol. An average r2 of 0.79 and 

0.69 was reported for grain and biomass of beans. The authors concluded that the 

model performed creditably in predicting the growth of maize and bean crops for the 

di erent P sources (fertilizer or chicken manure) and 

treatments (rates and frequency of application). 

 Chen et al. (2010) used a model to analyze the response of crop 

productivity to irrigation in the North China Plain, where excessive use of water for 

irrigation has caused a rapid decline in the groundwater table. Using data from three 

sites (Luancheng ,Yucheng and Fengqiu), they parameterized and evaluated the 

APSIM-Wheat model. The results showed that the model was able to simulate growth 

and yield of wheat and maize in a double cropping system. 

Root mean squared error (RMSE) of yield and biomass simulations was 0.83 and 1.40 

t/ ha for wheat, and 1.07 and 1.70 t /ha for maize, respectively. Soil water and 

evapotranspiration (ET) were also reasonably predicted. The simulated rain fed yields 

ranged from 0 to 6.1 t /ha for wheat and for maize 0 to 9.7 t /ha in a 

double cropping system. It was reported that for each 60mm additional irrigation 

water, crop yield increased by 1.2 t /ha; to achieve a yield potential of 7.1 t /ha of 

wheat and 8.3 t /ha of maize, 540 mm irrigation water would be required. The 

authors concluded that the model predicted grain yield, soil water and ET quite 

well. 

Abuzar et al (2009) conducted a eld experiment to determine the e ect of 

plant population densities on maize at the Agricultural Research Institute, Dera Ismail 

Khan,in mid July 2009.The e ect of six plant population densities i.e. T1(40000 plants 

/ha), T2(60000 plants/ ha), T3(80000 plants ha−1), T4(100000 plants /ha), T5(120,000 

plants /ha) and T6(140,000 plants /ha) was investigated using maize variety Azam. 

Results showed that plant population of 40000 plants/ha produced maximum 
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number of grains per row (32.33) and grains per ear (447.3).However, 60000 plants 

ha−1 produced the maximum number of ears per plant (1.33), number of grain rows 

per ear (15.44), biomass yield (16890 kg/ha) and grain yield(2604 kg /ha).Therefore, 

planting density of 60000 plants/ha(keeping plant to plant distance of 22.70 cm) is 

recommended for 

obtaining higher yield of maize. 

Bruce et al (2001) worked on molecular and physiological approaches to 

maize improvement for drought tolerance. It came out average maize yields have 

increased steadily over the years in the USA and yet the variations in harvestable yield 

have also markedly increased. Much of the increase in yield variability can be 

attributed to varying environmental stress conditions; improved nitrogen inputs and 

better weed control; and continuing sensitivity of di erent maize lines to the variation 

in input supply, especially rainfall. Drought stress alone can account for a signi cant 

percentage of average yield losses. Yet despite variable environments, new 

commercially available maize hybrids continue to be produced each year with ever-

increasing harvestable yield. Since many factors contribute to high plant performance 

under water de cits, e orts are being made to elucidate the nature of water-stress 

tolerance in an attempt to improve maize hybrids further. Such factors include better 

partitioning of biomass to the developing ear resulting in faster spikelet growth and 

improved reproductive success. An emphasis on faster spikelet growth rate may 

result in a reduction in the number of spikelets formed on the ear that facilitates 

overall seed set by reducing water and carbon constraints per spikelet. To understand 

the molecular mechanisms for drought tolerance in improved maize lines better, a 

variety of genomic tools are being used. Newer molecular markers and 

comprehensive gene expression pro ling methods provide opportunities to direct the 

continued breeding of genotypes that provide stable 

grain yield under widely varied environmental conditions. 

Kwesiga et al (2003) did a research on the e ect of short rotation Sesbania 

sesban planted fallows on maize yield. Two provenances of Sesbania sesban var. 
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nubica (Kakamega and Chipata) were planted in fallows for 1, 2 and 3 years at 0.5m 

× 0.5m,0.7m × 0.7 and 1.0m × 1.0m spacing. Maize crop (MM604) was grown after 

fallow period at 0, 37, 74 and 112 kg N ha−1 to evaluate the e ects of nitrogen (N) and 

fallow on grain yield. There were no signi cant di erences between the two 

provenances of S. sesban. Wood biomass after 1, 2 and 3 years fallow at close spacing 

was 8.3, 17.6 and 21.4 t ha−1 for the Kakamega provenance and 10.8, 14.5 and 21.2 t 

ha−1 for the Chipata provenance. Litter fall in both provenances ranged from 0.6 t 

ha−1 in June to 0.01 t ha−1 in November. Stand mortality increased with plant density 

and fallow years: 27% in the rst year and about 90% by the end of the third year. 

Weed biomass ranged from 6.8 t ha−1 to 6.0 t ha−1 at close and wide spacing 

respectively. Maize grain yield without N was 2.27, 5.59 and 6.02 t ha−1 after 1, 2 and 

3 years fallow respectively compared with the control plots with 1.6, 1.2, 1.8 tha−1 

after 1, 2 and 3 years of continuous cropping. Even with addition of 112 kg N ha−1, 

yield in the control plots declined from 6.09 to 4.88 and 4.28 t ha−1 after 1, 2 and 3 

years of continuous cropping. In the planted fallows at 112 kg N ha−1, maize yield 

increased from 6.75 to 7.16 and 7.57 t ha−1 following 1, 2 and 3 years fallow. It is 

concluded that short fallow rotations of 1-3 years using S. sesban have a potential in 

increasing maize yield even without fertilizers. Thus, increasing the fallow period 

decreases the e ectiveness of inorganic fertilizers but increases grain yield for low 

fertilizer 

input. 

Lobell and Field (2007) worked on Global scale climate-crop yield 

relationships and the impacts of recent warming. Despite the complexity of global 

food supply, here we show that simple measures of growing season temperatures 

and precipitation-spatial averages based on the locations of each crop-explain ∼ 30% 

or more of year-to-year variations in global average yields for the world’s six most 

widely grown crops. For wheat, maize and barley, there is a clearly negative response 

of global yields to increased temperatures. Based on these sensitivities and observed 
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climate trends, we estimate that warming since 1981 has resulted in annual 

combined losses of these three crops representing roughly 40 Mt or $5 billion per 

year, as of 2002. While these impacts are small relative to the technological yield 

gains over the same period, the results demonstrate already occurring negative 

impacts of climate trends on crop yields at the global 

scale. 

Kpotor (2012) evaluated newly released maize varieties in Ghana for yield 

and stability under three nitrogen application rates in two agro-ecological zones 

Farmers’ adoption of hybrid varieties would reduce the large discrepancy between 

current low yields and achievable yields reported by maize researchers in yield 

evaluation trials as hybrids wield superior genetic potential over improved open 

pollinated varieties (OPVs) and local varieties due their heterozygosity resulting in 

their exhibition of high heterosis in yield and general performance. The current low 

yield necessitated the need to undertake this study to assess the relative yielding 

abilities and stability of 3 hybrid varieties, 5 OPVs, 1 local variety and 4 inbred lines 

under three levels of nitrogen fertilization at Kwadaso, a forest ecology, and Ejura, a 

transitional ecology, both in the Ashanti region of Ghana, in the major and minor 

seasons of 2011, respectively. Analysis of variance (ANOVA) revealed signi cant 

interactions for genotype by location (G × L), genotype by nitrogen (G × N) and 

genotype by nitrogen by location (G×N ×L) for grain yield. GGE biplot analysis for 

mean yield and stability also showed that hybrids had better yielding abilities than 

OPVs under both low and high nitrogen fertilization and at di erent environment. 

Economic bene t analysis also revealed that best option for highest net bene t is the 

cultivation of hybrid varieties under 90 kg Nha−1. In order to bridge the gap between 

the current low yields and achievable yields in Ghana, farmers need hybrid seeds 

together with 

adequate levels of fertilizers. 

Reidsma et al (2009) examined Regional crop modelling in Europe: The 

impact of climatic conditions and farm characteristics on maize yields Impacts of 
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climate variability and climate change on regional crop yields are commonly assessed 

using process-based crop models. These models, however, simulate potential and 

water limited yields, which do not always relate to observed yields. The latter are 

largely in uenced by crop management, which varies by farm and region. Data on 

speci c management strategies may be obtained at the eld level, but at the regional 

level information about the diversity in management strategies is rarely available and 

di cult to be considered adequately in process-based crop models. Alternatively, 

understanding the factors in uencing management may provide helpful information 

to improve simulations at the regional level. In this study, we aim to identify factors 

at the regional level that explain di erences between observed and simulated yields. 

Observed yield data were provided by the Farm Accountancy Data Network (FADN) 

and Eurostat. The Crop Growth Monitoring System (CGMS), based on the WOFOST 

model, was used to simulate potential and water limited maize yields in the EU15 

(i.e., the old member states of the European Union). Di erences between observed 

and simulated maize yields were analyzed using regression models. We assumed that 

the highest yields observed in a region were close to the yield potential as determined 

by climate and considered the average regional yields as also in uenced by 

management. Model performance was analyzed with respect to spatial and temporal 

yield variability. Results indicate that for potential yield, the model performed 

unsatisfactory in southern regions, where high temperatures increased observed 

yields which were in contrast to model simulations. When considering management 

e ects, we nd that especially irrigation and the maize area explain much of the di 

erences between observed and simulated yields across regions. Simulations of 

temporal yield variability also diverted from observed data of which about 80% could 

be explained by the climatic factors (35%) and farm characteristics (50%) considered 

in the analysis. However, e ects of speci c factors di ered depending on the regions. 

Accordingly, we propose di erent groups of regions with factors related to 

management which should be considered to improve regional yield simulations 

with CGMS. 
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Lizaso et al (2007) developed a sweet corn simulation model. Current 

production of sweet corn (Zea mays L.) in the United States is 4.0 million Mg with a 

value of $807 million. The fresh market component amounts to three- 

fourths of this value with California, Florida, and Georgia harvesting half of the U.S. 

fresh market production. Existing maize simulation models have limited potential to 

assist sweet corn production as a result of the distinctive nature of the marketed end 

product (i.e., fresh market ears versus dry mature kernels). The purpose of this study 

was to develop a sweet corn simulation model. The Cropping System Model-Crop-

Environment Resource Synthesis CSM-CERESMaize simulation model, version 4.0, 

was modi ed to improve the simulation of ear growth, to predict ear fresh market 

yield, and to predict fresh market ear quality according to U.S. standards. A eld 

experiment conducted in Florida in 2003 was used for model development. Five 

nitrogen fertilization levels (0, 67, 

133, 200, and 267 kg ha−1 N) were applied to a sh2-based commercial hybrid with a 

Bt gene sown at 8.2 plants/m2. Three additional experiments conducted in 2002, 

2004, and 2005 provided independent data to evaluate the new model. In 2002, the 

treatments and hybrid were the same as mentioned, but the population density was 

5.5 plants /m2. A yellow sh2-based hybrid with a Bt gene was planted at 6.1 plants 

/m2 in 2004. In 2005, a bicolor sh2-based hybrid with a Bt gene was planted at 8.1 

plants /m2. The 2004 and 2005 experiments had 100% and 150% of the Florida N 

recommendations applied to the crop. Results indicated that the new model was able 

to simulate adequately crop and ear growth of sweet corn. The ear dry weight 

simulation was improved as indicated by 30% reduction of root mean square of the 

error (RMSE) when the new model was compared with the original CSM-CERES-

Maize. Total ear fresh weight yield and marketable yield were also simulated 

reasonably well with RMSE values of 3367 and 3502 kg ha−1, respectively. The 

simulation of ear quality was consistently over predicted at intermediate levels of N 

fertilization, indicating the need to further examine 

the impact of limited N on ear quality. 
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Shin et al (2009) did an evaluation of crop yield simulations with various 

seasonal climate data performed to improve the current practice of crop yield 

projections. The El Niæo Southern Oscillation (ENSO)-based historical data are 

commonly used to predict the upcoming season crop yields over the southeast 

United States. In this study, eight di erent seasonal climate data are generated using 

the combinations of two global models, a regional model, a statistical downscaling 

technique, and two convective schemes. These data are linked to maize and peanut 

dynamic models to assess their impacts on crop yield simulations compared to the 

ENSO-based approach. Improvement of crop yield simulations with the climate 

model data is varying, depending on the model con guration and the crop type. While 

the global climate model data provide no improvement, the dynamically and the 

statistically downscaled data show increased skill in the crop yield simulations. A 

statistically downscaled operational seasonal climate model shows a statistically signi 

cant (5%) inter annual predictability in the peanut yield simulation. Since the yield 

amount simulated by the dynamical crop model is highly sensitive to wet/dry spell 

sequences (water stresses) during the growing season, a proper parametrization of 

precipitation physics is essential in climate models to improve the crop yield 

projection. 

Carberry et al (2012) came out with the fact that simulation models have 

proven bene cial to commercial farmers in Australia when applied within a 

participatory action research approach. This paper reports on an attempt to combine 

a participatory research approach and computer-based simulation modelling to 

engage smallholder farmers in Africa on issues of soil fertility management. A three-

day interaction with farmers in one village in Zimbabwe provided evidence that the 

farmers found the simulation outputs to be credible and meaningful in a manner that 

allowed ’virtual’ experiential learning to take place. The paper concludes that 

simulation applied within an action research framework may have a role in direct 

interventions with smallholder farmers in 

such regions 
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The number of weeds in each of the plots was counted before herbicide 

application. Reduced rates of atrazine (562.5, 742.5, 1507.5, 1687.5 and 2250 g ha-1 

(active ingredient)) were applied at the two to three-leaf stage of weed growth. Three 

weeks after herbicide application the number of surviving weeds was counted and 

recorded. Weed dry weight and maize grain yield per plot were determined. Percent 

control of the resident weed populations was calculated. At UZ farm, the 75% rate 

had as high percent weed control, as did the full label rate for all weed species. 

Amaranthus hybridus and Nicandra physalodes were the most susceptible species 

and were completely controlled even by the lowest rate (25%) at the UZ farm, while 

the same happened with Galinsoga parvi ora, Bidens pilosa and N. physalodes with 

the lowest rate (33%) at the UZ Department of Crop Science. Grass weed species 

(Setaria spp and E. indica) were more tolerant to reduced atrazine dosages than 

broadleaf weeds. There was no signi cant di erence (P > 0.05) in percent weed control 

at the UZ Department of Crop Science for the 100%, 67% and 33% rates for 

Commelina benghalensis and the grass species. Reduced rates of atrazine can be used 

to achieve equitable weed control as the full label rates without loss of maize yield. 

Results agree with 

work done by other authors. 

Maxmillan (1995) evaluated Maize Streak Virus Resistance in sixteen maize 

genotypes. Sixteen genotypes of maize were grown and arti cially infested with the 

maize streak virus (MSV), using reared leaf hoppers (Cicadulina mbila) that had 

acquired the virus from streak infested plants, to determine the level of MSV 

resistance in each genotype and to determine the relationship between plant height, 

yield and the MSV disease score. Most cultivars except Pool 16, R201, Pool 16 SR and 

Maka SR had MSV disease scores of greater than 3 showing that 

they were relatively susceptible to the disease. There was a negative relationship 

between MSV disease score and plant height. Uninfected plants were higher 

yielding than their infected counterparts. However, correlation analysis showed that 

there was no signi cant relationship between MSV scores, yield and owering dates. 
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The MSV disease results in plant height and yield reduction in susceptible genotypes. 

The screening technique is useful for identi cation of MSV resistance 

vis-a-vis ratings of entries. 

Chifamba(1995) worked on response to simulated drought conditions of tall 

and short maize (Zea mays) near isogenic lines .The responses for yield, anthesis-

silking, harvest index and wilt rating of four tall and four short maize (Zea mays) near-

isogenic lines were studied at 100, 50, 25 and 10 per cent soil AWC (available water 

content) in the greenhouse. In short lines, grain yield showed signi cant positive 

correlations with harvest index (r = 0.9760) and height (r = 0.3556). In tall lines, grain 

yield was found to have signi cant positive correlations with harvest index (r = 

0.9616) and height (r = 0.5210). A signi cant negative correlation was found between 

the overall grain yield and anthesis-silking interval (ASI) for both tall and short lines, 

with correlation coe cients of -0.8565 and -0.9054 respectively. There was no signi 

cant correlation between overall grain yield and wilt rating for both tall and short 

lines. The tall genotypes signi cantly yielded better than the 

dwarf lines at 100% and 50% soil AWC. At 25% and 10% soil AWC, the short 

plants performed better than their tall counterparts but this was not statistically signi 

cant. At 100% soil AWC, there was no signi cant di erences in the overall mean ASI 

between the tall and short genotypes. At 50%, 25% and 10% soil AWC, the tall lines 

had signi cantly higher overall mean ASI than those of short counterparts. There were 

signi cant di erences between the overall mean wilt ratings and overall mean height 

of tall and short genotypes at each moisture level. The e ects of decreasing moisture 

levels were more pronounced in tall 

plants than in short plants. 

Moyo (1995) worked on response to selection for drought tolerance of two 

maize populations. Two populations of maize were studied for their response to 

selection for drought tolerance by: 1) determining the relationship between yield and 

anthesis-silking interval (ASI) of lines from cycle 2 (C2) and cycle 3 (C3) of recurrent 

selection of ZM601 (DR) and lines from Tuxpeno Sequia (a CIMMYT 
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population which has undergone six cycles of recurrent selections); 2) comparing ASI, 

grain yield, and other physiological traits and to con rm the utility of various 

secondary traits; and 3) con rming the use of secondary traits as selection criteria 

when breeding for drought tolerance. The secondary traits were: leaf rolling, leaf 

erectness and tassel size. Under stressed conditions Tuxpeno Sequia produced a signi 

cantly higher yield than ZM601. Yield was negatively correlated with ASI (r = −0.08), 

but not signi cantly so (P > 0.05), for Tuxpeno Sequia and (r = −0.22) for ZM601, 

meaning yield increased as ASI decreased. Mean ASI was signi cantly shorter for 

Tuxpeno Sequia (0.63 d) under moisture stress than for ZM601 (2.23 d) where as 

under adequate moisture conditions ASI did not di er for the two populations. Linear 

correlation analysis indicated signi cant correlations with yield for both populations 

(P < 0.05) for the secondary traits (r = −0.11 to -0.18). The results seem to indicate 

that Tuxpeno Sequia performs better than ZM601 under moisture stressed 

conditions. The fact that the correlation coe cient of yield with ASI (r = −0.08) was 

not signi cant (P>0.05) for Tuxpeno Sequia is an indication that the population has 

been more for this character than ZM601 (r = −0.22), (P < 0.05). 

Mugweni (1996) conducted a eld experiment in summer to determine the e 

ect of maize residue at 0 t/ha, 5 t/ha, 10 t/ha and 15 t/ha and the herbicide 

dimethenamid and alachlor applied as pre-emergence treatments on the control of 

ve weed species, namely Nicandra physalodes, Richardia scabra, Galinsoga parvi ora, 

Chenopodium album and Amaranthus hybridus in a soyabean crop. Rainfall was 

abundant at the time of herbicide application. Two di erent assessments, weed 

counts and percent control, were carried out at three weeks after planting (WAP) and 

6 WAP. At three weeks after herbicide treatment, emergence of all weeds had not 

been signi cantly suppressed by maize residues at all levels of mulch. Both herbicides 

signi cantly (P < 0.01) reduced emergence of all weeds except C. album and A. 

hybridus but their e ect was not in uenced by maize residues at all levels although a 

gradual decline in weed emergence as mulch increased was noticeable. For all the 

weeds added together there was a signi cant (P < 0.01) mulch herbicide interaction. 
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Dimethenamid was more e ective than alachlor when no mulch was applied but had 

similar levels of control to alachlor on weed emergence at all levels of mulch. Visually 

assessed percent control of 

weeds 6 WAP showed that herbicide e cacy was reduced by the presence of 

maize residues. There was a consistently signi cant decline in percent control as mulch 

level was increased for all weeds except C. album. C. album had the lowest percent 

control and its control was not in uenced by the presence of maize 

residues. 

Bwerazuva (1996) conducted a eld study to evaluate resistance to maize 

stalk borer and minimum sample size requirement for leaf damage rating among 

selected maize genotypes. Leaf damage ratings showed the susceptible entry 

DMRESR-w to have the highest mean rating (on a scale of 1 to 9) of 7.5, while 

the hybrid entries which were crosses between a susceptible and a resistant source 

showed no signi cant di erences between the di erent mean leaf damage ratings. The 

hybrid entries gave progeny with an average leaf rating of 6.3 (on a scale of 1 to 9) 

showing intermediate resistance to maize stalk borer. On a yield reduction basis, 

CML123/DMRESR-w showed the greatest yield reduction of 46% compared to the 

thionex-protected entry. CML139/DMRESR-w showed the least yield reduction of 

10% in comparison to the thionex-protected entry. Thus, resistance should not be 

evaluated on a leaf damage basis only but should also include measurements of yield 

reduction as some material may have poor resistance to leaf damage but still show 

little yield reduction. Calculation of minimum sample size showed that DMRESR-

w/CML123 required the largest sample size (49 plants), while CML67/DMRESR-w had 

the lowest sample 

requirement of 31 plants. Di erences in sample sizes and yield between reciprocal 

crosses suggest the possible presence of maternal e ects. 

Mwashaireni(1996) conducted an experiment to assess the e ects of 

intrarow intercropping of maize and pumpkin was conducted at the University of 

Zimbabwe Farm during the 1995/96 season. Maize hybrid R201 was intra-row 
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intercropped with a pumpkin landrace, Nzunzu. Intra-row intercropping with 

pumpkins did not signi cantly reduce maize grain yield and maize stover biomass 

when compared with the sole-maize stands. However, maize and pumpkin intrarow 

intercropping led to poor pumpkin spread and subsequently resulted in absence of 

pumpkin fruit yield. The sole-pumpkins spread better than pumpkins in the intercrop 

situation. As a result, the pumpkins in the sole situation yielded signi cant amount of 

fruits. Weed biomasses, unlike weed numbers, were signi cantly higher in the 

pumpkin sole-crops compared to intercrops. Therefore, pumpkin intra-row 

intercropped in maize was e ective in suppressing weed growth but did not have any 

e ect on weed germination. Besides weed growth suppression, maize and pumpkin 

intra-row intercropping will allow farmers to bene t from the pumpkin leaf (useful as 

a vegetable) without losing out on maize 

yield. 

Gumunyu (1996) conducted a study to evaluate maize experimental 

varieties from CIMMYT at high and low N levels, using a selection index which 

included grain yield, ear leaf chlorophyll content, ear leaf area under low N only, 

anthesis-silking interval (ASI) and plant height. Signi cant interactions between maize 

varieties and N levels were observed for ear leaf chlorophyll content and grain yield. 

Signi cant di erences among N levels were observed for grain yield, ear leaf 

chlorophyll content, ear leaf area, plant height and ASI. The experimental varieties 

showed signi cant di erences in grain yield, ear leaf chlorophyll concentration, plant 

height and ASI under high or low N levels. Low N levels resulted in reduced grain yield, 

reduced ear leaf chlorophyll content, reduced plant height and increased ASI. 

Correlation analysis showed grain yield to be highly increased with chlorophyll 

content, ear leaf area and plant height 

under low N. 

Munyaka(1996) worked on four CIMMYT maize (Zea mays L.) genotypes 

which had each undergone four cycles of recurrent selection for other agronomic 

characteristics like yield were evaluated using the penetrometer method for changes 
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in stalk strength. The maize varieties used were ZM601, ZM605, ZM607 and ZM609. 

Penetrometer measurements were done at the internode below the ear and the rst 

well-developed internode above ground. Root lodging counts in the eld were 

negatively correlated with root force (r = −0.35; P < 0.05). Plant height was highly 

signi cantly correlated with ear height (r = 0.81;P < 0.001). There was little change in 

rind puncture resistance over the four cycles of recurrent selection. No de nite trend 

in changes in stalk strength was observed in the cycles of selection. Recurrent 

selection for other agronomic traits such as nitrogen use e ciency, high yield and 

disease resistance did not a ect the stalk quality 

signi cantly. 

Chihande (1996) studied the e ect of seed size, simulated moisture stress 

and planting depth on germination and establishment of dwarf maize (Zea mays) 

hybrids. Three experiments were carried out on the germination of ve maize hybrids. 

The hybrids were three dwarf hybrids EM42 ? 6L57, 10LK2 ? 12Dr and 32Y ? 12Dr, 

and two conventional hybrids R201 and SC701, which were all obtained from the 

African Centre for Fertilizer Development. The objectives of these experiments were 

to determine the e ect of seed size and planting depth on germination and emergence 

of the maize hybrids, and to determine how seed size in uences germination under 

simulated moisture stress conditions. The experiments were carried out in a 

greenhouse, incubator and growth room at a maximum temperature of 25◦ C. Seed 

size did not in uence the percent emergence of the hybrids and there was no signi 

cant di erence in the percent emergence among the ve hybrids. However, all the 

dwarf hybrids had a higher rate of water uptake than the conventional hybrids, and 

within the dwarf hybrids the small seed size had a higher rate of water uptake than 

the large seed size lots. Under moisture stress conditions the dwarf hybrids had a 

higher percent germination when compared with the conventional hybrids. The 

advantages of the dwarf hybrids were attributed to the characteristic small seed size 

which tends to have a high surface area to volume ratio. It is also probable that di 
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erences between the hybrids were due to genetic factors or variation in the 

composition 

of the maize seeds. 

Musara(1996) studied the e ect of di erent basal fertilizers and seed 

generations on maize growth and yield .Two fertilizer types, ammonium nitrate (AN) 

(70 kg/ha) and compound D (300 kg/ha) were used as basal fertilizer dressings on the 

F1 and the F2 generation of maize variety SC601 and on the F1 generation of maize 

variety R201 to determine their e ect on growth and grain yield. This work was 

conducted on a sandy soil at Domboshava Training Centre near Harare. The growth 

pattern in terms of leaf area index and dry 

matter production were signi cantly a ected by type of basal fertilizer dressing. The 

F2 generation of SC601 and those treatments with ammonium nitrate had a lower 

leaf area index, and dry matter production than the F1’s during the early stages of 

growth. However, these treatment di erences disappeared after four weeks 

.Genotype (F1 and F2 of SC601) had no e ect on grain yield. However, 

grain yield was also signi cantly (P<0.05) a ected by the type of basal fertilizer used, 

with F1 treatments which had compound D giving higher yields than the treatments 

which had AN. There was no interaction e ect of basal fertilizer and maize generation. 

Inorganic fertilizers are expensive and recommendations to resource poor farmers as 

a blanket application are not often pro table. For farmers that can a ord fertilizer, 

there is urgent need to increase the pro tability of this input by using better-targeted 

recommendations. Basically, if a farmer has more money then he or she can use 

compound D as well as AN, otherwise it 

is better to put AN as a basal and topdressing than not apply any fertilizer. 

Mafa (1996) did an intercropping experiment in the 1995/96 rainy season to 

study the e ects of two maize (Zea mays) densities and two dry bean (Phaseolus 

vulgaris) row arrangements on maize and bean yield, yield components, and 

phenological development. A factorial arrangement was used with two maize 

densities (i.e. 90cm × 30cm and 90cm × 45cm)× two row arrangements of two 
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bean varieties to give a total of four sole-crop and eight intercrop treatments. The 

trial was planted at two sites, Domboshava (Natural Region IIa) and Chinyika (Natural 

Region IIb), with Chinyika receiving one dry bean variety. Growth and yield data were 

collected and analyzed statistically to see if treatment means di ered signi cantly (P = 

0.05). Grain yield of both components were 

signi cantly decreased with intercropping, but the overall total yield was higher in 

intercrop than in sole-crops. Although grain yield of beans was severely depressed in 

intercrops, maize yield compensated for the loss giving a system’s advantage of up 

to 30%. Maize grain yield also decreased with increase in number of rows of beans. 

The bean variety Natal Sugar depressed maize yield more than Carioca. Planting 

pattern and density had no e ect on phenological development. 

Manzira (1997) analyzed di erent maize hybrids for resistance to grey leaf 

spot disease .Grey Leaf Sport Disease, a new disease in Zimbabwe, can cause up to 

50% yield loss if fungicides are not used to control the disease. The objectives of this 

project were to quantify the levels of resistance to grey leaf spot on di erent maize 

hybrids, to nd the e ectiveness of spraying on the severity of grey leaf spot and to nd 

the best scoring date in screening for resistance. Eleven commercially available maize 

hybrids were planted at the Agricultural Research Trust Farm in the 1996/97 season 

in two trials with and without fungicide spray to control grey leaf spot. Scores of the 

severity of the disease were taken on three di erent days, 90, 120 and 150 after 

planting in the unsprayed trials. In the sprayed trials Benomyl was applied at 750 

g/ha. Grain yield was measured in both trials. The varieties SC709 and SC625 were 

tolerant to grey leaf spot giving yields of 9.93 and 8.53 t/ha respectively. These 

varieties also had the lowest scores in the unsprayed trials. Spraying signi cantly 

increased the yields of all the varieties. There were signi cant negative correlations 

between yield and disease scores at days 120 and 150 with r-values of 0.601 and 

0.634 respectively. 

Fusire (1997) designed a project to determine the optimum planting depth 

desirable for each seed size in a single environment in Zimbabwe. An experiment was 
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carried out at the International Centre for Maize and Wheat Improvement (CIMMYT). 

Five 5 cm and 10 cm depths were used for eight 

di erent seed grades classi ed according to a CIMMYT classi cation and grading system. 

Total percentage of germination, plant height at the fth and tenth leaf stage, and 

yield were used to evaluate the e ect of maize seed size, plant performance and yield 

as in uenced by planting depth. The Minitab statistical package was used for variance 

analysis. The 5 cm depth produced the tallest pants and the highest percentage of 

germination especially for mixed, thick and at seeds. The mixed (largest) seed had the 

tallest height at both fth and tenth leaf stage as in uenced by the initial seed size. The 

large seed also had the highest yield due to higher vigour or plant performance as 

compared to the smaller seeds. Even though the latter had the largest count, it had 

the least seed weight resulting in the lowest tonnage. It was also concluded that a 

planting depth of 5 cm was 

ideal for early plant establishment/germination and better yields in environments 

with adequate moisture. 

Khun and Smith (1997) evaluated maize for resistance under greenhouse 

conditions was used in the eld. The progress of symptom development was assessed 

at 6, 11, 16 and 28 days post-inoculation using the severity rating method. Both the 

severity rating and index methods indicated three varieties to be tolerant while the 

other six varieties were shown to be susceptible. In the susceptible hybrids, 10-32% 

of the plants had developed symptoms by six days after the rst inoculation. Analysis 

of plant heights before; during and after tasselling showed that growth of two of the 

tolerant varieties was not signi cantly a ected. Grain yield of all the tolerant cultivars, 

including one of the susceptible 

ones, was not signi cantly reduced. 

Chitokomere(1997) carried out a study at the University of Zimbabwe to nd 

out the e ect of genotype and seed size on germination and establishment of maize 

seed. The study consisted of three experiments. The rst experiment was designed to 

determine the e ect of genotype (variety) and seed size on the amount of water taken 
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up by maize seeds in the rst 48 hours after immersion in water. The second 

experiment was designed to determine the e ect of di erent levels of simulated 

moisture stress (0, -5, -10 and -12 bars), seed size and genotype on maize seed 

germination. The third experiment was designed to determine the e ect of genotype, 

seed size and planting depth on emergence of maize seed in pots. Water uptake rate, 

as indicated by the change in mass per unit seed mass, signi cantly 

(P < 0.01) increased with a decrease in seed size. Water uptake signi cantly 

(P < 0.01) varied among maize varieties, but the di erences were not consistent at 24 

and 48 hours after immersion in water. Germination under simulated moisture stress 

signi cantly (P < 0.01) decreased with increase in level of moisture stress. Large seeds 

had signi cantly lower germination than medium and small seeds under simulated 

moisture stress. Genotype had signi cant e ect (P < 0.01) on percent germination 

under simulated moisture stress. However, at eight days after seed immersion in 

osmotic solutions, there was a signi cant genotype and 

simulated moisture stress level interaction indicating that germination percentage of 

varieties di ered according to simulated moisture stress level. Emergence decreased 

with planting depth and there were varietal di erences in their ability to emerge from 

depth, but seed size had no e ect. At 20 days after planting, there was a signi cant 

interaction (P < 0.05) between variety and planting depth, showing that the ability of 

the di erent varieties to emerge di ered with the depth at which they are planted. 

There was a clear relationship between water uptake in 

the initial 48 hours and germination of varieties under simulated moisture stress. 

Zheke (1997) conducted a study on the e ect of season quality on the time 

to owering and on pollen shed synchronization with silk emergence of di erent maize 

hybrids (Zea mays).Eight maize hybrids, SC701, ZS206, SC601, 93MW5, SC501, R201, 

ZS225 and SC401 were grown for four consecutive season 1993/94, 1994/95, 

1995/96 and 1996/97 at Rattray Arnold Research Station (RARS). The hybrids, SC701, 

ZS206, 93MW5, SC501 and R201 were stable in their days to mid-pollen shed (DMP) 

and days to mid-silk emergence (DMS). But ZS206, SC601 and ZS225 varied signi 
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cantly (P < 0.05) from season to season. Six of the eight hybrids SC701, ZS206, SC601, 

ZS225, SC501 and 93MW5 were more stable in their synchronization of pollen shed 

with silk emergence than SC401 

and R201. Thus SC401 and R201 was the least stable of the eight hybrids. 

Madzokere (1997) conducted a study on grain yield, light interception and 

canopy development in intercrop systems of maize and sorghum with cowpea in 

Natural Region Five . An intercropping experiment is described for the 1996/97 

growing season, at Save Valley Experiment Station. The experiment was a row 

intercrop in which maize at 11 000 and 22 000 plants/ha and sorghum at 33 000 and 

66 000 plants/ha were intercropped with a single or double rows of cowpeas spaced 

at 0.75m × 0.1m and 0.385m × 0.1m between the cereal 

component respectively. Combined grain yields of maize + cowpea and sorghum + 

cowpea were more than the yield of sole components and therefore the total 

productivity of the system was well above that of pure stands. Maize at 22 000 

plants/ha intercropped with one row of cowpea and sorghum at 66 000 plants/ha 

intercropped with one row of cowpea proved to be the best intercropping systems 

in terms of grain yield and land equivalent ratio (LER). Leaf area index of maize and 

sorghum (LAI) was lower in intercropped systems than in pure stands. In terms of 

light interception, intercropping systems were more e cient in light utilization 

compared to sole crops. The most e ciency was realized in intercrop systems of 

cereals at high populations with two rows of cowpea during the rst weeks due to 

early canopy cover but during the later weeks there is was no 

signi cant di erence in light interception between the intercrop systems. 

Chipomho (1997) conducted an intercropping experiment in the 1996/97 

rainy season to study the e ect of maize (Zea mays) canopy architecture and nitrogen 

rate on yield in a maize and bean intercrop trial. Two maize hybrids, which di er 

morphologically, SC 501 with a planophile canopy architecture and PHB 3442 with an 

erectophile canopy architecture, were used. The maize hybrids were intercropped on 

the row with Umkuzi variety of bean. The experiment had a total of eight intercrop 
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treatments and ve sole crop treatments. A two by four factorial arrangement in a 

randomized complete block design with three replicates was used. The trial was 

conducted at Domboshava Training Centre in Natural Region IIa. Growth 

measurements were taken at six weeks after emergence during the bean owering 

phase. Yield data was collected and analyzed statistically to see if treatment means 

di ered signi cantly (P = 0.05). Maize yield, in the intercrop averaged with no signi 

cant di erence between the two hybrids. Fertilizer level had an e ect on maize with 

both hybrids responding well to increase in nitrogen level. Maize yield increased by 

38 kg per single kilogram unit of fertilizer. Bean yield responded to applied nitrogen 

between zero and 30 kg N per ha, however there was no signi cant di erence between 

the di erent nitrogen rates of 30, 60 and 90 kg N per ha. Maize variety had an e ect 

on bean yield with PHB 3442 intercropped bean giving a higher yield than SC 501. 

Yield reduction of the bean crop with SC 501 was between 25 and 56% and with PHB 

3442 between 13 and 30%. 

Chiyanike(1999) conducted an intercropping experiment was done in the 

1996/97 rainy season to evaluate eight bean (Phaseolus vulgaris) varieties in maize 

(Zea mays L.) bean intercrop. Of the eight varieties, Natal Sugar was used as a control 

as it is the most widely grown in the smallholder sector. Results from national trials 

have shown that there are other varieties that yield higher than Natal Sugar in sole 

cropping. This trial was to evaluate some of these varieties in intercrops as this is a 

fast growing practice in the smallholder sector. The trial was conducted at two sites, 

Domboshava (Natural Region IIa) and Chinyika (Natural Region IIb). A split plot design 

was used, the maize and beans were planted in the same row (maize at 90cm × 30cm 

spacing and beans at 90 cm 

x 10 cm spacing). Yield data was collected and analyzed statistically to see if 

treatment means di ered signi cantly (P ≤ 0.05) both the maize and bean yields in the 

intercrop were reduced. There were no signi cant di erences in the maize yield from 

the di erent treatments but there were signi cant di erences in the bean varieties. The 

dry varieties tested yielded higher than Natal Sugar in the 
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intercrop with A286, MC5001 and 36/6/10 giving the highest yields. 

Chakauya(1999) conducted a eld experiment on the Response of Maize 

Inbred Lines to Seedling Drought Stress .Ten maize inbred lines obtained from the 

Centro International de Majoramiento de Maiz Trigo (CIMMYT) were evaluated in a 

greenhouse experiment for genotype responses to seedling drought stress. Inbred 

line CML202 was used in the rst experiment to determine the most 

suitable parameter for measuring desired drought stress intensity. Parameters that 

were used of predicting drought stress included actual evapotranspiration (ET), 

growing degree-days (GDD), days after planting (DAP) and potential 

evapotranspiration (PET). Potential evapotranspiration seemed to be the most 

suitable of genotype response to drought stress. Fifty per cent plant survival was at 

38 mm PET. Genotypes were provided with an initial irrigation to ensure germination 

and re-watered after signs of drought stress. Soil water potential and ET were 

determined by weighing each pot. Potential evapotranspiration was measured using 

evaporation pans. Among the ten inbred lines evaluated, inbred line Z180017 had the 

highest plant survival (58%) and the least leaf senescence (58%). Inbred line Z180028 

had the least plant survival (8%) and highest leaf senescence (92%). The results 

indicated that genotype di erences to the response 

to seedling drought stress existed in maize inbred lines. 

Kimbini(1999) conducted a study to evaluate the e ect of grey leaf spot on 

some locally available commercial maize hybrids on yield and to evaluate the e ect of 

grey leaf spot on days to owering of the commercial maize hybrids. Twenty-four 

commercial maize hybrids were planted at Cargill Research Station during the 

1997/98 agricultural season, in two trials which included fungicide spraying and no 

fungicide spray to control the grey leaf spot. Three hybrids of maize, which are 

resistant to grey leaf spot, were used as checks. The resistant checks showed no yield 

reductions between sprayed and unsprayed treatments whilst susceptible entries 

showed signi cant reduction of yield in unsprayed treatments when compared to the 
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respective sprayed treatments. Furthermore grey leaf spot also delayed days to 

owering for those hybrids which succumbed 

to the disease. 

Chapter 3 

METHODOLOGY 

3.1 Introduction 

This chapter considers thoroughly the basic plots, de nitions and concepts of 

time series analysis, assumptions, conditions, principles processes involved in the 

application of autoregressive moving average (ARMA), multiple linear regression and 

estimation of regression coe cients. 

3.2 Basic Concepts and De nitions of Time Series 

3.2.1 Basic de nitions 

Time series is de ned as a collection of observations or measurements 

on quantitative variables made sequentially, usually daily, weekly, monthly, 

quarterly, annually, and so on. Examples include semi-annual grain yield of maize for 

a period of fteen years, daily stock prices of a rm for a period of one year, monthly 

electricity consumption for a household for a period of ve years and so on. Time series 

analysis comprises methods that break down a 

series into components and explainable portions that allow trends to be identi ed, 

estimates and forecasts to be made. Basically time series analysis attempts to 

understand the underlying context of the data points through the use of a model to 

forecast future values based on known past values. Such time series models 

include GARCH, TARCH, EGARCH, FIGARCH, CGARCH, ARMA, ETC but 



 

31 

the main focus of this study is based on ARMA models. 

3.2.2 Time Series Graph 

Time series plot is simply a graph which displays observations on the y-axis against 

equally spaced time intervals on the x-axis. The time series plot speci cally consists 

of: Time scale (index, calendar, clock, or stamp column) on the x-axis; and lines 

displaying each time series as shown in the Figure 3.1 below for a given hypothetical 

data. The plots are usually used to: detect seasonality 

in your data; and compare trends across groups. 

 

Figure 3.1: Time Series Plot of grain yield from 1995 to 2014 

3.3 Components of Time Series 

A virtual step in choosing appropriate modelling and forecasting procedure is to 

consider the type of data patterns exhibited from the time series graphs of the time 

plots. The sources of variation in terms of patterns in time series data are mostly 

classi ed into four main components. These components include seasonal variation; 

trend variation; cyclic changes; and the remaining ’irregular’ uctuations. 

3.3.1 The Trend (T) 

The trend is simply the underlying long term behaviour or pattern of the data or 

series. The Australian Bureau of Statistics (ABS,2008) de ned trend as the ’long term’ 

movement in a time series without calender related and irregular e ects, and is re 
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ection of the underlying level. It is the result of in uences such as population growth, 

price in ation and general economic changes. 

3.3.2 Seasonal variation (S) 

A seasonal e ect is a systematic and calendar related e ect. Some examples include 

the sharp escalation in most Retail series which occurs around December in response 

to the Christmas period, or an increase in water consumption in summer due to 

warmer weather. Other seasonal e ects include trading day e ects (the number of 

working or trading days in a given month di ers from year to year which will impact 

upon the level of activity in that month) and moving holidays (the timing of holidays 

such Easter varies, so the e ects of the holiday will be experienced in di erent periods 

each year). Seasonal adjustment is the process of estimating and then removing from 

a time series in uences that are systematic and calendar related. Observed data needs 

to be seasonally adjusted as seasonal e ects can conceal both the true underlying 

movement in the series, as well as certain non-seasonal characteristics which may be 

of interest to analysts. Seasonality in a time series can be identi ed by regularly spaced 

peaks and troughs which have a consistent direction and approximately the same 

magnitude every 

year, relative to the trend as depicted in the gure 3.2 below. Other techniques 

 

 Figure 3.2: Graphical display of seasonal e ect of a hypothetical data 

that can be used in time series analysis to detect seasonality include: 
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1. A seasonal subseries plot is a specialized technique for showing seasonality. 

2. Multiple box plots can be used as an alternative to the seasonal subseries 

plot to detect seasonality. 

3. The autocorrelation plot can help identify seasonality. 

3.3.3 Cyclical variations(C) 

Cyclical variations are the short term uctuations (rises and falls) that exist in the data 

that are not of a xed period. They are usually due to unexpected or 

unpredictable events such as those associated with the business cycle sharp rise in in 

ation or stock price, etc. The main di erence between the seasonal and cyclical 

variation is the fact that the former is of a constant length and recurs at regular 

intervals, while the latter varies in length. More so, the length of a cycle is averagely 

longer than that of seasonality with the magnitude of a cycle usually being more 

variable than that of seasonal variation. 

3.3.4 Irregular variations (I) 

The irregular component (sometimes also known as the residual) is what remains 

after the seasonal and trend components of a time series have been estimated and 

removed. It results from short term uctuations in the series which are neither 

systematic nor predictable. In a highly irregular series, these uctuations can dominate 

movements, which will mask the trend and seasonality. The Figure 3.2 below is a 

graph which is of a highly irregular hypothetical time series. 

3.4 A common assumption in Time Series 
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Techniques 

A common assumption in many time series techniques is that data are stationary. A 

stationary process has the property that the mean, variance and autocorrelation 

 

Figure 3.3: Typical irregular e ect graph of a hypothetical time series data. 

structure do not change over time. Stationary can be de ned in precise 

mathematical terms as 

(i) the mean µ(t) = E(yt) 

(ii) the variance σ2(t) = var(yt) = γ(0) 

(iii) The autocovariances γ(t1,t2) = Cov(y(t1),y(t2)) hence a time series is said to be 

strictly stationary if the joint distribution of any set of n observations y(t1,t2) = 

Cov(y(t1),y(t2)) is the same as the joint distribution of y(t1),y(t2),...,y(tn) for all 

n and k. If the time series is not stationary, we can often transform it to 

stationary with one of the following techniques. 

1. We can di erence the data. That is, given the series Zt, we create the new 

series 

Yi = Zi − Zi−1 

The di erence data will contain one less point than the original data. Although 

you can di erence the data more than once, one di erence is 
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 usually su cient. 

2. If the data contain a trend, we can t some type of curve to the data and then 

model the residuals from that t. Since the purpose of the t is 

 to simply remove long term trend, a simple t, such as a straight line, is 

typically used. 

3. For non-constant variance, taking the logarithm or square root of the series 

may stabilize the variance. For negative data, you can add a suitable constant 

to make the entire data positive before applying the transformation. This 

constant can then be subtracted from the model to 

 obtain predicted (i.e.,the tted) values and forecasts for future points. 

White noise process xt ∼ i.i.d N(0,σ2) 

A sequence xt is a white noise process if each value in the sequence has zero-mean 

E(xt) = E(xt−1) = 0 constant conditional variance  

V ar(xt−1) is uncorrelated with all other realizations E(xtxt−s) = E(xt−jxt−j−s) = 

.. = 0 = Cov(xt−jxt−j−s) 

Property 1 and 2: absence of serial correlation or predictability Property 3: 

Conditional homoscedasticity (constant conditional variance) 

3.4.1 Covariance Stationarity (weakly stationarity) 

A sequence xt is covariance stationary if the mean, variance and autocovariance do 

not grow over time, i.e. it has nite mean E(xt) = E(xt−1) = .. = µ nite variance E[(xt − 

µ)2] = E[(xt−1 − µ)2] = .. = σx2 = V arx nite autocovariance E[(xt − µ)(xt−s − µ)] = E[(xt−j 

− µ)(xt−j−s − µ)] = .. = 

σs = Cov(xt−jxt−j−s) 

Example: autocovariance between  
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But white noise process does not explain macro variables characterized by 

persistence so we need AR and MA features. 

 AR(1): xt = ρxt−1 + et et ∼ i.i.d(0,σ2), (random walk: ρ = 1) 

MA(1): xt = et + θet−1 

More generally: 

AR(p): xt = ρ1xt−1 + ρ2xt−2 + ... + ρpxt−p + et 

MA(q): xt = et + θ1et−1 + θ2et−2 + ... + θqet−q 

ARMA(p,q): xt = ρ1xt−1 + ρ2xt−2 + ... + ρpxt−p + et + θ1et−1 + ... + θqet−q 

Using the lag operator xt = ρ1xt−1 + ρ2xt−2 + ... + ρpxt−p + 

et + θ1et−1 + ... + θqet−q 

AR(1): (1 − ρL)xt = et 

MA(1): xt = (1 + θL)et 

AR(p): (1 − ρ1L − ρ2L2 − ... − ρpLp)xt = ρ(L)xt = et 

MA(q): xt = (1 + θ1L + θ2L2 + ... + θqLq)et = θ(L)et 

ARMA(p,q): a(L)xt = b(L)et 

3.5 Univariate Time Series Models 

There are time series analysis models with only one series of is a typical example of a 

univariate time series. Univariate time series models usually view their series 

as a function of its own past, random shocks and time. Some basic univariate time 

series models and their processes are discussed below as follows. 

3.5.1 Common Approaches to Univariate Time Series 

There are a number of approaches to modelling time series. A few of the most 

common approaches are outlined below. 
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a) Decomposition 

One approach is to decompose the time series into a trend, seasonal, and 

residual component. In other words decomposition refers to separating a time 

series into trend, cyclical, and irregular e ects. Decomposition may be linked to 

de-trending and de-seasonalizing data so as to leave only irregular e ects, which 

are the main focus ot time series analysis. Triple exponential smoothing is an 

example of this approach. Another example, called seasonal loss, is based on 

locally weighted least squares and 

is discussed by Cleveland(1993). 

b). The spectral plot 

 Another approach, commonly used in scienti c and engineering 

applications, is to analyze the series in the frequency domain. An example of 

this approach is modelling a sinusoidal type data set as shown in the beam de 

ection case study. The spectral plot is the primary tool for the frequency 

analysis of time series. Detailed discussions of frequency-based methods are 

included in Bloom eld(1976), Jenkins and Watts(1968), and Chat eld(1996). 

c). Autoregressive(AR) models 

Another common approach for modelling univariate time series is the 

autoregressive(AR) model. An autoregressive model is simply a linear 

regression of the current value of the series against one or more prior values 

of the series ARp. The value of p is called the order of the AR model. AR models 

can be analysed with one of the various methods, including 

standard linear least squares techniques. They can have a straightforward 

interpretation. 

AR Process 

Stationary Conditions for an AR(1) process 

(1 − ρL)xt = et with ρ(L) = 1 − ρL and substituting forL : ρ(z) = 1 − ρz 



 

38 

The process is stable if ρ(z) 6= 0 for all numbers satisfying |z| ≤ 1. Then we can write 

 

If x is stable, it is covariance stationary: 

E(xt) = µ or 0 − finite 

 - nite covariances 

γ1 = E(xtxt−1) = E[(ρxt−1 + et)xt−1] = ρσx2 γ2 = E(xtxt−2) = E[((ρxt−2 + 

et−1) + et)xt−2] = ρ2E(x2t−2) = ρ2σx2 γs = E(xtxt−s) = ρsσx2 = ρsV ar(x) 

Autocorrelations between xt,xt−s : 

 

Plot of rs over time = Autocorrelation function(ACF) or correlogram. 

For stationary series, ACF should converge to 0: 

lim rs = 0if |p| < 1 s→∞ 

ρ > 0 → direct convergence ρ < 0 → dampened 

oscillatory path around 0. 

Partial Autocorrelation (PAC) 

In AR(p) processes all x’s are correlated even if they don’t appear in the regression 

equation. Example AR(1) 

 

We want to see the direct autocorrelation between xt−j and xt by controlling for all x’s 

between the two. We construct the demeaned series and form regressions to get the 

PAC from the ACs. 

1st PAC: 
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 =⇒ φ11 = r1 

2nd PAC: 

 

In general, for s ≥ 3,sth PAC: 

Ps 

and φsj = φs−1,j − φssφs−1,s−j 

Example: for s = 3, 

 

Identi cation for an AR(p) process 

PACF for s > p : φss = 0 

Hence AR(1):  

 

To evaluate it, use the relation φsj = φs−1,j − φssφs−1,s−j : 

, substitute it to get: 

Stability condition for an AR(p) process 

(1 − ρ1L − ρ2L2 − ... − ρpLp)xt = ρ(L)xt = et 

The process is stable if ρ(z) 6= 0 for all z satisfying |z| ≤ 1, or if the roots of the 

characteristic polynomial lie outside the unit circle. Then, we can write: 

 
Then we have the usual moment conditions: 
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E(xt) = µ or 0 − finite 

 - nite variance, hence time independent. Covariances 

 

nite and time independent. 

If the process is non-stationary, then there is a unit root, i.e. the polynomial has a 

root for z = 1 

=⇒ ρ(1) = 1. We can thus factor out the operator and transform the process 

into a rst-di erence stationary series: 

 

 - an AR(p-1) model. 

If  has all its roots outside the unit 

circle, ∆xt is stationary: xt ∼ I(1) 

If ρ∗(L) still has a unit root, we must di erence it further until we obtain a stationary 

process: xt ∼ I(d) 

An integrated process= a unit root process. 

Unconditional men is still nite but 

Variance is time dependent 

d) Moving Average(MA) models Another common approach for modelling 

univariate time series models is the moving average(MA) model: 

MA process xt = et + θ1et−1 + θ2et−2 + ... + θqet−q,e = 0 mean white noise 

error term. = (1 + θ1L + θ2L2 + ... + θqLq)et = θ(L)et 

If θ(z) 6= 0 for |z| ≤ 1, the process is invertible, and has an AR(∞) representation: 
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Stability condition for MA(1) process 

xt = et + θ1et−1 

Invertibility requires |θ1| < 1 

Then the AR representation would be: 

 

E(xt) = 0 nite 

 nite 

γ(2) = γ(3) = 0 =⇒ r2 = r3 = 0, hence autocorrelations’ cut o point = lag 1 

More generally: AC for MA(q)=0 for lag q. 

PAC 

 

For AR 

AC depends on the AC coe cient(rho), thus tapers o PAC depends 

on rs or ρs, cuts o 0 at s(AR(1): cut o at L = 1) 

For MA: 

AC depends on var of error terms: abrupt cut o 

PAC depends on the MA coe cient θ, thus tapers o . 

ARMA Process 

ARMA(p,q): ρ(L)xt = θ(L)et 

(1 − ρ1L − ρ2L2 − ... − ρpLp)xt = (1 + θ1L + θ2L2 + ... + θqLq)et 

If q = 0 → pure AR(p) process 

If p = 0 → pure MA(q) process 

If all characteristics roots of  are within the unit 
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circle, then this is an ARMA(p,q) process. If one or more roots lie outside the unit 

circle, then this is an integrated ARMA(p,d,q) process. 

Stability condition for ARMSA(1,1) process 

 
If |c1| < 1, then we can write 

xt = (1 + a1L)(1 + c1L + (c1L)2 + ...)et (3.1) = (1 + c1L + (c1L)2 + ... + a1L + a1c1L2 + ...)et

 (3.2) 

representation. 

(3.3) 

E(xt) = 0 nite 

 nite 

Covariances nite γ(1) = c1V ar(xt) + a1
σ

e2 γ(2) = c1(c1V ar(xt) + 

a1σe2) = c1γ(1) =⇒ γ(j) = c1γ(j − 1),j ≥ 2 

Autocovariance functions: 

 

 

Any stationary time series can be represented with an ARMA model: 

AR(p) =⇒ MA(∞) 

MA(p) =⇒ AR(∞) 
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3.6 Box-Jenkins ARMA Process 

The Box-Jenkins methodology, named after the statisticians George Box and Gwilym 

Jenkins, applies ARMA Models to nd the best t of a time series to 

past values of this time series, in order to make forecasts. The model is generally 

referred to as an ARMA(p,q) model where p and q are non-negative integers that 

refer to the order of the autoregressive and moving average parts of the model 

respectively. 

Modelling approach 

The Box-Jenkins model uses an iterative three-stage modelling approach which 

is: 

1. Model identi cation and model selection: making sure that the variables are 

stationary, (seasonally di erencing it if necessary), and using plots of the 

autocorrelation and partial autocorrelation functions of the dependent time 

series to decide which autoregressive or moving average part should be used in 

the model. 

2. Parameter estimation using computation algorithms to arrive at coe cients 

 which best t the selected ARMA model. The most common methods use 

maximum likelihood estimation or non-linear least-squares estimation. 

3. Model checking by testing whether the estimated model conforms to the 

speci cations of a stationary univariate process. In particular, the residuals 

should be independent of each other and constant in mean and variance 

over time. (Plotting the mean and variance of residuals over time and 

autocorrelation, partial autocorrelation of the residuals are helpful in 

identifying misspeci cation.) If the estimation is inadequate, we have to 

return to step one and attempt to build a better model. 
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3.6.1 Box-Jenkins model identi cation 

Detecting stationarity 

The rst step developing a Box-Jenkins model is to determine if the time series is 

stationary. Stationarity can be accessed from a run sequence plot. The run sequence 

plot should show constant location and scale. It can also be detected from an 

autocorrelation plot. Speci cally, non-stationarity is often indicated by an 

autocorrelation plot with very slow decay. Finally, unit root tests provide a more 

formal approach to determining the degree of di erencing. 

Di erencing to achieve stationarity 

Box and Jenkins recommend the di erencing approach to achieve stationarity. 

However, tting a curve and subtracting the tted values from the original data can also 

be used in the context of Box-Jenkins models. 

Identify p and q 

Once stationarity and seasonality have been addressed, the next step is to identify 

the order(i.e., the p and q) of the autoregressive and moving average terms. These 

are determined by examining the values of the autocorrelations and the partial 

autocorrelation s with their corresponding plots as explained below. 

Autocorrelation and partial autocorrelation plots 

The primary tools for doing this are the autocorrelation plot and the partial 

autocorrelation plot. The sample autocorrelation plot and the sample partial 

autocorrelation plot are compared to the theoretical behaviour of these plots when 

the order is known. 

Order of autoregressive process(p) 
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Speci cally, for an AR(1) process, the sample autocorrelation function should have an 

exponentially decreasing appearance. However, higher-ordered AR processes are 

often a mixture of exponentially decreasing and damped 

sinusoidal components. For higher-ordered autoregressive processes, the sample 

autocorrelation needs to be supplemented with a partial autocorrelation plot. The 

partial autocorrelation of an AR(p) process becomes zero at lag p + 1 and greater, so 

we examine the sample partial autocorrelation function to see if there is evidence of 

a departure from zero. This is usually determined by placing a 95% con dence interval 

on the sample partial autocorrelation plot(most software programs that generate 

sample autocorrelation plots will also plot this 

con dence interval). If the software does not generate the con dence band, it is 

√ 

approximately ±2/ N, with N denoting the sample size. 

Order of moving-average process(q) 

The autocorrelation function of an MA(q) process becomes zero at lag q + 1 and 

greater, so we examine the sample autocorrelation function to see where it 

essentially becomes zero. We do this by replacing the 95% con dence interval for the 

autocorrelation function on the sample autocorrelation plot. 

Most software that can generate the autocorrelation plot can also generate this con 

dence interval. The sample partial autocorrelation function is generally not helpful 

for identifying the order of the moving average process. 

3.6.2 Model Estimation 

After identifying the order of the model, the parameters of the model are estimated 

using the maximum likelihood estimation to determine the AR and MA parameters, 

as well as all other parameters reported in the study. 

he Akaike Information Criteria(AIC) is one of the statistics used to verify 
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the adequacy of the chosen models. In general, the AIC is de ned as: AIC= 2k − 2∗ln(L) 

Where: k is the number of model parameter and ln(L) is the log-likelihood function 

for the statistical model. Comparatively, models with the smallest AIC have residuals 

which resembles a white noise process. 

Each parameter estimate reports standard error for that particular parameter. Using 

the parameter estimate and its standard error, a test for statistical 

signi cance(t-value) are then conducted. For statistically signi cant parameters, the 

absolute values of the t-ratios are expected to be greater than 1.96 or 2 in order for 

the parameters to be maintained in the model whereas parameters 

which are not signi cant are removed from the model. 

Furthermore, the estimated AR and MA parameters must also conform to 

certain boundary condition that is they must lie between 1 and 1. If the AR and MA 

parameters do not lie within those bounds of stationarity then the parameters of the 

model are re-estimated or if possible a di erent candidate model is alternatively 

considered for estimation. All these checks when strictly adhered to would lead to 

obtaining reliable results from the model. 

3.6.3 Diagnostic Checking 

A key question inARMA modeling is does the model e ectively describe the 

persistence? If so, the model residuals should be random or uncorrelated in time and 

the autocorrelation function (ACF) of residuals should be zero at all lags except lag 

zero. For sample series, the ACF will not be exactly zero, but should uctuate close to 

zero. The ACF of the residuals can de examined in two ways. First, the ACF can be 

scanned to see if any individual coe cients fall outside some speci ed con dence 

interval around zero. Approximate con dence intervals can be computed. The 

correlogram of the true residuals (which are unknown) is such that is normally 

distributed. Besides the randomness of the residuals, we are concerned with the 

statistical signi cance of the model coe cients. The estimated coe cients should be 
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signi cantly di erent than zero. If not, the model should probably be simpli ed by 

reducing the model order. 

3.7 Forecasting ARMA Processes 

The purpose of forecasting is to predict future values of a Time Series based on the 

data collected to the present. In this section we will discuss a linear function 

of 

X = (Xn,Xn−1,...,X1)T predicting a future value of Xn+m for m = 1,2,... 

The function 

n 

fn(X) = β0 + β1Xn + ... + βnX1 = β0 + XβiXn+1−i 
i=1 

is called best linear predictor(BLP) of Xn+m if it minimizes the prediction error. 

s(β) = E[Xn+m − fn(X)]2, 

where β is the vector of the coe cients βi and X is the vector of variables Xn+1−i. Since 

S(β) is a quadratic function of β and is bounded below by zero there is at least one 

value of β that minimizes S(β). It satis es the equations 

 

Evaluation of the derivatives 

gives the prediction equations; 

 ] = 0 (3.7.1) 

 ] = 0 (3.7.2) 

 Assuming that E(Xt) = µ the rst equation can be written as 
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Which gives 

 

The set of equations (3.7.3) gives 

 

That is we obtain the same set of equations when E(Xt) = 0. Hence, we assume 

further that the Time Series is zero-mean stationary process. Then β0 = 0 too 

3.8 Multiple Linear Regression 

In a regression analysis we study the relationship, called the regression function, 

between one variable Y, called the dependent variable, and several others Xi, called 

the independent variables. Regression function also involves a set of unknown 

parameters. If a regression function is linear in the parameters, we term it a linear 

regression model. Otherwise, the model is called non-linear. Linear regression 

models with more than one independent variable are referred to as multiple linear 

models, as opposed to simple linear models with one 

independent variable. 

3.9 Multiple Regression Model with k 

independent variables 

General Case: We have k variables that we control, or know in advance of outcome, 

that are used to predict Y, the response (dependent variable). The k independent 

variables are labelled X1,X2,...,Xk. The levela of these variables for the ith case are 
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labelled X1i,...,Xki. Note that simple linear regression is a special case where k = 1, thus 

the methods used are just basic extensions of what 

we have previously done. 

Yi = β0 + β1X1i + ... + βkXk−1 + εi 

where the change in mean for Y when variable Xj increases by 1 unit, while 

holding the k-1 remaining independent variables constant (partial regression coe 

cient). This is also referred to as the slope of Y with variable XJ holding 

the other predictors constant. 

Least Squares Fitted(Prediction) Equation 

Yˆi = b0 + b1x1i + .. + bkxki 

Coe cient of Multiple Determination 

Proportion of variation in Y explained by the regression on the k independent 

variables. 

 

Adjusted-R2 

It is used to compare models with di erent sets of independent variables in terms of 

predictive 

 

capabilities and also penalizes models with unnecessary or redundant predictors. 
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3.10 Residual Analysis for Multiple Regression 

It is very similar to the case for Simple Regression. The only di erence is to plot 

residuals versus each independent variable. Below is a review of plots and 

interpolations: 

Residuals: et = Yt − Yˆ
t = Yt − (b0 + b1X1t + ... + bkXkt) Plots: 

a. Plot ei versus Yˆ Can be used to check for linear relation, constant variance 

If relation is non-linear, U-shaped pattern appears 

If error variance is non constant, funnel shaped pattern appears 

If assumptions are met, random cloud of point appears 

b. Plot of ei versus Xji for each j Can be used to check for linear relation with respect 

to Xj 

If relation is nonlinear, U-shaped pattern appears 

If assumptions are met, random cloud of points appear 

c. Plot ei versus i Can be used to check for independence when collected over 

time 

If errors are dependent, smooth pattern will appear 

If errors are independent, random cloud of points appears 

d. Histogram of ei 

If distribution is normal, histogram of residuals will be mound-shaped, 

around 0 
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3.11 F-Test for the Overall Model 

F-test for a model is used in testing whether any of the independent variables are 

linearly associated with Y. 

Analysis of Variance 

Total Sum of Squares and degrees of freedom(df): SST=  

Y¯)2 dfT = n − 1 

Regression Sum of Squares: SSR=  dfR = k 

Error Sum of Squares: SSE=  dfE = n − k − 1 

Source df SS MS F 

Regression k SSR  

Error n-k-1 SSE  

 Total n-1 SST 

F-test for Overall Model 

H0 : β1 = ... = βk = 0 (Y is not linearly associated with any of the independent 

variables) 

HA : Not all βj = 0 (At least one of the independent variables is associated with 

Y) 

TS:  

RR: Fobs ≥ Fα,k,n−k−1 

P-value: Area in the F-distribution to the right of Fobs 
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3.12 Inferences Concerning Individual Regression Coe cients 

Used to test or estimate the slope of Y with respect to Xj, after controlling for all other 

predictor variables. t-test for βj 

H0 : βj = βj0 

HA : βj 6= βj0 TS: 

 
RR: 

,n− −1 
2 

P-value: Twice the area in the t-distribution to the right of |tobs| 

(1 − α)100 % Con dence Interval for βj 

 

If entire interval is positive, conclude βj > 0 (Positive association) 

If interval contains 0, conclude(do not reject) βj = 0 (No association) 

If entire interval is negative, conclude βj < 0 (Negative association) 

3.13 Testing Portions of the Model 

Consider 2 blocks of independent variables: 

Block A containing k-q independent variables 

Block B containing q independent variables 

We wish to test whether the set of independent variables in block B can be dropped 

from a model containing the set of independent variables. That is, the variables in 

block B add no predictive value to the variables in block A. 

Notation: 
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SSR(A&B) is the regression sum of squares for model containing both blocks 

SSR(A) is the regression sum of squares for model containing A MSE(A&B) 

is the error mean square for model containing both blocks k is the 

number of predictors in the model containing both blocks q is the number 

of predictors in block B 

H0: The β0s in block B are all 0, given that the variables in block A have been included 

in model 

HA: Not all β0s in block B are 0, given that the variables in block A 

have been included in model 

TS:  

RR: Fobs ≥ Fα,q,n−k−1 

P-value: Area in F distribution to the right of Fobs 

Coe cient of Partial Determination 

Measures the fraction of variation in Y by Xj, that is not explained by other 

independent variables. 
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 = 

Note that since labels are arbitrary, these can be constructed for any of 

the independent variables. 

3.14 Multicollinearity 

Problem: In observational studies and models with polynomial terms, the 

independent variables may be highly correlated among themselves. Two classes of 

problems arise. Intuitively, the variables explain the same part of the random 

variation in Y. This causes the partial regression coe cients to not appear signi cant 

for individual terms(since they are explaining the same variation). Mathematically, 

the standard errors of estimates are in ated, causing wider 

con dence intervals for individual parameters, and smaller t-statistics for testing 

whether individual partial regression coe cients are 0. Variance In ation Factor(VIF) 

 

where rj2 is the coe cient of determination when variable Xj is regressed on the j − 1 

remaining independent variables. There is a VIF for each independent variable. A 

variable is considered to be problematic if its VIF is 10.0 or larger. 

When multicollinearity is present, theory and common sense should be used to 

choose the best variables to keep in the model.Complex methods such as principal 

components regression and ridge regression have been developed, we will not 

pursue them here, as they don’t help in terms of the explanation of which 

independent variables are associated and cause changes in Y.  
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Chapter 4 

ANALYSIS AND DISCUSSION OF RESULTS 

4.1 Data Collection 

Maize grain yield data of the two farming seasons in Ghana was obtained from the 

Council for Scienti c and Industrial Research (CSIR) of Ghana. The data is the mean 

semi-annual grain yield of maize from 1995 to 2014 which is taken as yield data. A 

second set of data (Flowering data) was obtained for the year 2014 on the variables 

days to ower, plant height, ear height and eld weight as against yield at Fumesua 

Research Station. The statistical computing package R is used for modelling the two 

sets of data. 

4.2 Display of Data 

For the purposes of the ow of the analysis, the time series data for maize grain 

yield at Fumesua in the Ashanti Region of Ghana is displayed in Appendix I. 

4.3 Time Series Plot of Maize Grain Yield 

Figure 4.1 is a time series plot of maize grain yield of the semi-annual maize grain 

yield from 1995 to 2014. 

From Figure 4.1 above the mean of grain yield changes over time which 

indicates the series is non stationary as a result there is the need to test for 

stationarity. 



 

56 

 

Figure 4.1: Time Series Plot of maize grain yield from 1995 to 2014 

4.4 Stationarity Test 

In testing for stationarity unit root tests are carried out. Table 4.1 shows the 

results of a unit root testing procedure of Augmented Dickey-Fuller (ADF). 

In the table is a summary of the test statistics. Values for the test type, 

test statistic, critical value and p-value are shown in the table below. From Table Table 

4.1: Unit root test for maize grain yield series 

 Summary of Test Statistic  

Test type Test statistic Critical value p-value 

ADF -2.6809 -2.86431 0.3062 

4.1 the Augmented Dickey-Fuller (ADF) root test statistic (-2.6809) is higher than the 

critical value (-2.86431) with a p-value of 0.3062, at a 5% signi cance level. Hence the 

null hypothesis which states that there is a unit root in the series is not rejected. In 

conclusion the ADF test indicates that the maize grain yield series is non-stationary 

and has to be di erenced to become stationary. 

4.5 Di erencing of Maize Grain Yield Series 

After the maize grain yield series was found to be non-stationary through the ADF 

test, the series is transformed by di erencing. Below is a graph of the di erenced grain 

yield series. Figure 4.2 is a time series plot of the di erenced 
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grain yield series with yield on the y-axis and time on the x-axis. From Figure 

 

Figure 4.2: Time series plot of the di erenced grain yield series 

4.2, at the series is now stationary with a spike in 2004 

The ADF test is performed again on the di erenced maize grain yield series. The results 

obtained are shown in Table 4.2 below. 

In the table is a summary of the test statistics. Values for the test type, test 

statistic, critical value and p-value are shown in the table below. From Table 4.2 

Table 4.2: Unit root of the di erenced maize grain yield series 

 Summary of Test Statistic  

Test type Test statistic Critical value p-value 

ADF -5.212 2.86431 0.01 

the ADF test statistic for the di erenced grain yield series is (-5.212) and the critical 

value is (-2.86431) with p-value of 0.01 at a 5% signi cance level. Hence the null 

hypothesis which states that there is a unit root in the series is rejected. 

In conclusion the di erenced grain yield series is stationary. 

Below is a Histogram of the di erenced grain yield series. On the histogram 

are frequencies and mean of the di erenced series on the y?axis and 

x-axis respectively. 

From Figure 4.3, the histogram is symmetric with heavy tails indicating the 

Distribution of di erence yield 
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Figure 4.3: Histogram of the di erenced grain yield series 

distribution is normal. 

Below shows a normal Q-Q plot of the di erenced grain yield series. The graph below 

is a plot of sample quantiles against theoretical quantiles From Figure 4.4, the normal 

Q-Q plot the deviations from the straight line are minimal. This 

indicates normal distribution. 

4.6 Determining Order of Dependency of 

Di erenced yield series 

The autocorrelation function(ACF) for the di erenced grain yield series are illustrated 

in Figure 4.5 below. On the y-axis are autocorrelation functions and on the x-axis are 

the lags. From Figure 4.5 the Autocorrelation graph showed dependency at lag 

zero(0) and 2. Below is the Partial Autocorrelation function of Normal Q-Q Plot 
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Theoretical Quantiles 

Figure 4.4: Normal Q-Q plot of the di erenced grain yield series 

 

Figure 4.5: Autocorrelation function of di erenced grain yield the di erenced grain 

yield. From Figure 4.6 the Partial Autocorrelation function 

 

Figure 4.6: Partial Autocorrelation function of di erenced grain yield 
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Table 4.3: Model selection by AIC with non-zero mean 

ARMA(p,q) AIC 

ARMA(1,0) 20.84 

ARMA(0,1) 13.55 

ARMA(1,1) 15.44 

ARMA(2,0) 3.82 

ARMA(2,2) -10.42 

showed dependency at lag 2 in the di erenced grain yield series. The ACF and PACF 

plots above include that ARMA(2,2) is the model for the di erenced grain yield series. 

Hence the order of the model is (2,2). 

4.7 Model Selection and Estimation of 

Parameters 

In this section the Akaike Information Criterion(AIC) is used in selecting the 

appropriate model. Parameters of the selected ARMA model are also estimated in 

this section. The ACF and PACF plots above indicates ARMA(2,2) as the 

model for di erenced grain yield series but other ARMA models [(1,0),(0,1),(1,1) and 

(0,2)] are included in Akaike Information Criterion(AIC) for comparison. In choosing 

the modl, the one with minimum AIC is selected. Results of the AIC are shown below 

in Table 4.3. From Table 4.3, ARMA(2,2) which has the minimum AIC(-10.42) is 

selected. 

Table 4.4 shows results of parameter estimates of ARMA(2,2) model for the 

di erenced grain yield series. On the table are variable, coe cient, standard error, T-

statistics and probability values. From Table 4.4 above all four parameters are signi 

cant at α = 0.05 since the p-values (0.0206, 0.0412, 2.00e-16 and 1.11e-15) are less 

than α. Therefore ARMA(2,2) is considered as the model suitable for the di erenced 

grain yield series. 

Table 4.4: ARMA(2,2) Model’s Parameter Estimates 

Variable Coe cient Standard Error T-Statistics Probability 

AR(1) 0.182091 0.078672 2.315 0.0206 

AR(2) -0.301556 0.147734 -2.041 0.0412 
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MA(1) -0.820056 0.023489 -24.912 2.00e-16 

MA(2) -0.510013 0.063544 -8.026 1.11e-15 

Intercept 0.008489 0.006147 1.381 0.1673 

σ2 = 0.03469, conditional sum of squares=1.27 AIC=-10.42α = 0.05 

4.8 ARMA Model for the Di erenced grain yield 

series 

The ARMA(p,q) model states that the current value of some series rt depends on its 

own previous values plus a combination of current and previous values of a white 

noise error term εt. From Table 4.4 above the model for the di erenced maize grain 

yield series ARMA(2,2) is given by rt = 0.1822091rt−1−0.30155rt−2− 

0.820056εt−1 − 0.510013εt−2 + εt 

4.9 Model Diagnostics of ARMA(2,2) 

Figure 4.7 is a plot of the standardized residuals. On the graph is a plot of values 

against time From Figure 4.7 the time series plot shows the series is stationary. Since 

the mean does not change over time. 

Below is an ACF plot of the standardized residuals. On the y-axis are 

autocorrelation functions and on the x-axis are the lags. Figure 4.8 shows no apparent 

departure from the model assumption showing dependency at lag 2. Figure 4.8 

shows no apparent departure from the model assumption showing dependency at 

lag 2. 

Below is a histogram of the standardized residuals. On the graph is a plot of 

probability against mean. From Figure 4.9 above histogram is symmetric with heavy 

tails indicating normality. Results of the descriptive statistics shown in 
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Figure 4.7: Time Plot of standardized residuals 

 

Figure 4.8: ACF of standardized residuals 

table 4.5 below con rm that the distribution is normal. From Table 4.5 there is a 

standard deviation (1.01306) with a general mean (-0.00568). The empirical 

distribution of residuals shows symmetric with kurtosis (0.25935) and skewness 

(0.01956). This indicates normality of standardized residuals, is supported by 
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Figure 4.9: Histogram of the standardized residuals 

Table 4.5: Descriptive statistics 

 

 Statistics Value Statistics

 Value 

p-value=(0.3459) 

Shapiro-Wilk test value of 0.96855 and p-value of 0.3459. These results indicate that 

the residuals are uncorrelated. Hence the model ts well for the di erenced 

maize yield. 

As a result the ARMA(2,2) model is adequate in describing the conditional mean of 

the di erenced grain yield series. Therefore the model is suitable and appropriate for 

the data. 

Mean -0.00568 Standard deviation 1.01306 

Median -0.15136 Skewness 0.01956 

Minimum -3.05210 Kurtosis 0.25935 

Maximum 2.57038 Shapiro-Wilk 0.96855 
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Below is a normal Q-Q plot of the standardized residuals. The graph is a plot of sample 

quantiles against theoretical quantiles. The normal Q-Q plot 

 

Figure 4.10: Normal Q-Q plot of the standardized residuals 

indicates normality wiyh few outliers. In conclusion the above plot quantiles shows 

normality. 

4.10 Forecasting of Maize Grain yield 

Figure 4.5 shows forecast for the di erenced maize grain yield series. The yield tends 

to approach the mean of the series with wider forecast limit. The two curves seen are 

the upper and lower limit of the 95% con dence interval constructed for the forecast. 

It can be seen that grain yield returns forecasted lie within the con dence interval 

indicating that the tted ARMA(2,2) model is appropriate for the maize grain yield data 

and can be used . 

The ARMA(2,2) model for the di erenced grain yield series was also used 

to make an intra-prediction of di erenced grain yield for 15years by constructing a 

model each with one-step-ahead prediction of the next observations. The results of 
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the forecast are shown below in Table 4.6. It is seen from Table 4.6 that the grain 

yields predicted are very close to the actual yield and all their values 

 

Figure 4.11: Forecast of di erenced grain yield 

Table 4.6: Forecasting of 15 years Intra-Predicted yield against Actual yield 

Year Actual yield Predicted yield 

1995 2242.847 2361.87 

1996 2198.089 2430.24 

1997 2652.609 2731.29 

1998 2367.134 2471.03 

1999 2459.434 2762.159 

2000 2502.057 2762.159 

2001 2824.171 3469.45 

2002 2839.225 2953.38 

2003 2231.288 2281.22 

2004 1750.877 1869.23 

2005 2870.974 2963.28 

2006 2322.534 2460.54 

2007 2825.346 2975.36 

2008 2215.951 2395.34 

2009 2396.228 2556.23 

lies within the 95% con dence interval created. Hence the tted ARMA(2,2) 

model is appropriate for the data. 
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4.11 Multiple Regression Analysis 

In this section a multiple linear model is tted to determine how the factors(plant 

height, ear height, days to ower and eld weight) a ect the yield of maize. 

4.11.1 Display of Regression Data 

Below is maize owering data used for the regression modelling. On the table are 

values for the variables entry, days to ower, plant height, eld weight and grain yield 

respectively. Table 4.8 shows the Pearson’s correlation between all the four 

ENTRY Days to ower plant height ear height Field Weight Grain yield 

1 51.7 202.25 111 5.025 4566.4 

2 51.25 187.75 90.25 5.225 4649.7 

3 52 203.75 110.5 4.4 3877.2 

4 51.25 190 88 3.525 3184.3 

5 52 225.25 122.25 5.55 4789.5 

6 53.75 199.25 99.25 3.4 2957.8 

7 51.75 192.25 110.25 4.2 3748.7 

8 51.5 187 93.75 4.575 4171 

9 52.25 200.5 129.75 5.225 4502.9 

10 51.75 216.5 115.5 5.525 4801.2 

11 52 219.75 110.25 5.6 4886.6 

12 51.25 207.75 111.75 4.525 4014.2 

13 51.75 195 104.25 4.1 3567.4 

14 50.809 198.53 96.88 4.6007 4111.7 

15 51.75 202.75 98.8 5.35 4698.4 

16 51.652 195.45 93.21 3.1656 2718.3 

17 52.25 200 102 4.725 3225.6 

18 50.5 207.75 107.75 4.225 3806.6  

factors and yield. From Table 4.8 there is a strong positive linear relationship 

Table 4.7: Pearson’s Correlation between Variables(Factors) 

Factors Yield Days to ower Plant Height Ear Height Field Weight 

Yield 1.000 0.821 0.641 -0.360 0.731 

Days to ower 0.821 1.000 0.478 0.545 0.319 

Plant Height 0.641 0.478 1.000 0.713 0.657 
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Ear Height -0.360 0.545 0.713 1.000 0.424 

Field Weight 0.731 0.310 0.656 0.424 1.000 

between grain yield and plant height, days to ower and weight of the

 eld; however there is a weak negative linear relationship between yield and 

ear height with a correlation coe cient of -0.360. The response variable and the 

independent variables are highly correlated. 

4.11.2 Regression Analysis for Maize Grain yield 

The multiple regression model is 

Grain yield =α + β1Plant height+β2Ear height+β3Days to ower+β4Field 

weight+εt where α is the intercept, β1 is the coe cient of Plant height, β2 is the coe 

cient of Ear height, β3 is the coe cient of Days to ower, β4 is the coe cient of Field 

weight and εt is the error term. Grain yield is the independent variable Table 4.9 

below shows results of the regression analysis for the maize grain yield coe cients. 

Column 1 gives coe cients, column 2 gives estimates, column 3 gives standard 

errors, column 4 gives values and column 5 gives p-values. From Table 4.8 the 

Table 4.8: Regression Analysis for Maize Grain yields 

 Coe cients Estimates Standard Error T-Value P-Value 

Intercepts 8739.11 4679.54 1.878 0.0463 

Plant height 44.31 13.31 3.329 0.0016 

Ear height -18.07 15.50 -1.166 0.2492 

Days to ower 185.44 100.64 1.843 0.0007 

Field weight 704.39 158.12 4.455 

4.87e-

05 

Multiple R-squared, R2 = 0.713, F(4,49)=13.23α = 0.05 P-value=0.0002501 
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variables(plant height, days to ower and eld weight) are statistically signi cant at 0.05 

level of signi cance, while ear height is statistically insigni cant. This means that plant 

height, days to ower and eld weights are signi cant factors a ecting maize grain yield. 

The regression gives a coe cient of determination(R-square) value as 0.713, which 

indicates 71.3 percent of the total variation in the response variable accounted for 

by the predictor variables. 

From the regression equation, grain yield increases by 44.31 kilograms per hectare 

for a unit change of centimetre in plant height, 185.44 kilogram per hectare for a unit 

change in days to ower and 704.39 kilogram per hectare for a unit change of kilogram 

in eld weight when all other variables are held constant. However, a unit of change 

of a centimetre in ear height causes grain yield to decrease by 18.07 kilogram per 

hectare. 

From Table 4.8, the multiple regression equation for a maize grain yield is given by 

Grain yield=8739.11+44.31 Plant height+185.44 Days to ower+704.39 

Field weight. 

4.11.3 Diagnostics of the grain yield regression model 

The gures below are four individual plots indicating the diagnostics of the grain yield 

regression model. Figure 4.12 below is a plot of residuals against tted errors It can be 

seen from Figure 4.6a that the residuals are randomly distributed around the 

horizontal line(in short dashes on the graph) including a good t for a linear model. 

Figure 4.6b shows a plot of the squared root of the standardized residuals against the 

tted values. From the plot the residuals are randomly distributed and for good model 

values of the residuals should be more or less randomly distributed. Hence the model 

is good and t for data. 

Figure 4.14 below is a normal Q-Q plot Figure 4.14 is the normal Q-Q plot which shows 

no departure from the model assumption. Figure 4.15 shows a 
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plot of residuals against leverage. On the plots are contour lines for the Cook’s 

distance.As such the variable (ear height) which is not statistically signi cant can be 

dropped from the model and the model can still perform as expected. In Figure 4.12: 

Plot of residuals errors against tted values 

 

Figure 4.13: Scale Location plot of the standardized residuals 

conclusion the model tted is suitable and appropriate for data. Hence it can be used 

to predict future grain yields. 
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 Figure 4.14: Normal Q-Q plot of the standardized residuals 

Figure 4.15: Plot of Residuals and leverage 

4.12 Discussion of Results 

4.12.1 Time Series Model 

The time series was found to be non-stationary which resulted from the presence of 

a unit root in it. 
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The series became stationary after eliminating the unit root by di erencing the 

grain yield series. 

The Autocorrelation function showed dependency at a lag 0 and 2 whiles the Partial 

Autocorrelation function showed dependency at lag 2 in the yield series. ARMA(2,2) 

was found to be the most suitable model for the conditional mean of the di erenced 

maize grain yield series.The ACF of the standardized residual show no apparent 

departure from the model assumption.The empirical distribution shows normality 

which is supported by Shapiro-Wilk normality test value of 0.96855 and a p-value of 

0.3459. Hence the model ts well for the maize yield returns. The ARMA(2,2) model 

for the di erenced maize grain yield series 

is given as 

r1 = 0.1822091rt−1 − 0.301556rt−2 − 0.820056εt−1 − 0.510013t−2 + εt 

The ARMA (2, 2) model tted was used to make intra predictions for grain 

yield for 15 years and the results showed that the grain yields foretasted are very 

close to the actual grain yield lies within the 95% con dence interval constructed 

indicating that the ARMA (2,2) model is appropriate for the maize grain yield 

data. 

The model can be used to make prediction into the future. The results in this study 

also con rms the ndings of the research article of Anup et al (2006) titled crop yield 

estimation model for Iowa using remote sensing and surface parameters. 

4.12.2 Multiple Regression Model 

The multiple regression model: 
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Grain yield = 8739.11+44.31Plant height−18.07Ear height+185.44Days to flower+704.39F tted 

was suitable with about 71.3% of the variation in the yield of grains being explained by the variables 

plant height, days to ower and the eld weight. 

The results also shows that, plants height, the days to ower and eld weight are all 

statistically signi cant, with p-values 0.0016, 0.0007 and 0.0000487 respectively. Ear 

height is not statistically signi cant with p-values (0.2492), 

hence it can be dropped from the model. Hence the model now becomes: 

Grainyield = 8739.11+44.31Plantheight+185.44Daystoflower+704.39Field weight  
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Chapter 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusions 

Time Series Model 

The research examined grain yield data obtained from the Crops Research Institute 

of Ghana for a period of 1995-2014; the objective of the study was to t an ARMA 

model for the data and make forecast of future grain yields with it. The observed 

grain yield series was not stationary at rst but it became stationary after di erencing. 

The distribution of the di erenced maize yield series showed normality with 

symmetric histogram which is supported by a Shapiro-Wilk test value of 0.96855 and 

a p-value of 0.3459.The model that explains the stochastic mechanism of the 

observed series is ARMA(2, 2). Grain yields forecasted were very close to the actual 

grain yield and lied within the 95% con dence interval 

constructed. 

Multiple Regression Model 

A multiple regression model was also tted using maize owering data for 2014 in nding 

out factors a ecting grain yield in maize. The study revealed that the variables plants 

height, days to ower and the eld weight are signi cant to the model at 0.05 level. This 

indicates that they are factors that a ect the grain yield as they account for a high 

percentage (71.3) of the variation in the grain yield of maize. 

5.2 Recommendations 

It is recommended that the ARMA (2, 2) model should be used by researchers to 

forecast since the predictions made with it had values very close to the actual grain 

yield and lies within the 95% con dence interval. Variables that are found to be 
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statistically signi cant in in uencing grain yield in maize such as plants height, the days 

to ower and eld weight should be given more attention by maize breeders in Ghana 

when they are coming out with high yielding varieties. 

The researcher also recommends that further studies should be conducted on other 

agricultural factors that might a ect the maize grain yield in the near 

future.  
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Appendix A 

Grain yield year Grain yield Year 

2296.47 1st half of 1995 1430.59 1st half of 2005 

1556.08 2nd half of 1995 2221.18 2nd half of 2005 

2296.47 1st half of 1996 2484.71 1st half of 2006 

3237.65 2nd half of 1996 2258.82 2nd half of 2006 

2371.76 1st half of 1997 2182.54 1st half of 2007 

2522.35 2nd half of 1997 2409.41 2nd half of 2007 

2597.65 1st half of 1998 3011.76 1st half of 2008 

2974.12 2nd half of 1998 2032.94 2nd half of 2008 

2484.72 1st half of 1999 2032.94 1st half of 2009 

2409.41 2nd half of 1999 2710.59 2nd half of 2009 

2635.29 1st half of 2000 2145.88 1st half of 2010 

2371.76 2nd half of 2000 2409.41 2nd half of 2010 

2936.47 1st half of 2001 2108.24 1st half of 2011 

2597.65 2nd half of 2001 2070.59 2nd half of 2011 

2032.94 2nd half of 2002 2861.18 2nd half of 2012 

878.43 1st half of 2003 2926.47 1st half of 2013 

2221.18 2nd half of 2003 2597.65 2nd half of 2013 

335.59 1st half of 2004 2484.71 1st half of 2014 

2108.24 2nd half of 2004 2296.47 2nd half of 2014 

 


