

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI

TRAFFIC SEQUENCING WITH GENETIC ALGORITHM

CASE STUDY: LA PAZ TRAFFIC INTERSECTION

By

FESTUS EYRAM KWASHIE ASHIGBIE

(INDEX NUMBER: PG 8143012)

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS,

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY IN

PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE

OF MSC INDUSTRIAL MATHEMATICS WITH THESIS

March 23, 2016

i

Declaration

I hereby declare that this submission is my own work towards the award of the

MSc. degree and that, to the best of my knowledge, it contains no material

previously published by another person nor material which had been accepted

for the award of any other degree of the university, except where due
acknowledgement had been made in the text.

FESTUS EYRAM KWASHIE ASHIGBIE

Student

Certified by:

Signature Date

Dr. JOSEPH ACKORA-PRAH

Supervisor

Certified by:

Signature Date

Prof. S. K. AMPONSAH

Head of Department Signature Date

ii

Dedication

I dedicate this thesis to:

My Son Timothy

My Wife Theodora

My Mum Veronica

My Dad Livingstone

iii

Abstract

Managing traffic flow at complex intersections is a challenging task. The

intersection under study is situated at La Paz on the N1 highway. One can see

wreckages of crushed vehicles at different locations of the highway. Within one

month of its commissioning, the road registered fifteen (15) accidents with huge

loses to life and property. Between February 2012 and December 2013, 489

accidents had been recorded on the road with 350 people sustaining severe

injuries. Two hundred (200) pedestrians had also been knocked down by

speeding cars while 70 pedestrians died on the spot. These accidents occur when

pedestrians attempt to cross the road. Some identified causes of these accidents

are inefficient traffic order sequence, inadequate green time allocation, and non-

user friendly traffic installations. The breadth of the highway is about 50 metres

with no islands for pedestrians use. There are no overhead footbridge or

underground passage at the intersection for pedestrian use. These causes lots of

chaos at the intersection and leads to road block and heavy traffic during rush

hours. To save lives and properties, and improve traffic flow, the intersection is

investigated to propose new ways of improving pedestrian safety and traffic flow

sequence. Genetic Algorithm approach was used to find an optimal traffic flow

sequence for the intersection. The intersection was simplified into a ’plus’

intersection that has traffic streams moving in fourteen directions. The streams

were encoded and put through the genetic algorithm process. The output was

evaluated for both computational efficiency and accuracy. The program returned

a flow sequence that is very efficient. It gives hope that soon, the chaos and

accidents at the intersection will become

history.

iv

Acknowledgements

I wish to thank my supervisor, Dr. Joseph Ackora-Prah for guiding me in doing

this thesis. His expertise, precious time, and willingness to provide feedback

made the completion of this research an enjoyable experience. I owe a lot of

thanks to all the lecturers and colleagues of the Mathematics department for

their leadership throughout my study.

v

Contents

Declaration .. i

Dedication .. ii

Abstract .. iii

Acknowledgement . iv

List of Tables . v

List of Figures . vi

1 Introduction . 1

1.1 Background of Study . 1

1.2 Problem Statement . 3

1.3 Objectives of the study . 4

1.4 Scope of Study . 4

1.5 Justification . 5

1.6 Methodology . 6

2 Literature Review . 7

3 Methodology . 29

3.1 Overview of Genetic Algorithm 29

3.2 Genetic Algorithm Concept . 30

3.2.1 Initial Population . 31

3.2.2 Encoding . 32

 3.2.3 Parent Selection Scheme 35

 3.2.4 Crossover or Recombination 37

 3.2.5 Mutation . 40

4 Analysis . 44

 4.1 Model Formulation . 44

 4.1.1 Description of the intersection 45

vi

 4.1.2 Steps involved in the algorithm 45

 4.1.3 Chromosome Encoding 46

 4.1.4 Initialize Population . 46

 4.1.5 Evaluate Population . 50

 4.1.6 Interpretation of Chromosomes 51

 4.1.7 Fitness Function . 52

 4.1.8 Investigating if trajectories cross path 53

 4.1.9 Testing for interference in Chromosome 1 56

4.1.10 Testing for interference in Chromosome 2 56

4.1.11 Testing for interference in Chromosome 3 58

4.1.12 Testing for interference in Chromosome 4 58

4.1.13 Test Results . 58

4.1.14 Selection . 59

 4.1.15 Cross Over . 59

5 Result, Conclusion and Recommendations 63

 5.1 Results . 63

 5.1.1 Interpretation of Chromosome 2 result 63

 5.2 Conclusion . 68

 5.3 Recommendations . 69

References . 74

Appendix A . 75

Appendix B . 76

Appendix C . 77

Appendix D . 78

Pictures of the Study Area . 79

vii

List of Tables

3.1 Binary Encoding . 33

3.2 Octal Encoding . 33

3.3 Hexadecimal Encoding . 33

3.4 Permutation Encoding . 34

3.5 Value Encoding . 34

4.1 Vectors are assigned to each traffic stream based on its direction . 46

4.2 Samples of chromosomes encoding 47

4.3 Initial Population .

4.4 Chromosomes divided into four parts showing four phases traffic

49

movement . 50

4.5 Interpretation of chromosome division - part 1 51

4.6 Interpretation of chromosome division - part 2 51

4.7 Interpretation of chromosome division - part 3 51

4.8 Interpretation of chromosome division - part 4 52

4.9 Re-ordering of genes in sample . 52

4.10 Unique pairs in sample . 52

4.11 Knots: Points of traffic conflict 55

4.12 Testing for Fitness in Chromosome 1 56

4.13 Testing for Fitness in Chromosome 2 57

4.14 Testing for Fitness in Chromosome 3 57

4.15 Testing for Fitness in Chromosome 4 58

4.16 Testing fitness of Chromosomes across three generations 60

4.17 Parent 1 and Parent 2 crossed over to produce offspring 1 using

 Uniformlike Crossover (ULX) .

4.18 Parent 3 and Parent 4 crossed over to produce offspring 2 using

61

 Uniformlike Crossover (ULX) .

4.19 Parent 5 and Parent 6 crossed over to produce offspring 3 using

61

viii

 Uniformlike Crossover (ULX) .

4.20 Parent 7 and Parent 8 crossed over to produce offspring 4 using

61

 Uniformlike Crossover (ULX) .

4.21 Parent 9 and Parent 10 crossed over to produce offspring 5 using

61

 Uniformlike Crossover (ULX) .

4.22 Parent 11 and Parent 12 crossed over to produce offspring 6 using

61

 Uniformlike Crossover (ULX) .

4.23 Parent 13 and Parent 14 crossed over to produce offspring 7 using

61

 Uniformlike Crossover (ULX) .

4.24 Parent 15 and Parent 16 crossed over to produce offspring 8 using

62

 Uniformlike Crossover (ULX) .

4.25 Parent 17 and Parent 18 crossed over to produce offspring 9 using

62

 Uniformlike Crossover (ULX) .

4.26 Parent 19 and Parent 20 crossed over to produce offspring 10 using

62

 Uniformlike Crossover (ULX) . 62

5.1 Least conflict result . 63

5.2 Phase 1 of test result . 64

5.3 Phase 2 of test result . 64

5.4 Phase 3 of test result . 65

5.5 Phase 4 of test result . 65

5.6 Initial Population . 75

5.7 Second Generation of Chromosomes 77

5.8 Third Generation of Chromosomes 78

List of Figures

2.1 The payoff matrix for the Prisoner’s Dilemma 11

3.1 Tree Encoding . 35

ix

3.2 Roulette Wheel Selection . 37

3.3 One Point Crossover . 38

3.4 Two Point Crossover . 38

3.5 Cut and Splice Crossover . 39

3.6 Partially Matched Crossover . 41

4.1 Vectors assigned to traffic streams 47

4.2 A sketch of La Paz Intersection 48

5.1 Test Result of Phase 1 . 64

5.2 Test Result of Phase 2 . 66

5.3 Test Result of Phase 3 . 67

5.4 Test Result of Phase 4 . 68

5.5 The intersection is about 60m wide. This makes its crossing risky 79

5.6 Pedestrians waiting on an island in the middle of the road waiting

 for a chance to traverse the intersection 79

5.7 The road divides a once one-community into two halves 80

5.8 Police personnel had to always be around to manage the confusion 80

1

Chapter 1

Introduction

1.1 Background of Study

The increase of traffic in the city of Accra is causing significant problems. The

current road network cannot keep up with traffic growth. One may think of

massive expansion of the road network as a solution to the problem. This solution

of providing more streets is limited by economic and ecological factors and thus

it is necessary to optimize traffic movements on the existing street network.

Firstly, we may approach this problem by Optimizing the network: New roads

could be built and existing roads expanded, use of roads could be changed,clever

and better routing introduced, or smoothing traffic flow by a system of coupled

intersection signal operations.

We may also tackle the problem by Optimizing intersections: Efficient sequencing

of traffic movements at intersections and improving traffic signal operation. The

traffic signal assigns the right-of-way to a stream of vehicles and pedestrians in

other to guarantee their safe crossings. The specification of the signal setting

(traffic control strategy) has a major impact on intersection capacity and

efficiency. Since intersection parameters are local, an intersection optimization

can be based on local traffic attributes. As described in Schnabel and Lohse

(1997), intersections mainly determine the capacity of urban traffic networks.

Therefore optimizing the intersection is a quick and efficient way to cope with the

characteristic problems of urban traffic. When permeability of intersections are

improved, it leads to lower traffic densities and reduced travel times.

The work presents a model to improve sequencing at an intersection. The aim is

to determine compatible groups of traffic flow or the order in which each phase

of traffic moves to enhance traffic flow and reduce collision.

2

The intersection under consideration is situated at La Paz on the N1 highway.

One can see wreckages of crushed vehicles at different locations of the motorway.

Within one month of commissioning, the road registered fifteen (15) accidents

with huge loses to life and property. There have also been reports of various

degrees of pedestrian knock downs.

Some people argue that the accidents on the highway are due to the absence of

U-turns and zebra crossings at vantage points on the road. The Association of

Persons with Disabilities have also complained about the absence of facilities on

the overhead foot bridges that they should have been using to cross the N1

Highway. The explanation given by the Millennium Challenge Account (MCA) for

this phenomenon was that the foot bridges were too high to make room for such

facilities. This explanation is a very strange one.The MCA should have made good

our laws that mandates the provision of these disability friendly facilities on all

public structures and institutions. What it means is that persons with disabilities

would have to go to the daily hustle of moving to the nearest traffic light junction

or crossing to enable them move across the broad road.

Another obvious risk on the road is the absence of reflectors at the Dimples

Roundabout. Ideally, there should be reflectors on the aluminium rails at the

roundabout. It is very difficult or almost impossible for a driver in a fast moving

vehicle that might be using the road for the first time, to notice that sharp

roundabout from a distance as the aluminium rails do not have signals to warn

drivers of the hazard. It is therefore urgent for the Road Ministry to ensure that

reflectors are posted on the rails to guide drivers and motorists alike to be

forewarned of the hazards posed by that roundabout.

Drivers seem to have thrown away the rule that one cannot exceed the 50km/h

speed limit imposed on drivers on roads passing through towns and cities. Even

though the N1 Highway is an extension of the Kwame Nkrumah Motorway, the

highway passes through busy communities towards Mallam Junction and drivers

must not be allowed to use the highway as a race course. The imposition and

3

respect for this speed limit will enable any driver to have a good stopping and

breaking distance even if met unexpectedly by any hazards on the road. The

situation even becomes safer for long trucks and cargo vehicles that seem to have

braking problems and longer stopping distance. Enforcing this speed limit will

largely curtail the unnecessary accidents on the George Walker Bush N1 Highway.

Another factor worth mentioning is the attitude of pedestrians on the road. It is

not surprising that many pedestrians choose to jump over the short rails

separating the speedways instead of using the overhead bridges and to the pelican

crossings on the highway. Life seems to have suddenly changed for the people

using the road all day to cross over to the other side of the road on transit. Many

of them are uncomfortable about walking all the way to the overhead bridge or

the traffic lights to have safe crossing to the other side of the road. It is amazing

that pedestrians would take these risks for granted and opt to jump over the rails

rather than use the approved areas and they should have themselves to blame if

they get knocked down in the process that is if they are lucky enough to live to see

another day. The use of mobile phones while driving or crossing the road at

unapproved sections is another matter that must attract the attention of law

makers.

As regards road signs and traffic regulations, the population is highly ignorant of

what these road signs are. There are a number of ”No Stopping for Any Reason”

signs along the highway which are usually ignored.

(Amegashie, 2012)

1.2 Problem Statement

The N1 highway can be labelled as a good asset that has become a death trap.

Many accidents occur on this highway and 80 per cent happens at the traffic

intersection. Between February 2012 and December 2013, 489 accidents had

been recorded on the road with 350 people sustaining severe injuries. Two

4

hundred (200) pedestrians had also been knocked down by speeding cars while

70 pedestrians died on the spot. These accidents occur when pedestrians attempt

to cross the road. There have also been several car crashes. Some identified causes

of these accidents are inefficient traffic order sequence, inadequate green time

allocation, and non-user friendly traffic installations. The breadth of the highway

is about 50 metres with no islands for pedestrians use. There are no overhead

footbridge or underground passage at the intersection for pedestrian use. To save

lives and properties, and improve traffic flow, the intersection is investigated to

propose new ways of improving pedestrian safety and traffic flow sequence.

1.3 Objectives of the study

Traffic sequencing is usually a trial-and-error process. Based on heuristics and

expert knowledge, the traffic engineer proposes a signal operation and tests its

effectiveness by means of simulations. He may test one or two other

configurations, but due to the duration of this process he has no possibility for

exuberant experiments. This design process usually yields reasonable results. But

it has a significant drawback. The design relies heavily on individual experience.

Solutions beyond the traditional way usually will not be found, even though

special problems often need special answers.

The objectives of this study is to use Genetic Algorithm (GA) to find an efficient

vehicle passing sequence to maximize the traffic throughput at the La Paz

intersections.

5

1.4 Scope of Study

Profile of Study Area

The study will be carried out on the La Paz traffic light intersection situated on the

George Walker Bush Highway. The George Walker Bush Highway is a six-lane, 14-

kilometre (8.7 mile) highway in Accra in the Greater Accra Region of Ghana. It is

also known as the Mallam-Tetteh Quashie Highway. It links the urban town of

Mallam to the Tetteh Quarshie Interchange and was officially opened to motorists

on 15th February, 2012. It is known also as the N1 highway. The N1 is among the

busiest roads in Accra as it links the Greater Accra region with the Central Region.

Besides, it carries a lot of human traffic of which most is concentrated at La Paz.

La Paz, before the construction of the N1 Highway was one community. The

construction of the highway split the community into two. Relatives, friends,

businesses were split, one on one side of the road, the other at the other side of

the road. At La Paz, the highway was joined by two roads forming a four way

junction. La Paz is a major business hub of Accra. It houses most of the well-

established financial institutions, businesses, churches, health facilities and

religious buildings. This makes the La Paz experience massive human traffic and

hence much crossing at the interchange.

1.5 Justification

The traffic congestion at La Paz intersection is a daily occurrence. It is usually

caused by the inability of the road network to cope with the volume of vehicular

traffic using it. This results in loss of money and time and affects the economy

adversely. Commuters have to spend longer travel time to and from work. Vehicles

have to burn more fuel. The environment is also affected due to the heavy

emission of gases from burning of gasoline. We will need more inter-urban roads

to improve accessibility, connectivity and development. However,the desire to

6

build the roads to meet the demand for motor vehicles is unlikely to solve

congestion and other traffic problems. In fact, the alternative highway capacity is

likely to be

‘choked’ and the benefits offset unless the growth in traffic volume is restrained.

Instead of looking only at road expansion, we are looking at optimising traffic flow

at intersections as one of the ways to reduce road congestion.

1.6 Methodology

Traffic flow on the N1 highway has become more saturated. The traffic flow

sequence at the La Paz intersection possesses danger to road users and need to

be improved. Genetic Algorithm approach with MATLAB codes will be used in

this investigation.

7

Chapter 2

Literature Review

In the 1950s and the 1960s several computer scientists independently studied

evolutionary systems with the idea that evolution could be used as an

optimization tool for engineering problems. The idea in all these systems was to

evolve a population of candidate solutions to a given problem, using operators

inspired by natural genetic variation and natural selection.

In the 1960s, Rechenberg (1965, 1973) introduced ”evolution strategies”, a

method he used to optimize real-valued parameters for devices such as airfoils..

This idea was further developed by Schwefel (1975, 1977). The field of evolution

strategies has remained an active area of research, mostly developing

independently from the field of genetic algorithms. The two communities have

begun to interact in recent times. Fogel and Walsh (1966) developed

”evolutionary programming”, a technique in which candidate solutions to given

tasks were represented as finite-state machines, which were evolved by randomly

mutating their state-transition diagrams and selecting the fittest. A somewhat

broader formulation of evolutionary programming also remains an area of active

research. Together, evolution strategies, evolutionary programming, and genetic

algorithms form the backbone of the field of evolutionary computation.

Several other people working in the 1950s and the 1960s developed

evolutioninspired algorithms for optimization and machine learning. Box (1957);

Friedman (1959); Bledsoe (1961); Bremermann (1962); Reed and Barricelli

(1967) all worked in this area, though their work has been given little or none of

the kind of attention or follow up that evolution strategies, evolutionary

programming, and genetic algorithms have seen. In addition, a number of

evolutionary biologists used computers to simulate evolution for the purpose of

controlled experiments (Baricelli, 1957, 1962; Fraser, 1957b,a; Martin and

8

Cockerham, 1960). Evolutionary computation was definitely in the air in the

formative days of the electronic computer.

Genetic algorithms (GAs) were invented by John Holland in the 1960s and were

developed by Holland and his students and colleagues at the University of

Michigan in the 1960s and the 1970s. In contrast with evolution strategies and

evolutionary programming, Holland’s original goal was not to design algorithms

to solve specific problems, but rather to formally study the phenomenon of

adaptation as it occurs in nature and to develop ways in which the mechanisms of

natural adaptation might be imported into computer systems. Holland’s 1975

book Adaptation in Natural and Artificial Systems presented the genetic algorithm

as an abstraction of biological evolution and gave a theoretical framework for

adaptation under the GA. Holland’s GA is a method for moving from one

population of ”chromosomes” (e.g., strings of ones and zeros, or ”bits”) to a new

population by using a kind of ”natural selection” together with the genetics-

inspired operators of crossover, mutation, and inversion. Each chromosome

consists of ”genes” (e.g., bits), each gene being an instance of a particular ”allele”

(e.g., 0 or 1). The selection operator chooses those chromosomes in the

population that will be allowed to reproduce, and on average the fitter

chromosomes produce more offspring than the less fit ones. Crossover exchanges

subparts of two chromosomes, roughly mimicking biological recombination

between two single-chromosome (”haploid”) organisms; mutation randomly

changes the allele values of some locations in the chromosome; and inversion

reverses the order of a contiguous section of the chromosome, thus rearranging

the order in which genes are arrayed. (Here, as in most of the GA literature,

”crossover” and ”recombination” will mean the same thing.) Holland’s

introduction of a population-based algorithm with crossover, inversion, and

mutation was a major innovation. (Rechenberg’s evolution strategies started with

a ”population” of two individuals, one parent and one offspring, the offspring

being a mutated version of the parent; many-individual populations and

9

crossover were not incorporated until later. Fogel, Owens, and Walsh’s

evolutionary programming likewise used only mutation to provide variation.)

Moreover, Holland (1975) was the first to attempt to put computational evolution

on a firm theoretical footing. Until recently this theoretical foundation, based on

the notion of ”schemas,” was the basis of almost all subsequent theoretical work

on genetic algorithms In the last several years there has been widespread

interaction among researchers studying various evolutionary computation

methods, and the boundaries between GAs, evolution strategies, evolutionary

programming, and other evolutionary approaches have broken down to some

extent. Today, researchers often use the term ”genetic algorithm” to describe

something very far from Holland’s original conception. In this book I adopt this

flexibility. Most of the projects I will describe here were referred to by their

originators as GAs; some were not, but they all have enough of a ”family

resemblance” that I include them under the rubric of genetic algorithms.

GAs was used to Evolve Strategies for the Prisoner’s Dilemma. The Prisoner’s

Dilemma, a simple two-person game invented by Merrill Flood and Melvin

Dresher in the 1950s, has been studied extensively in game theory, economics,

and political science because it can be seen as an idealized model for real-world

phenomena such as arms races (Axelrod and Kaufmann, 1987; Axelrod and Dion,

1988). It can be formulated as follows: Two individuals (call them Alice and Bob)

are arrested for committing a crime together and are held in separate cells, with

no communication possible between them. Alice is offered the following deal: If

she confesses and agrees to testify against Bob, she will receive a suspended

sentence with probation, and Bob will be put away for 5 years. However, if at the

same time Bob confesses and agrees to testify against Alice, her testimony will be

discredited, and each will receive 4 years for pleading guilty. Alice is told that Bob

is being offered precisely the same deal. Both Alice and Bob know that if neither

testify against the other they can be convicted only on a lesser charge for which

they will each get 2 years in jail. Should Alice ”defect” against Bob and hope for

10

the suspended sentence, risking a 4-year sentence if Bob defects? Or should she

”cooperate” with Bob (even though they cannot communicate), in the hope that

he will also cooperate so each will get only 2 years, thereby risking a defection by

Bob that will send her away for 5 years? The game can be described more

abstractly. Each player independently decides which move to make-i.e., whether

to cooperate or defect. A ”game” consists of each player’s making a decision (a

”move”). The possible results of a single game are summarized in a payoff matrix

like the one shown in Figure 2.1. Here the goal is to get as many points (as opposed

to as few years in prison) as possible. (In Figure 2.1, the payoff in each case can be

interpreted as 5 minus the number of years in prison.) If both players cooperate,

each gets 3 points. If player A defects and player B cooperates, then player A gets

5 points and player B gets 0 points, and vice versa if the situation is reversed. If

both players defect, each gets 1 point. What is the best strategy to use in order to

maximize one’s own payoff? If you suspect that your opponent is going to

cooperate, then you should surely defect. If you suspect that your opponent is

going to defect, then you should defect too. No matter what the other player does,

it is always better to defect. The dilemma is that if both players defect each gets a

worse score than if they cooperate. If the game is iterated (that is, if the two

players play several games in a row), both players’ always defecting will lead to a

much lower total payoff than the players would get if they cooperated. How can

reciprocal cooperation be induced? This question takes on special significance

when the notions of cooperating and defecting correspond to actions in, say, a

real-world arms race (e.g., reducing or increasing one’s arsenal).

Robert Axelrod (1984) of the University of Michigan has studied the

Prisoner’s Dilemma and related games extensively. His interest in determining

what makes for a good strategy led him to organize two Prisoner’s Dilemma

tournaments. He solicited strategies from researchers in a number of disciplines.

Each participant submitted a computer program that implemented a particular

11

Figure 2.1: The payoff matrix for the Prisoner’s Dilemma

strategy, and the various programs played iterated games with each other. During

each game, each program remembered what move (i.e., cooperate or defect) both

it and its opponent had made in each of the three previous games that they had

played with each other, and its strategy was based on this memory. The programs

were paired in a round-robin tournament in which each played with all the other

programs over a number of games. The first tournament consisted of 14 different

programs; the second consisted of 63 programs (including one that made random

moves). Some of the strategies submitted were rather complicated, using

techniques such as Markov processes and Bayesian inference to model the other

players in order to determine the best move. However, in both tournaments the

winner (the strategy with the highest average score) was the simplest of the

submitted strategies: TIT FOR TAT. This strategy, submitted by Anatol Rapoport,

cooperates in the first game and then, in subsequent games, does whatever the

other player did in its move in the previous game with TIT FOR TAT. That is, it

offers cooperation and reciprocates it. But if the other player defects, TIT FOR TAT

punishes that defection with a defection of its own, and continues the punishment

until the other player begins cooperating again. After the two tournaments,

12

Axelrod (1984) decided to see if a GA could evolve strategies to play this game

successfully. The first issue was figuring out how to encode a strategy as a string.

Here is how Axelrod’s encoding worked. Suppose the memory of each player is

one previous game. There are four possibilities for the previous game; CC (case

1), CD (case 2), DC (case 3), and DD (case 4). C denotes ”cooperate” and D denotes

”defect”. Case 1 is when both players cooperated in the previous game, case 2 is

when player A cooperated and player B defected, and so on. A strategy is simply a

rule that specifies an action in each of these cases. For example, TIT FOR TAT as

played by player A is as follows:

• If CC (case 1), then C.

• If CD (case 2), then D. • If DC (case 3), then C.

• If DD (case 4), then D.

If the cases are ordered in this canonical way, this strategy can be expressed

compactly as the string CDCD. To use the string as a strategy, the player records

the moves made in the previous game (e.g., CD), finds the case number i by looking

up that case in a table of ordered cases like that given above (for CD, i = 2), and

selects the letter in the ith position of the string as its move in the next game (for

i = 2, the move is D).

Axelrod’s tournaments involved strategies that remembered three previous

games.

There are 64 possibilities for the previous three games:

• CC CC CC (case 1),

• CC CC CD (case 2),

• CC CC DC (case 3),

•

13

• DD DD DC (case 63),

• DD DD DD (case 64).

Thus, a strategy can be encoded by a 64-letter string. Since using the strategy

requires the results of the three previous games, Axelrod actually used a 70-letter

string, where the six extra letters encoded three hypothetical previous games

used by the strategy to decide how to move in the first actual game. Since each

locus in the string has two possible alleles (C and D), the number of possible

strategies is 270. The search space is thus far too big to be searched exhaustively.

In Axelrod’s first experiment, the GA had a population of 20 such strategies. The

fitness of a strategy in the population was determined as follows: Axelrod had

found that eight of the human-generated strategies from the second tournament

were representative of the entire set of strategies, in the sense that a given

strategy’s score playing with these eight was a good predictor of the strategy’s

score playing with all 63 entries. This set of eight strategies (which did not include

TIT FOR TAT) served as the ”environment” for the evolving strategies in the

population. Each individual in the population played iterated games with each of

the eight fixed strategies, and the individual’s fitness was taken to be its average

score over all the games it played. Axelrod performed 40 different runs of 50

generations each, using different random-number seeds for each run. Most of the

strategies that evolved were similar to TIT FOR TAT in that they reciprocated

cooperation and punished defection (although not necessarily only on the basis

of the immediately preceding move). However, the GA often found strategies that

scored substantially higher than TIT FOR TAT. This is a striking result, especially

in view of the fact that in a given run the GA is testing only 20 * 50 = 1000

individuals out of a huge search space of 270 possible individuals.

It would be wrong to conclude that the GA discovered strategies that are ”better”

than any human-designed strategy. The performance of a strategy depends very

much on its environment-that is, on the strategies with which it is playing. Here

the environment was fixed-it consisted of eight human-designed strategies that

14

did not change over the course of a run. The resulting fitness function is an

example of a static (unchanging) fitness landscape. The highest-scoring strategies

produced by the GA were designed to exploit specific weaknesses of several of the

eight fixed strategies. It is not necessarily true that these high-scoring strategies

would also score well in a different environment. TIT FOR TAT is a generalist,

whereas the highest-scoring evolved strategies were more specialized to the given

environment.

Axelrod concluded that the GA is good at doing what evolution often does:

developing highly specialized adaptations to specific characteristics of the

environment. To see the effects of a changing (as opposed to fixed) environment,

Axelrod carried out another experiment in which the fitness of an individual was

determined by allowing the individuals in the population to play with one another

rather than with the fixed set of eight strategies. Now the environment changed

from generation to generation because the opponents themselves were evolving.

At every generation, each individual played iterated games with each of the 19

other members of the population and with itself, and its fitness was again taken

to be its average score over all games. Here the fitness landscape was not static-it

was a function of the particular individuals present in the population, and it

changed as the population changed. In this second set of experiments, Axelrod

observed that the GA initially evolved uncooperative strategies. In the first few

generations strategies that tended to cooperate did not find reciprocation among

their fellow population members and thus tended to die out, but after about 10-

20 generations the trend started to reverse: the GA discovered strategies that

reciprocated cooperation and that punished defection (i.e., variants of TIT FOR

TAT). These strategies did well with one another and were not completely

defeated by less cooperative strategies, as were the initial cooperative strategies.

Because the reciprocators scored above average, they spread in the population;

this resulted in increasing cooperation and thus increasing fitness. Axelrod’s

experiments illustrate how one might use a GA both to evolve solutions to an

15

interesting problem and to model evolution and coevolution in an idealized way.

One can think of many additional possible experiments, such as running the GA

with the probability of crossover set to 0-that is, using only the selection and

mutation operators (Axelrod and Kaufmann, 1987) or allowing a more open-

ended kind of evolution in which the amount of memory available to a given

strategy is allowed to increase or decrease (Lindgren, 1992; Melanie, 1999).

Noland (1996) analyzed the signal timing based on travel time costs of both

pedestrians and vehicles at isolated intersections with high pedestrian demand.

From an economic perspective, he claimed that pedestrians should be favored

when high ratio of pedestrians to automobiles by decreasing automobile green

phase length and increasing pedestrian green phase or by alternative strategies

such as reducing major road width and closing selected streets to vehicular traffic

at certain peak hours. However, Noland didn’t show difference of optimized signal

timing between models considering pedestrian and vehicle delay and those

considering vehicle delay.

Ishaque (2005) analyzed effect of signal cycle timing on both vehicle and

pedestrian delay in a hypothesized network by a VISSIM microsimulation model.

Aiming at minimizing the multimodal travel delay and travel costs, they found that

optimal cycle lengths under light traffic conditions, 60 to 72 seconds, were shorter

than optimal cycle lengths under heavy traffic conditions (90 seconds). However,

they only discussed eight fixed-time noncoordinated signal plans with single or

double exclusive pedestrian phases. In addition, pedestrian compliance effect was

not considered in the research. Based on their research in 2005, Ishaque (2007)

studied trade-offs between pedestrian and vehicle traffic in the same hypothetical

network by a VISSIM microsimulation model. Aiming at optimizing average travel

cost per person in all modes of the network, they found that shorter cycle lengths

were beneficial for pedestrians, and that signal plans advantageous to vehicles

might be disadvantageous to pedestrians. Based on different proportions of

pedestrians to vehicle users and different pedestrian time values, suitability of

16

three different pedestrian phase types was analyzed, so that the optimal network

performance could be achieved for all road users. Compared with their previous

research, pedestrian compliance effect was considered in the research, and the

variety of signal plans was improved. However, the variety was still limited to a

two-phase vehicle signal plans with single exclusive, or double exclusive, or

staggered pedestrian crossing phase(s).

In 1998, Virkler completed four research projects about pedestrian traffic

control;pedestrian travel time estimationVirkler (1998b), pedestrian signal

coordination benefitsVirkler (1998d), pedestrian compliance effectVirkler

(1998a), and pedestrian crossing timingVirkler (1998c):

• By referring to test vehicle technique for travel time, Virkler developed a

method for pedestrian travel time, which could be viewed as a combination

of average-car and floating-car techniques. The pedestrian travel time

included walking time based on average pedestrian flow rate and queuing

delay in signalized or unsignalized intersections based on random arrivals.

However, his method ignored signal coordination effect. Therefore, it might

overestimate or underestimate signal delay experienced by platoon pedes-

trians.

• Virkler studied signal coordination benefits for pedestrians through field

data from 10 intersection approaches. He found that ideal offsets with a

given cycle length tended to be shorter for longer green time.

• According to Virkler’s research, 69 percent of pedestrians arriving at the

curb during the flashing Don’t Walk phase would enter the crosswalk. Thus,

compared with complete signal compliance, delay would reduce 22 percent

based on random arrivals.

• Virkler analyzed various methods developed to determine appropriate

pedestrian crossing timing at signalized intersections. Based on field data,

17

relationships to describe pedestrian flow at signalized crossings were

developed, and certain improvements of signal timing parameters were

recommended under high-volume conditions and with two-way flow within

a crosswalk.

A deterministic model (Bhattacharya, 2005) was proposed that incorporated both

pedestrian and vehicle delay in a signal coordination plan. The author(s) analyzed

the running results of the model on a hypothesized five-intersection arterial with

various offsets and found that the best offsets for vehicles and pedestrians along

the arterial were not necessarily the same. In order to minimize total pedestrian

and vehicle user cost, an optimal signal coordination plan could be achieved by

balancing between pedestrian and vehicular delay.

Li (2009) developed a traffic signal optimization strategy, programmed in Matlab,

for an individual intersection to minimize weighted total vehicle and pedestrian

delay. The total vehicle and pedestrian delay on sidewalk were calculated based

on their deterministic queuing model respectively. Total pedestrian delay on

crosswalk was calculated based on an empirical pedestrian speed model, which

considered interactions between pedestrian platoons. According to a case study

at a Japanese Intersection, the proposed model improved average person delay by

10% without changing existing cycle lengths, and the further improvement could

reach 44% with additional cycle length optimization.

As discussed in Artificial Intelligence in Transportation (TRB, 2007), since the

Genetic Algorithm (GA) was developed maturely in ’90 s, it has been employed to

solve lots of complex transportation problems. Among all of them, traffic signal

optimization is one of most popular areas where GA has been applied.

Foy and Goldberg. (1992) used GAs to optimize cycle lengths, green splits, and

phase sequences in a four-intersection network by minimizing the total average

wait time per car. Green splits were expressed by the percentage of cycle lengths,

while phase sequences determined whether north-south or east-west direction

18

green signal displayed first at each intersection, but neither turning movements

nor turning phases were considered in their research. According to test runs, the

traffic GA always converged to reasonable timing strategies.

Park and Urbanik (1999) employed a GA optimizer with a mesoscopic simulator

to optimize cycle length, green split, offset, and phase sequence of a hypothesized

arterial system with low, medium, and high demand volume levels. The GA

optimizer generated the first generation of individual signal plans randomly. The

mesoscopic traffic simulator (an intermediate product of macroscopic and

microscopic simulation with queue blocking effect modeling) evaluated average

delay of each signal plan. Then the GA optimizer would evolve the next generation

based on fitness values obtained from the simulator. The circulation process

continued until the maximum generation number was reached. Compared with

the solutions by TRANSYT-7F on the basis of a CORSIM simulation program, the

solutions by GA had lower average delay under low and high demands and

equivalent delay under medium demand.

In order to optimize signal control on mixed traffic arterials, Duerr (2000) used a

GA with a microscopic traffic simulator as the fitness evaluator to minimize the

performance index (PI) which considered vehicle behavior at intersections and

transit stops. The optimization results of a seven-node arterial in WA˜ 14rzburg

(Germany), temporal deviation of each phase duration from the standard setting

at each node, showed that travel time dropped 25% and 5% for buses and cars

respectively. Furthermore, so as to optimize signal control under oversaturated

traffic condition, Girianna and Benekohal (2002, 2004) applied a GA to a grid

network of arterials. The optimization results of a hypothesized twenty-node

network, green time of each phase at an intersection, showed that queues were

successfully distributed spatially over different intersections and temporarily

over different signal cycles.

19

Genetic Algorithms is one of the most suitable methods to solve problems with

complex objective functions, large number of variables, and mixed solution space.

Therefore, in this thesis, it is chosen to realize signal timing optimization for both

pedestrians and vehicles.

The first known attempt to apply fuzzy logic in traffic control was made by Pappis

and Mamdani (1977). They simulated an isolated signalized intersection

composed of two one-way streets with two lanes in each direction without

turning traffic. The fuzzy controller reduced average vehicle delay compared to an

actuated controller.

Kok Khiang Tan and Yusof (1996) describe a fuzzy logic controller for a single

junction that mimics human intelligence. They used two sensors for each lane.

The first sensor behind each traffic light counts the number of cars passing the

traffic lights, and the second sensor behind the first sensor counts the number of

cars coming to the intersection at distance from the lights. The fuzzy logic

controller determines the time that the traffic light should stay in a certain state,

before switching to the next state. The order of states is predetermined, but the

controller can skip a state if there is no traffic in a certain direction. The amount

of arriving and waiting vehicles are quantized into fuzzy variables, like many,

medium and none. The activation of the variables in a certain situation is given by

a membership function, so when there are 5 cars in the queue, this might result in

an activation of 25% of ’many’ and 75% of ’medium’. In their experiments, the

fuzzy logic controller showed to be more flexible than fixed controllers and

vehicle actuated controllers, allowing traffic to flow more smoothly, and reducing

waiting time.

Foy and Goldberg. (1992) documents the use of genetic algorithm to optimize

timing plans. The application object is an octothorpe-shaped traffic network with

four intersections. Every intersection can run a two-phase plan. This method uses

nine decision variables including the total green time of all phases, phase orders

and splits. These nine decision variables are coded with 24 bits. The objective

20

function is the reciprocal of the total waiting time. A simulation model is used to

evaluate the optimizing method. Results show that genetic algorithm is indeed a

parallel optimizing method compared with traditional search methods. Zhiyong

et al. propose an improved immunity genetic algorithms for an urban area

coordinated traffic control system. The system adopts a two-level hierarchical

distributed construction, with parameters that are hierarchically optimized at an

interval of 5-30 minutes. In each interval, the cycles and offsets are optimized in

the central controller while the splits are optimized in intersection controller. For

a given performance index, such as minimizing the mean vehicle delay or number

of stops etc., an improved immunity GA is used to optimize the cycle, offsets and

splits. To ensure that the proposed method is plausible, simulations were

conducted with positive results.

In a mutation operation of genetic algorithm has a logistic chaotic mapping

applied upon and then a chaotic mutation is implemented, thus building a chaotic

genetic algorithm. From this population, 5% of the individuals are selected

randomly to search according to chaotic dynamic searching process. The results

of this search replace the previous individuals who were part of this population.

It shows that the new algorithm converges more quickly and avoids local

optimization and premature convergence when simulated in CORSIM (CORridor

SIMulation).

Andrea Vogel, Christian Goerick and Werner von Seelen, of the Institute of

Neuroinformatik, Ruhr-University of Bochum, Germany, used Evolution

Algorithm (a variance of Genetic Algorithm) to optimize traffic signal operation

(Andrea Vogel and von Seelen, 2000).

In their work they investigated the Structure, Parameters, Boundary conditions

and the Optimization process. Finding an adequate structure means to decide

which traffic movements should get the right-of-way simultaneously, i.e. building

phases, and to put them into a sequence. They also try to determine how far the

signal operation should adapt to short term changes in the traffic situation. A high

21

amount of pedestrians for instance can introduce the necessity of an extra phase

in which the complete motorized traffic is stopped and the intersection is

reserved for walking. Similar situations can emerge from public transportation

that takes priority over the rest of traffic, or, in case of railway traffic, new conflicts

can be caused that enforce a regularization differing from the above mentioned

standard solutions. The team did not restrict themselves to a given set of phase

operations. Other restrictions, as from driving physics and law can be

implemented as boundary conditions. Traffic Dependence: The search space gets

additional dimensions by taking into account the possibility of traffic responsive

signal operation. Furthermore this decision has consequences that surpass

optimization: A well-adapted traffic responsive signal operation can certainly

enhance the degree of service, but the need of traffic supervision and complex

control software increases the costs of the signal installation.

In the framework of signal operation, optimizing parameters means to choose a

timing plan adequate to the traffic situation. The dimension of the search space

for parameter optimization, i.e. the number of parameters to optimize is

determined by the chosen structure. The minimum is one green time per phase to

determine. Further parameters occur in case of traffic actuated signalization: The

green time adaption due to time gaps between vehicles for example needs a

maximum green time and a traffic density threshold as condition when to switch

to the next phase. Their approach is not restricted to the above mentioned

parameters and can cope with qualitatively different parameter sets as well.

Classical boundary conditions are facts that are, if not explicitly stated, invisible

to the optimization process. Typical boundary conditions for signal operations are

restrictions by law, e.g. a minimum green time per phase or a maximum cycle

length. Other boundary conditions can be given by the vehicle’s physics: For a

given speed, the time gap between two cars has a minimum value determined by

reaction time and deceleration time. These structure or parameter restrictions

are rather obvious and can easily be implemented as part of the operators. Less

22

obvious are those boundary conditions that are part of the fitness function, such

as the actual traffic density. In order to gain results of the most possible

significance, it can be very useful to clearly identify those hidden boundary

conditions. In many cases, an adaptation to changing boundary conditions can be

done extraordinarily fast HA˜ 14sken and Vogel (2000).

Since the design and optimization of signal operations involves combinatorial as

well as continuous-valued problems, Andrea et al, decided to use evolutionary

algorithms. These techniques have proven to be powerful tools for optimization

of both parameters and structure and are known to efficiently search higher-

dimensional data spaces. Evolutionary algorithms are able to handle

nonanalytical fitness functions (such as simulation models). They can be forced

to a global search or a hill climbing behaviour towards the nearest (possibly local)

optimum. The idea of evolutionary algorithms is to describe a number of solutions

as a population. Each individual of this population represents a solution, i.e. a

phase system with its parameters. Each individual has its own quality, its fitness.

The fittest individuals will become parents and reproduce: they create offsprings,

the next generation of individuals. The reproduction is superimposed by

mutations, i.e. a systematic error. So each offspring differs from its parent. Since

the fittest survives and generates similar but not identical children, the search

converges towards a global optimum. Structure evolution and parameter

adaption are processes which extract information from the environment in an

iterative process: In every time step (generation) the algorithm proposes a

quantity of solutions. These solutions are tested in the environment, i.e. in this

case the intersection traffic model. In terms of evolutionary algorithms, the

solutions quality is called fitness; the environment is described by the fitness

function. Structure evolution and parameter adaptation proceed on different time

scales. Parameter adaptation is a fast process adapting a given structure fast to

the environment and boundary conditions. Fast parameter adaptation means

23

flexibility and thus the ability to adapt quickly to changing conditions. Structure

evolution provides the basis for parameter adaptation. It takes place on a long

time scale. Which structure is stated as good depends strongly on the

optimization’s aim. Adaptability in mind, we require a structure on which the

given parameter adaptation is fast and therefore yields in good fitness values for

different boundary conditions. An alternative approach could be a specialized

structure that gives the maximum fitness for a single condition. In this case,

changing boundary conditions, such as fluctuating traffic densities, enforce a new

structure evolution. The problem was adequately encoded. Structure and

parameters have to be represented in such a way that they are accessible for the

optimization algorithm. The design of such a representation or encoding is an

important task, because it determines the properties of the whole search process.

The operators for the search in structure and parameter space were choses.

Evolutionary algorithms enhance the population’s average fitness step by step by

creating new individuals in the neighbourhood of the last generation and

selecting the fittest of them as next generation. The operators for creating these

new individuals determine the way through the solution space and therefore

determine which solutions can be found and how fast they are reached. Since in

this case a time consuming simulation run has to be done for each individual (i.e.

for each proposed solution) the interest is in a very fast search. An adequate

fitness function was developed.

The optimization process consisted of several parts. First is to distinguish

between a system that generates a signal operation. This contains the

evolutionary algorithm with the structure and parameter encoding, the search

operators and the coupling of parameter adaptation and structure evolution.

Second is to distinguish between a system that tests the proposed signal

operation. This contains the environment model that yields the fitness function.

Since we want to be able to use different traffic models as well as different

generating algorithms, we demand a modular structure for the optimization

24

process. Thus our process gets a third, passive element: the intersection container.

The optimization process gets the following structure:

• To remain as independent of special models as possible, we implement a

container for the intersection data. This allows an easy changing of the

fitness function as well as the optimizing procedure.

• The search algorithm extracts intersection data such as traffic densities,

former signal operations and their quality from the intersection container.

Based on this information it generates new signal operations and writes

them back into the container.

• The traffic model extracts intersection data (including a new signal

operation) from the intersection container. Based on this information it

evaluates the solution’s quality and writes it back into the container.

An intersection container was used to guarantee the independence of the

optimization and evaluation. It contains the fixed conditions under which traffic

in this intersection takes place: The number of lanes per direction, maximum

traffic densities, information about the installed traffic lights etc. Additionally, the

actual traffic situation, which has a main influence on the optimization task, is

filed in the intersection container.

Andrea et al decided to implement it as a group of vectors of fixed size. Each vector

element is assigned to one traffic movement: The first three elements (0 to 2)

represent traffic coming from north and turning left, straight on or right.

Elements 3 to 5 describe traffic from west, 6 to 8 cars from south, and elements 9

to 11 the ones coming from east. Three vectors contain the information about the

number of lanes per direction (including 0), the actual and maximum traffic

density. Possible extensions are e.g. a traffic density array instead of the vector to

encode more than one traffic situation or model specific parameters.

25

The team decided to encode structure and parameters directly. This was done in

the following way. The first chromosomes contain the phase operation. Each

phase is represented by a single chromosome. The phase chromosomes have the

same size as the container vectors. If a direction is part of the phase, the

corresponding allel (i.e. the vector element) is marked with a 1, otherwise is set

to zero. The number of phases is variable. The minimum is 2, the maximum

corresponds to the number of directions, when each movement has its own phase.

To speed up search, the number of phases can be restricted. The next chromosome

contains the order of phases. The green time chromosome contains one allel per

phase. Chromosomes contain information for traffic responsive signal operation,

detector parameters for example. The experiments are based on a model

intersection with four arms. Each arm contains three lines: one line for turn-left

movements, one for straight on traffic and one for turn-right-movements. The

main road traffic density is twice as high as on the crossing road. To obtain

significant conflicts between straight-on and turn-left traffic we choose an

asymmetric arrangement of the traffic density per movement: while the main

direction from east and south is straight on, from west and north it is turn left. For

a first demonstration of the feasibility of our approach, the team restricted their

first experiments on nontraffic responsive intersections.

In the first experiments, the efficiency of different parameter adaptation

strategies was tested. A (1 + 1) - strategie was implemented, also known as

hillclimbing algorithm. This means that the population consists of one single

parent producing one single offspring. Selection takes place among these two

individuals. The hillclimber is known to be the most efficient parameter

adaptation algorithm in evolutionary optimization (Rechenberg, 1994)

Comparisons with other population sizes and mutation schemes confirm these

results.

A binomial distribution with zero expectation was used as a mutation operator.

The experiment was carried different variances and different initializations, i.e.

26

starting points for the parameter adaptation. Other experiments dealt with

different evaluation schemes. Since the fitness function was noisy, it was useful to

evaluate the parent’s fitness each time it competes with a new offspring. As fitness

function, the event based simulation model SIMVAS++, the simulation system of

the Technische Universita¨t Dresden, Fakulta¨t fA˜ 14r Verkehrswissenschaften

(Ringel, 1995) was used. Immanent to this model (as well as to reality) is a certain

fluctuation of the simulation results. Therefore the noise in the adaptation

process had to be dealth with.

The influence of initialization, adaptation step size and the fitness function’s

inherent fluctuations on the adaptation process and result were tested.

A first result is that the gain of using expert knowledge for initialization is

minimal: Started from small random values, the algorithm reaches a good

parameter set very fast. In cases of high traffic densities, traditional heuristic

green time estimation methods overestimate the cycle length significantly and

lead to bad fitness values. The small random initialization may even be worse at

the beginning. But since the decay towards the optimum for growing cycle lengths

is much steeper than for shrinking cycle lengths, particular at the start of the

adaptation, the hillclimber is significantly faster. Furthermore, the results are less

varying: while from five heuristically initialized runs only one reached a

reasonable fitness, the randomly initialized runs nearly all ended up in the same

minimum.

An adequate mutation step size problem was chosen. In the literature about

evolutionary algorithms there exists a wide range of methods to deal with this

task automatically. In these methods, step sizes become part of the optimization

process. All these methods are oversized for this task. We compared two

nonadaptive strategies (small and large step size) with a simple simulated

annealing, where the step size is systematically reduced during the adaptation

process. In some experiments we could observe a small speed gain for simulated

27

annealing versus large step sizes. Small step sizes can result in a slow adaptation

when starting far from the optimum. The step size does not seem to be a critical

parameter.

The fitness function is inherently noisy, i.e. several evaluations with the same

parameter set lead to slightly different results. These fluctuations stem from the

random number generator of SIMVAS++. The qualitative results are the same with

and without multiple fitness evaluations. Compared over generations, the fitness

development with noise is nearly the same as without noise. When we compare

the run time, taking the noise into account becomes a drawback. Instead of one

fitness evaluation (i.e. one simulation run) per generation, two are needed and

thus the double run time of the parameter adaptation. Parameter adaptation is a

task that can be easily solved with evolutionary methods. To optimize the

parameter set for a given structure, it might prove useful to use simulated

annealing to reduce the mutation step size during the adaptation. All the proposed

methods lead to similar results: differences in the fitness values are more often

caused by the fluctuations of the fitness function than by ending up with different

parameter sets.

Combined with structure evolution, the aim of parameter adaptation is not to find

the optimal parameter set for each structure. As described in Keesing and Stokes

(1991), a too exhaustive parameter adaptation reduces the performance of the

complete optimization process. Thus it is uncritical wether we coose a constant

parameter step size or simulated annealing or whatever clever strategy. Besides

the mixture of parameter and structure steps, good structure mutation operators

are crucial for structure optimization. While a rarely changed structure benefits

from the so far reached parameter adaptation, a structure that is changed too

much in a single mutation loses all these benefits. Other points to keep in mind in

structure optimization are the population sizes and the selection scheme. The

evaluation of the structure optimization is subject of current work. Our first

results show a positive tendency.

28

Starting from randomly selected four phase operation, the algorithm reduces

either conflicts between traffic movements or reduces the number of phases.

The adaption of signal operation systems to special intersections and traffic

situations is a high dimensional optimization problem that consists of

combinatorial as well as continuous valued problems.A homogeneous approach

to such problems are evolutionary algorithms. In this paper we presented a

decomposition of the optimization process for using different signal operation

systems and traffic models as well as a variety of optimization tools. Since the

problem encoding and the optimization operators determine mainly the

optimization results, they have to be choosen very carefully.

In their first experiments, their approach shows very promising results. The

parameter optimization process seems to be rather robust against different

operators and initialization and reliably finds good solutions. Structure

optimization tends to reduce complexity in reducing the number of phases.

29

Chapter 3

Methodology

3.1 Overview of Genetic Algorithm

Every organism has a set of rules, a blueprint, describing how that organism is

built up from the tiny building blocks of life. These rules are encoded in the genes

of an organism, which in turn are connected together into long strings called

chromosomes. Each gene represents a specific trait of the organism, like eye

colour or hair colour, and has several different settings. For example, the settings

for a hair colour gene may be blonde, black or auburn. These genes and their

settings are usually referred to as an organism’s genotype. The physical

expression of the genotype - the organism itself - is called the phenotype.

When two organisms mate they share their genes. The resultant offspring may

end up having half the genes from one parent and half from the other. This process

is called recombination. Very occasionally a gene may be mutated. Normally this

mutated gene will not affect the development of the phenotype but very

occasionally it will be expressed in the organism as a completely new trait. Genetic

Algorithms are a way of solving problems by mimicking the same processes

mother nature uses. They use the same combination of selection, recombination

and mutation to evolve a solution to a problem (Ai-Junkie, 2015).

Genetic Algorithm (GA) was developed by John Holland in 1975. It is a method for

solving both constrained and unconstrained optimization problems that is based

on natural selection. Natural selection is the process that drives biological

evolution. The GA repeatedly modifies a population of individual solutions. At

each step, the genetic algorithm selects individuals at random from the current

population to be parents and uses them to produce the children for the next

generation. Over successive generations, the population ”evolves” toward an

30

optimal solution. The strong tend to adapt and survive while the weak tend to die

out. That is, optimization is based on evolution, and the ”Survival of the fittest”

concept. GAs have the ability to create an initial population of feasible solutions,

and then recombine them in a way to guide their search to only the most

promising areas of the state space. Each feasible solution is encoded as a

chromosome (string) also called a genotype, and each chromosome is given a

measure of fitness via a fitness (evaluation or objective) function.

Genetic algorithm maybe applied to solve a variety of optimization problems that

are not well suited for standard optimization algorithms, including problems in

which the objective function is discontinuous, non-differentiable, stochastic, or

highly non-linear. The genetic algorithm can address problems of mixed integer

programming, where some components are restricted to be integer-valued.

GA is a robust search technique. It will produce ”close” to optimal results in a

”reasonable” amount of time. It is suitable for parallel processing. GAs are blind

without the fitness function.

GA can be used when an acceptable solution representation is available, when a

good fitness function is available, when it is feasible to evaluate each potential

solution, when a near-optimal, but not optimal solution is acceptable, and when

the state-space is too large for other methods.

3.2 Genetic Algorithm Concept

GA process goes through Initialization, Fitness Evaluation, Selection,

Recombination (Crossover), Mutation. The process is repeated till a stopping

criteria is attained.

3.2.1 Initial Population

Before GA can be used to solve a problem, some preliminary considerations must

be made. How the feasible solution will be represented must be determined. This

31

could be done by a choice of alphabet or number that permits a natural expression

of the problem. The length of the alphabet or number must be determined.

Some factors that could influence the initial population are the search space, the

fitness function, the diversity, the problem difficulty, the selection pressure, and

the number of individuals (population size). The population size will remain

constant throughout the algorithm. It has been recognized that if the initial

population to the GA is good, then the algorithm has a better possibility of finding

a good solution. If the initial supply of building blocks is not large enough or good

enough, then it would be difficult for the algorithm to find a good solution.

Sometimes, if the problem is quite difficult and some information regarding the

possible solution is available, then it is good to seed the GA with that information.

Objective Function to be used in the algorithm need to be determined. An

objective function is an equation to be optimized given certain constraints and

with variables that need to be minimized or maximized.

A measure of diversity plays a role here in the sense that, when we have no

information regarding a possible solution, then we could expect, that the more

diverse the initial population is, the greater the possibility to find a solution is,

and of course, the number of individuals in the population to get a good degree of

diversity becomes important.

Diversity could be good in terms of performance of the algorithm and diversity

has been used not only to generate the initial population but also as a way to guide

the algorithm to avoid premature convergence.

The selection pressure should be taken into account in the initial population size.

If a selection pressure SP1 is greater than a selection pressure SP2, then, when

using selection pressure SP1 the population size should be larger than when using

selection pressure SP2, because a higher selection pressure can cause a decrease

in diversity of the population at a greater rate, perhaps causing the algorithm to

converge prematurely.

32

The fitness function can be taken into account, in the sense that it could be better

to generate the initial population in a pseudo-random way than letting it go only

with randomness or that there could be a degree of correlation between diversity

and the fitness function. Besides that, the fitness evaluation of the initial

population can be used as a metric of diversity, looking, for example, at the initial

standard deviation of fitness values and evaluating the dispersion of such values.

Population Representations

Chromosomes can be represented as:

• Bit Strings (1011 ... 0100)

• Reals (19.3, 45.1, -12.9, ... 6.2)

• Integers (1,4,2,7,5,9,3,6,8) Usually Permutations of 1..n

• Characters (A, G, Q, ... F) Usually Permutations

• List of rules (R1, R2, ... R20)

• Chromosomes are all of the same type (Bit Strings)

• Chromosomes are all the same length

• The population size remains constant from generation to generation

3.2.2 Encoding

Before you can use a genetic algorithm to solve a problem, a way must be found to

encode any potential solution to the problem. This could be as a string of real

numbers or, as is more typically the case, a binary bit string(chromosome). A

typical chromosome may look like this:

1001010111010100101001110110111011111101

33

Chromosome

1

1 1 0 1 0 1 1 1 0 0 1 0

Chromosome

2

0 1 1 0 1 0 0 1 1 1 0 1

Table 3.1: Binary Encoding

Chromosome

1

0 6 2 5 4 5 2 4

Chromosome

2

6 3 7 2 6 4 2 5

Table 3.2: Octal Encoding

At the beginning of a run of a genetic algorithm a large population of random

chromosomes is created. Each one, when decoded will represent a different

solution to the problem at hand.

Binary Encoding

This is the most common form of encoding. In this encoding each chromosome is

represented using a binary string. In binary encoding every chromosome is a

string of bits, 0 or 1. Figure 3.1 shows an example of binary encoding.

In this encoding each bit show some characteristic of solution. On the other side

each binary string represents a value. With smaller number of alleles, a number

of chromosomes can be represented.

Octal Encoding

In this encoding chromosome is represented using octal numbers (0-7). Figure

3.2 shows the Octal encoding.

Hexadecimal Encoding

In this encoding chromosome is represented using Hexadecimal numbers (0-9, A-

F).Figure 3.3 shows the hexadecimal encoding.

Chromosome

1

9 7 A E 0

34

Chromosome

2

A 2 C 6

Table 3.3: Hexadecimal Encoding

Chromosome

1

1 5 2 3 5 2 6 4 6 9 8

Chromosome

2

8 6 3 6 3 9 6 3 1 5 8

Table 3.4: Permutation Encoding

Chromosome

1

1.23 2.12 3.14 0.34 4.62

Chromosome

2

ABDJEIFJDHDDLDFLFEGT

Table 3.5: Value Encoding

Permutation Encoding

Permutation Encoding is used in ordering problems. In this, each chromosome

represents position in a sequence e.g. in travelling salesman problem, the string

of numbers represent the sequence of cities visited by salesman. Sometimes

corrections have to be done after genetic operation is completed. Figure 3.4 shows

the Permutation encoding.Permutation encoding is only useful for problems that

have specific order. Some types of crossover and mutation corrections must be

made to leave the chromosome consistent (i.e.,have real sequence in it) for such

kind of problems.

Value Encoding

In value encoding, each chromosome is represented as the string of some value.

Value can be integer, real number, character or some object. In case of Integer

values, the crossover operator applied are same as that applied on binary

encoding. Values can be anything connected to problem, form numbers, real

numbers or chars to some complicated objects. The Figure 3.5 shows the Value

encoding. Value Encoding can be used in neural networks. This encoding is

35

generally use in finding weights for neural network. Chromosome’s value

represents corresponding weights for inputs.

Figure 3.1: Tree Encoding

Tree Encoding

Tree encoding is mainly used for evolving programs or expressions for genetic

programming. In tree encoding every chromosome is a tree of some objects, such

as functions or commands in programming language. Tree encoding is good for

evolving programs. LISP is useful in this encoding as it helps in constructing tree

for parsing and hence the crossover and mutation can be performed easily.

Chromosomes are functions represented in a tree as in The Figure 3.1.

3.2.3 Parent Selection Scheme

Roulette Wheel Selection

Parents are selected according to their fitness. It does not guarantee that the

fittest member goes through to the next generation merely that it has a very good

36

chance of doing so. The better the chromosomes are, the more chances to be

selected they have. Imagine that the population’s total fitness score is represented

by a pie chart, or roulette wheel. Now you assign a slice of the wheel to each

member of the population. The size of the slice is proportional to that

chromosomes fitness score. i.e. the fitter a member is the bigger the slice of pie it

gets. Now, to choose a chromosome all you have to do is spin the ball and grab the

chromosome at the point it stops.

Rank Selection

The Roulette Wheel selection will have problems when the fitnesses differs very

much. For example, if the best chromosome fitness is 90% of all the roulette wheel

then the other chromosomes will have very few chances to be selected.

Rank selection first ranks the population and then every chromosome

receives fitness from this ranking. The worst will have fitness 1, second worst 2

etc. and the best will have fitness N (number of chromosomes in population).

Steady-State Selection

This is not particular method of selecting parents. Main idea of this selection is

that big part of chromosomes should survive to next generation.

GA then works in a following way. In every generation are selected a few (good

- with high fitness) chromosomes for creating a new offspring. Then some (bad -

with low fitness) chromosomes are removed and the new offspring is placed in

their place. The rest of population survives to new generation.

Elitism

When creating new population by crossover and mutation, we have a big chance,

that we will loose the best chromosome.

37

Elitism method copies the best chromosome (or a few best

chromosomes) to new population. The rest is done in classical way. Elitism can

very rapidly

Figure 3.2: Roulette Wheel Selection

increase performance of GA, because it prevents losing the best found solution.

3.2.4 Crossover or Recombination

Crossover rules combine two parents to form children for the next generation.

Crossover is a genetic operator used to vary the programming of a chromosome

or chromosomes from one generation to the next. It is analogous to reproduction

and biological crossover, upon which genetic algorithms are based. Cross over is

a process of taking more than one parent solutions and producing a child solution

from them.

The chance that two chromosomes will swap their bits is crossover rate. A good

value for this is around 0.7. Crossover is performed by selecting a random gene

along the length of the chromosomes and swapping all the genes after that point.

e.g. Given two chromosomes

10001001110010010

38

01010001001000011

Choose a random bit along the length, say at position 9, and swap all the bits after

that point, so the above become:

10001001101000011

Figure 3.3: One Point Crossover

Figure 3.4: Two Point Crossover

01010001010010010

One-point crossover

A single crossover point on both parents’ organism strings is selected. All data

beyond that point in either organism string is swapped between the two parent

organisms. The resulting organisms are the children:

Two-point crossover

Two-point crossover calls for two points to be selected on the parent organism

strings. Everything between the two points is swapped between the parent

organisms, rendering two child organisms:

39

”Cut and splice”

Another crossover variant, the ”cut and splice” approach, results in a change in

length of the children strings. The reason for this difference is that each parent

string has a separate choice of crossover point.

Figure 3.5: Cut and Splice Crossover

k-point Crossover

The concept of one-point crossover can be extended to k-point crossover, where k

crossover points are used, rather than just one or two (Kumara Sastry and

Kendall, 2005).

Uniform Crossover

In uniform crossover, every allele is exchanged between the a pair of randomly

selected chromosomes with a certain probability, pe, known as the swapping

probability. Usually the swapping probability value is taken to be 0.5 (Syswerda,

1989; Spears and De Jong, 1994; Kumara Sastry and Kendall, 2005).

Uniform Order-Based Crossover

The k-point and uniform crossover methods described above are not well suited

for search problems with permutation codes such as the ones used in the traveling

salesman problem. They often create offspring that represent invalid solutions for

the search problem. Therefore,when solving search problems with permutation

codes, a problem-specific repair mechanism is often required (and used) in

conjunction with the above recombination methods to always create valid

candidate solutions. Another alternative is to use recombination methods

40

developed specifically for permutation codes, which always generate valid

candidate solutions. Several such crossover techniques are described in the

following paragraphs starting with the uniform order-based crossover.

In uniform order-based crossover, two parents (say P1 and P2) are randomly

selected and a random binary template is generated. Some of the genes for

offspring C1 are filled by taking the genes from parent P1 where there is a one in

the template. At this point we have C1 partially filled, but it has some ”gaps”. The

genes of parent P1 in the positions corresponding to zeros in the template are

taken and sorted in the same order as they appear in parent P2. The sorted list is

used to fill the gaps in C1. Offspring C2 is created by using a similar process

(Kumara Sastry and Kendall, 2005).

Order-Based Crossover

The order-based crossover operator (Davis, 1985) is a variation of the uniform

order-based crossover in which two parents are randomly selected and two

random crossover sites are generated. The genes between the cut points are

copied to the children. Starting from the second crossover site copy the genes that

are not already present in the offspring from the alternative parent (the parent

other than the one whose genes are copied by the offspring in the initial phase) in

the order they appear (Kumara Sastry and Kendall, 2005)

Partially Matched Crossover (PMX)

Apart from always generating valid offspring, the PMX operator (Goldberg and

Lingle, 1985) also preserves orderings within the chromosome. In PMX, two

parents are randomly selected and two random crossover sites are generated.

Alleles within the two crossover sites of a parent are exchanged with the alleles

corresponding to those mapped by the other parent (Kumara Sastry and Kendall,

2005)

41

3.2.5 Mutation

Mutation rules apply random changes to individual parents to form children.

Mutation is a genetic operator used to maintain genetic diversity from one

generation of population of genetic algorithm chromosomes to the next. It is

analogous to bi-

Figure 3.6: Partially Matched Crossover

ological mutation. Mutation alters one or more gene values in a chromosome from

its initial state. The solution may change entirely from the previous solution. GA

can come to better solution by using mutation. Mutation occurs during evolution

according to a user-definable mutation probability. This probability should be set

low. If it is set too high, the search will turn into a primitive random search. The

classic example of a mutation operator involves a probability that an arbitrary bit

in a genetic sequence will be changed from its original state. A common method

of implementing the mutation operator involves generating a random variable for

each bit in a sequence. This random variable tells whether or not a particular bit

will be modified. This mutation procedure, based on the biological point

mutation, is called single point mutation. Other types are inversion and floating

point mutation. When the gene encoding is restrictive as in permutation

problems, mutations are swaps, inversions and scrambles.

42

The purpose of mutation in GAs is preserving and introducing diversity. Mutation

should allow the algorithm to avoid local minima by preventing the population of

chromosomes from becoming too similar to each other, thus slowing or even

stopping evolution. This reasoning also explains the fact that most GA systems

avoid only taking the fittest of the population in generating the next but rather a

random (or semi-random) selection with a weighting toward those that are fitter.

For different genome types, different mutation types are suitable.

The chance that a bit within a chromosome will be flipped is called mutation

rate.

• 0 becomes 1

• 1 becomes 0

This is usually a very low value for binary encoded genes, say 0.001

Whenever chromosomes are chosen from the population the algorithm first

checks to see if crossover should be applied and then the algorithm iterates down

the length of each chromosome mutating the bits if applicable.

Bit string mutation

The mutation of bit strings ensue through bit flips at random positions.

The probability of a mutation of a bit is, where is the length of the binary

vector. Thus, a mutation rate of per mutation and individual selected for mutation

is reached.

Flip Bit

This mutation operator takes the chosen genome and inverts the bits. (i.e. if the

genome bit is 1,it is changed to 0 and vice versa)

43

Boundary

This mutation operator replaces the genome with either lower or upper bound

randomly. This can be used for integer and float genes.

Non-Uniform

The probability that amount of mutation will go to 0 with the next generation is

increased by using non-uniform mutation operator. It keeps the population from

stagnating in the early stages of the evolution. It tunes solution in later stages of

evolution. This mutation operator can only be used for integer and float genes.

Uniform

This operator replaces the value of the chosen gene with a uniform random value

selected between the user-specified upper and lower bounds for that gene. This

mutation operator can only be used for integer and float genes.

Gaussian

This operator adds a unit Gaussian distributed random value to the chosen gene.

If it falls outside of the user-specified lower or upper bounds for that gene, the

new gene value is clipped. This mutation operator can only be used for integer

and float genes.

44

Chapter 4

Analysis

The purpose of this work is to assess the potential of applying GA to solve a real

world problem. The real world problem under consideration in this work is a four

way traffic intersection. The purpose is to find a schedule for optimal drive order

of traffic entering and leaving the intersection. The time duration of the traffic

lights is supposed to be fixed.

4.1 Model Formulation

The following are the assumptions used in this work:

• The intersection under study is adjacent(That is, the intersection is a ‘plus’

junction)

• Vehicles may not cross into other lanes when traversing the intersection

until they are a safe distance away from the intersection.

• No overtaking allowed within the intersection

• There are no islands in the road to aid pedestrian crossing

• Traffic will be grouped into streams and will traverse the intersection in

four phases (four compatible streams).

• Traffic going from east to west and west to east is twice heavier than traffic

going from north to south and from south to north.

• Only Traffic going from east to west and west to east are allowed to make

‘U’ turns

• A traffic cycle is made of four phases of traffic movements

45

• A phase may have no traffic stream traversing the intersection

• A phase may have upto six streams traversing the intersection

4.1.1 Description of the intersection

The intersection has six lanes; three lanes carrying traffic streams from east to

west and another three lanes carrying traffic from west to east. There is also a

lane carrying traffic from north to south, and another lane carrying traffic from

south to north. The intersection has been simplified to have fourteen streams of

traffic movement. Each stream has its own lane and an independent vehicle

queue. We suppose overtaking is not allowed, which indicates that that vehicles

on each lane need to pass the intersection on fist-in first-out way. The path used

by a traffic stream to traverse the intersection is called the trajectory. A trajectory

connects an approach on which vehicles enter the intersection to the leg on which

these vehicles leave the intersection. Each stream has its own trajectory. The

objective of the traffic control at the intersection is to transform input traffic flows

into output ones while preventing traffic conflicts and satisfying a specific

criterion. This work is based on making a traffic cycle of four phases. Each phase

carries streams of traffic which are compatible. Compatible streams are streams

whose trajectories do not cross.

4.1.2 Steps involved in the algorithm

This algorithm consists of five steps:

• chromosome encoding,

• initialize population,

• evaluate population,

• chromosome selection and

46

Vector Traffic Stream

1 Traffic moving from North to West

2 Traffic moving from North to South

3 Traffic moving from North to East

4 Traffic moving from West to North

5 Traffic moving from West to East

6 Traffic moving from West to South

7 Traffic moving from South to West

8 Traffic moving from South to North

9 Traffic moving from South to East

10 Traffic moving from East to South

11 Traffic moving from East to West

12 Traffic moving from East to North

13 Traffic making U-turn from West

14 Traffic making U-turn from East

Table 4.1: Vectors are assigned to each traffic stream based on its direction

• crossover.

4.1.3 Chromosome Encoding

Vectors (1 to 14) are assigned to traffic movement streams. This is to give identity

to each stream and to make encoding of traffic cycles less difficult. The vectors are

assigned as shown in Table 4.1

4.1.4 Initialize Population

We used Permutation Encoding in this work as the problem under study is an

ordering problem. Each chromosome contains twenty four genes. The genes are

the vectors assigned to the traffic streams based on how they traverse the

intersection. There are fourteen streams and that gives fourteen vectors. The rest

of ten genes in the chromosome are zeros which act as place holders. Each vector

represents a traffic stream. The order of the vectors in the chromosome

47

represents the sequence of movement. Permutation encoding is only useful for

problems that have specific order.

Samples of chromosomes used in this study are presented in Table 4.2

Figure 4.1: Vectors assigned to traffic streams

48

A 5 0 0 14 10 1 13 2 8 11 0 3 0 0 0 0 12 0 9 7 4 0 0 6
B 11 0 10 0 6 14 1 0 2 3 7 0 0 0 13 4 0 12 9 0 5 8 0 0
C 14 0 0 4 11 6 12 0 7 2 5 0 0 0 3 13 0 0 0 9 10 1 8 0

Table 4.2: Samples of chromosomes encoding

Figure 4.2: A sketch of La Paz Intersection

49

Chromosome No. Chromosome

Chromosome 1 11 7 0 0 1 0 8 6 3 2 0 9 5 0 0 13 4 14 12 10 0 0 0 0

Chromosome 2 0 7 2 0 13 0 3 6 4 1 0 8 12 11 0 14 0 5 9 10 0 0 0 0

Chromosome 3 11 0 0 14 12 7 0 9 0 5 6 13 10 0 3 0 0 4 0 0 2 0 8 1

Chromosome 4 3 2 0 10 7 1 4 0 0 12 5 0 0 0 0 0 13 8 11 14 0 9 6 0

Chromosome 5 14 5 0 4 1 0 10 0 0 2 3 7 12 0 8 0 9 0 11 0 0 13 6 0

Chromosome 6 0 1 3 0 7 4 9 6 11 0 12 0 0 0 14 0 8 5 0 2 0 0 10 13

Chromosome 7 0 0 0 9 11 14 7 0 0 5 13 6 0 0 10 12 0 3 0 8 0 2 4 1

Chromosome 8 9 8 5 0 6 13 1 3 0 10 0 0 0 11 0 7 12 2 0 4 14 0 0 0

Chromosome 9 0 2 13 0 12 10 11 3 14 9 5 0 0 0 4 7 0 0 0 1 8 6 0 0

Chromosome 10 0 4 13 0 7 14 3 5 0 8 10 2 9 0 6 11 0 0 0 0 0 0 1 12

Chromosome 11 6 0 1 12 11 0 0 3 0 5 0 10 4 7 14 2 8 9 0 0 0 0 0 13

Chromosome 12 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0

Chromosome 13 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11

Chromosome 14 0 8 0 12 7 0 0 0 5 0 4 13 0 0 1 9 0 6 14 10 11 0 3 2

Chromosome 15 0 9 2 0 0 11 1 5 12 7 0 0 3 0 0 13 4 6 0 0 10 14 8 0

Chromosome 16 0 0 0 0 11 0 10 7 9 0 0 0 14 0 13 2 4 8 0 3 12 5 6 1

Chromosome 17 0 7 12 0 0 1 8 3 11 6 0 0 2 0 10 0 4 9 0 0 5 14 13 0

Chromosome 18 0 4 0 11 10 0 0 14 12 0 0 2 1 7 9 6 0 8 13 0 3 0 0 5

Chromosome 19 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5

Chromosome 20 0 7 0 6 10 4 0 2 12 14 1 0 3 8 0 13 0 0 11 9 0 0 0 5

Chromosome 21 0 0 11 6 13 5 0 0 0 0 8 7 12 2 0 10 0 3 4 1 9 0 14 0

Chromosome 22 10 11 1 0 5 0 8 3 0 0 0 7 12 0 13 0 9 4 2 6 0 14 0 0

Chromosome 23 0 0 11 9 1 4 5 14 0 0 0 7 12 0 3 0 2 0 6 10 13 8 0 0

Chromosome 24 0 13 6 1 0 11 14 2 0 0 10 0 9 12 3 8 0 4 0 7 0 0 0 5

Chromosome 25 7 14 0 0 12 0 0 3 2 1 13 0 8 0 6 10 0 0 11 5 0 0 4 9

Chromosome 26 14 3 0 10 0 9 5 12 0 1 11 2 8 6 4 0 0 0 7 0 13 0 0 0

Chromosome 27 0 0 9 0 1 0 14 0 0 8 2 4 0 13 12 6 10 7 0 11 5 0 0 3

Chromosome 28 7 0 5 0 0 1 0 9 0 4 3 11 10 0 13 12 0 2 14 0 6 0 0 8

Chromosome 29 0 6 0 2 0 4 12 5 13 0 0 10 7 3 0 0 14 0 1 0 8 0 9 11

Chromosome 30 0 4 7 0 9 10 0 11 0 6 12 3 13 0 2 0 8 0 0 14 0 0 1 5

Chromosome 31 0 6 0 9 0 13 3 7 14 0 5 0 11 12 0 0 10 0 2 8 1 0 0 4

Chromosome 32 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7

Chromosome 33 0 6 0 11 0 1 3 0 13 0 10 0 9 5 14 4 7 12 2 0 0 0 8 0

Chromosome 34 11 0 0 0 0 0 14 3 6 2 1 5 7 4 12 0 0 13 8 0 10 0 9 0

Chromosome 35 10 6 2 11 13 1 14 0 12 8 5 0 9 0 0 0 4 0 0 0 0 7 0 3

Chromosome 36 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11

Chromosome 37 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7

Chromosome 38 13 11 0 14 9 0 10 0 7 5 0 6 2 0 4 3 0 0 0 12 8 0 0 1

Chromosome 39 0 1 12 3 10 0 6 8 7 0 11 0 13 0 9 0 2 14 0 4 0 0 0 5

Chromosome 40 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5

Chromosome 41 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8

Chromosome 42 12 9 6 5 0 0 1 4 0 0 14 0 10 8 13 2 3 11 7 0 0 0 0 0

Chromosome 43 0 0 10 12 0 1 0 0 2 14 4 13 7 6 0 0 5 8 0 9 0 0 3 11

50

Chromosome 44 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0

Chromosome 45 0 10 6 12 5 0 0 14 2 8 4 11 0 1 0 0 7 0 0 9 0 0 3 13

Chromosome 46 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8

Chromosome 47 0 3 11 2 0 0 13 14 0 4 9 8 1 7 0 0 10 0 5 12 6 0 0 0

Chromosome 48 0 5 8 7 0 0 12 10 0 13 4 14 0 0 2 0 0 0 3 11 1 0 9 6

Chromosome 49 0 0 1 14 0 0 12 6 4 7 0 5 11 9 0 2 3 0 13 10 0 0 0 8

Chromosome 50 5 12 1 0 14 0 0 0 0 0 3 9 8 10 13 2 4 6 7 0 0 11 0 0

Table 4.3: Initial Population

Part

1

5 0 0 14 10 1

Part

2

13 2 8 11 0 3

Part

3

0 0 0 0 12 0

Part

4

9 7 4 0 0 6

Table 4.4: Chromosomes divided into four parts showing four phases traffic
movement

Fifty chromosomes are randomly generated to set the initial population

to fifty (50). Kindly refer to Table 5.6

4.1.5 Evaluate Population

Evaluation provides a way to rate how each chromosome (candidate solution)

solves the problem at hand. The steps involved in this evaluation are:

• Breaking each chromosome into four equal parts.

– The first six genes makes part one (1)

– the seventh to twelve genes makes part two (2),

– the thirteenth gene to the eighteenth makes part three (3) and – the

nineteenth to the twenty forth gene makes part four (4).

Division of Chromosomes into parts can be found in Table 4.4

– Each part of the chromosome forms a phase movement.

51

∗ Part 1 is phase 1,

∗ part 2 is phase 2,

∗ part 3 and

∗ part 4 makes phase 4.

These four parts makes one traffic cycle.

Part

1

5 0 0 14 10 1

Table 4.5: Interpretation of chromosome division - part 1

Part

2

13 2 8 11 0 3

Table 4.6: Interpretation of chromosome division - part 2

 4.1.6 Interpretation of Chromosomes

– Streams 5, stream 14, stream 10 and stream 1 will be given right of way

to traverse the intersection concurrently in phase 1. Table 4.5

– Streams 13, stream 2, stream 8, stream 11 and stream 3 will be given

right of way to traverse the intersection concurrently in phase 2. Table

4.6

– Streams 12 will be given right of way to traverse the intersection in

phase 3. Table 4.7

– Streams 9, stream 7, stream 4 and stream 6 will be given right of way

to traverse the intersection concurrently in phase 4. Table 4.8

– Formation of unique pairs.

– The vectors (genes) are first sorted in ascending order. This is also a

Mutation being applied to each chromosome. This Mutation is called

Re-order list mutation. Table 4.9

52

• Unique pairs are formed from each part. Table 4.10

Part

3

0 0 0 0 12 0

Table 4.7: Interpretation of chromosome division - part 3

Part

4

9 7 4 0 0 6

Table 4.8: Interpretation of chromosome division - part 4

Part

1

0 0 1 5 10 14

Part

2

0 2 3 8 11 13

Part

3

0 0 0 0 0 12

Part

4

0 0 4 6 7 9

Table 4.9: Re-ordering of genes in sample

4.1.7 Fitness Function

Fitness of each individual is calculated over the four chromosomes. Each phase

movement may have a number of conflicts. That is where one or more streams in

a phase interfere with each other. Where there is interference, a penalty of one (1)

is assigned to the phase. These are summed over the four phases. The higher the

penalty accrued, the less fit the individual. The fitness function for this work will
be:

 6 6 6 6

X X X X
 (4.1)

 Fn = C1 + C2 + C3 + C4
1 1 1 1

n−1 n

Ck = XX(Xak,Xbk); a = 1,
 a b b = a + 1, k = 1 to 4

n = 6 (maximum number of traffic streams assigned to a phase)

(4.2)

 where Xa,k,Xb,k = Knot

(4.3)

53

 1 where Xa,k,Xb,k 6= Knot

Part

1
(0,0) (0,1) (0,5) (0,10) (0,14) (0,1) (0,5) (0,10) (0,14) (1,5) (1,10) (1,14) (5,10) (5,14) (10,14)

Part

2
(0,2) (0,3) (0,8) (0,11) (0,13) (2,3) (2,8) (2,11) (2,13) (3,8) (3,11) (3,13) (8,11) (8,13) (11,13)

Part

3
(0,0) (0,0) (0,0) (0,0) (0,12) (0,0) (0,0) (0,0) (0,12) (0,0) (0,0) (0,12) (0,0) (0,12) (0,12)

Part

4
(0,0) (0,4) (0,6) (0,7) (0,9) (0,4) (0,6) (0,7) (0,9) (4,6) (4,7) (4,9) (6,7) (6,9) (7,9)

Table 4.10: Unique pairs in sample

4.1.8 Investigating if trajectories cross path

From Equation 4.1

n−1 n

Ck = XX(Xak,Xbk); a = 1, b = a + 1, k = 1 to 4, n = 6 (4.4) a b

When k = 1, n = 6

 5 6

C1 = XX(X1,a,X1,b)
 1 2

C1 = X1,1,X1,2+X1,1,X1,3+X1,1,X1,4+X1,1,X1,5+X1,1,X1,6+X1,2,X1,3+X1,2,X1,4+

X1,2,X1,5+X1,2,X1,6+X1,3,X1,4+X1,3,X1,5+X1,3,X1,6+X1,4,X1,5+X1,4,X1,6+X1,5,X1,6

(4.5)

When k = 2, n = 6

 5 6

C2 = XX(X2,a,X2,b)
 1 2

C2 = X2,1,X2,2+X2,1,X2,3+X2,1,X2,4+X2,1,X2,5+X2,1,X2,6+X2,2,X2,3+X2,2,X2,4+

X2,2,X2,5+X2,2,X2,6+X2,3,X2,4+X2,3,X2,5+X2,3,X2,6+X2,4,X2,5+X2,4,X2,6+X2,5,X2,6

54

(4.6)

When k = 3, n = 6

 5 6

C3 = XX(X3,a,X3,b)
 1 2

C3 = X3,1,X3,2+X3,1,X3,3+X3,1,X3,4+X3,1,X3,5+X3,1,X3,6+X3,2,X3,3+X3,2,X3,4+

X3,2,X3,5+X3,2,X3,6+X3,3,X3,4+X3,3,X3,5+X3,3,X3,6+X3,4,X3,5+X3,4,X3,6+X3,5,X3,6

(4.7)

When k = 4, n = 6

 5 6

C4 = XX(X4,a,X4,b)
 1 2

C3 = X4,1,X4,2+X4,1,X4,3+X4,1,X4,4+X4,1,X4,5+X4,1,X4,6+X4,2,X4,3+X4,2,X4,4+

X4,2,X4,5+X4,2,X4,6+X4,3,X4,4+X4,3,X4,5+X4,3,X4,6+X4,4,X4,5+X4,4,X4,6+X4,5,X4,6

(4.8)

The knots (conflicts) identified at the intersection under study are in

Table 4.11

A (2,11) traffic stream 2 and stream 11 meet at A

B (3,11) traffic stream 3 and stream 11 meet at B

C (2,7) traffic stream 2 and stream 7 meet at C

D (3,4) traffic stream 3 and stream 4 meet at D

E (4,11) traffic stream 4 and stream 11 meet at E

F (8,11) traffic stream 8 and stream 11 meet at F

G (8,10) traffic stream 8 and stream 10 meet at G

H (3,10) traffic stream 3 and stream 10 meet at H

I (4,7) traffic stream 4 and stream 7 meet at I

J (2,4) traffic stream 2 and stream 4 meet at J

K (2,5) traffic stream 2 and stream 5 meet at K

55

L (7,10) traffic stream 7 and stream 10 meet at L

M (5,10) traffic stream 5 and stream 10 meet at M

N (5,7) traffic stream 5 and stream 7 meet at N

O (3,5) traffic stream 3 and stream 5 meet at O

P (5,8) traffic stream 5 and stream 8 meet at P

Q (3,8) traffic stream 3 and stream 8 meet at Q

R (5,14) traffic stream 5 and stream 14 meet at R

S (11,13) traffic stream 11 and stream 13 meet at S

T (7,11) traffic stream 7 and stream 11 meet at T

Table 4.11: Knots: Points of traffic conflict

Suppose

 Knot A == X4,1,X4,2

 Knot B == X4,5,X4,6

 Knot C == X3,4,X3,6,

 A penalty of two (2) will be placed on C4.

 Pairs Xa,k,Xb,k are compared to the knots A to T.

Equivalence of stream pairs to any knot text attracts a

 penalty of one (1). The penalties are summed to

 determine the fitness of the chromosome. (4.9)

Total conflict (fitness) in the chromosome 1 is the sum of conflicts or

 Pairs 0,1 0,5 0,10 0,14 0,14 0,1 0,14 0,5 1,5 1,10 0,0 1,14 5,10 5,14 10,14 TOTAL

Knots

2,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56

2,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

5,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

11,13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 FITNESS 2

Table 4.12: Testing for Fitness in Chromosome 1

interferences in all its four parts.

 6 6 6 6

Fn = XC1 + XC2 + XC3 + XC4

 1 1 1 1

F1 = 2 + 7 + 0 + 1 = 10

(4.10)

The process is repeated for fifty (50) randomly generated chromosomes

57

(traffic movement sequences).

4.1.9 Testing for interference in Chromosome 1

Finding the fitness for Chromosome 1 is outlined in Table 4.12

4.1.10 Testing for interference in Chromosome 2

Finding the fitness for Chromosome 2 is outlined in Table 4.13

 Pairs 0,2 0,3 0,8 0,11 0,13 2,3 2,8 2,11 2,13 3,8 3,11 3,13 8,11 8,13 11,13 TOTAL

Knots

2,11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

3,11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8,11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

3,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

7,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

5,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

5,14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

11,13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

58

FITNESS 7
Table 4.13: Testing for Fitness in Chromosome 2

 Pairs 0,0 0,0 0,0 0,0 0,12 0,0 0,0 0,0 0,12 0,0 0,0 0,12 0,0 0,12 0,12 TOTAL

Knots

2,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11,13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 FITNESS 0

Table 4.14: Testing for Fitness in Chromosome 3

59

 Pairs 0,0 0,4 0,6 0,7 0,9 0,4 0,6 0,7 0,9 4,6 4,7 4,9 6,7 6,9 7,9 TOTAL

Knots

2,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4,7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5,14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11,13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FITNESS 1
Table 4.15: Testing for Fitness in Chromosome 4

4.1.11 Testing for interference in Chromosome 3

Finding the fitness for Chromosome 3 is outlined in Table 4.14

4.1.12 Testing for interference in Chromosome 4

60

Finding the fitness for Chromosome 4 is outlined in Table 4.15

4.1.13 Test Results

Points of conflicts identified in the intersection are named knots. About twenty

(20) knots were identified. The knots are grouped into three depending on the

intensity of damage to lives and property should there be collision. This can be

found in Appendix B.

• A penalty of one is given for level 1 conflicts. This level of conflict can be

tolerated as there will be little or no damage during collision.

• A penalty of two is given for level 2 conflicts. This level of conflict is not

tolerated but do not cause severe damage

• A penalty of there is given for level 3 conflicts. This level of conflict must be

avoided completely.

The fitness of each chromosome over three generations is recorded in the

Table 4.16

4.1.14 Selection

Thirty Chromosomes with the best fitness are selected for recombination (cross

over).

4.1.15 Cross Over

Uniform Like Crossover (ULX) was used in this work. This crossover operator was

proposed by ?. It works as follows. First, all items assigned to the same position in

both parents are copied to this position in the child. Second, the unassigned

positions of a permutation are scanned from left to right: for the unassigned

61

position, an item is chosen randomly, uniformly from those in the parents if they

are not yet included in the child. Third, remaining items are assigned at random.

The thirty (30) selected chromosomes are recombined (cross over) using

ULX to produce fifteen (15) new offsprings. The fifteen (15) offsprings are added

to the parents to make forty five chromosomes. An addition of five (5)

chromosomes are generated at random and added to make the new generation

population

fifty (50).

Table 4.17 to Table 4.26 shows recombinations of twenty chromosomes

to form ten offsprings.

The Algorithm is run over three generations. The Chromosomes that have

the least conflict are considered as as a potential order to sequence traffic phases

at the intersection. In this trial run, the minimum conflict is 2.

Conflict First Generation Second Generation Third Generation
KnotM1 2 0 4
KnotM2 0 7 2
KnotM3 0 2 2
KnotM4 4 0 3
KnotM5 4 6 8
KnotM6 11 10 8
KnotM7 11 6 7
KnotM8 11 6 9
KnotM9 9 11 9

KnotM10 10 7 6
KnotM11 9 8 9
KnotM12 6 4 12
KnotM13 8 8 8
KnotM14 10 8 9
KnotM15 10 10 7
KnotM16 6 7 7
KnotM17 9 9 8
KnotM18 4 14 9
KnotM19 8 8 9
KnotM20 11 9 6
KnotM21 11 1 9
KnotM22 6 7 7
KnotM23 7 9 8
KnotM24 9 6 10
KnotM25 6 7 9
KnotM26 8 9 10
KnotM27 11 11 6
KnotM28 10 8 10

62

KnotM29 8 4 9
KnotM30 11 9 11
KnotM31 6 11 9
KnotM32 7 7 7
KnotM33 8 9 8
KnotM34 6 6 10
KnotM35 8 7 9
KnotM36 11 9 10
KnotM37 10 11 6
KnotM38 2 8 10
KnotM39 8 4 9
KnotM40 11 9 11
KnotM41 8 7 4
KnotM42 15 8 9
KnotM43 10 6 7
KnotM44 5 5 4
KnotM45 6 9 12
KnotM46 15 9 8
KnotM47 8 6 7
KnotM48 10 9 7
KnotM49 9 9 10
KnotM50 5 17 7

Min (Best Fitness) 0 0 2
Max (Worst Fitness) 15 17 12

Table 4.16: Testing fitness of Chromosomes across three generations

Parent1 7 14 0 0 12 0 0 3 2 1 13 0 8 0 6 10 0 0 11 5 0 0 4 9

Parent2 0 6 0 11 0 1 3 0 13 0 10 0 9 5 14 4 7 12 2 0 0 0 8 0

Offspring1 7 0 0 0 5 3 0 8 0 6 13 0 10 12 0 11 14 4 2 9 0 0 0 1

Table 4.17: Parent 1 and Parent 2 crossed over to produce offspring 1 using

Uniformlike Crossover (ULX)

Parent3 0 0 11 6 13 5 0 0 0 0 8 7 12 2 0 10 0 3 4 1 9 0 14 0

Parent4 0 0 8 0 0 5 13 0 2 4 9 3 0 0 0 14 1 7 10 0 12 11 0 6

Offspring2 0 0 0 0 10 5 1 0 4 0 13 0 0 2 0 12 7 0 6 11 3 14 8 9

Table 4.18: Parent 3 and Parent 4 crossed over to produce offspring 2 using
Uniformlike Crossover (ULX)

Parent5 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11

Parent6 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7

Offspring3 13 11 0 14 9 0 10 0 7 5 0 6 2 0 4 3 0 0 0 12 8 0 0 1

Table 4.19: Parent 5 and Parent 6 crossed over to produce offspring 3 using

Uniformlike Crossover (ULX)

Parent7 0 1 12 3 10 0 6 8 7 0 11 0 13 0 9 0 2 14 0 4 0 0 0 5

Parent8 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5

Offspring4 0 4 0 11 10 0 0 14 12 0 0 2 1 7 9 6 0 8 13 0 3 0 0 5

63

Table 4.20: Parent 7 and Parent 8 crossed over to produce offspring 4 using

Uniformlike Crossover (ULX)

Parent9 3 0 10 8 1 9 5 4 11 0 0 12 13 0 0 7 0 0 0 0 6 2 14 0

Parent10 0 13 0 8 5 11 14 3 0 7 0 0 0 0 9 4 2 0 0 0 6 1 12 10

Offspring5 1 5 14 8 0 12 0 2 7 0 0 13 0 0 9 0 4 0 0 0 6 3 10 11

Table 4.21: Parent 9 and Parent 10 crossed over to produce offspring 5 using
Uniformlike Crossover (ULX)

Parent11 0 13 6 1 0 11 14 2 0 0 10 0 9 12 3 8 0 4 0 7 0 0 0 5

Parent12 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8

Offspring6 12 9 6 5 0 0 1 4 0 0 14 0 10 8 13 2 3 11 7 0 0 0 0 0

Table 4.22: Parent 11 and Parent 12 crossed over to produce offspring 6 using

Uniformlike Crossover (ULX)

Parent13 0 0 10 12 0 1 0 0 2 14 4 13 7 6 0 0 5 8 0 9 0 0 3 11

Parent14 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0

Offspring7 0 10 6 12 5 0 0 14 2 8 4 11 0 1 0 0 7 0 0 9 0 0 3 13

Table 4.23: Parent 13 and Parent 14 crossed over to produce offspring 7 using
Uniformlike Crossover (ULX)

Parent15 14 3 0 10 0 9 5 12 0 1 11 2 8 6 4 0 0 0 7 0 13 0 0 0

Parent16 0 4 7 0 9 10 0 11 0 6 12 3 13 0 2 0 8 0 0 14 0 0 1 5

Offspring8 0 3 11 2 0 0 13 14 0 4 9 8 1 7 0 0 10 0 5 12 6 0 0 0

Table 4.24: Parent 15 and Parent 16 crossed over to produce offspring 8 using
Uniformlike Crossover (ULX)

Parent17 0 12 14 5 0 4 13 3 10 9 0 0 6 8 0 0 2 0 7 0 0 11 1 0

Parent18 0 9 0 5 0 0 0 0 13 0 1 10 11 2 12 4 8 14 7 0 6 3 0 0

Offspring9 0 8 1 5 0 0 14 0 3 6 12 0 0 11 4 0 13 2 7 0 0 9 10 0

Table 4.25: Parent 17 and Parent 18 crossed over to produce offspring 9 using

Uniformlike Crossover (ULX)

64

Parent19 5 7 1 0 11 0 2 0 3 0 4 0 0 14 0 6 0 8 9 0 13 10 0 12

Parent20 10 11 1 0 5 0 8 3 0 0 0 7 12 0 13 0 9 4 2 6 0 14 0 0

Offspring10 5 12 1 0 14 0 0 0 0 0 3 9 8 10 13 2 4 6 7 0 0 11 0 0

Table 4.26: Parent 19 and Parent 20 crossed over to produce offspring 10 using

Uniformlike Crossover (ULX)

Chapter 5

Result, Conclusion and Recommendations

5.1 Results

The output of the program is evaluated for both computational efficiency and

accuracy. The Chromosomes that meet the minimum conflict will be used by the

traffic engineer for implementation. Where more than one sequence meets the

required criteria, the discretion of the traffic engineer will come to play on which

movement sequence will be implemented.

The program resulted in chromosomes 2 meeting the criteria or

minimum or best minimum conflict which is two (2).

5.1.1 Interpretation of Chromosome 2 result

In Phase1 (Table 5.2), there will be three traffic streams traversing the

intersection when the right of way is given.

They are:

• stream 11 traversing from east to west.

• stream 13 traversing from west to west (traffic making U turn from west)

• stream 14 traversing from east to east (traffic making U turn from east)

Chromosome

2

0 0 11 0 13 14 0 6 1 12 5 3 0 0 0 2 10 4 0 9 8 0 0 7

Phase 1 0 0 11 0 13 14

Phase2 0 6 1 12 5 3

65

Phase3 0 0 0 2 10 4

Phase4 0 9 8 0 0 7

Table 5.1: Least conflict result

Phase 1 0 0 11 0 13

14

Table 5.2: Phase 1 of test result

Figure 5.1: Test Result of Phase 1

Phase2 0 6 1 12 5 3

Table 5.3: Phase 2 of test result

66

Phase3 0 0 0 2 10 4

Table 5.4: Phase 3 of test result

Phase4 0 9 8 0 0 7

Table 5.5: Phase 4 of test result

In Phase2, there will be five traffic streams traversing the intersection

when the right of way is given.

They are:

• stream 6 traversing from west to south

• stream 1 traversing from north to west

• stream 12 traversing from east to north

• stream 5 traversing from west to east

• stream 3 traversing from north to south

In Phase3, there will be three traffic streams traversing the intersection

when the right of way is given.

They are:

• stream 2 traversing from north to south

• stream 10 traversing from east to south

• stream 4 traversing from west to north

There is a conflict between stream 2 and stream 4.

In Phase4, there will be three traffic streams traversing the intersection

when the right of way is given.

They are:

• stream 9 traversing from south to east

• stream 8 traversing from south to north

67

Figure 5.2: Test Result of Phase 2

68

Figure 5.3: Test Result of Phase 3

69

Figure 5.4: Test Result of Phase 4

• stream 7 traversing from south to west

5.2 Conclusion

The current traffic systems at the La Paz intersection performs well outside rush

hours, when traffic volumes are not much. However, at peak times, the systems

can no longer regulate the traffic and this results in chaos, long queues,

congestion, accidents, etc. At this stage the optimised traffic flow sequence

obtained in this study is the best answer.

70

5.3 Recommendations

There is room for more improvement on this work.

• A bigger population than should be considered in future works

• This work is purely mathematical and may not be helpful to those less

inclined mathematically. In future work, simulations could be added for

simplicity and further clarity.

• The program was tested over three generations. We propose the number of

generations should be increased to at least ten (10).

71

REFERENCES

Ai-Junkie (2015). Genetic algorithm in plain english. http://www.ai-

junkie.com/ga/intro/gat1.html, page 1.

Amegashie, M. (2012). Canage on george walker bush n1 high-

way. http://mawulolo.blogspot.com/2012/02/geroge-walker-bush-n1-

highwaycarnage.html.

Andrea Vogel, C. G. and von Seelen, W. (2000). Evolutionary algorithms for

optimizing traffic signal operation.

Axelrod, R. (1984). The evolution of cooperation. Basic Books.

Axelrod, R. and Dion, D. (1988). The further evolution of cooperation. Science,

242(4884):1385-1390.

Axelrod, R. and Kaufmann, M. (1987). The evolution of strategies in the iterated

prisoner’s dilemma.

Baricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial

methods. Methodos, 9:35–36, 143–182.

Baricelli, N. A. (1962). Numerical testing of evolution theories. ACTA Biotheoretica,

16:69–126.

Bhattacharya, P., V. M. R. (2005). Optimization for pedestrian and vehicular delay

in a signal network. in transportation research record 1939, trb, national

research council, washington, d.c. pages 115–122.

Bledsoe, W. W. (1961). The use of biological concepts in the analytical study of

systems. paper presented at orsa-tims national meeting, san francisco.

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial

productivity. Journal of the Royal Statistical Society, C6 No 2:81–101.

72

Bremermann, H. J. (1962). Optimization through evolution and recombination.

Davis, L. (1985). Applying algorithms to epistatic domains. In Proc. Int. Joint Conf.

on Artifical Intelligence, page 162-164.

Duerr, P. (2000). Dynamic right-of-way for transit vehicles: Integrated modeling

approach for optimizing signal control on mixed traffic arterials. In

Transportation Research Record: Journal of the Transportation Research Board,

No. 1731. TRB, National Research Council, Washington, D.C., pages 31–39.

Fogel, L. J., O. A. J. and Walsh, M. J. (1966). Artificial intelligence through simulated

evolution.

Foy, M., R. F. B. and Goldberg., D. E. (1992). Signal timing determination using

genetic algorithms. in transportation research record 1365, trb, national

research council, washington, d.c. pages 108–115.

Fraser, A. S. (1957a). Simulation of genetic systems by automatic digital

computers: I. introduction. Australian Journal of Biological Science, 10:484–491.

Fraser, A. S. (1957b). Simulation of genetic systems by automatic digital

computers: Ii. effects of linkage on rates of advance under selection. Australian

Journal of Biological Science, 10:492–499.

Friedman, G. J. (1959). Digital simulation of an evolutionary process. General

Systems Yearbook, 4:171–184.

Girianna, M. and Benekohal, R. F. (2002). Dynamic signal coordination for

networks with oversaturated intersections. In Transportation Research Record

1811, TRB, National Research Council, Washington, D.C.,, pages 122–130.

Girianna, M. and Benekohal, R. F. (2004). Using genetic algorithms to design signal

coordination for oversaturated networks. In Journal of ITS: Technology,

Planning, and Operations,, 8(2):117–129.

73

Goldberg, D. E. and Lingle, R. (1985). Alleles, loci, and the tsp. In Goldberg, D. E.,

Lingle, R., . A. l., and the TSP, in: Proc. 1st Int. Conf. on Genetic Algorithms, p. .,

editors, 1st Int. Conf. on Genetic Algorithms,, page 154-159.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press, Second edition: MIT Press, 1992.

HA˜ 14sken, M., C. G. and Vogel, A. (2000). Fast adaptation of the solution of

differential equations to changing constraints. In Proceedings of the Second

International ICSC Symposium on Neural Computation (NC’2000). ICSC Academic

Press.

Ishaque, M. M., N. R. (2007). Trade-offs between vehicular and pedestrian traffic

using micro-simulation methods. Transportation Policy 14, pages 124–138.

Ishaque, M. M., N. R. B. (2005). Multimodal microsimulation of vehicle and

pedestrian signal timings. in transportation research record 1939, trb, national

research council, washington, d.c. pages 107–114.

Keesing, R. and Stokes, D. G. (1991). Evolution and learning in neural networks:

The number and distribution of learning trails affect the rate of evolution. In

Neural Information Processing Systems, 3.

Kok Khiang Tan, M. K. and Yusof, R. (1996). Intelligent Traffic Lights Control by

Fuzzy Logic, volume 9 of Malaysian Journal of Computer Science.

Kumara Sastry, D. G. and Kendall, G. (2005). Search Methodologies.

Li, M., A. W. K. M. N. H. A. (2009). Traffic signal optimization strategy considering

both vehicular and pedestrian flows. presented at the 89th annual meeting of

the transportation research board, washington, d.c.

Lindgren, K. (1992). Evolutionary phenomena in simple dynamics. In C. G.

74

Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds., Artificial Life II.

Addison-Wesley.

Martin, F. G. and Cockerham, C. C. (1960). High speed selection studies. In O.

Kempthorne, ed., Biometrical Genetics. Pergamon.

Melanie, M. (1999). An Introduction to Genetic Algorithm. Massachusetts Institute

of Technology.

Noland, R. (1996). Pedestrian travel times and motor vehicle traffic signals.

Transportation Research Record: Journal of the Transportation Research Board.

(1553). Transportation Research Board of the National Academics. Washington.,

pages 28–33.

Pappis, C. P. and Mamdani, E. H. (Vol. SMC-7, No. 10, October 1977). A fuzzy logic

controller for a traffic junction. IEEE Transactions Systems, Man, and

Cybernetics, 7(10):707–717.

Park, B., J. M. and Urbanik, T. (1999). Traffic signal optimization program for

oversaturated conditions. in transportation research record 1683, trb, national

research council, washington, d.c. pages 133–142.

Rechenberg (1965). Evolutions Strategies.

Rechenberg (1973). Evolution Strategies.

Rechenberg, I. (1994). Evolutionsstrategie ’94. stuttgart: Friedrich frommann

holzboog verlag.

Reed, J., T. R. and Barricelli, N. A. (1967). Simulation of biological evolution and

machine learning. Journal of Theoretical Biology, 17:319–342.

Ringel, R. . (1995). Schaffung eines tools zur modellierung und simulation von

prozessen des strabenverkehrs. Master’s thesis, Technische Universitat

Dresden.

75

Schnabel, W. and Lohse, D. (1997). Grundlagen der strabenverkehrstechnik und

der verkehrsplanung. Verlag fA˜
41r das Bauwesen, 1.

Schwefel, H. (1975). Evolutionsstrategie und numerische Optimierung. PhD thesis,

Technische Universitat Berlin.

Schwefel, H. (1977). Numerische optimierung von computer - modellen mittels

der evolutionstrategie.

Spears, W. M. and De Jong, K. A. (1994). On the virtues of parameterized uniform

crossover,. In 4th Int. Conf. on Genetic Algorithms.

Syswerda, G. (1989). Uniform crossover in genetic algorithms, in: Proc. 3rd Int. Conf.

on Genetic Algorithms.

TRB (2007). Artificial intelligence in transportation (information for application).

artificial intelligence and advanced computing applications committee,

washington, d.c.

Virkler, M. R. (1998a). Pedestrian compliance effects on signal delay. In

Transportation Research Record 1636, TRB, National Research Council,

Washington, D.C.,, pages 88–91.

Virkler, M. R. (1998b). Prediction and measurement of travel time along

pedestrian routes. In Transportation Research Record 1636, TRB, National

Research Council, Washington, D.C.,, pages 37–42.

Virkler, M. R. (1998c). Scramble and crosswalk signal timing. In Transportation

Research Record 1636, TRB, National Research Council, Washington, D.C.,, pages

83–87.

Virkler, M. R. (1998d). Signal coordination benefits for pedestrians. In

Transportation Research Record 1636, TRB, National Research Council,

Washington, D.C.,, pages 77–82.

76

Appendix A

Chromosome No. Chromosome
Chromosome 1 11 7 0 0 1 0 8 6 3 2 0 9 5 0 0 13 4 14 12 10 0 0 0 0
Chromosome 2 0 7 2 0 13 0 3 6 4 1 0 8 12 11 0 14 0 5 9 10 0 0 0 0
Chromosome 3 11 0 0 14 12 7 0 9 0 5 6 13 10 0 3 0 0 4 0 0 2 0 8 1
Chromosome 4 3 2 0 10 7 1 4 0 0 12 5 0 0 0 0 0 13 8 11 14 0 9 6 0
Chromosome 5 14 5 0 4 1 0 10 0 0 2 3 7 12 0 8 0 9 0 11 0 0 13 6 0
Chromosome 6 0 1 3 0 7 4 9 6 11 0 12 0 0 0 14 0 8 5 0 2 0 0 10 13
Chromosome 7 0 0 0 9 11 14 7 0 0 5 13 6 0 0 10 12 0 3 0 8 0 2 4 1
Chromosome 8 9 8 5 0 6 13 1 3 0 10 0 0 0 11 0 7 12 2 0 4 14 0 0 0
Chromosome 9 0 2 13 0 12 10 11 3 14 9 5 0 0 0 4 7 0 0 0 1 8 6 0 0
Chromosome 10 0 4 13 0 7 14 3 5 0 8 10 2 9 0 6 11 0 0 0 0 0 0 1 12
Chromosome 11 6 0 1 12 11 0 0 3 0 5 0 10 4 7 14 2 8 9 0 0 0 0 0 13
Chromosome 12 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0
Chromosome 13 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11
Chromosome 14 0 8 0 12 7 0 0 0 5 0 4 13 0 0 1 9 0 6 14 10 11 0 3 2
Chromosome 15 0 9 2 0 0 11 1 5 12 7 0 0 3 0 0 13 4 6 0 0 10 14 8 0
Chromosome 16 0 0 0 0 11 0 10 7 9 0 0 0 14 0 13 2 4 8 0 3 12 5 6 1
Chromosome 17 0 7 12 0 0 1 8 3 11 6 0 0 2 0 10 0 4 9 0 0 5 14 13 0
Chromosome 18 0 4 0 11 10 0 0 14 12 0 0 2 1 7 9 6 0 8 13 0 3 0 0 5
Chromosome 19 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5
Chromosome 20 0 7 0 6 10 4 0 2 12 14 1 0 3 8 0 13 0 0 11 9 0 0 0 5
Chromosome 21 0 0 11 6 13 5 0 0 0 0 8 7 12 2 0 10 0 3 4 1 9 0 14 0
Chromosome 22 10 11 1 0 5 0 8 3 0 0 0 7 12 0 13 0 9 4 2 6 0 14 0 0
Chromosome 23 0 0 11 9 1 4 5 14 0 0 0 7 12 0 3 0 2 0 6 10 13 8 0 0
Chromosome 24 0 13 6 1 0 11 14 2 0 0 10 0 9 12 3 8 0 4 0 7 0 0 0 5
Chromosome 25 7 14 0 0 12 0 0 3 2 1 13 0 8 0 6 10 0 0 11 5 0 0 4 9
Chromosome 26 14 3 0 10 0 9 5 12 0 1 11 2 8 6 4 0 0 0 7 0 13 0 0 0
Chromosome 27 0 0 9 0 1 0 14 0 0 8 2 4 0 13 12 6 10 7 0 11 5 0 0 3
Chromosome 28 7 0 5 0 0 1 0 9 0 4 3 11 10 0 13 12 0 2 14 0 6 0 0 8
Chromosome 29 0 6 0 2 0 4 12 5 13 0 0 10 7 3 0 0 14 0 1 0 8 0 9 11
Chromosome 30 0 4 7 0 9 10 0 11 0 6 12 3 13 0 2 0 8 0 0 14 0 0 1 5
Chromosome 31 0 6 0 9 0 13 3 7 14 0 5 0 11 12 0 0 10 0 2 8 1 0 0 4
Chromosome 32 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7
Chromosome 33 0 6 0 11 0 1 3 0 13 0 10 0 9 5 14 4 7 12 2 0 0 0 8 0
Chromosome 34 11 0 0 0 0 0 14 3 6 2 1 5 7 4 12 0 0 13 8 0 10 0 9 0
Chromosome 35 10 6 2 11 13 1 14 0 12 8 5 0 9 0 0 0 4 0 0 0 0 7 0 3
Chromosome 36 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11
Chromosome 37 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7
Chromosome 38 13 11 0 14 9 0 10 0 7 5 0 6 2 0 4 3 0 0 0 12 8 0 0 1
Chromosome 39 0 1 12 3 10 0 6 8 7 0 11 0 13 0 9 0 2 14 0 4 0 0 0 5
Chromosome 40 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5
Chromosome 41 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8
Chromosome 42 12 9 6 5 0 0 1 4 0 0 14 0 10 8 13 2 3 11 7 0 0 0 0 0
Chromosome 43 0 0 10 12 0 1 0 0 2 14 4 13 7 6 0 0 5 8 0 9 0 0 3 11
Chromosome 44 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0
Chromosome 45 0 10 6 12 5 0 0 14 2 8 4 11 0 1 0 0 7 0 0 9 0 0 3 13

77

Chromosome 46 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8
Chromosome 47 0 3 11 2 0 0 13 14 0 4 9 8 1 7 0 0 10 0 5 12 6 0 0 0
Chromosome 48 0 5 8 7 0 0 12 10 0 13 4 14 0 0 2 0 0 0 3 11 1 0 9 6
Chromosome 49 0 0 1 14 0 0 12 6 4 7 0 5 11 9 0 2 3 0 13 10 0 0 0 8
Chromosome 50 5 12 1 0 14 0 0 0 0 0 3 9 8 10 13 2 4 6 7 0 0 11 0 0

Table 5.6: Initial Population

Appendix B

Knots: Provision was made for the introduction of other knots in the future. The

addition of (NaN, NaN) makes it easy for such replacements, say (4, 9).

Knots used in this work includes: 2,11, 3 11, 2 7, 4 11, 8 11, 8 10, 3 10, 4

7, 2 4, 2 5, 7 10, 5 10, 5 7, 3 5, 5 8, 3 8, 5 14, 11 13, 7 11, 3 4, 8 11, 2 5, 7 10, 4

7, 3 4, 3 10, 7 11, 5 14, 5 7, 5 10, 3 11, 2 11, 2 5, 8 11, 5 8, 4 11, 3 5, 8 10, 2 4, 5

14, 3 8, NaN NaN, NaN NaN, NaN NaN, NaN NaN, NaN NaN, NaN NaN, NaN

NaN, NaN NaN, NaN NaN,

78

Appendix C

Chromosome No. Chromosome
Chromosome 1 7 14 0 0 12 0 0 3 2 1 13 0 8 0 6 10 0 0 11 5 0 0 4 9
Chromosome 2 0 6 0 11 0 1 3 0 13 0 10 0 9 5 14 4 7 12 2 0 0 0 8 0
Chromosome 3 7 0 0 0 5 3 0 8 0 6 13 0 10 12 0 11 14 4 2 9 0 0 0 1
Chromosome 4 0 0 11 6 13 5 0 0 0 0 8 7 12 2 0 10 0 3 4 1 9 0 14 0
Chromosome 5 0 0 8 0 0 5 13 0 2 4 9 3 0 0 0 14 1 7 10 0 12 11 0 6
Chromosome 6 0 0 0 0 10 5 1 0 4 0 13 0 0 2 0 12 7 0 6 11 3 14 8 9
Chromosome 7 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11
Chromosome 8 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7
Chromosome 9 13 11 0 14 9 0 10 0 7 5 0 6 2 0 4 3 0 0 0 12 8 0 0 1
Chromosome 10 0 1 12 3 10 0 6 8 7 0 11 0 13 0 9 0 2 14 0 4 0 0 0 5
Chromosome 11 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5
Chromosome 12 0 4 0 11 10 0 0 14 12 0 0 2 1 7 9 6 0 8 13 0 3 0 0 5
Chromosome 13 3 0 10 8 1 9 5 4 11 0 0 12 13 0 0 7 0 0 0 0 6 2 14 0
Chromosome 14 0 13 0 8 5 11 14 3 0 7 0 0 0 0 9 4 2 0 0 0 6 1 12 10
Chromosome 15 1 5 14 8 0 12 0 2 7 0 0 13 0 0 9 0 4 0 0 0 6 3 10 11
Chromosome 16 0 13 6 1 0 11 14 2 0 0 10 0 9 12 3 8 0 4 0 7 0 0 0 5
Chromosome 17 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8
Chromosome 18 12 9 6 5 0 0 1 4 0 0 14 0 10 8 13 2 3 11 7 0 0 0 0 0
Chromosome 19 0 0 10 12 0 1 0 0 2 14 4 13 7 6 0 0 5 8 0 9 0 0 3 11
Chromosome 20 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0
Chromosome 21 0 10 6 12 5 0 0 14 2 8 4 11 0 1 0 0 7 0 0 9 0 0 3 13
Chromosome 22 14 3 0 10 0 9 5 12 0 1 11 2 8 6 4 0 0 0 7 0 13 0 0 0
Chromosome 23 0 4 7 0 9 10 0 11 0 6 12 3 13 0 2 0 8 0 0 14 0 0 1 5
Chromosome 24 0 3 11 2 0 0 13 14 0 4 9 8 1 7 0 0 10 0 5 12 6 0 0 0
Chromosome 25 0 12 14 5 0 4 13 3 10 9 0 0 6 8 0 0 2 0 7 0 0 11 1 0
Chromosome 26 0 9 0 5 0 0 0 0 13 0 1 10 11 2 12 4 8 14 7 0 6 3 0 0
Chromosome 27 0 8 1 5 0 0 14 0 3 6 12 0 0 11 4 0 13 2 7 0 0 9 10 0
Chromosome 28 5 7 1 0 11 0 2 0 3 0 4 0 0 14 0 6 0 8 9 0 13 10 0 12
Chromosome 29 10 11 1 0 5 0 8 3 0 0 0 7 12 0 13 0 9 4 2 6 0 14 0 0
Chromosome 30 5 12 1 0 14 0 0 0 0 0 3 9 8 10 13 2 4 6 7 0 0 11 0 0
Chromosome 31 0 12 1 0 0 11 0 0 5 0 6 13 2 4 0 3 7 0 9 10 0 14 8 0
Chromosome 32 4 6 0 9 0 14 13 2 0 0 12 10 8 0 3 0 0 11 0 0 7 0 1 5
Chromosome 33 0 6 0 2 0 4 12 5 13 0 0 10 7 3 0 0 14 0 1 0 8 0 9 11
Chromosome 34 10 6 2 11 13 1 14 0 12 8 5 0 9 0 0 0 4 0 0 0 0 7 0 3
Chromosome 35 0 0 0 0 11 0 10 7 9 0 0 0 14 0 13 2 4 8 0 3 12 5 6 1
Chromosome 36 0 9 2 0 0 11 1 5 12 7 0 0 3 0 0 13 4 6 0 0 10 14 8 0
Chromosome 37 0 0 0 0 3 10 12 0 6 1 2 0 0 13 7 4 0 0 14 11 0 5 8 9
Chromosome 38 0 0 11 0 13 14 0 6 1 12 5 3 0 0 0 2 10 4 0 9 8 0 0 7
Chromosome 39 0 0 9 0 1 0 14 0 0 8 2 4 0 13 12 6 10 7 0 11 5 0 0 3
Chromosome 40 0 0 1 14 0 0 12 6 4 7 0 5 11 9 0 2 3 0 13 10 0 0 0 8
Chromosome 41 11 7 0 0 1 0 8 6 3 2 0 9 5 0 0 13 4 14 12 10 0 0 0 0
Chromosome 42 0 7 2 0 13 0 3 6 4 1 0 8 12 11 0 14 0 5 9 10 0 0 0 0
Chromosome 43 11 0 0 14 12 7 0 9 0 5 6 13 10 0 3 0 0 4 0 0 2 0 8 1
Chromosome 44 3 2 0 10 7 1 4 0 0 12 5 0 0 0 0 0 13 8 11 14 0 9 6 0
Chromosome 45 14 5 0 4 1 0 10 0 0 2 3 7 12 0 8 0 9 0 11 0 0 13 6 0

79

Chromosome 46 0 1 3 0 7 4 9 6 11 0 12 0 0 0 14 0 8 5 0 2 0 0 10 13
Chromosome 47 0 0 0 9 11 14 7 0 0 5 13 6 0 0 10 12 0 3 0 8 0 2 4 1
Chromosome 48 9 8 5 0 6 13 1 3 0 10 0 0 0 11 0 7 12 2 0 4 14 0 0 0
Chromosome 49 0 2 13 0 12 10 11 3 14 9 5 0 0 0 4 7 0 0 0 1 8 6 0 0
Chromosome 50 0 4 13 0 7 14 3 5 0 8 10 2 9 0 6 11 0 0 0 0 0 0 1 12

Table 5.7: Second Generation of Chromosomes

Appendix D

Chromosome No. Chromosome
Chromosome 1 3 0 10 8 1 9 5 4 11 0 0 12 13 0 0 7 0 0 0 0 6 2 14 0
Chromosome 2 0 0 11 0 13 14 0 6 1 12 5 3 0 0 0 2 10 4 0 9 8 0 0 7
Chromosome 3 9 0 10 12 3 13 14 7 8 1 0 11 0 0 0 0 6 5 0 0 4 2 0 0
Chromosome 4 14 3 0 10 0 9 5 12 0 1 11 2 8 6 4 0 0 0 7 0 13 0 0 0
Chromosome 5 0 0 9 0 1 0 14 0 0 8 2 4 0 13 12 6 10 7 0 11 5 0 0 3
Chromosome 6 7 0 5 0 0 1 0 9 0 4 3 11 10 0 13 12 0 2 14 0 6 0 0 8
Chromosome 7 0 6 0 2 0 4 12 5 13 0 0 10 7 3 0 0 14 0 1 0 8 0 9 11
Chromosome 8 0 4 7 0 9 10 0 11 0 6 12 3 13 0 2 0 8 0 0 14 0 0 1 5
Chromosome 9 0 6 0 9 0 13 3 7 14 0 5 0 11 12 0 0 10 0 2 8 1 0 0 4
Chromosome 10 6 5 0 0 0 0 10 2 14 12 0 11 0 3 8 9 0 0 13 0 4 0 1 7
Chromosome 11 0 6 0 11 0 1 3 0 13 0 10 0 9 5 14 4 7 12 2 0 0 0 8 0
Chromosome 12 11 0 0 0 0 0 14 3 6 2 1 5 7 4 12 0 0 13 8 0 10 0 9 0
Chromosome 13 10 6 2 11 13 1 14 0 12 8 5 0 9 0 0 0 4 0 0 0 0 7 0 3
Chromosome 14 0 9 0 5 0 0 0 0 13 0 1 10 11 2 12 4 8 14 7 0 6 3 0 0
Chromosome 15 7 1 9 4 6 13 0 0 0 2 10 8 0 12 14 0 5 11 0 0 0 0 0 3
Chromosome 16 0 12 14 5 0 4 13 3 10 9 0 0 6 8 0 0 2 0 7 0 0 11 1 0
Chromosome 17 0 0 10 12 0 1 0 0 2 14 4 13 7 6 0 0 5 8 0 9 0 0 3 11
Chromosome 18 0 0 3 0 0 12 10 4 2 6 8 13 0 11 0 0 1 9 7 0 0 14 0 5
Chromosome 19 4 6 0 9 0 14 13 2 0 0 12 10 8 0 3 0 0 11 0 0 7 0 1 5
Chromosome 20 7 0 0 0 5 3 0 8 0 6 13 0 10 12 0 11 14 4 2 9 0 0 0 1
Chromosome 21 8 0 0 13 0 7 0 0 0 0 9 14 11 6 10 12 0 3 2 4 1 0 5 0
Chromosome 22 0 1 12 3 10 0 6 8 7 0 11 0 13 0 9 0 2 14 0 4 0 0 0 5
Chromosome 23 0 13 0 8 5 11 14 3 0 7 0 0 0 0 9 4 2 0 0 0 6 1 12 10
Chromosome 24 0 0 13 5 10 7 6 1 0 0 14 0 3 0 9 0 2 11 0 0 0 8 4 12
Chromosome 25 14 0 6 4 0 0 0 13 0 0 7 0 12 0 10 3 11 0 1 5 9 0 2 8
Chromosome 26 0 3 11 2 0 0 13 14 0 4 9 8 1 7 0 0 10 0 5 12 6 0 0 0
Chromosome 27 0 5 8 7 0 0 12 10 0 13 4 14 0 0 2 0 0 0 3 11 1 0 9 6
Chromosome 28 0 0 1 14 0 0 12 6 4 7 0 5 11 9 0 2 3 0 13 10 0 0 0 8
Chromosome 29 5 12 1 0 14 0 0 0 0 0 3 9 8 10 13 2 4 6 7 0 0 11 0 0
Chromosome 30 6 0 1 12 11 0 0 3 0 5 0 10 4 7 14 2 8 9 0 0 0 0 0 13
Chromosome 31 0 7 0 0 12 0 4 8 5 0 9 10 14 0 1 0 6 2 11 0 13 0 3 0
Chromosome 32 0 8 0 2 9 0 10 1 5 0 0 0 13 0 0 7 0 4 6 14 12 3 0 11
Chromosome 33 0 8 0 12 7 0 0 0 5 0 4 13 0 0 1 9 0 6 14 10 11 0 3 2
Chromosome 34 0 9 2 0 0 11 1 5 12 7 0 0 3 0 0 13 4 6 0 0 10 14 8 0
Chromosome 35 0 0 0 0 11 0 10 7 9 0 0 0 14 0 13 2 4 8 0 3 12 5 6 1
Chromosome 36 0 7 12 0 0 1 8 3 11 6 0 0 2 0 10 0 4 9 0 0 5 14 13 0
Chromosome 37 0 4 0 11 10 0 0 14 12 0 0 2 1 7 9 6 0 8 13 0 3 0 0 5
Chromosome 38 0 2 0 0 10 12 0 0 0 4 3 14 0 13 8 7 11 0 9 1 6 0 0 5
Chromosome 39 0 7 0 6 10 4 0 2 12 14 1 0 3 8 0 13 0 0 11 9 0 0 0 5

80

Chromosome 40 0 0 11 6 13 5 0 0 0 0 8 7 12 2 0 10 0 3 4 1 9 0 14 0
Chromosome 41 10 11 1 0 5 0 8 3 0 0 0 7 12 0 13 0 9 4 2 6 0 14 0 0
Chromosome 42 0 0 11 9 1 4 5 14 0 0 0 7 12 0 3 0 2 0 6 10 13 8 0 0
Chromosome 43 0 13 6 1 0 11 14 2 0 0 10 0 9 12 3 8 0 4 0 7 0 0 0 5
Chromosome 44 77 14 0 0 12 0 0 3 2 1 13 0 8 0 6 10 0 0 11 5 0 0 4 9
Chromosome 45 0 5 7 0 10 9 14 13 8 0 11 0 4 2 6 0 0 12 0 3 0 0 0 1
Chromosome 46 4 3 13 0 0 6 9 11 10 0 14 0 12 1 0 2 7 5 8 0 0 0 0 0
Chromosome 47 0 0 7 0 14 3 4 12 1 10 2 13 5 8 0 11 0 0 0 0 0 0 9 6
Chromosome 48 0 1 0 8 0 11 13 0 7 0 3 6 4 14 12 0 2 0 10 0 0 5 9 0
Chromosome 49 0 12 13 14 5 10 1 11 0 4 6 8 2 0 3 0 0 0 0 0 0 0 7 9
Chromosome 50 0 0 4 7 0 0 0 2 0 6 10 3 11 14 0 1 0 13 8 0 12 0 5 9

Table 5.8: Third Generation of Chromosomes

Pictures of the Study Area

Figure 5.5: The intersection is about 60m wide. This makes its crossing risky

81

Figure 5.6: Pedestrians waiting on an island in the middle of the road waiting for

a chance to traverse the intersection

Figure 5.7: The road divides a once one-community into two halves

Figure 5.8: Police personnel had to always be around to manage the confusion

