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ABSTRACT 

Many Ghanaians both in the formal sector and the informal sector take loans for various 

reasons some being investment in businesses or their wards education. Others also take 

loans to acquire personal properties such as houses and cars. Most people rely on Banks 

for Loans. 

Due to poor allocation of funds by most banks to prospective loan seekers the banks are 

not able to maximize their profits. In view of this monies that can be used for social 

services in the community in which they operate go into bad debt. 

The main aim of this work is to develop Linear Programming model to help the 

Atweaban Rural Bank at Duayaw Nkwanta in the Tano North District of the Brong Ahafo 

Region to allocate their funds to prospective loan seekers in order for them to maximize 

their profits. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 v 

TABLE OF CONTENTS 

Declaration………………………………………………………………………………..i 

Acknowledgement……………………………………………………………….……......ii 

Dedication………………………………………………………………………………...iii 

Abstract…...…………………....……………………………………….……….….…….iv 

Chapter One: Introduction...............................................................................................1 

1.0 Background to the Study................................ ...............................................................1 

1.1 Loans…………………………......................................................................................6 

1.2 Types of Loan…………………………………………………….………….………..7 

1.2.1 Secured Loan………………………………………………………………………..7 

1.2.2 Unsecured Loan……………………………………………………………………7 

1.2.3 Mortgage Loan………………………………………………………………………8 

1.2.4 Credit…………………………………………….…………………………………..8 

1.3 Sources Of Loans……………………………………………………………………...8 

1.3.1 Commercial Banks…………………………………………………………………..9 

1.3.2 Credit Unions………………………………………………………………………..9 

1.3.3 Savings And Loans Institutions……………………………………………………10 

1.3.4 Trust Companies…………………………………………………………………...10 

1.4 Abuses In Loans……………………………………………………………………...10 

1.5 Functions of Banks…………………..………………………………………………11 

1.5.1 Fundamental Duties………………………………………………………………..11 

1.5.2 Fundamental Powers……………………………………………………………….11 

1.5.3 Advisory Duties……………………………………………………………………12 



 vi 

1.6 Problem Statement…………………………………...………………………………12 

1.7 Methodology…………………………………………………...…………………….12 

1.8 Objectives……………………………………………………………………………14  

1.9 Justification…………………………………………………………………………..14  

1.10 Summary……………………………………………………………………………15 

Chapter Two: Literature Review……………………………………………………...16 

2.0 Introduction…………………………………………………………………………..16 

2.1 Summary……………………………………………………………………………..33 

Chapter Three: Methodology………………………………………………………….34                                                                                                                                                           

3.0 Introduction………………………………………………………………………….34 

3.1 Linear Programming…………………………………………………………………34 

3.1.1 Unconstrained Optimization……………………………………………………….35 

3.1.2 Constrained Optimization………………………………………………………….36 

3.2 Methods Of Solving Linear Programming…………………………………………..36 

3.2.1 The Graphical Method……………………………………………………………..36 

3.2.2 Types of Graphical Solution……………………………………………………….39 

3.2.2.1 A Unique Optimal Solution……………………………………………………...39 

3.2.2.2 Infinitely Many Solutions………………………………………………………..39 

3.2.2.3 Unbounded Solution……………………………………………………………..40 

3.2.2.4 No Solution………………………………………………………………………41  

3.2.3 Example of A Graphical Method Solution………………………………………...42   

3.2.4 The Standard Form Linear Programming………………………………………….46  

 3.3 Slack And Surplus Variables…………………………………………………………47 



 vii 

3.4Simplex Method………………………………………………………………………48 

3.4.1Formulation of the Problem………………………………………………………...49 

3.4.2 Algorithm for Simplex Method……………………………………………………..50 

3.4.2.1 Setting Up Initial Simplex Tableau……………………………………………….51  

3.4.2.2 Improving The Solution…………………………………………………………..55 

3.4.3 Simplex Method With Mixed Constraints…………………………………………..58  

3.5 Duality………………………………………………………………………………...60   

3.6 Unconstrained Variables……………………………………………………………...63 

3.7 Degeneracy……………………………………………………………………………64 

3.8 Types of Simplex Method Solutions………………………………………………….64  

3.8.1 Alternative Optimal Solutions………………………………………………………65  

3.8.2 Unbounded Solutions……………………………………………………………….65 

3.8.3 Infeasible Solution………………………………………………………………….66 

3.9 Sensitivity Analysis…………………………………………………………………...67 

3.9.1 Change Objective Function Coefficient…………………………………………….68 

3.9.2 Changing A Right Hand Side Constraint…………………………………………..70 

3.9.3 Simultaneous Changes……………………………………………………………...74 

3.10 Summary…………………………………………………………………………… 74 

Chapter Four : Data Collection and Modeling……………………………………….75                                                   

4.0 Introduction………………………………………………………………………….75 

4.1 Proposed Model……………………………………………………………………...76 

4.2 Optimal Solution……………………………………………………………………..80       

4.3 Discussion Of Results………………………………………………………………..82 



 viii 

4.4 Summary……………………………………………………………………………..83  

Chapter Five: Conclusions and Recommendations…………………………………..84                                                  

5.0 Introduction………………………………………………………………………….84 

5.1 Conclusions………………………………………………………………………......84 

5.2 Recommendations……………………………………………………………………85 

5.3 Summary……………………………………………………………………………..85 

Bibliography……………………………………………………………………………..86 

 

 

 

 

 

                                                               

 

 
                                                                   



1 

 

 

CHAPTER ONE                                                        

INTRODUCTION 

1.0 BACKGROUND TO THE STUDY 

Ghana's financial system is based on a number of banks and non-banking financial 

institutions, including the Bank of Ghana, which, as the Central Bank, has the 

responsibility of advising the government on the implementation and control of 

monetary policies. Other institutions include commercial and merchant banks, 

discount houses, insurance companies, leasing companies, venture capital, a 

mortgage finance institution, and a stock exchange. Direct financing of projects in 

the country is provided by the commercial and other banking institutions. 

 In an effort to ensure systematic development of the banking system, the Central 

Bank (Bank of Ghana), in addition to its traditional functions (for example 

formulation of monetary policies), also has the responsibility to ensure that banking 

is responsive to the needs of the public.  

In attempt to encourage the establishment of new types of financial institutions, the 

Bank of Ghana pursues a liberal policy with regard to entry into the banking system, 

and is actively involved in the promotion of development and rural banking as well 

as in the establishment of discount houses. 
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The minimum paid-up capital required for entry into the banking system is as 

follows: 

Ghanaian Banking Business: Paid-up capital of not less than Two Thousand Ghana 

cedis (GH¢2000). 

Foreign Banking Business: Paid-up capital of not less than Five Thousand Ghana 

cedis (GH¢5000), of which not less than Three Thousand cedis (GH¢3000) shall be 

brought into Ghana as convertible currency; 

Other Banking Business: to be determined by the central bank of Ghana. 

Commercial Banks: Commercial Banks are currently required to maintain a 

minimum of 57% of total deposits in liquid reserves. The Bank of Ghana fixes the 

Central Bank 'rediscount rate', which is used as the benchmark upon which 

commercial banks base their interest rates. There are several Commercial and 

Development banks in Ghana. 

The National Investment Bank:  Is an industrial development bank providing 

financial assistance to manufacturing and processing industries, including agro-

industrial projects. It maintains branches in all regions of the country. 

The Agricultural Development Bank: Serves principally the agricultural sector - 

food production, livestock breeding, poultry farming and processing of agricultural 

produce. It has over Thirty one (31) branches throughout Ghana.  
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Leasing Companies: Though 'hire purchase' activities were conducted by the banks 

it was not until 1992 that a leasing law was enacted in Ghana. Since then, over three 

leasing companies have emerged and they are offering among others equipment 

leasing in Ghana. These include Ghana Leasing Company Limited, General Leasing 

Company Limited and LeaseAfric. 

Venture Capital: Venture Capital provides capital for start-ups and high risk 

ventures. The Ghana Venture Capital Fund Limited (GVCF) - is managed by the 

Venture Fund Management Company. The Commonwealth Development 

Corporation is the lead investor and was joined by a few local banks and other 

foreign financial institutions. It has focused mainly on medium-sized, indigenous 

growth companies with expansion projects and shied away from start-ups because of 

the higher risks entailed. 

Mortgage Financing: The Home Finance Company (HFC) is the leading secondary 

mortgage financing institution in Ghana. HFC was established in 1990 as the 

implementing agency for a housing finance pilot scheme component for an Urban II 

Project provided to the Republic of Ghana by the International Development 

Association (World Bank). 

The IDA was joined by Social Security and National Insurance Trust (SSNIT), 

Merchant Bank and a number of insurance companies. 

Insurance Companies: There are over twenty four (24) insurance companies 

currently operating in Ghana.  
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Discount Houses: In a bid to improve financial intermediation in the country, the 

non-bank financial institutions comprising the insurance and trust companies have 

joined forces with the banking institutions to establish discount houses in order to 

bring into single market institutions with cash balances for their intensive and 

effective use. These include the Consolidated Discount House and the Securities 

Discount Company, Gold Coast Securities Limited, and National Trust Holding 

Company (NTHC).  

Non-Bank Financial Institutions: Ghana's non-bank financial institutions include 

the Social Security and National Insurance Trust (SSNIT), the Ghana Stock 

Exchange, Insurance companies, discount houses and other institutions. 

Traditionally, rural development credit has been provided by two types of sources: 

institutional and non-institutional. In rural communities, non-institutional credit is 

provided by moneylenders, relatives, friends, traders, commission agents, cooperatives, 

consumers, distributors of farm inputs, and processors of agricultural products. 

Research has shown that the most common providers of loans in rural areas are friends 

and relatives who usually charge no interest or collateral (FAO 1994).  

This credit market is small, however, and the total credit from these non-institutional 

sources is insufficient to implement rural development programs.  

For rural development to proceed at a smooth pace, larger institutional sources of credit 

need to be created. In Ghana, institutional sources of credit are the commercial banks, 

the Agricultural Development Bank, the National Investment Banks, and the Bank of 

Ghana Rural Banks. Until recently very few rural people, other than wealthy farmers 
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and businessmen, had access to credit from these sources. The lack of interest in small 

rural credits by the National Investment Bank and the commercial banks is explained by 

the high cost of administering a large number of small credits spread over a wide area, 

coupled with the comparatively high level of default that has often accompanied small 

credits. The inability of rural borrowers to offer adequate security for loans, and the 

enormous risks associated with agricultural production, are the typical reasons given for 

the urban-based bias of commercial lending. The Agricultural Development Bank was 

created to service the rural sector in particular. It too, however, eventually began to 

concentrate on traditional urban-based banking activities. 

 

To overcome many of these difficulties, the Ghanaian government, through the 

Bank of Ghana introduced the idea of rural banking into the country in 1976. According 

to the Association of Rural Banks (1992), 

“The aims of Rural Banks are: 

i. to stimulate banking habits among rural dwellers; 

ii. to mobilize resources locked up in the rural areas into the banking systems to 

facilitate development; and 

iii. to identify viable industries in their respective catchment [areas] for investment and 

development.” 

Due to these liberal policies of the Bank of Ghana many banks across Africa are 

opening branches in Ghana, this has also facilitated the opening of a lot of Rural 
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Banks across the country. Currently there are over One Hundred and Twenty (120) 

Rural Banks in the country. 

Rural Banks are unit banks established to provide facilities for the rural communities 

in which they are located. They are owned, managed and patronized by the local 

people. Some of these banks also operate agencies to cater for communities that are 

located far from the bank's facilities.  

Savings mobilized through rural banks are invested in small-scale agricultural 

activities, cottage industries, transportation and trading. Rural banks also provide 

commercial banking services such as giving loans to people within the community in 

which they operate. 

1.1 LOANS 

A loan is a type of debt. Like all debt instruments, a loan entails the redistribution of 

financial assets over time, between the lender and the borrower. 

In a loan, the borrower initially receives or borrows an amount of money, called the 

principal, from the lender, and is obligated to pay back or repay an equal amount of 

money to the lender at a later time.  

Typically, the money is paid back in regular installments, or partial repayments in an 

annuity, each installment is the same amount. The loan is generally provided at a cost, 

referred to as interest on the debt, which provides an incentive for the lender to engage 

in the loan. In a legal loan, each of these obligations and restrictions is enforced by 

http://en.wikipedia.org/wiki/Debt
http://en.wikipedia.org/wiki/Asset
http://en.wiktionary.org/wiki/lender
http://en.wiktionary.org/wiki/borrower
http://en.wikipedia.org/wiki/Money
http://en.wikipedia.org/wiki/Annuity_(finance_theory)
http://en.wikipedia.org/wiki/Interest
http://en.wikipedia.org/wiki/Debt
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contract, which can also place the borrower under additional restrictions known as loan 

covenants. Acting as a provider of loans is one of the principal tasks for financial 

institutions.  

Due to poor allocation of their loan disbursement they are not able to optimize their 

profits when they give out these loans, hence monies that could have been used to 

offer social services in the community in which they operate goes into “Bad Debts”. 

A model is proposed to help Rural Banks allocate their funds available for loan 

disbursement optimally. We used a case study of Atweaban Rural Bank at Duayaw - 

Nkwanta in the Tano North District of the Brong Ahafo Region.  

1.2 TYPES OF LOANS 

1.2.1 SECURED LOAN 

A secured loan is a loan in which the borrower pledges some asset (e.g. a car or 

property) as collateral for the loan. 

1.2.2 UNSECURED LOAN 

Unsecured loans are monetary loans that are not secured against the borrower's assets. 

These may be available from financial institutions under many different guises or 

marketing packages. 

 

 

 

http://en.wikipedia.org/wiki/Contract
http://en.wikipedia.org/wiki/Loan_covenant
http://en.wikipedia.org/wiki/Loan_covenant
http://en.wikipedia.org/wiki/Financial_institution
http://en.wikipedia.org/wiki/Financial_institution
http://en.wikipedia.org/wiki/Secured_loan
http://en.wikipedia.org/wiki/Pledges
http://en.wikipedia.org/wiki/Collateral_(finance)
http://en.wikipedia.org/wiki/Unsecured_loan


8 

 

1.2.3 MORTGAGE LOAN 

A mortgage is a legal instrument that pledges a house or other real estate as security for 

repayment of a loan. By providing guarantee that the loan will be paid back, a mortgage 

enables a person to buy property without having the funds to pay for it outright. 

1.2.4 CREDIT  

A credit denotes transaction involving the transfer of money or other property on 

promise of repayment, usually at a fixed future date. The transferor thereby becomes a 

creditor, and the transferee, a debtor. 

1.3 SOURCES OF LOANS 

Banking is the business of providing financial services to consumers and businesses. 

The basic services a bank provides are checking accounts, which can be used like 

money to make payments and purchase goods and services; savings accounts and time 

deposits that can be used to save money for future use; loans that consumers and 

businesses can use to purchase goods and services and basic cash management services 

such as check cashing and foreign currency exchange.  

Four types of banks specialize in offering these basic banking services; these are 

commercial banks, savings and loan associations, savings banks, and credit unions. 
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1.3.1 COMMERCIAL BANKS 

 A bank is any financial institution that receives, collects, transfers, pays, exchanges, 

lends, invests, or safeguards money for its customers. This broader definition includes 

many other financial institutions that are not usually thought of as banks but which 

nevertheless provide one or more of these broadly defined banking services.  

These institutions include finance companies, investment companies, investment banks, 

insurance companies, pension funds, security brokers and dealers, mortgage companies. 

1.3.2 CREDIT UNIONS 

These are financial cooperatives and credit associations that provide loans to its 

members at lower rates of interest than would otherwise be available.  

The capital funds of credit unions come from the purchase of shares by members, who 

receive yearly dividends on the basis of their investment. Credit unions are operated for 

the mutual benefit of their members and are usually formed by persons who share a 

common bond, such as membership in a church, lodge, trade union, or professional 

association. Many corporations have assisted their employees in establishing credit 

unions. The loans are usually for the acquisition of consumer goods rather than for the 

purchase of real estate. 
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1.3.3 SAVINGS AND LOANS INSTITUTIONS 

Savings Institutions are banks or associations originally established to encourage 

personal thrift through the deposit of individual or family savings that accrued earnings 

in the form of interest. 

1.3.4 TRUST COMPANIES 

Trust Companies are corporations formed to act as trustees according to the terms of 

contracts known as trust agreements.  

1.4 ABUSES IN LOANS 

One form of abuse in the granting of loans involves granting a loan in order to put the 

borrower in a position that one can gain advantage over. 

Another form of abuse is where the lender charges excessive interest. In different time 

periods and cultures the acceptable interest rate has varied, from no interest at all to 

unlimited interest rates. Credit card companies in some countries have been accused by 

consumer organizations of lending at usurious interest rates and making money out of 

frivolous extra charges. 

Abuses can also take place in the form of the customer abusing the lender by not 

repaying the loan or with intent to defraud the lender. 
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1.5 FUNCTIONS OF BANKS 

1.5.1 FUNDAMENTAL DUTIES  

A Bank carries out money and credit policy in accordance with the needs of the 

economy and so as to maintain price stability. The Bank takes necessary measures to 

protect the domestic and international value of the national currency and regulates its 

volume and circulation. It also extends credits to banks and conducts open market 

operations in order to regulate money supply and liquidity in the economy.  

Moreover, the Bank determines the terms and types of deposits, as well as their maturity 

dates and validity periods, and the parity of the national currency against gold and 

foreign currencies. It manages gold and foreign exchange reserves and trades in foreign 

exchange and precious metals on the stock exchange.  

The Bank, in particular, carries out the duties of financial and economic advisor, fiscal 

agent and treasurer to the Government.  

 
1.5.2 FUNDAMENTAL POWERS  

The Bank has the privilege of issuing banknotes and the authority to take decisions on 

money and credit issues and to submit proposals to the Government. The Bank 

determines the rediscount, discount and interest rates applicable to its own transactions.  
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1.5.3 ADVISORY DUTIES 

The Bank presents to the Government, when required, its views with regard to measures 

to be taken on money and credit, and submits advisory opinions on matters related to 

implementation of the Banking Law or on banking and credit issues in general, upon 

request of the Government.  

The Bank can also be consulted prior to any decision granting permission for the 

establishment of banks and other financial institutions, as well as for the liquidation of 

such institutions for which the power to liquidate rests with the Government.  

1.6 PROBLEM STATEMENT 

Due to poor allocation of funds some rural banks record marginal profits with some 

running at a lost.   

The main aim of this project is to propose a linear model subject to some constraints 

for a newly established rural bank at Duayaw - Nkwanta named Atweaban Rural 

Bank to enable them disburse their funds allocated for loans optimally leading to 

maximization of profits.  

1.7 METHODOLOGY                            

In order for the bank to maximize their profit, the proposed model will be based 

strictly on the Bank’s Loan Policy and its previous history on loan disbursement. 

The model will be solved using the Simplex Algorithm. 
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The Linear Programming model has three basic components, that is the objective 

function which is to be optimized (Maximized or minimized), the constraints or 

limitation and the non negativity constraint. 

In general the Linear Programming model can be formulated as follows 

Let nxxx ,...,,  2 1  be n decision variables with m constraints, then 

The objective function: 

Maximize or Minimized 

∑
=

=
n

j
jj xcZ

1
 

Subject to the m constraints 

∑∑
= =

≤=≥
m n

j
jij xa

1i 1
ib )(  

The Non negativity constraints 

0≥jx  

n ..., 3, 2, 1,  j and m 3...., 2, ,1 ==i  

The simplex method is an iterative procedure for solving Linear Programming 

Problems in a finite number of steps. This method provides an algorithm which 

consists of moving from one vertex of the region of feasible solution to another in 

such a manner that the value of the objective function at the succeeding vertex is less 

or more than the previous vertex. This procedure is repeated and since the number of 

vertices is finite, the method leads to an optimal vertex in a finite number of steps or 

it may indicate the existences of unbounded solution. 
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1.8 OBJECTIVES 

The main objectives of this study are:           

A.  To explore ways of disbursing funds allocated for loans effectively and 

efficiently in order to optimize profit margin of  Atweaban Rural Bank, Duayaw 

Nkwanta.  

B. To serve as reference material in the libraries and the Internet for students who 

wish to undertake research into the similar field in the near future. 

C. To serve as a scientific method of providing executive with an analytical and 

objective basis for decision making. 

1.9 JUSTIFICATION 

The institution of Banks is one of the fastest growing institutions in the Ghana which 

has a tremendous impact on the economy and the society. Among other things banks 

also give loans prospective loan seekers. 

Outdated and ineffective loan policies can contribute to a range of problems. 

Introducing a loan product that is not adequately addressed in the written loan policy 

can create a variety of challenges for the lending staff and involve risks that 

management did not anticipate.  

If lending authorities loan limitation are not revised when circumstances change, a Bank 

could be operating within guidelines that are too restrictive or too lenient.  If guidelines 

do not comply with current laws and rules, lending decisions may not reflect best 
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practices or regulatory requirements. A loan policy that does not anticipate risks can 

lead to asset quality problems and poor earnings. 

 The bank might run at a lost or even collapse if they are not able to retrieve all the 

loans they give out. Due to this, a more scientific approach must be employed by banks 

to ensure adequate, effective and efficient distribution of funds they have available for 

loans to ensure constant growth of these banks. When banks run efficiently they are 

able to allocate a larger amount of its funds for social services in the community in 

which they operate. 

 The proposed model is going to help banks to efficiently distribute the funds they have 

available for loan in order to maximize their profit. The proposed model will also help 

decision makers at the Bank to formulate prudent and effective loan policies. This 

makes this study justifiable and worthwhile. 

 

1.10 SUMMARY  

 In this chapter, a brief history of Rural Banks and some of their social responsibilities 

were given. The objectives of the work were also presented. In the next chapter, we 

shall review some literature in the area of linear programming.  
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                               CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

In this section of the work, other people’s works, journals of various fields of research 

using linear programming programs will be considered. 

Stewart et al., (2008) examined the numerical implementation of a linear programming 

(LP) formulation of stochastic control problems involving singular stochastic processes. 

The decision maker has the ability to influence a diffusion process through the selection 

of its drift rate (a control that acts absolutely continuously in time) and may also decide 

to instantaneously move the process to some other level (a singular control). The first 

goal of the paper is to show that linear programming provides a viable approach to 

solving singular control problems. A second goal is the determination of the absolutely 

continuous control from the LP results and is intimately tied to the particular numerical 

implementation. The original stochastic control problem is equivalent to an infinite-

dimensional linear program in which the variables are measures on appropriate bounded 

regions. The implementation method replaces the LP formulation involving measures 

by one involving the moments of the measures. This moment approach does not directly 

provide the optimal control in feedback form of the current state. The second goal of the 

paper is to show that the feedback form of the optimal control can be obtained using 

sensitivity analysis.  
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Knowledge of the presence of certain special structures can be advantageous in both the 

formulation and solution of linear programming problems. Thus it is desirable that 

linear programming software offer the option of specifying such structures explicitly. 

As a step in this direction, Fourer et al., (1995) described extensions to an algebraic 

modeling language that encompass piecewise-linear, network and related structures. 

Their emphasis is on the modeling considerations that motivate these extensions, and on 

the design issues that arise in integrating these extensions with the general-purpose 

features of the language. They observe that extensions sometimes make models faster to 

translate as well as to solve, and that they permit a “column-wise” formulation of the 

constraints as an alternative to the “row-wise” formulation most often associated with 

algebraic languages.  

Consider a linear-programming problem in which the “right-hand side” is a random 

vector whose expected value is known and where the expected value of the objective 

function is to be minimized. An approximate solution is often found by replacing the 

“right-hand side” by its expected value and solving the resulting linear programming 

problem. Mandansky (1960) gave conditions for the equality of the expected value of 

the objective function for the optimal solution and the value of the objective function for 

the approximate solution; bounds on these values were also given. In addition, the 

relation between this problem and a related problem, where one makes an observation 

on the “right-hand side” and solves the (nonstochastic) linear programming problem 

based on this observation, was discussed.  
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Greenberg et al., (1986) developed a framework for model formulation and analysis to 

support operations and management of large-scale linear programs from the combined 

capabilities of camps and analyze. Both the systems were reviewed briefly and the 

interface which integrates the two systems was then described. The model formulation, 

matrix generation, and model management capability of camps and the complementary 

model and solution analysis capability of analyze were presented within a unified 

framework. Relevant generic functions were highlighted, and an example was presented 

in detail to illustrate the level of integration achieved in the current prototype system. 

Some new results on discourse models and model management support were given in a 

framework designed to move toward an ‘intelligent’ system for linear programming 

modeling and analysis.  

Church et al., (1963) used linear programming procedures with the aid of an electronic 

computer to formulate fattening rations for weaned calves. Rations were formulated 

using digestible energy or estimated net energy, crude protein, crude fiber, calcium and 

phosphorus. Rations formulated on digestible energy bases had specifications for 1.24, 

1.36 or 1.48 megcal. Per lb. of feed, and those with estimated net energy for 0.581, 

0.638 or 0.694 megcal. Per lb. Specifications for crude protein (11.5%), calcium 

(0.75%), phosphorus (0.50%) and salt (0.50%) were the same for each ration. Crude 

fiber was restricted to a maximum of 15% and a minimum of 8%. Minimum and/or 

maximum specifications were used for several feedstuffs; alfalfa meal (5 and 15%), beet 

pulp (min. 10%) and molasses (5 and 10%). 
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 Chemical analyses on the computer-formulated rations indicated reasonably good 

agreement between specifications and analyses for crude protein, crude fiber and 

phosphorus. Animal performance data demonstrated that estimated net energy was 

superior to digestible energy as a basis of ration formulation. Cattle fed the net energy-

formulated rations gained more rapidly, ate more feed and energy, were more efficient, 

had more marbling in the rib-eye but less rib-eye area per cwt. Of carcass than did cattle 

fed on DE-formulated rations. Data from this trial showed that linear programming 

procedures can be effectively used to formulate cattle ration. 

Sinha et al., (2003) proposed a modified fuzzy programming method to handle higher 

level multi-level decentralized programming problems (ML (D) PPs). They presented a 

simple and practical method to solve the same. This method overcomes the subjectivity 

inherent in choosing the tolerance values and the membership functions. They 

considered a linear ML (D) PP and applied linear programming (LP) for the 

optimization of the system in a supervised search procedure, supervised by the higher 

level decision maker (DM). The higher level DM provides the preferred values of the 

decision variables under his control to enable the lower level DM to search for his 

optimum in a narrower feasible space. The basic idea is to reduce the feasible space of a 

decision variable at each level until a satisfactory point is sought at the last level. 

Wu et al., (2000) proposed a neural network model for linear programming that is 

designed to optimize radiotherapy treatment planning (RTP). This kind of neural 

network can be easily implemented by using a kind of `neural’ electronic system in 

order to obtain an optimization solution in real time.  
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They first gave an introduction to the RTP problem and constructed a non-constraint 

objective function for the neural network model. They adopted a gradient algorithm to 

minimize the objective function and designed the structure of the neural network for 

RTP. Compared to traditional linear programming methods, this neural network model 

can reduce the time needed for convergence, the size of problems (i.e., the number of 

variables to be searched) and the number of extra slack and surplus variables needed. 

They obtained a set of optimized beam weights that resulted in a better dose distribution 

as compared to that obtained using the simplex algorithm under the same initial 

condition.  

Jianq et al., (2004) proposed a novel linear programming based method to estimate 

arbitrary motion from two images. The proposed method always finds the global 

optimal solution of the linearized motion estimation energy function and thus is much 

more robust than traditional motion estimation schemes. As well, the method estimates 

the occlusion map and motion field at the same time. To further reduce the complexity 

of even a complexity-reduced pure linear programming method they presented a two-

phase scheme for estimating the dense motion field. In the first step, they estimated a 

relatively sparse motion field for the edge pixels using a non-regular sampling scheme, 

based on the proposed linear programming method. In the second step, they set out a 

detail-preserving variational method to upgrade the result into a dense motion field. The 

proposed scheme is much faster than a purely linear programming based dense motion 

estimation scheme. And, since they used a global optimization method linear 



21 

 

programming in the first estimation step, the proposed two-phase scheme was also 

significantly more robust than a pure variational scheme. 

 
Vimonsatit et al., (2003) proposed a linear programming (LP) formulation for the 

evaluation of the plastic limit temperature of flexibly connected steel frames exposed to 

fire. Within a framework of discrete models and piecewise linearized yield surfaces, the 

formulation was derived based on the lower-bound theorem in plastic theory, which 

lead to a compact matrix form of an LP problem. The plastic limit temperature was 

determined when the equilibrium and yield conditions were satisfied. The plastic 

mechanism can be checked from the dual solutions in the final simplex tableau of the 

primal LP solutions.  

Three examples were presented to investigate the effects of the partial-strength beam-

to-column joints. Eigenvalue analysis of the assembled structural stiffness matrix at the 

predicted limit temperature was performed to check for structural instability.  

The advantage of the proposed method is that it is simple, computationally efficient, 

and its solutions provide the necessary information at the limit temperature. The method 

can be used as an efficient tool to a more refined but computationally expensive step-

by-step historical deformation analysis.  

 
Jinbo et al., (2004) presented a novel linear programming approach to do protein 3-

dimensional (3D) structure prediction via threading. Based on the contact map graph of 

the protein 3D structure template, the protein threading problem was formulated as a 

large scale integer programming (IP) problem. The IP formulation was then relaxed to a 

linear programming (LP) problem, and then solved by the canonical branch-and-bound 
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method. The final solution is globally optimal with respect to energy functions. In 

particular, our energy function includes pair wise interaction preferences and allowing 

variable gaps which are two key factors in making the protein threading problem NP-

hard. A surprising result was that, most of the time; the relaxed linear programs 

generate integral solutions directly. Their algorithm has been implemented as a software 

package RAPTOR-Rapid Protein Threading by Operation Research technique. Large 

scale benchmark test for fold recognition shows that RAPTOR significantly 

outperforms other programs at the fold similarity level. The CAFASP3 evaluation, a 

blind and public test by the protein structure prediction community, ranks RAPTOR as 

top one (1), among individual prediction servers, in terms of the recognition capability 

and alignment accuracy for Fold Recognition (FR) family targets. RAPTOR also 

performs very well in recognizing the hard Homology Modeling (HM) targets.  

Kas et al., (1996) studied linear inverse problems where a vector with positive 

components was chosen from a feasible set defined by linear constraints. The problem 

requires the minimization of a certain function which is a measure of distance from a 

priori guess. An explicit and perfect dual of the resulting programming problem was 

shown, the corresponding duality theorem and optimality criteria were proven, and an 

algorithm solution was proposed. 

Nace et al., (2006) introduced the lexicographically minimum load linear programming 

problem, and they provided a polynomial approach followed by the proof of 

correctness. This problem has applications in numerous areas where it is desirable to 

achieve an equitable distribution or sharing of resources.  
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They considered the application of their technique to the problem of lexicographically 

minimum load in capacitated multi-commodity networks and discussed a special non-

linear case, the so-called Klein rock load function. They defined the lexicographically 

maximum load linear programming problem and deduced a similar approach.  

An application in the lexicographically maximum concurrent flow problem was 

depicted followed by a discussion on the minimum balance problem as a special case of 

the lexicographically maximum load problem.  

 

Konickova (2006) said a linear programming problem whose coefficients are prescribed 

by intervals is called strongly unbounded if each linear programming problem obtained 

by fixing coefficients in these intervals is unbounded. In the main result of the paper a 

necessary and sufficient condition for strong unboundedness of an interval linear 

programming problem was described. In order to have a full picture they also showed 

conditions for strong feasibility and strong solvability of this problem. The necessary 

and sufficient conditions for strong feasibility, strong solvability and strong 

unboundedness can be verified by checking the appropriate properties by the finite 

algorithms. Checking strong feasibility and checking strong solvability are NP-hard. 

This shows that checking strong unboundedness is NP-hard as well. 

 

Optimal solutions of Linear Programming problems may become severely infeasible if 

the nominal data is slightly perturbed. Aharon et al., (2000) demonstrated this 

phenomenon by studying ninety (90) LPs from the well-known NETLIB collection. 

They then applied the Robust Optimization methodology to produce “robust” solutions 
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of the above LPs which are in a sense immured against uncertainty. Surprisingly, for the 

NETLIB problems these robust solutions nearly lose nothing in optimality. 

A linear programming problem in an inequality form having a bounded solution is 

solved error-free using an algorithm that sorts the inequalities, removes the redundant 

ones, and uses the p-adic arithmetic. Lakshmikantham et al., (1997). 

Yoshito (2004) considered the problem of finite dimensional approximation of the dual 

problem in abstract linear programming approach to control system design. A constraint 

qualification that guarantees the existence of a sequence of finite dimensional dual 

problems that computes the true optimal value. The result is based on the averaging 

integration by a probability measures.  

A matrix is sought that solves a given dual pair of systems of linear algebraic equations. 

Necessary and sufficient conditions for the existence of solutions to this problem were 

obtained, and the form of the solutions was found. The form of the solution with the 

minimal Euclidean norm was indicated. Conditions for this solution to be a rank one 

matrix were examined. On the basis of these results, an analysis was performed for the 

following two problems: modifying the coefficient matrix for a dual pair of linear 

programs (which can be improper) to ensure the existence of given solutions for these 

programs, and modifying the coefficient matrix for a dual pair of improper linear 

programs to minimize its Euclidean norm. Necessary and sufficient conditions for the 

solvability of the first problem were given, and the form of its solutions was described. 

For the second problem, a method for the reduction to a nonlinear constrained 

minimization problem was indicated, necessary conditions for the existence of solutions 



25 

 

were found, and the form of solutions was described. Numerical results were presented. 

Erokhin (2007). 

Biswal et al., (1998) developed an approach to solve probabilistic linear programming 

problems with exponential random variables. The first step involves obtaining the 

probability density function (p.d.f.) of the linear combination of n independent 

exponential random variables. Probabilistic constraints are then transformed to the 

deterministic constraints using the p.d.f. The resulting non-linear deterministic model is 

then solved using a non-linear programming solution method. 

Frangioni et al., (2009) discussed a general framework for outer approximation type 

algorithms for the canonical DC optimization problem. The algorithms rely on a polar 

reformulation of the problem and exploit an approximated oracle in order to check 

global optimality. Consequently, approximate optimality conditions were introduced 

and bounds on the quality of the approximate global optimal solution were obtained. A 

thorough analysis of properties which guarantee convergence was carried out; two 

families of conditions were introduced which lead to design six implementable 

algorithms, whose convergence can be proved within a unified framework. 

Cherubini et al., (2009) described an optimization model which aims at minimizing the 

maximum link utilization of IP telecommunication networks under the joint use of the 

traditional IGP protocols and the more sophisticated MPLS-TE technology. The 

survivability of the network was taken into account in the optimization process 

implementing the path restoration scheme.  
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This scheme benefits of the Fast Re-Route (FRR) capability allowing service providers 

to offer high availability and high revenue SLAs (Service Level Agreements). The 

hybrid IGP/MPLS approach relies on the formulation of an innovative Linear 

Programming mathematical model that, while optimizing the network utilization, 

provides optimal user performance, efficient use of network resources, and 100% 

survivability in case of single link failure. The possibility of performing an optimal 

exploitation of the network resources throughout the joint use of the IGP and MPLS 

protocols provides a flexible tool for the ISP (Internet Service Provider) networks traffic 

engineers. The efficiency of the proposed approach was validated by a wide 

experimentation performed on synthetic and real networks. The obtained results showed 

that a small number of LSP tunnels have to be set up in order to significantly reduce the 

congestion level of the network while at the same time guaranteeing the survivability of 

the network. 

They applied this approach to a quadratic-cost single-commodity network design 

problem, comparing the newly developed algorithm with those based on both the 

standard continuous relaxation and the two usual variants of PR relaxation.  

 Harlan et al., (1983) reported on the solution to optimality of ten large-scale zero-one 

linear programming problems. All problem data come from real-world industrial 

applications and are characterized by sparse constraint matrices with rational data. 

About half of the sample problems have no apparent special structure; the remainder 

show structural characteristics that their computational procedures do not exploit 

directly.  
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By today’s standards, their methodology produced impressive computational results, 

particularly on sparse problems having no apparent special structure.  

The computational results on problems with up to two thousand seven hundred and fifty 

(2750) variables strongly confirm their hypothesis that a combination of problem 

preprocessing, cutting planes, and clever branch-and-bound techniques permit the 

optimization of sparse large-scale zero-one linear programming problems, even those 

with no apparent special structure, in reasonable computation times. Their results 

indicate that cutting-planes related to the facets of the underlying polytope are an 

indispensable tool for the exact solution of this class of problem. To arrive at these 

conclusions, they designed an experimental computer system PIPX that uses the IBM 

linear programming system MPSX/370 and the IBM integer programming system 

MIP/370 as building blocks. The entire system is automatic and requires no manual 

intervention.  

In contrast, it is common practice for today’s mixed integer programming solvers to just 

discard infeasible sub problems and the information they reveal.  

In the maximum feasible subsystem problem, given an infeasible linear system Ax b≥ , 

one wishes to find a feasible subsystem containing a maximum number of inequalities. 

This NP-hard problem has interesting applications in a variety of fields. In some 

challenging applications in telecommunications and computational biology one faces 

very large maximum feasible subsystem instances with up to millions of inequalities in 

thousands of variables. Belotti et al., (2005) proposed to tackle large-scale instances of 
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Maximum feasible subsystem using randomized and thermal variants of the classical 

relaxation method for solving systems of linear inequalities.  

They established lower bounds on the probability that these methods identify an optimal 

solution within a given number of iterations. 

 These bounds, which are expressed as a function of a condition number of the input 

data, imply that with probability one these randomized methods identify an optimal 

solution after finitely many iterations. Computational results obtained for medium- to 

large-scale instances arising in the design of linear classifiers, in the planning of digital 

video broadcasts and in the modeling of the energy functions driving protein folding, 

indicate that an efficient implementation of such a method perform very well in 

practice.  

Industrial switching involves moving materials on rail cars within or between industrial 

complexes and connecting with other rail carriers. Planning tasks include the making up 

of trains with a minimum shunting effort, the feasible and timely routing through an in-

plant rail network on short paths, and assigning and scheduling of locomotives under 

safety and network capacity aspects. A human planner must often resort to routine and 

simple heuristics, not least for the reason of unavailability of computer aided 

suggestions. Marco et al., (2005) proposed mixed integer programming models to 

capture the whole process at once in order to obtain optimal or provably good solutions. 

Column generation allows them to work with linear programming relaxations with a 

huge number of variables.  
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This popular technique has almost attained an industry standard level and usually 

enables one to set up appropriate models quickly. The challenge hides in the actual 

implementation which still needs tailoring to the particular application. Their work is 

based on practical data from a German in-plant railroad. 

Gay (1997) told how to make solvers work with AMPL’s solve command. It describes 

an interface library, amplsolver.a, whose source is available from netlib as individual 

files, as gzip-compressed files, or in a single tar file. Examples include programs for 

listing LPs, automatic conversion to the LP dual (shell-script as solver), solvers for 

various nonlinear problems (with first and sometimes second derivatives computed by 

automatic differentiation), and getting C or Fortran 77 for non-linear constraints, 

objectives and their first derivatives. Drivers for various well known linear, mixed-

integer, and nonlinear solvers provide more examples. 

Practical large-scale mathematical programming involves more than just the application 

of an algorithm to minimize or maximize an objective function. Before any optimizing 

routine can be invoked, considerable effort must be expended to formulate the 

underlying model and to generate the requisite computational data structures. AMPL is 

a new language designed to make these steps easier and less error-prone.  

AMPL closely resembles the symbolic algebraic notation that many modelers use to 

describe mathematical programs, yet it is regular and formal enough to be processed by 

a computer system; it is particularly notable for the generality of its syntax and for the 

variety of its indexing operations.  

http://www.netlib.org/ampl/solvers/index.html
http://www.netlib.org/ampl/solvers/index.html
http://netlib.bell-labs.com/netlib/ampl/solvers/index.html
mhtml:file://C:\Users\Ernest\Desktop\Abstracts\AMPL%20Papers%20and%20Reports%20Abstracts%20&%20Download%20Options(25).mht!ftp://netlib.bell-labs.com/netlib/ampl/solvers.tar
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Fourer et al., (1990) implemented a translator that takes as input a linear AMPL model 

and associated data, and produces output suitable for standard linear programming 

optimizers. 

 Both the language and the translator admit straightforward extensions to more general 

mathematical programs that incorporate nonlinear expressions or discrete variables.  

Diverse problems in optimization, engineering, and economics have natural 

formulations in terms of complementarity conditions, which state (in their simplest 

form) that either a certain nonnegative variable must be zero or a corresponding 

inequality must hold with equality, or both. A variety of algorithms have been devised 

for solving problems expressed in terms of complementarity conditions.  

It is thus attractive to consider extending algebraic modeling languages, which are 

widely, used for sending ordinary equations and inequality constraints to solvers, so that 

they can express complementarity problems directly. Ferris et al., (1999) described an 

extension to the AMPL modeling language that can express the most common 

complementarity conditions in a concise and flexible way, through the introduction of a 

single new “complements” operator.  

They presented details of an efficient implementation that incorporates an augmented 

pre-solve phase to simplify complementarity problems, and that converts 

complementarity conditions to a canonical form convenient for solvers.  
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Column generation algorithms are instrumental in many areas of applied optimization, 

where linear programs with an enormous number of columns need to be solved.  

Although successfully employed in many applications, these approaches suffer from 

well-known instability issues that somewhat limit their efficiency. Building on the 

theory developed for non-differentiable optimization algorithms, a large class of 

stabilized column generation algorithms can be defined which avoid the instability 

issues by using an explicit stabilizing term in the dual; this amounts at considering a 

(generalized) augmented Lagrangian of the primal master problem. Since the theory 

allows for a great degree of flexibility in the choice and in the management of the 

stabilizing term, one can use piecewise-linear or quadratic functions that can be 

efficiently dealt with off-the-shelf solvers.  

The effectiveness in practice of this approach is demonstrated by extensive 

computational experiments on large-scale Vehicle and Crew Scheduling problems. 

Also, the results of a detailed computational study on the impact of the different choices 

in the stabilization term (shape of the function, parameters), and their relationships with 

the quality of the initial dual estimates, on the overall effectiveness of the approach are 

reported, providing practical guidelines for selecting the most appropriate variant in 

different situations. Amor et al., (2009). 

A simplified non-linear dynamic model of greenhouse crop growth with constraints on 

the state and the control signal is presented. The weather is assumed to be known. The 

optimization criterion is to minimize the heating cost.  
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The resulting optimal control problem is analyzed from the point of view of the 

Pontryagin maximum Principle. It is shown that this particular problem can be solved 

numerically by linear programming, and that it can also be formulated as a network 

flow problem.  

The solution is presented and it is found that, in cold weather, it is worthwhile deviating 

from the “blueprint” and instead heating during the night when the thermal screens are 

in place and the heat loss small, while maintaining the minimal allowed temperature 

during the daytime. Assuming a perfect weather forecast, heating costs in the analyzed 

case are lowered by 22% , relative to a “blueprint” operation of keeping the temperature 

constant. Gutman et al., (2006). 

The main objective of this work was to evaluate, through Integer Programming, the 

consequences of using Linear Programming with post rounding out of the responses, 

with emphasis on even-aged forest regulation.  

Thus, a simplified forest regulation problem was proposed out and solved by model by 

means of Linear Programming, Linear Programming with post rounding out, and 

Integer Programming. It was concluded that the rounding out of responses obtained by 

the model solved by Linear Programming led to an unviable solution for the proposed 

regulation problem. The same did not occur with the Integer Programming model, 

which presented a viable, optimal regulation plan, showing that, from a mathematical 

viewpoint, responses with rounding out of solution using Linear Programming models 

should not be adopted. Fernandes (2003). 
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2.1 SUMMARY 

In this chapter, other research works done by some scholars’ in connection with Linear 

Programming Problems were reviewed. In the next chapter, we shall put forward 

guidelines used to model and solve Linear Programming Problems.  
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CHAPTER THREE                                               

METHODOLOGY  

3.0 INTRODUCTION 

This part of the work reviews relevant fundamentals that will help us to come out with 

an appropriate linear model and the best way it will be solved. 

3.1 LINEAR PROGRAMMING 

Linear programming is a mathematical technique that deals with the optimization 

(maximizing or minimizing) of a linear function known as objective function subject to 

a set of linear equations or inequalities known as constraints.  It is a mathematical 

technique which involves the allocation of scarce resources in an optimum manner, on 

the basis of a given criterion of optimality. The technique used here is linear because the 

decision variables in any given situation generate straight line when graphed. It is also 

programming because it involves the movement from one feasible solution to another 

until the best possible solution is attained. 

A variable or decision variables usually represent things that can be adjusted or 

controlled. An objective function can be defined as a mathematical expression that 

combines the variables to express your goal and the constraints are expressions that 

combine variables to express limits on the possible solutions. 

Generally we have constrained problems and unconstrained optimization. 
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3.1.1 UNCONSTRAINED OPTIMIZATION 

Unconstrained optimization finds the highest point (or lowest point) on an objective 

function. For optimization to be required there must be more than one solution 

available, any point on the function is a solution, and because the single variable is real- 

valued function, there are an infinite number of solutions. Some kind of optimization 

process is then required in order to choose the very best solution from among those 

available. Best solution can mean the solution that provides the most profit or consumes 

the least of some limited resource. 

  

Figure 3.1 : Simple unconstrained Optimization. 
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3.1.2 CONSTRAINED OPTIMIZATION 

Constrained optimization is much harder than unconstrained optimization. In contrained 

optimization you still have to find the best point of the function, but have to respect 

various constrains while doing so. Unlike unconstrined problems the best solution may 

not occur at the top of the peak or at the bottom of the valley, the best solution might 

occur halfway up a peak when a contraint prohibits movement further up. 

3.2 METHODS OF SOLVING LINEAR PROGRAMMING  

Basically, there are two methods of solving a linear programming problem. These are 

i. The graphical (Geometrical) Method 

ii. The simplex (Algebraic) Method  

3.2.1 THE GRAPHICAL METHOD  

This method of solving Linear Programming Problem is applicable to problems 

involving only two decision variables. The following steps can be followed in solving 

Linear Programming Problem using the graphical approach; 

STEP 1 

Locate and identify or define the decisions variables in accordance with problem given. 

STEP 2 

Formulate the problem in a standard Linear Programming model. The standard 

Linear Programming model consists of the objective function which is either to 

maximize or minimize the constraints which are either inequality or an equation. 
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Generally, if the problem is of maximized type, the inequality used is the less than 

or equal to ( )≤  , unless otherwise specified. On the other hand, minimization 

problem goes with greater than or equal to ( )≥  unless otherwise stated. The non 

negativity constraint must also be stated. 

STEP 3 

Consider each of the inequality as an equation and plot each equation on the graph 

as each will geometrically represents a straight line. 

STEP 4 

Mark the appropriate region.  

If the inequality constraint corresponding to that line is less than or equal to, then 

the region below the line lying in the first quadrant (due to the non negativity of the 

decision variables) is shaded. For the inequality constraint corresponding with 

greater than or equal to, the region above the line in the first quadrant is shaded. 

STEP 5 

The points lying in common region will satisfy all the constraints simultaneously. 

The common region thus obtained is called the feasible region. Feasible Region also 

referred to as Feasibility Polygon is the region common to all constraints in any 

given problem. It contains all the feasible or possible solutions to the problem. 

Points in the feasible region do not contravene any of the constraints.  

There may be a situation where a constraint may not touch the feasible region; such 

constraint is known as redundant constraint.  
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The edges or vertex of the feasible region is called extreme points or corner points 

and these are the points used to obtain the optimal solution. The optimal solution is 

the solution that maximizes or minimizes the objective function as the case may be. 

STEP 6 

To obtain the optimum solution theoretically, a line of equal profits or line of equal 

cost is drawn to represent the objective function after assigning a value say zero for 

the objective function so as to for a straight line passing through the origin. Stretch 

the objective function line till the extreme points of the feasible region.  

In the maximization case this line will stop farthest from the origin or the last 

extreme point the line touches before it completely leaves the feasible region gives 

the optimal solution.  

In the case of minimization, this line will stop nearest to the origin and passing 

through at least one corner of the feasible region or the first extreme point it touches 

before it enters the feasible region is the optimum solution. 

In practice however, we determine the coordinates of the feasibility polygon and 

then substitute these coordinates into the objective function. If the problem is a 

maximum case, the one that gives the maximum value is the optimum solution; 

otherwise the one that gives the minimum value will give the optimal solution. 

STEP 7 

Draw the necessary conclusion. 
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3.2.2 TYPES OF GRAPHICAL SOLUTION 

As the Linear Programming Model is based on the use of linear inequalities, there is the 

likelihood that, in solving the LP problem, there may be an instance when one may 

come across different forms of solutions.  

3.2.2.1 A UNIQUE OPTIMAL SOLUTION 

This is where the solution to the problem occurs at one and only one extreme point of 

the feasible region. That is, the combination that gives the highest contribution or profit 

or the minimum cost or time depending on the problem at hand. 

3.2.2.2 INFINITELY MANY SOLUTIONS 

This is where the optimal solution to the problem is obtained at more than one extreme 

point. This implies that there is no unique solution to the problem. When this happens, 

the assumption made is that the graph of the objective function is parallel to at least one 

of the constraints binding the feasible region. Thus two or more different points may 

give the same value. Thus all points on this line will give an optimal solution.                 

Figure 3.2 shows graphical representation of infinitely many solutions. 
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                         Figure 3.2: graphical representation of many solutions. 

3.2.2.3 UNBOUNDED SOLUTION 

This is a situation where the feasible region is not enclosed by constraints. In such 

situation, there may or may not be an optimal solution.  

However, in all cases if the feasible region is unbounded, then there exists no maximum 

solution but rather a minimum solution. 

To illustrate unbounded solution, let us consider a numerical example. 

       Maximize   1 220 10Z x x= +  

            Subject to 

                            1 2x ≥  

Points satisfying a 
set of constrains 

Points satisfying a 
set of constrains 
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                            2 5x ≤  

                          1 20, 0x x≥ ≥  

Graphing the feasible region as shown in Figure 3.3, it is part of the feasible region that 

is shown since the feasible region extends indefinitely in the direction of the 1x - axis. 

 

   

 

 

 

 

 1 220 10 120x x+ =  

                          

                          Figure 3.3: the feasible region of unbounded solution 

 

3.2.2.4 NO SOLUTION 

There may also be a situation where there is no solution to the problem at hand. In such 

case, there will be no feasible region hence; the bounded area will be empty. 
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1 220 10 80x x+ =  
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3.2.3 EXAMPLE OF A GRAPHICAL METHOD SOLUTION 

 A bicycle company produces two kinds of bicycles by hand. These were mountain bikes 

and street racers. The company wishes to determine the rates at which each type of 

bicycle should be produced in order to maximize profits on the sales of the bicycles on 

the assumption that all the bicycles produced will be sold. 

Two mountain bikes and three racers are produced per day respectively and producing 

each type requires the same amount of time on the metal finishing machine, this 

machine can process at most a total of four bicycles a day of either type. The profit 

generated on the mountain bikes and the racers are GH¢15 and GH¢12 respectively. 

The above problem is formulate as follow       

1x =Number of mountain bikes produce per day 

2x =Number of racers produced per day 

Maximize 1 215 10z x x= +  (in GH¢ per day) 

1 2x ≤ (constraint for mountain bikes per day) 

2 3x ≤ (constraint for racers per day) 

1 2 4x x+ ≤ (production limit for metal finishing machine per day) 

1 0x ≥  and 2 0x ≥  

A graph of the constraints is plotted as follows 
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Figure 3.4: the feasible region of the bicycle company. 
            
 

The limiting value of each of the constraint is shown as a line. Each constraint eliminates 

part of the plane. For example the vertical line labeled 1" 2"x =  is the limiting value of 

the inequality 1 2x ≤ . All points to the right of the line violate the constraint (i.e. the 

infeasible region). The areas eliminated by the constraints are shaded. The unshaded area 

represents points that are not eliminated by any constraint, and is called feasible region.  

 

To find a point in the feasible region gives the largest valued of the objective function. 

One way to do this is to randomly choose feasible points and to calculate the value of the 

objective function at those points, keeping the point that gives the best value of the 

objective.  

Because there are an infinite number of points in the feasible region, this is not very 

effective because there is no guarantee that the best point will be found, or even that an 

objective function value that is close to the best possible value will be found. 
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An efficient search technique based on a couple of simple observations is developed.      

A line of equal profits is drawn to represent the objective function after assigning a value 

say zero for the objective function so as to get a straight line passing through the origin. 

The objective function line is stretched till the extreme points of the feasible region.  

 

Figure 3.5 shows the constant profit lines drawn and indicates the optimal solution. 

 

 

 

 

 

 

 

 

Figure 3.5: Constant Profit Lines for Bicycle Company. 

As shown in Figure 3.5 the points are having the same value of Z (value of the 

objective function) form a line.  

This is easy to understand if Z is replaced by specific value that can be plotted like 

1 215 10Z x x= +  becomes the line 1 215 10 20x x+ = plotted in Figure 3.5. 

Figure 3.5 also shows that all of the constant – profit lines are parallel. This is because 

all of the constant – profit line equations differing only by the selected value of Z . If the 

slope of any constant – profit line is to find, the Z constant will disappear, the slope of 

the entire constant – profit lines are the same.  
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Another observation is that the value of Z is higher for the constant – profit lines 

towards the upper right in Figure 3.5 and the last point is (2, 2) with 50Z = . This is the 

solution to the linear programming, the feasible point that has the best value of the 

objective function. 

 

In some cases, the objective function has exactly the same slope as a face of the feasible 

region and the first contact is between the objective function and this face, as in Figure 

3.6.  

 

Figure 3.6: the slope of the objective function exactly matches the slope of the face of 

the feasible region. 

 

This means that all of the points on that face have the same value of the objective 

function, and all are optimum, that is there are multiple optima. Though, if a face has 

first contact, then the corner points of the face also have first contact.  
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The important idea is that first contact between the objective function and the feasible 

region always involves at least one corner point. Hence, an optimum solution to the 

linear programming is always at a corner point or extreme point. 

 

3.2.4 THE STANDARD FORM LINEAR PROGRAMMING  

Linear programs can have objective functions that are to be maximized or minimized, 

constraints that are of three types ( , , )≤ ≥ = , and variables that have upper and lower 

bounds. An important subset of the possible LPs is the standard form LP. A standard 

form LP has these characteristics: 

 The objective function must be maximized, 

 All constraints are ≤ type, 

 All constraints right hand side are nonnegative, 

 All variables are restricted to non-negativity. 

 

A standard form LP is the simplest form of linear program and most significant property 

of a standard form LP is that the origin (all variables set to zero) is always a feasible  

Corner point. This is because all standard form LPs have the kind of shape illustrated in 

 Figure 3.7.  
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Figure 3.7: the origin is always a feasible extreme point or corner point in a standard 

form LP.  

 

3.3 SLACK AND SURPLUS VARIABLES 

A slack variable is associated with the ( )≤ constraint and represents the amount by which 

the right-hand side of the constraint exceeds its left-hand side. For constraints of the type 

( )≤ , the right-hand side normally represents the limited resource, whereas its left-hand 

side represents the usage of this limited resource by the different activities (variables) of 

the model. In this regard, the slack variable represents the unused amount of the 

resource. 

 

A surplus variable is identified with a ( )≥ constraint and represents the excess of the left-

hand side over the right-hand side. Constraints of the type ( )≥ normally set minimum 

specification requirements, in which case the surplus variable would represent excess 

amount by which the minimum specification is satisfied. 
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To illustrate the slack and surplus variables, let us consider the following problem. 

Minimize 1 23 2z x x= +  

Subject to 

                1 2 4x x+ ≤  

                1 22 2x x+ ≥  

                 1 2, 0.x x ≥  

The optimal solution to the problem above is (1,0).Then substituting the values 

1 1x = and 2 0x =  into the above constraints, we have 

1 0 1 4+ = ≤ ……………………(1) 

2(1) 0 2 2+ = ≥ ………………..(2) 

From the constraints equations (1) and (2), the slack variable with respect to equation (1) 

is 4 1 3− = and the surplus with respect to equation (2) is 2 2 0.− =    

 

3.4 SIMPLEX METHOD 

The simplex method is the name given to the solution algorithm for solving linear 

programming problems developed by George Dantzig in 1947. A simplex is an n -

dimensional convex figure that has exactly 1n +  extreme points. For example, a 

simplex in two dimensions is a triangle, and in three dimensions is a tetrahedron. The 

simplex method refers to the idea of moving from one extreme point to another on the 

convex set that is formed by the constraint set and non-negativity conditions of the 

linear programming problem.  
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The solution algorithm is an iterative procedure having fixed computational rules that 

leads to a solution to the problem in a finite number of steps (i.e., converges to an 

answer). The simplex method is algebraic in nature and is based upon the Gauss-Jordan 

elimination procedure. 

The principle underlying the simplex method involves the use of the algorithm which is 

made up of two phase, where each phase involves a special sequence of number of 

elementary row operations known as pivoting. A pivot operation consist of finite 

number of m  elementary row operations which replace a given system of linear 

equations by an equivalent system in which a specified decision variables appears in 

only one of the system and has a unit coefficient.  

The algorithm has two phases, the first phase of the algorithm, is finding  an initial basic 

feasible solution (BFS) to the original problem and the second phase, consists of finding 

an optimal solution to the problem which begins from the initial basic feasible solution. 

 

3.4.1 FORMULATION OF THE PROBLEM 

The objective function to be Maximized or Minimized is given by 

nnxcxcxcZ +++= ...2211  

Subject to the m  constraints given by 

11212111 b ... ≤+++ nnxaxaxa  
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22222121 b ... ≤+++ nnxaxaxa  

                   . 

                   . 

m2211 b ... ≤+++ nmnmm xaxaxa  

The Non negativity constraints 

0.x . . 0 x,0 n21 ≥≥≥x  

Where jijj bac  and  ,   are all known constants and greater than zero and 1,  2, 3...., mi =  

 and j  1, 2, 3, ..., n= . 

 

3.4.2 ALGORITHM FOR SIMPLEX METHOD 

A basic feasible solution to the system of m linear constraint equations and n variables 

is required as a starting point for the simplex method. From this starting point, the 

simplex successively generates better basic feasible solutions to the system of linear 

equations. We proceed to develop a tabular approach for the simplex algorithm. The 

purpose of the tableau form is to provide an initial basic feasible solution that is 

required to get simlex method started. It must be noted that basic variables appear once 

and have coefficient of positive one. 
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3.4.2.1 SETTING UP INITIAL SIMPLEX TABLEAU   

In developing a tabular approach we adopt these notations as used in the initial simplex 

tableau. 

jc = objective function coefficients for variable j  

ib = right – hand side coefficients (value) for constraint i  

ija =coefficients variable j  in constraint i  

Bc = objective function coefficients of the basic variables 

j jC Z− = the net evaluation per unit of j th− variable 

[ ]A  matrix = the matrix (with m rows and n columns) of the coefficients of the 

variables in the constraint equations. 

 

 

 

 

 

 

 



52 

 

 
Example 3.1 

Maximize 1 26 8Z x x= +  

Subject to 

                1 25 10 60x x+ ≤  

                1 24 4 40x x+ ≤  

                1 2, 0.x x ≥  

Table 3.1: General form – Initial Simplex Tableau. 

 
 Decision variables  Slack Variables  

jc  1c  2c  … nc   0 0 … 0 Solution (object
ive 
functio
n 
coeffic
ients) 

Bc  Basic 
Variab
les 

1x  2x  … nx   1s  2s  … ms   (Headi
ngs) 

0 1s  11a  12a  … 1na   1 0 … 0  (Const
raints 
coeffic
ients) 

… 2s  21a  22a  … 2na   0 1 … 0  
0 … … … … …  … … … …  
 ms  1ma  2ma  … mna   0 0 … 1  
 jZ  1Z  2Z  … mnZ  … 11Z  12Z  … 1mZ  Current 

value of 
objectiv
e 
function 

 

 j jc Z−
 

1 1c Z−
 

2 2c Z−
 

… mn mnc Z−
 

… 
1 11 1c Z−

 
2 21 1c Z−

 
… 1 1n n

c Z−
 

 Reduc
ed cost 
(Net 
contrib
ution/u
nit) 
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The above example can be restated in the standard form as follows: 

Maximize 1 2 1 26 8 0 0Z x x s s= + + +  

Subject to  

               1 2 15 10 60x x s+ + =  

               1 2 24 4 40x x s+ + =       

               1 2 1 2, , , 0x x s s ≥ . 

Transferring to the initial simplex tableau, we have table 3.1.1 

 
                          Table 3.1.1: The Initial Tableau (Example 3.1) 

    Pivot 
column 

   

  jc  6 8 0 0  

 Bc  Basic 
variable 

1x  2x  1s  2s  Solution 

Pivot 
row 

0 1s  5 
 

1 0 60 

 0 2s  4 4 0 1 40 

  jZ  0 0 0 0 0 

  j jc Z−  6 8 0 0  

                                            Pivot element 

 

  

10 



54 

 

The current basic variables always form an identity matrix within the simplex tableau. 

Note that the basic variables form a basis matrix that is an identity matrix (I). 

From the initial tableau, the solution values can be read directly in the rightmost 

column. The values of jz row are calculated by multiplying the elements in the 

Bc column by the corresponding elements in the columns of the [ ]A matrix and 

summing them. Each value in the ( )j jC Z− row represents the net profit or net 

contribution that is added by producing one unit of product (if j jC Z− is positive) or the 

net profit or net contribution that is subtracted by producing one unit of product (if 

j jC Z− is negative). 

 

Since all the jz  values ( j = 1,..,4) are equal to zero in the simplex tableau, we proceed 

to generate a new basic feasible solution (extreme point) that yields a better value for 

the objective function. This is accomplished by selecting one of current non – basic 

variables to be made basic and one of the current basic variables to be made non – basic 

in such a fashion that the new basic feasible solution yields an improved value for the 

objective function. This process is called changing the basis or iterating.  
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3.4.2.2 IMPROVING THE SOLUTION 

The criteria for which a variable should enter or leave basis is summarized as follows: 

Variable Entry Criteria: The variable entry criterion is based upon the values in the 

( )j jC Z−  row of the simplex tableau. For a maximization problem, the variable 

selected for entry is the one having the largest (most positive) value of ( )j jC Z− . When 

all values of  ( )j jC Z−  are zero or negative, the optimal solution has been obtained. 

Variable Removing Criterion: The variable removal criterion is based upon the ratios 

formed as the values ( ib ) in the “right-hand-side” column are divided by the 

corresponding values ( ija  coefficients) in the column for the variable selected to enter 

the basis. Ignore any ija  values in the column that are zero or negative (i.e., do not 

compute the ratio). The variable chosen to be removed from the basis is the one having 

the smallest ratio. In the case of ties for the smallest ratio between two or more 

variables, break the tie arbitrarily (i.e., simply choose one of the variables for removal). 

This variable removal criterion remains the same for both maximization and              

minimization problems.    

 

Applying the variable entry and removal criteria to our present maximization problem 

2x is chosen as the variable to enter basis and 1s leaves the basis. Thus the current basic 

variable 1s is replaced by non – basic variable ( 2x ). 



56 

 

Now that we have determined the new elements in basis and that not in basis we 

proceed to determine the new solution through pivoting 2x into basis and pivoting 1s out 

of basis. The pivoting process involves performing elementary row operations on the 

rows of the simplex tableau to solve the system of constrain equations in terms of the 

new set of basic variables. We initiate the pivoting processing by identifying the 

variable, 2x , to be entered into the basis by denoting its corresponding column as the 

pivot column in Table 3.1.1. Similarly, we identify the variable, 1s , to be removed from 

the basis by specifying the pivot row which is the row it corresponds as in Table 3.1.1. 

The element at the intersection of the pivot column and pivot is referred to as pivot 

element. The two – step pivoting process proceeds as follows: 

Step I:  Convert the pivot element to one by dividing all values in the pivot row by 

pivot element (10). This new row is entered in the next tableau, Table 3.1.2. 

Step II: The objective of the second step is to obtain zeros in all the elements of the 

pivot column, except, of course for the pivot element itself. This is done by elementary 

row operations involving adding or subtracting the appropriate multiple of the new 

pivot row or from the other rows. Performing these calculations, the results are as 

presented in Table 3.1.2. 
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                     Table 3.1.2: Second Simplex Tableau (Example 3.1) 

   Pivot 
column 

    

  jc  6 8 0 0  

 Bc  Basic 
variable 

1x  2x    1s  2s  Solution 

 8 2x  1
2  1   1

10  0 6 

Pivot 
row 

0 2s  
 

0 2
5−  1 16 

  jZ  4 8    4
3  0 48 

  j jc Z−  2 0 4
3−  0  

 

                                                 Pivot element  

 

The second simplex tableau can be constructed as shown in Table 3.1.2. Notice that the 

columns that correspond to the current basic variables  2x  (real variable) and 2s (slack 

variable) form a basis [ ]B which is identity matrix. The values in the jz  row and 

( )j jC Z−  row are computed in the same way as in the initial simplex tableau. Observe 

that j jC Z−  = 2 (> 0) and so the optimal solution has not been obtained and continue 

the iteration since we are maximizing. 

 

2 
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We continue the process by determining the variables leaving the basis and which is 

entering the basis using the variable entry and removing criteria stated earlier. The 

outcome is summarized in Table 3.1.3.  

 
                         Table 3.1.3: Third Simplex Tableau (Optimal Solution)  
 jc  6 8 0 0  

Bc  Basic 
Variables 

1x  2x    1s    2s  Solution 

8 2x  0 1    1
3  1

4−  2 
6 1x  1 0 1

5−     1
2  8 

 jZ  6 8    2
5      1 64 

 j jc Z−  0 0 2
5−     -1  

 

Observe that in this third simplex tableau all  j jc Z−   values are either zero or negative. 

We have thus obtained the optimal solution with 1x = 8, 2x = 2, 1s = 0, 2s = 0 and the 

optimal value of z = 64. 

The optimal solution suggests that the profit will be maximized when eight products of  

1x and two products of 2x  are produced.             

  

3.4.3 SIMPLEX METHOD WITH MIXED CONSTRAINTS 

Some Linear Programming problem may consists of a mixture of ≤, =, and ≥ sign in the 

constraints and wish to maximized or minimized the objective function. Such mixture 

of signs in the constraints is referred to as mixed constraints. 
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The following procedure is followed when dealing with problem with mixed 

constraints. 

STEP1: Ensuring that the objective function is to be maximized. If it is to be 

minimized then we convert it into a problem of maximization by  

Max W = -Min (-Z) 

STEP2: For each constraints involving ‘greater or equal to’ we convert to ‘less than 

or equal    to’ that is, constraints of the form 

                 22222121 b ... ≥+++ nnxaxaxa  

                        Is multiplied by negative one to obtain  

                             22222121 b- ... ≤−−−− nnxaxaxa  

STEP 3:  Replace constraints  

                          22222121 b ... =+++ nnxaxaxa  

                                               by 

                          22222121 b ... ≤+++ nnxaxaxa   

                                               and 

                          22222121 b ... ≥+++ nnxaxaxa  

      Where the latter is written as 

                           22222121 b- ... ≤−−−− nnxaxaxa  
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STEP 4: Form the initial simplex tableau 

STEP 5: If there exist no negative entry appearing on the RIGHT HAND SIDE column 

of the initial tableau, proceed to obtain the optimum basic feasible solution 

STEP 6: If there exist a negative entry on the Right Hand Side column of the initial 

tableau,  

i. identify the most negative at the Right Hand Side , this row is the pivot row 

ii. Select the most negative entry in the pivoting row to the left of the Right 

Hand Side. This entry is the pivot element 

iii. Reduce the pivot element to 1 and the other entries on the pivot column to 0 

using elementary row operation 

STEP 7:   Repeat step 6 as long as there is a negative entry on the Right Hand Side 

column. When no negative entry exists on the Right Hand Side column, 

except in the last row, we proceed to find the optimal solution. 

 

3.5 DUALITY 

Corresponding to any given linear programming problem called the primal problem, is 

another linear programming problem called the Dual Problem. Since a given linear 

programming problem can be stated in several forms (standard form, canonical form, 

etc), it follows that the forms of the dual problem will depend on the form of the primal 

problem. 

A fundamental of the primal dual-relationship is that the optimal solution to either the 

primal or the dual problem also provides optimal solution to the other.  
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A maximization problems with all the less-than or equal to constraint and the non-

negative requirement for the decision variables is said to be in canonical form as in 

example 3.3 used below. If the dual problem has optimal solution, then the primal also 

has an optimal solution and vice versa. The values of the optimal solution to the dual 

and primal are equal 

These are rules for converting the primal problem in any form into its dual 

Table 3.2: Converting of primal problem to dual form 

PRIMAL PROBLEM DUAL PROBLEM 

Maximization Minimization 

Coefficient of objective function Right hand sides of constraint 

Coefficient of  thi   constraint Coefficient of thi  variable 

thi  constraint is an inequality of the form 
≤  

thi variable satisfies  0 

thi  constraint is an equality thi variable is unrestricted 

thi variable is unrestricted thi constraint is an equality 

thi  variable satisfies 0 thi constraint is an inequality of the type  

Number of variables Number of Constraints  

Number of Constraint Number of variables 

 

Note: Tableau can be read both ways 
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Example 3.2 

(a) Find the dual of the LP problem. 

Maximize 1 2 33 4z x x x= + +  

Subject to 

             1 2 33 3 18x x x+ + ≤  

             1 2 32 2 4 12x x x+ + =  

             1 3 2, 0,x x x≥ unrestricted 

The dual is given by 

Minimize 1 218 12u w w= +  

 Subject to 

              1 23 2 3w w+ ≥  

              1 23 2 1w w+ =  

               1 24 4w w+ ≥  

              1 20,w w≥  unrestricted. 
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 3.6 UNCONSTRAINED VARIABLES 

In many practical situations, we may want to allow one or more of the decision 

variables, the jx  to be unconstrained in sign, that is either positive or negative.  

We have already noted that the use of the simplex method requires that all the decision 

variables must be non negative at each iteration. However, by some simple algebraic 

manipulations, we can convert a linear programming problem involving variables that 

are unconstrained in sign into an equivalent problem having only non negative 

variables. This is accomplished by expressing each of the unconstrained variables as the 

difference of two non negative variables.  

 Assume the variable 1x  to be unconstrained in sign.  

Define two new variables 0jx′ ≥  and 0jx′′ ≥   

Let 1 1x x x′ ′′= − .  

Thus, when 1 10 and 0x x′ ′′≥ ≥  

 1 1x x′ ′′≤  then 1 0x ≤ , and the desired result has been achieved. The unconstrained 

variable must be replaced by the two new variables wherever it appears in the linear 

programming model that is in both the objective function and the constraint set. 
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3.7 DEGENERACY 

A linear program is said to be degenerate if one or more basic variables have a value 

zero. This occurs whenever there is a tie in the minimum ratio prior to reaching the 

optimal solution. This may result in cycling, that is the procedure could possibly 

alternate between the same set of non optimal basic feasible solutions and never reach 

the optimal solution. 

In order to overcome this problem, the following steps may be used to break the tie 

between the key row tie 

1. Select the rows where the ties are found for determining the key row. 

2. Find the coefficient of the slack variable and divide each coefficient by the 

coefficients in the key column in order to break the tie.  If the ratios at this stage do not 

break the tie, find the similar ratios for the coefficient of the decision variables. 

3. Compare the resulting ratio column by column 

4. Select the row which has the smallest ratio and this now becomes the key row. 

 

3.8 TYPES OF SIMPLEX METHOD SOLUTIONS 

The simplex method will always terminate in a finite number of steps with an indication 

that a unique optimal solution has been obtained or that one of three special cases has 

occurred. These special cases are:  

1. Alternative optimal solutions 



65 

 

2. Unbounded solutions 

3. Infeasible solutions 

 

3.8.1 ALTERNATIVE OPTIMAL SOLUTIONS 

The simplex method provides a clear indication of the presence of alternative or 

multiple, optimal solutions upon its termination. These alternative optimal solutions can 

be recognized by considering the ( )j jc Z− row. Assume that we are maximizing and 

remember that when all ( )j jc Z− values are all negative, we know that an optimal 

solution has been obtained. Now, the presence of an alternative optimal solution will be 

indicated by the fact that for some variable not in the basis, the corresponding 

( )j jc Z− value will equal zero.  

Thus, this variable can be entered into the basis, the appropriate variable can be 

removed from the basis, and the value of the objective function will not change. In this 

manner, the various alternative optimal solutions can be determined. 

3.8.2 UNBOUNDED SOLUTIONS 

In the case of an unbounded solution, the simplex method will terminate with the 

indication that the entering basic variable can do so only if it is allowed to assume a 

value of infinity (+∞ ). Specifically, for a maximization problem we will encounter a 

simplex tableau having a non basic variable whose  ( )j jc Z−  row value is strictly 

greater than zero.  
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And for this same variable all of the ija  elements in its column will be zero or negative 

value (i.e. every coefficient in the pivot column will be either negative or zero). Thus, in 

performing the ratio test for the variable removal criterion, it will be possible only to 

form ratios having negative numbers or zeros as denominators. Negative numbers in the 

denominators cannot be considered since this will result in the introduction of a basic 

variable at a negative level (i.e. an infeasible solution would result). Zeros in the 

denominator will produce a ratio having an undefined value and would indicate that the 

entering basic variable should be increased indefinitely (i.e. infinitely) without any of 

the current basic variables being driven from the basis.  

Therefore, if we have an unbounded solution, none of the current basic variables can be 

driven from solution by the introduction of a new basic variable, even if that new basic 

variable assumes an infinitely large value.  

Generally, arriving at an unbounded solution indicates that the problem was originally 

misformulated within the constraint set and needs reformulation.  

 

3.8.3 INFEASIBLE SOLUTION 

An indication that no feasible solution is possible will be given by the fact that at least 

one of the artificial variables, which should be driven to zero by the simplex method 

will be present as a positive basic variable in the solution that appears to be optimal. For 

example, assume we are solving a maximization problem in which artificial variables 

are required. Then, at some iteration we achieve a solution in which all the 
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( )j jc Z− values are zero or negative, but which has one or more artificial variables as 

positive basic variables. 

When an infeasible solution is indicated the management science analyst should 

carefully reconsider the construction of the model, because the model is either 

improperly formulated or two or more of the constraints are incompatible. 

Reformulation of the model is mandatory for cases in which the no feasible solution 

condition is indicated. 

 

3.9 SENSITIVITY ANALYSIS 

Suppose that you have just completed a linear programming solution which has a major 

impact. How much will the result change if your basic data is slightly wrong? Will that 

have a minor impact on your result?  Will it give a completely different outcome, or 

change the outcome only slightly? 

These are the kind of questions addressed by sensitivity analysis. It allows us to observe 

the effect of changes in the parameters in the LP problem on the optimal solution. It is 

also useful when the values of the problem parameters are not known. Formally, the 

question is this; is my optimum solution sensitive to a small change in one of the 

original problem coefficient. This sort of examination of impact of the input data on 

output results is very crucial. The procedure and algorithm of mathematical 

programming are important, but the problems that really appear in practice are usually 
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associated with data: getting it all, and getting accurate data. What is required in 

sensitivity analysis is which data has significant impact on your results. 

There are several ways to approach sensitivity analysis. If your model is small enough 

to solve quite quickly, you can simply change the initial data and solve the model again 

to see what results you get. At the extreme, if your model is very large and takes a long 

time to solve, you can apply formal methods of classical sensitivity analysis. The 

classical methods rely on the relationships between the initial tableau and any later 

tableau to quickly update the optimum solution when changes are made to the 

coefficient of the original tableau.  Finally on the state of sensitivity analysis: you are 

typically limited to analyzing the impact of changing only one coefficient at a time. 

There are few accepted techniques for changing several coefficients at once. 

 

3.9.1 CHANGE OBJECTIVE FUNCTION COEFFICIENT 

A change of the coefficients of the objective function does not affect the values of the 

variables directly. So as we change the values of the objective function coefficients we 

should ensure that the optimality conditions are not violated. The range of values over 

which an objective function coefficient  may vary without any change in the optimal 

solution is known as the range by those coefficient values that maintain ( 0).j jc z− ≤  

The computation for the range of optimality can be categorized into two; that for the 

basic variables and also for the non-basic variable. 

 



69 

 

Example 3.3 

Maximize 1 250 40z x x= +  

  Subject to 

               1 23 5 150x x+ ≤  

              2 20x ≤  

               1 28 5 300x x+ ≤  

              1 2, 0.x x ≥  

   Figure 3.3: Final Simplex Tableau (Example 3.3) 

  1x  2x  1s  2s  3s   

Basic 

Variables 

BC  50 40 0 0 0 Solution 

2x  40 0 1   8
25

 0 3
25

−  12 

2s  0 0 0 8
25

−  1   3
25

 8 

1x  50 1 0 5
25

−  0   5
25

 30 

 jz  50 40   14
5

 0   26
5

 1980 

 j jc z−  0 0 14
5

−  0 26
5

−   
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For any non-basic variable, the range of optimality will be ( )j jc Z−∞ < ≤  in the 

maximization problem. 

For the basic variable 1x and 2x  the lower and upper limits of the coefficient within 

which the different solutions remains optimal can be computed by finding the ratio of 

( )j jc z−  to jx  values in the final simplex tableau. The smallest positive value for the 

ratio gives the extent to which it can be increased and the negative value with the 

smallest absolute value gives the extent to which it can be decreased. This is illustrated 

below. 

1x  1 0 5
25

−  0   5
25

 

j jc z−  0 0 14
5

−  0 26
5

−  

1( ) /j jc z x−      14    -26 

 

The range of optimality for 1c is 124 64c≤ ≤  

 

3.9.2 CHANGING A RIGHT HAND SIDE CONSTRAINT.  

Right hand side constraints normally represent a limitation on the resources, and are 

likely to change in practice as business conditions change. An overall procedure for 

examining proposed changes to the right hand side of constraints is to check whether 

the proposed changes is within the allowable range of changes for the right hand side of 
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the constraint. So an optimal tableau will continue satisfying the optimal conditions 

regardless of the altered values of the right hand side coefficients. The change in value 

of the objective function per unit increase in the constraints right hand side value is 

known as shadow price. When Simplex methods is used to solve LP problem, the values 

of the shadow price are found in the jZ  of the final Simplex tableau. 

Let us again consider the example 3.3 

Maximize 1 250 40z x x= +  

Subject to 

              1 23 5 150x x+ ≤  

              2 20x ≤  

             1 28 5 300x x+ ≤  

             1 2, 0x x ≥        

Basic BC  50 40 0 0 0 Solution 

2x  40 0 1  8
25

 0 3
25

−  12 

2s  0 0 0 8
25

−  1  3
25

 8 

1x  50 1 0 5
25

−  0  5
25

 30 

 jz  50 40  14
5

 0  26
5

 1980 

 j jc z−  0 0 14
5

−  0 26
5

−   
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The shadow prices with respect to each of the constraints are the jz  values of the 

variables 1 2,s s  and 3s  respectively: since they represent the unused resources. 2s  has an 

optimal value of 8 which means that the second constraint has an excess and so 

additional resources are unnecessary hence shadow price is 0.  

The constraint with 1 0s =  the user is to pay the right hand side up to 14
5

. This means 

that in the problem above it would not allow any slack to occur in the first constraint 

unless it is worth more than 14
5

. 

For maximization problem with a greater than or equal to constraint, the value of the 

shadow price will be less or equal to zero because one unit increase on the right hand 

side cannot help. It makes it more difficult to satisfy the constraint. As a result, the 

optimal value of the objective function will decrease when the right hand value of the 

greater than constraint is increased. The shadow price gives a negative number because 

of the decrease. The shadow price is given by the negative of jz  values of the 

corresponding artificial variable in the final Simplex tableau.  

The range of feasibility for a less than or equal to constraint is given by 

11

22

0
0

0

j

j

m mj

ab
ab

b a

    
    
    + ≥    
             

 
 

b = current optimal solution 
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ija = the column corresponding to the slack variable associated with the constraint. 

The range can be established by the maximum of the lower limits and the minimum of 

the upper limits. 

From the above final simplex tableau suppose that the range of constraints 1 is to be 

determined then we have 

1

1 1

1

12 8 / 2512 8 / 25 0
8 8 / 25 8 8 / 25 0
38 5 / 25 030 5 / 25

b
b b

b

+ ∆      
      + ∆ − = − ∆ ≥      

      − − ∆      

 

1 1

1 1

1 1

12 8 / 25 0 37.5

8 8 / 25 0 25

30 5 / 25 0 150

b b

b b

b b

⇒ + ∆ ≥ → ∆ = −

− ∆ ≥ → ∆ =

− ∆ ≥ → ∆ =

 

Applying the conditions we will have -37.5 1b≤ ∆ ≤  25 the initial amount on the right 

hand side is 150 it therefore follows that 

137.5 150 25 150b− + ≤ ∆ ≤ +  

⇔ 1112.5 175b≤ ≤  which is the range of optimality for ib  
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3.9.3 SIMULTANEOUS CHANGES 

If two or more objective functions coefficient or resources (right-hand-side) are to be 

changed then for each coefficient or constraint, compute the percentage or allowable 

increase or decrease represented by the change. If the sum of the percentage for all 

changes does not exceed 100%, then it satisfies 100% rule and the changes are 

allowable. 

 

3.10 SUMMARY 

In this chapter, Linear Programming and Simplex method were discussed. The analysis 

on the Linear Programming and Simplex method also form part of the discussion in this 

section of the work. In the next chapter, the data collected from the bank will be used to 

formulate the linear model and solve using the Simplex method. 
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                                        CHAPTER FOUR                                                                        

DATA COLLECTION AND MODELING  

4.0 INTRODUCTION 

In this chapter we analyze the data taken from Atweaban Rural Bank, A model is 

proposed and solved to help Atweaban Rural Bank maximize its net profit. 

A banking institution, Atweaban Rural Bank, is in the process of formulating a loan 

policy involving a total of GH¢120,000. Being a full-service facility, the bank is 

obligated to grant loans to different clientele. The table 4.1 below provides the type of 

loans, the interest rate charged by the bank, and the probability of bad debt as estimated 

from past years. 

Table 4.1: Loans available to the Atweaban Rural Bank.  

Type of Loan Interest rate Probability of bad debt 

Salary 

Commercial 

Farm 

Funeral 

Susu 

0.28 

0.3 

 0.3 

 
0.4 
 
0.3 

 

0.02 

0.12 

0.2 

0.01 

0.03 
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Bad debts are assumed unrecoverable and hence produce no interest revenue. For policy 

reasons, there are limits on how the bank allocates the funds. The competition with 

other banking institutions in the area requires that the bank: 

 Allocate at least 50%  of the total funds to salary loan and commercial loan. 

 To optimize profit salary loan must be at least greater than 50%  of the farm 

loan, funeral loan and susu loan.  

 The sum of Salary loan and susu loan must be at least greater than 50%  of 

commercial loan, farm loan and funeral loan. 

 The sum of farm loan and funeral loan must be at least 25%  of the total funds.   

 The sum of commercial and farm loans must be at least 29%  of the total funds. 

 Allocate at least 5%  of the total funds to farm loan. 

 The bank also stated that the total ratio for the bad debt on all loans may not 

exceed 0.05. 

4.1 PROPOSED MODEL 

The variables of the model can be defined as follows: 

Salary loan (in thousands of cedis) 

2x =   Commercial loan 

3x =   Farm loan 

1x =
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4x =   Funeral loan 

5x =   Susu loan 

The objective of the Atweaban Rural Bank is to maximize its net return comprised of 

the difference between the revenue from interest and lost funds due to dad debts. 

Objective function: 

( ) ( ) ( ) ( ) ( )1 2 3 4 5

1 2 3 4 5

0.28 0.98 0.3 0.88 0.3 0.8 0.4 0.99 0.3 0.97
0.02 0.12 0.2 0.01 0.03

Maximize Z x x x x x
x x x x x

= + + + +

− − − − −
 

 1 2 3 4 5. 0.2544 0.144 0.04 0.386 0.261Max Z x x x x x= + + + +  

The problem has nine constrains: 

1. Limit on total funds available 

1 2 3 4 5 120000x x x x x+ + + + ≤  

2. Limit on Salary and Commercial loans 

 

 

3. Limit on salary loan compare to farm, funeral and susu loans 

1 3 4 5

1 3 4 5

0.5( )

0.5 0.5 0.5 0

x x x x

x x x x

≥ + +

− − − ≥
 

1 2

1 2

0.5 120000

60000

x x

x x

+ ≥ ×

+ ≥
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4. Limit on Salary and Susu loans compare to commercial, farm and funeral loans 

1 5 2 3 4

1 2 3 4 5

0.5( )

0.5 0.5 0.5 0

x x x x x

x x x x x

+ ≥ + +

− − − + ≥
 

5. Limit on farm and funeral loans 

 

 

6. Limit on commercial and farm loans 

 

       7.  Limit on farm loan 

          

3

3

0.05 120000

6000

x

x

≥ ×

≥  

        8. Limit on bad debts 

1 2 3 4 5

1 2 3 4 5

0.02 0.12 0.2 0.01 0.03 0.05x x x x x
x x x x x

+ + + +
≤

+ + + +
 

1 2 3 4 50.03 0.07 0.15 0.04 0.02 0x x x x x− + + − − ≤  

  

2 3

2 3

0.29 120000

34800

x x

x x

+ ≥ ×

+ ≥

3 4

3 4

0.25 120000

30000

x x

x x

+ ≥ ×

+ ≥
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  9.  Non-negativity 

   1 2 3 4 50, 0, 0, 0, 0.x x x x x≥ ≥ ≥ ≥ ≥  

The following is the output returned by the management Scientist solver for the above 

model. 

Maximize 1 2 3 4 50.2544 0.144 0.04 0.386 0.261Z x x x x x= + + + +  

Subject to: 

        1)  1 2 3 4 5 120000x x x x x+ + + + ≤  

        2)  1 2 60000x x+ ≥  

        3)  1 3 4 50.5 0.5 0.5 0x x x x− − − ≥  

        4)  1 2 3 4 50.5 0.5 0.5 0x x x x x− − − + ≥  

        5)

 

3 4 30000x x+ ≥  

        6)  2 3 34800x x+ ≥  

        7)  3 6000x ≥  

        8)  1 2 3 4 50.03 0.07 0.15 0.04 0.02 0x x x x x− + + − − ≤  
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4.2 OPTIMAL SOLUTION 

Objective Function Value =      32068.4800 

      Variable             Value             Reduced Costs    

   --------------     ---------------      ------------------  

         1x                 31200.0000                 0.0000 

         2x                 28800.0000                 0.0000 

         3x                  6000.0000                  0.0000 

         4x                 45200.0000                 0.0000 

         5x                  8800.0000                  0.0000 

     Constraint        Slack/Surplus           Dual Prices     

   --------------     ---------------      ------------------ 

         1                     0.0000                  0.3443 

         2                  1200.0000                0.0000 

         3                     0.0000                 -0.0833 

         4                 21200.0000               0.0000 

         5                     0.0000                 -0.2354 
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         6                     0.0000                 -0.1106 

         7                     0.0000                 -0.0066 

         8                     4.0000                  0.0000 

OBJECTIVE COEFFICIENT RANGES 

   Variable       Lower Limit       Current Value     Upper Limit 

 ------------   ---------------    ---------------  --------------- 

      1x                  0.0190             0.2544           0.2610 

      2x                  0.0334             0.1440           0.3794 

      3x          No Lower Limit      0.0400           0.1506 

      4x                  0.2610             0.3860   No Upper Limit 

      5x                  0.2544             0.2610           0.3860 

RIGHT HAND SIDE RANGES 

  Constraint      Lower Limit       Current Value     Upper Limit 

 ------------   ---------------    ---------------  --------------- 

       1            119880.0000        120000.0000      122400.0000 

       2         No Lower Limit             0.0000        1200.0000 
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       3            -13200.0000             0.0000         300.0000 

       4         No Lower Limit         30000.0000     51200.0000 

       5             26000.0000         34800.0000       34833.3333 

       6              4800.0000          6000.0000        6057.1429 

       7             59600.0000         60000.0000       68800.0000 

       8                -4.0000             0.0000   No Upper Limit 

 

4.3 DISCUSSION OF RESULTS 

There are several things to observe about this output data. The reduced costs for 

1 2 3 4 5, , ,x x x x and x are zero. This is because the reduced costs are the objective function 

coefficients of the original variables, and since  1 2 3 4 5, , ,x x x x and x  are basic at the 

optimum, their objective function coefficients must be zero when the tableau is put into 

proper form. This is always true, either the variable is zero (non-basic), or the reduced 

cost or dual price is zero. It is also seen that the pattern holds for the slack and surplus 

variables too. The dual prices for constraints (1), (3), (5), (6) and (7) are nonzero at the 

optimum because they correspond to the five active constraints at the optimum, hence 

their slack variables are non-basic (value is zero), so the dual prices can be nonzero. 

When both the variable and the associated reduced cost or dual prices are zero, then we 

have either degeneracy if the variable is basic or multiple optima if the variable is non-

basic. 
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It must be noted that the optimal solution with 1x =  GH¢31200, 2x =  GH¢28800,     

3x =GH¢6000, 4x =GH¢45200 and 5x =  GH¢8800 show that the bank should allocate 

funds to all the types of loans since none of them with value of zero. 

 

4.4 SUMMARY 

In this chapter, data collected from the bank were used to formulate the proposed model 

and the output results were also discussed. The next chapter, which supposes to be the 

final chapter of the work, presents the conclusions and recommendations of the study.   
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CHAPTER FIVE                                                              

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

 This chapter presents the conclusions drawn from the study and makes some 

recommendations to help the Atweaban Rural Bank in order to optimize the profit 

margin.    

5.1 CONCLUSIONS 

Reading through this work, we realize most banks in the country do not have any 

scientific method for given out loans. Due to this, most banks are not able to optimize 

their profits, which intern affects their socio economic contributions in the areas in 

which they operate. A model has also been proposed to help Atweaban Rural Banks 

disburse their funds available for loans. Our model shows that if Atweaban Rural Bank 

adapts to the model they can be able to make an annual profit of GH¢32068.4800 on 

loans alone. Hence we conclude that the scientific method we used to develop our 

proposed model can have a dramatic increase in the profit margin of the Bank should 

they adapt to it.  
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5.2 RECOMMENDATIONS 

From the conclusion we realized that using scientific methods to give out loans helps 

banks to increase their profits. Hence we recommend Atweaban Rural Bank should 

adapt this model in their allocation of funds reserved for loans.  

Secondly, it is recommended that Banks be educated to employ mathematicians to use 

scientific methods to find an appropriate mathematical model to help them disburse 

funds of the banks more efficiently.  

Lastly, it is recommended that apart from loan disbursement, banks and other financial 

institutions should employ scientific methods and mathematical methods in most of the 

businesses they conduct.  

5.3 SUMMARY 

In this chapter of the work which is also the final chapter, discussed conclusions and 

some recommendations of the entire work.   
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