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Abstract 
There has been considerable amount of attention rendered to claims reserving 

methods over the last few decades in actuarial science. The commonly used 

method of estimating claims reserves is the chain ladder technique. The 

underlying principle of the chain-ladder technique is that no underlying pattern 

to the run-off, and that each development year should be allocated a separate 

parameter. Applicable to a wide range of data, the chain ladder could alternatively 

be condemned for having too many parameters and also assumptions have to be 

used to estimate reserves beyond the latest development year already observed. 

This research seeks to explain an approach to model the development of claims 

run-off, using reversible jump Markov Chain Monte Carlo (RJMCMC) method. The 

study uses claims data from a renowed Insurance Company in Ghana; Win- 

BUGS the tool used in simulating the reversible jump Markov Chain Monte Carlo 

(RJMCMC) method. The Bayesian methods are found to be better than the Over-

dispersed Poisson model with lower predictive errors. 
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Chapter 1 

Introduction 

1.1 Background Study 

The management of loss reserved that seals up future payments from claims is a 

basic and central department within the industry of insurance. This very 

department is technically known as loss reserves accounting as it represents an 

involvement of complicating calculations primarily because losses are continuous 

and comes in at any time ranging from currently to several years down the road. 

This concept of loss reserving is basically an estimation on an insurer’s liability 

from future claims; fundamentally, the allowance of an insurer to cover claims 

made against policies that it guarantees. Therefore when an insurer guarantees a 

new policy, there is immediately a recording of a premium payable articulating an 

asset and a claim obligation which represents a liability and it is this liability 

which is considered part of the unpaid losses account signifying the loss reserve. 

Principally, there is a fund set up for future compensation of policy holders. The 

amount is usually considered as provision for unsettled claims or simply claims 

reserves. 

Modeling of claims reserves in non-life insurance is a subtle theme because the 

insurer requires an estimation precisely the amount of reserves to have in their 

stock; if the reserves are held in relatively higher amounts than actual, there is the 

possibility of lower profitability which has the capacity to lower the 

competitiveness of the company (insurer) on the business market. Meanwhile 

holding lower reserves has the potential of leaving the company in financial 

turmoil primarily due to bankruptcy. The forwarding theme in the estimation of 

these reserves is to compute the future amounts payable from an insurer or 
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reinsurer’s claims popularly known in actuarial science literature as Incurred But 

Not Reported (IBNR) claims according to Bornheutter and Ferguson (1972). 

It is important in prediction of future claims to run the analysis separately from 

the insurer’s already dissimilar existent cases or portfolios which are dependent 

on the type of insurance. Classically, a structure that has been established in claim 

reserving is the representation of the historical payments from a single line of 

business in a triangular form as this allows practitioners to track the time 

development of payments. The estimation of the future claims are based on this 

triangular structure known as the run-off triangle. Mathematically, this is a matrix 

that contains claims or loss data where each row corresponds to a year of accident 

and each column corresponds to the delay; the delay being the time duration 

between the year of accident and the year that the claim was made. A lot of 

literature has been devoted to claims reserving using run-off triangles by England 

and Verrall (2000) and Gelman et al. (2000). 

Two very fundamental yet simple statistical methods highly staged for forecasting 

claims reserves are the Chain Ladder Method (CLM) and the 

BornhuetterFerguson method. The CLM makes use of data in two dimension array 

representing happenings and development of claims with the upper left side of 

the modeling matrix containing known values (previous) and these are used to 

forecast the remaining figures in the modeling matrix (future). The Bornhuetter-

Ferguson is a Bayesian Method that incorporates an independently deprived prior 

estimate of ultimate expected losses as well as estimates generated by the same 

kind of modeling matrix. The credibility factor is used to weight the estimates 

with preference to more reliable projections. 

These fundamental and traditional methods such as the CLM and the 

BornhuetterFerguson methods are deterministic in nature with no elements of 
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probability at all as stated by England and Verrall (2002a). Over the past two and 

a half decades however, there has been a lot of increasing interest in stochastic 

reserving methods although these have only been applied by a handful of experts 

in the field of actuarial science England and Verrall (1999). Two things are 

necessary when modeling claims reserves; i.e. the provision of a ’best estimate’ of 

the considered reserve and secondly a provision of how precise this estimate is 

actually. Deterministic models are able to satisfy the first necessity but fail to 

provide the second. These stochastic models in addition to the first provision also 

present a precision of the estimate given by bringing on board the assessment of 

the variability of the claims reserves. 

With reference to standards, the general approach is firstly specifying a model, i.e. 

finding an estimate of the outstanding claims under that model using the 

Maximum Likelihood and finally using the built model to find the precision of the 

estimated structure. On the other hand stochastic claims reserving first 

constructs the model and a method that produces the actuary’s best estimate and 

then uses this model to assess the uncertainty of the estimate. There have been 

several research into finding the best estimate using the stochastic form of the 

Chain Ladder Method by Verrall (2000), Mack and Venter (2000) and England and 

Verrall (2000). 

A host of stochastic claims reserving models has been documented by Scollnik 

(2001) with majority of the constructed stochastic models being based on 

existing deterministic claims reserving models. The primary stage in the effort 

towards the widespread application of stochastic reserving methods was to 

demonstrate how the most often applied practical approaches can be formulated 

in statistical models which was encouraged by England and Verrall (2000) who 

included the use of the Chain Ladder technique. 
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1.2 Problem Statement 

Within the application of the Chain Ladder method, there is no underlying pattern 

in the run-off and each development year is given a separate parameter. The merit 

is that the Chain Ladder technique can be applicable to a wide range of data with 

the demerit being that the methodology has relatively voluminous parameters. 

The implication here is that some other assumption has to be applied in the 

modeling of any potential claims beyond the latest development year already 

observed. Technically, this is referred to as the modeling of the tail by actuaries, 

or otherwise application of tail factors. 

This problem of modeling the run-off tail has been investigated by many 

researchers using a whole range of techniques. The latest is the use of Markov 

Chain Monte Carlo (MCMC) technique through the application of Bayesian 

methods which has totally changed the trends involved in modeling run-off tails 

England and Verrall (2001a), Gelman et al. (2000), Lunn et al. (1998) and Lunn 

and Aarons (1995). In spite of this innovation there is still no room for the 

consideration of models which are trans-dimensional in nature. This means that 

it is impossible to consider models where the actual number of variables are not 

known Lunn et al. (2009a) 

1.3 Objectives of the study 

Based on the stated problem, this research will aimed at investigating the 

modeling the tail of a run-off triangle using a reversible jump Markov Chain Monte 

Carlo (RJMCMC) method. The specific objectives will be: 

1. To determine the developments factors of a chain ladder technique method. 

2. To estimate the reserves of a local claims run-off data using chain 

laddermethod. 
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3. To model the tail of a local claims run-off data using a reversible 

jumpMarkov Chain Monte Carlo (RJMCMC) method. 

4. To find the prediction error of the reserve estimates given by the boththe 

chain ladder method and reversible jump Markov Chain Monte Carlo 

method. 

1.4 Research Questions 

The following research questions are posed in relation to addressing the problems 

stated in the modeling of claims run-off triangle and the objectives outlined for 

this research. 

1. What are the developments factors of the chain ladder technique.? 

2. How is the reserves of a local claims run-off data estimated using 

chainladder method? 

3. How is the tail of local claims run-off data modeled using reversible 

jumpMarkov Chain Monte Carlo(RJMCMC) method? 

4. What is the prediction error of the reserve estimates given by both the 

chainladder and the reversible jump Markov Chain Monte Carlo method? 

1.5 Research Methodology 

The research will investigate the modeling of tail of run-off using a reversible 

jump Markov Chain Monte Carlo (RJMCMC) method. The study will therefore 

narrow on by reviewing stochastic modeling of a claims run-off triangle that are 

existent in literature and consider specifically the stochastic model used in this 

study. Secondly an overview of Markov Chain Monte Carlo (RJMCMC) methods 

will be outlined. The foregoing methodologies will be employed and a numerical 



 

6 

example will be outlined. The research will feature the use of WinBUGS as the tool 

for running the required simulations. 

1.6 Significance of the Research 

As recent as the concept of stochastic claims reserve modeling is by serving as a 

significant task needed within general insurance actuary, its practicality has been 

downplayed with majority of the practitioners sticking to very traditional 

methods as a means of claims reserve modeling. As discussed within the 

introduction however, these have the disadvantage of not providing the exact 

precision of the estimate provided. To some extent this tuned may be played with 

experience but why does try luck with experience when a few steps within 

modeling of the same phenomenon can help bridge the gap. This research offers 

an extension of that part of literature by providing an overview of the entire 

stochastic claims modeling process and secondly providing a justification for its 

application to be now widespread within the experts’ environment. 

1.7 Limitation of Study 

The insurance sector, just as others consists of the life and non-life insurance; as 

the properties of life insurance, most importantly are distinct from non-life. This 

thesis exclusively dealt with the non-life insurance. Run off triangles usually arise 

particularly in non-life insurance where it may take some time after a loss until 

the full extent of the claims which have to be paid are known. Another limitation 

is that the reserves are unadjusted for inflation and undiscounted. The term 

reserve is used as a synonym for the sum of the Reported But Not Settled 

(RBNS) and the Incurred But Not Reported (IBNR). 
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1.8 Organization of the Study 

The study contains five chapters altogether. The first chapter is the introduction 

which provides a brief background study, the problem statement, objectives based 

on which the study was organized, the research questions, the research 

methodology, significance and how the entire research has been organized. The 

literature review of mathematical models in both deterministic and stochastic 

claims reserve modeling is featured in chapter two. The third chapter deals with 

the general research design and precisely how the methods used in the research 

are explored and method of data analysis together with the organizational 

presentation of results. The actual presentation and analysis of the models are 

documented in the fourth chapter along with the necessary discussion. The final 

chapter is chapter five which provides the summary and findings, conclusion and 

recommendations for the future study.  
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Chapter 2 

Literature Review 

2.1 Introduction 

There has been considerable quantum of research with respect to claims 

reserving techniques, initially centering deterministic models and quite recently 

more focused on stochastic claims reserve modeling. The concept of stochastic 

claims reserve modeling has been celebrated with several contributions primarily 

due to the solid support from management of various companies via appropriate 

regulations. This chapter provides a review of a number of studies related to the 

modeling claim reserves with respect to insurance companies. The chapter covers 

basic terminologies as well as concepts such as modeling insurance claims, 

history of insurance and its management. There is highlight of acquisition of 

claims processes and also features development of methodologies employed in 

investigating claims reserve modeling. 

2.2 Basic Terminologies in Claims Reserve Mod- 

eling 

High demands for the protection of risk has been the driving force behind the 

business and transition of insurance. The phenomenon associated with this high 

demand is nothing new and is pegged up because of uncertainty associated with 

all forms of investments. By insurance, individuals faced with considerable and 

unpredictable losses are provided a platform to reduce the variability of losses; 

this is done by the formation of a group which shares the losses incurred by the 
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group thus reducing individual damages and losses. Insurance can be defined 

simply as a risk transfer mechanism. 

It is simply a basic form of risk management which provides protection against 

anticipated future loss to life or physical assets. Traditionally, it is registered as an 

institution that processes a promise to reimburse the loss of damage to the 

insured by the insurer on payment agreed by the insured. The two main branches 

under insurance are life and non-life insurance Mikosch (2009). Life insurance as 

the name indicates is related to human life; basically, it is insurance cover that 

provides an amount to an insured individual or their nominated beneficiaries 

upon a certain event such as death of the individual who is insured. This consists 

of products such as whole life, endowment, medical and health insurance covers. 

One unique characteristic of life insurance is that it is long term with periodic 

(monthly, quarterly, annually, etc.) payments. 

Non-life insurance on the other hand covers any form of insurance apart from the 

products covered by life insurance. The coverage period is one year with on-time 

premium payments. The form of products here include property insurance 

(commercial and private property against fire, water, business interruption, 

flooding, etc.), motor insurance, accident insurance, liability insurance, marine 

insurance, travel insurance, legal protection, credit insurance, aviation, epidemic 

insurance, etc. Reid (1978). Life and non-life insurances are modeled differently 

since they are entirely different contracts. Non-life insurance is the theme of this 

research. The term non-life insurance is popularly used in Continental Europe. 

In Great Britain, the same branch of insurance is termed General Insurance. 

Elsewhere such as in North America, non-life insurance is referred to as property 

and casualty insurance Taylor (2000) . 
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The non-life insurance is characterized by a policy agreement between the 

involving parties, that is, the service provider known as the insurer and the 

customer known as the insured. The insured initiates the policy by making an 

agreed advance or fixed amount of money. These well-defined payments made by 

the insured to the insurer with an agreement of providing financial converge 

against a loss in the case of a well-specified random occurrence is known as the 

premium. In the event of an occurrence, the contract between the insured and the 

insurer provides an indication of the amount that has to be leveled out to the 

insured. The right of the insured party to the amount specified by the the contract 

is referred to as a claim or loss amount by the insured on the insurer. The claim 

amount which the insurer is obliged to pay in the event of an occurrence. There 

are usually time lags between when an event occurs and when claims finally get 

settled. The time it usually takes for occurrences to be reported is a factor in 

addition to providing clarity on the nature or degree of the occurrence. For 

example, a proper insurance may be settled faster compared to an accident claim 

in which some amount of time is required in order to establish the degree of injury 

or damage. 

The insurer as a company upon receiving premiums sets aside a reserve that will 

cater for future payments or losses or claims. A claim on an insurer is the right of 

the insured entity to the agreed amounts in case the event said happens. Claims 

are demands for payment by a policyholder or an alleged third party under the 

terms and conditions of an insurance contract; technically, the claimant is the 

policyholder or third party that is asking for a payment. It is the responsibility of 

the insurer to ensure that there are sufficient funds, or reserves for paying out 

claims once they are applied for. 

This essentially the reasoning behind learning about the average amount that is 

supposed to be paid out in a considered year (since the subject is non-life 
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insurance). The reserved amounts should be sufficient depending on the 

premiums made. Also worth studying is the entire distribution of the aggregate 

claim for the considered year. The reserve of these claims is simply known as 

claims reserve; this is the outstanding claims or supply that is set up for future 

compensation of policy holders given claims that have already occurred. This 

basically constitutes amounts set aside by actuaries for claims that are not yet 

reported to the company (which is referred to as Incurred But Not Yet Reported 

(IBNYR)). There are other amounts which represent allowance for changes in the 

claim handlers estimate and is known as Incurred But Not Enough Reported 

(IBNER). 

Altogether, most companies combined these two amounts as Incurred But Not 

Reported (IBNR) according toMikosch (2009) and Mario and Wuthrich (2008). 

These are therefore the two types of claims in non-life insurance. 

Generally, insurance companies receive their assets in the form of premiums thus 

rendering these receipts as deterministic in nature. Partly, the deterministic 

nature of these assets makes the valuation of the company involved in non-life 

insurance comparatively less difficult. What remains random is the number of 

policies sold. However the manner in which liabilities are applied to the company 

remain completely random in nature in comparison to the assets (premiums and 

volumes of policies sold); the dynamics of the liabilities therefore need to be 

carefully considered. The effect of not handling the balance between assets and 

liabilities optimally can trivially ultimately lead to the extreme effect of total 

dissolution of a non-life insurance company England and Verrall (2000). In 

settling claims based on premiums and policies sold, the difference between the 

assets processed and the liabilities rendered is known as surplus processing. The 

proper management of these surpluses process determines the success or 

downturn of a non-life insurance company. Another factor that influences the 
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management of claims reserves is inflation which has been thoroughly studied by 

authors such as 

Taylor (2000)and Mario and Wuthrich (2008). 

Additional terminologies used in claims reserving include accident year, case 

reserves, change, etc. The accident year is defined as the year in which an accident 

happened and the insurer was on risk. Case reserves can be defined as estimates 

of amounts required to settle claims that have already been reported but not yet 

fully paid. Change, in the estimated or actual losses or reserves over ulterior 

evaluations is called development. A development factor is the quotient of the 

paid or incurred value for incident record evaluated at time t + 1 divided by the 

amount of that same accident record evaluated at time t. Earned premium is the 

part of the premium proportional to the segment of time a policy has been in force. 

The sum of all underwriting and operational expenses divided by the premium 

represents the expense ratio. The smallest divisible part of a claim is called a 

feature. It corresponds to a loss on coverage for one person. Incurred losses are 

the sum of payments and reserve changes for claims. An indication is an estimate 

based on analysis of the data. 

Therefore a variety of mathematical methods and routines that have been 

researched for the estimation of total loss amounts, and this chapter is a 

presentation of literature of these key methodologies. 

2.3 Models for Claims Reserving 

Taylor (1986) investigated the classification of loss reserving models within the 

development of claims reserving methods for actuarial scientists. Researchers, 

practitioners and scholars have developed and used many methods of loss-

reserving based on run-off triangles during the last few decades. These included 

classifications such as whether models are deterministic or stochastic, macro or 
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micro, whether the independent variables are paid or incurred losses, etc. A very 

instrumental manuscript on loss reserving is by Taylor (2000). In his research he 

found that literature published in the previous 15 years was roughly equal in 

volume to prior literature. All of these methods have a common assumption, that 

is: all claims are settled within a fixed number of development years and that the 

incremental and cumulative losses from the same number of accident years are 

well known until the present calendar year. In that way, the losses can be 

represented in a triangle shape and thus is popularly referred to as run-off 

triangle. This means that the development of the losses of every accident year is 

following a development pattern which is common to all accident years. 

In ’contrast’ to stochastic models being more recent, the earlier models of which 

the chain ladder was an example, were developed heuristically, and essentially 

deterministic in nature. According to Taylor and Campbell (2002), the earliest 

stochastic models in claims reserve modeling appear to attributed to Kramreiter 

and Straub (1973) and Hachemeister and Stanard (1975). There were various 

contributions such as from Reid (1978). After that, there were several 

contributions from De-Jong and Zehnwirth (1983), Pollard (1983) and Taylor and 

Ashe 

(1983). 

The concept of heuristic estimation which is typically non-stochastic was 

popularly used in handling the chain ladder method by Hachemeister and Stanard 

(1975). The research by Taylor and Ashe (1983) with the chain ladder technique 

was placed on an optimal basis with respect to Poisson claim counts; this however 

implied the technique was heuristic. Further work was conducted by England and 

Verrall (2002b) by placing it on an optimal basis with claim amount pegged with 

over-dispersed Poisson distributions. 
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Chronologically, the oldest of claim reserving models belonged in the 1970s 

including methods such as the chain ladder method, the separation method and 

the payment per claim finalized model Fisher and Lange (1973)and Sawkins 

(1979). Deterministic models were then bridged up with the addition of error 

terms making them stochastic models. A popular example was the model by 

Mack (1993) which presented a stochastic version of the traditional deterministic 

chain-ladder method using distribution free error terms. Earlier though, there 

had been research by De-Vylder (1978) featuring a least squares chain-ladder 

estimation where optimal parameter estimation was applied to distribution free 

error terms. 

Other claim reserving models developed with optimal parameter estimation 

include the chain-ladder for triangle form of Poisson counts Hachemeister and 

Stanard (1975), log-normal age-to-age factor chain-ladder Hertig (1985) and the 

over-dispersed Poisson cells triangle chain ladder technique England and Verrall 

(2002b); all of which were applied if the error estimate structure added. These 

models from Hachemeister and Stanard (1975), Hertig (1985) and England and 

Verrall (2002b) were classified as static, stochastic, optimal and 

phenomenological; phenomenological models represent models with direct 

physical meaning but not directly related to aspects of the claims reserving 

process. 

Another set of stochastic models with finer structure and a micro structure with 

the payment per claim finalized structure by Taylor and Ashe (1983) and 

operational time model of claim size Reid (1978). The evolution of parameters 

over periods was featured via the Kalman filter Kalman (1960) which sparked a 

lot of existing models from static to dynamic models. Examples of such models 

include distribution of accident period claim payments over development periods 

and the popular chain ladder model by England and Verrall (2002b). 



 

15 

2.3.1 The Chain Ladder Methods 

This model stands out as the most popular loss reserving technique with several 

derivations. Based on classical actuarial literature, the chain ladder model is a 

purely computational algorithm to estimate claim reserves. According to 

Verdonck and Dhaene (2007), the origination of the chain ladder method is 

obscured in the Antiquity of the Casualty Society. The chain ladder apart from 

being popular is an easy to implement technique whereby actuaries project losses 

from less mature stage to a more mature future. At each phase of the development, 

the actuary calculates the link ratio, or age-to-age factor or development factor 

that is the ratio of cumulative losses at a development year to that of the previous. 

Immature losses move toward maturity when multiplied at each stage by the 

corresponding development factor, which is practically very useful. Kremer 

(1982) showed that the chain ladder technique is based upon a linear model. 

England and Verrall (2002c) in their research went further and explained how we 

can see in the chain ladder, the linear model Kremer (1982) was talking about. In 

another paper by Verrall (1989), he tried to extend and consolidate the statistical 

framework which enables the analysis of insurance data. In fact, that was how to 

enhance and improve the classical chain ladder technique. The improvements 

were designed to overcome two big problems that the chain ladder method faces. 

The first flaw was that there was no connection between the accident years 

resulting in an over-parameterized model and not stable forecasts. The second 

point is related to the assumption that is the base of the model itself: the 

development pattern is assumed to be the same for all accident years. The chain 

ladder cannot adapt to any change with which claims are paid, or any other 

elements that can affect the run-off triangle. To establish a connection between 
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the accident years, he proposed the use of the Bayesian framework in which 

people can assume that the row parameters have the same prior distribution. 

The over-parameterization that we talked about and that was one the main flaws 

of the chain ladder technique was due to the fact that in that model, the accident 

years were not seen as linked but rather considered as separate. He focused on a 

statistical analysis that allows the use of actuarial judgment. He came up with a 

methodology that permits other information available to be taken into account to 

extend the range of the analysis. This Bayes assumption can be a useful way of 

overcoming the very problem of over-parameterization. 

England and Verrall (2002d) made an almost complete review of the existing 

reserving methods and models actually in use in the insurance field. The chain 

ladder method is based exclusively on the development factors; it often happens 

that the predicted result cannot be relied on with the confidence level we would 

like. This is particularly likely for more recent underwriting years where the 

development factor to predict from the actual to ultimate loss amount is relatively 

variable, due to the present lack of claims development. This way, actuaries 

thought of making use of an alternative ultimate amount, usually obtained from a 

supposed loss ratio. 

2.3.2 The Bornhuetter-Ferguson Method 

The next model for consideration in this research that is widely used for loss 

reserving is known as the Bornhuetter-Ferguson method. It is named after the 

two that developed it in 1972. England and Verrall (2002d) proposed predictors 

of outstanding ultimate losses and every predictor is obtained by multiplying an 

estimate of the expected ultimate loss by an estimator of the percentage of the 

outstanding loss with respect to the ultimate one. It is based on the run-off 

triangle like the chain-ladder but it restricts its use to the estimation of the 
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percentage of the outstanding loss and uses the product the earned premium and 

an expected ultimate loss. 

This method tries to stabilize the chain-ladder method and makes it less sensitive 

to outliers. Verrall (1989) showed that despite their different appearances, the 

chain ladder and the Bornhuetter-Fergusson methods have very much in 

common. In that paper, they first pointed out the fact that they both have a 

multiplicative structure when they come to the ultimate outstanding losses. They 

introduced a new model named the extended Bornhuetter-Ferguson. 

They used the notion of development pattern to prove that the latest is not just 

one method among various others but a general one that comprises many other 

methods as special cases and leads to the Bornhuetter-Ferguson principle. After 

a thorough study of the Bornhuetter-Ferguson method they stated what its 

principle is. So, it consists of three elements: the simultaneous use of different 

versions of the Bornhuetter-Ferguson, the comparison of the different ultimate 

losses and finally, the selection of the best ones. With a numerical example, they 

showed that the Bornhuetter-Ferguson principle can be used to select an 

appropriate version of the extended Bornhuetter-Ferguson for any run-off 

triangle. 

Up to this point, all the methods used are deterministic and give a single estimate 

without any information about its variability. In recent years, considerable 

attention has been given to discuss possible relationships between the chain 

ladder and some stochastic models. So, in Mack (1993), a formula for the standard 

error has been derived and a programmable recursive way of calculating it was 

also 

given. 



 

18 

Moreover, he shows how a tail factor can be incorporated in the calculation of the 

standard error. Schnieper (1991) used a mixture of Bornuetter-ferguson and the 

chain ladder for the same purpose; but Mack’s formula is specialized for the pure 

chain-ladder method. Later, many stochastic models were developed to give an 

idea of the variability of the estimates or the prediction errors.In this way, 

Schnieper (1991) published a paper where he described a stochastic model based 

on the chain ladder without any assumed specific distribution. It is called the 

distribution free model and it reproduces the chain ladder estimates and provides 

a mean of getting the standard errors. In Mark and Gary (2000), they conducted a 

comparative study of the distribution free and the over-dispersed Poisson models. 

They concluded that, both of the two models reproduce the chain ladder estimates 

for the claims reserve. Nevertheless, they argued that the two models are different 

in the sense that the true expected claims reserves, let alone estimation issues, 

are different. 

2.4 The Markov Chain Monte Carlo Methods 

Gives an almost exhaustive call of stochastic based models that have been given a 

lot of attention over time. As discussed previously, these stochastic methods are 

only significantly different from their previous deterministic counterparts by the 

addition of the stochastic terms England and Verrall (2002d). The first step in 

applying stochastic claims reserving models was a demonstration of the 

formulation of existing approaches in statistical models. This bridge was provided 

by England and Verrall (2001b), a research covering a good number of varying 

approaches including the discussed chain ladder technique. 

The routine behind the chain ladder technique for instance offers no patternbased 

run-off with every development year also being placed by an allocation of a 

separate parameter. The implication of this on the chain ladder method is that it 
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becomes a method that can be applied on a wider range of data with several 

parameters. This further implies that beyond the latest development year already 

observed, other assumptions have to be employed in modeling any possible claim 

development technically referred to as modeling the tail. The Bayesian methods, 

via Markov Chain Monte Carlo Methods is used to model the tail of the run-off. A 

review of these Bayesian methods is provided by Makov (2001). Another research 

devoted which provides an introductory perspective of Bayesian methods and 

simulation methods is by England and Verrall (2006). 

The Markov Chain Monte Carlo (MCMC) was initially brought forward routinely 

after Monte Carlo at Los Alamos for simulating a liquid in equilibrium with its gas 

phase Metropolis et al. (1953). It was popularly significant because the only way 

to investigate thermodynamic equilibrium was centered on simulating the 

dynamics of the system until equilibrium was established. The MCMC simulation 

provided they had similar distribution did the trick of providing a platform for 

modeling the equilibrium of the desired variables. After several applications in a 

varied range of scientific communities including physics and chemistry, Gelfand 

and Smith (1990) facilitated an introduction of MCMC into the Bayesian 

community. After a while though, it was realized that majority of the Bayesian 

inference could be performed using MCMC, whiles on the other hand almost 

nothing could be done without employing MCMC Geyer (1992). The applicability 

of the Bayesian methods has since then been accelerated by the use of MCMC 

methods Gilks et al. (1996). Authors such as Congdon (2006), Ntzoufras (2009) 

and Scollink (2002) offers several examples based on the application of robust 

Bayesian models. 

In the actuarial science and specifically with respect to claims reserving, Green 

(1995)investigated the reversible jump MCMC (RJMCMC) allowing trans-dimensional 

models to be analyzed; these are models with unknown number of variables or several 
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models with fixed variable numbers thus giving allowance of consideration of 

interesting range of models for claims reserving. Other significant mentions in the 

research of reversible jump MCMC and its related issues include Ntzoufras et al. 

(2005), Katsis and Ntzoufras (2005), Peters et al. (2009) and Verrall and Wuthrich 

(2010). 

2.5 Historical Background of Insurance 

The first experience of man with insurance was recorded as being in the field of 

marine. Records, however, show that modern marine insurance was practiced in 

1347. In this early form, vessel or cargo would be pledged against a loan and 

should the vessel not successfully complete the journey; the loan would not be 

repayable Iruku (1977). Another ancient maritime practice that has survived 

many generations virtually unchanged is that of “general average.”The mode of its 

operation is when certain cargo is jettisoned (thrown overboard) during a 

journey in an attempt to save the voyage. If the journey proves successful; the 

owners of the cargo that was not jettisoned and was saved will contribute 

proportionately towards a fund out of which the unfortunate ones who lost their 

cargo would be paid a claim Fisher et al. (1973). 

In West Africa, methods of spreading risk by the extended family system, age, 

groups, clans, religious groups among other social devices is called Susu or Esor 

which dates back to the pre colonial era . However, due to developments and 

modernization, this state of affairs is no longer ideal and adequate hence the need 

for more acceptable form of compensation. 

As early as the 1920s, the British, representing agencies for insurance companies 

then operating in Great Britain, introduced conventional insurance to the West 

Africa sub region. These agencies later were transformed into insurance 

companies whiles for example in the case of Ghana, the government formed their 
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own indigenous insurance company to take care of their growing insurance needs 

after independence. Today, Ghana has quite a bit of vibrancy in the insurance 

industry serving the needs of both local and foreign stakeholders, thus the need 

to uphold the customer in high esteem and attend to their requirements with 

speed and efficiency. 

According to Gormley (2008), the business of insurance could be the possible 

solution to the catastrophic food crises affecting third world nations like Ghana. 

In an article titled “Industry can help avert price disaster ”published in the 

“Insurance Day”, Gormley (2008) stated that a study by the French Agricultural 

Research Centre for International Development, said, “insurance industry could 

play a major part in solving the underlying problems causing rising food prices. 

Ghana is mainly an agriculture country with majority of its workers engaged in 

farming cash crops consisting primarily of cocoa products, which typically 

provide about two-thirds of export revenues, timber products, coconuts and shea 

nuts, which produce an edible fat, and coffee. Ghana also has established a 

successful program for non-traditional agricultural products for export, including 

pineapples, cashews, pepper, cassava, yams, plantains, maize, rice, peanuts, millet, 

and sorghum. Fish, poultry, and meat also are important dietary staples. Ghana 

has an estimated population of twenty four million people. 

The New Insurance Act 2006 forms the basis for insurance regulation in Ghana, 

which is enforced by the National Insurance Commission (“NIC”). Besides 

establishing a minimum paid up capital level of US1m (including reserves), 

insurers are also required to maintain an adequate total assets to total liabilities 

ratio ,which is currently set at 150%. Further guidelines are stipulated with 

regards to the quality of assets, with investments required to equate to a 

minimum 55% of total assets by December 2010, whilst investments inequities 

and properties are limited to 30% and 20% of total investments respectively. The 
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non-life insurance market remains relatively small, with industry Gross Written 

Premium (GWP) totalling GHS 226.8m (or US 156m) in 2009. Given that 23 

registered insurers compete in this market (with further entrants expected in the 

medium term), competition is intense, with market share predominantly 

contested via premium reductions. 

The insurance industry does not produce a tangible, physical product but it rather 

renders services. Insurance is among the most complicated and least understood 

services in today Ghana’s economy. The major factor, which contributes to this 

misunderstanding, is the highly complicated nature of the insurance policy itself. 

Individual policyholders remain confused by the small prints and its legality 

hence poor response in lowly educated areas like Ghana. 

Chapter 3 

Methodology 

3.1 Introduction 

Stochastic claims reserve methods built from deterministic claims reserve 

methods have received considerable attention in the recent actuarial literature 

with increasing application from experts lately. This chapter is a presentation of 

the Methodology used for analyzing the claims reserve in this research. The 

chapter presents both deterministic and Stochastic claims reserve modeling 

concepts and tools with emphasis on the Reversible Jump Markov Chain Monte 

Carlo (RJMCMC) method. Theoretical models are presented together with 

WinBUGS which is a statistical software for Bayesian analysis that is popularly 

used for simulating Markov Chain Monte Carlo (MCMC) methods. 
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3.2 Basic Concepts and Data Representation 

The basic assumption for majority of the existing methods for claims reserve 

estimation is that the data is presented in the form of a run-off triangle. This 

presentation places the data into a period of origin and development period. The 

former i.e. the period of origin relates to the year in which the claims were 

reported or particularly when the policy relating the claim was underwritten. The 

period of development on the other hand indicates the entire period from the 

period or origin within which the claims were paid, incurred or reported. 

Incidentally, this means that the development year of the year of origin is the 

development year zero. 

The general form of the run-off is represented in the Table 3.1. 

Table 3.1: Claims Run-off Triangle Structure 

Year of Origin   Year of development  

 0 1 2 ··· j ··· n − 1 n 

0 χ0,0 χ0,1 χ0,2 ··· ··· χ0,n−1 χ0,n 

1 χ1,0 χ1,1 χ1,2 ··· ··· χ1,n−1  

... ... ... ... ··· ··· 
  

i χi,0 χi,1 χi,2 ··· 
χi,n−i 

  

... ...    

n χn,0    

In Table 3.1, a claim cohort is based on the defining terms of the claims for a 

particular origin period and development period. If for example the very entry in 

the run-off triangle in Table 3.1 is the value of the claim paid in the development 

year j, then the claim having occurred is in year of origin i. 

We also consider key assumptions aside the run-off triangle in the build-up of the 

methodology of claim for the avoidance of ambiguity and for the notation to be 

universal are outlined in this section. We assume at all claims are settled in n 

periods of time and there are a total of n periods of past claims data. The unit of 
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time here is year, but can be effected to reflect quarterly or monthly captures. The 

claims development triangle has indices i ∈ {0,1,...,I} and j ∈ {0,1,...,J} given that I = 

J. The index i represents the accident and j represents the development year as 

discussed previously. 

Let Xi,j represent the incremental claim amounts for accident year i and 

development year j; this is also known as the incremental payments of the change 

of reported claims. Let R represent the total outstanding claims liability. The 

claims that are incurred or the sum of all reported claims is termed as the 

cumulative claims amounts and denoted by Ci,j. Mathematically, the cumulative 

claim amounts for accident year i up to the development year j are given by 

j 

 Ci,j = Xi,1 + Xi,2 + Xi,3 + ··· + Xi,j = XXi,k (3.1) 
k=1 

and 

Ri = Xi,n+2−i + Xi,m+3−i + Xi,n+4−i + ··· + Xi,m = Ci,n − Ci,I−i 

and the total outstanding loss liabilities for all accident years given by 

(3.2) 

R = R2 + R3 + R4 + ··· + Rn (3.3) 

There is a general assumption that the last development year is given by I (⇒ Xi,j 

≡ 0,∀j > I given that the last observed accident year is I. The ultimate claim amount 

of a particular accident year i is Ci,I. Very often, the observations 

DI at I which is the calendar year is defined by 

 DI = {Xi,j, i + j ≤ I} 

and the random variables are predicted in its complement 

(3.4) 

 D  (3.5) 

We also use Bayesian modeling which is primarily based on Bayes Theorem 

assuming that all parameters are unknown random variables. 
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3.2.1 The Basic Chain Ladder Models 

This is labeled in actuarial literature as one of the oldest actuarial techniques in 

application for the estimation of loss reserves. It is relatively intuitively natural 

and was initially built as a non-Stochastic model without the inclusion of a random 

component. It assumes all external factors such as claim cost inflation, change in 

,ox pf business, settlement claim changes are ignored. 

The basic chain ladder model therefore takes the form based on Ntzoufras (2009). 

  (3.6) 

where Ci,j j = 1,...,n represent the claim amount in accident year i and development 

year j; xi represents the ultimate total claim cost in a particular accident year i and 

yj represents the proportion of total payments made by the end of development j. 

Given that the amount of claim written in development year j with respect to 
accident year i is represented by Si,j, then 

Ci,1 = Si,1  (3.7) 

Ci,j+1 = Ci,j + Si,j+1 ∀i,j;j ≤ n − i + 1 (3.8) 

The factors yj are assumed to be constant by the basic chain-ladder technique for 

all years of the accident. Given that Dj represents the ratio of the cumulative 

payments made by the end of the year j to the expected value of the cumulative 

payments made by the end of the year j − 1, then the estimation of Dj is given by 

  j = 2,...,n (3.9) 

The factor Dj are therefore calculated by summing each column in the run-off 

triangle given in Table 3.1; this takes into consideration the ratio to previous 

column total excluding the final entry. We define another parameter λj by the 

product of (n − j)Dj’s. Mathematically we will define λj by 

  j = 1,...,n − 1 (3.10) 
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The parameter λj allows us to compute the claim amount still outstanding at the 

end of year (i + j) with respect to the accident year i by Ci,j(λj − 1). 

let additionally define Dn+ as the ratio of outstanding liability at the end of the 

development year n for year of accident 1 to cumulative amount of claims C1,n. This 

implies that Dn+ represents the estimate of the outstanding liability given at the 

end of the development year n (for year for origin 1). This essentially implies that 

Equation (3.10) can be expressed as 

 1 (3.11) 

(3.12) 

This methodology described involving the basic chain-ladder technique assuming 

that claim cost inflation, change in mix of business and all forms of external factors 

can be ignored provides estimation which can be applied to complete the run-off 

of the latter years of origin up to the point for which past experience is available. 

After from this basic chain-ladder method which has ignored factors, there are 

other chain-ladder techniques such as the inflation adjusted chain ladder 

technique and the separation technique. 

The inflation adjusted chain ladder technique for example adopts a generalized 

model and introduces an assumption of an index of claims cost in the form 

 Ci,j = SiRj · Xi+j + eij (3.13) 

with the parameters given as 

 Ci,j = sirj · φi+j + eij (3.14) 

where Ci,j represents the claim payments in year of origin i and development year 

j; i represents the ultimate cost in real terms and claims incurred within period of 
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origin i, rj represents proportion of total payments in real terms made in 

development year j and φi+j are the assumed indices of claim costs. Another 

popular technique is the separation method which has a generalized model of the 

form 

 Ci,j = SiRj · Xi+j + eij (3.15) 

with parameters defined by 

 Ci,j = nirj · φi+j + eij (3.16) 

In Equation (3.16), the number of claims incurred in year of origin i is denoted by 

ni and φi+j is derived from the data than the typical assumption from external 

sources. 

In the next section we consider the design of methodology for Stochastic reserve 

models. 

3.3 Stochastic Claims Reserving Models 

There has been increased amount of interest in Stochastic claims reserving 

methods although they are being used by a notable number of experts in the 

actuarial science industry. A number of reasons for this include inadequate 

understanding of these methods, rigid nature of the Stochastic method and lack 

of simulators to ensure easy manipulation of these methods amongst others. The 

discussion of Stochastic methods are constantly highlighted against existing 

deterministic methods across all disciplines; the actuarial science discipline is no 

exception with Stochastic claims reserving methods also discussed and analyzed 

alongside deterministic claims reserve techniques. There is no debate however 

that Stochastic models hold the potential in exhibiting better estimates compared 

to traditional methods primarily because they incorporate some variability of 
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claims reserves and are able to ideally estimate full distribution of possible 

outcomes 

3.3.1 Stochastic Chain Ladder Models 

The basic chain-ladder as discussed previously makes use of cumulative data 

coupled with the derivation of development factors and ratios. In the Stochastic 

sense, it does not make any difference whether the data use dare incremental or 

the cumulative data. The assumption of the triangle form of the data is still 

maintained in the chain-ladder Stochastic model. This is primarily because of the 

simplicity of this nature of data; this therefore has data from early origin years 

considered as fully run-off or other parts of the triangle missing. 

The incremental data is therefore defined as 

 Ci,j i = 1,...,n j = 1,...,n − i + 1 

where same as the notation in the deterministic sense, i represents the accident 

year or year of writing in the row of the triangle and the column j describes the 

delay measured in years. Based on the notation, the cumulative claims are given 

by 
j 

 Di,j = XCi,k (3.17) 
k=1 

with development factors denoted by {λj;j = 2,...,n}. 

Based on the chain-ladder technique the estimation of the development factors 

are given as 

  (3.18) 

After arriving at the estimates, the λˆ
j’s are applied to the latest cumulative claims 

to produce forecasts as follows 
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Dˆi,n−i+2 = 
Di,n−i+1

λˆjn−i+2 
(3.19) 

Dˆi,k = Dˆi,k−1λˆk (3.20) 

In the most simplest of forms, the chain-ladder technique consists of the forecasts 

of ultimate claims, which represents the latest delay year so far observed exclusive 

of any tail factors. 

The concept of the prediction error defined as the standard deviation of the 

distribution expressed as a percentage of possible reserve outcomes. The 

prediction error relates to the forecast variations, considering the uncertainty 

associated with parameter estimation and the variability inherent in the 

forecasting of data. 

A statistical model formulated with assumptions about the data is the right step 

in addressing the issue of obtaining the prediction error. Since the main aim is to 

obtain a stochastic model similar to the chain ladder model, the predicted 

estimates should be the same as those of the chain-ladder method. Two ways to 

do this is either to specify distributions for the data or specify the first two 

moments. The next subsection discusses an example of a stochastic model that 

gives the same estimates as that of the chain ladder technique. 

3.3.2 Over-Dispersed Poisson Model 

There are a number of stochastic models that gives the same estimates of the 

chain ladder technique. The over-dispersed Poisson (ODP) is one of the particular 

well known and assumes that incremental claims have an over-dispersed Poisson 

distribution. An ODP looks like a Poisson distribution in that the variance function 

is equal to the mean, but it also includes the dispersion parameter φ 

Thus, 

 Cij ∼ IID ODP0(mij) (3.21) 
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where IID denotes independent, identically distributed with E(Cij) = mij and 

V ar(Cij) = φmij 

This model is primarily used due to its ability to give the same outstanding claim 

estimates as the chain ladder technique. For this condition to be satisfied i.e. for 

the Over-dispersed Poisson to provide the same reserves estimates as the chain 

ladder technique, the mean is modeled using 

 log(mij) = c + αi + βj (3.22) 

This is recognized as a generalized linear model in which the responses Cij are 

estimated with a logarithmic link function and linear predictor, mij. The predictor 

structure is suitable for fitting the chain ladder technique in that there is a 

parameter column for each row i and a parameter for each column j. The corner 

constraints are applied due to the overparametrization of the model as follows: 

   

 mij 

= 

 

log(mij) = 

c + αi + βj 

α1 = 0 β1 = 

0, 

mij 

(3.23) 

βj, the column parameter determines the run off structure of the data. There is no 

particular shape of the run off patterns due to the one parameter for each column 

and is consistent with the chain ladder model. 

3.3.3 The Re-parametrization of the Run-off Shape 

Because of the trans-dimensional approach adopted, the run-off shape undergoes 

re-parametrization. Although the expected shape of the run-off is 

exponentialdecaying tail in the presence of Bayesian model, this primarily departs 
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from the expectation. The implication is that taking the logarithm of the run-off 

will produce a straight line and the second differences of the parameters {βj : j = 

2,3,...,n} is almost zero. Note that the requirement for the application of this model 

is that the parameters should be tested as to whether they are assumed to be zero. 

This means that if we have a parameter implementation in which the zero, it 

would be accepted. The exact form of parametrization used is as follows: 

Consider 

 ∇βj = βj − βj−1 and ∇2βj − 2βj−1 + βj−2 j = 2,3,...,n 

where ∇βj-gradient of the log development pattern and ∇2βj - change in the 

gradient. This means that if ∇2βj is zero, the log development follows a straight line 

with non-zero values of ∇2βj; meaning departures from the straight line. A matrix 

representation which will be used in the trans-dimensional Bayesian model 

according to Lunn et al. (2009b) is given as; 
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 ∇βn  

1 

For the sake of recasting, the extrapolation is done beyond the latest development 

year to obtain tail factors by assuming ∇2 = 0; this implies that βj = 2βj −βj−2. This 

consideration of the latter set of parameters allows the application of the trans-

dimensional Bayesian model to . 

3.4 Basic Terminology of Markov Chain 

3.4.1 Markov Chain 

A significant concept in this research is that of Markov Chains. This basically 

represents a set of sequence X1,X2,... of random elements such that the conditional 

distribution of Xn+1 given X1,X2,...,Xn depends only on Xn. In this instance we refer to 

the set as a Markov Chain and the set in which Xi takes values as the State Space of 

the Markov Chain. A Markov Chain is said to have a stationary transition 

probabilities given that the conditional distribution of Xn+1 given Xn does not 

depend on n. A transition probability distribution is reverisble with respect to an 

intial ditribution if, for the Markov chain X1,X2,... they specify, the distribution of 

pairs (Xi,Xi+1) is exchangeable; this is the type of 

Markov chain of interest in this research referred to as the Markov Chain Monte 

Carlo (MCMC) 

3.5 Bayesian Modeling, RJMCMC and WinBUGS 
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Software 

The parameter specification used in the research are as follows; using the 

assumption that I represents the observed data and its distribution is f(I|θ,M) 

where M is the model and θ represents the number of parameters and both are 

assumed to be unknown. The prior distributions f(M) and f(θ|M) are assigned to 

the model and the posterior distribution is given by 

f(M,θ|I) ∝ f(I|θ, M)f(θ|M)f(M) 

and the parameter vector is 

(3.25) 

 θ = (c,α1,...,αn,β2,∇β3,∇2βj, j ∈ M (3.26) 

In contrast to most applications in statistics where the objective is identification 

of optimal model and its application to statistical inference, the main objective of 

claims reserves modeling is the predictive distribution of future claims Verrall and 

Wuthrich (2010). The predictive distribution for the incremental future claims Ci,j 

is 

Z f(Ci,k|M,I) = f(Ci,j|M,θ)f(θ|M,I)dθ i + k > n + 1

 (3.27) 

There are basically two different approaches in the context of trans-dimensional 

model in accounting for model uncertainty. The first is to make a choice of the 

most likely model from the Bayesian analysis in producing predictive distribution 

known as a Maximum A Posterior (MAP) estimator given by 

 f(Ci,k|I) ≈ f(Ci,k|Mmax,I) (3.28) 

The second approach is to estimate the predictive distribution by finding the 

average of the models using their weights as the posterior probabilities. This is 

second approach known as Bayesian Model Averaging (BMA) which has forecasts 

given by 

 f(Ci,j|I) = Xf(Ci,j|M,I)P(M,|I) (3.29) 
M 
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Equation (3.29) is the approach adopted in this research. 

3.5.1 Reversible Jump MCMC 

The predictive distribution of the outstanding incremental claims as a 

combination of Equation (3.27) and (3.29) is 

Z f(Ci,k|I) = f(Ci,k|M,θ)f(M,θ|I)d(M,θ) (3.30) 

In the situation where an exact form of this distribution is not obtainable in the 

closed, numerical methods via simulation have proved to be very effective. The 

simulation methods have their foundation in Markov Chains which are generated 

such that it has the same equilibrium distribution as the posterior distribution 

Metropolis et al. (1953). Using this analogy, the predictive distribution in (3.30) is 

given by the Monte Carlo Average 

 ) (3.31) 

where B is the burn-in time, that is the time before the Markov chain has 

converged to its equilibrium distribution, t - thinning parameter that is often set 

to t=1 and may be altered to t¿1 if the serial correlation of the output Markov 

Chain is high. The methodology of MCMC provides a framework of generating the 

Markov Chain. The next state give the current state (M(b),θ(b) is 

 ,θ) if (M,θ) is accepted 
M(3.32) 

  (M(b),θ(b)) if (M,θ) is rejected 

Using Gibbs sampling, the model M = M(b) is kept fixed, whereas a set of 

parameters in θ is updated based on its conditional posterior distribution. 

Because the proposal distribution is the best one, all proposals are accepted. A 
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difficult sample selection based on the conditional distribution evokes the use of 

the more standard Metropolis-Hastings (MH) algorithm defined by 

 P(accept(M,θ (3.33) 

A generalization of the MH algorithm is the Reversible Jump MCMC allowing for 

jumps between different models. In contrast to the criteria in Equation (3.33), the 

acceptance of the probability is given by 

P(accept(M,θ

 (3.34) 

which has a partial derivative representative of the Jacobian which explains the 

different forms of parametrization of the two models. 

3.5.2 Trans-dimensional Modeling with WinBUGS 

As discussed previously, this research employs the use of a statistical software for 

simulating the claims reserves known as WinBUGS. WinBUGS is a freeware with 

the aim of making practical MCMC methods available to all statisticians. 

Specifically, WinBUGS is a standalone package or can be called from other 

software such as the R statistical package and is a flexible platform for Bayesian 

analysis of complex statistical modeling via Markov Chain Monte Carlo (MCMC) 

methods. 

According to Lunn et al. (2009b), there are two streams of modes suitable within 
WinBUGS. 

With the trans-dimensional model by Lunn et al. (2009b) defined in terms of an 

unknown number of entries associated with the run-off, we employ the 

reparametrization by using {∇2βj : j = 4,5,...,n} as the entities. We denoted the 

number of parameters which is unknown at prior by k and this is initially specified 

with a binomial distribution with parameters n−3 and . The parametrization of 

the model is given by 

 ··· ···  (3.35) 
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with ψ begin chosen to coincide with Lunn et al. (2009b) which directly enables a 

comparison to be made. ψj = ∇βj+2 for j = 1,2,...,n−2 and the parameters β3,β4,...,βn 

estimated using βj = βj−1 + ψj−2; j = 3,4,...,n. 

The form of parametrization described ensures the possibility of constructing a 

Bayesian model via a trans-dimensional model within WinBUGS given that the 

second difference of the run-off paramters is {∇2βj : j = 4,5,...,n} and is treated as 

an optional parameter. Three different alternatives are possible 

 Dimension Move : Propose new |M|,M and θ in this order 

Configuration Move : Propose new M and θ in this order, with |M| fixed 

 Coefficients Move : Propose new θ with M 

The completion of the model lies in the specifying of the prior distributions. This 

is provided as follows: The first necessary replacement is to condition the model, 

M using prior distribution begin uniform as P(M) = 2−(n−3) for all members. In 
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WinBUGS, this usually is set by default for trans-dimensional models. Particularly, 

key is the conditional via the prior distributions of the optimal parameters {∇2βj : 

j = 4,5,...,n} being set by default such that they are independently normally 

distributed with 

 E[∇2βj] = 0; V ar[∇2βj] = τ (3.36) 

The prior distribution of the hyperparameter τ which is an inverse gamma 

distribution with variance say 1000, is large 

 τ−1 ∼ N(0.001,0.001) (3.37) 

There are other non-informative prior distributions for the remaining parameters 
all normally distributed with mean zero and variance 10,000. 

c ∼ N(0,10,000)  

{αi : i = 1,2,3,...,n} ∼ independent N(0,10,000) 

 β2 ∼ N(0,10,000)  

 ∇β3 ∼ N(0,10,000) 
 

The variance of the prior normal distributions are chosen to be relatively large 

and this could be made even as large as 100,000 although this would be 

insignificant. 

A significant reduction on the other hand will alter the results. 

3.5.3 Convergence Diagnostics 

For the MCMC algorithm to effectively work, it is important to have the Markov 

Chain  reach the equilibrium posterior distribution and run for a 

significantly long time. This is possible by setting appropriately the burn-in time 

B, thinning parameter t and the chain length N. There are several methods of 

convergence diagnostics Cowles and Carlin (1996), Brooks and Gelman (1998) 
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and Geweke (1991) which considers Gibbs sampling and data augmentation with 

a suggestion of a test of differences between posterior means of the early and late 

parts of the Markov Chain via spectral methods with time series. 

The R package boa Smith (2007)is a software for monitoring MCMC convergence. 

It firstly selects a variable being a scalar function of the parameter vector θ which 

may be αi,βj or the outstanding reserve for the accident year i. The second step is 

to run parallel chains m ≥ 2 and monitor the chosen variable of interest. The third 

step is to compare the sample variance within W and sample variance between 

B/N using the Potential Scale Reduction Factor (PSRF) given by 

  (3.38) 

The PSRF is compared to 1 as a value of almost 1 indicates convergence. 

Additionally, a connected scale reduction factor 

  (3.39) 

is calculated. This basically accounts for sampling variability in the estimate of the 

true variance of the variable of interest where df is the estimate degree of freedom 

associated with the method of moments. The software gives the 0.5 and 0.975 

quantile greater than 120 interpreted as evidence of non-convergence for a 

variable Smith (2007). 

The next chapter is presentation of simulation results of claims reserves based on 

the methodology presented in this chapter. The WinBUGS is employed in 

supporting the theoretical concepts built in this chapter. 

Chapter 4 

Results and Discussion 
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4.1 Introduction 

This chapter is a presentation of and statistical analysis of claims data collected 

from a renowed Insuarnce Company in Ghana, which operates as a dominant 

insurance company especially in the non-life insurance industry. The Insurance 

Company runs non-life insurance products such as fire, home, motor, etc. and 

other personal and corporate polices. The claims data in GH S from the Insurance 

Company spanned from 10 years, 2005 to 2014 and is shown Table (4.1). 

Table 4.1: Incremental Claims Data 

  Development Year 

i,j  1 2 3 4 5 6 7 8 9 10 

1 135,295 89,258 73,381 49,261 229533 31,741 16,592 12,507 7,613 3,350 

2 132,487 85,952 72,789 50,113 37,890 28,560 19,645 13,679 8,768  

3 127,975 100,356 70,247 47,037 30,474 25,041 17,057 11,952   

4 128,783 93,432 67,917 51,145 31,315 34,370 15,612    

5 130,367 80,819 68,546 53,692 35,418 29,137     

6 118,947 96,779 74,484 55,741 28,187      

7 125,808 81,610 69,340 46,113       

8 123,462 90,290 71,859        

9 119,306 79,523         

10 133,621          

 

The methodology outlined in the previous chapter is used to analyze the 

incremental claims reserve data in Table (4.1) using Windows Bayesian Inference 

Using Gibbs Sampling (WinBUGS) software, version 1.4.3, a stand-alone package. 

WinBUGS is designed for Bayesian analysis with the use of Markov Chain Monte 

Carlo (MCMC) methods. The reserve statistics are based on 500000 simulations 

run with initial Burn in cost of 5000. The WinBUGS code used for the simulation 

in this research has been documented in the Appendix of this research. 
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4.2 Analysis of Results 

The modeling of the claims reserves starts with the cumulative of the claims 

reserve data as shown in Table (4.2) using the claims reserves in Table (4.1). 

Table 4.2: Cumulative Claims Data 

1 2 3 4 5 6 

1 135,295 224,553 287,934 347,195 376,728 408,469 

2 132,487 218,439 291,228 341,341 379,231 407,791 

3 127,975 228,331 298,578 345,615 376,089 401,130 

4 128,783 211,186 290,132 341,277 372,592 406,962 

5 130,367 211,186 279,732 333,424 368,842 397,979 

6 118,947 215,726 290,210 345,951 374,138  

7 125,808 207,418 276,758 322,871   

8 123,462 213,752 285,611    

9 119,306 198,829     

10 133,621      

 

1 ··· ··· 425,061 437,568 445,181 448,531 

2 ··· ··· 441,115 449,883   

3 ··· ··· 418,187 430,139   

4 ··· ··· 422,574    

5 ··· ···     

6 ··· ···     

7 ··· ···     

8 ··· ···     

9 ··· ···     

10 ··· ···     

 
The next is to fit the straightforward Over-dispersed Poisson (ODP) model with a 

constant scale parameter which gives the same results as the chain ladder method 

as noted in the methodology. 

··· ··· 7 8 9 10 
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Table 4.3: Chain-Ladder Development Factors 

 

j fij 

2 1.6985 

3 1.3265 

4 1.1744 

5 1.0938 

6 1.0795 

7 1.0424 

8 1.0300 

9 1.0186 

10 1.0075 

 

The development factors are shown in Table (4.3) and corresponding chain ladder 

estimates are given Table (4.4). 

Table 4.4: Chain-Ladder Reserve Estimates (in GHS) 

 

j  

2 3,385 

3 11,316 

4 24,134 

5 40,578 

6 70,901 

7 97,225 

8 150,818 

9 204,176 

10 326,401 

Overall 928,934 

 
4.2.1 Parameter Estimation: ODP and Bayesian Models 

The results of the maximum likelihood parameter estimates as a consequence of 

the fit of the chain ladder ODP model is shown in Table (4.5). 

Table 4.5: Comparison of Estimates of the Parameters of the ODP Model and the 
Bayesian Model using 95% prediction intervals for the Bayesian Model 
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Parameter ODP Posterior 

Mean 

Posterior PI 

Constant ˜c 11.7775 11.7519 (11.4028,11.7546) 

α˜2 0.0105 0.0136 (-0.0572,0.0843) 

α˜3 -0.0159 -0.0139 (-0.0855,0.0583) 

α˜4 -0.0041 -0.0032 (-0.0757,0.0697) 

α˜5 -0.0225 -0.0193 (-0.0931,0.0543) 

α˜6 -0.0078 -0.0074 (-0.0850,0.0660) 

α˜7 -0.0655 -0.0616 (-0.1407,0.1776) 

α˜8 -0.0274 -0.0255 (-0.1080,0.0566) 

α˜9 -0.1070 -0.1063 (-0.1998,-0.0136) 

α˜10 0.0253 0.0260 (-0.0826,0.1338) 

β˜
2 

-0.3588 -0.3569 (-0.4059,-0.3085) 

β˜
3 

-0.5897 -0.5936 (-0.6516,-0.5386) 

β˜
4 

-0.9341 -0.9489 (-1.0070,-0.8210) 

β˜
5 

-1.3932 -1.3554 (-1.4190,-1.2490) 

β˜
6 

-1.4699 -1.5340 (-1.6530,-1.4370) 

β˜
7 

-2.0209 -1.9632 (-2.0630,-1.8720) 

β˜
8 

-2.3254 -2.3721 (-2.4980,-2.2390) 

β˜
9 

-2.7721 -2.8410 (-3.0320,-26150) 

β˜10 -3.6608 -3.3530 (-3.8180,-2.9470) 

 

The parameter estimates i.e. c, αi and βj are all estimated based on the Bayesian 

approach such that ˜c = E(c|I, ˜α = E(αi|I) and β˜ = E(βj|I) from the output of the 

MCMC method. Table (4.6) shows the output of the parameter estimates for the 

claims reserves. 

4.2.2 Estimates of Outstanding Claims 

A plot of the comparison between the estimates (logarithm) of the ODP model and 

the two Bayesian model (the first without a tail and the second with tail) is shown 

in Figure (4.1). Based on the patterns displayed in Figure (4.1), all models 

Dispersion parameter 292.7238 
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Figure 4.1: Logarithm plot of the estimates for the ODP and Two Bayesian Models 

indicate some level of convergence as the period increases. The differences in the 

estimates provided are only glare in the initial periods. The estimates from the 

respective models are similar as time increases. 

The errors associated with each of the models together with the actual period 

estimates is shown Table (4.6). Based on this result, the Bayesian model without 

tail returns the lowest prediction error of 5%. This result from the simulation is 

parallel and consistent with the findings of Verrall et al. (2010) who run the the 

RJMCMC using data from Taylor and Ashe (1983). The prediction errors from the 

Bayesian methods are generally lower and this occurrence is attributed to the 

effect of the reflection of the smoothing of the run-off shape posed within the 

Bayesian Methods. 

Table 4.6: Outstanding claims estimates for Bayesian and ODP Models (in GHS) 

 

 ODP Bayesian Model Without Tail Bayesian Model With Tail 

Row Estimate PE Estimate PE Estimate PE 

1     7,206 48% 

2 3,385 42% 4,727 22% 12,040 37% 

3 11,316 21% 12,130 15% 19,250 26% 

4 24,134 14% 24,380 10% 31,570 17% 
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5 40,578 10% 41,930 6% 49,010 11% 

6 70,901 9% 70,190 5% 77,340 9% 

7 97,225 7% 98,840 4% 105,600 6% 

8 150,818 6% 151,600 4% 158,600 5% 

9 204,176 6% 204,500 4% 211,000 5% 

10 326,401 6% 327,100 5% 334,000 5% 

Total 928,934 6% 935,397 5% 1,006,116 7% 

From Table (4.6), the over-dispersed Poisson Model returns a prediction error of 

6%, slightly higher than the Bayesian model without tail. The Bayesian model with 

tail however returns the largest prediction error of 5% which is lower but 

consistent with the results from Verrall et al. (2010).  
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Chapter 5 

Conclusion and Recommendations 

5.1 Introduction 

The main objective of this research was to model the claims run-off triangle by the 

use of the reversible jump Markov Chain Monte Carlo (RJMCMC) method. This by 

way of advantage is primarily to model claims run-off using an objective 

methodology. The RJMCMC method is said to have great potential in contrast to 

existing methods for modeling claims, Verrall et al. (2010). The research uses 

WinBUGS to run the simulation of claims data from an Insurance Company in 

Ghana. This chapter is a presentation of the conclusions and recommendations. 

5.2 Major Findings 

The chain ladder ODP model gives a lower result for the claims reserves GHS 

928,934 as compared to the Bayesian GHS 935,397 and GHS 1,006,116 without 

and with tail respectively. The results clearly showed the chain ladder ODP model 

under estimates the outstanding claims liabilities mainly due to the low 

development factors. Clearly be observed in most recent years that, the prediction 

errors expressed as a percentage of the reserve estimate are large primarily due 

to the estimation error. The claims reserves are increased by ≈GHS 71,000 

between the Bayesian with or without tail giving roughly GHS 7,100 per accident 

year i ∈ {1,.....10} that is for the ten year period. 

5.3 Conclusion 

The research concludes that based on the findings from the data analysis, the 

claims reserve is best estimated using the Bayesian methods. The findings show 

that the prediction errors of the Bayesian models are relatively lower. This is 
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because of the smoothing effect within the Bayesian methods. Conclusion can be 

drawn that, the tail factor is an important quantity in estimating oustanding claim 

laibilities in terms of both the claims reserves but also for the uncertainty in these 

claims reserves. The results may be general for claims reserves data since the 

findings here are consistent with the findings of Verrall et al. (2010). 

5.4 Recommendation 

The concept of problem solving is constantly evolving with more refined solutions 

to pertaining problems across all disciplines. The study recommends that further 

research work be done in examination of claims reserve data from several other 

insurance companies in Ghana to ascertain the generality of the Bayesian Methods 

producing lower predictive errors in comparison to ad hoc methods. There should 

be innovative ways of getting Actuarial scientists and experts in claims reserve 

modeling to use these new trending methodologies with obvious advantage over 

the ad hoc methods which have been demonstrated to be simple yet less reliable. 

More studies should be devoted to software development to enhance usability of 

developed models for claims reserves. 
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Appendix 

WinBUGS Code for the Simulation 

model { 

# The likelihood is constructed using the zeros trick. The data are first divi 

# by 1000 for computational efficiency. 

for( i in 1 : 55 ) 

{ 

Z[i] <- Y[i]/1000 log(mu[i]) <- cons+alpha[row[i]] + beta[col[i]]; zeros[i]<- 0 zeros[i] ~ dpois(phi[i]) 

phi[i] <- ((mu[i]-Z[i])-Z[i]*log(mu[i]/Z[i]))/scale # MINUS log likelihood } 

# psi is not available directly, and so we create an artificial variable, b1, 

#which is essentially equal to psi. 

for (i in 1:8) { 

b1[i]~dnorm(psi[i],100000) } 
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# This section sets up the trans-dimensional model for the run-off parameters beta[1]<-0 beta[2]<-

beta2 beta2~dnorm(0,0.0001) for (i in 1:8) { beta[i+2]<-beta[i+1]+b1[i]} for (i in 1:5) { beta[10+i]<-

beta[9+i]+b1[8]} psi[1:8]<-jump.lin.pred.int(X[1:8,1:7],k1,tau,0,0.0001) tau~dgamma(0.001,0.001) 

id<-jump.model.id(psi[1:8]) k1~dbin(0.5,7) 

# As suggested by England and Verrall (2006), we use a gamma 

#distribution with the same mean and variance as the ODP for forecasting. 

for( i in 56 : 100 ) { 

log(mu[i]) <- cons+alpha[row[i]] + beta[col[i]]; fa[i] <-max(0.01,1000*mu[i]/sc fb[i] <- 1/scale 

Z[i] ~ dgamma(fa[i], fb[i]) 

} 

for( i in 1 : 100 ) { 

fit[i] <- Z[i] 

} 

for(i in 1:50) { log(muT[i])<- 

cons+alpha[rowT[i]]+beta[colT[i]] faT[i]<-

max(0.01,1000*muT[i]/scale) fbT[i]<-1/scale 

ZT[i]~dgamma(faT[i],fbT[i]) 

} 

for (i in 1:10) { 

Tail[i]<-sum(ZT[5*(i-1)+1:5*i]) 

} 

scale <- 0.2927 cons~dnorm(0.0,0.0001) 

alpha[1]<- 0 for (k in 2:10) {alpha[k]~ 

dnorm(0.0,0.0001)} 
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R[1] <-0 

R[2] <- fit[56] 

R[3] <- sum(fit[57:58]) 

R[4] <- sum(fit[59:61]) 

R[5] <- sum(fit[62:65]) 

R[6] <- sum(fit[66:70]) 

R[7] <- sum(fit[71:76]) 

R[8] <- sum(fit[77:83]) 

R[9] <- sum(fit[84:91]) 

R[10] <- sum(fit[92:100]) Total <- 

sum(R[2:10]) 

for (i in 1:10) { 

RT[i]<-R[i]+Tail[i] 

} TotalT<-sum(RT[1:10]) 

} 

#INITIAL VALUES list(alpha = c(NA,0,0,0,0,0,0,0,0,0), b1 = c(0,0,0,0,0,0,0,0), 

cons=0, tau=1, beta2=1) 

# DATA list(row=c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3, 

3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8,9,9,10 

,2,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8, 

9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10), 

col=c(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8, 

1,2,3,4,5,6,7,1,2,3,4,5,6,1,2,3,4,5,1,2,3,4,1,2,3,1,2,1, 

10,9,10,8,9,10,7,8,9,10,6,7,8,9,10,5,6,7,8,9,10, 

4,5,6,7,8,9,10,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9,10), 

Y=c(135295,89258,73381,49261,29533,31741,16592,12507, 

7613,3350,132487,85952,72789,50113,37890,28560,19645, 
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13679,8768,127975,100356,70247,47037,30474,25041, 

17057,11952,128783,93432,67917,51145,31315,34370, 

15612,130367,80819,68546,53692,35418,29137, 

118947,96779,74484,55741,28187, 

125808,81610,69340,46113, 

123462,90290,71859, 

119306,79523, 

133621, 

NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 

NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 

NA,NA,NA,NA,NA,NA,NA,NA,NA), 

ZT=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 

NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, 

NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA), rowT=c( 

1,1,1,1,1, 

2,2,2,2,2, 

3,3,3,3,3, 

4,4,4,4,4, 

5,5,5,5,5, 

6,6,6,6,6, 

7,7,7,7,7, 

8,8,8,8,8, 

9,9,9,9,9, 10,10,10,10,10), 

colT=c( 11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15, 
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11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15, 

11,12,13,14,15), 

X=structure( 

.Data = c( 

0,0,0,0,0,0,0, 

1,0,0,0,0,0,0, 

1,1,0,0,0,0,0, 

1,1,1,0,0,0,0, 

1,1,1,1,0,0,0, 

1,1,1,1,1,0,0, 

1,1,1,1,1,1,0, 

1,1,1,1,1,1,1), 

.Dim = c(8,7))) 


