KNUSTSpace >
Research Articles >
College of Science >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/11441

Title: Revised Mathematical Morphological Concepts
Authors: Ackora-Prah, Joseph
Ayekple, Yao Elikem
Acquah, Robert Kofi
Andam, Perpetual Saah
Sakyi, Eric Adu
Gyamfi, Daniel
Keywords: Mathematical Morphology
Issue Date: 2015
Publisher: Advances in Pure Mathematics
Citation: Advances in Pure Mathematics, 2015, 5, 155-16; http://dx.doi.org/10.4236/apm.2015.54019
Abstract: We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show that structural elements can be partitioned before carrying out morphological operations.
Description: An article published in Advances in Pure Mathematics, 2015, 5, 155-16; http://dx.doi.org/10.4236/apm.2015.54019
URI: http://hdl.handle.net/123456789/11441
Appears in Collections:College of Science

Files in This Item:

File Description SizeFormat
Revised_Mathematical_Morphological_Conce.pdf386.54 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback