KNUSTSpace >
Research Articles >
College of Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/12203

Title: A novel simulation model, BK_BiogaSim for design of onsite anaerobic digesters using two-stage biochemical kinetics: Codigestion of blackwater and organic waste
Authors: Neba, Fabrice Abunde
Asiedu, Nana Yaw
Morken, John
Addo, Ahmad
Seidu, Razak
Keywords: Biochemical kinetics
Numerical interface
Biogas yield
Anaerobic digester
Issue Date: Nov-2019
Publisher: Scientific African
Citation: Scientific African,
Abstract: The design of biogas reactors for blackwater treatment provides special challenges due to significant variability in blackwater characteristics, the complexity of biological systems, and the need, in many cases, to operate in an extremely hygienic environment. In this study, mathematical models were formulated based on microbial growth kinetics to analyze the anaerobic codigestion of blackwater with kitchen waste as well as compare different substrate mixing ratios. The modelling approach used has the advantage of simulating the process with very little input data and eliminates the need to quantify the viable bacteria biomass, which is usually very difficult to estimate during anaerobic digestion. The validity of models is assessed by using a new statistical coefficient (α), which cumulates the effect of four known parameters: coefficient of determination (R2), adjusted coefficient of determination (R2Adj), reduced chi-square (χ2) and root mean square error (RMSE). A numerical calculation interface was designed to quickly and cheaply simulate different digestion scenarios, display results to user and evaluate the effect of input variation on the system’s dynamics. Three simulation cases studies were considered each with different mixing ratios of black water to kitchen waste: Case 1 (50:50), Case 2 (25:75) and Case 3 (pure kitchen waste). The, Moser and Andrew based models were most appropriate in describing biogas kinetics for case study 1 (α-values of 0.2238 and 0.2596 respectively), the Monod and Moser based models most appropriate for case 2 (α-values of 0.0987 and 0.1266 respectively), while the Bergter and Haldane based models were most appropriate for case 3 (α-value of 0.0348 and 0.0347 respectively). The results of this study can be used to facilitate design and optimization of biogas sanitation units treating blackwater and kitchen waste.
Description: This article is published in Scientific African and also available at DOI: 10.1016/j.sciaf.2019.e00233
URI: 10.1016/j.sciaf.2019.e00233
Appears in Collections:College of Engineering

Files in This Item:

File Description SizeFormat
A novel simulation model, BK_BiogaSim for design of onsite.pdf3.27 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback