A hybrid forecasting technique for infection and death from the mpox virus.

Abstract
Objectives: The rising of new cases and death counts from the mpox virus (MPV) is alarming. In order to mitigate the impact of the MPV it is essential to have information of the virus’s future position using more precise time series and stochastic models. In this present study, a hybrid forecasting system has been developed for new cases and death counts for MPV infection using the world daily cumulative confirmed and death series. Methods: The original cumulative series was decomposed into new two subseries, such as a trend component and a stochastic series using the Hodrick–Prescott filter. To assess the efficacy of the proposed models, a comparative analysis with several widely recognized benchmark models, including auto-regressive (AR) model, auto-regressive moving average (ARMA) model, non-parametric auto-regressive (NPAR) model and artificial neural network (ANN), was performed. Results: The introduction of two novel hybrid models, HPF1 1 and HPF4 3, which demonstrated superior performance compared to all other models, as evidenced by their remarkable results in key performance indicators such as root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), is a significant advancement in disease prediction. Conclusion: The new models developed can be implemented in forecasting other diseases in the future. To address the current situation effectively, governments and stakeholders must implement significant changes to ensure strict adherence to standard operating procedures (SOPs) by the public. Given the anticipated continuation of increasing trends in the coming days, these measures are essential for mitigating the impact of the outbreak.
Description
This is an article published in Digital Health, Volume 9: 1–17; DOI: 10.1177/20552076231204748
Keywords
Citation
Digital Health, Volume 9: 1–17; DOI: 10.1177/20552076231204748
Collections