DSpace
 

KNUSTSpace >
Theses / Dissertations >
College of Science >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4070

Title: The Dynamics of Klein-Gordon Equation for a Slow Varying Interacting Wave Field
Authors: Odoom, Amos
Issue Date: 20-Jun-2011
Abstract: The main purpose of the study was to investigate the outcomes when an interacting term is incorporated into a Klein-Gordon equation, in particular when the interacting term involves a slow periodic wave field. The study further seeks to investigate in the context of Dirac approach to the quantum relativistic free particle. A slow varying periodic field was considered in the study as a potential field which interacted with quantum mechanics wave particle field as in the Schrodinger equation for a forced particle. In the relativistic context of the study, the Klein-Gordon equation was considered as a homogenous differential equation which represented a free particle and the interacting term was placed on the right hand side, having a “slow varying potential” field as a factor. It was found that for the zeroth order approximation of the slow varying wave field, Klein-Gordon equation still remained as field but there was only a shift in the energy mass. However, with the second order approximation, a formal Quantum Harmonic Oscillator was obtained. This yielded discrete positive and negative energy mass, suggesting particle and antiparticle states. An equivalent Dirac formalism which also incorporated an interacting term was obtained, with a recovery of particle and antiparticle states by means of creation and annihilation operators.
Description: A thesis submitted to the Department of Mathematics , Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfilment of the requirements for the award of the Degree of Master of Philosophy, 2011
URI: http://hdl.handle.net/123456789/4070
Appears in Collections:College of Science

Files in This Item:

File Description SizeFormat
AMOS ODOOM THESIS 2011.pdf1.03 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback