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Abstract 

In this thesis a modified ��� mathematical model on the spread of Varicella 

(Chickenpox) in Ghana was developed. 

Here the population is divided into three compartments: the susceptibles, the infectives, 

and the recovered. The resulting system of non-linear differential equations was analysed, 

thus in respect of the stability of the equilibrium points. The model focuses on the spread 

of the disease at the initial stages of the infection when the infected persons are absent 

and when they are present taking into consideration birth rate and natural death rate. The 

study is based on the assumption that the population of Ghana is constant, and the natural 

death rate was assumed to be equal to the birth rate. We then determine how the various 

compartments react to increasing proportion of persons at the initial stages of their 

infection. 

We perform sensitivity analysis on the already estimated model parameters to determine 

their effect on the reproductive number and at what values of the reproductive number are 

the disease free and endemic equilibra stable. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background 

Mathematical modeling has significantly enhanced the understanding of the 

epidemiology and control of infectious diseases. Knowledge from this important and 

exciting field have helped in various levels of decision making.   

The communicable nature of infectious diseases makes them basically different from 

non-infectious diseases, so techniques from 'classical' epidemiology are often invalid and 

hence lead to incorrect conclusions - not least in health-economic analysis. 

 

“Mathematical modelling now plays a key role in policy making, including health-

economic aspects; emergency planning and risk assessment; control-programme 

evaluation; and monitoring of surveillance data. In research, it is essential in study 

design, analysis (including parameter estimation) and interpretation. 

With infectious diseases frequently dominating news headlines, public-health and 

pharmaceutical-industry professionals, policy makers, and infectious disease researchers, 

increasingly need to understand transmission patterns and to interpret and critically-

evaluate both epidemiological data, and the findings of mathematical modeling studies. 

Recently there has been rapid progress in developing new models and analysis techniques 

for outbreaks and emerging epidemics, such as influenza A (�1�1) and ����.” C 

Fraser, 2008 
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Also with the betterment of human society cleanliness, the improvement of medical level 

and science technology, many diseases, such as cholera, smallpox, have been greatly 

controlled by humans. However, more and more new viruses are emerging. How to 

regulate the widespread of diseases and form the system of forecasting for the epidemic 

diseases is a tough task and problem given much consideration by countries and research 

departments. More researchers nowadays use mathematical methods to study the spread 

of infectious diseases. It therefore deemed very important to form a mathematical method 

that reflects the epidemic features for the revelation of the spreading law and forecasting 

of the epidemic. Many research work have been undertaken in this field. 

In this thesis, we study the epidemiology of Varicella (chicken pox) using a mathematical 

model. We consider some of the recent mathematical developments that have improved 

our understanding and predictive ability. 

 

1.2   Varicella (Chicken Pox) 

1.2.1 Description of Varicella 

Chickenpox or varicella is a highly transmissible infection primarily caused by an 	-

herpes virus called Varicella Zoster, and is one of the commonly reported childhood 

disease.  

This disease is an airborne disease and highly communicable which spreads from person 

to person by either by direct contact with the fluid from the blisters or through secretions 

from the respiratory tract (i.e. infected person’s coughing or sneezing) or by coming in 

contact with infected person’s clothing. 
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The chicken pox patient is normally infectious from five days before the appearance of 

the blisters and remains infectious until all the blisters have formed scabs, and this 

usually takes five to six days. It usually takes from ten(10) to twenty-one (21) days after 

coming in contact with an infectious patient for one to develop the disease. Early rash of 

chickenpox is mostly on the upper body. 

 

1.2.2 Epidemiology of Varicella 

Primary varicella is an endemic disease. Cases of Varicella are experienced throughout 

the year.  

Varicella is one of the classic diseases of childhood, with maximum occurrence in 

children with ages between four (4	) and ten(10) years. It is highly contagious with and 

infection rate of 90% in close contacts. In general most people get infected before 

reaching adulthood but about 10% of adults still remain susceptible. 

From history, varicella has been a disease mostly affecting infants and school-aged 

children. As compared to children the pock marks in adults are darker and the scares 

more noticeable. 
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1.2.3 Diagnoses  of Varicella 

The diagnosis of chickenpox is mostly clinical. The diagnosis of varicella is mostly 

clinical, with typical early symptoms, and then the onset of a characteristic itchy rash. 

Confirmation of the diagnosis can be sought through either the examination of fluids of 

the rash or by blood test for eh presence of and acute immunologic response. 

Vesicular fluids can also be examined for the presence of fluorescent antibody. Where 

attempts are made to grow the virus for a fluid sample the fluid is cultured (McPherson & 

Pincus, 2007). 

In pregnant mothers, the diagnosis of fetal infection of varicella can be done by using 

ultrasound. A delay of 5 weeks after maternal infection is usually advised. Though there 

is the risk of abortion due to amniocentesis, a DNA test of the mothers’ amniotic fluid 

can also be carried out.  

 

1.2.4 Varicella Infection In Pregnancy And Newborn Babies 

For pregnant women, immunity gotten through immunization or previous infection is 

transferred to the foetus through the placenta, (Branon,2007). On the other hand varicella 

infection during pregnancy can lead to viral transmission through the placenta and foetal 

infection.  
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If there is an infection within the first 28 weeks of gestation, it can lead to foetal varicella 

syndrome. This is also referred to as congenital varicella syndrome. Foetal varicella can 

cause lesser effects such as finger and toes underdevelopment to severe ones such as 

bladder malformation.  

Some other possible effects include: 

• Brain damage: microcephaly, encephalitis, hydrocephaly, etc. 

• Eye damage: optic cap, optic stalk and lens vesicles, e.t.c., 

• Neurological disorder:  

• Skin disorder; 

• Body damage: hypoplasia of lower/upper extremities, bladder and anal sphincter 

dysfunction. 

Infection during the latter part of gestation or immediately after birth is referred to as 

neonatal varicella. Maternal infection is associated with premature delivery. Exposure of 

the baby to the infection 7 days prior to delivery or 7 days after delivery has the greatest 

risk of the baby developing the disease. 

Neonates that develop the symptoms are at a high risk of pneumonia and other severe 

problems. 

After an infection of chickenpox, the virus remains latent in the body’s nerve tissues and 

later in life, reactivates and causes a different form of the virus called shingles. 
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1.2.5 Treatment of Varicella Infection in Adults 

Infection in adults is more severe and active. Treatment with antiviral drugs is mostly 

advised. Remedies to ease the symptoms of chicken pox in adults are basically the same 

as those used on children. However, adults are prescribed antiviral medications with the 

aim to reducing the severity of their illness and the likelihood of complications. This 

however does not kill the virus, but only prevents its growth. 

Painkillers such as ibuprofen and paracetamol are also prescribed to relieve itching and 

other symptoms such as fever and pains. Increased intake of water is also recommended 

to reduce dehydration and relieve headache. Antihistamines mays also used as they are 

effective in easing itching and they also act as a sedative. 

Sorivudine, has been found in some cases to be effective in the treatment of primary 

varicella in healthy adults.  

 

1.2.6 Treatment of Varicella Infection in Children 

Treatment of chicken pox in children is aimed symptoms whilst the immune system is 

allowed to deal with the virus. Nails of children younger than 12 years are cut and kept 

clean to prevent them from crashing themselves and further infection of the blisters. 

Children between the ages on one month and 12 years are not meant to receive antiviral 

treatment if they are not suffering from other condition that might expose them to other 

complication. 
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Increased water intake is also advised for children to avoid dehydration, especially if the 

child develops fever. 

Painkillers such as paracetamol or ibuprofen can be used to relieve pain, headaches and 

fever. In some cases children who are more than a year old may be administered 

antihistamine tablets or liquid medicine are helpful in cases when the child is not able to 

sleep because of the itching. 

Immunoglobulin or Acyclovir is mostly recommended in children who are at a high risk 

of developing complications from the disease. Their treatment is similar to the one 

mentioned above plus additional antiviral medication. Children with suppressed immune 

system, infants less than a month, those on steroids or immune suppressing medication or 

other immune-compromised diseases are those who are considered at risk of 

complications from the disease. Administration of Aspirin to children younger than 16 

years may lead to a fatal condition called Reyes syndrome. 

1.2.7 Prevention 

1.2.7.1 Vaccination 

The first varicella vaccine was developed by Michiaki Takahashi in 1974 derived from 

the Oka strain. Some countries require the varicella vaccination before entering 

elementary school. Immunity derived from the vaccine is not lifelong and subsequent 

vaccination is necessary usually after five years after the initial vaccination. Chickenpox 

vaccination is not part of the routine childhood vaccination schedule in Ghana but in the 
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UK, for example, the vaccine is currently offered to people who are particularly 

vulnerable to the disease. 

 

1.2.7.2 Hygienic Measures 

The spread of varicella can be controlled by the isolation of infected persons. Contraction 

is by direct contact with lesions or exposure to respiratory droplets of patients within their 

infectious period. That is from 3 to 5 days before the appearance of the rash to 4 to 5 days 

after the onset of the rash. 

Therefore the avoidance of physical contact or close proximity with affected persons 

during this period will aid prevent contagion. The varicella virus is susceptible to 

disinfectants and also sensitive to desiccation, heat and detergents.  

 

1.3  Problem Statement 

Chickenpox has long been considered not dangerous, unavoidable disease of childhood. 

Complications are generally mild and rarely severe, and virtually every individual is 

infected by adulthood. Infection is related, however, with a high risk of serious 

complications in certain high-risk groups, such as leukemic children or immuno-

compromised patients.  

It was reported by Joy news reporter Isaac Essel on the 26th of August 2008 that an 

outbreak of chicken pox at the Accident and Emergency Unit of the Korle-Bu Teaching 
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Hospital had forced hospital authorities to close the unit temporarily. This has also been 

experienced in other hospitals and polyclinics in Ghana. 

The epidemiology of varicella in Ghana has not been carefully studied and most recent 

outbreaks indicate a large proportion of people been infected. Fears about the severity of 

the disease (that is Chickenpox) in Ghana have led to this thesis. 

 

1.4   Objective of the Study 

The objective of this research involves the following  

1. Developing a mathematical model for varicella or chicken pox in Ghana 

2. Determine the nature of the outbreak 

3. Estimate the proportion of the population that should be vaccinated 

4. Show how the proportion of  susceptible, infectious, and recovered people change 

with time  

5. Determine the effect of the initial number of people infected with varicella on the 

population 

 

1.5   Methodology 

We employ the simple Susceptible-Infective-Recovered (���) compartmental model 

which is used to describe the epidemiology of infectious diseases. 

The ��� model is used in epidemiology to compute the amount of susceptible, infected 

and recovered people in a population. This model does not work for all diseases.  For the 

��� model to be applicable, once a person has recovered from the disease, they receive 
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lifelong immunity. The ��� model is also not appropriate if a person was infected but is 

not infectious. 

The model equations are solved numerically with MatLab which employs Runge-Kutta 

method. Simulation and sensitivity analysis are then performed on the model equations to 

determine the effect of the parameter values on the spread of the disease. 

 

1.6   Justification of Study 

Epidemiology has provided valuable insights for analysis of different types of diseases in 

the world. This study seeks to be justified based on the following; 

• The disease (that is varicella) has been extensively studied in other countries but 

not in Ghana. As at now we are unaware of any mathematical publication 

specifically looking at chicken pox epidemics in Ghana. 

• Although there are records on chicken pox, they normally underestimate the 

number of those who have been infected by the disease. Some people have the 

disease but have not been diagnosed. 

• People get infected daily but we are generally unaware of the trend of the spread 

of the disease. 

• The occurrence of death from the disease generally affects the productivity of the 

country but we are not taking into consideration other measures apart of isolation 

of infected persons of controlling the disease. 
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1.7   Structure of the Thesis 

This thesis is organized into five (5) main chapters. Chapter one gives the introduction of 

the thesis. This consists of a biological background of Varicella, statement of problem, 

objectives, methodology, limitation and organization of the thesis. In the second chapter 

we review related research works. This includes diseases modeled as ��� model and 

works on varicella. The formulation of the mathematical model is presented in chapter 

three. Chapter four presents the analysis and results of model. Chapter five concludes the 

study with discussion of results, conclusions and suggestions for further studies. 
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CHAPTER  2 

REVIEW OF RELATED WORK 

 

In this chapter some of the previous related studies on the spread of communicable 

diseases especially varicella have been reviewed.  

The spread of several communicable diseases have been gainfully studied with 

mathematical models. Information contained in such models either fails to include reality 

in the field or does not admit full quantitative and qualitative description of the disease. 

Varicella occurs in almost every part of the world. In Ghana the study of the 

epidemiology of this disease has not been given much attention. Mathematical models 

can be used to study the spread of this disease.  

Nokes et al (1986) studied rubella epidemiology in south east England. The 

disease was characterized by age-dependent changes in the pattern of virus transmission. 

The rate of infection was low in children than in adults. Immunization against people 

raised levels of immunity in both children and adults. On average, antibody 

concentrations recorded a reduction with age and low in vaccinated females than in 

unvaccinated males. 

Kermack-McKendrick (1927) studied epidemics of measles in United Kingdom. 

In their study the dynamics of the disease depended on infections rate, the removal rate 

and relative removal rate. Their work observed that the disease threshold occurs when 

reproductive number equals to one. There will be an outbreak of the disease if the 
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reproductive number exceeds unity. The disease dies out in the susceptible population if 

the reproductive number is less than one. Moreover, an outbreak of the disease is likely to 

ensue if the density of susceptible is high and the removal rate of infectives is low. The 

expression for the number of the removal or recovered class was ascertained from other 

equations of the system as a function of time. The removal class equation was 

approximately by Taylor series to second degree for small number of removals over 

relateive removal rate. The solution of number of removals depend on infection rate, 

removal rate, initial number of susceptibles and population size. Their work observed that 

the solution of the removal class be used to estimate removals if the outbreak results in 

large population. More importantly, the qualitative solution of the removal class at 

equilibrium was not captured in their work. 

Li and Zou (2009) applied a generalization of the Kemack-McKendrik (1927) 
��� model to a patchy environment for a disease with latency. Their work assumed that 

the infectious disease had a fixed latent period in a population. The ��� model for a 

population living in two cities were formulated. Their model used system of delay 

differential equations with a fixed delay accounting for the latency and non-local terms 

caused by the mobility of the individuals during the latent period. The disease later dies 

out, leaving a certain portion of the susceptible population untouched. Their work 

revealed that the ratio of the final sizes in two compartments is determined by the ratio of 

the dispersion rates of the susceptible individuals between the two compartments. 

Numerical methods were used to explore the dynamics under which the disease dies out 

and the existence of multiple outbreaks. Their work was found to be inconsistent with 

that of Kermack-McKendrick (1927) ��� model. 
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Herpes-zoster is caused by the reactivation of varicella-zoster virus (VZV). In a 

paper Garnett and Grenfell,(1992), reviewed and discussed different hypotheses of how 

this re-emergence of virus comes about. From these hypotheses, and epidemiological data 

describing the initial transmission of the virus, a mathematical model of primary disease 

(varicella) and reactivated disease (zoster) in developed countries was derived. The 

steady-state age distributions of zoster cases was predicted by this model and were 

compared with the observed distribution, derived from a review and analysis of published 

epidemiological data. Their model allows differentiation between published hypotheses 

in which age of host may or may not influence the probability of viral reactivation. Their 

results indicated that the probability of reactivation must increase with age to allow the 

observed pattern of zoster cases. 

The basic mathematical model they presented provides a conceptual framework, which 

may be extended to assess possible control programmes. 

Tuckwell and Williams (2006), investigated the properties of a simple discrete 

time stochastic epidemic model. The model was Markovian of the ��� type in which the 

total population was constant and individuals met a random number of other individuals 

at each time step. Individuals remained infectious for � time units, after which they 

become removed or immune. Individual transition probabilities from susceptible to 

diseased states were given in terms of the binomial distribution. An expression was given 

for the probability that any individuals beyond those initially infected become diseased. 

In the model with a finite recovery time �, simulations revealed large variability in both 

the total number of infected individuals and in the total duration of the epidemic, even 

when the variability in number of contacts per day was small. In the case of no recovery, 
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� = 1, a formal diffusion approximation was obtained for the number infected. The mean 

for the diffusion process could be approximated by a logistic which was more accurate 

for larger contact rates or faster developing epidemics. 

For finite � they then proceeded mainly by simulation and investigated in the 

mean the effects of varying the parameters � (the probability of transmission), �, and the 

number of contacts per day per individual. A scale invariant property was noted for the 

size of an outbreak in relation to the total population size. Most notable were the 

existence of maxima in the duration of an epidemic as a function of � and the extremely 

large differences in the sizes of outbreaks which could occur for small changes in �. 

These findings had practical applications in controlling the size and duration of epidemics 

and hence reducing their human and economic costs. 

Seddighi et al (2010) reported on the stability of two ��� type models for HIV. 

An ���	model with birth rate equal to natural death rate was compared with the ��� 

model with two different infectivies for HIV. The reproductive numbers for the models 

were determined from spectral radius of the next generation matrix. Two different 

expressions of reproductive numbers were obtained for the models. In the modified ��� 

model there were high-infective and higher-infective individuals in the infective class. 

Their work observed three different removal rates for infective to high-infectives, from 

infective to higher-infectives and from infective class to removed class. Modified ��� 

model involved more dynamics than simple ���. They observed that if reproductive 

number is less than unity the infection free equilibrium is locally asymptotically stable 

for the modified ��� model and unstable for modified SIR model if reproductive number 

is greater than unity. In simple ��� model, an infectous free equilibrium point was 



16 

 

asymptotically stable. The simple ��� model is same as modified ��� model if the 

removal rate of infective individuals from to high-infectives equals to zero. They 

concluded that the modeled disease observed disease-related factors such as the 

infectious agent, mode of transmission and infectious period. Factors such as geographic 

factors, demographic, economic status of infectives and cultural were not captured in 

their work. 

With the increasing threat of biological warfare and the fear of an epidemic 

outbreak of influenza, smallpox, and other deadly diseases, the field of epidemic 

modeling is becoming increasingly important in the scientific fields. Hye Yon Yi, 

(2009), focused to create a model to study the effects of the rates of reaction and the 

rates of diffusion within a network based on the different parameters used in the 

modeling of any disease. Their model combines aspects of the predator-prey and the ��� 

(Susceptible, Infected, and Recovered) systems to create a first order system of difference 

equations. For their model, the exact parameters of a specific disease were not as crucial 

as the qualitative behaviors that occur from the changing parameters. The model was 

linearly stable when diffusion does not exist. As diffusion is incorporated, turing 

instabilities occur. 

An ��� epidemic model with vital dynamics, incubation time and also with 

bilinear incidence rate was formulated by Setiawan et al (2002), where incubation time 

lengths as time delay. The total host population was assumed constant. The threshold 

value �� determining whether the disease dies out found. They used Taylor series method 

to find the root of characteristics of the system. Then, the root of characteristic and the 

threshold value 	�0 will be determining the stability of the equilibria of the model which is in 
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the absence of time delay or if it's exist. The result obtained showed that the global 

dynamics were completely determined by the values of the threshold value ��	and time 

delay. If �� is less than or equal to one, the disease-free equilibrium was globally 

asymptotically stable (GAS) and the disease always dies out, while if it exceeds one there 

will be an endemic. Then, by using incubation time length as constant time delay, the 

local stability for endemic equilibrium was investigated. The result obtained that the 

endemic equilibrium was locally asymptotically stable (LAS) for �� exceeds one and for 

all positive time delay, or it can be called absolutely locally asymptotically stable 

(ALAS) when �� exceeds one. 

With the improvement of human society sanitation, the enhancement of medical 

level and science technology, many diseases, such as cholera, smallpox, have been 

controlled by human. However, more and more new viruses are coming. Liu (2009) 
investigated the prediction and establishment of  ��� model for H1N1 epidemic disease. 

The H1N1 ��� epidemic model of Hong Kong has been established and the software 

MatLab was used to write a program for solving the established ��� epidemic model. 

Through their numerical calculation, their predicted infected curve agrees with their fact 

infected curve well. The result of the investigation proved that the established ��� 

epidemic model of H1N1 in Hong Kong is accurate and can be used to analyse the 

development of H1N1 of Hong Kong in the future. Their result could provide the 

condition and investigation method for their sanitation department. 
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Age structure of a population affects the dynamics of disease transmission. 

Traditional transmission dynamics of certain diseases cannot be correctly described by 

the traditional epidemic models with no age-dependence. A simple model was first 

proposed by Lotka and Von Foerster where the birth and the death processes were 

independent of the total population size and so the limitation of the resources were not 

taken into account. To overcome this deficiency, Gurtin and MacCamy,(2009), in their 

pioneering work considered a nonlinear age-dependent model, where birth and death 

rates were function of the total population. Various age-structured epidemic models have 

been investigated by many authors, and a number of papers have been published on 

finding the threshold conditions for the disease to become endemic, describing the 

stability of steady-state solutions, and analyzing the global behavior of these age-

structured epidemic models.  

Yang and Wang (2010) studied a nonautonomous ��� epidemic model with age 

structure. Using integro-differential equation and a fixed point theorem, they prove the 

existence and uniqueness of a positive solution to the model.  They obtained existence 

and uniqueness of this model using integral differential equation and a fixed theorem. 

Their model was different from the classical age structure epidemic model and non-

autonomous epidemic model. The initial condition was nonlocal and dependent on total 

population. In addition, incidence law was not Lipschitzianity. They established that the 

classical methods were not valid and constructed a new norm and proved the existence of 

the model under definition of the new norm. This was illustrated through two simulated 

examples. 
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Mathematical models have been used to study the dynamic interaction of many 

infectious diseases with the host's immune system. Forde and Meeker (2010) studied 

Varicella Zoster Virus, which is responsible for chicken pox (varicella), and after a long 

period of latency, herpes zoster (shingles). After developing the model and demonstrating 

that it exhibited the type of periodic behavior necessary for long term latency and 

reactivation, they examined the implications of the model for vaccine booster programs 

aimed at preventing herpes zoster. They then proceed to prove the positivity and 

boundedness of solutions to the system and explore the existence, location and stability of 

steady state solutions. They had developed a simple mathematical model based on the 

known biology of varicella-zoster virus infection, including the latent infection of 

neurons and the VZV-specific immune response. They had shown that the model 

explained the long latency period of the infection, and its spontaneous reactivation as a 

result of declining specific immunity with age. Mathematically, the course of reactivation 

was represented by a limit cycle. Cycling behavior can only occur when the levels of 

viral production from the site of latency (the parameter s) and reactivity of the specific 

immune cells (d/p) lie within a defined set of values. Based on the model, they could 

make predictions about means of preventing the reemergence of infection, which causes 

herpes zoster. In particular, the model could be used to make predictions about the ideal 

timing of the administration of vaccine boosters intended to prevent herpes zoster. As 

more information about the effects of this booster on patients becomes available, the 

model could serve as a platform for converting this patient data into recommendations 

about booster timing. Finally, they had also observed that the mathematical model of 

infection and immunity demonstrates a wide variety of possible dynamic behaviors. By 
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choosing two parameters appropriately, the model could be used to simulate many 

different possible biologically relevant courses of infection, including acute infection 

followed by clearance and chronic infection. This indicated that the model may be useful 

not only for the study of varicella-zoster virus, but also of other infectious diseases which 

have quite different natural histories. 
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CHAPTER  3 

MATHEMATICAL MODEL 

 

3.0  Introduction 

Epidemiology is essentially a population biology discipline concerned with public health. 

As such, epidemiology is thus heavily influenced by mathematical theory. The reason is 

that most phenomena observed at a population level are often complex and difficult to 

deduce from the characteristics of an isolated individual. For example, the prevalence of 

a disease in a population is only indirectly connected to the course of disease in an 

individual. In this context, the use of mathematical models aims to unearth processes 

from a large-scale perspective. 

This chapter is mainly concerned with developing a modified 	���	 model for the 

occurance of chicken pox in Ghana, finding threshold conditions for the disease to 

become endemic and describing the stability of steady-state solutions, often under the 

assumption that the population has reached its steady state and the diseases does not 

affect the death rate of the population. 

 

3.1   Model Formulation 

The ��� Model is used in epidemiology to compute the dynamics of the susceptible, 

infectious and recovered people in a population.  
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This model is an appropriate one to use under the following assumptions; 

1) The population is fixed. 

2) The only way a person can leave the susceptible group is to become infected. The 

only way a person can leave the infected group is to recover from the disease. 

Once a person has recovered, the person received immunity. 

3) Age, sex, social status, and race do not affect the probability of being infected. 

4) There is no inherited immunity. 

5) The member of the population mix homogeneously (have the same interactions 

with one another to the same degree). 

 

3.2 Model Equations  

The following assumptions were made in addition to the five general assumptions iterated 

above.  

1. This is a closed population (no immigration or emigration) i.e. we assume that the 

population of Ghana is fixed. Individuals in the population are divided into three 

classes (compartments): Susceptibles ��(�)� , Infectives ��(�)�, and Recovereds 

��(�)�. 
2. Susceptible individuals (those who have never had the disease) become infected 

at a rate that is jointly proportional to the number of susceptible and the number 

of infectious. 

3. An individual who contracts the disease is assumed to be infective immediately 

after infection. Hence there is no relapse period for the disease. 
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4. Everybody who gets infected recovers at a rate proportional to the number of 

people infected.  

5. Once recovered from the disease, a person can no longer become susceptible to 

the disease. 

6. The parameters are assumed to be positive constants. 

7. The natural death rate is equal to the birth rate (that is, 	 = �). 

�(�) is the number of susceptible individuals at time � 
  �(�) is the number of infected individuals at time		�	

�(�)	is the number of recovered individuals at time 	� 
� is the total population size 

 

The compartmental diagram shown below summarizes these assumptions. 

 

 

where 

	 is the general population birth rate 

�	 is the infection rate 

�	 is the recovery rate, and  

�	 is the natural death rate 

� � � 
� 

�
�	

� �
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The dynamics of the chicken pox(varicella) outbreak in Ghana is modeled using the 

following systems of ordinary differential equations; 

���� = 	� − ��� − ��																																																																	(3.1) 
���� = ��� − (� + �)�																																																																		(3.2) 
���� = �� − ��																																																																															(3.3) 

															 
The nonlinear system of differential equations formulated above has initial conditions 

�(0) = ��		,			�(0) = ��,				�(0) = 0																																																(3.4) 
This is a modification of the classic Kermack–McKendrick (1927) model.  We are only 

interested in nonnegative solutions for S, I and R. This is a basic model but, even so, we 

can make some highly relevant general comments about epidemics and, in fact, 

adequately describe some specific epidemics with such a model. 

 

The constant population size is built into the system above since, on adding the equations, 

 

���� + ���� + ���� = 0																																																														(3.5) 
� = �(�) + �(�) + �(�)																																																											(3.6) 
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A key question in any epidemic situation is, given 		, �, �, � ≥ 0		and			��,		and the initial 

number of infectives ��, whether the infection will spread or not, and if it does how it 

develops with time, and crucially when it will start to decline. 

From the above system of equations and initial conditions the following deductions can 

be made 

 

Expressing equations (3.1) − (3.3) as a proportionof the population we divide through 

equation (3.6) by the total population to obtain  

((�) = �(�)� , )(�) = �(�)� , *(�) = �(�)� 																																	(3.7) 
Thus, 

((�) + )(�) + *(�) = 1																																																									(3.8) 
Where  

• ((�) is the proportion of susceptible population at time � 
• )(�) is the proportion of the infective population at time � 
• *(�) is the proportion of the recovered population at time � 

 

Substituting equation (3.6) into equations (3.1) − (3.3) we obtain the following 

�(��� = 	� − �(�)� − �(�																																																					(3.9) 
�)��� = �(�)� − (� + �))�																																																			(3.10) 
�*��� = �)� − �*�																																																																				(3.11) 



26 

 

Letting  � = 1, from equation (3.8) into equations (3.9) − (3.11) we obtain the 

following  

�(�� = 	 − �() − �(																																																														(3.12) 
�)�� = �() − (� + �))																																																											(3.13) 
�*�� = �) − �*																																																																									(3.14) 

Before analyzing the system of nonlinear equations, there is the need to linearize these 

systems of equations. 

 

3.2.1  Equilibrium Points 

Linearization approximation is a standard phase plane technique used to analyze system 

dynamics. For an SIR system with a constant host population size we have the following 

system of two independent nonlinear differential equations: 

�(�� = 	 − �() − �(																																																																(3.15) 
�)�� = �() − (� + �))																																																													(3.16) 

We then solve the reduced system of nonlinear equations for the equilibrium points. Thus 

the differential equations above should be equated to zero(0), that is 	+,+- = +.+- = 0. 

	 − �() − �( = 0																																																												(3.17) 
�() − (� + �)) = 0																																																										(3.18) 
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Solving the above equations simultaneously, from equations (3.17) − (3.18)	let ) = 0, 

substituting the value of ) into equation (3.17)we have  

	 − �((/) − �( = 0																																																										(3.19) 
	 − �( = 0																																																																	(3.20) 

Solving the above equation form the value of 	(, we have ( = 01,  bust since 	 = �, implies 

( = 1. Hence the first equilibrium point is  

((∗, )∗) = (1, 0)																																																																	(3.21) 
This is called the disease free equilibrium. 

From equation (3.18), 	( = �+��  , substituting the value of 	(	 into the equation (3.17) we have,  

	 − � 3� + �� 4 ) − � 3� + �� 4 = 0																																												(3.22) 
From which we get 

) = 	� − �(� + �)�(� + �) 																																																																		(3.23) 
Thus the equilibrium points is  

((∗, )∗, ) = 5	� + �� , 	� − �(� + �)�(� + �) 6																																																			(3.24) 
This equilibrium point is called the endemic equilibrium point. 
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3.2.2  Stability of the model 

In this section, we consider some important methods of establishing stability of equilibrium 

points of non-linear differential equations. 

Stability by linearization 

Let 7: �9 → �9  be a  ;< map and suppose that 	�	 is a point such tat  7(�) = 0, i.e., � is a fixed 

point for the differential equation 	=>(�) = 7�=(�)�. 
The linear part of 	7	at 	�,  denoted ?7(�), is the matrix of partial derivatives at 	�. For  = ∈ �9, 

we write  

7(=) =
AB
BB
C7<(=)7D(=)⋮⋮79(=)FG

GG
H																																																																															(3.25) 

The functions 	7. are called the component functions of 	7. We define  

?7(�) =
AB
BBB
BBB
CI7<I=< (�)I7DI=< (�)⋮⋮I79I=< (�)

				
I7<I=D (�)I7<I=D (�)⋮⋮I7<I=D (�)

								
………⋮…
									

I7<I=9 (�)I7DI=9 (�)⋮⋮I79I=9 (�)FG
GGG
GGG
H
																																																(3.26) 

Since 7 ∈ ;<, Taylors theorem for functions of several variables says that  

7(=) = ?7(�)(= − �) + K(=)																																																						(3.27) 
(we have used 7(�) = 0 ), where 	K	 is a function 
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The stability of flow of nonlinear systems can be studied in different perspectives. In this work, 

we will limit ourselves to two different ways: Hartman-Grobman method (linearization) and  

Liapunov’s method. 

 

Hartman-Grobman Theorem  

In a continuous model, a steady state will be stable provided the eigenvalues of the characteristic 

equation (associated with the linearized problem) are both negative (if real) or have a negative 

real part (if complex). 

 

In determining the stability, we implore the linearization technique to equations (3.26) to find the 

Jacobian or community matrix. This gives 

L = 3−�) − � −�(�) 		�( − (� + �)4																																															(3.28) 
 

3.2.2.1  Disease Free Equilibrium 

At the initial state of the disease we have only the susceptible present. From earlier calculations, 

the disease free equilibrium is  ((∗, )∗) = (1, 0). In order to determine the stability of the 

model at this point, we evaluate the Jacobian matrix at this equilibrium point and find the 

eigenvalues corresponding to this point.  
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Evaluating the Jacobian in equation at the disease free equilibrium point, we have 

L(1, 0) = 3−�(0)− � −�(1)�(0) 		�(1)− � − �4 = 3	−� −�0 		� − � − �4 																						(3.29) 
We then find the characteristic equation which is given by det(� − �O) = 0 where O is 

the eigenvalues and 	�	 is an P × P matrix. Here we replace the P × P matrix(�) by the 

Jacobian matrix(L). Thus  

�R�(� − �O) = �R� S3−� −�0 		� − � − �4− O T1 00 1UV 																														(3.30) 
= �R� S3−� − O −�0 		� − � − � − O4V																																(3.31) 
= (−� − O)(� − � − � − O) − (−�)(0)																										(3.32) 

	 Because det(� − �O) = 0, implies 

(−� − O)(� − � − � − O) − (−�)(0) = 0																																						(3.33) 
Therefore O< = −�		/*		OD = � − � − �. The eigenvalues corresponding to the disease 

free equilibrium ((∗, )∗, ) = (1, 0) are 	−�		and		� − � − �.  

Further analysis of the disease free equilibrium point will be done in chapter four. 

 

 

 

 



31 

 

3.2.2.2 The Endemic Equilibrium 

At the point in time where all the compartments of the population coexist is called the endemic 

period. The presence of an infectious person is a problem in the epidemiology of infectious 

diseases. In this section we consider the situation whereby there is coexistence between the two 

main categories ( i.e. the susceptible and the infectious). This is seen in the endemic equilibrium 

point in equation below 

((∗, )∗) = 5� + �� , 	� − �(� + �)�(� + �) 6																																																			(3.34) 
In order to determine the stability of this point, we resort to the same approach used in 

determining the stability of the disease free equilibrium. 

We evaluate the community (or Jacobian) matrix at the endemic point. 

L((∗, )∗) =
W
XY−� 5

	� − �(� + �)�(� + �) 6 − � −� 3� + �� 4
� 5	� − �(� + �)�(� + �) 6 		� 3� + �� 4 − (� + �)Z

[\																	(3.35) 

L((∗, )∗) = ] ^0_(�+�) −(� + �)
	�−�(�+�)(�+�) 		0 `																																											(3.36) 

We then find the characteristic equation which is given by det(� − �O) = 0 where O is 

the eigenvalues and 	�	 is an P × P matrix. Here we replace the P × P matrx(�) by the 

Jacobian matrix(L).  
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Thus  

�R�(� − �O) = �R� a] −	�(bc1) −(� + �)
0_^1(bc1)(bc1) 		0 `− O T1 00 1Ud 																							(3.37) 

= �R�a]^0_(�+�)− O −(� + �)
	�−�(�+�)(�+�) 	−O `d																																											(3.38) 

												= T^0_(�+�)− OU (−O) + (� + �) T	�−�(�+�)(�+�) U																													(3.39) 
	 Because det(� − �O) = 0, implies 

												T^0_(�+�)− OU (−O) + (� + �) T	�−�(�+�)(�+�) U = 0																																				(3.40) 
(� + �)OD + 	�O + (� + �)�	� − �(� + �)� = 0																																									(3.41) 

O<,D = −	� ± f(	�)D − 4(� + �)(� + �)�	� − �(� + �)�2(� + �) 																												(3.42) 
This gives the eigenvalues of the endemic equilibrium to be  

O<,D =
−	�(� + �) ± g3 	�(� + �)4D − 4�	� − �(� + �)�

2 																																			(3.43) 
The stability of the endemic equilibrium depends on the values of  	, �, �, and	�. A detailed 

description of the stability of the endemic equilibrium point will be done in chapter four. 
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3.3 Basic Reproductive Number 	(hi)	 
The basic reproduction ratio of an infectious disease is a pivotal concept in epidemiology. 

It is defined as the expected number of secondary cases that would arise from the 

introduction of a single primary case into a fully susceptible population. Clearly, when 

�� 	< 	1 each successive ‘infection generation’ is smaller than its predecessor, and the 

infection cannot persist. Conversely, when �� 	> 	1 successive ‘infection generations’ are 

larger than their predecessors, and the number of cases in the population will initially 

increase. This increase does not continue indefinitely. The infection process reduces the 

‘pool of susceptibles’, and hence reduces the probability that an infectious individual 

contacts a susceptible within its period of infectiousness. This non-linear effect can only 

be neglected at the beginning of an epidemic.  

 

It represents the average number of secondary infections infected by an individual 

infective. The basic reproduction number can be used to assess whether a newly 

infectious disease can invade a population and to estimate the final size of an ���-type 

epidemic. 

For example, when 	�� < 1, the disease-free equilibrium (DFE) is locally asymptotically 

stable and when		�� > 1, it is unstable. 

This basic reproductive number can be computed by the formula 

�� = O∗()P7Rl�)/m(	�R*)/�) + 1																																													(3.44) 
 

Where O∗	is the dominant eigenvalue whether negative or positive. 
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The basic reproductive ratio for our model is given by  

�� = �� + �																																																																(3.45) 
From the mathematical point of view, usually when 	�� < 1, the model has only disease 

free equilibrium with equilibrium points ((∗, )∗, ) = (1, 0) in the �� plane, and also the 

endemic equilibrium is globally asymptotically stable. When  	�� > 1 the equilibrium 

becomes unstable and usually a positive equilibrium n∗((∗, )∗, ) appears.  n∗ is called an 

endemic. 

 

3.4  Herd Immunity Threshold 

Herd Immunity is a type of community protection from disease that occurs when the 

vaccination of a portion of the population (or herd) provides protection to unvaccinated 

individuals by making it less likely that any infected individual will contact a susceptible 

individual and thus pass on the disease. The Herd Immunity Threshold 	(�o) is 

percentage of the population that needs to be immune to control transmission of a 

disease, i.e. equal to one. The equation (given by Diekmann and Heesterbeek, 2000) for 

estimating the Herd Immunity Threshold is 

�o = 1 − 1�� 																																																																(3.46) 
From equation   substituting  �� = _bc1, into equation above we have  

�o = 1 − 13 �� + �4																																																										(3.47) 
�o = � − � − �	� 																																																												(3.48) 
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As the amount of vaccinations increase, the herd immunity threshold also increases.  

 

 

3.5  Effective Reproductive Number 

The Effective Reproductive number, denoted 	np, is the average number of secondary 

cases generated by an infectious case during an epidemic (Johnson, 2009). To estimate 

this number we used the formula stipulated in Johnsons 2009 article 

np = �� �-� 																																																																		(3.49) 
The Effective Reproductive number is important since it helps to determine how effective 

policies on controlling diseases have been.  When 	np < 1, the policies concerning the 

containing of the disease are effective. 

 

3.6  Control Vaccination Number  

The Control Vaccination Number, denoted 	;q, is the average number of secondary cases 

generated by an infectious case during epidemic with control measure, in this case 

vaccination.  

 

The formula form estimating the control vaccination number is given by 

;q = ��(1 − ℎ7)																																																						(3.50) 
 

Where 	ℎ	 is the vaccine efficacy (the effectiveness of the vaccine) and 	7	 is the 

vaccination coverage (the fraction of the population that has been vaccinated).  
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The goal of researchers is to have ;q < 1. To have ;q < 1, knowing the efficacy of the 

vaccine we can estimate the proportion of the population that need to be vaccinated. 

This is given by  

7 > 1 − T <psUℎ 																																																									(3.51) 
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CHAPTER  4 

ANALYSIS OF MODEL 

 

4.1  Introductions 

This chapter deals with the analysis of the models and the discussion of the results 

obtained. We use MatLab to run our simulations. For our systems of nonlinear 

differential equations, we use the ode 15s which is a fourth order variable Runge-Kutta 

method.  

Sensitivity analysis is performed on the parameter values to determine the effect of these 

values on the rate of spread of Varicella. 

The estimated parameters of the model which have been used for the analysis are shown 

in the table below. 

 

Table 4.1: Parameter values for the model 

Parameter Description Value 

	 birth rate 0.03 

� infectious rate 0.124 

� recovered rate 0.085 

� natural death rate 0.03 
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The number of contacts between susceptibles and varicella patients during his/her 

infectious period is  

t = �� = 0.1240.085 

t = 1.45882 

This means that on the average one varicella patient contacts 	1.45882	 susceptible 

people in the country during his/her infectious period. 

 

To analyze the data, we calculate the reproductive number ��. Substituting the parameter 

values in table into equation (3.45), we have  

�� = 0.1240.085 + 0.03 = 1.07826	 
Since the reproductive number, �� = 1.07826 > 1, an outbreak of varicella will result in 

an epidemic in Ghana. 
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4.1.1 Simulations and Results 

In these simulations we use the parameter values given in Table 4.1, for the model 

equations in (3.12) − (3.14) 
With the introduction of an infective into a susceptible population of Ghana, after 

sometime, the population changes from being infectious free to the state of endemicity. 

We study the dynamics of the disease by the use of simulations at the following 

instances: 

(i) The presence of infectives and  

(ii)  Increase in initial proportion of infectives in the population. 

 

To depict the dynamics of the compartments during the outbreak, we assume the initial 

proportions of susceptibles, infectives and the recovered to be ((�) 	= 	0.95, )(�) = 0.05 

and *(�) = 0.0 respectively. 
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Figure 4.1: The dynamics of the various compartments during the outbreak 

 

From Figure 4:1, when the initial proportion of infectives is 0.05, the proportion of the 

susceptibles declines from an initial value of 0.95 to an approximate minimum value of 

0.84 from day 0 to day 50 and begins to increase gradually afterwards. On the other 

hand, the proportion of the infectives declines asymptotically from the first day reaching 

a minimum value of  0.01 on the 270�ℎ day and maintaining that value onwards. Also, 

the proportion of the recovered population increases after the initial day (day 0) and 

reaches maximum of 0.11 on the sixtieth (60�ℎ) day and then declining steadily with 

time. Hence, the susceptibles decrease due to the introduction of the infectives. While 

even though the infectives infect more susceptibles, due to their high recovery rate the 

number keeps on reducing. This is exhibited due to the asymptotic decline of the 

infectives. The rise of the recovered population is due to frequent migration of people 

from infectives population to the recovered population. 
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4.1.2 Effects of initial proportions of infectives on the various compartments 

 

In this section we vary the initial proportion of infectives to investigate the effect it will 

have on the susceptible, infectives and recovered populations. 

 

 

Table 4.2: Initial proportions of various compartments 

Infectives  Susceptibles Recovered 

0.05 0.95 0.00 

0.10 0.90 0.00 

0.20 0.80 0.00 

0.30 0.70 0.00 

 

 

The following Figures depict the effect of changes in initial proportion of infectives in 

Table	4.2	on the various compartments in the population. 

 



42 

 

Figure 4.2:  Effect of an increase in initial proportion of infectives on susceptible population with 

time. 

 

 

From Figure 4.2 above, when the initial proportion of infectives is 0.05, the proportion of 

the susceptibles declines from an initial value of 0.95 to an approximate minimum value 

of 0.87 from day 0 to day 50 and begins to increase gradually after day 50 onwards 

attaining a constant value of 0.925. When the initial proportion of infectives is increased 

to 0.10, the proportion of the susceptibles, declines from an initial value of 0.90 and 

reaching its minimum value of 0.79 in thirty (30) days before rising steadily. As we 

increase the initial proportion of infectives from 0.10	 to 	0.20	 the proportion of the 

susceptible also decline to a minimum of 0.675	 within twenty-five (25) days before 

increasing thereafter. Lastly at an initial proportion of infectives being 0.30 the 

proportions of the susceptibles decline to a minimum of 	0.58	 within twelve (12) days 

and then rising afterwards. 
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Figure 4.3:  Effect of an increase in initial proportion of infectives on the infective population with 

time. 

 

 

In Figure 4:3 above, as the initial proportion of infectives is 0.05, the proportion of the 

infectives declines from its initial of 0.05 to its minimum value of 0.025 within 170 

days. With the initial proportion being 0.10, 0.20	and	0.30, the infectives population 

exhibited similar behavior by declining exponentially to 0.025 by day 170th day.  

The higher the initial proportion of the infectives the faster the declination. 
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Figure 4.4: Effect of an increase in initial proportion of infectives on the recovered population 

with time 

 

 

From Figure 4.4, as the initial proportion of infectives is 0.05, the proportion of 

recovered population rises exponentially from day 0 to a peak value of 0.1 on day 55 

before reducing gradually. As the initial proportion of the infectives is increased to 	0.10	 
the maximum value of 	0.15	 is observed on the forty-fifth (45�ℎ) day.   

Similar observations are made for increasing number of initial proportion of infectives. 

However, each proportion of the recovered population attains different peak values but at 

different time with all declining to a minimum of 0.05. 
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4.2  Stability Analysis 

4.2.1  Stability of infectious free equilibrium 

We now investigate the linear stability of the infectious free equilibrium point ((∗, )∗) =
(1, 0). By substituting the parameter values in Table 4.1 above into equation (3.33) the 

eigenvalues corresponding to the infectious free equilibrium are O< = −0.03 and   

OD = 0.009. Because the two eigenvalues, that is O<,D, are both real and O< negative 

whilst OD is positive, the disease free equilibrium is a saddle point, therefore unstable. 

 

This implies that the presence of a person infected with chicken pox in Ghana will 

eventually result in an outbreak of the disease. 

We will later consider the effect of the changes in the parameter values on the stability of 

the equilibrium. 

 

4.2.2  Stability of the endemic equilibrium 

At the point in time where all the compartments of the population coexist is called the 

endemic period. The presence of an infectious person is a problem in the epidemiology of 

infectious diseases. We study the behavior of this equilibrium point. 

The endemic equilibrium point is given by  

((∗, )∗) = 5� + �� , 	� − �(� + �)�(� + �) 6																																																				(4.1) 
Substituting the parameter values in Table 4.1 into the above equation, we obtain our 

endemic equilibrium as  

((∗, )∗) = 3115124 , 2714264																																																										(4.2) 
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((∗, )∗) = (0.927419, 0.018934)																																																			(4.3) 
The eigenvalues corresponding to the endemic equilibrium is given by the equation  

O<,D =
−	�(� + �) ± g3 	�(� + �)4D − 4�	� − �(� + �)�

2 																																			 (4.4) 
Also by substituting the parameter values into the above equation will have 

O<,D

=
−0.03(0.124)(0.085 + 0.03) ± g3 0.03(0.124)(0.085 + 0.03)4D − 4�0.03(0.124) − 0.03(0.085 + 0.03)�

2 								(4.5) 
which yields  

O< = −0.016174 + 0.002899)		and		OD = −0.016174 − 0.002899) 
 

Since the eigenvalues are complex conjugate with negative real parts the endemic 

equilibrium is asymptotically stable. 

 

From further analysis the endemic equilibrium ((∗, )∗) = Tbc1_ , 0_^1(bc1)_(bc1) U, can be 

expressed in terms of the reproductive number ��. Since �� = _bc1 and 		 = � further 

substitution yields 

((∗, )∗) = 5 1	�� , 	(�� − 1)� 6																																																			 (4.6) 
This produces another expression for the endemic equilibrium solely in terms of the 

parameters and the reproductive number  
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4.2.3 Sensitivity analysis 

Table 4.3: Parameter values, eigenvalues and classification of the disease free 

equilibrium. 

x y z { |} |~ hi ������ �� ���  ����������� 

0.03 0.124 0.1240 0.03 −0.03 −0.03 0.80519 �����R lRP�*R 

0.03 0.124 0.085 0.03 −0.03 0.009 1.0783 �����R �/)P�, mP(����R 

0.03 0.124 0.095 0.03 −0.03 −0.001 0.992 �(����/�)l���� (����R 

 

 

From the equations for the eigenvalues, O< = −�  and  OD = � − � − �  

Since � > 0, it  implies that O< < 0   

For stability to be obtained OD < 0 implying � − � − � < 0 

� < � + � 

�

� + �
< 1          ⇒       �� < 1 

This implies that when the reproductive number is less than unity,  i.e. �� < 1, that 

disease free equilibrium is stable. Whilst when the reproductive number is greater than 

unity the diseases free equilibrium is unstable. 
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Table 4.4: Parameter values, eigenvalues and classification of equilibrium point of the 

disease endemic equilibrium. 

x y z { |} |~ hi ������ �� ��� ����������� 

0.03 0.124 0.124 0.03 0.02026 −0.04441 0.80519 �P(����R (����R �/)P� 

0.03 0.124 0.085 0.03 −0.016174

+ 0.002899) 

−0.016174

− 0.002899) 

1.07826 �(����/�)l���� (����R 

0.03 0.120 0.095 0.03 0.004504 −0.03330 0.96 �P(����R (����R �/)P� 

 

From the above table perturbation of parameter the endemic equilibrium is stable when 

the reproductive number is greater than unity, i.e. �� > 1,  and unstable when the 

reproductive number is less than unity, i.e.  �� < 1 .  

 

4.2.4  Herd Immunity Threshold 

From equation �3.46�, the herd immunity ratio is given as 

�o = 1 −
1

1.07826
  

�o = 0.0725799 

Thus about 7.257996% of the susceptible population should be immune in order to bring 

the spread of varicella under total control. 
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4.2.5  Control Vaccination Number  

Research has shown that that the vaccine for varicella has 99% effectiveness in the first 

year, and after eight years the effectiveness drops to 87%	[Karen, 2004]. Knowing the 

efficacy of the vaccine we estimate the proportion of the population that need to be 

vaccinated. 

This is given by  

7< > 1 − � <<.���D��0.99 		and		7D > 1 − � <<.���D��0.87 	 
7< > 0.073313		and		7D > 0.083425 

 

We can observe from calculations above that when the effectiveness is 99%, then about 

7.3313% of the population need to be vaccinated in order for 	;q < 1. When the 

effectiveness is 87%, then about 8.3425% of the population need to be vaccinated in 

order for 	;q < 1 . 
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CHAPTER  5 

DISCUSSION, CONCLUSION AND RECOMMENDATION 

 

 

5.1.  Introduction  

In this chapter we discuss the results obtained from the analysis, conclude and give 

necessary recommendation for further study 

 

5.2. Discussions 

From the preliminary analysis, one Varicella patient contacts on the average 1.45882 

susceptible people in the country during his/her infectious period 

 

From the simulations, Figure 4.2 exhibits a decline in the susceptible population as the 

initial proportion of infectives is increased. This implies that, the larger the initial 

proportion of infectives in the country the larger the proportion of the susceptibles that 

are infected, and on the other hand the smaller the proportion of the susceptibles left in 

the country. 

Thus when there are many people infected with varicella in Ghana, the susceptibles are at 

a higher risk of acquiring the disease.  

 

The study of Figure 4.3 also revealed that, an increase in the initial proportion of 

infective increases the infective in the population. But as the initial proportion increase, 
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the reduction in the number of infectives with time is faster as compared to a lower initial 

proportion of infectives 

This is because there is a relatively high recovery rate such that even though the 

susceptible population are been infected, a high amount of them recover quickly there by 

providing herd immunity. This means that the higher the number of infectives in Ghana 

the faster they recover adding up to the number of immune persons thereby reducing the 

number of people to be contacted by an infected person before recovery. 

 

Furthermore, the simulation in Figure 4:4 indicates that the recovered population 

increases as the initial proportion of infectives remains high. Since the infectives 

population increases with high recovery rate, more people become infected with varicella 

and all this people recover. 

 

The sensitivity analysis indicates as illustrated in Table 4.4, that there exist a direct 

(linear) relationship between the transmission rate, and the reproductive ratio, ��. The 

higher the transmission rate relative to the recovery rate the higher the reproductive 

number whilst the lower the transmission rate relative to the recovery rate the lower the 

reproductive number since the natural death rate is relatively small. 

 

The perturbation analysis of the disease free equilibrium revealed that when the 

reproductive number �� is less than unity the disease free equilibrium is stable, whilst 

when it is greater than unity the disease free equilibrium is unstable (Diekmann and 

Heesterbeek, 2000). 
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On the other hand the perturbation analysis of endemic equilibrium revealed stability 

when the reproductive number is greater than unity and instability when the reproductive 

number is less than unity. 

The herd immunity threshold shows that about 7.26% of the susceptible population of 

Ghana should be immune in order for the disease not result in an epidemic 

From further analysis with a control measure such a vaccination, and having a vaccine 

efficacy of 99% about 7.33%	of the susceptible population should be vaccinated in order 

to have Varicella under total control whilst with a vaccine efficacy of 87% about 8.34% 

of the susceptible population of Ghana should be vaccinated in order to bring the disease 

under control in Ghana. 

Vaccinating these percentages of the entire population reduces the proportion of the 

susceptible population who risk infection upon outbreak. 

 

5.3.  Conclusion 

The derivation and analysis of the modified SIR mathematical model (SIRS), enabled a 

better understanding of the dynamics of the spread of varicella within the Ghanaian 

population. 

 

Numerical simulations and sensitivity analysis was extensively helpful in the 

determination of the effect of the various parameters especially the transmission rate and 

recovery rate on the spread of the disease.  
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The reproductive ratio estimated indicates that the disease outbreak will be epidemic in 

the country. About 7.26% of the susceptible population should be immune or recovered 

in order not to have an epidemic during an outbreak. 

The simulation results and the sensitivity analysis of the study confirmed the transmission 

rate and recovery rate as the dominant parameters in the spread of the disease in Ghana. 

Essentially, the chances of an epidemic is possible as far as the reproductive ratio is 

greater than one. 

 

5.4.  Recommendations 

Further research work is recommended particularly for non-constant and heterogeneous 

population and also on vaccination. 

 Vaccination programmes should be introduced by the ministry of health and should 

target at vaccinating the about 7.33% of the susceptible population in order to fully bring 

the disease under control where the outbreak is considered epidemic. 
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APPENDIX 

Matlab Code for Simulations 

 

function  dy=csm(t,y,alpha,beta,delta,gamma)  

dy=zeros(3,1)  

dy(1)=alpha-beta*y(1)*y(2)-delta*y(1)  

dy(2)=beta*y(1)*y(2)-(delta+gamma)*y(2)  

dy(3)=gamma*y(2)-delta*y(3) 

 

 

Call Function for the Graph of the susceptibles, infectives, recovered at the initial 

stages 

 

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.95 0.05 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,1), '+' ,t,y(:,2), '+' ,t,y(:,3), '+' )  

legend( 'Susceptibles' , 'Infectives' , 'Recovered' ), ylabel( 'Total 

proportion of population' ),  

xlabel( 'Time(days)' ), title( 'Graph of susceptibles, infectives and 

recovered at the initial stage' )  

print  
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Call function for the change in the initial infectives on the susceptible population 

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.95 0.05 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,1), 'r+' )  

hold on 

  

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.90 0.10 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,1), 'b+' )  

hold on 

  

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.80 0.20 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,1), 'm+' )  

hold on 

  

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.70 0.30 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,1), 'g+' )  

legend( 'i=0.05' , 'i=0.10' , 'i=0.20' , 'i=0.30' ),xlabel( 'Time(days)' ),  

ylabel( 'Susceptible Population' ),title( 'Effect of increase in initial 

number of infectives on the susceptible population' )  

print  
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Call function for the change in the initial infectives on the infective population 

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.95 0.05 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,2), 'r+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.90 0.10 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,2), 'b+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.80 0.20 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,2), 'm+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.70 0.30 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,2), 'g+' )  

legend( 'i=0.05' , 'i=0.10' , 'i=0.20' , 'i=0.30' ),xlabel( 'Time(days)' ),  

ylabel( 'Infectives population' ),title( 'Effect of increase in initial 

number of infectives on the infectives population' )  

print  
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Call function for the change in the initial infectives on the recovered population 

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.95 0.05 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,3), 'r+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.90 0.10 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,3), 'b+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.80 0.20 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,3), 'm+' )  

hold on 

  

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;  

options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,1e-19);  

[t,y]=ode15s(@csm,[0 365],[0.70 0.30 

0.00],options,alpha,beta,delta,gamma);  

plot(t,y(:,3), 'g+' )  

legend( 'i=0.05' , 'i=0.10' , 'i=0.20' , 'i=0.30' ),xlabel( 'Time(days)' ),  

ylabel( 'Recovered population' ),title( 'Effect of increase in initial 

number of infectives on the Recovered population' )  

print  

 


