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Abstract
In this thesis a modifiedSIR mathematical model on the spread of Varicella
(Chickenpox) in Ghana was developed.
Here the population is divided into three compartteethe susceptibles, the infectives,
and the recovered. The resulting system of norafidé@ferential equations was analysed,
thus in respect of the stability of the equilibriggoints. The model focuses on the spread
of the disease at the initial stages of the infeciivhen the infected persons are absent
and when they are present taking into considerdtidh rate and natural death rate. The
study is based on the assumption that the popuolafiGGhana is constant, and the natural
death rate was assumed to be equal to the bigh\fé then determine how the various
compartments react to increasing proportion of gressat the initial stages of their
infection.
We perform sensitivity analysis on the alreadyreated model parameters to determine
their effect on the reproductive number and at wiahies of the reproductive number are

the disease free and endemic equilibra stable.
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CHAPTER 1

INTRODUCTION

1.1  Background

Mathematical modeling has significantly ‘enhancede tlinderstanding of the
epidemiology and control of infectious diseasesowledge from this important and
exciting field have helped in various levels of idean making.

The communicable nature of infectious diseases sdem basically different from
non-infectious diseases, so techniques from 'dakspidemiology are often invalid and

hence lead to incorrect conclusions - not leakemlth-economic analysis.

“Mathematical modelling now plays a key role in ipgl making, including health-
economic aspects; emergency planning and risk ssses; control-programme
evaluation; and monitoring of surveillance data.résearch, it is essential in study
design, analysis (including parameter estimatiowl) iaterpretation.

With infectious diseases frequently dominating nelesadlines, public-health and
pharmaceutical-industry professionals, policy makand infectious disease researchers,
increasingly need to understand transmission pettand to interpret and critically-
evaluate both epidemiological data, and the finglinfmathematical modeling studies.
Recently there has been rapid progress in devejow models and analysis techniques
for outbreaks and emerging epidemics, such aseinfia A (H1N1) and SARS.” C

Fraser, 2008



Also with the betterment of human society cleardseéhe improvement of medical level

and science technology, many diseases, such asrahasmallpox, have been greatly
controlled by humans. However, more and more newses are emerging. How to

regulate the widespread of diseases and form thiersyof forecasting for the epidemic

diseases is a tough task and problem given muc$idenation by countries and research
departments. More researchers nowadays use matbahmethods to study the spread
of infectious diseases. It therefore deemed vepontant to form a mathematical method
that reflects the epidemic features for the revatadf the spreading law and forecasting
of the epidemic. Many research work have been wakken in this field.

In this thesis, we study the epidemiology of Vallecéchicken pox) using a mathematical
model. We consider some of the recent mathemadeatlopments that have improved

our understanding and predictive ability.

1.2  Varicdla (Chicken Pox)

1.2.1 Description of Varicella

Chickenpox or varicella is a highly transmissibféection primarily caused by ace-
herpes virus called Varicella Zoster, and is onehaf commonly reported childhood

disease.

This disease is an airborne disease and highly eommable which spreads from person
to person by either by direct contact with thedlénom the blisters or through secretions
from the respiratory tract (i.e. infected persoodaighing or sneezing) or by coming in

contact with infected person’s clothing.



The chicken pox patient is normally infectious fréive days before the appearance of
the blisters and remains infectious until all tHestbrs have formed scabs, and this
usually takes five to six days. It usually takesnirter(10) to twenty-one(21) days after

coming in contact with an infectious patient forean develop the disease. Early rash of

chickenpox is mostly on the upper body.

1.2.2 Epidemiology of Varicella

Primary varicella is an endemic disease. Casesavnic®lla are experienced throughout

the year.

Varicella is one of the classic diseases of chitghowith maximum occurrence in
children with ages between fo(# ) and tei(10) years. It is highly contagious with and
infection rate 0f90% in close contacts. In general most people getciate before

reaching adulthood but abol@% of adults still remain susceptible.

From history, varicella has been a disease mosthctang infants and school-aged
children. As compared to children the pock marksdults are darker and the scares

more noticeable.



1.2.3 Diagnoses of Varicella

The diagnosis of chickenpox is mostly clinical. Tegnosis of varicella is mostly

clinical, with typical early symptoms, and then tireset of a characteristic itchy rash.

Confirmation of the diagnosis can be sought throeigiter the examination of fluids of

the rash or by blood test for eh presence of anttammunologic response.

Vesicular fluids can also be examined for the preseof fluorescent antibody. Where
attempts are made to grow the virus for a fluid ganthe fluid is cultured (McPherson &

Pincus, 2007).

In pregnant mothers, the diagnosis of fetal intectof varicella can be done by using
ultrasound. A delay of 5 weeks after maternal itibgcis usually advised. Though there
is the risk of abortion due to amniocentesis, a Didst of the mothers’ amniotic fluid

can also be carried out.

1.2.4 Varicdlalnfection In Pregnancy And Newborn Babies

For pregnant women, immunity gotten through immatan or previous infection is
transferred to the foetus through the placentaar{Bn2007). On the other hand varicella
infection during pregnancy can lead to viral traission through the placenta and foetal

infection.



If there is an infection within the first 28 weesdsgestation, it can lead to foetal varicella
syndrome. This is also referred to as congenitdteba syndrome. Foetal varicella can
cause lesser effects such as finger and toes wnddgoppment to severe ones such as

bladder malformation.

Some other possible effects include:

» Brain damage: microcephaly, encephalitis, hydroabpletc.

» Eye damage: optic cap, optic stalk and lens vesielg.c.,

* Neurological disorder:

» Skin disorder;

» Body damage: hypoplasia of lower/upper extremitiéadder and anal sphincter

dysfunction.

Infection during the latter part of gestation omuediately after birth is referred to as
neonatal varicella. Maternal infection is assodatéth premature delivery. Exposure of
the baby to the infectiod days prior to delivery of days after delivery has the greatest

risk of the baby developing the disease.

Neonates that develop the symptoms are at a hsfhofi pneumonia and other severe

problems.

After an infection of chickenpox, the virus remalagent in the body’s nerve tissues and

later in life, reactivates and causes a differennfof the virus called shingles.



1.25 Treatment of Varicedla Infection in Adults

Infection in adults is more severe and active. fneait with antiviral drugs is mostly
advised. Remedies to ease the symptoms of chiakermnpadults are basically the same
as those used on children. However, adults arecipipesl antiviral medications with the
aim to reducing the severity of their illness ahe tikelihood of complications. This

however does not kill the virus, but only preveitggyrowth.

Painkillers such as ibuprofen and paracetamol ks @rescribed to relieve itching and
other symptoms such as fever and pains. Increasakki of water is also recommended
to reduce dehydration and relieve headache. Atimises mays also used as they are

effective in easing itching and they also act asdative.

Sorivudine, has been found in some cases to betigkein the treatment of primary

varicella in healthy adults.

1.2.6 Treatment of Varicellalnfection in Children

Treatment of chicken pox in children is aimed syonmt whilst the immune system is
allowed to deal with the virus. Nails of childreaunger than 12 years are cut and kept
clean to prevent them from crashing themselves farttier infection of the blisters.
Children between the ages on one month and 12 geansot meant to receive antiviral
treatment if they are not suffering from other dtiod that might expose them to other

complication.



Increased water intake is also advised for childoeavoid dehydration, especially if the

child develops fever.

Painkillers such as paracetamol or ibuprofen candsel to relieve pain, headaches and
fever. In some cases children who are more thareax wld may be administered
antihistamine tablets or liquid medicine are hdljrfiucases when the child is not able to

sleep because of the itching.

Immunoglobulin or Acyclovir is mostly recommendedahildren who are at a high risk
of developing complications from the disease. Thepatment is similar to the one
mentioned above plus additional antiviral medigatiGhildren with suppressed immune
system, infants less than a month, those on sgemidnmune suppressing medication or
other immune-compromised diseases are those who carsidered at risk of
complications from the disease. Administration cfpkin to children younger than 16

years may lead to a fatal condition called Rey@sisyme.

1.2.7 Prevention

1.2.7.1 Vaccination

The first varicella vaccine was developed by Mikhigakahashi in 1974 derived from
the Oka strain. Some countries require the vadcelaccination before entering
elementary school. Immunity derived from the vaecia not lifelong and subsequent
vaccination is necessary usually after five yedter @ahe initial vaccination. Chickenpox

vaccination is not part of the routine childhoodasiaation schedule in Ghana but in the



UK, for example, the vaccine is currently offered people who are particularly

vulnerable to the disease.

1.2.7.2 Hygienic M easures

The spread of varicella can be controlled by tléatson of infected persons. Contraction
is by direct contact with lesions or exposure gpretory droplets of patients within their
infectious period. That is from 3 to 5 days befibre appearance of the rash to 4 to 5 days

after the onset of the rash.

Therefore the avoidance of physical contact or eclpsoximity with affected persons
during this period will aid prevent contagion. Thkaricella virus is susceptible to

disinfectants and also sensitive to desiccatioat hed detergents.

1.3 Problem Statement

Chickenpox has long been considered not dangeumasioidable disease of childhood.
Complications are generally mild and rarely sevemsd virtually every individual is
infected by adulthood. Infection is related, howeveith a high risk of serious
complications in certain high-risk groups, such lagkemic children or immuno-

compromised patients.

It was reported by Joy news reporter Isaac Esseher26 of August2008 that an
outbreak of chicken pox at the Accident and Emergeddnit of the Korle-Bu Teaching

8



Hospital had forced hospital authorities to cldse @init temporarily. This has also been

experienced in other hospitals and polyclinics maGa.

The epidemiology of varicella in Ghana has not bemefully studied and most recent
outbreaks indicate a large proportion of peoplentieected. Fears about the severity of

the disease (that is Chickenpox) in Ghana havéoléais thesis.

1.4  Objective of the Study

The objective of this research involves the follogyi
1. Developing a mathematical model for varicella ackén pox in Ghana
2. Determine the nature of the outbreak
3. Estimate the proportion of the population that $tidne vaccinated
4. Show how the proportion of susceptible, infecticusd recovered people change
with time
5. Determine the effect of the initial number of peopifected with varicella on the

population

15 Methodology

We employ the simple Susceptible-Infective-Recod€s#R) compartmental model
which is used to describe the epidemiology of itikers diseases.

TheSIR model is used in epidemiology to compute the arhotisusceptible, infected
and recovered people in a population. This modesdwt work for all diseases. For the

SIR model to be applicable, once a person has recd¥erm the disease, they receive

9



lifelong immunity. TheSIR model is also not appropriate if a person wasciei# but is

not infectious.

The model equations are solved numerically withlMatwhich employs Runge-Kutta
method. Simulation and sensitivity analysis ar@tperformed on the model equations to

determine the effect of the parameter values ospinead of the disease.

1.6  Justification of Study

Epidemiology has provided valuable insights forlgsia of different types of diseases in

the world. This study seeks to be justified basethe following;

* The disease (that is varicella) has been externysstatied in other countries but
not in Ghana. As at now we are unaware of any madkieal publication
specifically looking at chicken pox epidemics indah.

» Although there are records on chicken pox, theynadlly underestimate the
number of those who have been infected by the skisezome people have the
disease but have not been diagnosed.

» People get infected daily but we are generally warawf the trend of the spread
of the disease.

» The occurrence of death from the disease geneatifigts the productivity of the
country but we are not taking into consideratidmeotmeasures apart of isolation

of infected persons of controlling the disease.

10



1.7 Structureof the Thesis

This thesis is organized into fi{&) main chapters. Chapter one gives the introduaifon
the thesis. This consists of a biological backgtoh Varicella, statement of problem,
objectives, methodology, limitation and organizataf the thesis. In the second chapter
we review related research works. This includegatiss modeled @&dR model and
works on varicella. The formulation of the matheicetmodel is presented in chapter
three. Chapter four presents the analysis andtsestimodel.Chapter five concludes the

study with discussion of results, conclusions amghestions fofurther studies.

11



CHAPTER 2

REVIEW OF RELATED WORK

In this chapter some of the previous related studrethe spread of communicable

diseases especially varicella have been reviewed.

The spread of several communicable diseases haee painfully studied with

mathematical models. Information contained in soncilels either fails to include reality
in the field or does not admit full quantitativedagualitative description of the disease.
Varicella occurs in almost every part of the world. Ghana the study of the
epidemiology of this disease has not been givenhnaitention. Mathematical models

can be used to study the spread of this disease.

Nokes et al(1986) studied rubella epidemiology in south east EnglaHide
disease was characterized by age-dependent chantespattern of virus transmission.
The rate of infection was low in children than iduéis. Immunization against people
raised levels of immunity in both children and &sulOn average, antibody
concentrations recorded a reduction with age amd ifo vaccinated females than in

unvaccinated males.

Kermack-McKendrick(1927) studied epidemics of measles in United Kingdom.
In their study the dynamics of the disease depeitenifections rate, the removal rate
and relative removal rate. Their work observed that disease threshold occurs when

reproductive number equals to one. There will beoatbreak of the disease if the

12



reproductive number exceeds unity. The diseaseadies the susceptible population if
the reproductive number is less than one. More@regutbreak of the disease is likely to
ensue if the density of susceptible is high andrémeoval rate of infectives is low. The
expression for the number of the removal or recedealass was ascertained from other
equations of the system as a function of time. Témoval class equation was
approximately by Taylor series to second degreesfoall number of removals over
relateive removal rate. The solution of number @hovals depend on infection rate,
removal rate, initial number of susceptibles anpypation size. Their work observed that
the solution of the removal class be used to estimemovals if the outbreak results in
large population. More importantly, the qualitatigelution of the removal class at

equilibrium was not captured in their work.

Li and Zou(2009) applied a generalization of the Kemack-McKendi1©27)
SIR model to a patchy environment for a disease vaténicy. Their work assumed that
the infectious disease had a fixed latent perio@ ipopulation. The&SIR model for a
population living in two cities were formulated. dih model used system of delay
differential equations with a fixed delay accougtiior the latency and non-local terms
caused by the mobility of the individuals during tlatent period. The disease later dies
out, leaving a certain portion of the susceptibtgpydation untouched. Their work
revealed that the ratio of the final sizes in tvwonpartments is determined by the ratio of
the dispersion rates of the susceptible individuaétween the two compartments.
Numerical methods were used to explore the dynammcder which the disease dies out
and the existence of multiple outbreaks. Their wods found to be inconsistent with

that of Kermack-McKendrick1927) SIR model.
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Herpes-zoster is caused by the reactivation ofceda-zoster virus (VZV). In a
paper Garnett and Grenféll992), reviewed and discussed different hypotheses wf ho
this re-emergence of virus comes about. From thggetheses, and epidemiological data
describing the initial transmission of the virugnathematical model of primary disease
(varicella) and reactivated disease (zoster) inelbped countries was derived. The
steady-state age distributions of zoster cases pwegicted by this model and were
compared with the observed distribution, derivedira review and analysis of published
epidemiological data. Their model allows differatibn between published hypotheses
in which age of host may or may not influence thebpbility of viral reactivation. Their
results indicated that the probability of reactioatmust increase with age to allow the
observed pattern of zoster cases.

The basic mathematical model they presented prsevadeonceptual framework, which
may be extended to assess possible control progeamm

Tuckwell and Williams(2006), investigated the properties of a simple discrete
time stochastic epidemic model. The model was Magkoof theSIR type in which the
total population was constant and individuals metredom number of other individuals
at each time step. Individuals remained infectibwsR time units, after which they
become removed or immune. Individual transitionbatalities from susceptible to
diseased states were given in terms of the binadis&iibution. An expression was given
for the probability that any individuals beyond seainitially infected become diseased.
In the model with a finite recovery tinfe simulations revealed large variability in both
the total number of infected individuals and in tb&al duration of the epidemic, even

when the variability in number of contacts per eas small. In the case of no recovery,

14



R = 1, a formal diffusion approximation was obtained e humber infected. The mean
for the diffusion process could be approximatedabggistic which was more accurate
for larger contact rates or faster developing apids.

For finite R they then proceeded mainly by simulation and itigated in the
mean the effects of varying the paramegefthe probability of transmission®, and the
number of contacts per day per individual. A sadalariant property was noted for the
size of an outbreak in relation to the total popata size. Most notable were the
existence of maxima in the duration of an epideasi@ function oR and the extremely
large differences in the sizes of outbreaks whichld occur for small changes .
These findings had practical applications in cdhirg the size and duration of epidemics
and hence reducing their human and economic costs.

Seddighi et al(2010) reported on the stability of tw&/R type models for HIV.
An SIR model with birth rate equal to natural death raeswompared with th8IR
model with two different infectivies for HIV. Theeproductive numbers for the models
were determined from spectral radius of the nexiegstion matrix. Two different
expressions of reproductive numbers were obtainethke models. In the modifief{ R
model there were high-infective and higher-infeetimdividuals in the infective class.
Their work observed three different removal ra@msiffective to high-infectives, from
infective to higher-infectives and from infectivéags to removed class. ModifietiR
model involved more dynamics than sim@ER. They observed that if reproductive
number is less than unity the infection free equilim is locally asymptotically stable
for the modifiedSIR model and unstable for modified SIR model if refprctive number

is greater than unity. In simpl€/R model, an infectous free equilibrium point was

15



asymptotically stable. The simpR model is same as modifieffR model if the
removal rate of infective individuals from to highfectives equals to zero. They
concluded that the modeled disease observed disglased factors such as the
infectious agent, mode of transmission and infestiperiod. Factors such as geographic
factors, demographic, economic status of infecti@ed cultural were not captured in

their work.

With the increasing threat of biological warfaredatine fear of an epidemic
outbreak of influenza, smallpox, and other deadiseases, the field of epidemic
modeling is becoming increasingly important in tbaentific fields. Hye Yon Yi,
(2009), focused to create a model to study the effectthefrates of reaction and the
rates of diffusion within a network based on thé&fedent parameters used in the
modeling of any disease. Their model combines asp#dhe predator-prey and tSéR
(Susceptible, Infected, and Recovered) systemeetie a first order system of difference
equations. For their model, the exact parameteessifecific disease were not as crucial
as the qualitative behaviors that occur from thaengmng parameters. The model was
linearly stable when diffusion does not exist. Asfudion is incorporated, turing
instabilities occur.

An SIR epidemic model with vital dynamics, incubation ¢inand also with
bilinear incidence rate was formulated by Setiawaal (2002), where incubation time
lengths as time delay. The total host populatios wssumed constant. The threshold
valueR, determining whether the disease dies out foundyTiked Taylor series method
to find the root of characteristics of the systerhen, the root of characteristic and the

threshold valueR, will be determining the stability of the equilibred the model which is in

16



the absence of time delay or if it's exi$the result obtained showed that the global
dynamics were completely determined by the valdehe threshold valu®, and time
delay. If R, is less than or equal to one, the disease-fredilqum was globally
asymptotically stable (GAS) and the disease alvdégs out, while if it exceeds one there
will be an endemic. Then, by using incubation tileegth as constant time delay, the
local stability for endemic equilibrium was invegtted. The result obtained that the
endemic equilibrium was locally asymptotically $&afl_AS) for R, exceeds one and for
all positive time delay, or it can be called abselly locally asymptotically stable
(ALAS) whenR, exceeds one.

With the improvement of human society sanitatidre €nhancement of medical
level and science technology, many diseases, sachhalera, smallpox, have been
controlled by human. However, more and more newses are coming. Li2009)
investigated the prediction and establishmentSt® model for HLN1 epidemic disease.
The HIN1SIR epidemic model of Hong Kong has been establismetithe software
MatLab was used to write a program for solving éstablishedS/R epidemic model.
Through their numerical calculation, their preditiefected curve agrees with their fact
infected curve well. The result of the investigatiproved that the establishedR
epidemic model of HIN1 in Hong Kong is accurate aad be used to analyse the
development of HIN1 of Hong Kong in the future. iFheesult could provide the

condition and investigation method for their sainiadepartment.
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Age structure of a population affects the dynanafsdisease transmission.
Traditional transmission dynamics of certain digsasannot be correctly described by
the traditional epidemic models with no age-depande A simple model was first
proposed by Lotka and Von Foerster where the kanll the death processes were
independent of the total population size and solith#ation of the resources were not
taken into account. To overcome this deficiencyrti@wand MacCamy2009), in their
pioneering work considered a nonlinear age-depdnderdel, where birth and death
rates were function of the total population. Vas@ge-structured epidemic models have
been investigated by many authors, and a numbgrapérs have been published on
finding the threshold conditions for the diseasebsrome endemic, describing the
stability of steady-state solutions, and analyzthg global behavior of these age-
structured epidemic models.

Yang and Wand@2010) studied a nonautonomo§$éR epidemic model with age
structure. Using integro-differential equation amdixed point theorem, they prove the
existence and uniqueness of a positive solutiothéomodel. They obtained existence
and uniqueness of this model using integral diffead equation and a fixed theorem.
Their model was different from the classical ageictire epidemic model and non-
autonomous epidemic model. The initial conditiorswnlocal and dependent on total
population. In addition, incidence law was not ldpizianity. They established that the
classical methods were not valid and constructeevanorm and proved the existence of
the model under definition of the new norm. Thissvillustrated through two simulated

examples.
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Mathematical models have been used to study thardininteraction of many
infectious diseases with the host's immune systeonde and Meeke(2010) studied
Varicella Zoster Virus, which is responsible foiakten pox (varicella), and after a long
period of latency, herpes zoster (shingles). Adi@reloping the model and demonstrating
that it exhibited the type of periodic behavior eggary for long term latency and
reactivation, they examined the implications of thedel for vaccine booster programs
aimed at preventing herpes zoster. They then pdodeeprove the positivity and
boundedness of solutions to the system and exfilerexistence, location and stability of
steady state solutions. They had developed a simpkaematical model based on the
known biology of varicella-zoster virus infectiomcluding the latent infection of
neurons and the VZV-specific immune response. Theg shown that the model
explained the long latency period of the infectiangd its spontaneous reactivation as a
result of declining specific immunity with age. Mamatically, the course of reactivation
was represented by a limit cycle. Cycling behawan only occur when the levels of
viral production from the site of latency (the pasder s) and reactivity of the specific
immune cells (d/p) lie within a defined set of v@du Based on the model, they could
make predictions about means of preventing the eegence of infection, which causes
herpes zoster. In particular, the model could klue make predictions about the ideal
timing of the administration of vaccine boostertented to prevent herpes zoster. As
more information about the effects of this boosiarpatients becomes available, the
model could serve as a platform for converting fhasient data into recommendations
about booster timing. Finally, they had also obsdrthat the mathematical model of

infection and immunity demonstrates a wide varigftyossible dynamic behaviors. By
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choosing two parameters appropriately, the modeildcdoe used to simulate many
different possible biologically relevant coursesiofection, including acute infection

followed by clearance and chronic infection. Tmdicated that the model may be useful
not only for the study of varicella-zoster virusit lalso of other infectious diseases which

have quite different natural histories.
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CHAPTER 3

MATHEMATICAL MODEL

3.0 Introduction

Epidemiology is essentially a population biologgaipline concerned with public health.
As such, epidemiology is thus heavily influencednbgthematical theory. The reason is
that most phenomena observed at a population Beebften complex and difficult to
deduce from the characteristics of an isolatedviddel. For example, the prevalence of
a disease in a population is only indirectly corieécto the course of disease in an
individual. In this context, the use of mathemdticendels aims to unearth processes
from a large-scale perspective.

This chapter is mainly concerned with developingnadified SIR model for the
occurance of chicken pox in Ghana, finding threshebnditions for the disease to
become endemic and describing the stability ofdstestate solutions, often under the
assumption that the population has reached itslgtetate and the diseases does not

affect the death rate of the population.

31 M odel Formulation

The SIR Model is used in epidemiology to compute the dyicanof the susceptible,

infectious and recovered people in a population.
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This model is an appropriate one to use underdh@ifing assumptions;

1)

2)

3)
4)

5)

3.2

The population is fixed.

The only way a person can leave the susceptiblgpgioto become infected. The
only way a person can leave the infected groum isetover from the disease.
Once a person has recovered, the person receivednity.

Age, sex, social status, and race do not affegptbleability of being infected.
There is no inherited immunity.

The member of the population mix homogeneously éhiéne same interactions

with one another to the same degree).

Model Equations

The following assumptions were made in additiothtfive general assumptions iterated

above.

1.

3.

This is a closed population (no immigration or eraigpn) i.e. we assume that the
population of Ghana is fixed. Individuals in thepptation are divided into three

classes (compartments): Susceptiflg&)) , Infectives(I(t)), and Recovereds

(R(1)).

Susceptible individuals (those who have never Ihaeddisease) become infected
at a rate that is jointly proportional to the numbé susceptible and the number
of infectious.

An individual who contracts the disease is assutoede infective immediately

after infection. Hence there is no relapse perardtie disease.
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4. Everybody who gets infected recovers at a rate @tmmal to the number of
people infected.

5. Once recovered from the disease, a person canngerdecome susceptible to
the disease.

6. The parameters are assumed to be positive constants

7. The natural death rate is equal to the birth rdiat (s,a = 6).

S(t) is the number of susceptible.individuals at time
1(t) is the number of infected individuals at time
R(t) is the number of recovered individuals at time

N is the total population size

The compartmental diagram shown below summarizsetassumptions.

where

a is the general population birth rate

B is the infection rate

y is the recovery rate, and

6 is the natural death rate
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The dynamics of the chicken pox(varicella) outbrémkGhana is modeled using the

following systems of ordinary differential equatsyn

4S5 _ oN — BSI — &5 (3.1)
Pl a B )
dl

— =BSI — (y + 8)I (3.2)
dt

R~ sr (3.3)
a7 '

The nonlinear system of differential equations folaited above has initial conditions

S(0)=S,, 1(0)=1, R(O)=0 (3.4)

This is a modification of the classic Kermack—McKeok (1927) model. We are only
interested in nonnegative solutions ®1 andR. This is a basic model but, even so, we
can make some highly relevant general comments tabpidemics and, in fact,

adequately describe some specific epidemics with sumodel.

The constant population size is built into the egsabove since, on adding the equations,

ds dl dR _ ..
atat @ (3:5)
N =S(t)+1(t) + R(t) (3.6)
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A key question in any epidemic situation is, giveygs,y,é = 0 and S,, and the initial
number of infectived,, whether the infection will spread or not, andtitloes how it
develops with time, and crucially when it will dtéo decline.

From the above system of equations and initial tmm$ the following deductions can

be made

Expressing equation8.1) — (3.3) as a proportionof the population we divide through

equation(3.6) by the total population to obtain

s0=202, =12 =2 (37)

Thus,
s@+it)+r®) =1 (3.8)

Where

* s(t) is the proportion of susceptible population atettm
* i(t) is the proportion of the infective population iate ¢

* r(t) is the proportion of the recovered populatiornraett

Substituting equatiof3.6) into equation€3.1) — (3.3) we obtain the following

dsN
W =aN — ‘BSNLN — O0sN (39)
diN
% — BsNiN — (y + 8)iN (3.10)
drN
— o =VIN = 6rN (3.11)
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Letting N =1, from equation(3.8) into equations(3.9) — (3.11) we obtain the

following
% =a — Bsi — s (3.12)
& psi =y + )i (3.13)
e vilar (3.14)

Before analyzing the system of nonlinear equatitimste is the need to linearize these

systems of equations.

3.21 Equilibrium Points
Linearization approximation is a standard phaseelachnique used to analyze system
dynamics. For al¥IR system with a constant host population size we lia@dollowing

system of two independent nonlinear differentialaepns:

We then solve the reduced system of nonlinear emnstor the equilibrium points. Thus

the differential equations above should be equiteerd0), that is% = 2—2 = 0.
a—fsi—8s=0 (3.17)
Bsi—(y+6)i=0 (3.18)
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Solving the above equations simultaneously, fromuatqgns (3.17) — (3.18)let i =0,

substituting the value dfinto equatior(3.17)we have
a—Ps(0)—6s=0 (3.19)
a—06s=0 (3.20)

Solving the above equation form the value fwe haves = %, bust sincex = §, implies
s = 1. Hence the first equilibrium point is
(s%i")=(1,0) (3.21)

This is called the disease free equilibrium.

From equatior{3.18), s = y%& , Substituting the value of into the equatio3.17) we have,
y+ 0\ . y+0
a—ﬁ( )l—6(————)=0 (3.22)
B B

From which we get

i_aﬁ—6(y+6)

BG4 +9) 329
Thus the equilibrium points is
e y+6 af — 8@y +96)
(“’)‘( B BG+0) > (3.24)

This equilibrium point is called the endemic eduilim point.
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3.22 Stability of the model

In this section, we consider some important methaidestablishing stability of equilibrium

points of non-linear differential equations.
Stability by linearization

Let f:R™ - R™ be aC! map and suppose that is a point such taff (p) = 0, i.e.,p is a fixed

point for the differential equation’ () = f(x(¢)).

The linear part off at p, denotedf(p), is the matrix of partial derivatives at For x € R™,

we write

[f1 (x)]
f2(x)
f@=|": (3.25)
Lol
The functionsf; are called the component functionsfafWe define
[0f1 0f dfy ]
T (») 77, (») o (»)
0f . Of -
Df o) = axl.(p) ax; () o, (») (3.26)
e 0h T of
Cer (») ox, (») N (P)_
Sincef € C?!, Taylors theorem for functions of several varialdays that
f&x) =Df(p)(x —p) + g(x) (3.27)

(we have usedi(p) = 0), whereg is a function
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The stability of flow of nonlinear systems can Ihedged in different perspectives. In this work,
we will limit ourselves to two different ways: Haran-Grobman method (linearization) and

Liapunov’'s method.

Hartman-Grobman Theorem

In a continuous model, a steady state will be stabbvided the eigenvalues of the characteristic
equation (associated with the linearized problera)kmth negative (if real) or have a negative

real part (if complex).

In determining the stability, we implore the lineation technique to equatioi3.26) to find the

Jacobian or community matrix. This gives

" =) —Bs
1= pi Bs—(y+6)> (3.28)

3.2.2.1 Disease Free Equilibrium

At the initial state of the disease we have ongy shsceptible present. From earlier calculations,
the disease free equilibrium i§¢s*,i*) = (1,0). In order to determine the stability of the
model at this point, we evaluate the Jacobian matrthis equilibrium point and find the

eigenvalues corresponding to this point.
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Evaluating the Jacobian in equation at the disgaseequilibrium point, we have

130=(Tp0 " pin-y-a)=(o 5750 (329

We then find the characteristic equation whichiiseg by det(4 — I1) = 0 whereA is
the eigenvalues and is ann X n matrix. Here we replace thex n matrix(4A) by the

Jacobian matrify). Thus

det(A —I1) = det{<_06 5 _—f - 5) ) ((1) (1’)} (3.30)
- det{(_ao_ ¥ 8- y_f 5 A)} (3.31)

=(=6=-DP-y=6=-21)—(=p)0) (3.32)
Becauselet(4 — I1) = 0, implies
(=6 =DBE-v—-6—-21)—-(=p)0)=0 (3.33)

ThereforeA; = =8 or 1, = f —y — 6. The eigenvalues corresponding to the disease

free equilibrium(s*,i*,) = (1,0) are —§ and g —y —§.

Further analysis of the disease free equilibriunmipwill be done in chapter four.
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3.2.2.2 TheEndemic Equilibrium

At the point in time where all the compartmentdh# population coexist is called the endemic
period. The presence of an infectious person ischlgm in the epidemiology of infectious

diseases. In this section we consider the situatioereby there is coexistence between the two
main categories ( i.e. the susceptible and thectiioies). This is seen in the endemic equilibrium

point in equation below

(3.34)

(*,*)_(y+6aﬁ—5(y+6)>
S N TR

In order to determine the stability of this poimte resort to the same approach used in

determining the stability of the disease free elgtiim.

We evaluate the community (or Jacobian) matrikeatendemic point.

af —5(y + 6) y+4
](*.*)_/_ﬁ< By +6) >_6 ﬁ( ) (3.35)
St = ﬁ(aﬁ—5(y+6)> ﬁ( +6)_( L o) '
By +0) Y
—af
—  —(y+9)
{6 o ; (3.36)
(y+6)

We then find the characteristic equation whichiiseeg by det(A — I1) = 0 whereA is
the eigenvalues and is ann x n matrix. Here we replace thex n matrx(4) by the

Jacobian matriy).
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Thus

—ap
—(y+9)
det(A — 1) = det {(aﬁ(yg(ji N . > "y (é (1’)} 3.37)

(y+6)

—(ZB
-1 —=(y+9)
_ y+6)
= det f—5(y+5) ., (3.38)
(y+6)

- (E-) Eretr e (25)

(r+6) (3.39)
Becauselet(4 — I1) = 0, implies
—ap aB-5(y+8)\ _
(@+®——A)(—2)-+(y4—6)( (w;) )"0 (3.40)
¥ +8)2* +apr+ (y+8)(afp -5 +6)) =0 (3.41)
—aB £ (@B =40 +8)(y +8) (@~ 80y +5)
Ao = 20 £0) (3.42)
This gives the eigenvalues of the endemic equilibrio be
—ap aB N 4o
G+ j((y ) ~4er=50+0)
M= > (3.43)

The stability of the endemic equilibrium dependstbe values of a,8,y, and §. A detailed

description of the stability of the endemic equililn point will be done in chapter four.
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3.3  Basic Reproductive Number (R,)

The basic reproduction ratio of an infectious digeia a pivotal concept in epidemiology.
It is defined as the expected number of secondases that would arise from the
introduction of a single primary case into a fulysceptible population. Clearly, when
R, < 1 each successive ‘infection generation’ is smaln its predecessor, and the
infection cannot persist. Conversely, whgn > 1 successive ‘infection generations’ are
larger than their predecessors, and the numbeasd#scin the population will initially

increase. This increase does not continue indefniThe infection process reduces the
‘pool of susceptibles’, and hence reduces the fiibathat an infectious individual

contacts a susceptible within its period of infeesness. This non-linear effect can only

be neglected at the beginning of an epidemic.

It represents the average number of secondary tiofesc infected by an individual
infective. The basic reproduction number can bedute assess whether a newly
infectious disease can invade a population andstimate the final size of afVR-type
epidemic.

For example, whermR, < 1, the disease-free equilibrium (DFE) is locally mgyotically
stable and wherR, > 1, it is unstable.

This basic reproductive number can be computedhéydrmula

R, = A*(infectious period) + 1 (3.44)

Wherel* is the dominant eigenvalue whether negative ortpesi
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The basic reproductive ratio for our model is gitgn

B

Ro

From the mathematical point of view, usually whRp < 1, the model has only disease
free equilibrium with equilibrium pointgs*,i*,) = (1,0) in the SI plane, and also the
endemic equilibrium is globally asymptotically s@bWhen R, > 1 the equilibrium
becomes unstable and usually a positive equilibriiifs*, i*,) appears.E* is called an

endemic.

34  Herd Immunity Threshold

Herd Immunity is a type of community protection rfradisease that occurs when the
vaccination of a portion of the population (or Hepdovides protection to unvaccinated
individuals by making it less likely that any infed individual will contact a susceptible
individual and thus pass on the disease. The Hearthunity Threshold (H;) is
percentage of the population that needs to be inemoncontrol transmission of a
disease, i.e. equal to one. The equation (givePiBitmann and Heesterbeek, 2000) for
estimating the Herd Immunity Threshold is

1
"9 5, 3.46
e (3.46)

From equation substituting, = %, into equation above we have

(3.47)

(3.48)



As the amount of vaccinations increase, the herdunity threshold also increases.

3.5  Effective Reproductive Number
The Effective Reproductive number, denotéd, is the average number of secondary
cases generated by an infectious case during aerap (Johnson2009). To estimate

this number we used the formula stipulated in Johs2009 article

S
Er = Ry Nt (3.49)

The Effective Reproductive number is important siitdelps to determine how effective
policies on controlling diseases have been. WHhgr 1, the policies concerning the

containing of the disease are effective.

3.6  Control Vaccination Number
The Control Vaccination Number, denotégl, is the average number of secondary cases
generated by an infectious case during epidemit wadntrol measure, in this case

vaccination.

The formula form estimating the control vaccinatrarmber is given by

C, = Ry(1 — hf) (3.50)

Where h is the vaccine efficacy (the effectiveness of trexcine) and f is the

vaccination coverage (the fraction of the populatizat has been vaccinated).
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The goal of researchers is to haie< 1. To haveC, < 1, knowing the efficacy of the
vaccine we can estimate the proportion of the paipar that need to be vaccinated.

This is given by
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CHAPTER 4

ANALYSISOF MODEL

41 Introductions

This chapter deals with the analysis of the modeld the discussion of the results
obtained. We use MatLab to run our simulations. Bor systems of nonlinear

differential equations, we use the ode 15s which feurth order variable Runge-Kutta

method.

Sensitivity analysis is performed on the parametdues to determine the effect of these

values on the rate of spread of Varicella.

The estimated parameters of the model which haga heed for the analysis are shown

in the table below.

Table 4.1: Parameter values for the model

Parameter Description Value
a birth rate 0.03
B infectious rate 0.124
Y recovered rate 0.085
) natural death rate 0.03
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The number of contacts between susceptibles andellar patients during his/her

infectious period is

B 0124
7=y 70085
o = 1.45882

This means that on the average one varicella gatentacts 1.45882 susceptible

people in the country during his/her infectiousiqar

To analyze the data, we calculate the reproductiveberR,. Substituting the parameter

values in table into equatid3.45), we have

0.124

Ry=————  =1.07826
0~ 0.085 + 0.03 .

Since the reproductive numb&; = 1.07826 > 1, an outbreak of varicella will result in

an epidemic in Ghana.
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4.1.1 Smulations and Results
In these simulations we use the parameter valuesngin Table 4.1, for the model
equations in(3.12) — (3.14)
With the introduction of an infective into a sustiele population of Ghana, after
sometime, the population changes from being irdestifree to the state of endemicity.
We study the dynamics of the disease by the useimitilations at the following
instances:

0] The presence of infectives and

(i) Increase in initial proportion of infectives in thepulation.

To depict the dynamics of the compartments duriregdutbreak, we assume the initial

proportions of susceptibles, infectives and theveced to bes(t) = 0.95, i(t) = 0.05

andr(t) = 0.0 respectively.
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Graph of i infectives and at the initial stage
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Figure 4.1: The dynamics of the various compartments during the outbreak

From Figure 4:1, when the initial proportion ofeofives is0.05, the proportion of the
susceptibles declines from an initial value0di5 to an approximate minimum value of
0.84 from day0 to day50 and begins to increase gradually afterwards. @natiner
hand, the proportion of the infectives declinesngstptically from the first day reaching
a minimum value of0.01 on the270th day and maintaining that value onwards. Also,
the proportion of the recovered population increaatter the initial day (day 0) and
reaches maximum di.11 on the sixtieth(60th) day and then declining steadily with
time. Hence, the susceptibles decrease due tontfauction of the infectives. While
even though the infectives infect more susceptjldeg to their high recovery rate the
number keeps on reducing. This is exhibited dueh® asymptotic decline of the
infectives. The rise of the recovered populatiomi®e to frequent migration of people

from infectives population to the recovered popalat
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4.1.2 Effectsof initial proportions of infectives on the various compartments

In this section we vary the initial proportion offéctives to investigate the effect it will

have on the susceptible, infectives and recoveopdlptions.

Table 4.2: Initial proportions of various compartments

Infectives | Susceptibles | Recovered
0.05 0.95 0.00
0.10 0.90 0.00
0.20 0.80 0.00
0.30 0.70 0.00

The following Figures depict the effect of chang®esnitial proportion of infectives in

Table 4.2 on the various compartments in the population.
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Effect of increase in initial number of infectives on the susceptible population
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Figure 4.2: Effect of an increase in initial proportion of infectives on susceptible population with

time.

From Figure 4.2 above, when the initial proportadnnfectives is0.05, the proportion of
the susceptibles declines from an initial valu®.86 to an approximate minimum value
of 0.87 from day0 to day50 and begins to increase gradually after 8@yonwards
attaining a constant value 09925. When the initial proportion of infectives is ieased
to 0.10, the proportion of the susceptibles, declines framinitial value 0f0.90 and
reaching its minimum value d.79 in thirty (30) days before rising steadily. As we
increase the initial proportion of infectives frodrl0 to 0.20 the proportion of the
susceptible also decline to a minimum @675 within twenty-five (25) days before
increasing thereafter. Lastly at an initial propmt of infectives being0.30 the
proportions of the susceptibles decline to a mimmaf 0.58 within twelve (12) days
and then rising afterwards.
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Effect of increase in initial number of infectives on the infectives population
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Figure 4.3: Effect of an increase in initial proportion of infectives on the infective population with

time.

In Figure 4:3 above, as the initial proportion wofectives is0.05, the proportion of the
infectives declines from its initial 08.05 to its minimum value 00.025 within 170
days. With the initial proportion bein§.10,0.20 and 0.30, the infectives population
exhibited similar behavior by declining exponenyiab 0.025 by day 170th day.

The higher the initial proportion of the infectivike faster the declination.
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Effect of increase in initial number of infectives on the Recovered population
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Figure 4.4: Effect of an increase in initial proportion of infectives on the recovered population

with time

From Figure 4.4, as the initial proportion of iniges is 0.05, the proportion of
recovered population rises exponentially from datp @ peak value of.1 on day55
before reducing gradually. As the initial propomtiof the infectives is increased 10

the maximum value 00.15 is observed on the forty-fifttd5th) day.

Similar observations are made for increasing nunabenitial proportion of infectives.
However, each proportion of the recovered populaditains different peak values but at

different time with all declining to a minimum 6f05.
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42  Stability Analysis

4.2.1 Stability of infectiousfreeequilibrium

We now investigate the linear stability of the ktfeus free equilibrium poins*, i*) =
(1,0). By substituting the parameter values in Tableahdve into equatio3.33) the
eigenvalues corresponding to the infectious freeailibgum are A, = —0.03 and
A, = 0.009. Because the two eigenvalues, thatljs, are both real and; negative

whilst 1, is positive, the disease free equilibrium is adégagoint, therefore unstable.

This implies that the presence of a person infeetdtl chicken pox in Ghana will
eventually result in an outbreak of the disease.
We will later consider the effect of the changethie parameter values on the stability of

the equilibrium.

4.2.2 Stability of the endemic equilibrium

At the point in time where all the compartmentstied population coexist is called the
endemic period. The presence of an infectious pessa problem in the epidemiology of
infectious diseases. We study the behavior ofdfislibrium point.

The endemic equilibrium point is given by

(*,*)_<y+6 aﬁ—d(y+6)>
B T B+ 0

(4.1)

Substituting the parameter values in Table 4.1 th# above equation, we obtain our
endemic equilibrium as

115 27 ) (4.2)

(s ")=(m'1426
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(s*,i*) = (0.927419,0.018934) (4.3)

The eigenvalues corresponding to the endemic éguin is given by the equation

—af af \°
(y+5)ij(<y+5)) - Haf ~ 0k +))

Aip = 4.4
z (44)
Also by substituting the parameter values intoaheve equation will have
/11,2
(0.085 + 0.03) — .[\(0.085 + 0.03) ' ' ) ) )
= (4.5)

2

which yields

A = —0.016174 + 0.002899: and 4, = —0.016174 — 0.002899i

Since the eigenvalues are complex conjugate withatnee real parts the endemic

equilibrium is asymptotically stable.

: : G (VS aB-8(y+6)
From further analysis the endemic equilibriufs®,i*) = ( 3 TTOR ) can be
expressed in terms of the reproductive numRgerSinceRr, = ]% and a = ¢ further
substitution yields
(s%i") = <——> (4.6)
Ro B

This produces another expression for the endemidilgum solely in terms of the

parameters and the reproductive number
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4.2.3 Sensitivity analysis

Table 4.3: Parameter values, eigenvalues and classification of the disease free

equilibrium.
a B Y 1) Aq A, R, Nature of the equilibrium
0.03 | 0.124 | 0.1240 | 0.03 | —0.03 | —0.03 | 0.80519 Stable centre
0.03 | 0.124 | 0.085 | 0.03.| —0.03 | 0.009 1.0783 Saddle point,unstable
0.03 | 0.124 | 0.095 | 0.03 | —0.03 | —0.001 | 0.992 Asymptotically stable

From the equations for the eigenvalugs= -6 and 1, = —y —§

Sinced > 0, it implies that4; <0

For stability to be obtainetl, < 0 implyingg —y —46 <0

% IO

_ > Ry<1

This implies that when the reproductive numberessithan unity, i.eR, <1, that
disease free equilibrium is stable. Whilst when i&eroductive number is greater than

unity the diseases free equilibrium is unstable.
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Table 4.4: Parameter values, eigenvalues and classification of equilibrium point of the

disease endemic equilibrium.

a B Y ) A4 Ay R, Nature of the equilibrium
0.03 | 0.124 0.124 | 0.03 0.02026 —0.04441 0.80519 Unstable saddle point
0.03 | 0.124 0.085 | 0.03 | —0.016174 | —0.016174 1.07826 Asymptotically stable

+ 0.002899i | — 0.002899i
0.03 | 0.12( 0.095 | 0.03 0.004504 —0.03330 0.96 Unstable saddle point

From the above table perturbation of parameteretiteemic equilibrium is stable when

the reproductive number is greater than unity, Rg> 1,

reproductive number is less than unity, iRy < 1 .

4.24 Herd Immunity Threshold

From equatior(3.46), the herd immunity ratio is given as

H1=1

H, = 0.0725799

1

~1.07826

and unstable when the

Thus abou?.257996% of the susceptible population should be immunerder to bring

the spread of varicella under total control.
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4.25 Control Vaccination Number

Research has shown that that the vaccine for \Harikas99% effectiveness in the first

year, and after eight years the effectiveness dto@5% [Karen, 2004]. Knowing the

efficacy of the vaccine we estimate the proportanthe population that need to be
vaccinated.

This is given by

1~ (157572) 1~ (s57520)
fi>—"099  andfe>——47

f1 >0.073313 and f, > 0.083425

We can observe from calculations above that whereffectiveness is 99%, then about
7.3313% of the population need to be vaccinated in order €, < 1. When the
effectiveness i87%, then aboui8.3425% of the population need to be vaccinated in

order for Cy, < 1.
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CHAPTER 5

DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1. Introduction
In this chapter we discuss the results obtainea tiee analysis, conclude and give

necessary recommendation for further study

5.2. Discussions
From the preliminary analysis, one Varicella patieontacts on the averaget5882

susceptible people in the country during his/h&atious period

From the simulations, Figure 4.2 exhibits a decilinthe susceptible population as the
initial proportion of infectives is increased. Tinsplies that, the larger the initial
proportion of infectives in the country the largiee proportion of the susceptibles that
are infected, and on the other hand the smallepithygortion of the susceptibles left in

the country.

Thus when there are many people infected with elacn Ghana, the susceptibles are at

a higher risk of acquiring the disease.

The study of Figure 4.3 also revealed that, are@mee in the initial proportion of

infective increases the infective in the populatiBat as the initial proportion increase,
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the reduction in the number of infectives with timdaster as compared to a lower initial
proportion of infectives

This is because there is a relatively high recovaty such that even though the
susceptible population are been infected, a higbuatof them recover quickly there by
providing herd immunity. This means that the higtter number of infectives in Ghana
the faster they recover adding up to the numb@nofune persons thereby reducing the

number of people to be contacted by an infecteslgmebefore recovery.

Furthermore, the simulation in Figure 4:4 indicdtest the recovered population
increases as the initial proportion of infectivemains high. Since the infectives
population increases with high recovery rate, np@eple become infected with varicella

and all this people recover.

The sensitivity analysis indicates as illustrated able 4.4, that there exist a direct
(linear) relationship between the transmission, r&@tel the reproductive ratify. The
higher the transmission rate relative to the reppvate the higher the reproductive
number whilst the lower the transmission rate netetio the recovery rate the lower the

reproductive number since the natural death rateasively small.

The perturbation analysis of the disease free ibquiin revealed that when the
reproductive numbeR, is less than unity the disease free equilibriustable, whilst
when it is greater than unity the disease freeliquim is unstable (Diekmann and

Heesterbeek, 2000).
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On the other hand the perturbation analysis of emzlequilibrium revealed stability
when the reproductive number is greater than wmtyinstability when the reproductive
number is less than unity.

The herd immunity threshold shows that albo@6% of the susceptible population of
Ghana should be immune in order for the diseaseesatt in an epidemic

From further analysis with a control measure sualaecination, and having a vaccine
efficacy 0f99% about7.33% of the susceptible population should be vaccinatestder
to have Varicella under total control whilst withvaccine efficacy 087% about8.34%

of the susceptible population of Ghana should leinated in order to bring the disease
under control in Ghana.

Vaccinating these percentages of the entire papualatduces the proportion of the

susceptible population who risk infection upon oe#i.

5.3. Conclusion
The derivation and analysis of the modified SIR heatatical model (SIRS), enabled a
better understanding of the dynamics of the spradaricella within the Ghanaian

population.

Numerical simulations and sensitivity analysis wastensively helpful in the

determination of the effect of the various paramseéspecially the transmission rate and

recovery rate on the spread of the disease.
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The reproductive ratio estimated indicates thatdisease outbreak will be epidemic in

the country. Abou?.26% of the susceptible population should be immunezoovered

in order not to have an epidemic during an outhreak

The simulation results and the sensitivity analg$ighe study confirmed the transmission

rate and recovery rate as the dominant parametdheispread of the disease in Ghana.
Essentially, the chances of an epidemic is possibldar as the reproductive ratio is

greater than one.

5.4. Recommendations
Further research work is recommended particulardynbn-constant and heterogeneous
population and also on vaccination.
Vaccination programmes should be introduced bynhmestry of health and should
target at vaccinating the abduB3% of the susceptible population in order to fullynigr

the disease under control where the outbreak isidered epidemic.
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APPENDIX

Matlab Code for Simulations

function  dy=csm(t,y,alpha,beta,delta,gamma)
dy=zeros(3,1)
dy(1)=alpha-beta*y(1)*y(2)-delta*y(1)
dy(2)=beta*y(1)*y(2)-(delta+tgamma)*y(2)

dy(3)=gamma*y(2)-delta*y(3)

Call Function for the Graph of the susceptibles, infectives, recovered at theinitial

stages

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;
options=odeset( 'RelTol"  ,2e-29, 'AbsTol' ,le-19);
[t,y]=0odel5s(@csm,[0 365],[0.95 0.05

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,1), +ty(2), +Ly(3), )

legend( 'Susceptibles' , 'Infectives' ,'‘Recovered' ), ylabel( ‘Total
proportion of population' ),

xlabel(  "Time(days)' ), title( '‘Graph of susceptibles, infectives and
recovered at the initial stage' )

print
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Call function for the changein theinitial infectives on the susceptible population
alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;

options=odeset( '‘RelTol" ,2e-29, 'AbsTol' ,le-19);

[t,y]=odel5s(@csm,[0 365],[0.95 0.05

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,1), ™+ )

hold on

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, | 'AbsTol' ,1le-19);
[t.y]=odel5s(@csm,[0 365],[0.90 0.10
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,1), b+ )

hold on

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;
options=odeset( '‘RelTol' ,2e-29, 'AbsTol ,1le-19);
[t,y]=0del5s(@csm,[0 365],[0.80 0.20
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,1), 'm+' )

hold on

alpha=0.03;beta=0.124;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,le-19);
[t,y]=odel5s(@csm,[0 365],[0.70 0.30

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,1), 'g+)

legend( 'i=0.05" ,'i=0.10'  ,'i=0.20" ,'i=0.30"  )xlabel( ‘Time(days)' ),
ylabel( 'Susceptible Population’ ) title( ‘Effect of increase in initial
number of infectives on the susceptible population’ )

print
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Call function for the changein theinitial infectives on the infective population
alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;

options=odeset( '‘RelTol" ,2e-29, 'AbsTol' ,le-19);

[t,y]=odel5s(@csm,[0 365],[0.95 0.05

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,2), ™+ )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, | 'AbsTol' ,1le-19);
[t.y]=odel5s(@csm,[0 365],[0.90 0.10
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,2), b+ )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( '‘RelTol' ,2e-29, 'AbsTol ,1le-19);
[t,y]=0odel5s(@csm,[0 365],[0.80 0.20
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,2), 'm+' )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,le-19);
[t,y]=odel5s(@csm,[0 365],[0.70 0.30

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,2), 'g+)

legend( 'i=0.05" ,'i=0.10'  ,'i=0.20" ,'i=0.30"  )xlabel( ‘Time(days)' ),
ylabel( 'Infectives population’ ) title( ‘Effect of increase in initial

number of infectives on the infectives population’ )

print
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Call function for the changein theinitial infectives on the recovered population
alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;

options=odeset( '‘RelTol" ,2e-29, 'AbsTol' ,le-19);

[t,y]=odel5s(@csm,[0 365],[0.95 0.05

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,3), ™+ )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, | 'AbsTol' ,1le-19);
[t.y]=odel5s(@csm,[0 365],[0.90 0.10
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,3), b+ )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( '‘RelTol' ,2e-29, 'AbsTol ,1le-19);
[t,y]=0odel5s(@csm,[0 365],[0.80 0.20
0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,3), 'm+' )

hold on

alpha=0.03;beta=0.1240;delta=0.03;gamma=0.085;
options=odeset( 'RelTol' ,2e-29, 'AbsTol' ,le-19);
[t,y]=odel5s(@csm,[0 365],[0.70 0.30

0.00],options,alpha,beta,delta,gamma);

plot(t,y(:,3), 'g+)

legend( 'i=0.05" ,'i=0.10'  ,'i=0.20" ,'i=0.30"  )xlabel( ‘Time(days)' ),
ylabel( 'Recovered population' ) title( ‘Effect of increase in initial

number of infectives on the Recovered population’ )

print
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