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ABSTRACT 

This thesis considers the application of the Cutting Stock Problem based on the Linear 

Programming Approach. This is applied in the cutting of paper, glass, steel rod, wood etc. In this 

thesis, we apply a variant of it, the One-dimensional Cutting Stock Problem, to the cutting of 

wood in a sawmill. In a sawmill, boards are first cut along their width (rip) into strips, then the 

obtained strips are cut along their length (strip cut) into cut-pieces with specific length and 

demand.  

The thesis focuses on using simplex algorithm to find optimal cutting patterns. In the simplex 

algorithm, to determine the entering column (pattern), we solve sub-problem. The sub-problem is 

of a knapsack type and we solve it using dynamic programming. We develop a computer 

program based on the above approach to generate optimal cutting patterns. 

 

Keywords: One-dimensional Cutting Stock Problem, Linear programming, knapsack problem, 

simplex algorithm, dynamic programming,  
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CHAPTER ONE 

INTRODUCTION 

Economic resources are scarce and havecosts associated. The scarcity and cost associated 

with these resourcesgenerally impose certain constraints in their utilization. The effective 

management of these constraints aimedat minimizing the overall cost of input resources and 

the maximization of corresponding profitis the subject of optimization.Practical optimization 

is the art and science of allocating scarce resources to the best possible effect (Amponsah, 

2006). Optimization techniques, a branch of mathematical programming, has enjoyed 

enormous appeal after World War II, both in the academia and in practice. Subsequently, this 

interest inspired numerous researches that sought to identify, analyze and substantiate new 

techniques for improving industrial and business processes. Currently, Optimization 

techniques have become an indispensable tool for industrial applications including resource 

allocation, scheduling, decision-making, etc. Optimization techniques have various branches 

and one such branch is linear programming. 

The term “programming” in linear programming does not assume programming as used in 

the field of computer science to denote software development. Instead, it focuses on 

mathematical modeling and the requirement of a finite number of iterations to solve the 

model.This thesisfocuseson a special type of linear programming called the Cutting Stock 

Problem.  

 

1.8 The Cutting Stock Problem 

The Cutting Stock Problem is the problem of filling an order at minimum cost for specified 

numbers of lengths of material to be cut from given stock lengths of given cost (Gilmore et 
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al., 1961). The cutting-stock problem is an integer programming problem. However, since 

integer programming problems are known to be non-deterministic polynomial-time (NP) 

hard, the Cutting Stock Problem is formulated as linear programming (LP) problem by 

relaxing the integer requirements. After the LP optimal has been found, a rounding-

upprocedureis used to get the integer programming (IP) optimum.It arises from many 

applications in industry including paper, glass, shoe-leather cutting,   furniture,   machine-

building, etc. 

A typology of Cutting problems by Dyckhoff (1990),classifies them into one-, two- and 

three-dimensional problems.One-dimensional cutting occurs when cutting for example pipes, 

cables, and steel bars. Two-dimensional problems are encountered in furniture, clothing and 

glass production. Not many three-dimensional (3D) cutting applications are known.  

 

1.9 Background to Rogersco Sawmill Limited 

Rogersco Sawmill Limited is located on the outskirts of Yawkwei; a town located about 4 

kilometers from Konongo on the Accra – Kumasi highway. Rogersco cuts wood into various 

smaller sizes for various customer needs. The wood coming into the Sawmill is of long and 

wide pieces called lumber. The lumber is cut into strip boards and then into smaller pieces to 

meet customer demands. The small pieces of wood cut out of the lumber are called “cut-

pieces”. The initial operation performed on the lumber transforms it into long 

rectangularbeam of wood. The next operation, called Ripping, is theprocess of cutting these 

rectangular beams of wood along its cross-sectional width to get long but narrow pieces of 

woods which arecalled strip boards (or strip). The strips have width of 1- and 2-inch(es).In 

the next stage, the obtained strips are cut along their cross-sectional length into 
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desiredsmaller lengths. This process is called strip-cutting. Rogersco Sawmill does not cut 

stock primarily to meet customer demands, but to supply to their depot in Accra and 

therefore do not consider any “excess” cut as overproduction. This means that so long as 

there is lumber it will be processed. The main cut-pieces are 2”x6”, 2”x4”, 2”x3” and 2”x2”. 

However they sometimes receive orders for other pieces like 1”x12”, 2”x5” or 1”x6”, but 

these are comparatively rare. All these cuts are made with a machine called Ban Mill and the 

cuts are all guillotine cuts. A guillotine cut means that each cut must go from one side of a 

rectangle straight to the opposite. 

 

1.10 Problem Statement 

The primary aim of every business is to optimize cost (to maximize profit or minimize the 

cost of operation) while meeting demands. In order to satisfy the demand of its clients and 

also to supply their depot, Rogersco Sawmill Limited cuts timber logs into stripboards and 

then into cut-pieces. 

This thesis seeks to address the problem of finding optimal cutting patterns for cutting these 

strip boards into cut-pieces so that the total cost of the strip boards used to satisfy orders for 

cut-piecesis minimized. 

 

1.11 Objective(s) of the Study 

The objectives of this thesis are: 

a) to model the Cutting Stock Problem (CSP) as a multi objective problem of Linear 

Programming and a Knapsack Problem. 
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b) to develop a computer application based on the Simplex algorithm and dynamic 

programming to solve the cutting stock problem. 

c) to find optimal Cutting patterns using Simplex algorithm and dynamic programming 

techniques. 

d) to minimize the total cost of stocks that are cut to meet order demands by customers. 

 

1.12 Methodology 

This thesis seeks to model the cutting stock problem as a multi objective optimization 

problem consisting of alinear programming master problem and a knapsack sub-problem. 

Data on the cross-sectional dimension of various sizes of strip boards, quantities of each strip 

board type and the total cost of the strip boards utilized to meet demand for smaller sizes, 

cross-sectional dimension of smaller sizes requested and their respective quantities per order 

and the sample orders for August 2010 to December 2010 will be obtained from Rogersco 

Sawmill Limited. 

Methods to be employed to solve the Cutting Stock problem are the Simplex algorithm and 

dynamic programming techniques. 

A computer application, based on these methods, is developed to solve the cutting stock 

problem. The application is developed using Visual Basic.Net 2005 edition. The KNUST 

library and the internet will provide other sources of information to this thesis. 

 

1.13 Justification  

The timber industry depends on the forest for its raw materials. However, widespread 

concerns, both locally and internationally, about the fast degradation of the forest and the 
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consequent ecological threat that deforestation poses to our environment and our survival, 

both presently and in the future, have limited access to these raw materials. Government 

agencies responsible for the protection and management of such forest as well as non-

governmental bodies have adopted policies which seek to protect the forest and to control or 

manage access to its resources. These policies have contributed immensely to scarcity in the 

quantities of timber logs. Scarcity has made the cost of logs dearer and consequently high 

cost of orders for wood products from saw mills and therefore efficiency in the utilization of 

the timber logs in these saw mills, to meet various smaller sized demands, becomes essential. 

Cost is associated with these timber logs and the overall cost of customer orders will depend 

on the number and cost of timber logs that are cut to meet those orders. Efficient utilization 

means minimizing, as much as feasible, the quantities of logs that are used to satisfy 

customer demands. To this end, any approach that seeks the efficient utilization of these 

scarce timber logs cannot be over emphasized. 

This thesis seeks to minimize the cost of strips needed to meet demand for cut-pieces of 

wood. This will help Rogersco Sawmill Limited to reduce the total cost of lumber that is 

processed to satisfy customer demands and its operational cost. Consequently, this will 

increase profit of the company since cost will be reduced. This could also help reduce the 

quantity of lumber that is cut from the forest and thereby help forest conservation efforts by 

government and other agencies. 
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1.14 Thesis Organization 

Chapter One is the introduction which comprises the background to the problem, statement 

of the problem, objectives of the study, justification of the research, methodology and 

limitation.  

Chapter Two deals with the review of literature on the cutting stock problem.  

Chapter Three describes the methodologies used in this thesis. It comprises of the 

introduction, describing Linear Programming and basic terminologies associated with linear 

programming, showing how the cutting stock problem is formulated as a linear program, the 

concept of column generation, and the application of knapsack to solve such problems. The 

data used in the study and data analysis and results are considered in Chapter Four.  

The summary and conclusions including a discussion of the policy implications of the study 

are presented in Chapter Five.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 A Review of the Cutting Stock Problem. 

Industrial applications of cutting-stock problems for high production volumes arise especially 

when basic material is produced in large rolls or sizes that are further cut into smaller units.  

Within such disciplines as Management Science, Information and Computer Science, 

Engineering, Mathematics and Operations Research, problems of cutting of concrete and abstract 

objects appear under various specifications (cutting problems, knapsack problems, container and 

vehicle loading problems, pallet loading, bin packing, assembly line balancing, capital 

budgeting, etc.). In cutting problems, a large object must be divided into smaller pieces; in 

packing problems, small items must be combined to large objects. Most of these problems are 

considered NP-hard. This is done e.g. in paper and plastic film industries but also in production 

of flat metals like steel or brass. There are many variants and additional constraints arising from 

special production constraints due to machinery and process limits, customer requirements and 

quality issues.  

The cutting stock problem was first formulated by Kantorovich (1939). Kantorovich was charged 

with the reorganization of the timber industry in the U.S.S.R., and as a part of his task he 

formulated a restricted class of linear programs and a method for their solution (Matousekand 

Gartner, 2007). In 1951 before computers became widely available, L.V. Kantorovich and 

V.A. Zalgaller suggested solving the problem of the economical use of material at the cutting 

stage with the help of linear programming. The proposed technique was later called the Column 

Generation method.  
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2.2 Historical background of the Cutting Stock Problem 

Eisemann (1957) proposed an economical allocation of raws to machines and of setting up cuts 

in such a way as to produce the ordered quantities of final widths as the minimum overall 

trimming loss consistent with certain imposed restrictions, paying particular attention to rolls of 

materials for example paper, textiles, cellophane, metallic foil. In his formulation, “raws” 

referred to uncut rolls as inserted in the cutting machines, “finals” as cut rolls of widths specified 

in the orders and “cuts” as one simultaneous cutting by all preset knife edges of one “raw” roll 

into one or several “finals”. Eisemann described the formulation and solution of two alternative 

variants of the trim problem simultaneously. One was a 1-dimensional cutting problem in which 

the interest was with the number of rolls of ordered finals that was cut. The material to be cut, in 

this case, was not unwound, but the cutting knives slice through the completely wound rolls of 

material. The second formulation was when a roll is unwound and, during unwinding, is sliced 

lengthwise by knives for a certain total length. This second formulation, according to Eisemann, 

was particularly useful in the case of expensive materials.  

The most common approach for solving the Cutting Stock Problem is the linear programming 

approach which was first proposed by Gilmore and Gomory (1961). The objective that they 

considered for the Cutting Stock Problem was minimizing the cost (or minimizing the total 

number of the required stock, assuming that there is unique price for each object).  

In the LP approach, the LP relaxation (the model obtained by relaxing the integrality constraints 

on variables) of the problem is considered, and solved instead; then a rounding procedure is used 

to get an integer solution. The difficulty of the LP relaxation approach is that there is a large 

number of cutting patterns, which can hardly be enumerated. The column generation method 
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proposed by Gilmore and Gomory was developed to overcome this difficulty. In this method, the 

cutting patterns are generated, during the process of solving the problem, through an auxiliary 

problem. The method starts with a set of simple patterns (to form the initial basis), then the 

solution is improved by removing a cutting pattern and generating a new one (same as pivoting 

procedure in simplex; the cutting pattern which is removed is the leaving variable and the new 

cutting pattern is the entering variable). The new cutting pattern is generated using the auxiliary 

problem which is easy to solve; knapsack problem normally serves as the auxiliary problem, and 

there are several methods for solving this problem. The new column is generated in a manner 

that it results in the most possible improvement in the solution (based on the same concept as 

choosing the entering variable to be the nonbasic variable with the most negative reduced cost in 

the simplex method).  

After Gilmore and Gomory proposed the column generation method, many researchers used it 

for the Cutting Stock Problem.Follow-up research by Pierce (1964) focused on the use of this 

algorithm in the paper industry to solve the roll trim problem. Hahn (1968) considered the 

problem that arises when stock sheets contain flaws, and gave a dynamic programming 

algorithm. Sarker (1988) used this approach for solving one-dimensional Cutting Stock Problem. 

It is also noticeable that possible defects are also considered in this paper. In this paper having 

defects in items are acceptable, but defected items have less value.  

In a latter paper, Dyson and Gregory (1974), both of whom were involved in the manufacturing 

of flat glass for use in the motor industry, the production of mirror and windows, stated that 

Gilmore et al‟s use of an auxiliary knapsack problem to solving the cutting stock problem is a 

simplification of the real problem and therefore is inadequate. This is because it only satisfied a 

wastage criteria without selecting the sequence in which the cutting patterns are to be processed, 
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a process they called pattern allocation. They proposed a two-stage approach. The first stage is 

where the cutting patterns are produced based on the Gilmore and Gomory method. The second 

stage involved the sequencing of the set of cutting patterns (pattern allocation) from the first 

stage, so that the number of discontinuities is minimized. They had two approaches to the pattern 

allocation stage, namely the two-stage approach and the heuristic approach. However, at the time 

of writing, the heuristic approach had not been implemented. The sequencing problem turns out 

to be of the travelling salesman type.  

Christofides and Whitlock (1977) designed for their n-stage solution approach of the constrained 

CSP an enumerative procedure to generate the cutting patterns (columns) without any 

duplication due to symmetry or cut ordering.  

Ferreira et al. (1990) also investigated a two-stage problem, which they called a two-phased 

problem. The authors adapted Haessler's sequential heuristic procedure, initially developed for a 

classic CSP, to a two-stage cutting process. At every step of the sequential procedure they tried 

to find a set of good intermediate rolls insuring a good pattern for the first stage and good 

patterns for the second. 

Goulimis (1990) approach to the one-dimensional CSP starts with the generation of all feasible 

cutting patterns, usually making provision for such constraints as the minimum size of the trim, 

the number of cuts in a pattern and the number of different lengths in a pattern. 

Lirov (1992) mentioned enumerative approach as another approach for solving the Cutting Stock 

Problem in his survey. Enumerative approach contains discrete optimization methods such as 

branch and bound or dynamic programming or a combination of these two. 

As we previously discussed, the column generation method (LP approach) starts with a set of 

possible cutting patterns and tries to improve the obtained solution by replacing the current 
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patterns with better (more efficient) ones if there is any. In contrast the enumerative methods try 

to generate the best cutting patterns instead of improving them. 

The most common method in the enumerative approach is solving a discrete optimization 

problem by branch and bound method. This method is normally done with splitting the feasible 

region into smaller sets; computing the (lower or upper) bounds; and eliminating the sets which 

cannot make any improvement in the solution (having a worse bound than the current solution). 

Obviously the procedure stops when all the remaining subsets have been shown to contain no 

better option.  

Dynamic Programming is the most common enumerative method used for solving Cutting Stock 

Problem. In this method the objective of the problem is normally considered to be maximizing 

the total obtained value. A value is assigned to each item; each incoming object is cut in a 

manner that the total obtained value is maximized.  

Maculan et al. (1992) proposed a column generation method to solve linear programming with 

bounding variable constraints, extending their results to the solution of integer problems. 

Besides all the exact methods reviewed so far, there are a large number of inexact (heuristic) 

methods for the Cutting Stock Problem. Seth et al. (1986) developed a heuristic for one-

dimensional Cutting Stock Problem. Vahrenkamp (1996) proposed an interesting heuristic based 

on the packing concepts for the Cutting Stock Problem. Chen et al. (1996) presented a simulated 

annealing procedure for the Cutting Stock Problem. 

Winston (1994) used column generation approach to solve the CSP for Woodco and the 

minimum waste incurred was only 15 feet. The knapsack sub problem was solved using branch-
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and-bound procedure; the master problem was solved by an advanced method of simplex method 

called the product form of the inverse. 

Carvalho and Rodrigues (1995) follow a LP approach. Their problem, however, is subject to a 

technological restriction- Finished rolls of one type should comprise every intermediate roll. The 

restriction allows predefining a list of possible intermediate rolls. The authors reformulate an 

initial LP problem posed in terms of finished rolls into a LP problem in terms of intermediate 

rolls. A column generation technique with a regular knapsack as an auxiliary problem is applied. 

Morabito and Garcia (1997) reported the problem of cutting rectangular plates into smaller ones 

in Brazilian hardboard industry. The problem was to determine the best patterns to be cut by an 

automated machine composed of a set of circular saws, device to move and hold the plates and 

loading and unloading stations. A particular two-phase column generation procedure was 

described for the cutting stock formulation of the hardboard industry. Each phase of the 

procedure was modeled as an integer program and solved by two alternative methods. The first 

was a dynamic programming based integer program and the second was a simple extension of 

the algorithm presented in Gilmore and Gomory (1963). 

Hopper and Turton (1999) studied the problem consisting of packing rectangular items onto a 

rectangular object while minimizing the used object space. The packing process has to ensure 

that there is no overlap between the items, which are allowed to rotate by 90°. 

Authors applied two genetic algorithms (GAs) to solve this problem. Both GAs were hybridized 

with a heuristic placement algorithm, one of which is the well known Bottom-Left routine. A 

second placement method has been developed which overcomes some of the disadvantages of 

the Bottom-Left rule. The two hybrid genetic algorithms were compared with heuristic 

placement algorithms. 
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Morabito and Arenales (2000) analyzed practical aspects of the application of a cutting stock 

model to a Brazilian company that manufactures furniture on a large scale with a high degree of 

standardization. The model was based on the classical approach of Gilmore and Gomory (1965) 

which combines a linear programming and a column generation procedure. Besides the two-

stage and three-stage guillotine cutting patterns, authors also considered one-group guillotine 

patterns that improve the productivity of the cutting equipment. Examples derived from the 

furniture company was used to illustrate some of the trade-offs involved, in particular the trade-

off between cutting simpler patterns and patterns that yield less waste material, but reduce the 

productivity of the cutting machine. Gradisar (2002), made an evaluation between the one-

dimensional cutting stock problem (1D-CSP) algorithms which was the main reference for the 

authors of this paper. 

Kalvelagen (2002) in his paper describes an implementation of the column generation algorithm 

using General Algebraic Modeling System(GAMS). The well-known cutting stock problem was 

used. The algorithm consists of 2 different models, a master problem and sub-problem which 

exchange information. A mixed integer problem for this problem was trivially formulated in 

GAMSonce they have enumerated all possible cutting patterns. 

Puchinger et al. (2004) described a combined genetic algorithm/branch & bound approach for 

solving a real world glass-cutting problem. The GA (Genetic Algorithm) uses an order-based 

representation, which is decoded using a greedy heuristic. The B&B (Branch & Bound) 

algorithm was applied with a certain probability enhancing the decoding phase by generating 

locally optimal sub-patterns. Reported results indicate that the approach of occasionally solving 

sub patterns to optimality may increase the overall solution quality.  
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Johnston and Sadinlija (2004) created a new model which resolves the non-linearity between 

pattern variables and pattern run-lengths in the one dimensional cutting stock problem by a novel 

use of 0-1 variables. Belov et al. (2005) investigated robust branch-and-cut-and-price (BCP) 

algorithms, their theoretical properties and presented numerical results for BCP. 

Reinaldo and Luciano (2007) described approaches to generate cutting patterns that minimize the 

cost or waste of material, considering different particular constraints associated with longitudinal 

(horizontal) and transversal (vertical) saws, head cuts (head cuts are the vertical guillotine cuts 

that divide the plate into two parts), book rotation (a complete turn of 180
o
) and item unloading 

stations of the cutting machine. The method was based on dynamic programming recursive 

formulas combined with greedy constructive heuristics and the primal simplex algorithm. 

Arbib and Marinelli (2007) reported the assortment and trim loss minimization problem arising 

in an Italian plant, operated by Pilkington, which produces glass parts for the automotive market. 

Glass cutting was organized in two phases: in phase I large rectangular sheets of the same type 

were obtained from a ribbon of flat glass and sent to warehouse and in Phase II sheets of various 

types were taken from warehouse and cut into smaller rectangular parts of various sizes in order 

to satisfy a given demand. In both phases, a trim loss occurs. In this study authors used heuristic 

algorithm based on a p-median model with additional constraints that take into account all the 

relevant shop floor requirements for solving the problem.  

Fekete and Schepers (2001), gave comprehensive overview of Specialized algorithms for the 

two-dimensional bin-packing problem which presented several lower bounds on the solution 

value using, respectively, partitioning of rectangles in various classes and dual feasible functions.  

Boschetti and Mingozzi (2003) presented a new lower bound that dominates the bounds of 
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Martello and Vigo (1998) and Fekete and Schepers (2001).Boschetti and Mingozzi (2003) 

generalized these bounds to the case where rectangles may be rotated 90 degrees. Considering 

the same variant of the problem, Dell‟Amico et al. (2002) presented a lower bound and an exact 

branch-and-bound algorithm. Padberg (2000) presented an extended formulation and subjected it 

to polyhedral analysis, reaching a tighter LP relaxation. 

Hadjiconstantinou and Christofides (1995) studied two-dimensional knapsack problem but were 

able to solve instances of only moderate size. Caprara and Monaci (2004) presented an 

approximation algorithm for the two-dimensional knapsack problem and developed four exact 

algorithms based on various enumeration schemes. 

Yaodong and Yiping (2009) discussed a rectangular two-dimensional cutting stock problem in 

the steel bridge construction. It was the problem of cutting a set of rectangular items from plates 

with arbitrary sizes that lie in the supplier specified ranges, such that the necessary plate area was 

minimized. This paper presents a heuristic algorithm for two dimensional cutting stock problems 

in bridge construction. The heuristic algorithm used both recursive and dynamic programming 

techniques to generate patterns. 

The one-dimensional Cutting Stock Problem becomes more difficult when there are a large 

number of objects of different sizes available, or the number of items (cut-pieces) is large. In 

such problem we have the difficulty of various sized objects, since strips may have different 

lengths. A similar problem is addressed by Belov and Scheithauer (2002), and a method based on 

combination of some enumerative methods is proposed. 
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CHAPTER 3 

METHODOLOGY 

3.1 General Overview of Cutting Stock Problem 

The aim of Cutting Stock Problem is to minimize the total cost of stock length of given cost that 

is cut to fill an order for specified quantities of smaller lengths. This is achieved by generating 

optimal cutting patterns for the cutting of the stock lengths. Stock lengths have cost associated 

with them. The greater the quantity of stock lengths used in filling an order, the greater the cost 

of the order to the customer.  This, essentially, means reducing the quantity of stock lengths 

used. It arises from many applications in industry.  

The Cutting Stock Problem is essentially an integer programming (IP) problem. However, 

integer programming problems are known to be NP-hard and therefore, the Cutting Stock 

Problem is formulated as a linear program by relaxing the integer constraint. This makes Cutting 

Stock Problems amenable to linear programming methods of solution. The resultant LP optimum 

is rounded to get the IP optimum.The columns of the basis matrix represent all the cutting 

patterns that can be produced from the available stock length. The number of cutting patterns can 

be very large and this makes explicit enumeration of all feasible cutting patterns impractical. 

Therefore an initial set of feasible patterns is generated and used as the basis for the simplex 

method to solve for the dual variables. 

An auxiliary problem arises in the simplex iteration where we choose the next column to enter 

basis.A column generation technique is applied to generate an entering column in the next 

simplex iteration.  The column generation technique is formulated as a knapsack problem and 

solved using dynamic programming. Therefore, the Cutting Stock Problem is a multi-objective 
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problem comprising a master problem formulated as a linear programming problem and 

anauxiliary problem formulated as a knapsack problem. 

 

3.2  Classification of Cutting stock problem 

The Cutting Stock problems can be classified by the dimensions of the cutting object. This can 

beone-, two- or three-dimensional problems.  

 

3.2.1 One dimensional cutting stock problem 

The one-dimensional cutting stock problem is to obtain a given set of ordered lengths (patterns) 

from stock lengths. The objective is typically to minimize the total cost of stock materials used 

(material input). A cutting pattern describes how many items of each type are cut from a stock 

material.The one-dimensional cutting stock problem is defined by the following data. Let 
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the one dimensional model is as follows: 

 

 

 

where  is the number of times pattern j is used,  is the cost of stock material used for cutting 

pattern j,  is the number of  in pattern j and  is the quantity of  ordered. 

To be a valid cutting pattern, a pattern must satisfy 

 

where is the length of the kth stock material used to cut the pattern. 

The huge number of patterns is not available explicitly for practical problems. Usually, necessary 

patterns are generated during a solution process, hence the term column generation. However, 

the number of different patterns in a solution cannot be greater than the number of stock lengths 

and is usually comparable with the number of piece types. 

 

3.2.2 Two dimensional cutting stock problem 

Another important variant of the cutting stock problem is the two-dimensional cutting stock 

problem. This variant can be divided into regular (rectangular, circular) and irregular shapes 

(Farley, 1988). Rectangular shapes can be obtained through guillotine or non-guillotine, oriented 
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or non-oriented cutting. An oriented cutting means that the lengths of rectangles are aligned 

parallel to length of the stock sheet.  

A two-dimensional cutting stock problem can be defined as follows:  

A set of rectangular stock sheets of different types is available. For each type of sheet we 

know its length and width . From these sheets we have to cut smaller rectangular pieces of 

length and width , in order to satisfy a given demand for pieces of each type. 

The objective is to minimize the total area of stock sheets required. A sequence of cuts of a sheet 

into rectangular pieces is a cutting pattern.  

To formulate the two-dimensional cutting stock problem, we use the following notations: 

 

 

 

 

 

 

 

 

the two dimensional model is as follows: 
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and integer,  

Since, as in the one dimensional case, the set of patterns cannot be completely described except 

for very small problems, we develop a column generation scheme that can be summarized as 

follows: 

Step 1. Generate an initial set  of m cutting patterns, where each pattern contains one 

 type of piece. 

Step 2. Solve the linear relaxation of the above formulated problem considering only the 

 variables corresponding to patterns in . 

Step3.for each type of sheet , find non-negative integers , by solving 

 the knapsack sub-problem using dynamic programming: 

 

is a feasible cutting pattern for , 

where  is the vector of dual prices of the LP solution. If for some p, > , then the 

column corresponding to that solution is added to and we return to Step 2 in order to 

solve the enlarged LP problem. Otherwise, the current solution is rounded to get an 
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integer solution and the process terminates. The question now is how to solve efficiently 

the sub-problem of Step 3.  

 

3.2.3 Three dimensional cutting stock problem 

Not many three dimensional applications are known.However, the closely related 3D bin-

packing problem has many industrial applications, such as packing objects into shipping 

containers. 

 

3.3 Strip Board Cutting as a One Dimensional Cutting Stock Problem. 

The Strip boards are long narrow wood with rectangular cross-section.The width is usually 1 or 2 

inches wide but may have variable lengths. The 1-inch strip boards are cut into one small type of 

length 12 inches. However, the 2-inch strips are cut into smaller sizes with various lengths of 2, 

3, 4 and 6 inches. We refer to these smaller pieces as cut-pieces.Given an order for quantities of 

cut-pieces we want to find optimal ways to cut the 2- inch wide strip boards along their length to 

satisfy these demands at minimum cost of the total strip boards utilized. The cutting of the strip 

boards therefore can be described as a one-dimensional cutting stock problem. 

 

3.3.1 General Formulation of the Strip Board Cutting 

In this section we propose a Linear Programming (LP) model for optimal cross-sectional cutting 

of strip boards of wood into smaller cut-pieces to satisfy demand for these cut-pieces. As 

mentioned in chapter One, the strip-cutting problem for a given strip board of wood is the 

problem of determining an optimal cross-sectional cutting pattern for each strip of wood such 

that the corresponding number of cut-pieces of each type obtained is at least equal to the 
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corresponding demand for that cut-piece type and the expected total cost of strip board utilized is 

minimized.  

Let 

number of cut-piece type. This is also the number of constraints. 

number of patterns. 

number of different strip board lengths. 

: length of thcut-piece . 

: length of strip board  

thejth pattern or variable.  

number of times pattern j is used in the solution. These are the decision variables for the LP 

number of cut-piece i in pattern j. This is the coefficients in the demand constraints. 

the demand for cut-piece i 

cost of the strip board used by pattern j 

a cutting pattern 

, dual variables of cut-pieces 

Z : total cost of stocks length used 

Generally, the linear program is     

 

    subject to 
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The objective function (3.1) is the total cost of stock lengths used. Constraint (3.2) requires that 

the quantity produced is at least equal to quantity demanded for each item . Constraint (3.3) is 

the non-negativity restriction on the decision variables. 

The dual of this formulation is given as 

 

 

 

A solution for the dual variables is given as 

 

where  is the inverse of the basis matrix and  is the cost vector corresponding to the 

columns of the basis matrix.  

For a minimization problem, at each iteration in the Simplex algorithm for the solution of (3.5), 

(3.6) and (3.7), we find a feasible pattern  that cuts from strip  with cost 

such that 

. 

However, for the Cutting Stock Problem, the list of patterns can be very large, and therefore we 

employ the Column generation technique that generates entering pattern by formulating this 

auxiliary problem as a knapsack problem. 
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3.3.2 Formulation of the auxiliary Knapsack Problem. 

Let  be a pattern that cuts from a strip  with cost and  be number of item 

 in the pattern. Then 

 

that is      

 

must also be a feasible pattern which means that  

 

 (3.11) 

Inequality (3.10) requires that the total length of the items cut must not exceed the length of the 

strip from which the pattern is cut and (3.11) requires only integral cuts are made. The 

requirements (3.9), (3.10) and (3.11) must be satisfied for a pattern  to enter basis and they are 

what we need to generate the next column.  

The column generation technique of (3.9), (3.10) and (3.11) is a single constrained linear 

programming problem. However, this single constraint has an additional requirement as strictly 

integer which cannot be relaxed, and therefore the auxiliary problem becomes a Knapsack 

problem.  The Knapsack problem for the cutting stock problem is formulated as follows:  

Let  be the dual variables from (3.8) and  be non-negative integers,  be the length of item , 

,  be strip from which a pattern jis cut and  be cost of thestrip . We use (3.9), 

(3.10) and (3.11) to define the problem as  
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The solution is a set of non-negative integers ( ) that maximizes (3.12) subject to (3.13) 

and (3.14). If  

 

then the pattern P with components enters basis. If such a column cannot be found 

then the iteration terminates and current solution is optimal. Otherwise, we proceed and use this 

new pattern P as the entering variable and compute the leaving variable of the linear 

programming problem with the minimum ratio test  

 

This is a component-wise division between the current solution or right-hand-side and the new 

pattern. This minimum determines the leaving variable after which the simplex proceeds 

normally. The simplex iteration continues until no pattern is found that can improve the current 

solution. In such case, the current solution is our optimum.  

 

Formulation of an Initial Feasible Basis 

The number of constraints corresponds to the number of cut-piece typeto cut. Therefore, since 

the number of cut-piecetypes is m, number of constraint is also m. Each constraint represents the 

total quantity of each cut-piecetype that will be cut from the patterns considered in the 

solution.We create m initial patterns and define the constraints coefficients of the linear 
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programming problem as the components of these initial patterns. Since we define initial  

patterns,  . 

The m initial cutting patterns are created such that the i  pattern cuts only thecut-piece

. Arrange the stock lengths such that . Choose stock length for 

which  and define the jthpattern to be the one cutting  

 

 

 

where  represents largest integer less than the value in the bracket.  The cost of the jth pattern 

will be the cost of the stock length  from which the ith activity cuts the piece of length . The m 

initial patterns are as follows: 

Pattern 1 is  

Pattern 2 is  

 

Pattern m is  

Our initial m patterns are 

Pat1 Pat2  Pat m  

 0  0  

0  0 0   

       

0 0   
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The Linear Programming problem then becomes 

     

    subject to 

     

     

 

     

 

      

 

 

The dual of this formulation is given as 

     

    subject to 
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3.4 Methods of Solution For the Cutting Stock Problem 

The Cutting Stock problem is formulated as a linear programming problem and it is solved using 

the revised Simplex method. The auxiliary knapsack problem that finds the next entering column 

is solved by dynamic programming or branch-and-bound algorithms. After the LP optimum is 

found, rounding-up proceduresare used to find the integer programming optimum. 

 

3.4.1 Linear Programming 

Linear Programming (LP) is a type of optimization technique used for economic allocation of 

„scarce‟ resources to several competing activities on the basis of a given criterion of optimality. 

The phrase „scarce resources‟ means resources that are limited in availability. The criterion of 

optimality generally is either performance, return on investment, profit, cost, utility, time, 

distance, etc.  The term “linear” is used because all the relations among the variables are linear. 

On the other hand, the word “programming” refers to modeling and solving a problem 

mathematically that involves the economic allocation of limited resources by choosing a 

particular course of action or strategy among various alternative strategies to achieve the desired 

objective.    

Assumptions of Linear Program 

a) Linearity (or Proportionality): All relationships in the LP model must be linear  

b) Additivity: The value of the objective function for the given values of decision 

variables must be equal to the sum of the contributions (profit or cost) earned from 

each decision variable and the total sum of resources used, must be equal to the sum 

of the resources used by each decision variable.  
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3.4.2 General Formulation of a Linear Program  

Notations: 

number of constraints. 

number of variables. 

decision variables  

coefficients of variable  in constraint  

right-hand-side coefficients for constraints  

objective function coefficients of the variable  

A:  matrix (with m rows and n columns) of the coefficients of the variables in the constraints. 

The LP model is 

Maximization: 

 

 

 

Minimization: 
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Examples of Linear Programs 

a) The Diet Problem. There are different types of food, , that supply varying 

quantities of the nutrients, , that are essential to good health. Let be the 

minimum daily requirement of nutrient, . Let bi be the price per unit of food, . Let 

be the amount of nutrient contained in one unit of food . The problem is to 

supply the required nutrients at minimum cost. 

Let be the number of units of food to be purchased per day. The cost per day of 

such a diet is 

 

The amount of nutrient contained in this diet is 

 

We do not consider such a diet unless all the minimum daily requirements 

are met, that is, if and only if  

 

b) The Transportation Problem:There are I ports, or production plants, , that 

supply a certain commodity, and there are J markets, , to which this 

commodity must be shipped. Port  possesses an amount  of the commodity

, and market must receive the amount  of the commodity 

Let bij be the cost of transporting one unit of the commodity from port  to 

market . The problem is to meet the market requirements at minimum transportation 

cost. Let  be the quantity of the commodity shipped from port  to market . The 

total transportation problem is 
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The amount sent from port  is  and since the amount available at port is , 

we must have 

 

The amount sent from port  is  and since the amount required there is , we 

must have 

 

 

c) The Investment Problem: At our disposal is a sum S units of money which may be 

invested in various activities, each of them producing a certain benefit. Let us denote 

by , , the sum invested in the j-th activity. The above problem can be 

modeled using linear programming, that is; 

Maximize 

 

Subject to  

 

 



32 
 

3.4.3 The Simplex Method 

The simplex method is the most common way to solve large Linear Programming problems. 

Simplex is a mathematical term. The underlying concepts are geometrical, but the solution 

algorithm, developed by George Dantzig in 1947, is an algebraic procedure.The simplex method 

finds the most attractive corner of the feasible region to solve the LP problem. Any LP problem 

having a solution must have a optimal solution that corresponds to a corner, although there may 

be multiple or alternative optimal solutions.Simplex usually starts at the corner that represents 

doing nothing. It moves to the neighboring corner that best improves the solution. It does this 

over and over again, making the greatest possible improvement each time. When no more 

improvements can be made, the most attractive corner corresponding to the optimal solution has 

been found. 

 

General Simplex Formulation 

In general, the simplex algorithm is a method for solving linear programs in the following form, 

Maximize  

subject to the constraints 
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The constraints  

 

can be written as 

 

where is a slack variable. 

The new variables would be assigned zero cost coefficients in the objective function, i.e. 

.  

In matrix notations, the standard form of a linear programming problem be represented by an 

matrix 

 

together with an n-vector of “costs” and an m-vector of “right-hand sides”

The variables can also be grouped into an n-vector: 

 

 

Then the entire linear program can be written as follows: 
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Steps of the Simplex Method 

STEP 1: Formulate the LP and construct a simplex tableau. 

Add slack variables to represent unused resources, thus eliminating inequality constraints. 

Construct the simplex tableau, i.e. a table that allows you to evaluate various 

combinations of resources to determine which mix of resources will most improve your 

solution. Use slack variables in the starting basic variable mix. Table 3.1 shows a general 

construction of the simplex tableau. Row 2 represents the variables including slack 

variables. Variable are the slack variables. Row 1 is the cost 

coefficient of each variable in the objective function. Row 3 to row m+2 are the 

constraint coefficients. Column 1 represents coefficients of basic variables. Column 2 

shows the basic variables. Column labeled “RHS” shows the values on the right-hand-

side of the constraints and is also the solution column. Column labeled “ ” shows the exit 

ratios. 

Table 3.1 Simplex tableau 

     0  0   

Basic 

variable 

coefficients 

Basic 

variables 
      RHS  

0     1  0   

          

0     0  1   
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STEP 2: Find an Initial Feasible Solution 

Find an initial basic feasible solution (bfs). If none is found, then the model is infeasible, 

so exit. 

STEP 3:Find the Entering Variable 

Find the entering variable and mark the top of its column with an arrow pointing down. 

This is the pivot column. The entering variable is the current non-basic variable that has 

the largest positive coefficient. This is based on the largest coefficient rule. If no 

such coefficient exists, this indicates that one or more constraints are unbounded. 

STEP 4: Find the Leaving Variable 

Applythe minimum ratio test  to determine the leaving basic variable. This test 

determines which constraint most limits the increase in the value of the entering basic 

variable. The most limiting constraint is the one whose basic variable is driven to zero 

first as the entering basic variable increases in value. 

 

If the coefficient of the entering basic variable is  we do not evaluate those. The 

leaving basic variable is associated with the row that has the minimum value of the ratio 

test. This row is called the pivot row. The tableau element where the pivot column and 

pivot row intersect is the pivot element. In the column entitled basic variable, replace the 

leaving variable listed for the pivot row by the entering basic variable. If the pivot 

element is not +1, then we divide all of the elements in the pivot row by the pivot element 

to obtain a +1 in the pivot element position.  
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STEP 5: Perform Gaussian operation on the tableau 

Perform Gaussian elimination on the table to eliminate all the coefficients in the pivot 

column except the pivot element. This will bring the entering variable into basis. To 

remove the pivot column element in some row k, 

 

After the Gaussian operation, we have reached the second basic feasible solution. This 

process of moving from one basic feasible solution to the next is called pivoting. 

STEP 6: Repeat STEP 2 to STEP 5 until no improvement can be found. 

 

3.4.4 Column Generation 

Column generation deals with adding variables to a master problem. It is one of the most used 

methods in real life with lots of applications including the cutting stock problems and bin-

packing problems.  

In solving linear programming problems using the Simplex algorithm, we enumerate all the 

decision variables and store them before setting our initial tableau. We then determine our initial 

basic feasible solution. We check the non-basic variables to find one with the most negative 

reduced cost to enter basis. However, a problem arises when we have extremely many variables.  

For example, we have a demand to cut 511 pieces of 9-inch wood, 301 pieces of 8-inch wood, 

263 pieces of 7-inch wood and 383 pieces of 6-inch wood from a given stock of 20-inch wood. 

Possible feasible cutting patterns for this instance are given in Table 3.2, assuming unlimited 

stock of 20-inch stock. Table 3.2 lists 10 of the possible feasible patterns that can be cut from 

each stock sheet: 
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Table 3.2 Sample of possible patterns that can be generated. 

Possible Patterns (Decision variables) 

Small 

length 

1 2 3 4 5 6 7 8 9 10 

9” 2 0 0 0 0 1 1 1 0 0 

8” 0 2 0 0 0 1 0 0 1 1 

7” 0 0 2 0 1 0 1 0 0 1 

6” 0 0 1 3 2 0 0 1 2 0 

           

This list is only a subset of the possible patterns that can be generated. This clearly indicates that 

many linear programs are too large to consider all the variables explicitly. Since most of the 

variables will be non-basic and assume a value of zero in the optimal solution, only a subset of 

variables need to be considered in theory when solving the problem. Column generation 

leverages this idea to generate only the variables which have the potential to improve the 

objective function, i.e., to find variables with negative reduced cost. The reduced cost is the 

reduction in objective function if non-basic variable is increased by one unit. Gilmore et al 

(1961) described this sub-problem as a Knapsack problem. The objective function of the sub-

problem is the reduced cost of the new variable with respect to the current dual variables, and the 

constraints require that the variable obey the naturally occurring constraints. The master problem 

is solved to obtain dual prices for each of the constraints in the master problem. In a 

minimization problem, a pattern enters basis if 

 

Therefore, we use this information to generate the entering pattern. Let  be the 

pattern to enter basis and y be set of dual prices obtained from solving the initial master LP 

problem. so  enters basis if and only if  
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A feasible pattern means that 

(14) 

  (15) 

These requirements (14) and (15) must be satisfied for a pattern  to enter basis. The sub-

problem resembles a single constrained linear programming problem. However, this single 

constraint has an additional requirement as strictly integer, in which case we cannot solve by 

linear programming method. The sub-problem is therefore treated as a Knapsack problem and 

solved using the Branch-and-Bound algorithm or Dynamic programming. This variable is then 

added to the master problem, and the master problem is re-solved. Re-solving the master 

problem will generate a new set of dual values, and the process is repeated until no negative 

reduced cost variables are identified. If sub-problem returns a solution with non-negative 

reduced cost; we can conclude that the solution to the master problem is optimal. 

The column generation method is summarized below. 

1. Initialize the procedure: Let B be a  basis matrix, with a collection of some 

(feasible) patterns. 

2. Solve the following (auxiliary) problem: 
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where  (vector of cost coefficient of the basic variable); and  (inverse of the basic 

matrix) are known; A is a (column) vector which contains the decision variables of the 

problem. l is a vector equal to   and L is a constant. Let  denotes the 

optimal solution of problem. 

3. If then the current solution (cutting patterns) is optimal (because reduced 

costs,  are non negative for all non basic variables). 

4. If then enters the basis (since we maximized ,  is the most 

profitable cutting pattern, i.e. it has the most negative reduced cost). 

5. Find the leaving variable by the ratio test. 

6. Form the new basis, and go back to step 2. 

 

3.5 The Knapsack Problem 

The knapsack problem is particularly a simple integer program: it has only one constraint. 

Furthermore, the coefficients of this constraint and the objective are all non-negative. The 

following is an example of a knapsack problem:  

 

 

 

The traditional story is that there is a knapsack (here of capacity 20). There are a number of 

items (here there are four items), each with a size and a value (here item 2 has size 8 and value 

3). The objective is to maximize the total value of the items in the knapsack.  
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3.5.1 Types of Knapsack Problems 

Knapsack problems are found in various situations. They come in various types including single 

and multiple-constrained knapsacks,  multidimensional knapsacks, multiple choice knapsacks, 

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and 

stochastic knapsacks, knapsacks with convex or concave objective functions, etc.  

 

The Single 0-1 Knapsack Problem 

This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a 

very important class of integer programming. The 0-1 Knapsack Problem (KP) can be 

mathematically formulated through the following integer linear programming. Given a set of n 

items, let 

 = profit of item j 

 = weight of item j 

c = capacity of knapsack 

 

 

 

where 
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Multiple Knapsack Problems 

An important generalization of the 0-1 knapsack problem is the 0-1 Multiple knapsack problem 

arising when m containers, of given capacities  are available. By introducing 

binary variables , taking value 1 if item  is selected for the container and value 0 otherwise, 

we obtain the formulation 

 

 

 

 

where 

 

The generalization arising when the item set is partitioned into subsets and the additional 

constraint is imposed that at most one item per subset is selected is called the Multiple-Choice 

Knapsack Problem. The multi choice knapsack problem is defined as in knapsack problem with 

additional disjoint multiple choice constraint. The general description of the problem is given as 

follows: There is one knapsack with limited capacity. Objects to be packed in the knapsack are 

classified into multiple mutually exclusive classes. Within each class, there are several different 

items. The problem is to select some items from each class so as to minimize the total cost while 
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the total size of the items does not exceed the limited capacity of the knapsack. This problem is 

of a generalized carryout problem and is NP-hard. 

 

3.5.2 Methods for solving Knapsack problems 

There are two basic methods for solving the 0-1 knapsack problems (KP): Theses are dynamic 

programming and Branch-and-Bound methods. However the use of meta-heuristics including 

genetic algorithm, tabu-search and simulated annealing have been used to solve large 

scaleproblems. 

 

3.5.3 Dynamic Programming 

Dynamic programming is a method for efficiently solving a broad range of search and 

optimization problems which exhibit the characteristics of overlapping sub-problems and optimal 

substructure.  

 

Overlapping Sub-problems 

A problem is said to have overlapping sub-problems if it can be broken down into sub-problems 

which are reused multiple times. This is closely related to recursion. Consider the Fibonacci 

numbers 

 

 

The problem of calculating the n
th
 Fibonacci number exhibits overlapping sub-problems because 

calculating Fib(n) depends on both Fib(n-1) and Fib(n-2). At the k
th
 stage we only need to know 
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the values of and , but we wind up calling each multiple times. With 

dynamic programming, we can calculate the numbers we need for the next step, removing the 

massive redundancy. 

 

Memoization 

In dynamic programming, we write out a recursive formula that expresses large problems in 

terms of smaller ones and then use it to fill out a table of solution values in a bottom-up manner, 

from smallest sub-problem to largest. The formula also suggests a recursive algorithm, solving 

the same sub-problems over and over again. We need a more intelligent recursive 

implementation, one that remembers its previous invocations and thereby avoids repeating them. 

On the knapsack problem, such an algorithm would use a hash-table to store the values of F(s) 

that had already been computed. At each recursive call requesting some F(w), the algorithm 

would first check if the answer was already in the table and then would proceed to its calculation 

only if it wasn't. This is called memoization. Memoizationis another way to deal with 

overlapping sub-problems in dynamic programming. After computing the solution to a sub-

problem we store it in a hash table.  Subsequent calls to the sub-problem just do a table lookup.If 

solution of the sub-problem is not found in the table, compute the solution and add it to the list of 

sub-problems. 

 

Optimal Substructure 

A problem is said to have optimal substructure if the globally optimal solution can be 

constructed from locally optimal solutions to sub-problems. Optimal solution to problem consists 

of optimal solutions to sub-problems. 
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Solving Knapsack Problems with Dynamic Programming 

Consider the knapsack problem.  

 

 

 

Each item  has a weight  pounds and a value  . The goal is to place items in our knapsack so 

that we get the maximum value without exceeding the weight limit of W pounds. Let

 be set of weights, then 

 

represents the maximum value that can be attained by putting s in the knapsack. We can 

calculate  for  using  and 

 

 

A knapsack of weight at most  is obtained by first filling the knapsack with weight at most

 and then adding an item of weight  . The knapsack of weight at most is filled such 

that we obtain the maximum value, and the  item chosen so that the total value 

+  is maximized. becomes a subproblem. 
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Backtracking 

Backtracking is a systematic way to go through all the possible configurations of a search space. 

In the general case, we assume our solution is a vector where each element  is 

selected from a finite ordered set . We build a partial solution of length k,  

and extend it by adding another element. After extending it, we test whether what we have so far 

is still possible as a partial solution.If it is still a candidate solution then we stop, else we delete 

 and try the next element from .Recursion can be used for elegant and easy implementation 

of backtracking. It can easily be used to iterate through all subsets or permutations of a set. It 

ensures correctness by enumerating all possibilities.  

 

Backtrack Algorithm: 

Step 1: Define a partial solution of length k, from . If  is a solution stop else 

 gotoStep 2 

Step 2: Expand the solution by adding one more element i.e. k = k + 1.  

Step 3: Compute a new  

Step 4: While  is not empty, test whether  is still a partial solution of . If not we remove  

and repeat with the next element in  

In a Knapsack computation, after a maximum, , has been found, we use backtracking to 

determine the item set that gave that maximum and their corresponding frequencies, . 

In the Cutting Stock case this process helps to form the entering pattern for entry into the 

Simplex algorithm. The frequencies will be the components of the pattern.  
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Dynamic Programming Example: 

 

 

 

 

 

 

Therefore to find F(15) we have to first find sub-problems F(9), F(11), F(12) and F(14). These 

problems will also have sub-problems. Table 3.3contains problems and their corresponding sub-

problems with items that add to the sub-problems.The first column contains the subset of the 

weight of the knapsack. The first row of Columns 2 to 4 contain items that are included in the 

knapsack to get maximum value, whiles the remaining rows contain the maximum value that can 

be attained by adding the corresponding item. The maximum value is given as the sum of the 

value of the item and the maximum value for the sub-problem to which the item is being added. 
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Table 3.3: Knapsack problems and their sub-problems. 

Knapsack Items weights 

Sub-problems 6 4 3 1 

0 0 0 0 0 

1 11 + F(-5) 7 + F(-3) 5 + F(-2) 1 + F(0) 

2 11 + F(-4) 7 + F(-2) 5 + F(-1) 1 + F(1) 

3 11 + F(-3) 7 + F(-1) 5 + F(0) 1 + F(2) 

4 11 + F(-2) 7 + F(0) 5 + F(1) 1 + F(3) 

5 11 + F(-1) 7 + F(1) 5 + F(2) 1 + F(4) 

6 11 + F(0) 7 + F(2) 5 + F(3) 1 + F(5) 

7 11 + F(1) 7 + F(3) 5 + F(4) 1 + F(6) 

8 11 + F(2) 7 + F(4) 5 + F(5) 1 + F(7) 

9 11 + F(3) 7 + F(5) 5 + F(6) 1 + F(8) 

10 11 + F(4) 7 + F(6) 5 + F(7) 1 + F(9) 

11 11 + F(5) 7 + F(7) 5 + F(8) 1 + F(10) 

12 11 + F(6) 7 + F(8) 5 + F(9) 1 + F(11) 

13 11 + F(7) 7 + F(9) 5 + F(10) 1 + F(12) 

14 11 + F(8) 7 + F(10) 5 + F(11) 1 + F(13) 

15 11 + F(9) 7 + F(11) 5 + F(12) 1 + F(14) 

 

Table 3.4 contains problems and their corresponding maximum values with items that add to the 

sub-problems. The first column contains the subset of the weight of the knapsack. The first row 

of Columns 2 to 4 contain items that are included in the knapsack to get maximum value, whiles 

the remaining rows contain the maximum value that can be attained by adding the corresponding 

item. Column 5 contains the maximum value for each knapsack sub-problem. Column 6 contains 

the item that contributed to that maximum value in column 5. We will lookup this table for 

solution to sub-problems and the items that gave those solutions. 
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Table 3.4 Knapsack Sub-problems solutions 

Knapsack Item weight and maximum values  Item 

Label 

for F(s) 
Sub-

problems 

6 4 3 1 F(s) 

0 0 0 0 0 0  

1 -∞ -∞ -∞ 1 1 1 

2 -∞ -∞ -∞ 2 2 1 

3 -∞ -∞ 5 3 5 3 

4 -∞ 7 6 6 7 4 

5 -∞ 8 7 8 8 4 

6 11 9 10 9 11 6 

7 12 12 12 12 12 6 

8 13 14 13 13 14 4 

9 16 15 16 15 16 6 

10 18 18 17 17 18 6 

11 19 19 19 19 19 6 

12 22 21 21 20 22 6 

13 23 23 23 23 23 6 

14 25 25 24 24 25 6 

15 27 26 27 26 27 6 

 

Maximum for F(15) is 27 (Table 3.4). From Table 3.3 sub-problem that gave this maximum is 

F(9). F(9) also has a maximum of 16 with sub-problem F(3). F(3) has maximum 5 with sub-

problem F(0). Therefore, from Table 3.4 items that can be included in the knapsack to maximize 

the value are 6, 6, 3. Therefore optimal value = 27 and corresponding solution is (2, 0, 1, 0) 

 

3.5.4 The Branch and Bound Method 

Branch and Bound is a class of exact algorithms for various optimization problems, especially 

integer programming problems and combinatorial optimization problems (COP). It partitions the 

solution space into smaller sub-problems that can be solved independently (branching).Bounding 
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discards sub-problems that cannot contain the optimal solution, thus decreasing the size of 

thesolution space. Given a maximization problem 

a. Branch and Bound algorithm iteratively partitions the solution space S. 

b. For each sub-problem an upper bound on the objective value is calculated. 

c. When a feasible solution (i.e., no fractional variables remaining) is found, all sub-

problems whose upper bounds are lower than this solution‟s objective value can 

be discarded. 

d. The best known feasible solution represents a lower bound for all sub-problems, 

and only sub-problems with an upper bound greater than the global lower bound 

have to be considered. 

3.5.5 Rounding Fractional Solutions. 

After solving the LP relaxation we have an LP optimal which is a lower bound to the 

integer optimum . We use rounding-up procedures to get the integer optimum. A 

simple and useful heuristic is „Largest In Least Empty‟ (LILE). This heuristicis described 

in the following four steps. 

1. Round the fractional solution values downwards, and determine the unmetdemand. 

2. Sort the finals in the unmet demand from largest to smallest. 

3. Place the largest final from the unmet demand in the least empty rawthat can contain 

this final. If this is not possible, an extra raw must beadded. 

4. Continue this process until the sorted list of finals from the unmet demandis 

completely allocated. 
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It is possible that a pattern generated by this algorithm is one of the patternsused in the relaxed 

integer programming solution. The LILE algorithm tends to minimize the numberof extra stocks 

required, and turns out to work quite well in practice. 

 

3.5.6 An Illustrative Example 

We have a demand to cut 511 pieces of 9-inch wood, 301 pieces of 8-inch wood, 263 pieces of 

7-inch wood and 383 pieces of 6-inch wood from a given stock of 20-inch wood. Cost of stock is 

Gh¢ 1. We assume an unlimited quantity of stock is available. Table 3.5 summarizes this 

instance. The first column of Table 3.5 shows the smaller lengths of rod that are ordered by a 

customer and column two indicates the quantity of such length ordered.   

Table 3.5 Order demands with quantity 

Requested length(inch) Order Quantity 

9 511 

8  301 

7 263 

6 383 

 

Solution: 

Number of itemtypes, m = 4 

Stock Length = 20 inches. 

Cost of stock length, c = Gh¢ 1 

B = basis matrix (m x m) 

 = Inverse of the basis matrix. 
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Y = vector of dual variables, 

Z = total cost of stocks length used 

 

 

RHS= vector of values on the right-hand-side of constraints. 

Our initial m patterns will be such that pattern i cuts only the ith item type, i.e. 

 

 

 

largest integer less than  

Pattern 1 gives ,  and Pattern 1= (2, 0, 0, 0) 

Pattern 2 gives ,  and Pattern 2= (0, 2, 0, 0) 

Pattern 3 gives ,  and Pattern 3= (0, 0, 2, 0) 

Pattern 4 gives ,  and Pattern 4= (0, 0, 0, 3) 

Our initial set of patterns is given as 

Pat1 Pat2 Pat3 Pat4  

2 0 0 0  

0 2 0 0   

0 0 2 0    

0 0 0 3 

These four patterns will form our demand constraint set and also our initial basis matrix. 
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A formulation of this problem will be 

 

    subject to 

 

 

 

 

 

Since the cost of the stock from which pattern i is cut equals 1, the objective function can be 

written as 

 

 

Basis (B) =      

 

 

 

 

 

 

 

 

= 

 

 

 

2 0 0 0 

0 2 0 0 

0 0 2 0 

0 0 0 3

  

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 0  

0 0 0 0.333 
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X = =  

 

 

 

 

 

Iteration 1 

1. Compute dual prices 

      

 

 

 

 

 

 

 

2.  Generate entering column 

Let pattern such that 

 

 

by dynamic programming 

 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 0  

0 0 0 0.333 

 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 0  

0 0 0 0.333 
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s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 

 

} 

} 

Therefore to find F (20) we have to find the maximum among sub-problems F(11), F(12), F(13) 

and F(14). These problems will also have sub-problems. Table 3.5 shows knapsack problems and 

their sub-problems. The sub-problems that contributed to the maximum are in the boxes. 
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Table 3.5 Knapsack problems and their sub-problems. 

Knapsack Item lengths and sub-problem 

Sub-

problems 

9 8 7 6 

0 0 0 0 0 

1 0.5 + F(-8) 0.5 + F(-7) 0.5 + F(-6) 0.3333 + F(-5) 

2 0.5 + F(-7) 0.5 + F(-6) 0.5 + F(-5) 0.3333 + F(-4) 

3 0.5 + F(-6) 0.5 + F(-5) 0.5 + F(-4) 0.3333 + F(-3) 

4 0.5 + F(-5) 0.5 + F(-4) 0.5 + F(-3) 0.3333 + F(-2) 

5 0.5 + F(-4) 0.5 + F(-3) 0.5 + F(-2) 0.3333 + F(-1) 

6 0.5 + F(-3) 0.5 + F(-2) 0.5 + F(-1) 0.3333 + F(0) 

7 0.5 + F(-2) 0.5 + F(-1) 0.5 + F(0) 0.3333 + F(1) 

8 0.5 + F(-1) 0.5 + F(0) 0.5 + F(1) 0.3333 + F(2) 

9 0.5 + F(0) 0.5 + F(1) 0.5 + F(2) 0.3333 + F(3) 

10 0.5 + F(1) 0.5 + F(2) 0.5 + F(3) 0.3333 + F(4) 

11 0.5 + F(2) 0.5 + F(3) 0.5 + F(4) 0.3333 + F(5) 

12 0.5 + F(3) 0.5 + F(4) 0.5 + F(5) 0.3333 + F(6) 

13 0.5 + F(4) 0.5 + F(5) 0.5 + F(6) 0.3333 + F(7) 

14 0.5 + F(5) 0.5 + F(6) 0.5 + F(7) 0.3333 + F(8) 

15 0.5 + F(6) 0.5 + F(7) 0.5 + F(8) 0.3333 + F(9) 

16 0.5 + F(7) 0.5 + F(8) 0.5 + F(9) 0.3333 + F(10) 

17 0.5 + F(8) 0.5 + F(9) 0.5 + F(10) 0.3333 + F(11) 

18 0.5 + F(9) 0.5 + F(10) 0.5 + F(11) 0.3333 + F(12) 

19 0.5 + F(10) 0.5 + F(11) 0.5 + F(12) 0.3333 + F(13) 

20 0.5 + F(11) 0.5 + F(12) 0.5 + F(13) 0.3333 + F(14) 
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Table 3.6 shows the evaluated values for the sub-problems. The values in the box show the 

maximum among the values and the item length that was included to give this maximum. 

Table 3.6 Knapsack sub-problems and their solutions 

Knapsack Item lengths and sub-problem solutions F(s) Item 

Label 

for F(s) 
Sub-

problems 

9 8 7 6 

0 0 0 0 0 0  

1 -∞ -∞ -∞ -∞ -∞  

2 -∞ -∞ -∞ -∞ -∞  

3 -∞ -∞ -∞ -∞ -∞  

4 -∞ -∞ -∞ -∞ -∞  

5 -∞ -∞ -∞ -∞ -∞  

6 -∞ -∞ -∞ 0.33333 0.33333 6 

7 -∞ -∞ 0.5 -∞ 0.5 7 

8 -∞ 0.5 -∞ -∞ 0.5 8 

9 0.5 -∞ -∞ -∞ 0.5 9 

10 -∞ -∞ -∞ -∞ -∞  

11 -∞ -∞ -∞ -∞ -∞  

12 -∞ -∞ -∞ 0.66667 0.66667 6 

13 -∞ -∞ 0.83333 0.83333 0.83333 7 

14 -∞ 0.83333 1 0.83333 1 7 

15 0.83333 1 1 0.83333 1 8 

16 1 1 1 -∞ 1 9 

17 1 1 -∞ -∞ 1 9 

18 1 -∞ -∞ 1 1 9 

19 -∞ -∞ 1.16667 1.16667 1.16667 7 

20 -∞ 1.16667 1.33333 1.33333 1.33333 7 

 

From Table 3.6 maximum for F(20) is 1.33333. From Table 3.5 sub-problem that gave this 

maximum is F(13). F(13) also has a maximum of 0.83333 with sub-problem F(6). F(6) has 

maximum 0.33333 with sub-problem F(0). Therefore, from Table 3.6 items that can be included 

in the knapsack to maximize the value are 7, 7, 6. Therefore optimal value = 1.33333 and 

corresponding Pattern is (0, 0, 2, 1).The entering pattern  
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3. Update new found column 

 

     =  

 

 

 

 

4. Compute leaving variable by ratio test. 

 Divide X by  component-wise where applicable. 

131.5/1=131.5, 127.67/0.333=383.2733 

Since 131.5 < 383.2733 and corresponds to the 3
rd

 component, the 3
rd

 column is the 

leaving variable. 

we update the Basis B by replacingthe leaving variable with the entering variable and 

find the inverse to get . 

 

 

B =      

 

 

 

 

= 

 

 

 

 

 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 0  

0 0 0 0.333 

0 

0 

2 

1

  

0 

0 

1 

0.333

  

0.5 0 0 0 

0 0.5 0 0 

0 0 0.5 -0.1667 

0 0 0 0.333 

 

2 0 0 0 

0 2 0 0 

0 0 2 0 

0 0 1 3 
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5. Update Solution 

X = =                                                          

 

  

 

 

 

 

Iteration 2 

1. Compute dual prices 

      

 

 

 

 

2.  Generate entering column 

Let pattern  such that 

 

 

by dynamic programming 

 

s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 

 

} 

} 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 -0.1667

  

0 0 0 0.333 

 

255.5 

150.5 

131.5 

127.67 

255.5 

150.5 

131.5 

83.833 

= 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 -0.1667 

0 0 0 0.333 
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To find F(20) we have to find the maximum among sub-problems F(11), F(12), F(13) and F(14). 

These problems will also have sub-problems. Table 3.7 shows the knapsack problems and their 

sub-problems. The sub-problems that contributed to the maximum are in the boxes 

Table 3.7 Knapsack problems and their sub-problems 
Knapsack Item lengths and sub-problem 

Sub-

problems 

9 8 7 6 

0 0 0 0 0 

1 0.5 + F(-8) 0.5 + F(-7) 0.3333+ F(-6) 0.3333 + F(-5) 

2 0.5 + F(-7) 0.5 + F(-6) 0.3333+ F(-5) 0.3333 + F(-4) 

3 0.5 + F(-6) 0.5 + F(-5) 0.3333+ F(-4) 0.3333 + F(-3) 

4 0.5 + F(-5) 0.5 + F(-4) 0.3333+ F(-3) 0.3333 + F(-2) 

5 0.5 + F(-4) 0.5 + F(-3) 0.3333+ F(-2) 0.3333 + F(-1) 

6 0.5 + F(-3) 0.5 + F(-2) 0.3333+ F(-1) 0.3333 + F(0) 

7 0.5 + F(-2) 0.5 + F(-1) 0.3333+ F(0) 0.3333 + F(1) 

8 0.5 + F(-1) 0.5 + F(0) 0.3333+ F(1) 0.3333 + F(2) 

9 0.5 + F(0) 0.5 + F(1) 0.3333 + F(2) 0.3333 + F(3) 

10 0.5 + F(1) 0.5 + F(2) 0.3333+ F(3) 0.3333 + F(4) 

11 0.5 + F(2) 0.5 + F(3) 0.3333+ F(4) 0.3333 + F(5) 

12 0.5 + F(3) 0.5 + F(4) 0.3333 + F(5) 0.3333 + F(6) 

13 0.5 + F(4) 0.5 + F(5) 0.3333+ F(6) 0.3333 + F(7) 

14 0.5 + F(5) 0.5 + F(6) 0.3333+ F(7) 0.3333 + F(8) 

15 0.5 + F(6) 0.5 + F(7) 0.3333 + F(8) 0.3333 + F(9) 

16 0.5 + F(7) 0.5 + F(8) 0.3333+ F(9) 0.3333 + F(10) 

17 0.5 + F(8) 0.5 + F(9) 0.3333+ F(10) 0.3333 + F(11) 

18 0.5 + F(9) 0.5 + F(10) 0.3333+ F(11) 0.3333 + F(12) 

19 0.5 + F(10) 0.5 + F(11) 0.3333+ F(12) 0.3333 + F(13) 

20 0.5 + F(11) 0.5 + F(12) 0.3333+ F(13) 0.3333 + F(14) 

 
 

 

 

 

 

 



60 
 

Table 3.8 shows the evaluated values for the sub-problems. The values in the box show the 

maximum among the values and the item length that was included to give this maximum.  

Table 3.8: Knapsack sub-problems and their solutions 

Knapsack Item weight and sub-problems solutions F(s) Item 

Label 

for F(s) 
Sub-

problems 

9 8 7 6 

0 0 0 0 0 0  

1 -∞ -∞ -∞ -∞ -∞  

2 -∞ -∞ -∞ -∞ -∞  

3 -∞ -∞ -∞ -∞ -∞  

4 -∞ -∞ -∞ -∞ -∞  

5 -∞ -∞ -∞ -∞ -∞  

6 -∞ -∞ -∞ 0.33333 0.33333 6 

7 -∞ -∞ 0.33333 -∞ 0.33333 7 

8 -∞ 0.5 -∞ -∞ 0.5 8 

9 0.5 -∞ -∞ -∞ 0.5 9 

10 -∞ -∞ -∞ -∞ -∞  

11 -∞ -∞ -∞ -∞ -∞  

12 -∞ -∞ -∞ 0.66667 0.66667 6 

13 -∞ -∞ 0.66667 0.66667 0.66667 7 

14 -∞ 0.83333 0.66667 0.83333 0.83333 8 

15 0.83333 0.83333 0.83333 0.83333 0.83333 9 

16 1 1 1 -∞ 1 8 

17 1 1 -∞ -∞ 1 9 

18 1 -∞ -∞ 1 1 9 

19 -∞ -∞ 1 1 1 7 

20 -∞ 1.16667 1 1.16667 1.16667 8 
 

Maximum for F(20) is 1.16667 (Table 3.8). From Table 3.7 sub-problem that gave this 

maximum is F(12). F(12) also has a maximum of 0.66667 with sub-problem F(6). F(6) has 

maximum 0.33333 with sub-problem F(0). Therefore, from Table 3.8 items that can be included 

in the knapsack to maximize the value are 8, 6, 6.  

Therefore optimal value = 1.16667 and corresponding Pattern is (0, 1, 0, 2). 

The entering pattern  
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3. Update new found column 

 

     =  

 

 

 

 

4. Compute leaving variable by ratio test. 

 Divide N by  component-wise where applicable. 

150.5/0.5=301,  83.833/0.666=125.875 

Since 127.875<301 and corresponds to the 4th component, the 4th column is the leaving 

variable. 

we update the new Basis B and its inverse . 

 

 

B =      

 

 

 

 

= 

 

 

 

 

 

 

0.5 0 0 0  

0 0.5 0 0  

0 0 0.5 -0.166  

0 0 0 0.333 

0 

1 

0 

2

  

0 

0.5 

0 

0.666

  

0.5 0 0 0 

0 0.5 0 0 

0 0.125 0.5 -0.25 

0 -0.25 0 0.5 

 

2 0 0 0 

0 2 0 1 

0 0 2 0 

0 0 1 2 
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5. Update Solution 

X = =                                                          

 

 

 

 

 

 

Iteration 3 

1. Compute dual prices 

      

 

 

 

 

 

2.  Generate entering column 

Let pattern  such that 

 

 

using dynamic programming 

 

s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 

 

} 

} 

0.5 0 0 0  

0 0.5 0 0  

0 0.125 0.5 -0.25  

0 -0.25 0 0.5 

 

255.5 

150.5 

131.5 

83.833 

255.5 

87.625 

131.5 

125.75 

= 

0.5 0 0 0  

0 0.5 0 0  

0 0.125 0.5 -0.25  

0 -0.25 0 0.5 
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Therefore to find F(20) we have to first find sub-problems F(11), F(12), F(13) and F(14). These 

problems will also have sub-problems. Table 3.9 shows the knapsack problems and their sub-

problems. The sub-problems that contributed to the maximum are in the boxes  

Table 3.9 Knapsack problems and their sub-problems 

Knapsack Items weights 

Sub-

problems 

9 8 7 6 

0 0 0 0 0 

1 0.5 + F(-8) 0.5 + F(-7) 0.375+ F(-6) 0.25 + F(-5) 

2 0.5 + F(-7) 0.5 + F(-6) 0.375+ F(-5) 0.25 + F(-4) 

3 0.5 + F(-6) 0.5 + F(-5) 0.375+ F(-4) 0.25 + F(-3) 

4 0.5 + F(-5) 0.5 + F(-4) 0.375+ F(-3) 0.25 + F(-2) 

5 0.5 + F(-4) 0.5 + F(-3) 0.375+ F(-2) 0.25 + F(-1) 

6 0.5 + F(-3) 0.5 + F(-2) 0.375+ F(-1) 0.25 + F(0) 

7 0.5 + F(-2) 0.5 + F(-1) 0.375+ F(0) 0.25 + F(1) 

8 0.5 + F(-1) 0.5 + F(0) 0.375+ F(1) 0.25 + F(2) 

9 0.5 + F(0) 0.5 + F(1) 0.375 + F(2) 0.25 + F(3) 

10 0.5 + F(1) 0.5 + F(2) 0.375+ F(3) 0.25 + F(4) 

11 0.5 + F(2) 0.5 + F(3) 0.375+ F(4) 0.25 + F(5) 

12 0.5 + F(3) 0.5 + F(4) 0.375 + F(5) 0.25 + F(6) 

13 0.5 + F(4) 0.5 + F(5) 0.375+ F(6) 0.25 + F(7) 

14 0.5 + F(5) 0.5 + F(6) 0.375+ F(7) 0.25 + F(8) 

15 0.5 + F(6) 0.5 + F(7) 0.375 + F(8) 0.25 + F(9) 

16 0.5 + F(7) 0.5 + F(8) 0.375+ F(9) 0.25 + F(10) 

17 0.5 + F(8) 0.5 + F(9) 0.375+ F(10) 0.25 + F(11) 

18 0.5 + F(9) 0.5 + F(10) 0.375+ F(11) 0.25 + F(12) 

19 0.5 + F(10) 0.5 + F(11) 0.375+ F(12) 0.25 + F(13) 

20 0.5 + F(11) 0.5 + F(12) 0.375+ F(13) 0.25 + F(14) 
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Table 3.10 shows the evaluated values for the sub-problems. The values in the box show the 

maximum among the values and the item length that was included to give this maximum 

Table3.10  Knapsack sub-problems and their solutions 

Knapsack Item weight and maximum values F(s) Item 

Label 

for F(s) 
Sub-

problems 

9 8 7 6 

0 0 0 0 0 0  

1 -∞ -∞ -∞ -∞ -∞  

2 -∞ -∞ -∞ -∞ -∞  

3 -∞ -∞ -∞ -∞ -∞  

4 -∞ -∞ -∞ -∞ -∞  

5 -∞ -∞ -∞ -∞ -∞  

6 -∞ -∞ -∞ 0.25 0.25 6 

7 -∞ -∞ 0.375 -∞ 0.375 7 

8 -∞ 0.5 -∞ -∞ 0.5 8 

9 0.5 -∞ -∞ -∞ 0.5 9 

10 -∞ -∞ -∞ -∞ -∞  

11 -∞ -∞ -∞ -∞ -∞  

12 -∞ -∞ -∞ 0.5 0.5 6 

13 -∞ -∞ 0.625 0.625 0.625 7 

14 -∞ 0.75 0.75 0.75 0.75 8 

15 0.75 0.875 0.875 0.75 0.875 9 

16 0.875 1 0.875 -∞ 1 8 

17 1 1 -∞ -∞ 1 9 

18 1 -∞ -∞ 1 1 9 

19 -∞ -∞ 0.875 0.875 0.875 7 

20 -∞ 1 1 1 1 8 
 

Maximum for F(20) is 1 (Table 3.8). From Table 3.7 sub-problem that gave this maximum is 

F(12). F(12) also has a maximum of 0.5 with sub-problem F(6). F(6) has maximum 0.25 with 

sub-problem F(0). Therefore, from Table 3.8 items that can be included in the knapsack to 

maximize the value are 8, 6, 6.  

Therefore optimal value = 1 and corresponding Pattern is (0, 1, 0, 2). 

This pattern has already been generated in iteration 2. 

Therefore the process terminates and the solution is as follows: 
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The Optimal Fractional Solution is given as 

Size Pat1 Pat2 Pat3 Pat4  

9 2 0 0 0  

8 0 2 0 1  

7 0 0 2 0  

6 0 0 1 2  

Qty 255.5 87.625 131.5 125.75  

Cost of the total stock used is 600.375 and the number of Iterations is 3 

2 pieces of 9-inch is cut in Pattern 1, 

 2 x 255.5 = 511pieces of 9-inch. 

2 pieces of 8-inch is cut in Pattern 2 and 1 piece in Pattern4, 

 2 x 87.625+ 1 x 125.75= 301pieces of 8-inch  

2 pieces of 7-inch is cut in Pattern 3  

 2 x 131.5 = 263 pieces of 7-inch. 

1 piece of 6-inch is cut in Pattern 3 and 2 pieces in Pattern 4, 

 1 x 131.5 + 2 x 125.75 = 383. 

and the quantities of stock used = 255.5 + 87.625 + 131.5 + 125.75 = 600.375 

We round the above solution to their upper integer values, since we will use discrete quantities of 

stock. 

 

 

 

 

where represents the upper integer value of x. 
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The integer solution gives 

2 pieces of 9-inch is cut in Pattern 1,  

 2 x 256 = 512 pieces of 9-inch. 

2 pieces of 8-inch is cut in Pattern 2 and 1 piece in Pattern4, 

 2 x 88 + 1 x 126= 302 pieces of 8-inch  

2 pieces of 7-inch is cut in Pattern 3  

 2 x 132 = 264 pieces of 7-inch. 

1 piece of 6-inch is cut in Pattern 3 and 2 pieces in Pattern 4, 

 1 x 132 + 2 x 126 = 384. 

and the quantities of stock used = 256 + 88 + 132 + 126 = 602 

The integer values show that  

512 pieces of 9-inch was cut which is , and satisfy our demand constraint (1) 

302 pieces of 8-inch was cut which is , and satisfy our demand constraint (2) 

264 pieces of 7-inch was cut which is , and satisfy our demand constraint (3) 

384 pieces of 6-inch was cut which is , and satisfy our demand constraint (4) 

Total stock lengths used is 602 

Total cost of stock lengths used = 1 x 602 = GH¢ 602. 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

4.2 Data Collection 

The data was collected from Rogersco Saw Mill Ltd, Yawkwei – Asante . The data includes the 

cross-sectional dimension of different sizes of strip boards, quantities of each strip board type 

and the total cost of the strip boards utilized to meet demand for the smaller sizes, cross-sectional 

dimension of smaller sizes requested and their respective quantities per order and the sample 

orders for August 2010 to December 2010. The cross-sectional width for both the strip boards 

and the cuts are 2-inch long and therefore are not shown. Example, cut-piece of 6 inches 

indicates a cut-piece of cross-sectional dimension 2 x 6. Likewise, a strip board of length 20 

indicates a strip board of cross-sectional dimension 2 x 20. 

Table 4.1 shows cross-sectional length of the cut-pieces from the company together with demand 

for each in sample orders made to the company. The first column indicates the cross-sectional 

length of the cut-pieces.  The second to the last columns indicate quantities for the various cut-

pieces ordered by customers.  
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Table 4.1 Order data from the company from August to December  2010 

 Order Quantities 

Cuts-piece 

(inch) 

August September October November December 

6” 1000 540 1500 200 220 

4” 500 850 200 150 115 

3” 119 40 0 100 120 

2” 203 85 203 120 40 

 

Table 4.2 shows cross-sectional length of strip boards that are cut from these timber logs through 

the ripping process. It indicates the cross-sectional length of the strip board in inches in the first 

column and the cost of each strip board in the second column.   

Table 4.2 Cross-sectional length of Strip after the Ripping process. 

Stock Sizes 

(L-inches) 

Cost (GHc) 

 20” 13.50 

 19” 13.00 

 17” 11.00 
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Table 4.3 shows the quantities of strip board types the company used in meeting the 

corresponding order demands in Table 4.1 and their cost.  

Table 4.3 Company Strip quantities and cost utilized to meet the orders in table 4.1 

 Orders 

Strip  

Length 

(inch) 

August  September  October  November December 

 Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost 

20” 342 4,617 300 4,050 209 2,821.5 32 432 20 270 

19” 0 0 20 260 167 2,171 40 520 33 429 

17” 130 1,430 50 550 196 2,156 63 693 78 858 

TotalCost  6,047  4,860  7,148.5  1,645  1,557 

The company used 342 pieces of 20” and 130 pieces of 17” strip for the August order. Likewise, 

it used 300 pieces of 20”, 20 pieces of 19” and 50 pieces of 17” for the September order, 209 

pieces of 20”, 167 pieces of 19” and 196 pieces of 17” for the October order. Furthermore, 32 

pieces of 20”, 40 pieces of 19” and 63 pieces of 17” where used for the November order and 20 

pieces of 20”, 33 pieces of 19” and 78 pieces for the December order. The total cost of strip 

board are GH6,047, GH4,860, GH7,148.50, GH1,645, GH1,557 for the corresponding August 

order, September order, October order, November order and the December order respectively. 

 

4.3 Problem Formulation 

The problem is to find, for each order, the minimum total cost of stock lengths utilized in cutting 

at least the total quantities demanded of each cut-piece.  The problem is formulated as a multi-
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objective function of a linear program anda knapsack problem with the assumption that 

quantities available of each strip board type is unlimited. 

 

The notation and formulation are as follows. Let  

number of cut-piece type. This is also the number of constraints. 

number of patterns or variables. 

number of different strip lengths. 

: length of cut piece type . 

:length of strip  

thej-thpattern. 

number of times pattern j is used in the solution. These are the decision variables for the LP 

number of cut-piece i in pattern j. This is the coefficient in the demand constraint. 

the demand for cut-piece i for each order 

cost of the strip used by patternj 

dual cost of  pattern j 

total cost of strips used 

a feasible pattern that cuts from strip  with cost  

The linear programming problem is 

 

    subject to 
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The  is from column 2 of Table 4.2 and  is from Table 4.1. 

The dual is given as 

 

 

 

The dual variables are calculated as 

 

where  is the inverse of the basis matrix and  is the cost vector corresponding to the 

columns of the basis matrix.  

The column generation knapsack problem is to find a feasible pattern  that cuts 

from strip  with cost such that 

 

We also determine the feasibility of the pattern as 

 

The  is from column 1 of Table 4.1 and  is column 1 of Table 4.2  

The two inequalities (4.7) and (4.8) find a feasible pattern P that improved our current Linear 

programming solution.  

Wecreated the m initial cutting patterns such that  
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islargest of the strip in Table 4.2 for which . The cost of is . The m initial patterns 

are as follows: 

Pattern 1 is  

Pattern 2 is  

 

Pattern m is  

Our initial m patterns therefore are 

Pat1 Pat2  Pat m  

 0  0  

0  0 0   

       

0 0   

The Linear Programming problem is then given as 

     

    subject to 
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The objective function (4.9) is to minimize the total cost of stock lengths used. Constraint (4.10) 

requires that the quantity produced is at least equal to quantity demanded for each cut-piece . 

Constraint (4.11) also shows that the initial basis matrix, B, is the initial m patterns. Constraint 

(3) is the non-negativity restriction on the decision variables.  

The dual formulation is given as 

     

    subject to 

     

     

 

     

      

 

4.4 Cutting Stock Algorithm 

The steps for the solution of the cutting stock problem is given below 

Step 1: Formulate the problem as a linear programming (LP) master problem. 

Step 2: Solve for dual of the LP master problem using the simplex method. 

Step 3:Use the dual solution in step 2 to solve the auxiliary knapsack sub-problem to find a 

 feasible pattern with a negative reduced cost, i.e. . If such a pattern exists, 

 then update the LP master problem with the new pattern and go to step 2. 

Step 4: If there is no such pattern in step 3, then the current LP solution is the optimal 

 solution and we stop. 

Step 5: Round the optimal LP solution to get the optimal integer program solution. 
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4.5 Computational Procedure and Results 

A Visual Basic.Net code was developed to implement the above algorithm on an Intel Atom 

N455 computer processor with speed 1.66GHz and 2GB of RAM. Output from the application 

for the five orders is given in Table 4.4 – 4.10. Table 4.4 shows quantities of cut-pieces that were 

cut using the application for the five set of orders, August to December, 2010. The first column 

indicates the length of the cut-pieces.  The second to the last columns indicate quantities for the 

cut-pieces produced by the application for each month.  

Table 4.4 Quantities of cut-pieces generated by application for the five order demands for 

August to December, 2010. 

 Quantities of cut-pieces 

Cuts L-inch August September October November December 

6” 1000 541 1501 200 220 

4” 500 851 200 150 115 

3” 119 40 - 100 120 

2” 203 85 203 120 40 

The “-“ in the table indicates that there was no order in the month of October for the 3” cut-piece 

length. 

Table 4.5 shows the corresponding lengths and quantities of strip boards the application used in 

generating the output for the quantities in Table 4.4 and their associated cost. (See Appendix A 

for details of the application output) 
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Table 4.5 Quantity and cost of Strips used by application to generate quantities of Table 4.4. 

 Quantities and cost of Strips used 

Strip 

Length 

(inch) 

August September October November December 

Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost 

20” 329 4,441.5 313 4,225.5 202 2,740.5 32 432 - - 

19” - - - - 164 2,132 - - 50 650 

17” 129 1,419 40 440 200 2,200 100 1,100 75 825 

Total Cost  5,860.5  4,665.5  7,072.5  1,532  1,475 

The application used 329 pieces of 20” and 129 pieces of 17” strip for the August order. 

Likewise, it used 313 pieces of 20” and 40 pieces of 17” for the September order, 202 pieces of 

20”, 164 pieces of 19” and 200 pieces of 17” for the October order. Furthermore, 32 pieces of 

20” and 100 pieces of 17” where used for the November order and 50 pieces of 19” and 75 

pieces for the December order. The total cost of strip board are GH5,860, GH4,665.5, 

GH7,072.50, GH1,532, GH1,475 for the August, September, October, November and the 

December orders respectively.  

Table 4.6 – 4.10 represent the optimal cutting patterns that were generated, the number of times 

the pattern was used and the length of strip that was used by the pattern for each of the months. 

The first column shows the cut-piece length. The remaining columns show the patterns. Column 

7 shows the strip length used, row 8 shows the number of times the pattern was used and the last 

row shows the number of iterations that were performed to get the optimal solution. 
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Table 4.6Optimal Pattern generated and their usage for the August orders 

 August 

( j ) 

Cut-piece ( ) Pattern 1 Pattern 2 Pattern 3 Pattern 4 

6” 2 2 1 3 

4” 1 2 2 0 

3” 0 0 1 0 

2” 0 0 0 1 

Strip Used  17” 20” 17” 20” 

Pattern Usage (  10 126 119 203 

Number of Iterations: 7 

 

The numbers in the table represents the quantity of the cut-pieces in each pattern. For example, 

pattern 1 was generated using 17” strip and each usage of the pattern produced 2 of 6”, 1 of 4” 

and none of the 3” and 2”. Since the pattern was used 10 times we have, for this pattern, 

2x10=20 of 6” and 1x10=10 of 4”. The number of iterations was 7. 
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Table 4.7Optimal Pattern generated and their usage for the September orders 

 September 

( j ) 

Cut-piece ( ) Pattern 1 Pattern 2 Pattern 3 Pattern 4 

6” 2 0 1 3 

4” 2 5 2 0 

3” 0 0 1 0 

2” 0 0 0 1 

Strip Used  20” 20” 17” 20” 

Pattern Usage(  123 105 40 85 

Number of Iterations = 5 

 

Table 4.8Optimal Pattern generated and their usage for the October orders 

 October 

( j ) 

Cut-piece ( ) Pattern 1 Pattern 2 Pattern 3 

6” 3 2 3 

4” 0 1 0 

2” 0 0 1 

Strip Used  19” 17” 20” 

Pattern Usage (  164 200 203 

Number of Iterations = 5 
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Table 4.9Optimal Pattern generated and their usage for the November orders 

 November 

( j ) 

Cut-piece ( ) Pattern 1 Pattern 2 Pattern 3 Pattern 4 

6” 3 1 2 0 

4” 0 2 0 1 

3” 0 1 1 1 

2” 1 0 1 5 

Strip Used  20” 17” 17” 17” 

Pattern Usage (  32 68 18 14 

Number of Iterations = 6 

 

Table 4.10Optimal Pattern generated and their usage for the December orders 

 December(c) 

( j ) 

Cut-piece ( ) Pattern 1 Pattern 2 Pattern 3 Pattern 4 

6” 3 1 2 2 

4” 0 2 1 0 

3” 0 1 1 1 

2” 0 0 0 1 

Strip Used  19” 17” 19” 17” 

Pattern Usage(  5 35 45 40 

Number of Iterations = 8 
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4.4 Discussion 

A comparison of the output from the application and the data from the company in Table 4.3 

shows an improvement over the ad-hoc method used by the company. Table 4.11 summarizes the 

total cost of strips used by the company and the application to meet the same set of demand. The 

first column indicates the month. The second and third columns show the total cost of strips for 

each month order by Company and application. The last column shows the difference in the total 

cost between the Company and the application. 

 

Table 4.11 Summary of Total cost of strips used by Company and the application for set of 

orders. 

 Total Cost of strips used to meet set of demands 

(GH ¢) 

Month (2010) Company Application Difference 

August 6,047.00 5,860.00 187.00 

September 4,860.00 4,665.50 194.50 

October 7,148.50 7,072.50 76.00 

November 1,645.00 1,532.00 113.00 

December 1,557.00 1,475.00 82.00 

Total 21,257.50 20,604.50 652.50 

 

The table shows that by the application of the techniques shown by this application, the company 

would have made a savings of GH187, GH195.5, GH76, GH113, and GH82 for the August, 

September, October, Novemberand the December orders respectively, a total savings of GH652. 
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4.5 Features of the Application 

The software allows the user to input data into the application interface by typing data directly 

into Ordered Sizes grid ( for size of cut-pieces) and the Stock Sizes grid ( for size of stock 

lengths). We can also load data from text files by clicking the “load data” button. Results from 

the computation can also be saved to a text file by clicking the “Save Output) button. 

 (Codes attached: See Appendix B)

 

Fig 4.1 User interface for the Cutting stock application 

The program generates an initial solution and shows both the fractional and the integer feasible 

solutions for the problem and selects the optimal solution together with the patterns that are 

needed to get the optimal solution.  
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Fig 4.2 Output from the application 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This thesis has modeled the cutting of strip boards as a one dimensional cutting stock problem 

and used linear programming techniques to find solution to it. Knapsack algorithm by dynamic 

programming was used to generate entering columns. The thesis generated optimal patterns 

(Tables 4.6 – 4.10) for the cutting of the strip boards that minimizes the total cost of strips 

utilized to meet demands for quantities of cut-pieces (Table 4.5). The study also shows that by 

the application of these techniques, total cost of stock lengths utilized can be minimized (Table 

4.11). The thesis also developed a computer program that solves this cutting stock problem. The 

application can be used in any one dimensional cutting situation. 

 

5.2 Recommendation 

Rogersco Sawmill Limited should use the cutting stock procedure to generate cutting patterns for 

the cutting of all their strip boards. This will help to minimize the total cost of strip boards that 

are utilized to meet orders as indicated in Table 4.11. This consequently will lead to increase in 

profit and efficient utilization of timber.  The use of the application is systematic and transparent 

as compared with the ad-hoc method used by the company.  

The application can be used for any problem that can be modeled as a one-dimensional cutting 

stock problem. The thesis considered strip boards with fixed width, i.e. 2 inches, however future 

research should consider cases with variable widths. We also assumed unlimited quantities of 

strip boards. Future research should also consider instances where the quantities of stocks of strip 

boards become constraints.  
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APPENDIX A: OUTPUT OF SAMPLE DATA BY THE APPLICATION 

Order #1: Order details and output from the cutting stock application 

 

Order length and Demand 

 
Cut  Qty 

6" 1000 

4" 500 

3" 119 

2" 203 

 

Strip Board Length and Cost 

 
Strip Cost 

20" 13.5 

19" 13 

17" 11 

 

Initial Solution Cutting Patterns(Fractional) 

 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 0 0 0 

4" 0 5 0 0 

3" 0 0 6 0 

2" 0 0 0 10 

Strip 20" 20" 20" 20" 

Qty 333.3 100 19.83 20.3 

 

 

COST OF USED STOCK = 6391.8 

 

Basis Inverse 
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0.3333333 0 0 0  

0 0.2 0 0  

0 0 0.1666667 0  

0 0 0 0.1  

 

 

Iteration #1 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.25 

For length  2"      Dual cost = 1.35 

2.  Generate Entering Column by Knapsack 
Cut Pat 

6" 0 

4" 0 

3" 5 

2" 1 

Selected source length  =  17 

Reduced  cost           =  1.6 

3.  Update New Column 

0 

0 

0.8333334 

0.1 

 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  23.8 

 

5.  Update Basis Inverse 

 

0.333 0 0 0  

0 0.2 0 0  

0 0 0.2 -0.02  

0 0 0 0.1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  333.3333 

2  :  100 

3  :  23.8 
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4  :  17.92 

The new cost is = 6353.72  

Iteration #2 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.93 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 1 

Selected source length  =  20    Reduced  cost           =  1.35 

3.  Update New Column 

1 

0 

0 

0.1 

 

4.  Choose pattern to drop 

Pattern 4 is leaving, at min ratio  179.2 

 

5.  Update Basis Inverse 

 

0.333 0 0 0  

0 0.2 0 0  

0.2 0 0.2 -0.2  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  154.1333 

2  :  100 

3  :  23.8 

4  :  179.2 

The new cost is = 6111.8 

Iteration #3 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.2 

For length  2"      Dual cost = 0 
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2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 1 

4" 2 

3" 1 

2" 0 

Selected source length  =  17 

Reduced  cost           =  1.099999 

 

3.  Update New Column 

0.5333333 

0.4 

0.2 

-0.2 

 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  119 

5.  Update Basis Inverse 

0.333 0 0 0  

0 0.2 0 0  

-0.33 -0.4 1 0  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  90.66667 

2  :  52.4 

3  :  119 

4  :  203 

The new cost is = 5980.9 

Iteration #4 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.099999 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 2 

3" 0 

2" 0 

Selected source length  =  20 
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Reduced  cost           =  0.8999996 

 

3.  Update New Column 

0.6666667 

0.4 

0 

0 

 

4.  Choose pattern to drop 

Pattern 2 is leaving, at min ratio  131 

 

5.  Update Basis Inverse 

0.333 0 0 0  

-0.33 0.5 0 0  

0.333 -1 1 0  

-1 0 0 1  

6.  Update Solution 

index  : basic variable solution 

1  :  3.333346 

2  :  131 

3  :  119 

4  :  203 

The new cost is = 5863 

Iteration #5 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.25 

For length  3"      Dual cost = 1.999999 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 0 

Selected source length  =  19 

Reduced  cost           =  0.5 

3.  Update New Column 

1 

0 

0 

0 
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4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  3.333346 

5.  Update Basis Inverse 

 

0.333 0 0 0  

-0.33 0.5 0 0  

0.333 -1 1 0  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  3.333346 

2  :  131 

3  :  119 

4  :  203 

The new cost is = 5861.333  

Iteration #6 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 

For length  4"      Dual cost = 2.416667 

For length  3"      Dual cost = 1.833333 

For length  2"      Dual cost = 0.5 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 1 

3" 0 

2" 0 

Selected source length  =  17 

Reduced  cost           =  0.08333397 

 

3.  Update New Column 

0.3333333 

0.5 

0 

0 

 

4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  10.00004 

 

5.  Update Basis Inverse 

 

1 -0.5 0 0  

-1 1 0 0  
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1 -1.5 1 0  

-3 1.5 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  10.00004 

2  :  126 

3  :  119 

4  :  203 

The new cost is = 5860.5  

Iteration #7 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.25 

For length  4"      Dual cost = 2.5 

For length  3"      Dual cost = 1.75 

For length  2"      Dual cost = 0.75 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 0 

2" 0 

Selected source length  =  17  Reduced  cost           =  0 

Optimal Fractional Solution 
Cut Pat1 Pat2 Pat3 Pat4 

6" 2 2 1 3 

4" 1 2 2 0 

3" 0 0 1 0 

2" 0 0 0 1 

Strip 17" 20" 17" 20" 

Qty Used 10.00 126 119 203 

Stock cost = 5860.5    Number of Iterations =  7 

 

Optimal Integer Solutuion 
Cut Pat1 Pat2 Pat3 Pat4 

6" 2 2 1 3 

4" 1 2 2 0 
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3" 0 0 1 0 

2" 0 0 0 1 

Strip 17" 20" 17" 20" 

Qty Used 10 126 119 203 

  

Pattern #1  Stock length used: 17   Quantity: 10 

2 of  6-inch Cut-piece was cut from each 17-inch stock piece 

1 of  4-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #2  Stock length used: 20   Quantity: 126 

2 of  6-inch Cut-piece was cut from each 20-inch stock piece 

2 of  4-inch Cut-piece was cut from each 20-inch stock piece 

 

Pattern #3  Stock length used: 17   Quantity: 119 

1 of  6-inch Cut-piece was cut from each 17-inch stock piece 

2 of  4-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #4  Stock length used: 20   Quantity: 203 

3 of  6-inch Cut-piece was cut from each 20-inch stock piece 

1 of  2-inch Cut-piece was cut from each 20-inch stock piece 

 

Optimal Stock Used = 458; Optimal Stock cost = 5860.5 
 

Order #2: Order details and output from the cutting stock application 

 

Order length and Demand 

 
Cut Qty 

6" 540 

4" 850 

3" 40 

2" 85 

 

Strip Board Length and Cost 

 
Strip Cost 



95 
 

20" 13.5 

19" 13 

17" 11 

 

 

Initial Solution Cutting Patterns (Fractional) 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 0 0 0 

4" 0 5 0 0 

3" 0 0 6 0 

2" 0 0 0 10 

Strip 20" 20" 20" 20" 

Qty 180 170 6.666667 8.5 

 

COST OF USED STOCK = 4929.75 

 

 

Basis Inverse 

 

0.3333333 0 0 0  

0 0.2 0 0  

0 0 0.1666667 0  

0 0 0 0.1  

 

 

Iteration #1 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.25 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 5 
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2" 1 

Selected source length  =  17 

Reduced  cost           =  1.6 

3.  Update New Column 

0 

0 

0.8333334 

0.1 

 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  8 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0 0 0.2 -0.02  

0 0 0 0.1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  180 

2  :  170 

3  :  8 

4  :  7.7 

The new cost is = 4916.95 

Iteration #2 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.93 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 1 

Selected source length  =  20 

Reduced  cost           =  1.35 

3.  Update New Column 

1 

0 

0 

0.1 
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4.  Choose pattern to drop 

Pattern 4 is leaving, at min ratio  77 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0.2 0 0.2 -0.2  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  103 

2  :  170 

3  :  8 

4  :  77 

The new cost is = 4813 

 Iteration #3 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.2 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 1 

4" 2 

3" 1 

2" 0 

Selected source length  =  17 

Reduced  cost           =  1.099999 

 

3.  Update New Column 

0.5333333 

0.4 

0.2 

-0.2 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio 40 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

-0.333 -0.4 1 0  

-1 0 0 1  
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6.  Update Solution 

index  : basic variable solution 

1  :  81.66666 

2  :  154 

3  :  40 

4  :  85 

The new cost is = 4769 

 

 Iteration #4 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.099999 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 2 

3" 0 

2" 0 

Selected source length  =  20 

Reduced  cost           =  0.8999996 

 

3.  Update New Column 

0.6666667 

0.4 

0 

0 

 

4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  122.5 

 

5.  Update Basis Inverse 

0.5 -0.2 0 0  

0 0.2 0 0  

-0.5 -0.2 1 0  

-1.5 0.6 0 1  

 

 

6.  Update Solution 

index  : basic variable solution 

1  :  122.5 

2  :  105 

3  :  40 
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4  :  85 

The new cost is = 4658.75 

 

Iteration #5 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.05 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.549999 

For length  2"      Dual cost = 1.349999 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 0 

2" 0 

Selected source length  =  20 

Reduced  cost           =  0 

 

Optimal Fractional Solution 
Cut Pat1 Pat2 Pat3 Pat4 

6" 2 0 1 3 

4" 2 5 2 0 

3" 0 0 1 0 

2" 0 0 0 1 

Strip 20" 20" 17" 20" 

Qty Used 122.5 105 40 85 

  

Stock cost = 4658.75  Number of Iterations =  5 

 

Optimal Integer Solutuion 
Cut Pat1 Pat2 Pat3 Pat4 

6" 2 0 1 3 

4" 2 5 2 0 

3" 0 0 1 0 

2" 0 0 0 1 
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Strip 20" 20" 17" 20" 

Qty Used 123 105 40 85 

 

 

 

Pattern #1  Stock length used: 20   Quantity: 123 

2 of  6-inch Cut-piece was cut from each 20-inch stock piece 

2 of  4-inch Cut-piece was cut from each 20-inch stock piece 

 

Pattern #2  Stock length used: 20   Quantity: 105 

5 of  4-inch Cut-piece was cut from each 20-inch stock piece 

 

Pattern #3  Stock length used: 17   Quantity: 40 

1 of  6-inch Cut-piece was cut from each 17-inch stock piece 

2 of  4-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #4  Stock length used: 20   Quantity: 85 

3 of  6-inch Cut-piece was cut from each 20-inch stock piece 

1 of  2-inch Cut-piece was cut from each 20-inch stock piece 

 

 

Optimal Stock Used = 353; Optimal Stock cost = 4665.5 
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Order #3: Order details and output from the cutting stock application 

 

Order length and Demand 

 
Cut Qty 

6" 1500 

4" 200 

2" 203 

 

Strip Board Length and Cost 

 
Strip Cost 

20" 13.5 

19" 13 

17" 11 

 

Initial Solution Cutting Patterns(Fractional) 

 
Cut Pat1 Pat2 Pat3 

6" 3 0 0 

4" 0 5 0 

2" 0 0 10 

Strip 20" 20" 20" 

Qty Used 500 40 20.3 

 

COST OF USED STOCK = 7564.05 

 

Basis Inverse 

 

0.3333 0 0  

0 0.2 0  

0 0 0.1  

 

Iteration #1 
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1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

2" 1 

Selected source length  =  20 

Reduced  cost           =  1.35 

3.  Update New Column 

1 

0 

0.1 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  203 

  

5.  Update Basis Inverse 

0.3333 0 0  

0 0.2 0  

-1 0 1  

6.  Update Solution 

index  : basic variable solution 

1  :  297 

2  :  40 

3  :  203 

The new cost is = 7290  

Iteration #2 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 2 

2" 0 

Selected source length  =  20 

Reduced  cost           =  0.8999996 

 

3.  Update New Column 

0.6666667 
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0.4 

0 

 

4.  Choose pattern to drop 

Pattern 2 is leaving, at min ratio  100 

 

5.  Update Basis Inverse 

0.3333 0 0  

-0.333 0.5 0  

-1 0 1  

 

 

 

6.  Update Solution 

index  : basic variable solution 

1  :  230.3333 

2  :  100 

3  :  203 

The new cost is = 7200 

 

 Iteration #3 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.25 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

2" 0 

Selected source length  =  19 

Reduced  cost           =  0.5 

 

3.  Update New Column 

1 

0 

0 

 

4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  230.3333 

  

5.  Update Basis Inverse 

0.3333 0 0  

-0.333 0.5 0  
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-1 0 1  

6.  Update Solution 

index  : basic variable solution 

1  :  230.3333 

2  :  100 

3  :  203 

The new cost is = 7084.833 

Iteration #4 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 

For length  4"      Dual cost = 2.416667 

For length  2"      Dual cost = 0.5 

 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 1 

2" 0 

Selected source length  =  17 

Reduced  cost           =  0.08333397 

 

3.  Update New Column 

0.3333333 

0.5 

0 

 

4.  Choose pattern to drop 

Pattern 2 is leaving, at min ratio  200 

 

5.  Update Basis Inverse 

0.3333 0 0  

-0.666 1 0  

-1 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  163.6667 

2  :  200 

3  :  203 

The new cost is = 7068.166 

 

 Iteration #5 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 
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For length  4"      Dual cost = 2.333333 

For length  2"      Dual cost = 0.5 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

2" 0 

Selected source length  =  17 

Reduced  cost           =  0 

 

 

 

 

 

Optimal Fractional Solution 
Cut Pat1 Pat2 Pat3 

6" 3 2 3 

4" 0 1 0 

2" 0 0 1 

Strip 19" 17" 20" 

Qty Used 163.6667 200 203 

 

Stock cost = 7068.167  Number of Iterations =  5 

 

Optimal Integer Solutuion 
Cut Pat1 Pat2 Pat3 

6" 3 2 3 

4" 0 1 0 

2" 0 0 1 

Strip 19" 17" 20" 

Qty Used 164 200 203 

 

 

Pattern #1  Stock length used: 19   Quantity: 164 

3 of  6-inch Cut-piece was cut from each 19-inch stock piece 
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Pattern #2  Stock length used: 17   Quantity: 200 

2 of  6-inch Cut-piece was cut from each 17-inch stock piece 

1 of  4-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #3  Stock length used: 20   Quantity: 203 

3 of  6-inch Cut-piece was cut from each 20-inch stock piece 

1 of  2-inch Cut-piece was cut from each 20-inch stock piece 

 

 

Optimal Stock Used = 567;  Optimal Stock cost = 7072.5 
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Order #4: Order details and output from the cutting stock application 

 

Order length and Demand 

 
Cut Qty 

6" 200 

4" 150 

3" 100 

2" 120 

 

Strip Board Length and Cost 

 
Strip Cost 

20" 13.5 

19" 13 

17" 11 

 

Initial Solution Cutting Patterns(Fractional) 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 0 0 0 

4" 0 5 0 0 

3" 0 0 6 0 

2" 0 0 0 10 

Strip 20" 20" 20" 20" 

Qty Used 66.66667 30 16.66667 12 

 

COST OF USED STOCK = 1692 

 

 

Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0 0 0.1666 0  
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0 0 0 0.1  

 

Iteration #1 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.25 

For length  2"      Dual cost = 1.35 

 

 

 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 5 

2" 1 

Selected source length  =  17 

Reduced  cost           =  1.6 

 

3.  Update New Column 

0 

0 

0.8333334 

0.1 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  20 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0 0 0.2 -0.02  

0 0 0 0.1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  66.66667 

2  :  30 

3  :  20 

4  :  10 

The new cost is = 1660 

 

 Iteration #2 

1.  Calculate Dual variables (incremental costs) 
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For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.93 

For length  2"      Dual cost = 1.35 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 1 

Selected source length  =  20 

Reduced  cost           =  1.35 

3.  Update New Column 

1 

0 

0 

0.1 

 

4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  66.66667 

 

5.  Update Basis Inverse 

0.3333 0 0 -0.03333334  

0 0.2 0 0  

0 0 0.2 -0.02  

0 0 0 0.1  

6.  Update Solution 

index  : basic variable solution 

1  :  66.66667 

2  :  30 

3  :  20 

4  :  3.333333 

The new cost is = 1570 

 

Iteration #3 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.05 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.93 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 1 
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3" 1 

2" 5 

Selected source length  =  17 

Reduced  cost           =  0.3800001 

 

3.  Update New Column 

0 

0.2 

0.2 

0.48 

4.  Choose pattern to drop 

Pattern 4 is leaving, at min ratio  6.944443 

5.  Update Basis Inverse 

0.3333 0.0139 0.0138 -0.06944445  

0 0.2 0 0  

0 0.0083 0.2083 -0.04166666  

0 -0.041 -0.041 0.2083333  

 

6.  Update Solution 

index  : basic variable solution 

1  :  66.66667 

2  :  28.61111 

3  :  18.61111 

4  :  6.944443 

The new cost is = 1567.361 

 

Iteration #4 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.076389 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.945833 

For length  2"      Dual cost = 1.270833 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 1 

4" 2 

3" 1 

2" 0 

Selected source length  =  17 

Reduced  cost           =  0.4222221 

 

3.  Update New Column 

0.3333333 

0.4222222 
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0.2222222 

-0.1111111 

 

4.  Choose pattern to drop 

Pattern 2 is leaving, at min ratio  67.76315 

  

5.  Update Basis Inverse 

0.3223684 0.03289474 0.006578947 -0.06578948  

-0.1578947 0.4736842 -0.1052632 0.05263158  

-0.006578947 0.01973684 0.2039474 -0.03947368  

0.03289474 -0.09868421 -0.01973684 0.1973684  

 

6.  Update Solution 

index  : basic variable solution 

1  :  44.07895 

2  :  67.76315 

3  :  3.552633 

4  :  14.47368 

The new cost is = 1538.75 

 

Iteration #5 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.0625 

For length  4"      Dual cost = 2.5 

For length  3"      Dual cost = 1.9375 

For length  2"      Dual cost = 1.3125 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 0 

3" 1 

2" 1 

Selected source length  =  17 

Reduced  cost           =  0.375001 

 

3.  Update New Column 

0.6710527 

-0.0131579 

0.1973684 

0.02631578 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  18.00001 

 

5.  Update Basis Inverse 
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0.3 0.0333 0.0333 -0.06666667  

0.2 0.4666 -0.533 0.06666666  

-0.70 0.0333 1.0333 -0.06666666  

0.1 -0.1 -0.1 0.2  

 

6.  Update Solution 

index  : basic variable solution 

1  :  32 

2  :  67.99999 

3  :  18.00001 

4  :  14 

The new cost is = 1532 

Iteration #6 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.05 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.549998 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 0 

2" 10 

Selected source length  =  20 

Reduced  cost           =  1.907349E-06 

 

Optimal Fractional Solution 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 1 2 0 

4" 0 2 0 1 

3" 0 1 1 1 

2" 1 0 1 5 

Strip 20" 17" 17" 17" 

Qty Used 32 67.99999 18.00001 14 

 

Stock cost = 1532 Number of Iterations =  6 

 

Optimal Integer Solutuion 
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Cut Pat1 Pat2 Pat3 Pat4 

6" 3 1 2 0 

4" 0 2 0 1 

3" 0 1 1 1 

2" 1 0 1 5 

Strip 20" 17" 17" 17" 

Qty Used 32 68 18 14 

  

 

Pattern #1  Stock length used: 20   Quantity: 32 

3 of  6-inch Cut-piece was cut from each 20-inch stock piece 

1 of  2-inch Cut-piece was cut from each 20-inch stock piece 

 

Pattern #2  Stock length used: 17   Quantity: 68 

1 of  6-inch Cut-piece was cut from each 17-inch stock piece 

2 of  4-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #3  Stock length used: 17   Quantity: 18 

2 of  6-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

1 of  2-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #4  Stock length used: 17   Quantity: 14 

1 of  4-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

5 of  2-inch Cut-piece was cut from each 17-inch stock piece 

 

 

 

Optimal Stock Used = 132; Optimal Stock cost = 1532 
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Order #5: Order details and output from the cutting stock application 

 

Order length and Demand 

 
Cut Qty 

6" 220 

4" 115 

3" 120 

2" 40 

 

Strip Board Length and Cost 

 
Strip Cost 

20" 13.5 

19" 13 

17" 11 

 

Initial Solution Cutting Patterns(Fractional) 

 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 0 0 0 

4" 0 5 0 0 

3" 0 0 6 0 

2" 0 0 0 10 

Strip 20" 20" 20" 20" 

Qty 73.33334 23 20 4 

  

COST OF USED STOCK = 1624.5 

 

Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0 0 0.1666 0  
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0 0 0 0.1  

 

 

Iteration #1 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.25 

For length  2"      Dual cost = 1.35 

 

 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 0 

3" 5 

2" 1 

Selected source length  =  17 

Reduced  cost           =  1.6 

 

3.  Update New Column 

0 

0 

0.8333334 

0.1 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  24 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0 0 0.2 -0.02  

0 0 0 0.1  

6.  Update Solution 

index  : basic variable solution 

1  :  73.33334 

2  :  23 

3  :  24 

4  :  1.6 

The new cost is = 1586.1 

 

Iteration #2 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 
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For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 1.93 

For length  2"      Dual cost = 1.35 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 1 

Selected source length  =  20 

Reduced  cost           =  1.35 

3.  Update New Column 

1 

0 

0 

0.1 

 

4.  Choose pattern to drop 

Pattern 4 is leaving, at min ratio  16 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

0 0.2 0 0  

0.2 0 0.2 -0.2  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  57.33334 

2  :  23 

3  :  24 

4  :  16 

The new cost is = 1564.5 

 

Iteration #3 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.7 

For length  3"      Dual cost = 2.2 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 1 



117 
 

4" 2 

3" 1 

2" 0 

Selected source length  =  17 

Reduced  cost           =  1.099999 

3.  Update New Column 

0.5333333 

0.4 

0.2 

-0.2 

4.  Choose pattern to drop 

Pattern 2 is leaving, at min ratio  57.5 

5.  Update Basis Inverse 

0.3333 0 0 0  

-0.266 0.5 -0.099 0.099 

0.2 0 0.2 -0.2  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  26.66667 

2  :  57.5 

3  :  12.5 

4  :  27.5 

The new cost is = 1501.25 

 

Iteration #4 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.5 

For length  4"      Dual cost = 2.15 

For length  3"      Dual cost = 2.2 

For length  2"      Dual cost = 0 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 3 

4" 0 

3" 0 

2" 0 

Selected source length  =  19 

Reduced  cost           =  0.5 

 

3.  Update New Column 

1 

0 
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0 

0 

 

4.  Choose pattern to drop 

Pattern 1 is leaving, at min ratio  26.66667 

 

5.  Update Basis Inverse 

0.3333 0 0 0  

-0.266 0.5 -0.099 0.099 

0.2 0 0.2 -0.2  

-1 0 0 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  26.66667 

2  :  57.5 

3  :  12.5 

4  :  27.5 

The new cost is = 1487.917 

 

 Iteration #5 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 

For length  4"      Dual cost = 2.283334 

For length  3"      Dual cost = 2.1 

For length  2"      Dual cost = 0.5 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 0 

3" 1 

2" 1 

Selected source length  =  17 

Reduced  cost           =  0.2666664 

 

3.  Update New Column 

-0.1333333 

0 

0.2 

0.8 

4.  Choose pattern to drop 

Pattern 4 is leaving, at min ratio  34.375 

 

5.  Update Basis Inverse 
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0.3333 0 0 0  

-0.25 0.5 -0.125 0.125  

0.1666 0 0.25 -0.25  

-0.83330 -0.25 1.25  

 

6.  Update Solution 

index  : basic variable solution 

1  :  31.25001 

2  :  57.5 

3  :  5.625 

4  :  34.375 

The new cost is = 1478.75 

Iteration #6 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 

For length  4"      Dual cost = 2.25 

For length  3"      Dual cost = 2.166667 

For length  2"      Dual cost = 0.166666 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 0 

4" 1 

3" 5 

2" 0 

Selected source length  =  19 

Reduced  cost           =  0.08333397 

 

3.  Update New Column 

0.5833333 

0.5 

1.125 

-1.125 

 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  5 

 

5.  Update Basis Inverse 

0.3333333 0  0  0  

-0.1851852 0.5555556 -0.1111111 0  

0.03703702 -0.1111111 0.2222222 0  

-0.7037038 0.1111111 -0.2222222 1  

 

6.  Update Solution 

index  : basic variable solution 
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1  :  28.33334 

2  :  55 

3  :  5 

4  :  40 

The new cost is = 1478.333 

 

Iteration #7 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 

For length  4"      Dual cost = 2.25926 

For length  3"      Dual cost = 2.148148 

For length  2"      Dual cost = 0.1851845 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 1 

3" 1 

2" 0 

Selected source length  =  19 

Reduced  cost           =  0.0740757 

 

3.  Update New Column 

0.5185186 

0.4444445 

0.1111111 

0 

4.  Choose pattern to drop 

Pattern 3 is leaving, at min ratio  45 

 

5.  Update Basis Inverse 

0.3333333 0 0 0  

0.3333334 1 -1 0  

-1  -1 2 0  

0.3333333 1 -2 1  

 

6.  Update Solution 

index  : basic variable solution 

1  :  5.000004 

2  :  35 

3  :  45 

4  :  40 

The new cost is = 1475 

 Iteration #8 

1.  Calculate Dual variables (incremental costs) 

For length  6"      Dual cost = 4.333333 
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For length  4"      Dual cost = 2.333336 

For length  3"      Dual cost = 1.999996 

For length  2"      Dual cost = 0.3333349 

 

2.  Generate Entering Column by Knapsack 

Cut Pat  

6" 2 

4" 1 

3" 0 

2" 0 

Selected source length  =  17 

Reduced  cost           =  2.861023E-06 

Optimal Fractional Solution 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 1 2 2 

4" 0 2 1 0 

3" 0 1 1 1 

2" 0 0 0 1 

Strip 19" 17" 19" 17" 

Qty Used 5.000004 35 45 40 

  

Stock cost = 1475 Number of Iterations =  8 

 

Optimal Integer Solutuion 
Cut Pat1 Pat2 Pat3 Pat4 

6" 3 1 2 2 

4" 0 2 1 0 

3" 0 1 1 1 

2" 0 0 0 1 

Strip 19" 17" 19" 17" 

Qty Used 5 35 45 40 
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Pattern #1  Stock length used: 19   Quantity: 5 

3 of  6-inch Cut-piece was cut from each 19-inch stock piece 

 

Pattern #2  Stock length used: 17   Quantity: 35 

1 of  6-inch Cut-piece was cut from each 17-inch stock piece 

2 of  4-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

 

Pattern #3  Stock length used: 19   Quantity: 45 

2 of  6-inch Cut-piece was cut from each 19-inch stock piece 

1 of  4-inch Cut-piece was cut from each 19-inch stock piece 

1 of  3-inch Cut-piece was cut from each 19-inch stock piece 

 

Pattern #4  Stock length used: 17   Quantity: 40 

2 of  6-inch Cut-piece was cut from each 17-inch stock piece 

1 of  3-inch Cut-piece was cut from each 17-inch stock piece 

1 of  2-inch Cut-piece was cut from each 17-inch stock piece 

 

 

 

Optimal Stock Used = 125; Optimal Stock cost = 1475 
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APPENDIX B - VISUAL BASIC.NET CODES FOR THE CUTTING STOCK 
 
„Declarations 

Public Class ColumnGeneration 

    Implements ICloneable 

    Private NPart, NSource As Integer  '  Nbr of required parts and supply parts  

    Public Verbose, Fractional As Boolean 

    Public StockLengths() As Integer 

    Public StockCost() As Single 

    Public StockUsed() As Integer '  Stock lengths, Stock costs, Stock Used  

    Public StockOrigLoc() As Integer '  Used to report usage back in the right row  

    Public Partlengths() As Single 

    Public PartQty() As Single '   required part lengths and quanties  

    Public totparts() As Integer '  for each length, sum of parts cut from all patterns  

    Public StockusedByPattern() As Single '   required nbr of pieces for each pattern  

    Public IStockUsedByPattern() As Integer '  integer version  

    Public A(,) As Integer ' array of  columns (patterns) and rows (part lengths)  

    Public C1() As Single 

    Public result As Boolean 

    Public tag As Integer 

    Public msg As String = ""   'Contains output info 

    '--------------------  INPUT DATA  ------------------------ 

    Private SL(), SC() As Single    'lengths  and costs of stock piece types  

    '--------------------  SIMPLEX DATA  ------------------------*  

    Private BI(,) As Single  ' : ARRAY of array of extended;  Inverse of B  

    Private BBAR() As Single    ';  required amount of ith length  
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    Private B() As Single '  Right hand side  

    Private AR() As Single '   updated entering column  

    Private ARINV() As Single '  Inverse of AR  

    Private PI() As Single '  Simplex multiplier (Dual cost) 

    Private ZB As Single    '   Total cost  

    Private RMAX As Single '  minimum ratio of ratio test  

    Private CMIN1 As Single ' minimum value of j-th reduced cost  

    Private NR, NROW As Integer '   number of constraints  

    '--------------------  ENTCOL DATA  -------------------------- 

    Private SCOST As Single 

    Private SSOURCE As Integer 

    '--------------------  KNAPSACK DATA  ------------------------ 

    Private KA() As Single '    

    Private STATE(), VARS(), XS() As Integer 

    Private NODE(,), D(,) As Integer 

    Private Demand(,), Inv(,) As Single 

    Private RESOURCE As Integer 

    Private NCOL, NSTAGE, OPTN As Integer 

    Private C() As Single ' 

    Private COST(,) As Single 

    Private F(,) As Single ' 

    Private OPTD As Integer 

    Private OPTF As Single 
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    '--------------------  control variables  -------------------- 

    Dim SW As Char 

    Dim fp As String 

    Dim IERROR As Integer 

    Dim ERR_MSG As String 

    Public SLENGTH() As Single    ' Stock lengths selected for each pattern  

    Public Tolerance As Single = 0.00001 

    Public IT As Integer 

 

Public Sub GetData(ByVal M As Integer, ByVal N As Integer, ByVal stL() As  _ Single,ByVal stC() As 

Single, ByVal iL() As Single, ByVal iQ() As Single) 

        Dim i, j As Integer 

        NSource = N 

        NPart = M 

        Init(M, N) 

        Verbose = True 

        Fractional = True 

        For i = 1 To NSource 

            StockLengths(i) = stL(i - 1) 

            StockCost(i) = stC(i - 1) 

            StockOrigLoc(i) = i 

            StockUsed(i) = 0 

        Next 

        For i = 1 To NPart 

            For j = 1 To NPart : A(i, j) = 0 : Next j 
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        Next i 

        For i = 1 To NPart 

            Partlengths(i) = iL(i - 1) 

            PartQty(i) = iQ(i - 1) 

        Next 

    End Sub 

 

 

    Public Sub Solve() 

        Dim i As Integer 

        For i = 1 To NSource 

            SL(i) = StockLengths(i) 

            SC(i) = StockCost(i) 

            StockOrigLoc(i) = StockOrigLoc(i) 

            StockUsed(i) = StockUsed(i) 

        Next i 

        Verbose = True 

        Fractional = True 

        For i = 1 To NPart 

            Partlengths(i) = Partlengths(i) 

            PartQty(i) = PartQty(i) 

       Next 

        ReDim NODE(NPart + 1, 0) 

        ReDim Demand(NPart + 1, 0) ' max nbr of shortest piece from longest stock  

        ReDim D(NPart + 1, 0) 
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        ReDim Inv(NPart + 1, 0) 

        ReDim C(NPart + 1) 

        ReDim COST(NPart + 1, 0) 

        ReDim F(NPart + 1, 0) 

        NROW = NPart 

        IT = 1 

        InitialSolution() 

        DualVariables() 

        EnteringColumn() 

        While (CMIN1 <= -Tolerance) 

            UpdateEnteringColumn() 

            LeavingColumn() 

            UpdateBInverse() 

            UpdateSolution() 

            IT = IT + 1 

            ' a column change :'Updates the patterns after a new pattern has been found 

            For i = 1 To NPart : A(NR, i) = XS(i) : Next i 

            ' a cost endowing  

            C1(NR) = SCOST 

            SLENGTH(NR) = SL(SSOURCE) 

            DualVariables()     'Computes dual variables 

            EnteringColumn() 

        End While 

        OptimalSolution()  ' display solution  

    End Sub 
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    Private Sub InitialSolution() 

        ' find an initial solution.  

        Dim i, j As Integer 

        For i = 1 To NPart 

            For j = 1 To NPart 

                If (i <> j) Then : A(i, j) = 0 

                    'Finds the initial m patterns for 

 the application 

                Else : A(i, j) = Math.Truncate(SL(1) / Partlengths(i))  

'     use first source   

                End If 

            Next j 

        Next i 

 

        For i = 1 To NPart 

            For j = 1 To NPart 

                'Creates the inverse of the initial  

Basis B (in this case A) [ BI ] 

                If (i = j) And (A(j, i) > 0) Then : BI(j, i) = 1.0 / A(j, i) 

                Else : BI(j, i) = 0 

                End If 

            Next j 

        Next i 
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        For i = 1 To NPart 

            StockusedByPattern(i) = 0 

            'Compute the total stocks used by each pattern i 

For j = 1 To NPart : StockusedByPattern(i) = StockusedByPattern(i) + BI(j, i) * 

PartQty(j) : Next j 

        Next i 

        For i = 1 To NPart 

            C1(i) = SC(1) 

            SLENGTH(i) = SL(1) 

        Next i 

        ZB = 0 

        For i = 1 To NPart : ZB = ZB + C1(i) * StockusedByPattern(i) : Next i 

        PrintInitialSolution()  'Prints the initial solution 

        msg &= vbNewLine 

        msg &= " ---  B Inverse  --- " & vbNewLine 

        Me.PrintMatrix(BI)      'Prints the inverse of the B Matrix 

        msg &= vbNewLine 

    End Sub 

 

 

    Private Sub DualVariables() 

        'computes simplex multiplier 

        Dim i, j As Integer 

        For i = 1 To NPart 

            PI(i) = 0 



130 
 

            For j = 1 To NPart : PI(i) = PI(i) + C1(j) * BI(j, i) : Next 

        Next i 

        If Verbose Then 

            msg += " " & vbNewLine 

            msg += " " & vbNewLine 

            msg += "********** Iteration #" & CStr(IT) _ 

& "***********" & vbNewLine 

            msg += "--- Calculate Dual variables (incremental costs) _ 

---" & vbNewLine 

            For i = 1 To NPart 

                msg &= "For length  " & CStr(Partlengths(i)) 

                msg &= "      Dual cost = " & PI(i) & vbNewLine 

            Next i 

        End If 

    End Sub 

 

    Private Sub EnteringColumn() 

        ' finds a cutting pattern to improve current  

„solution by dynamic program algorithm  

        Dim i, j, k As Integer 

        Dim tempx() As Integer 

        Dim Valu, maxval As Single 

        ReDim tempx(NPart + 1) 

        For i = 1 To NPart : XS(i) = 0 : Next i '   Check Pi_value  

„before column generation  
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        '  Check Pi_value before column generation not implimented yet.             

        '   SLACK ENTERING   

        For i = 1 To NPart 

            If (PI(i) < -Tolerance) Then 

                XS(i) = -1 

                SCOST = 0.0 

                For j = 1 To NSource 

                    If (Partlengths(i) <= SL(j)) Then SSOURCE = j 

                Next 

                If Verbose Then 

                    For j = 1 To NPart ' 

                        If XS(j) > 0 Then 

                            For k = 1 To XS(j) '  

                            Next k 

                        End If 

                    Next j 

                End If 

            End If 

        Next 

        '   Find integer solution  by dynamic programming   

        maxval = 0.0 

        ' for NSOURCE type of source length  

        For k = 1 To NSource 'DP data formation 

            NCOL = NPart 

            RESOURCE = Math.Truncate(SL(k)) 
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            For i = 1 To NPart : KA(i) = Partlengths(i) : Next i 

            For i = 1 To NPart : C(i) = PI(i) : Next i 

            ' Call dynamic program  

            DPKnapsack() 

            ' Check optimal condition  Zj -Cj <= 0   

            ' Select source type by maxval           

            Valu = 0.0 

            For i = 1 To NPart : Valu = Valu + XS(i) * PI(i) : Next i 

            If ((Valu - SC(k)) > maxval) Then 

                maxval = Valu - SC(k) 

                SSOURCE = k 

                SCOST = SC(k) 

                ' Return a generated entering column   

                For j = 1 To NPart : tempx(j) = XS(j) : Next j 

            End If 

        Next k  ' End of Selection loop  

        For j = 1 To NPart : XS(j) = tempx(j) : Next j 

        CMIN1 = -maxval 

        PrintSolution(maxval) 

    End Sub 
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    Private Sub DPKnapsack() 

        '  solves a knapsack problem using dynamic programming  

        Dim i, j, k, nvar, nstate, nstate1, stage, _ 

stage1, invent, tempn As Integer 

        Dim temp As Single 

        'Dim s As String 

        ' formulation  

        NSTAGE = NCOL 

        STATE(1) = 1 

        If RESOURCE >= UBound(NODE, 1) Then 

            '   increase NState array sizes  

            ReDim NODE(NPart + 1, RESOURCE + 2) 

            ReDim Demand(NPart + 1, RESOURCE + 2) ' max nbr of  

„shortest piece from longest stock )  

            ReDim Inv(NPart + 1, RESOURCE + 2) 

            ReDim COST(NPart + 1, RESOURCE + 2) 

            ReDim F(NPart + 1, RESOURCE + 2) 

            ReDim D(NPart + 1, RESOURCE + 2) 

        End If 

        For i = 1 To NSTAGE : VARS(i) = Math.Truncate(RESOURCE / _ 

KA(i) + 1) : Next 

        For i = 2 To NCOL : STATE(i) = RESOURCE + 1 : Next 

        For i = 1 To NSTAGE 

            nstate = VARS(i) 

            For j = 1 To nstate : NODE(i, j) = j : Next 
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        Next i 

        For i = 1 To NCOL 

            nstate = VARS(i) 

            For j = 2 To nstate : Demand(i, j) = (j - 1) * KA(i) : Next 

            Demand(i, 1) = 0 

        Next i 

        For i = 1 To NCOL 

            nstate = VARS(i) 

            For j = 2 To nstate : COST(i, j) = (j - 1) * C(i) : Next 

            COST(i, 1) = 0 

        Next i 

        ' initialization   

        stage = NSTAGE 

        nstate = STATE(NSTAGE) 

        nstate1 = VARS(stage) 

        For j = 1 To nstate 

            F(stage, j) = 0 

            D(stage, j) = 0 

        Next 

        For j = 1 To nstate 

            For k = 1 To nstate1 

                invent = RESOURCE - (j - 1) 

                If (invent >= Demand(stage, k)) Then 

                    temp = COST(stage, k) 

                    If (F(stage, j) < temp) Then 
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                        F(stage, j) = temp 

                        D(stage, j) = k 

                        Inv(stage, j) = invent - Demand(stage, k) 

                    End If 

                End If 

            Next 

        Next 

 

        '  DP loop   

        For i = 2 To NSTAGE 

            stage = NSTAGE - i + 1 

            stage1 = stage + 1  ' backward  

            nvar = VARS(stage) 

            nstate = STATE(stage) 

            For j = 1 To nstate 

                F(stage, j) = 0 

                NODE(stage, j) = 0 

                D(stage, j) = 0 

            Next j 

            For j = 1 To nstate 

                invent = 0 

                For k = 1 To nvar 

                    invent = RESOURCE - (j - 1) 

                    If (invent >= Demand(stage, k)) Then 

                        invent = invent - Demand(stage, k) 
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                        tempn = Math.Round(RESOURCE - invent + 1)   ' GDD  

                        temp = COST(stage, k) + F(stage1, tempn) 

                        If (F(stage, j) < temp) Then 

                            F(stage, j) = temp 

                            D(stage, j) = k 

                            NODE(stage, j) = tempn 

                            invent = Inv(stage1, tempn) 

                        End If 

                    End If 

                Next k 

                Inv(stage, j) = invent 

            Next j 

        Next i 

        OPTF = F(1, 1) 

        OPTN = 1 

        OPTD = D(1, 1) 

        XS(1) = OPTD 

        nstate = NODE(1, OPTN) 

        For i = 2 To NSTAGE 

            XS(i) = D(i, nstate) 

            nstate = NODE(i, nstate) 

        Next i 

For i = 1 To NSTAGE : If (XS(i) <= 1) Then : XS(i) = 0 : Else : _XS(i) = XS(i) - 1 : End 

If : Next i 

    End Sub 
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Private Sub UpdateEnteringColumn() 

        'Updates newly found column  

        Dim i, j As Integer 

        For i = 1 To NPart 

            AR(i) = 0 

            For j = 1 To NPart : AR(i) = AR(i) + BI(i, j) * XS(j) : Next j 

        Next i 

        If Verbose Then 

            msg &= "--- Update New Column ---" & vbNewLine 

            For i = 1 To NPart 

                msg &= AR(i) & vbNewLine 

            Next i 

            msg &= vbNewLine 

        End If 

    End Sub 

 

 

    Private Sub LeavingColumn() 

        '  determines a dropping variable by ratio test  

        Dim i As Integer 

        Dim temp As Single 

        NR = 0 

        RMAX = 1.0E+30 

        For i = 1 To NPart 

            temp = 1.0E+30 
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            If AR(i) > 0 Then temp = StockusedByPattern(i) / AR(i) 

            If (RMAX > temp) Then 

                RMAX = temp 

                NR = i 

            End If 

        Next 

        If Verbose Then 

            msg &= "--- Choose pattern to drop  {PIVOT ROW} ---" & vbNewLine 

            msg &= "Pattern " & NR & " is leaving, at min ratio  " _ 

& RMAX & vbNewLine 

        End If 

    End Sub 

 

 

    Private Sub UpdateBInverse() 

        ' Update B Inverse  

        Dim i, j As Integer 

        For i = 1 To NPart : ARINV(i) = -AR(i) / AR(NR) : Next i 

        ARINV(NR) = 1 / AR(NR) 

        For i = 1 To NPart 

            If (i <> NR) Then 

                For j = 1 To NPart : BI(i, j) = BI(i, j) + _ 

ARINV(i) * BI(NR, j) : Next j 

            End If 

        Next i 
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        For j = 1 To NPart : BI(NR, j) = ARINV(NR) * BI(NR, j) : Next j 

        If Verbose Then 

            msg &= vbNewLine 

            msg &= "---Update B Inverse ---" & vbNewLine 

            Me.PrintMatrix(BI) 

        End If 

    End Sub 

    Private Sub UpdateSolution() 

        Dim i As Integer 

        For i = 1 To NPart : StockusedByPattern(i) = _ 

StockusedByPattern(i) - AR(i) * RMAX : Next i 

        StockusedByPattern(NR) = RMAX 

        ZB = ZB + CMIN1 * RMAX 

        If Verbose Then 

            msg &= vbNewLine 

            msg &= "--- Update Solution ---" & vbNewLine 

            msg &= "index  : basic variable solution" & vbNewLine 

            For i = 1 To NPart 

                msg &= i & "  :  " & StockusedByPattern(i) & vbNewLine 

            Next i 

            msg &= "The new cost is = " & ZB & vbNewLine 

            'Me.PrintCurrentBasis(BI) 

        End If 

    End Sub 


