
ii

CUTTING STOCK PROBLEM BASED ON THE LINEAR PROGRAMMING APPROACH

BY

PHILIP DEBRAH (B.Sc. Computer Science)

A thesis submitted to the Department of Mathematics, Kwame Nkrumah

University of Science and Technology, Kumasi

in partial fulfilment of the requirements for the degree of

Master of Science

Industrial Mathematics

INSTITUTE OF DISTANCE LEARNING

OCTOBER, 2011

ii

DECLARATION

I hereby declare that this submission is my own work towards the Master of Science Industrial

Mathematics and that, to the best of my knowledge it contains no material previously published

by another person or material which has been accepted for award of any other degree of the

university except where due acknowledgement has been made in the text.

Philip Debrah, PG3011809 …………………. ……………………

Student‟s Name & ID Signature Date

Certified by:

Mr. K. F.Darkwah …………………. ……………………

Supervisor‟s Name Signature Date

Certified by:

Mr. K. F.Darkwah …………………. ……………………

Head of Department‟s Name Signature Date

Certified by:

Prof. I.K Dontwi …………………. ……………………

Dean of IDL Signature Date

iii

ABSTRACT

This thesis considers the application of the Cutting Stock Problem based on the Linear

Programming Approach. This is applied in the cutting of paper, glass, steel rod, wood etc. In this

thesis, we apply a variant of it, the One-dimensional Cutting Stock Problem, to the cutting of

wood in a sawmill. In a sawmill, boards are first cut along their width (rip) into strips, then the

obtained strips are cut along their length (strip cut) into cut-pieces with specific length and

demand.

The thesis focuses on using simplex algorithm to find optimal cutting patterns. In the simplex

algorithm, to determine the entering column (pattern), we solve sub-problem. The sub-problem is

of a knapsack type and we solve it using dynamic programming. We develop a computer

program based on the above approach to generate optimal cutting patterns.

Keywords: One-dimensional Cutting Stock Problem, Linear programming, knapsack problem,

simplex algorithm, dynamic programming,

iv

TABLE OF CONTENT

Content Page

Declaration .. ii

Abstract ... iii

Table of contents... iv

List of tables .. viii

List of figures... ix

Dedication.. x

Acknowledgement ... xi

CHAPTER ONE: INTRODUCTION………………………………………… 1

1.1 The Cutting Stock Problem………………………………………………… 1

1.2 Background to Rogersco Sawmill Limited………………………………… 2

1.3 Problem Statement………………………………………………………… 3

1.4 Objective(s) of the Study………………………………………………….. 3

1.5 Methodology………………………………………………………………… 4

1.6 Justification ………………………………………………………………… 4

1.7 Thesis Organization…………………………………………………….…… 6

CHAPTER 2: LITERATURE REVIEW

2.1 A Review of the Cutting Stock Problem………………………………… 7

2.3 Historical background of the Cutting Stock Problem…………………… 8

v

CHAPTER 3: METHODOLOGY

3.1 General Overview of Cutting Stock Problem……….………..…………. 16

3.2 Classification of the Cutting Stock Problem………………………..……… 17

3.2 .1 One dimensional Cutting Stock Problem……………………..……… 17

3.2 .2 Two dimensional Cutting Stock Problem……………………..……… 18

3.2 .3 Three dimensional Cutting Stock Problem……………………..…… 21

3.3 Strip Board Cutting as a One Dimensional Cutting Problem…………… 21

3.3.1 General Formulation of The Cutting Stock Problem…………..……. 21

3.3.2Formulation of the auxiliary Knapsack Problem……………………. 24

3.4 Methods of Solution For the Cutting Stock Problem…..…………… 28

3.4.1 Linear Programming……………………………………………….…. 28

3.4.2General Formulation of a Linear Program…………………………… 29

3.4.3 The Simplex Method………………………………………… ..……… 32

3.4.4 Column Generation……………………………..…………………… 36

3.5 The Knapsack Problem………………………………………….……… 39

3.5.1 Types of Knapsack Problems………………………….……………. 40

3.5.2 Methods for solving Knapsack problems………………….……..… 42

3.5.3 Dynamic Programming……………………………..……………….. 42

3.5.4 The Branch and Bound Method…………………………..…………. 48

3.5.5 Rounding Fractional Solutions.…………………………………..… 49

3.6 An Illustrative Example…………………………………………..……… 50

vi

CHAPTER 4:DATA COLLECTION AND ANALYSIS

4.1 Data Collection……………………………………………………………… 67

4.2 Problem Formulation………………………………………………………… 69

4.3 Cutting Stock Algorithm…………………………………………………… 73

4.4Computational Procedures and Results…………………….……………… 74

4.5Discussion…………………………..……………………….……………… 79

4.6Features of the Application…………………………………………………. 80

CHAPTER 5:CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION………………………………………………………. 82

5.2 RECOMMENDATION……………………………………………… 82

REFERENCES………………………………….…………..……………… 83

APPENDIX A: OUTPUT OF SAMPLE DATA BY THE APPLICATION……….. 87

APPENDIX B - VISUAL BASIC CODES FOR THE CUTTING STOCK ………. 123

vii

LIST OF TABLES

Table Page

Table 3.1: Simplex Tableau………….. 34

Table 3.2 Sample of possible patterns that can be generated……………… 37

Table 3.3: Knapsack problems and their sub-problems …..……….……… 47

Table 3.4 Knapsack Sub-problems solutions…….…..………..…………… 48

Table 3.5Order demands with quantity…….…….……..…………….…… 50

Table 3.6 Knapsack problems and their sub-problems…..………..……… 55

Table 3.7 Knapsack sub-problems and their solutions…..………………… 56

Table 3.8 Knapsack problems and their sub-problems…..……………..… 59

Table 3.9 Knapsack sub-problems and their solutions…..……………..… 60

Table 3.10 Knapsack problems and their sub-problems…..……………..… 63

Table 3.11Knapsack sub-problems and their solutions…..……………..… 64

Table 4.1 Order data from the company……………………………..………… 68

Table 4.2 length of Strip after the Ripping process.…………………..………… 68

Table 4.3 Company Strip quantities and cost utilized to meet the

 orders in table 4.1…………………….……………..…………… 69

Table 4.4 Quantities of cut-pieces generated by application for the

 five order demands for August to December, 2010………..………… 74

Table 4.5 Quantity and cost of Strips used by application to generate

 quantities of Table 4.4.…………………………………………… 75

Table 4.6Optimal Pattern generated and their usage for the August orders…… 76

viii

Table 4.7Optimal Pattern generated and their usage for the September orders…… 77

Table 4.8Optimal Pattern generated and their usage for the October orders…… 77

Table 4.9Optimal Pattern generated and their usage for the November orders…… 78

Table 4.10Optimal Pattern generated and their usage for the December orders… 78

Table 4.11 Summary of Total cost of strips used by Company

 and the application for set of orders……………………………..… 79

ix

LIST OF FIGURES

Figure Page

Figure 4.1: User interface for the Cutting stock application…………….. 80

Figure 4.2: Output from the application ……………..…………….. 81

x

DEDICATION

To my family

xi

ACKNOWLEDGEMENT

I thank my thesis advisor, Mr. KwakuDarkwah for his invaluable suggestions and supervision

throughout the study.

I thank the staff of Rogersco Sawmill Limited, especially Mary Gyasi, Yawkwei, for providing

the data for the study.

I would also like to thank my friends and course mates, Abdul Rasheed and Emmanuel Ofori, for

their invaluable support

Last but not the least, I would like to express my gratitude to my family,especially my aunt, Mrs.

Elizabeth Osei, Robert Kwakye, Nana KwadwoDuah and Mrs. Opoku, for their support which

enabled me to accomplish the study.

1

CHAPTER ONE

INTRODUCTION

Economic resources are scarce and havecosts associated. The scarcity and cost associated

with these resourcesgenerally impose certain constraints in their utilization. The effective

management of these constraints aimedat minimizing the overall cost of input resources and

the maximization of corresponding profitis the subject of optimization.Practical optimization

is the art and science of allocating scarce resources to the best possible effect (Amponsah,

2006). Optimization techniques, a branch of mathematical programming, has enjoyed

enormous appeal after World War II, both in the academia and in practice. Subsequently, this

interest inspired numerous researches that sought to identify, analyze and substantiate new

techniques for improving industrial and business processes. Currently, Optimization

techniques have become an indispensable tool for industrial applications including resource

allocation, scheduling, decision-making, etc. Optimization techniques have various branches

and one such branch is linear programming.

The term “programming” in linear programming does not assume programming as used in

the field of computer science to denote software development. Instead, it focuses on

mathematical modeling and the requirement of a finite number of iterations to solve the

model.This thesisfocuseson a special type of linear programming called the Cutting Stock

Problem.

1.8 The Cutting Stock Problem

The Cutting Stock Problem is the problem of filling an order at minimum cost for specified

numbers of lengths of material to be cut from given stock lengths of given cost (Gilmore et

2

al., 1961). The cutting-stock problem is an integer programming problem. However, since

integer programming problems are known to be non-deterministic polynomial-time (NP)

hard, the Cutting Stock Problem is formulated as linear programming (LP) problem by

relaxing the integer requirements. After the LP optimal has been found, a rounding-

upprocedureis used to get the integer programming (IP) optimum.It arises from many

applications in industry including paper, glass, shoe-leather cutting, furniture, machine-

building, etc.

A typology of Cutting problems by Dyckhoff (1990),classifies them into one-, two- and

three-dimensional problems.One-dimensional cutting occurs when cutting for example pipes,

cables, and steel bars. Two-dimensional problems are encountered in furniture, clothing and

glass production. Not many three-dimensional (3D) cutting applications are known.

1.9 Background to Rogersco Sawmill Limited

Rogersco Sawmill Limited is located on the outskirts of Yawkwei; a town located about 4

kilometers from Konongo on the Accra – Kumasi highway. Rogersco cuts wood into various

smaller sizes for various customer needs. The wood coming into the Sawmill is of long and

wide pieces called lumber. The lumber is cut into strip boards and then into smaller pieces to

meet customer demands. The small pieces of wood cut out of the lumber are called “cut-

pieces”. The initial operation performed on the lumber transforms it into long

rectangularbeam of wood. The next operation, called Ripping, is theprocess of cutting these

rectangular beams of wood along its cross-sectional width to get long but narrow pieces of

woods which arecalled strip boards (or strip). The strips have width of 1- and 2-inch(es).In

the next stage, the obtained strips are cut along their cross-sectional length into

3

desiredsmaller lengths. This process is called strip-cutting. Rogersco Sawmill does not cut

stock primarily to meet customer demands, but to supply to their depot in Accra and

therefore do not consider any “excess” cut as overproduction. This means that so long as

there is lumber it will be processed. The main cut-pieces are 2”x6”, 2”x4”, 2”x3” and 2”x2”.

However they sometimes receive orders for other pieces like 1”x12”, 2”x5” or 1”x6”, but

these are comparatively rare. All these cuts are made with a machine called Ban Mill and the

cuts are all guillotine cuts. A guillotine cut means that each cut must go from one side of a

rectangle straight to the opposite.

1.10 Problem Statement

The primary aim of every business is to optimize cost (to maximize profit or minimize the

cost of operation) while meeting demands. In order to satisfy the demand of its clients and

also to supply their depot, Rogersco Sawmill Limited cuts timber logs into stripboards and

then into cut-pieces.

This thesis seeks to address the problem of finding optimal cutting patterns for cutting these

strip boards into cut-pieces so that the total cost of the strip boards used to satisfy orders for

cut-piecesis minimized.

1.11 Objective(s) of the Study

The objectives of this thesis are:

a) to model the Cutting Stock Problem (CSP) as a multi objective problem of Linear

Programming and a Knapsack Problem.

4

b) to develop a computer application based on the Simplex algorithm and dynamic

programming to solve the cutting stock problem.

c) to find optimal Cutting patterns using Simplex algorithm and dynamic programming

techniques.

d) to minimize the total cost of stocks that are cut to meet order demands by customers.

1.12 Methodology

This thesis seeks to model the cutting stock problem as a multi objective optimization

problem consisting of alinear programming master problem and a knapsack sub-problem.

Data on the cross-sectional dimension of various sizes of strip boards, quantities of each strip

board type and the total cost of the strip boards utilized to meet demand for smaller sizes,

cross-sectional dimension of smaller sizes requested and their respective quantities per order

and the sample orders for August 2010 to December 2010 will be obtained from Rogersco

Sawmill Limited.

Methods to be employed to solve the Cutting Stock problem are the Simplex algorithm and

dynamic programming techniques.

A computer application, based on these methods, is developed to solve the cutting stock

problem. The application is developed using Visual Basic.Net 2005 edition. The KNUST

library and the internet will provide other sources of information to this thesis.

1.13 Justification

The timber industry depends on the forest for its raw materials. However, widespread

concerns, both locally and internationally, about the fast degradation of the forest and the

5

consequent ecological threat that deforestation poses to our environment and our survival,

both presently and in the future, have limited access to these raw materials. Government

agencies responsible for the protection and management of such forest as well as non-

governmental bodies have adopted policies which seek to protect the forest and to control or

manage access to its resources. These policies have contributed immensely to scarcity in the

quantities of timber logs. Scarcity has made the cost of logs dearer and consequently high

cost of orders for wood products from saw mills and therefore efficiency in the utilization of

the timber logs in these saw mills, to meet various smaller sized demands, becomes essential.

Cost is associated with these timber logs and the overall cost of customer orders will depend

on the number and cost of timber logs that are cut to meet those orders. Efficient utilization

means minimizing, as much as feasible, the quantities of logs that are used to satisfy

customer demands. To this end, any approach that seeks the efficient utilization of these

scarce timber logs cannot be over emphasized.

This thesis seeks to minimize the cost of strips needed to meet demand for cut-pieces of

wood. This will help Rogersco Sawmill Limited to reduce the total cost of lumber that is

processed to satisfy customer demands and its operational cost. Consequently, this will

increase profit of the company since cost will be reduced. This could also help reduce the

quantity of lumber that is cut from the forest and thereby help forest conservation efforts by

government and other agencies.

6

1.14 Thesis Organization

Chapter One is the introduction which comprises the background to the problem, statement

of the problem, objectives of the study, justification of the research, methodology and

limitation.

Chapter Two deals with the review of literature on the cutting stock problem.

Chapter Three describes the methodologies used in this thesis. It comprises of the

introduction, describing Linear Programming and basic terminologies associated with linear

programming, showing how the cutting stock problem is formulated as a linear program, the

concept of column generation, and the application of knapsack to solve such problems. The

data used in the study and data analysis and results are considered in Chapter Four.

The summary and conclusions including a discussion of the policy implications of the study

are presented in Chapter Five.

7

CHAPTER 2

LITERATURE REVIEW

2.1 A Review of the Cutting Stock Problem.

Industrial applications of cutting-stock problems for high production volumes arise especially

when basic material is produced in large rolls or sizes that are further cut into smaller units.

Within such disciplines as Management Science, Information and Computer Science,

Engineering, Mathematics and Operations Research, problems of cutting of concrete and abstract

objects appear under various specifications (cutting problems, knapsack problems, container and

vehicle loading problems, pallet loading, bin packing, assembly line balancing, capital

budgeting, etc.). In cutting problems, a large object must be divided into smaller pieces; in

packing problems, small items must be combined to large objects. Most of these problems are

considered NP-hard. This is done e.g. in paper and plastic film industries but also in production

of flat metals like steel or brass. There are many variants and additional constraints arising from

special production constraints due to machinery and process limits, customer requirements and

quality issues.

The cutting stock problem was first formulated by Kantorovich (1939). Kantorovich was charged

with the reorganization of the timber industry in the U.S.S.R., and as a part of his task he

formulated a restricted class of linear programs and a method for their solution (Matousekand

Gartner, 2007). In 1951 before computers became widely available, L.V. Kantorovich and

V.A. Zalgaller suggested solving the problem of the economical use of material at the cutting

stage with the help of linear programming. The proposed technique was later called the Column

Generation method.

8

2.2 Historical background of the Cutting Stock Problem

Eisemann (1957) proposed an economical allocation of raws to machines and of setting up cuts

in such a way as to produce the ordered quantities of final widths as the minimum overall

trimming loss consistent with certain imposed restrictions, paying particular attention to rolls of

materials for example paper, textiles, cellophane, metallic foil. In his formulation, “raws”

referred to uncut rolls as inserted in the cutting machines, “finals” as cut rolls of widths specified

in the orders and “cuts” as one simultaneous cutting by all preset knife edges of one “raw” roll

into one or several “finals”. Eisemann described the formulation and solution of two alternative

variants of the trim problem simultaneously. One was a 1-dimensional cutting problem in which

the interest was with the number of rolls of ordered finals that was cut. The material to be cut, in

this case, was not unwound, but the cutting knives slice through the completely wound rolls of

material. The second formulation was when a roll is unwound and, during unwinding, is sliced

lengthwise by knives for a certain total length. This second formulation, according to Eisemann,

was particularly useful in the case of expensive materials.

The most common approach for solving the Cutting Stock Problem is the linear programming

approach which was first proposed by Gilmore and Gomory (1961). The objective that they

considered for the Cutting Stock Problem was minimizing the cost (or minimizing the total

number of the required stock, assuming that there is unique price for each object).

In the LP approach, the LP relaxation (the model obtained by relaxing the integrality constraints

on variables) of the problem is considered, and solved instead; then a rounding procedure is used

to get an integer solution. The difficulty of the LP relaxation approach is that there is a large

number of cutting patterns, which can hardly be enumerated. The column generation method

9

proposed by Gilmore and Gomory was developed to overcome this difficulty. In this method, the

cutting patterns are generated, during the process of solving the problem, through an auxiliary

problem. The method starts with a set of simple patterns (to form the initial basis), then the

solution is improved by removing a cutting pattern and generating a new one (same as pivoting

procedure in simplex; the cutting pattern which is removed is the leaving variable and the new

cutting pattern is the entering variable). The new cutting pattern is generated using the auxiliary

problem which is easy to solve; knapsack problem normally serves as the auxiliary problem, and

there are several methods for solving this problem. The new column is generated in a manner

that it results in the most possible improvement in the solution (based on the same concept as

choosing the entering variable to be the nonbasic variable with the most negative reduced cost in

the simplex method).

After Gilmore and Gomory proposed the column generation method, many researchers used it

for the Cutting Stock Problem.Follow-up research by Pierce (1964) focused on the use of this

algorithm in the paper industry to solve the roll trim problem. Hahn (1968) considered the

problem that arises when stock sheets contain flaws, and gave a dynamic programming

algorithm. Sarker (1988) used this approach for solving one-dimensional Cutting Stock Problem.

It is also noticeable that possible defects are also considered in this paper. In this paper having

defects in items are acceptable, but defected items have less value.

In a latter paper, Dyson and Gregory (1974), both of whom were involved in the manufacturing

of flat glass for use in the motor industry, the production of mirror and windows, stated that

Gilmore et al‟s use of an auxiliary knapsack problem to solving the cutting stock problem is a

simplification of the real problem and therefore is inadequate. This is because it only satisfied a

wastage criteria without selecting the sequence in which the cutting patterns are to be processed,

10

a process they called pattern allocation. They proposed a two-stage approach. The first stage is

where the cutting patterns are produced based on the Gilmore and Gomory method. The second

stage involved the sequencing of the set of cutting patterns (pattern allocation) from the first

stage, so that the number of discontinuities is minimized. They had two approaches to the pattern

allocation stage, namely the two-stage approach and the heuristic approach. However, at the time

of writing, the heuristic approach had not been implemented. The sequencing problem turns out

to be of the travelling salesman type.

Christofides and Whitlock (1977) designed for their n-stage solution approach of the constrained

CSP an enumerative procedure to generate the cutting patterns (columns) without any

duplication due to symmetry or cut ordering.

Ferreira et al. (1990) also investigated a two-stage problem, which they called a two-phased

problem. The authors adapted Haessler's sequential heuristic procedure, initially developed for a

classic CSP, to a two-stage cutting process. At every step of the sequential procedure they tried

to find a set of good intermediate rolls insuring a good pattern for the first stage and good

patterns for the second.

Goulimis (1990) approach to the one-dimensional CSP starts with the generation of all feasible

cutting patterns, usually making provision for such constraints as the minimum size of the trim,

the number of cuts in a pattern and the number of different lengths in a pattern.

Lirov (1992) mentioned enumerative approach as another approach for solving the Cutting Stock

Problem in his survey. Enumerative approach contains discrete optimization methods such as

branch and bound or dynamic programming or a combination of these two.

As we previously discussed, the column generation method (LP approach) starts with a set of

possible cutting patterns and tries to improve the obtained solution by replacing the current

11

patterns with better (more efficient) ones if there is any. In contrast the enumerative methods try

to generate the best cutting patterns instead of improving them.

The most common method in the enumerative approach is solving a discrete optimization

problem by branch and bound method. This method is normally done with splitting the feasible

region into smaller sets; computing the (lower or upper) bounds; and eliminating the sets which

cannot make any improvement in the solution (having a worse bound than the current solution).

Obviously the procedure stops when all the remaining subsets have been shown to contain no

better option.

Dynamic Programming is the most common enumerative method used for solving Cutting Stock

Problem. In this method the objective of the problem is normally considered to be maximizing

the total obtained value. A value is assigned to each item; each incoming object is cut in a

manner that the total obtained value is maximized.

Maculan et al. (1992) proposed a column generation method to solve linear programming with

bounding variable constraints, extending their results to the solution of integer problems.

Besides all the exact methods reviewed so far, there are a large number of inexact (heuristic)

methods for the Cutting Stock Problem. Seth et al. (1986) developed a heuristic for one-

dimensional Cutting Stock Problem. Vahrenkamp (1996) proposed an interesting heuristic based

on the packing concepts for the Cutting Stock Problem. Chen et al. (1996) presented a simulated

annealing procedure for the Cutting Stock Problem.

Winston (1994) used column generation approach to solve the CSP for Woodco and the

minimum waste incurred was only 15 feet. The knapsack sub problem was solved using branch-

12

and-bound procedure; the master problem was solved by an advanced method of simplex method

called the product form of the inverse.

Carvalho and Rodrigues (1995) follow a LP approach. Their problem, however, is subject to a

technological restriction- Finished rolls of one type should comprise every intermediate roll. The

restriction allows predefining a list of possible intermediate rolls. The authors reformulate an

initial LP problem posed in terms of finished rolls into a LP problem in terms of intermediate

rolls. A column generation technique with a regular knapsack as an auxiliary problem is applied.

Morabito and Garcia (1997) reported the problem of cutting rectangular plates into smaller ones

in Brazilian hardboard industry. The problem was to determine the best patterns to be cut by an

automated machine composed of a set of circular saws, device to move and hold the plates and

loading and unloading stations. A particular two-phase column generation procedure was

described for the cutting stock formulation of the hardboard industry. Each phase of the

procedure was modeled as an integer program and solved by two alternative methods. The first

was a dynamic programming based integer program and the second was a simple extension of

the algorithm presented in Gilmore and Gomory (1963).

Hopper and Turton (1999) studied the problem consisting of packing rectangular items onto a

rectangular object while minimizing the used object space. The packing process has to ensure

that there is no overlap between the items, which are allowed to rotate by 90°.

Authors applied two genetic algorithms (GAs) to solve this problem. Both GAs were hybridized

with a heuristic placement algorithm, one of which is the well known Bottom-Left routine. A

second placement method has been developed which overcomes some of the disadvantages of

the Bottom-Left rule. The two hybrid genetic algorithms were compared with heuristic

placement algorithms.

13

Morabito and Arenales (2000) analyzed practical aspects of the application of a cutting stock

model to a Brazilian company that manufactures furniture on a large scale with a high degree of

standardization. The model was based on the classical approach of Gilmore and Gomory (1965)

which combines a linear programming and a column generation procedure. Besides the two-

stage and three-stage guillotine cutting patterns, authors also considered one-group guillotine

patterns that improve the productivity of the cutting equipment. Examples derived from the

furniture company was used to illustrate some of the trade-offs involved, in particular the trade-

off between cutting simpler patterns and patterns that yield less waste material, but reduce the

productivity of the cutting machine. Gradisar (2002), made an evaluation between the one-

dimensional cutting stock problem (1D-CSP) algorithms which was the main reference for the

authors of this paper.

Kalvelagen (2002) in his paper describes an implementation of the column generation algorithm

using General Algebraic Modeling System(GAMS). The well-known cutting stock problem was

used. The algorithm consists of 2 different models, a master problem and sub-problem which

exchange information. A mixed integer problem for this problem was trivially formulated in

GAMSonce they have enumerated all possible cutting patterns.

Puchinger et al. (2004) described a combined genetic algorithm/branch & bound approach for

solving a real world glass-cutting problem. The GA (Genetic Algorithm) uses an order-based

representation, which is decoded using a greedy heuristic. The B&B (Branch & Bound)

algorithm was applied with a certain probability enhancing the decoding phase by generating

locally optimal sub-patterns. Reported results indicate that the approach of occasionally solving

sub patterns to optimality may increase the overall solution quality.

14

Johnston and Sadinlija (2004) created a new model which resolves the non-linearity between

pattern variables and pattern run-lengths in the one dimensional cutting stock problem by a novel

use of 0-1 variables. Belov et al. (2005) investigated robust branch-and-cut-and-price (BCP)

algorithms, their theoretical properties and presented numerical results for BCP.

Reinaldo and Luciano (2007) described approaches to generate cutting patterns that minimize the

cost or waste of material, considering different particular constraints associated with longitudinal

(horizontal) and transversal (vertical) saws, head cuts (head cuts are the vertical guillotine cuts

that divide the plate into two parts), book rotation (a complete turn of 180
o
) and item unloading

stations of the cutting machine. The method was based on dynamic programming recursive

formulas combined with greedy constructive heuristics and the primal simplex algorithm.

Arbib and Marinelli (2007) reported the assortment and trim loss minimization problem arising

in an Italian plant, operated by Pilkington, which produces glass parts for the automotive market.

Glass cutting was organized in two phases: in phase I large rectangular sheets of the same type

were obtained from a ribbon of flat glass and sent to warehouse and in Phase II sheets of various

types were taken from warehouse and cut into smaller rectangular parts of various sizes in order

to satisfy a given demand. In both phases, a trim loss occurs. In this study authors used heuristic

algorithm based on a p-median model with additional constraints that take into account all the

relevant shop floor requirements for solving the problem.

Fekete and Schepers (2001), gave comprehensive overview of Specialized algorithms for the

two-dimensional bin-packing problem which presented several lower bounds on the solution

value using, respectively, partitioning of rectangles in various classes and dual feasible functions.

Boschetti and Mingozzi (2003) presented a new lower bound that dominates the bounds of

15

Martello and Vigo (1998) and Fekete and Schepers (2001).Boschetti and Mingozzi (2003)

generalized these bounds to the case where rectangles may be rotated 90 degrees. Considering

the same variant of the problem, Dell‟Amico et al. (2002) presented a lower bound and an exact

branch-and-bound algorithm. Padberg (2000) presented an extended formulation and subjected it

to polyhedral analysis, reaching a tighter LP relaxation.

Hadjiconstantinou and Christofides (1995) studied two-dimensional knapsack problem but were

able to solve instances of only moderate size. Caprara and Monaci (2004) presented an

approximation algorithm for the two-dimensional knapsack problem and developed four exact

algorithms based on various enumeration schemes.

Yaodong and Yiping (2009) discussed a rectangular two-dimensional cutting stock problem in

the steel bridge construction. It was the problem of cutting a set of rectangular items from plates

with arbitrary sizes that lie in the supplier specified ranges, such that the necessary plate area was

minimized. This paper presents a heuristic algorithm for two dimensional cutting stock problems

in bridge construction. The heuristic algorithm used both recursive and dynamic programming

techniques to generate patterns.

The one-dimensional Cutting Stock Problem becomes more difficult when there are a large

number of objects of different sizes available, or the number of items (cut-pieces) is large. In

such problem we have the difficulty of various sized objects, since strips may have different

lengths. A similar problem is addressed by Belov and Scheithauer (2002), and a method based on

combination of some enumerative methods is proposed.

16

CHAPTER 3

METHODOLOGY

3.1 General Overview of Cutting Stock Problem

The aim of Cutting Stock Problem is to minimize the total cost of stock length of given cost that

is cut to fill an order for specified quantities of smaller lengths. This is achieved by generating

optimal cutting patterns for the cutting of the stock lengths. Stock lengths have cost associated

with them. The greater the quantity of stock lengths used in filling an order, the greater the cost

of the order to the customer. This, essentially, means reducing the quantity of stock lengths

used. It arises from many applications in industry.

The Cutting Stock Problem is essentially an integer programming (IP) problem. However,

integer programming problems are known to be NP-hard and therefore, the Cutting Stock

Problem is formulated as a linear program by relaxing the integer constraint. This makes Cutting

Stock Problems amenable to linear programming methods of solution. The resultant LP optimum

is rounded to get the IP optimum.The columns of the basis matrix represent all the cutting

patterns that can be produced from the available stock length. The number of cutting patterns can

be very large and this makes explicit enumeration of all feasible cutting patterns impractical.

Therefore an initial set of feasible patterns is generated and used as the basis for the simplex

method to solve for the dual variables.

An auxiliary problem arises in the simplex iteration where we choose the next column to enter

basis.A column generation technique is applied to generate an entering column in the next

simplex iteration. The column generation technique is formulated as a knapsack problem and

solved using dynamic programming. Therefore, the Cutting Stock Problem is a multi-objective

17

problem comprising a master problem formulated as a linear programming problem and

anauxiliary problem formulated as a knapsack problem.

3.2 Classification of Cutting stock problem

The Cutting Stock problems can be classified by the dimensions of the cutting object. This can

beone-, two- or three-dimensional problems.

3.2.1 One dimensional cutting stock problem

The one-dimensional cutting stock problem is to obtain a given set of ordered lengths (patterns)

from stock lengths. The objective is typically to minimize the total cost of stock materials used

(material input). A cutting pattern describes how many items of each type are cut from a stock

material.The one-dimensional cutting stock problem is defined by the following data. Let

18

the one dimensional model is as follows:

where is the number of times pattern j is used, is the cost of stock material used for cutting

pattern j, is the number of in pattern j and is the quantity of ordered.

To be a valid cutting pattern, a pattern must satisfy

where is the length of the kth stock material used to cut the pattern.

The huge number of patterns is not available explicitly for practical problems. Usually, necessary

patterns are generated during a solution process, hence the term column generation. However,

the number of different patterns in a solution cannot be greater than the number of stock lengths

and is usually comparable with the number of piece types.

3.2.2 Two dimensional cutting stock problem

Another important variant of the cutting stock problem is the two-dimensional cutting stock

problem. This variant can be divided into regular (rectangular, circular) and irregular shapes

(Farley, 1988). Rectangular shapes can be obtained through guillotine or non-guillotine, oriented

19

or non-oriented cutting. An oriented cutting means that the lengths of rectangles are aligned

parallel to length of the stock sheet.

A two-dimensional cutting stock problem can be defined as follows:

A set of rectangular stock sheets of different types is available. For each type of sheet we

know its length and width . From these sheets we have to cut smaller rectangular pieces of

length and width , in order to satisfy a given demand for pieces of each type.

The objective is to minimize the total area of stock sheets required. A sequence of cuts of a sheet

into rectangular pieces is a cutting pattern.

To formulate the two-dimensional cutting stock problem, we use the following notations:

the two dimensional model is as follows:

20

and integer,

Since, as in the one dimensional case, the set of patterns cannot be completely described except

for very small problems, we develop a column generation scheme that can be summarized as

follows:

Step 1. Generate an initial set of m cutting patterns, where each pattern contains one

 type of piece.

Step 2. Solve the linear relaxation of the above formulated problem considering only the

 variables corresponding to patterns in .

Step3.for each type of sheet , find non-negative integers , by solving

 the knapsack sub-problem using dynamic programming:

is a feasible cutting pattern for ,

where is the vector of dual prices of the LP solution. If for some p, > , then the

column corresponding to that solution is added to and we return to Step 2 in order to

solve the enlarged LP problem. Otherwise, the current solution is rounded to get an

21

integer solution and the process terminates. The question now is how to solve efficiently

the sub-problem of Step 3.

3.2.3 Three dimensional cutting stock problem

Not many three dimensional applications are known.However, the closely related 3D bin-

packing problem has many industrial applications, such as packing objects into shipping

containers.

3.3 Strip Board Cutting as a One Dimensional Cutting Stock Problem.

The Strip boards are long narrow wood with rectangular cross-section.The width is usually 1 or 2

inches wide but may have variable lengths. The 1-inch strip boards are cut into one small type of

length 12 inches. However, the 2-inch strips are cut into smaller sizes with various lengths of 2,

3, 4 and 6 inches. We refer to these smaller pieces as cut-pieces.Given an order for quantities of

cut-pieces we want to find optimal ways to cut the 2- inch wide strip boards along their length to

satisfy these demands at minimum cost of the total strip boards utilized. The cutting of the strip

boards therefore can be described as a one-dimensional cutting stock problem.

3.3.1 General Formulation of the Strip Board Cutting

In this section we propose a Linear Programming (LP) model for optimal cross-sectional cutting

of strip boards of wood into smaller cut-pieces to satisfy demand for these cut-pieces. As

mentioned in chapter One, the strip-cutting problem for a given strip board of wood is the

problem of determining an optimal cross-sectional cutting pattern for each strip of wood such

that the corresponding number of cut-pieces of each type obtained is at least equal to the

22

corresponding demand for that cut-piece type and the expected total cost of strip board utilized is

minimized.

Let

number of cut-piece type. This is also the number of constraints.

number of patterns.

number of different strip board lengths.

: length of thcut-piece .

: length of strip board

thejth pattern or variable.

number of times pattern j is used in the solution. These are the decision variables for the LP

number of cut-piece i in pattern j. This is the coefficients in the demand constraints.

the demand for cut-piece i

cost of the strip board used by pattern j

a cutting pattern

, dual variables of cut-pieces

Z : total cost of stocks length used

Generally, the linear program is

 subject to

23

The objective function (3.1) is the total cost of stock lengths used. Constraint (3.2) requires that

the quantity produced is at least equal to quantity demanded for each item . Constraint (3.3) is

the non-negativity restriction on the decision variables.

The dual of this formulation is given as

A solution for the dual variables is given as

where is the inverse of the basis matrix and is the cost vector corresponding to the

columns of the basis matrix.

For a minimization problem, at each iteration in the Simplex algorithm for the solution of (3.5),

(3.6) and (3.7), we find a feasible pattern that cuts from strip with cost

such that

.

However, for the Cutting Stock Problem, the list of patterns can be very large, and therefore we

employ the Column generation technique that generates entering pattern by formulating this

auxiliary problem as a knapsack problem.

24

3.3.2 Formulation of the auxiliary Knapsack Problem.

Let be a pattern that cuts from a strip with cost and be number of item

 in the pattern. Then

that is

must also be a feasible pattern which means that

 (3.11)

Inequality (3.10) requires that the total length of the items cut must not exceed the length of the

strip from which the pattern is cut and (3.11) requires only integral cuts are made. The

requirements (3.9), (3.10) and (3.11) must be satisfied for a pattern to enter basis and they are

what we need to generate the next column.

The column generation technique of (3.9), (3.10) and (3.11) is a single constrained linear

programming problem. However, this single constraint has an additional requirement as strictly

integer which cannot be relaxed, and therefore the auxiliary problem becomes a Knapsack

problem. The Knapsack problem for the cutting stock problem is formulated as follows:

Let be the dual variables from (3.8) and be non-negative integers, be the length of item ,

, be strip from which a pattern jis cut and be cost of thestrip . We use (3.9),

(3.10) and (3.11) to define the problem as

25

The solution is a set of non-negative integers () that maximizes (3.12) subject to (3.13)

and (3.14). If

then the pattern P with components enters basis. If such a column cannot be found

then the iteration terminates and current solution is optimal. Otherwise, we proceed and use this

new pattern P as the entering variable and compute the leaving variable of the linear

programming problem with the minimum ratio test

This is a component-wise division between the current solution or right-hand-side and the new

pattern. This minimum determines the leaving variable after which the simplex proceeds

normally. The simplex iteration continues until no pattern is found that can improve the current

solution. In such case, the current solution is our optimum.

Formulation of an Initial Feasible Basis

The number of constraints corresponds to the number of cut-piece typeto cut. Therefore, since

the number of cut-piecetypes is m, number of constraint is also m. Each constraint represents the

total quantity of each cut-piecetype that will be cut from the patterns considered in the

solution.We create m initial patterns and define the constraints coefficients of the linear

26

programming problem as the components of these initial patterns. Since we define initial

patterns, .

The m initial cutting patterns are created such that the i pattern cuts only thecut-piece

. Arrange the stock lengths such that . Choose stock length for

which and define the jthpattern to be the one cutting

where represents largest integer less than the value in the bracket. The cost of the jth pattern

will be the cost of the stock length from which the ith activity cuts the piece of length . The m

initial patterns are as follows:

Pattern 1 is

Pattern 2 is

Pattern m is

Our initial m patterns are

Pat1 Pat2 Pat m

 0 0

0 0 0

0 0

27

The Linear Programming problem then becomes

 subject to

The dual of this formulation is given as

 subject to

28

3.4 Methods of Solution For the Cutting Stock Problem

The Cutting Stock problem is formulated as a linear programming problem and it is solved using

the revised Simplex method. The auxiliary knapsack problem that finds the next entering column

is solved by dynamic programming or branch-and-bound algorithms. After the LP optimum is

found, rounding-up proceduresare used to find the integer programming optimum.

3.4.1 Linear Programming

Linear Programming (LP) is a type of optimization technique used for economic allocation of

„scarce‟ resources to several competing activities on the basis of a given criterion of optimality.

The phrase „scarce resources‟ means resources that are limited in availability. The criterion of

optimality generally is either performance, return on investment, profit, cost, utility, time,

distance, etc. The term “linear” is used because all the relations among the variables are linear.

On the other hand, the word “programming” refers to modeling and solving a problem

mathematically that involves the economic allocation of limited resources by choosing a

particular course of action or strategy among various alternative strategies to achieve the desired

objective.

Assumptions of Linear Program

a) Linearity (or Proportionality): All relationships in the LP model must be linear

b) Additivity: The value of the objective function for the given values of decision

variables must be equal to the sum of the contributions (profit or cost) earned from

each decision variable and the total sum of resources used, must be equal to the sum

of the resources used by each decision variable.

29

3.4.2 General Formulation of a Linear Program

Notations:

number of constraints.

number of variables.

decision variables

coefficients of variable in constraint

right-hand-side coefficients for constraints

objective function coefficients of the variable

A: matrix (with m rows and n columns) of the coefficients of the variables in the constraints.

The LP model is

Maximization:

Minimization:

30

Examples of Linear Programs

a) The Diet Problem. There are different types of food, , that supply varying

quantities of the nutrients, , that are essential to good health. Let be the

minimum daily requirement of nutrient, . Let bi be the price per unit of food, . Let

be the amount of nutrient contained in one unit of food . The problem is to

supply the required nutrients at minimum cost.

Let be the number of units of food to be purchased per day. The cost per day of

such a diet is

The amount of nutrient contained in this diet is

We do not consider such a diet unless all the minimum daily requirements

are met, that is, if and only if

b) The Transportation Problem:There are I ports, or production plants, , that

supply a certain commodity, and there are J markets, , to which this

commodity must be shipped. Port possesses an amount of the commodity

, and market must receive the amount of the commodity

Let bij be the cost of transporting one unit of the commodity from port to

market . The problem is to meet the market requirements at minimum transportation

cost. Let be the quantity of the commodity shipped from port to market . The

total transportation problem is

31

The amount sent from port is and since the amount available at port is ,

we must have

The amount sent from port is and since the amount required there is , we

must have

c) The Investment Problem: At our disposal is a sum S units of money which may be

invested in various activities, each of them producing a certain benefit. Let us denote

by , , the sum invested in the j-th activity. The above problem can be

modeled using linear programming, that is;

Maximize

Subject to

32

3.4.3 The Simplex Method

The simplex method is the most common way to solve large Linear Programming problems.

Simplex is a mathematical term. The underlying concepts are geometrical, but the solution

algorithm, developed by George Dantzig in 1947, is an algebraic procedure.The simplex method

finds the most attractive corner of the feasible region to solve the LP problem. Any LP problem

having a solution must have a optimal solution that corresponds to a corner, although there may

be multiple or alternative optimal solutions.Simplex usually starts at the corner that represents

doing nothing. It moves to the neighboring corner that best improves the solution. It does this

over and over again, making the greatest possible improvement each time. When no more

improvements can be made, the most attractive corner corresponding to the optimal solution has

been found.

General Simplex Formulation

In general, the simplex algorithm is a method for solving linear programs in the following form,

Maximize

subject to the constraints

33

The constraints

can be written as

where is a slack variable.

The new variables would be assigned zero cost coefficients in the objective function, i.e.

.

In matrix notations, the standard form of a linear programming problem be represented by an

matrix

together with an n-vector of “costs” and an m-vector of “right-hand sides”

The variables can also be grouped into an n-vector:

Then the entire linear program can be written as follows:

34

Steps of the Simplex Method

STEP 1: Formulate the LP and construct a simplex tableau.

Add slack variables to represent unused resources, thus eliminating inequality constraints.

Construct the simplex tableau, i.e. a table that allows you to evaluate various

combinations of resources to determine which mix of resources will most improve your

solution. Use slack variables in the starting basic variable mix. Table 3.1 shows a general

construction of the simplex tableau. Row 2 represents the variables including slack

variables. Variable are the slack variables. Row 1 is the cost

coefficient of each variable in the objective function. Row 3 to row m+2 are the

constraint coefficients. Column 1 represents coefficients of basic variables. Column 2

shows the basic variables. Column labeled “RHS” shows the values on the right-hand-

side of the constraints and is also the solution column. Column labeled “ ” shows the exit

ratios.

Table 3.1 Simplex tableau

 0 0

Basic

variable

coefficients

Basic

variables
 RHS

0 1 0

0 0 1

35

STEP 2: Find an Initial Feasible Solution

Find an initial basic feasible solution (bfs). If none is found, then the model is infeasible,

so exit.

STEP 3:Find the Entering Variable

Find the entering variable and mark the top of its column with an arrow pointing down.

This is the pivot column. The entering variable is the current non-basic variable that has

the largest positive coefficient. This is based on the largest coefficient rule. If no

such coefficient exists, this indicates that one or more constraints are unbounded.

STEP 4: Find the Leaving Variable

Applythe minimum ratio test to determine the leaving basic variable. This test

determines which constraint most limits the increase in the value of the entering basic

variable. The most limiting constraint is the one whose basic variable is driven to zero

first as the entering basic variable increases in value.

If the coefficient of the entering basic variable is we do not evaluate those. The

leaving basic variable is associated with the row that has the minimum value of the ratio

test. This row is called the pivot row. The tableau element where the pivot column and

pivot row intersect is the pivot element. In the column entitled basic variable, replace the

leaving variable listed for the pivot row by the entering basic variable. If the pivot

element is not +1, then we divide all of the elements in the pivot row by the pivot element

to obtain a +1 in the pivot element position.

36

STEP 5: Perform Gaussian operation on the tableau

Perform Gaussian elimination on the table to eliminate all the coefficients in the pivot

column except the pivot element. This will bring the entering variable into basis. To

remove the pivot column element in some row k,

After the Gaussian operation, we have reached the second basic feasible solution. This

process of moving from one basic feasible solution to the next is called pivoting.

STEP 6: Repeat STEP 2 to STEP 5 until no improvement can be found.

3.4.4 Column Generation

Column generation deals with adding variables to a master problem. It is one of the most used

methods in real life with lots of applications including the cutting stock problems and bin-

packing problems.

In solving linear programming problems using the Simplex algorithm, we enumerate all the

decision variables and store them before setting our initial tableau. We then determine our initial

basic feasible solution. We check the non-basic variables to find one with the most negative

reduced cost to enter basis. However, a problem arises when we have extremely many variables.

For example, we have a demand to cut 511 pieces of 9-inch wood, 301 pieces of 8-inch wood,

263 pieces of 7-inch wood and 383 pieces of 6-inch wood from a given stock of 20-inch wood.

Possible feasible cutting patterns for this instance are given in Table 3.2, assuming unlimited

stock of 20-inch stock. Table 3.2 lists 10 of the possible feasible patterns that can be cut from

each stock sheet:

37

Table 3.2 Sample of possible patterns that can be generated.

Possible Patterns (Decision variables)

Small

length

1 2 3 4 5 6 7 8 9 10

9” 2 0 0 0 0 1 1 1 0 0

8” 0 2 0 0 0 1 0 0 1 1

7” 0 0 2 0 1 0 1 0 0 1

6” 0 0 1 3 2 0 0 1 2 0

This list is only a subset of the possible patterns that can be generated. This clearly indicates that

many linear programs are too large to consider all the variables explicitly. Since most of the

variables will be non-basic and assume a value of zero in the optimal solution, only a subset of

variables need to be considered in theory when solving the problem. Column generation

leverages this idea to generate only the variables which have the potential to improve the

objective function, i.e., to find variables with negative reduced cost. The reduced cost is the

reduction in objective function if non-basic variable is increased by one unit. Gilmore et al

(1961) described this sub-problem as a Knapsack problem. The objective function of the sub-

problem is the reduced cost of the new variable with respect to the current dual variables, and the

constraints require that the variable obey the naturally occurring constraints. The master problem

is solved to obtain dual prices for each of the constraints in the master problem. In a

minimization problem, a pattern enters basis if

Therefore, we use this information to generate the entering pattern. Let be the

pattern to enter basis and y be set of dual prices obtained from solving the initial master LP

problem. so enters basis if and only if

38

A feasible pattern means that

(14)

 (15)

These requirements (14) and (15) must be satisfied for a pattern to enter basis. The sub-

problem resembles a single constrained linear programming problem. However, this single

constraint has an additional requirement as strictly integer, in which case we cannot solve by

linear programming method. The sub-problem is therefore treated as a Knapsack problem and

solved using the Branch-and-Bound algorithm or Dynamic programming. This variable is then

added to the master problem, and the master problem is re-solved. Re-solving the master

problem will generate a new set of dual values, and the process is repeated until no negative

reduced cost variables are identified. If sub-problem returns a solution with non-negative

reduced cost; we can conclude that the solution to the master problem is optimal.

The column generation method is summarized below.

1. Initialize the procedure: Let B be a basis matrix, with a collection of some

(feasible) patterns.

2. Solve the following (auxiliary) problem:

39

where (vector of cost coefficient of the basic variable); and (inverse of the basic

matrix) are known; A is a (column) vector which contains the decision variables of the

problem. l is a vector equal to and L is a constant. Let denotes the

optimal solution of problem.

3. If then the current solution (cutting patterns) is optimal (because reduced

costs, are non negative for all non basic variables).

4. If then enters the basis (since we maximized , is the most

profitable cutting pattern, i.e. it has the most negative reduced cost).

5. Find the leaving variable by the ratio test.

6. Form the new basis, and go back to step 2.

3.5 The Knapsack Problem

The knapsack problem is particularly a simple integer program: it has only one constraint.

Furthermore, the coefficients of this constraint and the objective are all non-negative. The

following is an example of a knapsack problem:

The traditional story is that there is a knapsack (here of capacity 20). There are a number of

items (here there are four items), each with a size and a value (here item 2 has size 8 and value

3). The objective is to maximize the total value of the items in the knapsack.

40

3.5.1 Types of Knapsack Problems

Knapsack problems are found in various situations. They come in various types including single

and multiple-constrained knapsacks, multidimensional knapsacks, multiple choice knapsacks,

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and

stochastic knapsacks, knapsacks with convex or concave objective functions, etc.

The Single 0-1 Knapsack Problem

This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a

very important class of integer programming. The 0-1 Knapsack Problem (KP) can be

mathematically formulated through the following integer linear programming. Given a set of n

items, let

 = profit of item j

 = weight of item j

c = capacity of knapsack

where

41

Multiple Knapsack Problems

An important generalization of the 0-1 knapsack problem is the 0-1 Multiple knapsack problem

arising when m containers, of given capacities are available. By introducing

binary variables , taking value 1 if item is selected for the container and value 0 otherwise,

we obtain the formulation

where

The generalization arising when the item set is partitioned into subsets and the additional

constraint is imposed that at most one item per subset is selected is called the Multiple-Choice

Knapsack Problem. The multi choice knapsack problem is defined as in knapsack problem with

additional disjoint multiple choice constraint. The general description of the problem is given as

follows: There is one knapsack with limited capacity. Objects to be packed in the knapsack are

classified into multiple mutually exclusive classes. Within each class, there are several different

items. The problem is to select some items from each class so as to minimize the total cost while

42

the total size of the items does not exceed the limited capacity of the knapsack. This problem is

of a generalized carryout problem and is NP-hard.

3.5.2 Methods for solving Knapsack problems

There are two basic methods for solving the 0-1 knapsack problems (KP): Theses are dynamic

programming and Branch-and-Bound methods. However the use of meta-heuristics including

genetic algorithm, tabu-search and simulated annealing have been used to solve large

scaleproblems.

3.5.3 Dynamic Programming

Dynamic programming is a method for efficiently solving a broad range of search and

optimization problems which exhibit the characteristics of overlapping sub-problems and optimal

substructure.

Overlapping Sub-problems

A problem is said to have overlapping sub-problems if it can be broken down into sub-problems

which are reused multiple times. This is closely related to recursion. Consider the Fibonacci

numbers

The problem of calculating the n
th
 Fibonacci number exhibits overlapping sub-problems because

calculating Fib(n) depends on both Fib(n-1) and Fib(n-2). At the k
th
 stage we only need to know

43

the values of and , but we wind up calling each multiple times. With

dynamic programming, we can calculate the numbers we need for the next step, removing the

massive redundancy.

Memoization

In dynamic programming, we write out a recursive formula that expresses large problems in

terms of smaller ones and then use it to fill out a table of solution values in a bottom-up manner,

from smallest sub-problem to largest. The formula also suggests a recursive algorithm, solving

the same sub-problems over and over again. We need a more intelligent recursive

implementation, one that remembers its previous invocations and thereby avoids repeating them.

On the knapsack problem, such an algorithm would use a hash-table to store the values of F(s)

that had already been computed. At each recursive call requesting some F(w), the algorithm

would first check if the answer was already in the table and then would proceed to its calculation

only if it wasn't. This is called memoization. Memoizationis another way to deal with

overlapping sub-problems in dynamic programming. After computing the solution to a sub-

problem we store it in a hash table. Subsequent calls to the sub-problem just do a table lookup.If

solution of the sub-problem is not found in the table, compute the solution and add it to the list of

sub-problems.

Optimal Substructure

A problem is said to have optimal substructure if the globally optimal solution can be

constructed from locally optimal solutions to sub-problems. Optimal solution to problem consists

of optimal solutions to sub-problems.

44

Solving Knapsack Problems with Dynamic Programming

Consider the knapsack problem.

Each item has a weight pounds and a value . The goal is to place items in our knapsack so

that we get the maximum value without exceeding the weight limit of W pounds. Let

 be set of weights, then

represents the maximum value that can be attained by putting s in the knapsack. We can

calculate for using and

A knapsack of weight at most is obtained by first filling the knapsack with weight at most

 and then adding an item of weight . The knapsack of weight at most is filled such

that we obtain the maximum value, and the item chosen so that the total value

+ is maximized. becomes a subproblem.

45

Backtracking

Backtracking is a systematic way to go through all the possible configurations of a search space.

In the general case, we assume our solution is a vector where each element is

selected from a finite ordered set . We build a partial solution of length k,

and extend it by adding another element. After extending it, we test whether what we have so far

is still possible as a partial solution.If it is still a candidate solution then we stop, else we delete

 and try the next element from .Recursion can be used for elegant and easy implementation

of backtracking. It can easily be used to iterate through all subsets or permutations of a set. It

ensures correctness by enumerating all possibilities.

Backtrack Algorithm:

Step 1: Define a partial solution of length k, from . If is a solution stop else

 gotoStep 2

Step 2: Expand the solution by adding one more element i.e. k = k + 1.

Step 3: Compute a new

Step 4: While is not empty, test whether is still a partial solution of . If not we remove

and repeat with the next element in

In a Knapsack computation, after a maximum, , has been found, we use backtracking to

determine the item set that gave that maximum and their corresponding frequencies, .

In the Cutting Stock case this process helps to form the entering pattern for entry into the

Simplex algorithm. The frequencies will be the components of the pattern.

46

Dynamic Programming Example:

Therefore to find F(15) we have to first find sub-problems F(9), F(11), F(12) and F(14). These

problems will also have sub-problems. Table 3.3contains problems and their corresponding sub-

problems with items that add to the sub-problems.The first column contains the subset of the

weight of the knapsack. The first row of Columns 2 to 4 contain items that are included in the

knapsack to get maximum value, whiles the remaining rows contain the maximum value that can

be attained by adding the corresponding item. The maximum value is given as the sum of the

value of the item and the maximum value for the sub-problem to which the item is being added.

47

Table 3.3: Knapsack problems and their sub-problems.

Knapsack Items weights

Sub-problems 6 4 3 1

0 0 0 0 0

1 11 + F(-5) 7 + F(-3) 5 + F(-2) 1 + F(0)

2 11 + F(-4) 7 + F(-2) 5 + F(-1) 1 + F(1)

3 11 + F(-3) 7 + F(-1) 5 + F(0) 1 + F(2)

4 11 + F(-2) 7 + F(0) 5 + F(1) 1 + F(3)

5 11 + F(-1) 7 + F(1) 5 + F(2) 1 + F(4)

6 11 + F(0) 7 + F(2) 5 + F(3) 1 + F(5)

7 11 + F(1) 7 + F(3) 5 + F(4) 1 + F(6)

8 11 + F(2) 7 + F(4) 5 + F(5) 1 + F(7)

9 11 + F(3) 7 + F(5) 5 + F(6) 1 + F(8)

10 11 + F(4) 7 + F(6) 5 + F(7) 1 + F(9)

11 11 + F(5) 7 + F(7) 5 + F(8) 1 + F(10)

12 11 + F(6) 7 + F(8) 5 + F(9) 1 + F(11)

13 11 + F(7) 7 + F(9) 5 + F(10) 1 + F(12)

14 11 + F(8) 7 + F(10) 5 + F(11) 1 + F(13)

15 11 + F(9) 7 + F(11) 5 + F(12) 1 + F(14)

Table 3.4 contains problems and their corresponding maximum values with items that add to the

sub-problems. The first column contains the subset of the weight of the knapsack. The first row

of Columns 2 to 4 contain items that are included in the knapsack to get maximum value, whiles

the remaining rows contain the maximum value that can be attained by adding the corresponding

item. Column 5 contains the maximum value for each knapsack sub-problem. Column 6 contains

the item that contributed to that maximum value in column 5. We will lookup this table for

solution to sub-problems and the items that gave those solutions.

48

Table 3.4 Knapsack Sub-problems solutions

Knapsack Item weight and maximum values Item

Label

for F(s)
Sub-

problems

6 4 3 1 F(s)

0 0 0 0 0 0

1 -∞ -∞ -∞ 1 1 1

2 -∞ -∞ -∞ 2 2 1

3 -∞ -∞ 5 3 5 3

4 -∞ 7 6 6 7 4

5 -∞ 8 7 8 8 4

6 11 9 10 9 11 6

7 12 12 12 12 12 6

8 13 14 13 13 14 4

9 16 15 16 15 16 6

10 18 18 17 17 18 6

11 19 19 19 19 19 6

12 22 21 21 20 22 6

13 23 23 23 23 23 6

14 25 25 24 24 25 6

15 27 26 27 26 27 6

Maximum for F(15) is 27 (Table 3.4). From Table 3.3 sub-problem that gave this maximum is

F(9). F(9) also has a maximum of 16 with sub-problem F(3). F(3) has maximum 5 with sub-

problem F(0). Therefore, from Table 3.4 items that can be included in the knapsack to maximize

the value are 6, 6, 3. Therefore optimal value = 27 and corresponding solution is (2, 0, 1, 0)

3.5.4 The Branch and Bound Method

Branch and Bound is a class of exact algorithms for various optimization problems, especially

integer programming problems and combinatorial optimization problems (COP). It partitions the

solution space into smaller sub-problems that can be solved independently (branching).Bounding

49

discards sub-problems that cannot contain the optimal solution, thus decreasing the size of

thesolution space. Given a maximization problem

a. Branch and Bound algorithm iteratively partitions the solution space S.

b. For each sub-problem an upper bound on the objective value is calculated.

c. When a feasible solution (i.e., no fractional variables remaining) is found, all sub-

problems whose upper bounds are lower than this solution‟s objective value can

be discarded.

d. The best known feasible solution represents a lower bound for all sub-problems,

and only sub-problems with an upper bound greater than the global lower bound

have to be considered.

3.5.5 Rounding Fractional Solutions.

After solving the LP relaxation we have an LP optimal which is a lower bound to the

integer optimum . We use rounding-up procedures to get the integer optimum. A

simple and useful heuristic is „Largest In Least Empty‟ (LILE). This heuristicis described

in the following four steps.

1. Round the fractional solution values downwards, and determine the unmetdemand.

2. Sort the finals in the unmet demand from largest to smallest.

3. Place the largest final from the unmet demand in the least empty rawthat can contain

this final. If this is not possible, an extra raw must beadded.

4. Continue this process until the sorted list of finals from the unmet demandis

completely allocated.

50

It is possible that a pattern generated by this algorithm is one of the patternsused in the relaxed

integer programming solution. The LILE algorithm tends to minimize the numberof extra stocks

required, and turns out to work quite well in practice.

3.5.6 An Illustrative Example

We have a demand to cut 511 pieces of 9-inch wood, 301 pieces of 8-inch wood, 263 pieces of

7-inch wood and 383 pieces of 6-inch wood from a given stock of 20-inch wood. Cost of stock is

Gh¢ 1. We assume an unlimited quantity of stock is available. Table 3.5 summarizes this

instance. The first column of Table 3.5 shows the smaller lengths of rod that are ordered by a

customer and column two indicates the quantity of such length ordered.

Table 3.5 Order demands with quantity

Requested length(inch) Order Quantity

9 511

8 301

7 263

6 383

Solution:

Number of itemtypes, m = 4

Stock Length = 20 inches.

Cost of stock length, c = Gh¢ 1

B = basis matrix (m x m)

 = Inverse of the basis matrix.

51

Y = vector of dual variables,

Z = total cost of stocks length used

RHS= vector of values on the right-hand-side of constraints.

Our initial m patterns will be such that pattern i cuts only the ith item type, i.e.

largest integer less than

Pattern 1 gives , and Pattern 1= (2, 0, 0, 0)

Pattern 2 gives , and Pattern 2= (0, 2, 0, 0)

Pattern 3 gives , and Pattern 3= (0, 0, 2, 0)

Pattern 4 gives , and Pattern 4= (0, 0, 0, 3)

Our initial set of patterns is given as

Pat1 Pat2 Pat3 Pat4

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

These four patterns will form our demand constraint set and also our initial basis matrix.

52

A formulation of this problem will be

 subject to

Since the cost of the stock from which pattern i is cut equals 1, the objective function can be

written as

Basis (B) =

=

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.333

53

X = =

Iteration 1

1. Compute dual prices

2. Generate entering column

Let pattern such that

by dynamic programming

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.333

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.333

54

s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

}

}

Therefore to find F (20) we have to find the maximum among sub-problems F(11), F(12), F(13)

and F(14). These problems will also have sub-problems. Table 3.5 shows knapsack problems and

their sub-problems. The sub-problems that contributed to the maximum are in the boxes.

55

Table 3.5 Knapsack problems and their sub-problems.

Knapsack Item lengths and sub-problem

Sub-

problems

9 8 7 6

0 0 0 0 0

1 0.5 + F(-8) 0.5 + F(-7) 0.5 + F(-6) 0.3333 + F(-5)

2 0.5 + F(-7) 0.5 + F(-6) 0.5 + F(-5) 0.3333 + F(-4)

3 0.5 + F(-6) 0.5 + F(-5) 0.5 + F(-4) 0.3333 + F(-3)

4 0.5 + F(-5) 0.5 + F(-4) 0.5 + F(-3) 0.3333 + F(-2)

5 0.5 + F(-4) 0.5 + F(-3) 0.5 + F(-2) 0.3333 + F(-1)

6 0.5 + F(-3) 0.5 + F(-2) 0.5 + F(-1) 0.3333 + F(0)

7 0.5 + F(-2) 0.5 + F(-1) 0.5 + F(0) 0.3333 + F(1)

8 0.5 + F(-1) 0.5 + F(0) 0.5 + F(1) 0.3333 + F(2)

9 0.5 + F(0) 0.5 + F(1) 0.5 + F(2) 0.3333 + F(3)

10 0.5 + F(1) 0.5 + F(2) 0.5 + F(3) 0.3333 + F(4)

11 0.5 + F(2) 0.5 + F(3) 0.5 + F(4) 0.3333 + F(5)

12 0.5 + F(3) 0.5 + F(4) 0.5 + F(5) 0.3333 + F(6)

13 0.5 + F(4) 0.5 + F(5) 0.5 + F(6) 0.3333 + F(7)

14 0.5 + F(5) 0.5 + F(6) 0.5 + F(7) 0.3333 + F(8)

15 0.5 + F(6) 0.5 + F(7) 0.5 + F(8) 0.3333 + F(9)

16 0.5 + F(7) 0.5 + F(8) 0.5 + F(9) 0.3333 + F(10)

17 0.5 + F(8) 0.5 + F(9) 0.5 + F(10) 0.3333 + F(11)

18 0.5 + F(9) 0.5 + F(10) 0.5 + F(11) 0.3333 + F(12)

19 0.5 + F(10) 0.5 + F(11) 0.5 + F(12) 0.3333 + F(13)

20 0.5 + F(11) 0.5 + F(12) 0.5 + F(13) 0.3333 + F(14)

56

Table 3.6 shows the evaluated values for the sub-problems. The values in the box show the

maximum among the values and the item length that was included to give this maximum.

Table 3.6 Knapsack sub-problems and their solutions

Knapsack Item lengths and sub-problem solutions F(s) Item

Label

for F(s)
Sub-

problems

9 8 7 6

0 0 0 0 0 0

1 -∞ -∞ -∞ -∞ -∞

2 -∞ -∞ -∞ -∞ -∞

3 -∞ -∞ -∞ -∞ -∞

4 -∞ -∞ -∞ -∞ -∞

5 -∞ -∞ -∞ -∞ -∞

6 -∞ -∞ -∞ 0.33333 0.33333 6

7 -∞ -∞ 0.5 -∞ 0.5 7

8 -∞ 0.5 -∞ -∞ 0.5 8

9 0.5 -∞ -∞ -∞ 0.5 9

10 -∞ -∞ -∞ -∞ -∞

11 -∞ -∞ -∞ -∞ -∞

12 -∞ -∞ -∞ 0.66667 0.66667 6

13 -∞ -∞ 0.83333 0.83333 0.83333 7

14 -∞ 0.83333 1 0.83333 1 7

15 0.83333 1 1 0.83333 1 8

16 1 1 1 -∞ 1 9

17 1 1 -∞ -∞ 1 9

18 1 -∞ -∞ 1 1 9

19 -∞ -∞ 1.16667 1.16667 1.16667 7

20 -∞ 1.16667 1.33333 1.33333 1.33333 7

From Table 3.6 maximum for F(20) is 1.33333. From Table 3.5 sub-problem that gave this

maximum is F(13). F(13) also has a maximum of 0.83333 with sub-problem F(6). F(6) has

maximum 0.33333 with sub-problem F(0). Therefore, from Table 3.6 items that can be included

in the knapsack to maximize the value are 7, 7, 6. Therefore optimal value = 1.33333 and

corresponding Pattern is (0, 0, 2, 1).The entering pattern

57

3. Update new found column

 =

4. Compute leaving variable by ratio test.

 Divide X by component-wise where applicable.

131.5/1=131.5, 127.67/0.333=383.2733

Since 131.5 < 383.2733 and corresponds to the 3
rd

 component, the 3
rd

 column is the

leaving variable.

we update the Basis B by replacingthe leaving variable with the entering variable and

find the inverse to get .

B =

=

0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.333

0

0

2

1

0

0

1

0.333

0.5 0 0 0

0 0.5 0 0

0 0 0.5 -0.1667

0 0 0 0.333

2 0 0 0

0 2 0 0

0 0 2 0

0 0 1 3

58

5. Update Solution

X = =

Iteration 2

1. Compute dual prices

2. Generate entering column

Let pattern such that

by dynamic programming

s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

}

}

0.5 0 0 0

0 0.5 0 0

0 0 0.5 -0.1667

0 0 0 0.333

255.5

150.5

131.5

127.67

255.5

150.5

131.5

83.833

=

0.5 0 0 0

0 0.5 0 0

0 0 0.5 -0.1667

0 0 0 0.333

59

To find F(20) we have to find the maximum among sub-problems F(11), F(12), F(13) and F(14).

These problems will also have sub-problems. Table 3.7 shows the knapsack problems and their

sub-problems. The sub-problems that contributed to the maximum are in the boxes

Table 3.7 Knapsack problems and their sub-problems
Knapsack Item lengths and sub-problem

Sub-

problems

9 8 7 6

0 0 0 0 0

1 0.5 + F(-8) 0.5 + F(-7) 0.3333+ F(-6) 0.3333 + F(-5)

2 0.5 + F(-7) 0.5 + F(-6) 0.3333+ F(-5) 0.3333 + F(-4)

3 0.5 + F(-6) 0.5 + F(-5) 0.3333+ F(-4) 0.3333 + F(-3)

4 0.5 + F(-5) 0.5 + F(-4) 0.3333+ F(-3) 0.3333 + F(-2)

5 0.5 + F(-4) 0.5 + F(-3) 0.3333+ F(-2) 0.3333 + F(-1)

6 0.5 + F(-3) 0.5 + F(-2) 0.3333+ F(-1) 0.3333 + F(0)

7 0.5 + F(-2) 0.5 + F(-1) 0.3333+ F(0) 0.3333 + F(1)

8 0.5 + F(-1) 0.5 + F(0) 0.3333+ F(1) 0.3333 + F(2)

9 0.5 + F(0) 0.5 + F(1) 0.3333 + F(2) 0.3333 + F(3)

10 0.5 + F(1) 0.5 + F(2) 0.3333+ F(3) 0.3333 + F(4)

11 0.5 + F(2) 0.5 + F(3) 0.3333+ F(4) 0.3333 + F(5)

12 0.5 + F(3) 0.5 + F(4) 0.3333 + F(5) 0.3333 + F(6)

13 0.5 + F(4) 0.5 + F(5) 0.3333+ F(6) 0.3333 + F(7)

14 0.5 + F(5) 0.5 + F(6) 0.3333+ F(7) 0.3333 + F(8)

15 0.5 + F(6) 0.5 + F(7) 0.3333 + F(8) 0.3333 + F(9)

16 0.5 + F(7) 0.5 + F(8) 0.3333+ F(9) 0.3333 + F(10)

17 0.5 + F(8) 0.5 + F(9) 0.3333+ F(10) 0.3333 + F(11)

18 0.5 + F(9) 0.5 + F(10) 0.3333+ F(11) 0.3333 + F(12)

19 0.5 + F(10) 0.5 + F(11) 0.3333+ F(12) 0.3333 + F(13)

20 0.5 + F(11) 0.5 + F(12) 0.3333+ F(13) 0.3333 + F(14)

60

Table 3.8 shows the evaluated values for the sub-problems. The values in the box show the

maximum among the values and the item length that was included to give this maximum.

Table 3.8: Knapsack sub-problems and their solutions

Knapsack Item weight and sub-problems solutions F(s) Item

Label

for F(s)
Sub-

problems

9 8 7 6

0 0 0 0 0 0

1 -∞ -∞ -∞ -∞ -∞

2 -∞ -∞ -∞ -∞ -∞

3 -∞ -∞ -∞ -∞ -∞

4 -∞ -∞ -∞ -∞ -∞

5 -∞ -∞ -∞ -∞ -∞

6 -∞ -∞ -∞ 0.33333 0.33333 6

7 -∞ -∞ 0.33333 -∞ 0.33333 7

8 -∞ 0.5 -∞ -∞ 0.5 8

9 0.5 -∞ -∞ -∞ 0.5 9

10 -∞ -∞ -∞ -∞ -∞

11 -∞ -∞ -∞ -∞ -∞

12 -∞ -∞ -∞ 0.66667 0.66667 6

13 -∞ -∞ 0.66667 0.66667 0.66667 7

14 -∞ 0.83333 0.66667 0.83333 0.83333 8

15 0.83333 0.83333 0.83333 0.83333 0.83333 9

16 1 1 1 -∞ 1 8

17 1 1 -∞ -∞ 1 9

18 1 -∞ -∞ 1 1 9

19 -∞ -∞ 1 1 1 7

20 -∞ 1.16667 1 1.16667 1.16667 8

Maximum for F(20) is 1.16667 (Table 3.8). From Table 3.7 sub-problem that gave this

maximum is F(12). F(12) also has a maximum of 0.66667 with sub-problem F(6). F(6) has

maximum 0.33333 with sub-problem F(0). Therefore, from Table 3.8 items that can be included

in the knapsack to maximize the value are 8, 6, 6.

Therefore optimal value = 1.16667 and corresponding Pattern is (0, 1, 0, 2).

The entering pattern

61

3. Update new found column

 =

4. Compute leaving variable by ratio test.

 Divide N by component-wise where applicable.

150.5/0.5=301, 83.833/0.666=125.875

Since 127.875<301 and corresponds to the 4th component, the 4th column is the leaving

variable.

we update the new Basis B and its inverse .

B =

=

0.5 0 0 0

0 0.5 0 0

0 0 0.5 -0.166

0 0 0 0.333

0

1

0

2

0

0.5

0

0.666

0.5 0 0 0

0 0.5 0 0

0 0.125 0.5 -0.25

0 -0.25 0 0.5

2 0 0 0

0 2 0 1

0 0 2 0

0 0 1 2

62

5. Update Solution

X = =

Iteration 3

1. Compute dual prices

2. Generate entering column

Let pattern such that

using dynamic programming

s={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

}

}

0.5 0 0 0

0 0.5 0 0

0 0.125 0.5 -0.25

0 -0.25 0 0.5

255.5

150.5

131.5

83.833

255.5

87.625

131.5

125.75

=

0.5 0 0 0

0 0.5 0 0

0 0.125 0.5 -0.25

0 -0.25 0 0.5

63

Therefore to find F(20) we have to first find sub-problems F(11), F(12), F(13) and F(14). These

problems will also have sub-problems. Table 3.9 shows the knapsack problems and their sub-

problems. The sub-problems that contributed to the maximum are in the boxes

Table 3.9 Knapsack problems and their sub-problems

Knapsack Items weights

Sub-

problems

9 8 7 6

0 0 0 0 0

1 0.5 + F(-8) 0.5 + F(-7) 0.375+ F(-6) 0.25 + F(-5)

2 0.5 + F(-7) 0.5 + F(-6) 0.375+ F(-5) 0.25 + F(-4)

3 0.5 + F(-6) 0.5 + F(-5) 0.375+ F(-4) 0.25 + F(-3)

4 0.5 + F(-5) 0.5 + F(-4) 0.375+ F(-3) 0.25 + F(-2)

5 0.5 + F(-4) 0.5 + F(-3) 0.375+ F(-2) 0.25 + F(-1)

6 0.5 + F(-3) 0.5 + F(-2) 0.375+ F(-1) 0.25 + F(0)

7 0.5 + F(-2) 0.5 + F(-1) 0.375+ F(0) 0.25 + F(1)

8 0.5 + F(-1) 0.5 + F(0) 0.375+ F(1) 0.25 + F(2)

9 0.5 + F(0) 0.5 + F(1) 0.375 + F(2) 0.25 + F(3)

10 0.5 + F(1) 0.5 + F(2) 0.375+ F(3) 0.25 + F(4)

11 0.5 + F(2) 0.5 + F(3) 0.375+ F(4) 0.25 + F(5)

12 0.5 + F(3) 0.5 + F(4) 0.375 + F(5) 0.25 + F(6)

13 0.5 + F(4) 0.5 + F(5) 0.375+ F(6) 0.25 + F(7)

14 0.5 + F(5) 0.5 + F(6) 0.375+ F(7) 0.25 + F(8)

15 0.5 + F(6) 0.5 + F(7) 0.375 + F(8) 0.25 + F(9)

16 0.5 + F(7) 0.5 + F(8) 0.375+ F(9) 0.25 + F(10)

17 0.5 + F(8) 0.5 + F(9) 0.375+ F(10) 0.25 + F(11)

18 0.5 + F(9) 0.5 + F(10) 0.375+ F(11) 0.25 + F(12)

19 0.5 + F(10) 0.5 + F(11) 0.375+ F(12) 0.25 + F(13)

20 0.5 + F(11) 0.5 + F(12) 0.375+ F(13) 0.25 + F(14)

64

Table 3.10 shows the evaluated values for the sub-problems. The values in the box show the

maximum among the values and the item length that was included to give this maximum

Table3.10 Knapsack sub-problems and their solutions

Knapsack Item weight and maximum values F(s) Item

Label

for F(s)
Sub-

problems

9 8 7 6

0 0 0 0 0 0

1 -∞ -∞ -∞ -∞ -∞

2 -∞ -∞ -∞ -∞ -∞

3 -∞ -∞ -∞ -∞ -∞

4 -∞ -∞ -∞ -∞ -∞

5 -∞ -∞ -∞ -∞ -∞

6 -∞ -∞ -∞ 0.25 0.25 6

7 -∞ -∞ 0.375 -∞ 0.375 7

8 -∞ 0.5 -∞ -∞ 0.5 8

9 0.5 -∞ -∞ -∞ 0.5 9

10 -∞ -∞ -∞ -∞ -∞

11 -∞ -∞ -∞ -∞ -∞

12 -∞ -∞ -∞ 0.5 0.5 6

13 -∞ -∞ 0.625 0.625 0.625 7

14 -∞ 0.75 0.75 0.75 0.75 8

15 0.75 0.875 0.875 0.75 0.875 9

16 0.875 1 0.875 -∞ 1 8

17 1 1 -∞ -∞ 1 9

18 1 -∞ -∞ 1 1 9

19 -∞ -∞ 0.875 0.875 0.875 7

20 -∞ 1 1 1 1 8

Maximum for F(20) is 1 (Table 3.8). From Table 3.7 sub-problem that gave this maximum is

F(12). F(12) also has a maximum of 0.5 with sub-problem F(6). F(6) has maximum 0.25 with

sub-problem F(0). Therefore, from Table 3.8 items that can be included in the knapsack to

maximize the value are 8, 6, 6.

Therefore optimal value = 1 and corresponding Pattern is (0, 1, 0, 2).

This pattern has already been generated in iteration 2.

Therefore the process terminates and the solution is as follows:

65

The Optimal Fractional Solution is given as

Size Pat1 Pat2 Pat3 Pat4

9 2 0 0 0

8 0 2 0 1

7 0 0 2 0

6 0 0 1 2

Qty 255.5 87.625 131.5 125.75

Cost of the total stock used is 600.375 and the number of Iterations is 3

2 pieces of 9-inch is cut in Pattern 1,

 2 x 255.5 = 511pieces of 9-inch.

2 pieces of 8-inch is cut in Pattern 2 and 1 piece in Pattern4,

 2 x 87.625+ 1 x 125.75= 301pieces of 8-inch

2 pieces of 7-inch is cut in Pattern 3

 2 x 131.5 = 263 pieces of 7-inch.

1 piece of 6-inch is cut in Pattern 3 and 2 pieces in Pattern 4,

 1 x 131.5 + 2 x 125.75 = 383.

and the quantities of stock used = 255.5 + 87.625 + 131.5 + 125.75 = 600.375

We round the above solution to their upper integer values, since we will use discrete quantities of

stock.

where represents the upper integer value of x.

66

The integer solution gives

2 pieces of 9-inch is cut in Pattern 1,

 2 x 256 = 512 pieces of 9-inch.

2 pieces of 8-inch is cut in Pattern 2 and 1 piece in Pattern4,

 2 x 88 + 1 x 126= 302 pieces of 8-inch

2 pieces of 7-inch is cut in Pattern 3

 2 x 132 = 264 pieces of 7-inch.

1 piece of 6-inch is cut in Pattern 3 and 2 pieces in Pattern 4,

 1 x 132 + 2 x 126 = 384.

and the quantities of stock used = 256 + 88 + 132 + 126 = 602

The integer values show that

512 pieces of 9-inch was cut which is , and satisfy our demand constraint (1)

302 pieces of 8-inch was cut which is , and satisfy our demand constraint (2)

264 pieces of 7-inch was cut which is , and satisfy our demand constraint (3)

384 pieces of 6-inch was cut which is , and satisfy our demand constraint (4)

Total stock lengths used is 602

Total cost of stock lengths used = 1 x 602 = GH¢ 602.

67

CHAPTER 4

DATA COLLECTION AND ANALYSIS

4.2 Data Collection

The data was collected from Rogersco Saw Mill Ltd, Yawkwei – Asante . The data includes the

cross-sectional dimension of different sizes of strip boards, quantities of each strip board type

and the total cost of the strip boards utilized to meet demand for the smaller sizes, cross-sectional

dimension of smaller sizes requested and their respective quantities per order and the sample

orders for August 2010 to December 2010. The cross-sectional width for both the strip boards

and the cuts are 2-inch long and therefore are not shown. Example, cut-piece of 6 inches

indicates a cut-piece of cross-sectional dimension 2 x 6. Likewise, a strip board of length 20

indicates a strip board of cross-sectional dimension 2 x 20.

Table 4.1 shows cross-sectional length of the cut-pieces from the company together with demand

for each in sample orders made to the company. The first column indicates the cross-sectional

length of the cut-pieces. The second to the last columns indicate quantities for the various cut-

pieces ordered by customers.

68

Table 4.1 Order data from the company from August to December 2010

 Order Quantities

Cuts-piece

(inch)

August September October November December

6” 1000 540 1500 200 220

4” 500 850 200 150 115

3” 119 40 0 100 120

2” 203 85 203 120 40

Table 4.2 shows cross-sectional length of strip boards that are cut from these timber logs through

the ripping process. It indicates the cross-sectional length of the strip board in inches in the first

column and the cost of each strip board in the second column.

Table 4.2 Cross-sectional length of Strip after the Ripping process.

Stock Sizes

(L-inches)

Cost (GHc)

 20” 13.50

 19” 13.00

 17” 11.00

69

Table 4.3 shows the quantities of strip board types the company used in meeting the

corresponding order demands in Table 4.1 and their cost.

Table 4.3 Company Strip quantities and cost utilized to meet the orders in table 4.1

 Orders

Strip

Length

(inch)

August September October November December

 Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost

20” 342 4,617 300 4,050 209 2,821.5 32 432 20 270

19” 0 0 20 260 167 2,171 40 520 33 429

17” 130 1,430 50 550 196 2,156 63 693 78 858

TotalCost 6,047 4,860 7,148.5 1,645 1,557

The company used 342 pieces of 20” and 130 pieces of 17” strip for the August order. Likewise,

it used 300 pieces of 20”, 20 pieces of 19” and 50 pieces of 17” for the September order, 209

pieces of 20”, 167 pieces of 19” and 196 pieces of 17” for the October order. Furthermore, 32

pieces of 20”, 40 pieces of 19” and 63 pieces of 17” where used for the November order and 20

pieces of 20”, 33 pieces of 19” and 78 pieces for the December order. The total cost of strip

board are GH6,047, GH4,860, GH7,148.50, GH1,645, GH1,557 for the corresponding August

order, September order, October order, November order and the December order respectively.

4.3 Problem Formulation

The problem is to find, for each order, the minimum total cost of stock lengths utilized in cutting

at least the total quantities demanded of each cut-piece. The problem is formulated as a multi-

70

objective function of a linear program anda knapsack problem with the assumption that

quantities available of each strip board type is unlimited.

The notation and formulation are as follows. Let

number of cut-piece type. This is also the number of constraints.

number of patterns or variables.

number of different strip lengths.

: length of cut piece type .

:length of strip

thej-thpattern.

number of times pattern j is used in the solution. These are the decision variables for the LP

number of cut-piece i in pattern j. This is the coefficient in the demand constraint.

the demand for cut-piece i for each order

cost of the strip used by patternj

dual cost of pattern j

total cost of strips used

a feasible pattern that cuts from strip with cost

The linear programming problem is

 subject to

71

The is from column 2 of Table 4.2 and is from Table 4.1.

The dual is given as

The dual variables are calculated as

where is the inverse of the basis matrix and is the cost vector corresponding to the

columns of the basis matrix.

The column generation knapsack problem is to find a feasible pattern that cuts

from strip with cost such that

We also determine the feasibility of the pattern as

The is from column 1 of Table 4.1 and is column 1 of Table 4.2

The two inequalities (4.7) and (4.8) find a feasible pattern P that improved our current Linear

programming solution.

Wecreated the m initial cutting patterns such that

72

islargest of the strip in Table 4.2 for which . The cost of is . The m initial patterns

are as follows:

Pattern 1 is

Pattern 2 is

Pattern m is

Our initial m patterns therefore are

Pat1 Pat2 Pat m

 0 0

0 0 0

0 0

The Linear Programming problem is then given as

 subject to

73

The objective function (4.9) is to minimize the total cost of stock lengths used. Constraint (4.10)

requires that the quantity produced is at least equal to quantity demanded for each cut-piece .

Constraint (4.11) also shows that the initial basis matrix, B, is the initial m patterns. Constraint

(3) is the non-negativity restriction on the decision variables.

The dual formulation is given as

 subject to

4.4 Cutting Stock Algorithm

The steps for the solution of the cutting stock problem is given below

Step 1: Formulate the problem as a linear programming (LP) master problem.

Step 2: Solve for dual of the LP master problem using the simplex method.

Step 3:Use the dual solution in step 2 to solve the auxiliary knapsack sub-problem to find a

 feasible pattern with a negative reduced cost, i.e. . If such a pattern exists,

 then update the LP master problem with the new pattern and go to step 2.

Step 4: If there is no such pattern in step 3, then the current LP solution is the optimal

 solution and we stop.

Step 5: Round the optimal LP solution to get the optimal integer program solution.

74

4.5 Computational Procedure and Results

A Visual Basic.Net code was developed to implement the above algorithm on an Intel Atom

N455 computer processor with speed 1.66GHz and 2GB of RAM. Output from the application

for the five orders is given in Table 4.4 – 4.10. Table 4.4 shows quantities of cut-pieces that were

cut using the application for the five set of orders, August to December, 2010. The first column

indicates the length of the cut-pieces. The second to the last columns indicate quantities for the

cut-pieces produced by the application for each month.

Table 4.4 Quantities of cut-pieces generated by application for the five order demands for

August to December, 2010.

 Quantities of cut-pieces

Cuts L-inch August September October November December

6” 1000 541 1501 200 220

4” 500 851 200 150 115

3” 119 40 - 100 120

2” 203 85 203 120 40

The “-“ in the table indicates that there was no order in the month of October for the 3” cut-piece

length.

Table 4.5 shows the corresponding lengths and quantities of strip boards the application used in

generating the output for the quantities in Table 4.4 and their associated cost. (See Appendix A

for details of the application output)

75

Table 4.5 Quantity and cost of Strips used by application to generate quantities of Table 4.4.

 Quantities and cost of Strips used

Strip

Length

(inch)

August September October November December

Qty Cost Qty Cost Qty Cost Qty Cost Qty Cost

20” 329 4,441.5 313 4,225.5 202 2,740.5 32 432 - -

19” - - - - 164 2,132 - - 50 650

17” 129 1,419 40 440 200 2,200 100 1,100 75 825

Total Cost 5,860.5 4,665.5 7,072.5 1,532 1,475

The application used 329 pieces of 20” and 129 pieces of 17” strip for the August order.

Likewise, it used 313 pieces of 20” and 40 pieces of 17” for the September order, 202 pieces of

20”, 164 pieces of 19” and 200 pieces of 17” for the October order. Furthermore, 32 pieces of

20” and 100 pieces of 17” where used for the November order and 50 pieces of 19” and 75

pieces for the December order. The total cost of strip board are GH5,860, GH4,665.5,

GH7,072.50, GH1,532, GH1,475 for the August, September, October, November and the

December orders respectively.

Table 4.6 – 4.10 represent the optimal cutting patterns that were generated, the number of times

the pattern was used and the length of strip that was used by the pattern for each of the months.

The first column shows the cut-piece length. The remaining columns show the patterns. Column

7 shows the strip length used, row 8 shows the number of times the pattern was used and the last

row shows the number of iterations that were performed to get the optimal solution.

76

Table 4.6Optimal Pattern generated and their usage for the August orders

 August

(j)

Cut-piece () Pattern 1 Pattern 2 Pattern 3 Pattern 4

6” 2 2 1 3

4” 1 2 2 0

3” 0 0 1 0

2” 0 0 0 1

Strip Used 17” 20” 17” 20”

Pattern Usage (10 126 119 203

Number of Iterations: 7

The numbers in the table represents the quantity of the cut-pieces in each pattern. For example,

pattern 1 was generated using 17” strip and each usage of the pattern produced 2 of 6”, 1 of 4”

and none of the 3” and 2”. Since the pattern was used 10 times we have, for this pattern,

2x10=20 of 6” and 1x10=10 of 4”. The number of iterations was 7.

77

Table 4.7Optimal Pattern generated and their usage for the September orders

 September

(j)

Cut-piece () Pattern 1 Pattern 2 Pattern 3 Pattern 4

6” 2 0 1 3

4” 2 5 2 0

3” 0 0 1 0

2” 0 0 0 1

Strip Used 20” 20” 17” 20”

Pattern Usage(123 105 40 85

Number of Iterations = 5

Table 4.8Optimal Pattern generated and their usage for the October orders

 October

(j)

Cut-piece () Pattern 1 Pattern 2 Pattern 3

6” 3 2 3

4” 0 1 0

2” 0 0 1

Strip Used 19” 17” 20”

Pattern Usage (164 200 203

Number of Iterations = 5

78

Table 4.9Optimal Pattern generated and their usage for the November orders

 November

(j)

Cut-piece () Pattern 1 Pattern 2 Pattern 3 Pattern 4

6” 3 1 2 0

4” 0 2 0 1

3” 0 1 1 1

2” 1 0 1 5

Strip Used 20” 17” 17” 17”

Pattern Usage (32 68 18 14

Number of Iterations = 6

Table 4.10Optimal Pattern generated and their usage for the December orders

 December(c)

(j)

Cut-piece () Pattern 1 Pattern 2 Pattern 3 Pattern 4

6” 3 1 2 2

4” 0 2 1 0

3” 0 1 1 1

2” 0 0 0 1

Strip Used 19” 17” 19” 17”

Pattern Usage(5 35 45 40

Number of Iterations = 8

79

4.4 Discussion

A comparison of the output from the application and the data from the company in Table 4.3

shows an improvement over the ad-hoc method used by the company. Table 4.11 summarizes the

total cost of strips used by the company and the application to meet the same set of demand. The

first column indicates the month. The second and third columns show the total cost of strips for

each month order by Company and application. The last column shows the difference in the total

cost between the Company and the application.

Table 4.11 Summary of Total cost of strips used by Company and the application for set of

orders.

 Total Cost of strips used to meet set of demands

(GH ¢)

Month (2010) Company Application Difference

August 6,047.00 5,860.00 187.00

September 4,860.00 4,665.50 194.50

October 7,148.50 7,072.50 76.00

November 1,645.00 1,532.00 113.00

December 1,557.00 1,475.00 82.00

Total 21,257.50 20,604.50 652.50

The table shows that by the application of the techniques shown by this application, the company

would have made a savings of GH187, GH195.5, GH76, GH113, and GH82 for the August,

September, October, Novemberand the December orders respectively, a total savings of GH652.

80

4.5 Features of the Application

The software allows the user to input data into the application interface by typing data directly

into Ordered Sizes grid (for size of cut-pieces) and the Stock Sizes grid (for size of stock

lengths). We can also load data from text files by clicking the “load data” button. Results from

the computation can also be saved to a text file by clicking the “Save Output) button.

 (Codes attached: See Appendix B)

Fig 4.1 User interface for the Cutting stock application

The program generates an initial solution and shows both the fractional and the integer feasible

solutions for the problem and selects the optimal solution together with the patterns that are

needed to get the optimal solution.

81

Fig 4.2 Output from the application

82

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This thesis has modeled the cutting of strip boards as a one dimensional cutting stock problem

and used linear programming techniques to find solution to it. Knapsack algorithm by dynamic

programming was used to generate entering columns. The thesis generated optimal patterns

(Tables 4.6 – 4.10) for the cutting of the strip boards that minimizes the total cost of strips

utilized to meet demands for quantities of cut-pieces (Table 4.5). The study also shows that by

the application of these techniques, total cost of stock lengths utilized can be minimized (Table

4.11). The thesis also developed a computer program that solves this cutting stock problem. The

application can be used in any one dimensional cutting situation.

5.2 Recommendation

Rogersco Sawmill Limited should use the cutting stock procedure to generate cutting patterns for

the cutting of all their strip boards. This will help to minimize the total cost of strip boards that

are utilized to meet orders as indicated in Table 4.11. This consequently will lead to increase in

profit and efficient utilization of timber. The use of the application is systematic and transparent

as compared with the ad-hoc method used by the company.

The application can be used for any problem that can be modeled as a one-dimensional cutting

stock problem. The thesis considered strip boards with fixed width, i.e. 2 inches, however future

research should consider cases with variable widths. We also assumed unlimited quantities of

strip boards. Future research should also consider instances where the quantities of stocks of strip

boards become constraints.

83

REFERENCES
1. Amponsah, S.K. (2006), Optimization Techniques I, University Printing Press, KNUST,

page 5.

2. Arbib, C. and Marinelli, F. (2007), An optimization model for trim loss minimization in

an automotive glass plant, European Journal of Operational Research 183(3):1421-1432.

3. Belov G., Letchford A. and Uchoa E. A (2005), “Node-flow model for one dimensional

stock cutting: Robust branch & cut & price,” Niteroi: Technical Report RPEP, Vol. 5,

No. 7, Universidade Federal Fluminense, Engenharia de Producao

4. Boschetti, M. A., Mingozzi A. (2003), The two-dimensional finite bin-packing problem.

Part I: New lower bounds for the oriented case, 4OR 1 27–42.

5. Boschetti, M. A., Mingozzi A. (2003), The two-dimensional finite bin-packing problem.

Part II: New lower and upper bounds, 4OR2 135–148.

6. Caprara, A. and Monaci M.(2004), On the two-dimensional knapsack problem,

Operation. Research Letters32: 5–14.

7. Carvalho J. and Rodrigues A.(1995), A LP-based approach to a two-stage cutting stock

problem. European Journal of Operational Research;84

8. Chen C. S. Hart S. M. and Tham W. (1996), A Simulated Annealing Heuristic for the

One-dimensional Cutting Stock Problem., European Journal of Operational Research,

93(3): 522-535.

9. Christfides N. and Whitlock C. (1977), An algorithm for the two dimensional cutting

problem, Journal of Operations Research 25: 30-44.

10. Dantzig G. B. (1957), Discrete ExtremumProblems, Operations Research 5: 161-310

84

11. Dell‟Amico, M., Martello S. and Vigo D. (2002), A lower bound for the non-oriented

two-dimensional bin-packing problem. Discrete Appl. Math.118: 13–24.

12. Dyckhoff, H. (1990), A typology of cutting an packing problems, European Journal of

Operational Research 44: 145-159.

13. Dyson R. G. and Gregory A.S. (1974),The Cutting Stock Problem in the Flat Glass

Industry, Operations Research Quarterly, Vol. 25, No. 1,pp. 41-53.

14. Eisemann K., The Trim Problem (1957), Management Science, Vol 3, No. 3, pp. 279-284

15. Farley A. (1990), The cutting stock problem in the canvas industry, European Journal of

Operational Research 44, pp.247-255.

16. Fekete S. P. and Joerg S (2001), New classes of lower bounds for the bin packing

problem. Math. Programming91, pp. 11–31.

17. Ferreira J. S., Neves M.A. and Castro P. F. (1990). A two-phase roll cutting problem.

European Journal of Operational Research, pp. 44

18. Gilmore P. C. and Gomory R.E. (1961),A Linear Programming Approach to the Cutting

Stock Problem: Part I, Vol. 9, No. 6 , pp. 849-859

19. Gilmore P.C. and Gomory R.E. (1963), A linear programming approach to the cutting

stock problem: Part II, Operations Research 11, pp. 863 - 888

20. Gilmore P. C. and Gomory R.E. (1965), Multistage cutting stock problems of two and

more dimensions. Operations Research 13, pp.94-120

21. Gilmore P.C. and Gomory R.E (1966),The theory and computation of knapsack

functions. Operations Research 14, pp.1045-1074

22. Goulimis C. (1990), Optimal solutions for the cutting stock problem, European Journal of

Operational Research 44: 197-208.

85

23. Hadjiconstantinou E. and Christofides N. (1995),An exact algorithm for general,

orthogonal, two-dimensional knapsack problems,European Journal of Operational

Research, 83 39–56.

24. Haessler R. W. and Sweeney P. E. (1991), Cutting stock problems and solution

procedures, European Journal of Operational Research 54: p.141 – 150

25. Hahn S.G. (1968), On the Optimal Cutting of Defective Sheets, Operations Research 16,

pp.1100-1113.

26. Hopper E. and Turton B. (1999),A Genetic Algorithm for a 2D Industrial Packing

Problem, Computers & Industrial Engineering , 37: pp. 375-378.

27. Johnston R. E. and Sadinlija E. (2004), A new model for complete solutions to one-

dimensional stock problems, European Journal of Operational Research,153, pp. 176-

183.

28. KalvelagenE.(2002),Column Generation with GAMS,

http://amsterdamoptimization.com/pdf/colgen.pdf

29. Lirov Y. (1992), Knowledge Based Approach to the Cutting Stock Problem.,

Mathematical and Computer Modeling, 16 (1), pp. 107-125.

30. Maculan N., Michelon P. and Plateau G.(1992), Column-generation in linear

programming with bounding variable constraints and its application in integer

programming. PesquisaOperacional, 12(2), pp. 45-57.

31. Matousek J. and Gartner B. (2007), Understanding and Using Linear Programming, pp. 9

32. Morabito R. and Arenales M. (2000), Optimizing the cutting of stock plates in a furniture

company, International Journal of Production Research 38: pp.2725-2742.

86

33. Morabito R. and Garcia V. (1997), The cutting stock problem in a hardboard industry: a

case study, Computers and Operations Research 25(6): pp.469-485.

34. Padberg M. (2000), Packing small boxes into a big box,Mathematics Methods,Operations

Research. 52, pp. 1–21.

35. Pierce J. F. (1964), Some Large Scale Production Scheduling Problems in the Paper

lndustry, Prentice-Hall. Englewood Cliffs, New Jersey.

36. Puchinger J., Raid G.R.and Koller G. (2004), Solving a real-world glass cutting problem,

In Proceedings of the 4th International Conference on Combinatorial Optimization,

Coimbra, Portugal, Springer-Verlag.162-173.

37. Reinaldo M. and Luciano B. (2007), Optimizing the cutting of wood fibre plates in the

hardboard industry, European Journal of Operational Research 183: pp.1405-1420.

38. Sarker, B. R. (1988), An Optimum Solution for One-dimensional Slitting Problems: A

Dynamic Programming Approach, Journal of Operational Research Society, 39(8), pp.

749-755.

39. Seth A., Prasad V. R. and Ramamurthy K. G. (1986), A Heuristic Approach to One-

dimensional Cutting Stock Problem., Operations Research, 23 (4), pp. 235-243.

40. Vahrenkamp, R. (1996), Random Search in the One-dimensional Cutting Stock

Problem.,European Journal of Operational Research, 95 (1), pp 191-200.

41. Winston, A. E., (1994). Introduction to Mathematical Programming: (Application and

Algorithms) (3rd), Duxbury Press ,California

42. Yaodong, C. and Yiping, L. (2009), Heuristic algorithm for a cutting stock problem in the

steel bridge construction, Computers & Operations Research 36, pp. 612 – 622.

87

APPENDIX A: OUTPUT OF SAMPLE DATA BY THE APPLICATION

Order #1: Order details and output from the cutting stock application

Order length and Demand

Cut Qty

6" 1000

4" 500

3" 119

2" 203

Strip Board Length and Cost

Strip Cost

20" 13.5

19" 13

17" 11

Initial Solution Cutting Patterns(Fractional)

Cut Pat1 Pat2 Pat3 Pat4

6" 3 0 0 0

4" 0 5 0 0

3" 0 0 6 0

2" 0 0 0 10

Strip 20" 20" 20" 20"

Qty 333.3 100 19.83 20.3

COST OF USED STOCK = 6391.8

Basis Inverse

88

0.3333333 0 0 0

0 0.2 0 0

0 0 0.1666667 0

0 0 0 0.1

Iteration #1

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.25

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack
Cut Pat

6" 0

4" 0

3" 5

2" 1

Selected source length = 17

Reduced cost = 1.6

3. Update New Column

0

0

0.8333334

0.1

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 23.8

5. Update Basis Inverse

0.333 0 0 0

0 0.2 0 0

0 0 0.2 -0.02

0 0 0 0.1

6. Update Solution

index : basic variable solution

1 : 333.3333

2 : 100

3 : 23.8

89

4 : 17.92

The new cost is = 6353.72

Iteration #2

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.93

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 1

Selected source length = 20 Reduced cost = 1.35

3. Update New Column

1

0

0

0.1

4. Choose pattern to drop

Pattern 4 is leaving, at min ratio 179.2

5. Update Basis Inverse

0.333 0 0 0

0 0.2 0 0

0.2 0 0.2 -0.2

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 154.1333

2 : 100

3 : 23.8

4 : 179.2

The new cost is = 6111.8

Iteration #3

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.2

For length 2" Dual cost = 0

90

2. Generate Entering Column by Knapsack

Cut Pat

6" 1

4" 2

3" 1

2" 0

Selected source length = 17

Reduced cost = 1.099999

3. Update New Column

0.5333333

0.4

0.2

-0.2

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 119

5. Update Basis Inverse

0.333 0 0 0

0 0.2 0 0

-0.33 -0.4 1 0

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 90.66667

2 : 52.4

3 : 119

4 : 203

The new cost is = 5980.9

Iteration #4

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.099999

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 2

3" 0

2" 0

Selected source length = 20

91

Reduced cost = 0.8999996

3. Update New Column

0.6666667

0.4

0

0

4. Choose pattern to drop

Pattern 2 is leaving, at min ratio 131

5. Update Basis Inverse

0.333 0 0 0

-0.33 0.5 0 0

0.333 -1 1 0

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 3.333346

2 : 131

3 : 119

4 : 203

The new cost is = 5863

Iteration #5

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.25

For length 3" Dual cost = 1.999999

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 0

Selected source length = 19

Reduced cost = 0.5

3. Update New Column

1

0

0

0

92

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 3.333346

5. Update Basis Inverse

0.333 0 0 0

-0.33 0.5 0 0

0.333 -1 1 0

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 3.333346

2 : 131

3 : 119

4 : 203

The new cost is = 5861.333

Iteration #6

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

For length 4" Dual cost = 2.416667

For length 3" Dual cost = 1.833333

For length 2" Dual cost = 0.5

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 1

3" 0

2" 0

Selected source length = 17

Reduced cost = 0.08333397

3. Update New Column

0.3333333

0.5

0

0

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 10.00004

5. Update Basis Inverse

1 -0.5 0 0

-1 1 0 0

93

1 -1.5 1 0

-3 1.5 0 1

6. Update Solution

index : basic variable solution

1 : 10.00004

2 : 126

3 : 119

4 : 203

The new cost is = 5860.5

Iteration #7

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.25

For length 4" Dual cost = 2.5

For length 3" Dual cost = 1.75

For length 2" Dual cost = 0.75

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 0

2" 0

Selected source length = 17 Reduced cost = 0

Optimal Fractional Solution
Cut Pat1 Pat2 Pat3 Pat4

6" 2 2 1 3

4" 1 2 2 0

3" 0 0 1 0

2" 0 0 0 1

Strip 17" 20" 17" 20"

Qty Used 10.00 126 119 203

Stock cost = 5860.5 Number of Iterations = 7

Optimal Integer Solutuion
Cut Pat1 Pat2 Pat3 Pat4

6" 2 2 1 3

4" 1 2 2 0

94

3" 0 0 1 0

2" 0 0 0 1

Strip 17" 20" 17" 20"

Qty Used 10 126 119 203

Pattern #1 Stock length used: 17 Quantity: 10

2 of 6-inch Cut-piece was cut from each 17-inch stock piece

1 of 4-inch Cut-piece was cut from each 17-inch stock piece

Pattern #2 Stock length used: 20 Quantity: 126

2 of 6-inch Cut-piece was cut from each 20-inch stock piece

2 of 4-inch Cut-piece was cut from each 20-inch stock piece

Pattern #3 Stock length used: 17 Quantity: 119

1 of 6-inch Cut-piece was cut from each 17-inch stock piece

2 of 4-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

Pattern #4 Stock length used: 20 Quantity: 203

3 of 6-inch Cut-piece was cut from each 20-inch stock piece

1 of 2-inch Cut-piece was cut from each 20-inch stock piece

Optimal Stock Used = 458; Optimal Stock cost = 5860.5

Order #2: Order details and output from the cutting stock application

Order length and Demand

Cut Qty

6" 540

4" 850

3" 40

2" 85

Strip Board Length and Cost

Strip Cost

95

20" 13.5

19" 13

17" 11

Initial Solution Cutting Patterns (Fractional)
Cut Pat1 Pat2 Pat3 Pat4

6" 3 0 0 0

4" 0 5 0 0

3" 0 0 6 0

2" 0 0 0 10

Strip 20" 20" 20" 20"

Qty 180 170 6.666667 8.5

COST OF USED STOCK = 4929.75

Basis Inverse

0.3333333 0 0 0

0 0.2 0 0

0 0 0.1666667 0

0 0 0 0.1

Iteration #1

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.25

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 5

96

2" 1

Selected source length = 17

Reduced cost = 1.6

3. Update New Column

0

0

0.8333334

0.1

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 8

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0 0 0.2 -0.02

0 0 0 0.1

6. Update Solution

index : basic variable solution

1 : 180

2 : 170

3 : 8

4 : 7.7

The new cost is = 4916.95

Iteration #2

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.93

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 1

Selected source length = 20

Reduced cost = 1.35

3. Update New Column

1

0

0

0.1

97

4. Choose pattern to drop

Pattern 4 is leaving, at min ratio 77

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0.2 0 0.2 -0.2

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 103

2 : 170

3 : 8

4 : 77

The new cost is = 4813

 Iteration #3

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.2

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 1

4" 2

3" 1

2" 0

Selected source length = 17

Reduced cost = 1.099999

3. Update New Column

0.5333333

0.4

0.2

-0.2

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 40

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

-0.333 -0.4 1 0

-1 0 0 1

98

6. Update Solution

index : basic variable solution

1 : 81.66666

2 : 154

3 : 40

4 : 85

The new cost is = 4769

 Iteration #4

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.099999

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 2

3" 0

2" 0

Selected source length = 20

Reduced cost = 0.8999996

3. Update New Column

0.6666667

0.4

0

0

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 122.5

5. Update Basis Inverse

0.5 -0.2 0 0

0 0.2 0 0

-0.5 -0.2 1 0

-1.5 0.6 0 1

6. Update Solution

index : basic variable solution

1 : 122.5

2 : 105

3 : 40

99

4 : 85

The new cost is = 4658.75

Iteration #5

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.05

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.549999

For length 2" Dual cost = 1.349999

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 0

2" 0

Selected source length = 20

Reduced cost = 0

Optimal Fractional Solution
Cut Pat1 Pat2 Pat3 Pat4

6" 2 0 1 3

4" 2 5 2 0

3" 0 0 1 0

2" 0 0 0 1

Strip 20" 20" 17" 20"

Qty Used 122.5 105 40 85

Stock cost = 4658.75 Number of Iterations = 5

Optimal Integer Solutuion
Cut Pat1 Pat2 Pat3 Pat4

6" 2 0 1 3

4" 2 5 2 0

3" 0 0 1 0

2" 0 0 0 1

100

Strip 20" 20" 17" 20"

Qty Used 123 105 40 85

Pattern #1 Stock length used: 20 Quantity: 123

2 of 6-inch Cut-piece was cut from each 20-inch stock piece

2 of 4-inch Cut-piece was cut from each 20-inch stock piece

Pattern #2 Stock length used: 20 Quantity: 105

5 of 4-inch Cut-piece was cut from each 20-inch stock piece

Pattern #3 Stock length used: 17 Quantity: 40

1 of 6-inch Cut-piece was cut from each 17-inch stock piece

2 of 4-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

Pattern #4 Stock length used: 20 Quantity: 85

3 of 6-inch Cut-piece was cut from each 20-inch stock piece

1 of 2-inch Cut-piece was cut from each 20-inch stock piece

Optimal Stock Used = 353; Optimal Stock cost = 4665.5

101

Order #3: Order details and output from the cutting stock application

Order length and Demand

Cut Qty

6" 1500

4" 200

2" 203

Strip Board Length and Cost

Strip Cost

20" 13.5

19" 13

17" 11

Initial Solution Cutting Patterns(Fractional)

Cut Pat1 Pat2 Pat3

6" 3 0 0

4" 0 5 0

2" 0 0 10

Strip 20" 20" 20"

Qty Used 500 40 20.3

COST OF USED STOCK = 7564.05

Basis Inverse

0.3333 0 0

0 0.2 0

0 0 0.1

Iteration #1

102

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

2" 1

Selected source length = 20

Reduced cost = 1.35

3. Update New Column

1

0

0.1

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 203

5. Update Basis Inverse

0.3333 0 0

0 0.2 0

-1 0 1

6. Update Solution

index : basic variable solution

1 : 297

2 : 40

3 : 203

The new cost is = 7290

Iteration #2

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 2

2" 0

Selected source length = 20

Reduced cost = 0.8999996

3. Update New Column

0.6666667

103

0.4

0

4. Choose pattern to drop

Pattern 2 is leaving, at min ratio 100

5. Update Basis Inverse

0.3333 0 0

-0.333 0.5 0

-1 0 1

6. Update Solution

index : basic variable solution

1 : 230.3333

2 : 100

3 : 203

The new cost is = 7200

 Iteration #3

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.25

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

2" 0

Selected source length = 19

Reduced cost = 0.5

3. Update New Column

1

0

0

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 230.3333

5. Update Basis Inverse

0.3333 0 0

-0.333 0.5 0

104

-1 0 1

6. Update Solution

index : basic variable solution

1 : 230.3333

2 : 100

3 : 203

The new cost is = 7084.833

Iteration #4

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

For length 4" Dual cost = 2.416667

For length 2" Dual cost = 0.5

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 1

2" 0

Selected source length = 17

Reduced cost = 0.08333397

3. Update New Column

0.3333333

0.5

0

4. Choose pattern to drop

Pattern 2 is leaving, at min ratio 200

5. Update Basis Inverse

0.3333 0 0

-0.666 1 0

-1 0 1

6. Update Solution

index : basic variable solution

1 : 163.6667

2 : 200

3 : 203

The new cost is = 7068.166

 Iteration #5

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

105

For length 4" Dual cost = 2.333333

For length 2" Dual cost = 0.5

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

2" 0

Selected source length = 17

Reduced cost = 0

Optimal Fractional Solution
Cut Pat1 Pat2 Pat3

6" 3 2 3

4" 0 1 0

2" 0 0 1

Strip 19" 17" 20"

Qty Used 163.6667 200 203

Stock cost = 7068.167 Number of Iterations = 5

Optimal Integer Solutuion
Cut Pat1 Pat2 Pat3

6" 3 2 3

4" 0 1 0

2" 0 0 1

Strip 19" 17" 20"

Qty Used 164 200 203

Pattern #1 Stock length used: 19 Quantity: 164

3 of 6-inch Cut-piece was cut from each 19-inch stock piece

106

Pattern #2 Stock length used: 17 Quantity: 200

2 of 6-inch Cut-piece was cut from each 17-inch stock piece

1 of 4-inch Cut-piece was cut from each 17-inch stock piece

Pattern #3 Stock length used: 20 Quantity: 203

3 of 6-inch Cut-piece was cut from each 20-inch stock piece

1 of 2-inch Cut-piece was cut from each 20-inch stock piece

Optimal Stock Used = 567; Optimal Stock cost = 7072.5

107

Order #4: Order details and output from the cutting stock application

Order length and Demand

Cut Qty

6" 200

4" 150

3" 100

2" 120

Strip Board Length and Cost

Strip Cost

20" 13.5

19" 13

17" 11

Initial Solution Cutting Patterns(Fractional)
Cut Pat1 Pat2 Pat3 Pat4

6" 3 0 0 0

4" 0 5 0 0

3" 0 0 6 0

2" 0 0 0 10

Strip 20" 20" 20" 20"

Qty Used 66.66667 30 16.66667 12

COST OF USED STOCK = 1692

Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0 0 0.1666 0

108

0 0 0 0.1

Iteration #1

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.25

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 5

2" 1

Selected source length = 17

Reduced cost = 1.6

3. Update New Column

0

0

0.8333334

0.1

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 20

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0 0 0.2 -0.02

0 0 0 0.1

6. Update Solution

index : basic variable solution

1 : 66.66667

2 : 30

3 : 20

4 : 10

The new cost is = 1660

 Iteration #2

1. Calculate Dual variables (incremental costs)

109

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.93

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 1

Selected source length = 20

Reduced cost = 1.35

3. Update New Column

1

0

0

0.1

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 66.66667

5. Update Basis Inverse

0.3333 0 0 -0.03333334

0 0.2 0 0

0 0 0.2 -0.02

0 0 0 0.1

6. Update Solution

index : basic variable solution

1 : 66.66667

2 : 30

3 : 20

4 : 3.333333

The new cost is = 1570

Iteration #3

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.05

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.93

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 1

110

3" 1

2" 5

Selected source length = 17

Reduced cost = 0.3800001

3. Update New Column

0

0.2

0.2

0.48

4. Choose pattern to drop

Pattern 4 is leaving, at min ratio 6.944443

5. Update Basis Inverse

0.3333 0.0139 0.0138 -0.06944445

0 0.2 0 0

0 0.0083 0.2083 -0.04166666

0 -0.041 -0.041 0.2083333

6. Update Solution

index : basic variable solution

1 : 66.66667

2 : 28.61111

3 : 18.61111

4 : 6.944443

The new cost is = 1567.361

Iteration #4

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.076389

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.945833

For length 2" Dual cost = 1.270833

2. Generate Entering Column by Knapsack

Cut Pat

6" 1

4" 2

3" 1

2" 0

Selected source length = 17

Reduced cost = 0.4222221

3. Update New Column

0.3333333

0.4222222

111

0.2222222

-0.1111111

4. Choose pattern to drop

Pattern 2 is leaving, at min ratio 67.76315

5. Update Basis Inverse

0.3223684 0.03289474 0.006578947 -0.06578948

-0.1578947 0.4736842 -0.1052632 0.05263158

-0.006578947 0.01973684 0.2039474 -0.03947368

0.03289474 -0.09868421 -0.01973684 0.1973684

6. Update Solution

index : basic variable solution

1 : 44.07895

2 : 67.76315

3 : 3.552633

4 : 14.47368

The new cost is = 1538.75

Iteration #5

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.0625

For length 4" Dual cost = 2.5

For length 3" Dual cost = 1.9375

For length 2" Dual cost = 1.3125

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 0

3" 1

2" 1

Selected source length = 17

Reduced cost = 0.375001

3. Update New Column

0.6710527

-0.0131579

0.1973684

0.02631578

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 18.00001

5. Update Basis Inverse

112

0.3 0.0333 0.0333 -0.06666667

0.2 0.4666 -0.533 0.06666666

-0.70 0.0333 1.0333 -0.06666666

0.1 -0.1 -0.1 0.2

6. Update Solution

index : basic variable solution

1 : 32

2 : 67.99999

3 : 18.00001

4 : 14

The new cost is = 1532

Iteration #6

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.05

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.549998

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 0

2" 10

Selected source length = 20

Reduced cost = 1.907349E-06

Optimal Fractional Solution
Cut Pat1 Pat2 Pat3 Pat4

6" 3 1 2 0

4" 0 2 0 1

3" 0 1 1 1

2" 1 0 1 5

Strip 20" 17" 17" 17"

Qty Used 32 67.99999 18.00001 14

Stock cost = 1532 Number of Iterations = 6

Optimal Integer Solutuion

113

Cut Pat1 Pat2 Pat3 Pat4

6" 3 1 2 0

4" 0 2 0 1

3" 0 1 1 1

2" 1 0 1 5

Strip 20" 17" 17" 17"

Qty Used 32 68 18 14

Pattern #1 Stock length used: 20 Quantity: 32

3 of 6-inch Cut-piece was cut from each 20-inch stock piece

1 of 2-inch Cut-piece was cut from each 20-inch stock piece

Pattern #2 Stock length used: 17 Quantity: 68

1 of 6-inch Cut-piece was cut from each 17-inch stock piece

2 of 4-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

Pattern #3 Stock length used: 17 Quantity: 18

2 of 6-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

1 of 2-inch Cut-piece was cut from each 17-inch stock piece

Pattern #4 Stock length used: 17 Quantity: 14

1 of 4-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

5 of 2-inch Cut-piece was cut from each 17-inch stock piece

Optimal Stock Used = 132; Optimal Stock cost = 1532

114

Order #5: Order details and output from the cutting stock application

Order length and Demand

Cut Qty

6" 220

4" 115

3" 120

2" 40

Strip Board Length and Cost

Strip Cost

20" 13.5

19" 13

17" 11

Initial Solution Cutting Patterns(Fractional)

Cut Pat1 Pat2 Pat3 Pat4

6" 3 0 0 0

4" 0 5 0 0

3" 0 0 6 0

2" 0 0 0 10

Strip 20" 20" 20" 20"

Qty 73.33334 23 20 4

COST OF USED STOCK = 1624.5

Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0 0 0.1666 0

115

0 0 0 0.1

Iteration #1

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.25

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 0

3" 5

2" 1

Selected source length = 17

Reduced cost = 1.6

3. Update New Column

0

0

0.8333334

0.1

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 24

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0 0 0.2 -0.02

0 0 0 0.1

6. Update Solution

index : basic variable solution

1 : 73.33334

2 : 23

3 : 24

4 : 1.6

The new cost is = 1586.1

Iteration #2

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

116

For length 4" Dual cost = 2.7

For length 3" Dual cost = 1.93

For length 2" Dual cost = 1.35

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 1

Selected source length = 20

Reduced cost = 1.35

3. Update New Column

1

0

0

0.1

4. Choose pattern to drop

Pattern 4 is leaving, at min ratio 16

5. Update Basis Inverse

0.3333 0 0 0

0 0.2 0 0

0.2 0 0.2 -0.2

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 57.33334

2 : 23

3 : 24

4 : 16

The new cost is = 1564.5

Iteration #3

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.7

For length 3" Dual cost = 2.2

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 1

117

4" 2

3" 1

2" 0

Selected source length = 17

Reduced cost = 1.099999

3. Update New Column

0.5333333

0.4

0.2

-0.2

4. Choose pattern to drop

Pattern 2 is leaving, at min ratio 57.5

5. Update Basis Inverse

0.3333 0 0 0

-0.266 0.5 -0.099 0.099

0.2 0 0.2 -0.2

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 26.66667

2 : 57.5

3 : 12.5

4 : 27.5

The new cost is = 1501.25

Iteration #4

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.5

For length 4" Dual cost = 2.15

For length 3" Dual cost = 2.2

For length 2" Dual cost = 0

2. Generate Entering Column by Knapsack

Cut Pat

6" 3

4" 0

3" 0

2" 0

Selected source length = 19

Reduced cost = 0.5

3. Update New Column

1

0

118

0

0

4. Choose pattern to drop

Pattern 1 is leaving, at min ratio 26.66667

5. Update Basis Inverse

0.3333 0 0 0

-0.266 0.5 -0.099 0.099

0.2 0 0.2 -0.2

-1 0 0 1

6. Update Solution

index : basic variable solution

1 : 26.66667

2 : 57.5

3 : 12.5

4 : 27.5

The new cost is = 1487.917

 Iteration #5

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

For length 4" Dual cost = 2.283334

For length 3" Dual cost = 2.1

For length 2" Dual cost = 0.5

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 0

3" 1

2" 1

Selected source length = 17

Reduced cost = 0.2666664

3. Update New Column

-0.1333333

0

0.2

0.8

4. Choose pattern to drop

Pattern 4 is leaving, at min ratio 34.375

5. Update Basis Inverse

119

0.3333 0 0 0

-0.25 0.5 -0.125 0.125

0.1666 0 0.25 -0.25

-0.83330 -0.25 1.25

6. Update Solution

index : basic variable solution

1 : 31.25001

2 : 57.5

3 : 5.625

4 : 34.375

The new cost is = 1478.75

Iteration #6

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

For length 4" Dual cost = 2.25

For length 3" Dual cost = 2.166667

For length 2" Dual cost = 0.166666

2. Generate Entering Column by Knapsack

Cut Pat

6" 0

4" 1

3" 5

2" 0

Selected source length = 19

Reduced cost = 0.08333397

3. Update New Column

0.5833333

0.5

1.125

-1.125

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 5

5. Update Basis Inverse

0.3333333 0 0 0

-0.1851852 0.5555556 -0.1111111 0

0.03703702 -0.1111111 0.2222222 0

-0.7037038 0.1111111 -0.2222222 1

6. Update Solution

index : basic variable solution

120

1 : 28.33334

2 : 55

3 : 5

4 : 40

The new cost is = 1478.333

Iteration #7

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

For length 4" Dual cost = 2.25926

For length 3" Dual cost = 2.148148

For length 2" Dual cost = 0.1851845

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 1

3" 1

2" 0

Selected source length = 19

Reduced cost = 0.0740757

3. Update New Column

0.5185186

0.4444445

0.1111111

0

4. Choose pattern to drop

Pattern 3 is leaving, at min ratio 45

5. Update Basis Inverse

0.3333333 0 0 0

0.3333334 1 -1 0

-1 -1 2 0

0.3333333 1 -2 1

6. Update Solution

index : basic variable solution

1 : 5.000004

2 : 35

3 : 45

4 : 40

The new cost is = 1475

 Iteration #8

1. Calculate Dual variables (incremental costs)

For length 6" Dual cost = 4.333333

121

For length 4" Dual cost = 2.333336

For length 3" Dual cost = 1.999996

For length 2" Dual cost = 0.3333349

2. Generate Entering Column by Knapsack

Cut Pat

6" 2

4" 1

3" 0

2" 0

Selected source length = 17

Reduced cost = 2.861023E-06

Optimal Fractional Solution
Cut Pat1 Pat2 Pat3 Pat4

6" 3 1 2 2

4" 0 2 1 0

3" 0 1 1 1

2" 0 0 0 1

Strip 19" 17" 19" 17"

Qty Used 5.000004 35 45 40

Stock cost = 1475 Number of Iterations = 8

Optimal Integer Solutuion
Cut Pat1 Pat2 Pat3 Pat4

6" 3 1 2 2

4" 0 2 1 0

3" 0 1 1 1

2" 0 0 0 1

Strip 19" 17" 19" 17"

Qty Used 5 35 45 40

122

Pattern #1 Stock length used: 19 Quantity: 5

3 of 6-inch Cut-piece was cut from each 19-inch stock piece

Pattern #2 Stock length used: 17 Quantity: 35

1 of 6-inch Cut-piece was cut from each 17-inch stock piece

2 of 4-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

Pattern #3 Stock length used: 19 Quantity: 45

2 of 6-inch Cut-piece was cut from each 19-inch stock piece

1 of 4-inch Cut-piece was cut from each 19-inch stock piece

1 of 3-inch Cut-piece was cut from each 19-inch stock piece

Pattern #4 Stock length used: 17 Quantity: 40

2 of 6-inch Cut-piece was cut from each 17-inch stock piece

1 of 3-inch Cut-piece was cut from each 17-inch stock piece

1 of 2-inch Cut-piece was cut from each 17-inch stock piece

Optimal Stock Used = 125; Optimal Stock cost = 1475

123

APPENDIX B - VISUAL BASIC.NET CODES FOR THE CUTTING STOCK

„Declarations

Public Class ColumnGeneration

 Implements ICloneable

 Private NPart, NSource As Integer ' Nbr of required parts and supply parts

 Public Verbose, Fractional As Boolean

 Public StockLengths() As Integer

 Public StockCost() As Single

 Public StockUsed() As Integer ' Stock lengths, Stock costs, Stock Used

 Public StockOrigLoc() As Integer ' Used to report usage back in the right row

 Public Partlengths() As Single

 Public PartQty() As Single ' required part lengths and quanties

 Public totparts() As Integer ' for each length, sum of parts cut from all patterns

 Public StockusedByPattern() As Single ' required nbr of pieces for each pattern

 Public IStockUsedByPattern() As Integer ' integer version

 Public A(,) As Integer ' array of columns (patterns) and rows (part lengths)

 Public C1() As Single

 Public result As Boolean

 Public tag As Integer

 Public msg As String = "" 'Contains output info

 '-------------------- INPUT DATA ------------------------

 Private SL(), SC() As Single 'lengths and costs of stock piece types

 '-------------------- SIMPLEX DATA ------------------------*

 Private BI(,) As Single ' : ARRAY of array of extended; Inverse of B

 Private BBAR() As Single '; required amount of ith length

124

 Private B() As Single ' Right hand side

 Private AR() As Single ' updated entering column

 Private ARINV() As Single ' Inverse of AR

 Private PI() As Single ' Simplex multiplier (Dual cost)

 Private ZB As Single ' Total cost

 Private RMAX As Single ' minimum ratio of ratio test

 Private CMIN1 As Single ' minimum value of j-th reduced cost

 Private NR, NROW As Integer ' number of constraints

 '-------------------- ENTCOL DATA --------------------------

 Private SCOST As Single

 Private SSOURCE As Integer

 '-------------------- KNAPSACK DATA ------------------------

 Private KA() As Single '

 Private STATE(), VARS(), XS() As Integer

 Private NODE(,), D(,) As Integer

 Private Demand(,), Inv(,) As Single

 Private RESOURCE As Integer

 Private NCOL, NSTAGE, OPTN As Integer

 Private C() As Single '

 Private COST(,) As Single

 Private F(,) As Single '

 Private OPTD As Integer

 Private OPTF As Single

125

 '-------------------- control variables --------------------

 Dim SW As Char

 Dim fp As String

 Dim IERROR As Integer

 Dim ERR_MSG As String

 Public SLENGTH() As Single ' Stock lengths selected for each pattern

 Public Tolerance As Single = 0.00001

 Public IT As Integer

Public Sub GetData(ByVal M As Integer, ByVal N As Integer, ByVal stL() As _ Single,ByVal stC() As

Single, ByVal iL() As Single, ByVal iQ() As Single)

 Dim i, j As Integer

 NSource = N

 NPart = M

 Init(M, N)

 Verbose = True

 Fractional = True

 For i = 1 To NSource

 StockLengths(i) = stL(i - 1)

 StockCost(i) = stC(i - 1)

 StockOrigLoc(i) = i

 StockUsed(i) = 0

 Next

 For i = 1 To NPart

 For j = 1 To NPart : A(i, j) = 0 : Next j

126

 Next i

 For i = 1 To NPart

 Partlengths(i) = iL(i - 1)

 PartQty(i) = iQ(i - 1)

 Next

 End Sub

 Public Sub Solve()

 Dim i As Integer

 For i = 1 To NSource

 SL(i) = StockLengths(i)

 SC(i) = StockCost(i)

 StockOrigLoc(i) = StockOrigLoc(i)

 StockUsed(i) = StockUsed(i)

 Next i

 Verbose = True

 Fractional = True

 For i = 1 To NPart

 Partlengths(i) = Partlengths(i)

 PartQty(i) = PartQty(i)

 Next

 ReDim NODE(NPart + 1, 0)

 ReDim Demand(NPart + 1, 0) ' max nbr of shortest piece from longest stock

 ReDim D(NPart + 1, 0)

127

 ReDim Inv(NPart + 1, 0)

 ReDim C(NPart + 1)

 ReDim COST(NPart + 1, 0)

 ReDim F(NPart + 1, 0)

 NROW = NPart

 IT = 1

 InitialSolution()

 DualVariables()

 EnteringColumn()

 While (CMIN1 <= -Tolerance)

 UpdateEnteringColumn()

 LeavingColumn()

 UpdateBInverse()

 UpdateSolution()

 IT = IT + 1

 ' a column change :'Updates the patterns after a new pattern has been found

 For i = 1 To NPart : A(NR, i) = XS(i) : Next i

 ' a cost endowing

 C1(NR) = SCOST

 SLENGTH(NR) = SL(SSOURCE)

 DualVariables() 'Computes dual variables

 EnteringColumn()

 End While

 OptimalSolution() ' display solution

 End Sub

128

 Private Sub InitialSolution()

 ' find an initial solution.

 Dim i, j As Integer

 For i = 1 To NPart

 For j = 1 To NPart

 If (i <> j) Then : A(i, j) = 0

 'Finds the initial m patterns for

 the application

 Else : A(i, j) = Math.Truncate(SL(1) / Partlengths(i))

' use first source

 End If

 Next j

 Next i

 For i = 1 To NPart

 For j = 1 To NPart

 'Creates the inverse of the initial

Basis B (in this case A) [BI]

 If (i = j) And (A(j, i) > 0) Then : BI(j, i) = 1.0 / A(j, i)

 Else : BI(j, i) = 0

 End If

 Next j

 Next i

129

 For i = 1 To NPart

 StockusedByPattern(i) = 0

 'Compute the total stocks used by each pattern i

For j = 1 To NPart : StockusedByPattern(i) = StockusedByPattern(i) + BI(j, i) *

PartQty(j) : Next j

 Next i

 For i = 1 To NPart

 C1(i) = SC(1)

 SLENGTH(i) = SL(1)

 Next i

 ZB = 0

 For i = 1 To NPart : ZB = ZB + C1(i) * StockusedByPattern(i) : Next i

 PrintInitialSolution() 'Prints the initial solution

 msg &= vbNewLine

 msg &= " --- B Inverse --- " & vbNewLine

 Me.PrintMatrix(BI) 'Prints the inverse of the B Matrix

 msg &= vbNewLine

 End Sub

 Private Sub DualVariables()

 'computes simplex multiplier

 Dim i, j As Integer

 For i = 1 To NPart

 PI(i) = 0

130

 For j = 1 To NPart : PI(i) = PI(i) + C1(j) * BI(j, i) : Next

 Next i

 If Verbose Then

 msg += " " & vbNewLine

 msg += " " & vbNewLine

 msg += "********** Iteration #" & CStr(IT) _

& "***********" & vbNewLine

 msg += "--- Calculate Dual variables (incremental costs) _

---" & vbNewLine

 For i = 1 To NPart

 msg &= "For length " & CStr(Partlengths(i))

 msg &= " Dual cost = " & PI(i) & vbNewLine

 Next i

 End If

 End Sub

 Private Sub EnteringColumn()

 ' finds a cutting pattern to improve current

„solution by dynamic program algorithm

 Dim i, j, k As Integer

 Dim tempx() As Integer

 Dim Valu, maxval As Single

 ReDim tempx(NPart + 1)

 For i = 1 To NPart : XS(i) = 0 : Next i ' Check Pi_value

„before column generation

131

 ' Check Pi_value before column generation not implimented yet.

 ' SLACK ENTERING

 For i = 1 To NPart

 If (PI(i) < -Tolerance) Then

 XS(i) = -1

 SCOST = 0.0

 For j = 1 To NSource

 If (Partlengths(i) <= SL(j)) Then SSOURCE = j

 Next

 If Verbose Then

 For j = 1 To NPart '

 If XS(j) > 0 Then

 For k = 1 To XS(j) '

 Next k

 End If

 Next j

 End If

 End If

 Next

 ' Find integer solution by dynamic programming

 maxval = 0.0

 ' for NSOURCE type of source length

 For k = 1 To NSource 'DP data formation

 NCOL = NPart

 RESOURCE = Math.Truncate(SL(k))

132

 For i = 1 To NPart : KA(i) = Partlengths(i) : Next i

 For i = 1 To NPart : C(i) = PI(i) : Next i

 ' Call dynamic program

 DPKnapsack()

 ' Check optimal condition Zj -Cj <= 0

 ' Select source type by maxval

 Valu = 0.0

 For i = 1 To NPart : Valu = Valu + XS(i) * PI(i) : Next i

 If ((Valu - SC(k)) > maxval) Then

 maxval = Valu - SC(k)

 SSOURCE = k

 SCOST = SC(k)

 ' Return a generated entering column

 For j = 1 To NPart : tempx(j) = XS(j) : Next j

 End If

 Next k ' End of Selection loop

 For j = 1 To NPart : XS(j) = tempx(j) : Next j

 CMIN1 = -maxval

 PrintSolution(maxval)

 End Sub

133

 Private Sub DPKnapsack()

 ' solves a knapsack problem using dynamic programming

 Dim i, j, k, nvar, nstate, nstate1, stage, _

stage1, invent, tempn As Integer

 Dim temp As Single

 'Dim s As String

 ' formulation

 NSTAGE = NCOL

 STATE(1) = 1

 If RESOURCE >= UBound(NODE, 1) Then

 ' increase NState array sizes

 ReDim NODE(NPart + 1, RESOURCE + 2)

 ReDim Demand(NPart + 1, RESOURCE + 2) ' max nbr of

„shortest piece from longest stock)

 ReDim Inv(NPart + 1, RESOURCE + 2)

 ReDim COST(NPart + 1, RESOURCE + 2)

 ReDim F(NPart + 1, RESOURCE + 2)

 ReDim D(NPart + 1, RESOURCE + 2)

 End If

 For i = 1 To NSTAGE : VARS(i) = Math.Truncate(RESOURCE / _

KA(i) + 1) : Next

 For i = 2 To NCOL : STATE(i) = RESOURCE + 1 : Next

 For i = 1 To NSTAGE

 nstate = VARS(i)

 For j = 1 To nstate : NODE(i, j) = j : Next

134

 Next i

 For i = 1 To NCOL

 nstate = VARS(i)

 For j = 2 To nstate : Demand(i, j) = (j - 1) * KA(i) : Next

 Demand(i, 1) = 0

 Next i

 For i = 1 To NCOL

 nstate = VARS(i)

 For j = 2 To nstate : COST(i, j) = (j - 1) * C(i) : Next

 COST(i, 1) = 0

 Next i

 ' initialization

 stage = NSTAGE

 nstate = STATE(NSTAGE)

 nstate1 = VARS(stage)

 For j = 1 To nstate

 F(stage, j) = 0

 D(stage, j) = 0

 Next

 For j = 1 To nstate

 For k = 1 To nstate1

 invent = RESOURCE - (j - 1)

 If (invent >= Demand(stage, k)) Then

 temp = COST(stage, k)

 If (F(stage, j) < temp) Then

135

 F(stage, j) = temp

 D(stage, j) = k

 Inv(stage, j) = invent - Demand(stage, k)

 End If

 End If

 Next

 Next

 ' DP loop

 For i = 2 To NSTAGE

 stage = NSTAGE - i + 1

 stage1 = stage + 1 ' backward

 nvar = VARS(stage)

 nstate = STATE(stage)

 For j = 1 To nstate

 F(stage, j) = 0

 NODE(stage, j) = 0

 D(stage, j) = 0

 Next j

 For j = 1 To nstate

 invent = 0

 For k = 1 To nvar

 invent = RESOURCE - (j - 1)

 If (invent >= Demand(stage, k)) Then

 invent = invent - Demand(stage, k)

136

 tempn = Math.Round(RESOURCE - invent + 1) ' GDD

 temp = COST(stage, k) + F(stage1, tempn)

 If (F(stage, j) < temp) Then

 F(stage, j) = temp

 D(stage, j) = k

 NODE(stage, j) = tempn

 invent = Inv(stage1, tempn)

 End If

 End If

 Next k

 Inv(stage, j) = invent

 Next j

 Next i

 OPTF = F(1, 1)

 OPTN = 1

 OPTD = D(1, 1)

 XS(1) = OPTD

 nstate = NODE(1, OPTN)

 For i = 2 To NSTAGE

 XS(i) = D(i, nstate)

 nstate = NODE(i, nstate)

 Next i

For i = 1 To NSTAGE : If (XS(i) <= 1) Then : XS(i) = 0 : Else : _XS(i) = XS(i) - 1 : End

If : Next i

 End Sub

137

Private Sub UpdateEnteringColumn()

 'Updates newly found column

 Dim i, j As Integer

 For i = 1 To NPart

 AR(i) = 0

 For j = 1 To NPart : AR(i) = AR(i) + BI(i, j) * XS(j) : Next j

 Next i

 If Verbose Then

 msg &= "--- Update New Column ---" & vbNewLine

 For i = 1 To NPart

 msg &= AR(i) & vbNewLine

 Next i

 msg &= vbNewLine

 End If

 End Sub

 Private Sub LeavingColumn()

 ' determines a dropping variable by ratio test

 Dim i As Integer

 Dim temp As Single

 NR = 0

 RMAX = 1.0E+30

 For i = 1 To NPart

 temp = 1.0E+30

138

 If AR(i) > 0 Then temp = StockusedByPattern(i) / AR(i)

 If (RMAX > temp) Then

 RMAX = temp

 NR = i

 End If

 Next

 If Verbose Then

 msg &= "--- Choose pattern to drop {PIVOT ROW} ---" & vbNewLine

 msg &= "Pattern " & NR & " is leaving, at min ratio " _

& RMAX & vbNewLine

 End If

 End Sub

 Private Sub UpdateBInverse()

 ' Update B Inverse

 Dim i, j As Integer

 For i = 1 To NPart : ARINV(i) = -AR(i) / AR(NR) : Next i

 ARINV(NR) = 1 / AR(NR)

 For i = 1 To NPart

 If (i <> NR) Then

 For j = 1 To NPart : BI(i, j) = BI(i, j) + _

ARINV(i) * BI(NR, j) : Next j

 End If

 Next i

139

 For j = 1 To NPart : BI(NR, j) = ARINV(NR) * BI(NR, j) : Next j

 If Verbose Then

 msg &= vbNewLine

 msg &= "---Update B Inverse ---" & vbNewLine

 Me.PrintMatrix(BI)

 End If

 End Sub

 Private Sub UpdateSolution()

 Dim i As Integer

 For i = 1 To NPart : StockusedByPattern(i) = _

StockusedByPattern(i) - AR(i) * RMAX : Next i

 StockusedByPattern(NR) = RMAX

 ZB = ZB + CMIN1 * RMAX

 If Verbose Then

 msg &= vbNewLine

 msg &= "--- Update Solution ---" & vbNewLine

 msg &= "index : basic variable solution" & vbNewLine

 For i = 1 To NPart

 msg &= i & " : " & StockusedByPattern(i) & vbNewLine

 Next i

 msg &= "The new cost is = " & ZB & vbNewLine

 'Me.PrintCurrentBasis(BI)

 End If

 End Sub

