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ABSTRACT 

Integer programming is an important class of mathematical programming problems which is a 

useful tool for modelling and optimizing real-life problems. The knapsack problem is a form of 

integer programming problem that has only one constraint and can be used to strengthen cutting 

planes for general integer programs. These facts make the studies of the knapsack problems and 

their variants extremely important area of research in the field of operations research. This thesis 

seeks to apply the branch-and-bound algorithm to model site development for solid waste 

disposal in Sekondi-Takoradi metropolis as a 0-1 knapsack problem. The model developed could 

be adopted for any land site management problem that can be modelled as a single 0-1 knapsack 

problem. Seven sites were proposed for development and the study reveals that sites A, B, F and 

G should be selected to obtain an optimum output and recommend that Knapsack problem model 

should be adopted by the district assembly for refuse disposal management.  
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CHAPTER 1 

INTRODUCTION 

Knapsack problems are among the most intensively studied NP-hard combinatorial optimization 

problems. The applications of these problems span a wide canvas from industrial applications 

and financial management to electronic commerce and personal health-care. The common 

flavour in most of these problems is resource allocation. The allocation of a specific amount of a 

single resource among competitive alternatives is often modelled as a knapsack problem or its 

variants. In this chapter of the thesis, we shall give an overview of integer programming model 

of which Knapsack problems falls under; a brief description of the problem statement of the 

thesis is also presented as well as the objectives, the methodology, the justification and the 

organization of the thesis. 

  

 1.1 BACKGROUND OF STUDY 

Mathematical programming is a fast growing branch of mathematics with a surprisingly short 

history. Most of its development has occurred during the second half of this century. Basically, 

one deals with the maximization (or minimization) of some function subject to one or more 

constraints. 

Today mathematical programming problems arise in all sorts of areas; this is the age of 

optimization as a scientist stated (Geir, 1997). Modern society, with advanced technology and 

competitive businesses typically needs to make best possible decisions, which e.g. involve the 

best possible use of resources, maximizing some revenue, minimizing production or design 

costs, etc. In mathematical areas one may meet approximation problems like solving some 

equations “within some tolerance” but without using too many variables (resources). In computer 



 
 

science, the very large scale integration (VLSI) area gives rise to many optimization problems: 

physical layout of microchips, routing, via minimization and so on. In telecommunications, the 

physical design of networks lead to many different optimization problems, e.g. that of 

minimizing network design (or expansion) costs subject to constraints reflecting that the network 

can support the described traffic. In fact, in many other areas, problems involving 

communication networks can be viewed as optimization problems. In economics (econometrics) 

optimization models are used for e.g. describing money transfer between sectors in society or 

describing the efficiency of production units. 

The large amount of applications, combined with the development of fast computers, has lead to 

massive innovation in optimization. In fact, today optimization may be divided into several 

fields, e.g. linear programming, non-linear programming, discrete optimization and stochastic 

optimization. 

Integer programming is an important class of mathematical programming problems used to 

optimize linear systems that require the variables to be integers. It is the natural way of modeling 

many real-life and theoretical problems, including some combinatorial optimization problems 

and it is a broad and well-studied area with a lot of potential to improve. 

With the standard linear programming problem, the assumption that choice variables are 

infinitely divisible (can be any real number) is unrealistic in many settings. Integer programming 

problems are typically much harder to solve than linear programming problems and there are no 

fundamental theoretical results like Duality or Computational algorithms like the Simplex 

algorithm to help one to understand and solve the problems. This sad realization has made the 

study of integer programming problems goes in two directions. First, people study specialized 

model. These problems can be solved as linear programming problems (that is, adding the 



 
 

integer constraints does not change the solution). In many cases, they can be solved more 

efficiently than general linear programming problems using new algorithms. Second, people 

introduce general algorithms. These algorithms are not as computationally efficient as the 

simplex algorithm, but can be formulated generally. 

Integer programs are beneficial because, if one can solve them, then one is guaranteed to obtain 

the best solution. However, this guarantee of optimality has a computational tradeoff, and integer 

programs currently may require exponential times to solve. The computational problems are so 

extreme that many integer programs cannot be solved, even using supercomputers (Geir,1997). 

 One example of the usefulness of integer programs optimized the scheduling and deployment of 

San Francisco Police Department Patrol Officers (Hillier and Lieberman, 2001). The criteria 

used in this study were the level of public safety, level of officer’s morale, and cost of 

operations.  

The computerized system that was developed used a mathematical model to incorporate each of 

the goals and increased San Francisco Police Department’s net income by 14 million dollars and 

decreased response times by twenty (20) percent. Similarly, Delta Airlines saved approximately 

100 million dollars per year by implementing optimal fleet assignments. More than 2,500 

domestic flights and 450 airplanes per day are assigned by this integer programming (IP)  

(Scheff et al., 1994). 

In addition to the above application, integer programs have been used to solve a number of real-

life problems, including airline scheduling (Gutierrez, 2007), and (Huschka, 2007), sports 

scheduling (Easton, et al., 2003), construction site location (Nemhauser and Wolsey, 1988), 

manufacturing job scheduling, and telephone network optimizations (Tomastik, 1993).  Thus, 



 
 

integer programming has played an important role in supporting managerial decisions in the 

areas of capital budgeting, warehouse location, and scheduling.  

The Knapsack Problems are among the simplest integer programming problems which are NP-

hard. Problems in this class are typically concerned with selecting from a set of given items, each 

with a specific weight and value, a subset of items whose weight sum does not exceed a 

prescribed capacity and whose value is maximum. The specific problem that arises depends on 

the number of knapsack (single or multiple) to be filled and on the number of available items of 

each type (bounded or unbounded). Because of their wide range of applicability, knapsack 

problems have known a large number of variations such as: single and multiple constrained 

knapsacks, knapsack with disjunctive constraints, multidimensional knapsacks, multiple choice 

knapsacks, single and multiple objective knapsacks, integer, linear, non-linear knapsacks, 

deterministic and stochastic knapsacks, knapsacks with convex / concave objective functions, 

etc. 

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each 

type. Knapsack Problems have been intensively studied over the past forty-five (45) years 

because of their direct application to problems arising in industries and also for their contribution 

to the solution methods for integer programming problems. Several exact algorithms based on 

branch and bound, dynamic programming and heuristics have been proposed to solve the 

Knapsack Problems.  

 

1.2 PROBLEM STATEMENT 

This thesis seeks to optimally select the best site among the various proposed sites that have been 

ear-marked for refuse disposal in Sekondi-Takoradi Metropolis given the budget constraint.   



 
 

An example of this problem is a camper going backpacking. He wishes to bring the best 

combination of equipment he can. Each piece of equipment (tent, food, water, etc) has a value to 

the camper that is assigned a numerical representation. Each piece of equipment also has a 

corresponding weight, but the capacity of the bag is b. The camper can only bring as much 

equipment as he can carry. There are various items he can carry in the bag, but the total weight 

of these items is greater than the weight the bag can carry. If each item has a value, vi and a 

weight wi for each i (such that i = 1, 2, 3… N, where N is the total number of items) and xi the 

number of units of item i in the bag.  

Two examples of areas where knapsack problems can be applied are resource allocation 

(Granmo et al., 2007) and portfolio management (Bertsimas et al., 1999). In resource allocation, 

a company wishes to maximize its return from resources invested into each division or product 

subject to the total resources available. In portfolio management, the goal is to maximize returns 

while minimizing risk. The knapsack problem is widely studied because of its importance to 

integer programs. Any single constraint of a binary integer program can be viewed as a knapsack 

constraint.  

 

1.3 OBJECTIVES  

The objective of the study is to model a real-life problem in site development for rubbish 

disposal as a 0-1 knapsack problem, and propose branch-and-bound algorithm for solving the 

problem.  

 

 

 



 
 

1.4 METHODOLOGY  

This thesis seeks to apply the branch-and-bound algorithm for solving our proposed knapsack 

problem. First, the algorithm is presented along with relevant examples. A real life 

computational study is performed and a code in FORTRAN 90 programming language will be 

employed to implement the algorithm. 

 

 1.5 JUSTIFICATION  

 Knapsack problems are widely used in financial decision making, and very interesting from the 

perspective of computer science because; there is a pseudo polynomial time algorithm using 

dynamic programming, there is a fully polynomial-time approximation scheme, which uses the 

pseudo-polynomial time algorithm as a subroutine, the problem is NP-complete to solve exactly, 

thus it is expected that no known algorithm can be both correct and fast (polynomial-time) on all 

cases, and many cases that arise in practice, and “random instances” from some distributions, can 

nonetheless be solved exactly. In view of these, studies of knapsack problems and their 

algorithms has been an area of much interest in the contribution to academic knowledge, hence 

the reason for solving the knapsack problem. 

 

1.6 LIMITATIONS OF THE STUDY 

The revenue generation or the income of the assembly is most at times uncertain and can affect 

the budgeted amount for refuse management. Also, the rate of inflation is unpredictable which 

could lead to high cost of goods and services. 

 

 



 
 

1.7 ORGANIZATION OF THE THESIS 

The study is organized in five chapters. In chapter one, we presented a background study of 

integer programming of which knapsack problems form part, the problem statement, the 

objectives, methodology, justification and limitation of the study.  

In chapter two, pertinent literature in the field Knapsack problems will be discussed. 

Chapter three presented the branch-and-bound algorithm.  

Chapter four is data collection and analysis 

Chapter five, the last chapter presents conclusion and recommendations of the study. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2 

LITERATURE REVIEW 

The knapsack problem is a classical combinatorial problem used to model many industrial 

situations. Faced with uncertainty on the model parameters, robustness analysis is an appropriate 

approach to find reliable solutions. Kalai  and Vanderpooten (2006) studied the robust knapsack 

problem using a max-min criterion, and proposed a new robustness approach, called 

lexicographic α-robustness. The authors showed that the complexity of the lexicographic α-

robust problem does not increase compared with the max-min version and presented a pseudo-

polynomial algorithm in the case of a bounded number of scenarios. 

Knapsack problems with setups find their application in many concrete industrial and financial 

problems. Moreover, they also arise as sub-problems in a Dantzig-Wolfe decomposition 

approach to more complex combinatorial optimization problems, where they need to be solved 

repeatedly and therefore efficiently. Micheal et al., (2009) considered the multiple-class integer 

knapsack problem with setups. Items are partitioned into classes whose use imply a setup cost 

and associated capacity consumption. Item weights are assumed to be a multiple of their class 

weight. The total weight of selected items and setups is bounded. The objective is to maximize 

the difference between the profits of selected items and the fixed costs incurred for setting-up 

classes. A special case is the bounded integer knapsack problem with setups where each class 

holds a single item and its continuous version where a fraction of an item can be selected while 

incurring a full setup. The authors showed the extent to which classical results for the knapsack 

problem can be generalized to these variants with setups. In particular, an extension of the 



 
 

branch-and-bound algorithm of Horowitz and Sahni (1974) is developed for problems with 

positive setup costs.  

The multidimensional knapsack problem (MKP) is a well-known, strongly NP-hard problem and 

one of the most challenging problems in the class of the knapsack problems. In the last few 

years, it has been a favorite playground for meta-heuristics, but very few contributions have 

appeared on exact methods. Renata  and Grazia (2009) presented an exact approach based on the 

optimal solution of sub-problems limited to a subset of variables. Each sub-problem is faced 

through a recursive variable-fixing process that continues until the number of variables decreases 

below a given threshold (restricted core problem). The solution space of the restricted core 

problem is split into subspaces, each containing solutions of a given cardinality. Each subspace is 

then explored with a branch-and-bound algorithm. Pruning conditions are introduced to improve 

the efficiency of the branch-and-bound routine.  

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective function 

subject to a knapsack constraint, where all coefficients are assumed to be nonnegative and all 

variables are binary. The problem has applications in location and hydrology, and generalizes the 

problem of checking whether a graph contains a clique of a given size. Alberto et al., (2007) 

proposed an exact branch-and-bound algorithm for QKP, where upper bounds are computed by 

considering a Lagrangian relaxation that is solvable through a number of (continuous) knapsack 

problems. Suboptimal Lagrangian multipliers are derived by using sub-gradient optimization and 

provide a convenient reformulation of the problem. The authors also discussed the relationship 

between our relaxation and other relaxations. Heuristics, reductions, and branching schemes 

were described. In particular, the processing of each node of the branching tree is quite fast: 

Their approach does not update the Lagrangian multipliers, and use suitable data structures to 



 
 

compute an upper bound in linear expected time in the number of variables. The authors reported 

exact solution of instances with up to 400 binary variables, i.e., significantly larger than those 

solvable by the previous approaches. The key point of this improvement is that the upper bounds 

we obtain are typically within 1% of the optimum, but can still be derived effectively. They also 

showed that their algorithm is capable of solving reasonable-size Max Clique instances.  

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems 

in this class are typically concerned with selecting from a set of given items, each with a 

specified weight and value, a subset of items whose weight sum does not exceed a prescribed 

capacity and whose value is maximum. The specific problem that arises depends on the number 

of knapsacks (single or multiple) to be filled and on the number of available items of each type 

(bounded or unbounded). Because of their wide range of applicability, knapsack problems have 

known a large number of variations such as: single and multiple-constrained knapsacks, 

knapsacks with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, 

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and 

stochastic knapsacks, knapsacks with convex / concave objective functions, etc. The classical 0-1 

Knapsack Problem arises when there is one knapsack and one item of each type. Knapsack 

Problems have been intensively studied over the past forty (40) years because of their direct 

application to problems arising in industry (for example, cargo loading, cutting stock, and 

budgeting) and also for their contribution to the solution methods for integer programming 

problems. Several exact algorithms based on branch and bound, dynamic programming and 

heuristics have been proposed to solve the Knapsack Problems 

Oppong (2009) presented the application of classical 0-1 knapsack problem with a single 

constraint to selection of television advertisements at critical periods such as Prime time News, 



 
 

news adjacencies, Break in News and peak times. The Television (TV) stations have to schedule 

programmes interspersed with adverts or commercials which are the main sources of income of 

broadcasting stations. The goal in scheduling commercials is to achieve wider audience 

satisfaction and making maximum income from the commercials or adverts. The author 

approach is flexible and can incorporate the use of the knapsack for Profit maximization in the 

TV adverts selection problem, and focused on using a simple heuristic scheme (Simple flip) for 

the solution of knapsack problems.  

The collapsing knapsack problem is a generalization of the ordinary knapsack problem, where 

the knapsack capacity is a non-increasing function of the number of items included. Whereas 

previous methods on the topic have applied quite involved techniques,  

Ulrich et al., (1995) presented and analyze two rather simple approaches: One approach that was 

based on the reduction to a standard knapsack problem, and another approach that was based on 

a simple dynamic programming recursion. Both algorithms have pseudo-polynomial solution 

times, guaranteeing reasonable solution times for moderate coefficient sizes. Computational 

experiments are provided to expose the efficiency of the two approaches compared to previous 

algorithms. 

Kosuch and Lisser (2009) studied a particular version of the stochastic knapsack problem with 

normally distributed weights: the two-stage stochastic knapsack problem. Contrary to the single-

stage knapsack problem, items can be added to or removed from the knapsack at the moment the 

actual weights become known (second stage). In addition, a chance-constraint is introduced in 

the first stage in order to restrict the percentage of cases where the items chosen lead to an 

overload in the second stage. According to the authors, there is no method known to exactly 



 
 

evaluate the objective function for a given first-stage solution, and therefore proposed methods to 

calculate the upper and lower bounds. These bounds are used in a branch-and-bound framework 

in order to search the first-stage solution space. Special interest was given to the case where the 

items have similar weight means. Numerical results are presented and analyzed. 

Stefanie (2010) presented an Ant Colony Optimization algorithm for the Two-Stage Knapsack 

problem with discretely distributed weights and capacity, using a meta-heuristic approach. Two 

heuristic utility measures were proposed and compared. Moreover, the author introduced the 

novel idea of non-utility measures in order to obtain a criterion for the construction termination. 

The author argued why for the proposed measures, it is more efficient to place pheromone on 

arcs instead of vertices or edges of the complete search graph. Numerical tests show that the 

author’s algorithm is able to produce, in much shorter computing time, solutions of similar 

quality than CPLEX after two hour. Moreover, with increasing number of scenarios the 

percentage of runs where his algorithm is able to produce better solutions than CPLEX (after 2h) 

increases. 

 Mattfeld and Kopfer (2003) described terminal operations for the vehicle transshipment hub in 

Bremerhaven as a knapsack and have derived an integral decision model for manpower planning 

and inventory control. The authors proposed a hierarchical separation of the integral model into 

sub models and can develop integer programming algorithm to solve the arising sub problems. 

In bus transit operations planning process, the important components are network route design, 

setting timetables, scheduling vehicles, assignment of drivers, and maintenance scheduling.  

 

Haghani and Shafahi (2002) presented integer programming model to design daily inspection 

and maintenance schedules for the buses that are due for inspection so as to minimize the 



 
 

interruptions in the daily bus operating schedule, and maximize the utilization of the 

maintenance facilities. 

The setting of timetables and bus routing or scheduling are essential to an intercity bus carrier’s 

profitability, its level of service, and its competitive capacity in the market. Yan and Chen (2002) 

developed a model that help Taiwanese intercity bus carriers in timetable settings and bus 

routing or scheduling. The model employs multiple time-space networks that can formulate bus 

movements and passenger flows and manage the interrelationships between passenger trip 

demands and bus trip suppliers to produce the best timetables and bus routes or schedules.  

 

Higgins et al., (1996) described the development and use of integer programming model to 

optimize train schedules on single-line rail corridors. The model has been developed with two 

major applications in mind: as a decision support tool for train dispatchers to schedule trains in 

real time in an optimal way and as a planning tool to evaluate the impact of timetable changes, as 

well as railroad infrastructure changes. The model was developed based on a real-life problem.  

 

Ghoseiri et al., (2004) developed an optimization model for the passenger train-scheduling 

problem on a railroad network, which includes single, and multiple tracks, as well as multiple 

platforms with defferent train capacities. 

 Claessens et al., (1998) considered the problem of cost optimal railway line allocation for 

passenger trains for the Dutch railway system. A mathematical programming model was 

developed, which minimized the operating costs subject to service constraints and capacity 

requirements. The model optimized on lines, line types, routes, frequencies, and train lengths. 

First, the line allocation model was formulated as an integer nonlinear programming model. The 



 
 

model was then transformed into an integer linear programming model with binary decision 

variables. The model was solved and applied to a sub network of the Dutch railway system for 

which it showed a substantial cost reduction.  

The deterministic knapsack problem is a well known and well studied NP-hard combinatorial 

optimization problem. It consists in filling a knapsack with items out of a given set such that the 

weight capacity of the knapsack is respected and the total reward maximized. In the deterministic 

problem, all parameters (item weights, rewards, knapsack capacity) are known (deterministic). In 

the stochastic counterpart, some (or all) of these parameters are assumed to be random, i.e. not 

known at the moment the decision has to be made.  

 

Stefanie et al., (2010) studied the stochastic knapsack problem with expectation constraint. The 

item weights are assumed to be independently normally distributed. The authors solved the 

relaxed version of this problem using a stochastic gradient algorithm in order to provide upper 

bounds for a branch-and-bound framework. Two approaches to estimate the needed gradients are 

applied, one based on Integration by Parts and one using Finite Differences. Finite Differences is 

a robust and simple approach with efficient results despite the fact that the estimated gradients 

are biased; meanwhile Integration by Parts is based upon a more theoretical analysis and permits 

to enlarge the field of applications. 

Stefanie et al., (2009) proposed a mixed integer bi-level problem having a probabilistic knapsack 

constraint in the first level. The problem formulation is mainly motivated by practical pricing 

and service provision problems as it can be interpreted as a model for the interaction between a 

service provider and clients. The authors assumed the probability space to be discrete which 

allows us to reformulate the problem as a deterministic equivalent bi-level problem. Via a 



 
 

reformulation as linear bi-level problem, we obtain a quadratic optimization problem, the so 

called Global Linear Complementarity Problem. Based on this quadratic problem, the authors 

finally proposed a procedure to compute upper bounds on the initial problem by using a 

Lagrangian relaxation and an iterative linear min-max scheme. 

The knapsack problem (KP) and its multidimensional version (MKP) are basic problems in 

combinatorial optimization.  

 

Thibaut and Jacques (2010) presented the multiobjective extension (MOKP and MOMKP), for 

which the aim is to obtain or to approximate the set of efficient solutions. In a first step, the 

authors classified and described briefly the existing works that are essentially based on the use of 

meta-heuristics. In a second step, the authors proposed the adaptation of the two-phase Pareto 

local search (2PPLS) to the resolution of the MOMKP. With this aim, the authors used a very-

large scale neighborhood (VLSN) in the second phase of the method that is the Pareto local 

search. They compared their results to state-of-the-art results and showed that they obtained 

results never reached before by heuristics, for the biobjective instances. Finally they considered 

the extension to three-objective instances. 

Eleni and Nicos (2010) presented a new exact tree-search procedure for solving two-dimensional 

knapsack problems in which a number of small rectangular pieces, each of a given size and 

value, are required to be cut from a large rectangular stock plate. The objective is to maximize 

the value of pieces cut or minimize the wastage. The authors considered the case where there are 

a maximum number of times that a piece may be used in a cutting pattern. The algorithm limits 

the size of the tree search by using a bound derived from a Langrangean relaxation of a 0–1 

integer programming formulation of the problem. Sub-gradient optimization is used to optimize 



 
 

this bound. Reduction tests derived from both the original problem and the Lagrangean 

relaxation produce substantial computational gains. The computational performance of the 

algorithm indicates that it is an effective procedure capable of solving optimally practical two-

dimensional cutting problems of medium size. 

Lawler (1997) presented fully polynomial approximation algorithms for knapsack problems are 

presented. These algorithms are based on ideas of Ibarra and Kim, with modifications which 

yield better time and space bounds, and also tend to improve the practicality of the procedures. 

Among the principal improvements are the introduction of a more efficient method of scaling 

and the use of a median-finding routine to eliminate sorting. The 0-1 knapsack problem, for n 

items and accuracy ε > 0, is solved in (n log (1/ε) + 1/ε4) time and 0(n + 1/ε3) space. The time 

bound is reduced to 0(n + 1/ε3) for the "unbounded" knapsack problem. For the "subset-sum" 

problem, 0 (n + 1/ε3) times and 0 (n + 1/ε2) spaces, or 0(n + 1/ε2 log (1/ε)) time and space, are 

achieved. The "multiple choice" problem, with m equivalence classes, is solved in 0(nm2/ε) time 

and space. 

 

 The 0-1 knapsack problem is a linear integer-programming problem with a single constraint 

and binary variables. The knapsack problem with an inequality constraint has been widely 

studied, and several efficient algorithms have been published. Balasubramanian and 

Sanjiv (1988) considered the equality-constraint knapsack problem, which has received 

relatively little attention. The authors described a branch-and-bound algorithm for this 

problem, and present computational experience with up to 10,000 variables. An important 

feature of this algorithm is a least-lower-bound discipline for candidate problem selection. 

Esther et al., (1993) studied a variety of geometric versions of the classical knapsack problem. 

 
  



 
 

In particular, the authors considered the following fence enclosure  problem: given a set S 

of n points in the plane with values vi > 0, we wish to enclose a subset of the points with a 

fence (a simple closed curve) in order to maximize the value  of the enclosure. The value of 

the enclosure is defined to be the sum of the values of the enclosed points minus the cost of the 

fence. They also considered various versions of the problem, such as allowing S to consist of 

points and/or simple polygons. Other versions of the problems are obtained by restricting the 

total amount of fence available and also allowing the enclosure to consist of at most M 

connected components. When there is an upper bound on the length of fence available, we 

show that the problem is NP-complete. We also provide polynomial-time algorithms for many 

versions of the fence problem when an unrestricted amount of fence is available. 

Volgenant and Zoon (1990) presented a multidimensional 0-1 knapsack problem using 

heuristic, based on Lagrange multipliers, that also enables the determination of an upper bound 

to the optimal criterion value. This heuristic is extended in two ways: (1) in each step, not one, 

but more multiplier values are computed simultaneously, and (2) at the end the upper bound is 

sharpened by changing some multiplier values. From a comparison using a large series of 

different test problems, the extensions appear to yield an improvement, on average, at the cost 

of only a modest amount of extra computing time. 

The binary knapsack problem is a combinatorial optimization problem in which a subset of a 

given set of elements needs to be chosen in order to maximize profit, given a budget constraint. 

Das and Ghosh (2003) studied a stochastic version of the problem in which the budget is 

random. The authors proposed two different formulations of this problem, based on different 

ways of handling infeasibility, and propose an exact algorithm and a local search-based 

heuristic to solve the problems represented by these formulations. The authors also presented 



 
 

the results from some computational experiments.  

Goyal and Ravi (2009) presented a stochastic knapsack problem where each item has a known 

profit but a random size. The goal is to select a profit maximizing set of items such that the 

probability of the total size of selected items exceeding the knapsack size is at most a given 

threshold. The authors presented a parametric linear programming  (LP) formulation and 

showed that it is a good approximation of the chance-constrained stochastic knapsack problem. 

Furthermore, they gave a polynomial time algorithm to round any fractional solution of the 

parametric LP to obtain an integral solution whose profit is within (1 + 

 

   

        

 

   

                

             

            

             

             

            

             

              

                 

                   

            

                   

    



 
 

The knapsack problem is known to be a typical NP-complete problem, which has 2n possible 

solutions to search over. Thus a task for solving the knapsack problem can be accomplished in 

2n trials if an exhaustive search is applied. In the past decade, much effort has been devoted in 

order to reduce the computation time of this problem instead of exhaustive search. In 1984, 

Karnin proposed a brilliant parallel algorithm, which needs O(2n/6) processors to solve the 

knapsack problem in O(2n/2) time; that is, the cost of Karnin's parallel algorithm is O(22n/3). 

Der-Chyuan Lou and Chin-Chen Chang (1997) proposed a fast search technique to improve 

Karnin's parallel algorithm by reducing the search time complexity of Karnin's parallel 

algorithm to be O (2n/3) under the same O(2n/6) processors available. Thus, the cost of the 

proposed parallel algorithm is O (2n/2). Furthermore, the authors extended their technique to 

the case that the number of available processors is P = O (2x), where x ≥ 1. From the analytical 

results, the saw that their search technique is indeed superior to the previously proposed 

methods. They do believe their proposed parallel algorithm is pragmatically feasible at the 

moment when multiprocessor systems become more and more popular. 

Knapsack problem is a typical NP complete problem. During last few decades, Knapsack 

problem has been studied through different approaches, according to the theoretical 

development of combinatorial optimization.  Garg and Sunanda (2009) put forward the 

evolutionary algorithm for 0/1 knapsack problem. A new objective function evaluation 

operator was proposed which employed adaptive repair function named as repair and elitism 

operator to achieve optimal results in place of problem specific knowledge or domain specific 

operator like penalty operator (which are still being used). Additional features had also been 

incorporated which allowed the algorithm to perform more consistently on a larger set of 

problem instances.  



 
 

Their study also focused on the change in behavior of outputs generated on varying the 

crossover and mutation rates. New algorithm exhibited a significant reduction in number of 

function evaluations required for problems investigated. 

Srisuwannapa and Charnsethikul (2007) presented a variant of the unbounded knapsack 

problem (UKP) into which the processing time of each item is also put and considered, 

referred as MMPTUKP. The MMPTUKP is a decision problem of allocating amount of n 

items, such that the maximum processing time of the selected items is minimized and the total 

profit is gained as at least as determined without exceeding capacity of knapsack. In this study, 

we proposed a new exact algorithm for this problem, called MMPTUKP algorithm. This 

pseudo polynomial time algorithm solves the bounded knapsack problem (BKP) sequentially 

with the updated bounds until reaching an optimal solution. The authors presented 

computational experience with various data instances randomly generated to validate their 

ideas and demonstrate the efficiency of the proposed algorithm.  

Ronghua et al., (2006) presented a new multiobjective optimization (MO) algorithm to solve 

0/1 knapsack problems using the immune Clonal principle. This algorithm is termed Immune 

Clonal MO Algorithm (ICMOA). In ICMOA, the antibody population is split into the 

population of the non-dominated antibodies and that of the dominated anti-bodied. Meanwhile, 

the non-dominated antibodies are allowed to survive and to clone. A metric of Coverage of 

Two Sets are adopted for the problems. This quantitative metric is used for testing the 

convergence to the Pareto-optimal front. Simulation results on the 0/1 knapsack problems 

show that ICMOA, in most problems, is able to find much better spread of solutions and better 

convergence near the true Pareto-optimal front compared with SPEA, NSGA, NPGA and 

VEGA. 



 
 

Deniz et al., (2010) studied maximization of revenue in the dynamic and stochastic knapsack 

problem where a given capacity needs to be allocated by a given deadline to sequentially 

arriving agents. Each agent is described by a two-dimensional type that reflects his capacity 

requirement and his willingness to pay per unit of capacity. Types are private information. The 

authors first characterize implementable policies. Then they solved the revenue maximization 

problem for the special case where there is private information about per-unit values, but 

capacity needs are observable. After that they derived two sets of additional conditions on the 

joint distribution of values and weights under which the revenue maximizing policy for the 

case with observable weights is implementable, and thus optimal also for the case with two-

dimensional private information. In particular, they investigated the role of concave 

continuation revenues for implementation. We also construct a simple policy for which per-

unit prices vary with requested weight but not with time, and prove that it is asymptotically 

revenue maximizing when available capacity/ time to the deadline both go to infinity. This 

highlights the importance of nonlinear as opposed to dynamic pricing. 

Computational grids are distributed systems composed of heterogeneous computing resources 

which are distributed geographically and administratively. These highly scalable systems are 

designed to meet the large computational demands of many users from scientific and business 

orientations. However, there are problems related to the allocation of the computing resources 

which compose of a grid.  

Van dester et al., (2008) studied the design of a Pan-Canadian grid. The design exploits the 

maturing stability of grid deployment toolkits, and introduces novel services for efficiently 

allocating the grid resources. The changes faced by this grid deployment motivate further 

exploration in optimizing grid resource allocations. By applying this model to the grid 



 
 

allocation option, it is possible to quantify the relative merits of the various possible scheduling 

decisions. Using this model, the allocation problem was formulated as a knapsack problem. 

Formulation in this manner allows for rapid solution times and results in nearly optimal 

allocations. 

Last few years have seen exponential growth in the area of web applications, especially, e-

commerce and web-services. One of the most important qualities of service metric for web 

applications is the response time for the user. Web application normally has a multi-tier 

architecture and a request might have to traverse through all the tiers before finishing its 

processing. Therefore, a request’s total response time is the sum of response time at all the 

tiers. Since the expected response time at any tier depends upon the number of servers 

allocated to this tier, many different configurations (number of servers allocated to each tier) 

can give the same quality of service guarantee in terms of total response time. Naturally, one 

would like to find the configuration which minimizes the total system cost and satisfies the 

total response time guarantee. Zhang et al., (2004) modeled this problem as integer 

optimization problem. 

The strike-force asset allocation problem consists of grouping strike force assets into packages 

and assigning these packages to targets and defensive assets in a way that maximizes the strike 

force potential. Chi-Wei, et al., (2001) modeled this problem as integer programming 

formulation, and proposed a branch and bound algorithm to solve it. 

Sung-Ho (1998) presented a techniques for obtaining strategies to allocate rooms to customers 

belonging to various market segments, considering time dependent demand forecasts and a 

fixed hotel capacity. This technique explicitly accounts for group and multi-night reservation 

requests in an efficient and effective manner. This is accomplished by combining an optimal 



 
 

discrete-dynamic model for handling single-night reservation requests, bases on a static integer 

programming model, developed to handle multi-night reservation requests.  

 Allocation of resources under uncertainty is a very common problem in many real-life 

scenarios. Employers have to decide whether or not to hire candidates, not knowing whether 

future candidates will be stronger or more desirable. Machines need to decide whether to 

accept jobs without knowledge of the importance or profitability of future jobs. Consulting 

companies must decide which jobs to take on, not knowing the revenue and resources 

associated with potential future requests. More recently, online auctions have proved to be a 

very important resource allocation problem. Advertising auctions in particular provide the 

main source of monetization for a variety of internet services including search engines, blogs, 

and social networking sites. Additionally, they are the main source of customer acquisition for 

a wide array of small online business, of the networked world. In bidding for the right to 

appear on a web page (such as a search engine), advertisers have to trade off between large 

numbers of parameters, including keywords and viewer attributes. In this scenario, an 

advertiser may be able to estimate accurately the bid required to win a particular auction, and 

benefit either in direct revenue or name recognition to be gained, but may not know about the 

trade off for future auctions. All of these problems involve an online scenario, where an 

algorithm has to make decisions on whether to accept an offer, based solely on the required 

resource investment (or weight) and projected value of the current offer, with the total weight 

of all selected offer not exceeding a given budget. When the weights are uniform and equal to 

the weight constraint, the problems above reduces to the famous secretary problem which was 

first introduced by (Dynkin, 1963). Moshe et al., (2008), studied this model as a knapsack 

problem. 



 
 

 Kleinberg (2009) presented a model for the multiple-choice secretary problem in which k 

elements need to be selected and the goal is to maximize the combined value (sum) of the 

selected elements. 

Babaioff et al., (2007) studied the matriod secretary problem in which the elements of a 

weighted matriod arrive in a random order. As each element is observed, the algorithm makes 

an irrevocable decision to choose it or skip it, with the constraint that the chosen elements must 

constitute an independent set. The objective is to maximize the combined weight of the chosen 

elements. The authors proposed an integer programming algorithm for this problem. 

Aggarwal and Hartline (2006) designed truthful auctions which are revenue competitive when 

the auctioneer is constrained to choose agents with private values and publicly known weights 

that fit into a knapsack. 

 Boryczka (2006) presented a new optimization algorithm based on ant colony metaphor and a 

new approach for the Multiple Knapsack Problem. The MKP is the problem of assigning a 

subset of n items to m distinct knapsacks, such that the total profit sum of the selected items is 

maximized, without exceeding the capacity of each of the knap sacks. The problem has several 

difficulties in adaptation as well as the trail representation of the solutions of MKP or a 

dynamically changed heuristic function applied in this approach. Presented results showed the 

power of the ACO approach for solving this type of subset problems.  

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the 0-1 

knapsack problem, an NP-Hard problem. Due to its high computational complexity, algorithms 

for exact solution of the MMKPs are not suitable for most real-time decision-making 

applications, such as quality adaptation and admission control for interactive multimedia 

systems, or service level agreement (SLA) management in telecommunication networks. 



 
 

Shahadat et al., (2002) presented a heuristic for finding near-optimal solutions of the MMKP, 

with reduced computational complexity, and is suitable for real-time applications. Based on 

Toyoda’s concept of aggregate resource, the heuristic employs an iterative improvement 

procedure using savings in aggregate resource and value per unit of extra aggregate resource. 

Experimental results suggest that this heuristic finds solutions which are close to the optimal 

(within 6% of the optimal value), and that it out-performs Moser’s heuristic for the MMKP in 

both solution quality and execution time. 

 Speeding up knapsack problem, one of the NP complete problems, which could be used to 

design public-key cryptosystems, was presented by Lu and Feng (2004) using quantum 

algorithm. How to use Grover's quantum searching algorithm to speed up the knapsack 

problem was presented based on computational complexity theory. Comparisons of quantum 

searching algorithm with Shor's factoring algorithm were delivered and the factors that 

affected the performance of quantum algorithms were discussed from group theory point of 

view. The future of the quantum algorithms was also augmented in the later. 

An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo 

must be chosen to pack in a given fleet of aircraft. Chocolaad (1998) presented a new 

heuristic to solve this problem in a reasonable amount of time with a higher quality solution 

then previously reported in literature. The author also reported a new tabu search heuristic to 

solve geometric knapsack problems. He then employed a novel heuristics in a Master and 

slave relationship, where the knapsack heuristic selects a set of cargo and the packing 

heuristic determines if that set is feasible. The search incorporates learning mechanisms that 

react to cycles and thus is robust over a large set of problem sizes. The new knapsack and 

 



 
 

packing heuristics compare favorably with the best reported efforts in the literature. 

Additionally, the author proposed the JAVA language to be an effective language for 

implementing the heuristics. The search is then used in a real world problem of determining 

how much cargo can be packed with a given fleet of aircraft. 

Knapsack problem has been widely studied in computer science for years. There exist several 

variants of the problem, with zero-one maximum knapsack in one dimension being the 

simplest one. 

Islam 2009) studied several existing approximation algorithms for the minimization version 

of the problem and propose a scaling based fully polynomial time approximation scheme for 

the minimum knapsack problem. The author compared the performance of this algorithm 

with existing algorithms. His    experiments show that, the proposed algorithm runs fast and 

has a good performance ratio in practice. He also conducts extensive experiments on the data 

provided by Canadian Pacific Logistics Solutions during the MITACS internship program. 

The author proposed a scaling based varepsilon-approximation scheme for the 

multidimensional (d -dimensional) minimum knapsack problem and compares its 

performance with a generalization of a greedy algorithm for minimum knapsack in d- 

dimensions. The author’s experiments showed that the varepsilon-approximation scheme 

exhibits good performance ratio in practice. 

Maya and Dipti (2011) presented a research project on using Genetic Algorithms (GAs) to 

solve the 0-1 Knapsack Problem (KP). The Knapsack Problem is an example of a 

combinatorial optimization problem, which seeks to maximize the benefit of objects in a 



 
 

knapsack without exceeding its capacity. The author’s research contains three sections: brief 

description of the basic idea and elements of the GAs, definition of the Knapsack Problem, 

and implementation of the 0-1 Knapsack Problem using GAs. The main focus of the research 

was on the implementation of the algorithm for solving the problem. In the program, he 

implemented two selection functions, roulette-wheel and group selection. The results from 

both of them differed depending on whether to use elitism or not. Elitism significantly 

improved the performance of the roulette-wheel function. Moreover, the author tested the 

program with different crossover ratios and single and double crossover points but the results 

given were not that different. 

Maya and Dipti (2005) studied several algorithm design paradigms applied to a single 

problem – the 0/1 Knapsack Problem. The Knapsack problem is a combinatorial optimization 

problem where one has to maximize the benefit of objects in a knapsack without exceeding 

its capacity. It is an NP-complete problem and as such an exact solution for a large input is 

practically impossible to obtain. The main goal of the studies was to present a comparative 

study of the brute force, dynamic programming, memory functions, branch and bound, 

greedy, and genetic algorithms. The study discussed the complexity of each algorithm in 

terms of time and memory requirements, and in terms of required programming efforts. The 

author’s experimental results showed that the most promising approaches are dynamic 

programming and genetic algorithms. The study examines in more details the specifics and 

the limitations of these two paradigms. 

Yunhong and Victor (2008) modeled a budget constrained keyword bidding in sponsored 

search auctions as a stochastic multiple-choice knapsack problem (S-MCKP) and proposed a 



 
 

new algorithm to solve SMCKP and the corresponding bidding optimization problem. the 

authors  algorithm selects items online based on a threshold function which can be 

built/updated using historical data. Their algorithm achieved about 99% performance 

compared to the offline optimum when applied to a real bidding dataset. With synthetic 

dataset, its performance ratio against the offline optimum converges to one empirically with 

increasing number of periods. 

Rajeev and Ramesh (1992) presented a new greedy heuristic for the integer knapsack 

problem. The proposed heuristic selects items in non-increasing order of their maximum 

possible contribution to the solution value given the available knapsack capacity at each step. 

The lower bound on the performance ratio for this “total-value” greedy heuristic is shown to 

dominate the corresponding lower bound for the density-ordered greedy heuristic. 

 George (1995) proposed the average-case behavior of the Zero–One Knapsack problem, as 

well as an on-line version. The authors allowed the capacity of the knapsack to grow 

proportionally to the number of items, so that the optimum solution tends to be Θ (n). Under 

fairly general conditions on the distribution, they obtained a description of the expected value 

of the optimum offline solution which is accurate up to terms which are o (1). The authors 

then considered a simple greedy method for the on-line problem, which is called Online 

Greedy and is allowed to use knowledge of the distribution, and shown that the solution 

obtained by this algorithm differs from the true optimum by an average of Θ(log n); in fact, 

and can determine the multiplicative constant hidden by the Θ-notation. Thus on average the 

cost of being forced to give answers on-line is quite small compared to the optimum solution.  

The constrained compartmentalized knapsack problem is an extension of the classical integer 



 
 

constrained knapsack problem which can be stated as the following hypothetical situation: a 

climber must load his/her knapsack with a number of items. For each item a weight, a utility 

value and an upper bound are given. However, the items are of different classes (food, 

medicine, utensils, etc.) and they have to be loaded in separate compartments inside the 

knapsack (each compartment is itself a knapsack to be loaded by items from the same class). 

The compartments have flexible capacities which are lower and upper bounded. Each 

compartment has a fixed cost to be included inside the knapsack that depends on the class of 

items chosen to load it and, in addition, each new compartment introduces a fixed loss of 

capacity of the original knapsack. The constrained compartmentalized knapsack problem 

consists of determining suitable capacities of each compartment and how these compartments 

should be loaded, such that the total items inside all compartments does not exceed the upper 

bound given. The objective is to maximize the total utility value minus the cost of the 

compartments. This kind of problem arises in practice, such as in the cutting of steel or paper 

reels. Doprado and Nereu (2007) modeled the problem as an integer non-linear optimization 

problem for which some heuristic methods are designed. Finally, computational experiments 

were given to analyze the methods. 

The Multiple Knapsack Problem (MKP) is a NP-hard combinatorial optimization problem in 

many real-word applications. An algorithm with the behaviors of preying, following and 

swarming of artificial fish for searching optimal solution was proposed by Ma Xuan (2009). 

With regard to the problem that infeasible solutions are largely produced in the process of 

initializing individuals and implementing the behaviors of artificial fish due to the multiple 

constraints, which undermines the algorithm performance, an adjusting operator based on 



 
 

heuristic rule was designed to ensure all the individuals in the feasible solution areas. 

Computational results show that the algorithm can quickly find optimal solution. The 

proposed algorithm can also be applied to other constrained combinatorial optimization 

problems. The above literature shows that knapsack is a very important tool which has helped 

in many field. 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

METHODOLOGY 

 INTRODUCTION 

This chapter provides an explanation of the branch-and-bound algorithm for solving our 



 
 

problem. Before our introduction of the branch-and-bound for knapsack problems, we first 

give a general overview of the branch-and-bound for general integer programming. 

     Formally, an integer programming problem is formulated as 

     Maximize cT x 

Subject to: Ax ≤ b 

         x ≥  0 and integer. 

 Where; A 

 

 
 
  

 

 

   



 
 

either branch and bound or cutting planes can be used to find the solution to the integer 

programming problem. 

Branch and bound uses the linear relaxation as starting point to search for the optimal integer 

solution. Every linear relaxation solution that is found during the branch and bound process is 

given a corresponding node on the branching tree. Once a node’s relaxations point has been 

found, any variable with a fractional value may be chosen as the branching variable. Two 

child nodes with corresponding branches are created from this parent node. One branch 

requires the branching variable to be greater than or equal to its relaxation value rounded up 

to the nearest integer. The other branch requires the branching variable to be less than or 

equal to the relaxation solution rounded down to the nearest integer. Using these values, two 

new relaxation points are found and two more nodes are created in the tree. This process is 

repeated until all nodes have been fathomed. 

  

A fathomed node is finished, and no more nodes or branches are created below any fathomed 

nodes. Fathoming a node in a branch and bound algorithm occurs under three circumstances. 

If a node is found that: (i) cannot produce a feasible solution to the linear relaxation, then that 

node is fathomed. (ii) returns an integer solution, then that node is fathomed. Although other 

feasible solutions may exist below that node, none will be better than that node’s solution.  

(iii) has a linear relaxation solution with a value lower than the value of a previously 

discovered integer solution, then that node is fathomed. 

 

 An alternative to the branch and bound method is to use cutting planes to reduce the linear 

relaxation space. The basic idea of the cutting plane method is to cut off parts of the feasible 



 
 

region of the corresponding linear program, so that the optimal integer solution becomes an 

extreme point and can be found by the simplex algorithm. This method attempts to find a 

hyper plane that intersects the solution space below the current linear relaxation point without 

eliminating any integer solutions. Once such a hyper plane has been put in place, a new linear 

relaxation point is found, and branch and bound can be implemented or additional cutting 

planes can be added until an integer solution is returned as the solution to the linear 

programming problem. 

 

3.1 Branch-and-Bound  Algorithms for Knapsacks 
The first branch-and-bound approach to the exact solution of KP was presented by Kolesar 

(1967). The algorithm consists of a highest-first binary branching scheme with: 

(a) at each mode, selects the not-yet-fixed item j having the maximum profit per  unit 

weight and generates two descendent nodes by fixing xj, respectively, to 1 and 0; 

(b) continues the search from the feasible node for which the value of upper bound U1 is 

a maximum 

The large computer memory and time requirements of the Kolesar algorithm were greatly 

reduced by the Greenberg and Hegerich (1970) approach, differing in two main respects: 

(a) at each mode, the continuous relaxation of the induced sub problem is solved and the 

corresponding critical items ŝ is selected to generate the two descendent nodes (by 

imposing X

 

 

 

 



 
 

last node generated by imposing Xŝ = 1, i.e. the algorithm is of depth – first type.   

Horowitz and Sahni (1997) ( and independently, Ahrens and Finke (1975) ) derived from the 

previous scheme on depth-first algorithm in which; 

(a)  selection of the branching variable Xj is the same as in Kolesar; 

(b) the search continues from the node associated with the insertion of item j (condition 

Xj = 1), i.e. following a greedy strategy 

Other algorithms have been derived from the Greenberg – Hegerich approach (Barr and Ross 

(1975), Lauriere (1978)] and from different techniques (Lageireg and Lenstra (1972), 

Guignard and Spielberg (1972), Fayard and Plateau (1975), Veliev and Mamedov (1981).  

The Horowitz – Sahni one is, however, the most effective, structured and easy to implement 

and has constituted the basis for several improvements, including that of Martello – Toth 

algorithm (Martello and Toth, 1977), which is generally considered highly effective.  Hence, 

we will also restrict our research work to that of the Horowitz and Sahni algorithm ad 

Martello and Toth algorithm. 

 
3.2 The Horowitz – Sanni Algorithm 
Assume that the items are sorted.  A forward move consists of inserting the largest possible 

set of new consecutive items into the current solution.  A backtracking move consists of 

removing the last inserted item from the current solution.  Whenever a forward move is 

exhausted, the upper bound U1 corresponding to the current solution is computed and 

compared with the best solution so far, in order to check whether further forward moves 

could lead to a better one; if so, a new forward move is performed, otherwise a backtracking 

follows.  When the last item has been considered, the current solution is complete and 



 
 

possible updating of the best solution so far occurs.  The algorithm stops when no further 

backtracking can be performed.  In the following description of the algorithm we use the 

notations. 

 
 

 

 

    

 

 

      



 
 

     begin  

                
 

   
 

   

                 

 

 



 
 

 

 

 



 
 

insertion into the current solution of any item following the ith.  The procedure is 

based on the following consideration; 

 The current solution could be improved only if the ith item is replaced by an item 

having greater profit and a weight small enough to allow its insertion, or by at least 

two items having global weight not greater than Wi + 

 

       

             

      

             

             

              

   
 

            

                     

                      

   

 

 

 



 
 

 

 

 



 
 

 

 

 



 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

INTRODUCTION 

In this chapter, we shall consider a computational study of branch-and-bound algorithm applied 

to knapsack instance. Consideration is given to the 0-1 knapsack problem where n

 

 

 N such that 

 



 
 

 

n
i=1 wi 

 

 b. Each item has a profit or cost ci and a weight wi. The problem is to select a subset 

of the items whose total weight does not exceed the knapsack capacity b, and whose total profit 

is a maximum. 

 

We assume without loss of generality that all input data are positive integers. Introducing the 

binary decision variable xi with xi = 1 if item i is selected, and xi = 0 otherwise, we get the 

integer linear programming model: 

 Maximize      Z = 

 

ni=1 cixi    Subject to     



 
 

Table 4.1: List of the capacity (tons/week) and the cost (1000/unit) for each site 
 
 
SITE A B C D E F G 

CAPACITY 70 20 39 37 7 5 10 

COST 31 10 20 19 4 3 6 

 

The problem here is to select land in such a way that the optimal capacity would be achieved 

without over shooting the amount allocated for the land development. 

In comparison to the knapsack problem model, the holding capacity of the bag is the resource 

limit, given here as the town budget. The items to be considered are the different sites that can be 

developed, the weight of any item is the cost of developing the site, and the value of the item is 

the capacity of the site. 

 

 

 

 

The problem can be modeled as: 

  Maximize    C = 

 

n
i=1 cisi   

  Subject to   

 

n
i=1 wisi    

 



 
 

wi = Cost of developing a site  

W = Total amount available for development (resource limit) 

Thus, 

             Maximize C = 70s1 + 20s2 + 39s3 + 37s4 + 7s5 + 5s6 + 10s7  

              Subject to: 31s1 +10s2 + 20s3 + 19s4 + 4s5 + 3s6 + 6s7 

 

 50. 

To carry out the computation of the above model, we apply the branch-and-bound algorithm of 

The Horowitz – Sahni. As can be seen from  Table 4.1, the items are seven, (thus, n = 7) 

consisting of Site A, Site B, Site C, Site D, Site E, Site F, and Site G. 

The weights of each item are wa = 31, wb = 10, wc = 20, wd = 19, we = 4, wf = 3, and wg= 6. The 

values of each item are va = 70, vb = 20, vc =39, vd = 37, ve = 7, vf =5, and vg = 10. The 

maximum available fund W = 50. 

Let xj 

 

 feasible solutions and Z be the value of the feasible solution.  

A walk through the branch-and-bound algorithm of The Horowitz – Sahni with the above model 

gives the following computational iterative values for the various optimal solutions as shown in  

Table 4.2. A FORTRAN 90 code for the implementation of this is given in Appendix 1. 

Table 4.2: Optimal Solutions for the various iterative stages 

Iteration Feasible solution(xj) Value of the feasible solution(z) Cost 

0 (0,0,0,0,0,0,0) 0 0 

1 (1,0,0,0,0,0,0) 70 31 

2 (1,1,0,0,0,0,0) 90 41 

3 (1,1,0,0,0,0,0) 90 41 

4 (1,1,0,0,0,0,0) 90 41 

5 (1,1,0,0,1,0,0) 97 45 



 
 

6 (1,1,0,0,1,1,0) 102 48 

7 (1,1,0,0,1,1,0) 102 48 

8 (1,1,0,0,1,0,0) 97 45 

9 (1,1,0,0,1,0,0) 97 45 

10 (1,1,0,0,0,0,0) 90 41 

11 (1,1,0,0,0,1,0) 95 44 

12 (1,1,0,0,0,1,1) 105 50 

13 (1,1,0,0,0,0,0) 90 41 

14 (1,0,0,0,0,0,0) 70 31 

15 (1,0,0,0,0,0,0) 70 31 

16 (1,0,0,1,0,0,0) Infeasible 51 

17 (1,0,0,1,0,0,0) Infeasible 51 

18 (1,0,0,1,0,0,0) Infeasible  51 

19 (1,0,0,1,0,0,0) Infeasible  51 

20 (1,0,0,0,0,0,0) 70 31 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

INTRODUCTION 

We have described the site development problem of a town as a 0-1 knapsack programming 

problem. We applied the branch-and-bound algorithm of The Horowitz – Sahni to solve the 

town’s site development problem. Our research focused on the use of the Knapsack problem for 

site development given a limited available fund for a town in Ghana, but can however be applied 

to any situation that can be modeled as a 0-1 knapsack problem. 



 
 

 

5.1 CONCLUSIONS 

This thesis seeks to solve a real-life problem of site development for refuse disposal of Sekondi-

Takoradi Metropolis as a knapsack problem using the branch-and-bound algorithm of The 

Horowitz–Sahni. It was observed that the solution that gave maximum achievable value was    

(1, 1, 0, 0, 0, 1, and 1). This means that the company should spend a total cost of fifty thousand 

Ghana cedis (GH¢50,000) to obtain an optimal site development of one hundred and five 

thousand (105,000) tones per week, consisting of selecting Site A, Site B, Site F, and Site G. 

 

5.2 RECOMMENDATIONS 

The use of computer application in computation gives a systematic and transparent solution as 

compared with an arbitrary method. Using the more scientific Knapsack problem model for the 

site development of the town’s refuse disposal management gives a better result. Management 

may benefit from the proposed approach for site development for refuse disposal to guarantee 

optimal refuse disposal capacity in tones per week. We therefore recommend that the Knapsack 

problem model should be adopted by the metropolitan and district assemblies for refuse disposal 

management. We also recommend that future study may be conducted to cover the entire 

country. 
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SAPPENDIX_1 

SUBROUTINE MT1(N,P,W,C,Z,X,JDIM,JCK,XX,MIN,PSIGN,WSIGN,ZSIGN) 

C THIS SUBROUTINE SOLVES THE 0-1 SINGLE KNAPSACK PROBLEM 

C MAXIMIZE  Z = P(1)*X(1) + ... + P(N)*X(N) 

C SUBJECT TO:   W(1)*X(1) + ... + W(N)*X(N) .LE. C , 

C               X(J) = 0 OR 1  FOR J=1,...,N. 

C THE INPUT PROBLEM MUST SATISFY THE CONDITIONS 

C   1) 2 .LE. N .LE. JDIM - 1 ; 

C   2) P(J), W(J), C  POSITIVE INTEGERS; 

http://research.yahoo.com/workshops/troa-2008/papers/submission


 
 

C   3) MAX (W(J)) .LE. C ; 

C   4) W(1) + ... + W(N) .GT. C ; 

C   5) P(J)/W(J) .GE. P(J+1)/W(J+1) FOR J=1,...,N-1. 

C MEANING OF THE INPUT PARAMETERS: 

C N    = NUMBER OF ITEMS; 

C P(J) = PROFIT OF ITEM  J  (J=1,...,N); 

C W(J) = WEIGHT OF ITEM  J  (J=1,...,N); 

C C    = CAPACITY OF THE KNAPSACK; 

C JDIM = DIMENSION OF THE 8 ARRAYS; 

C JCK  = 1 IF CHECK ON THE INPUT DATA IS DESIRED, 

C      = 0 OTHERWISE. 

C MEANING OF THE OUTPUT PARAMETERS: 

C Z    = VALUE OF THE OPTIMAL SOLUTION IF  Z .GT. 0 , 

C      = ERROR IN THE INPUT DATA (WHEN JCK=1) IF Z .LT. 0 : CONDI- 

C        TION  - Z  IS VIOLATED; 

C X(J) = 1 IF ITEM  J  IS IN THE OPTIMAL SOLUTION, 

C      = 0  OR OTHERWISE. 

C ARRAYS XX, MIN, PSIGN, WSIGN AND ZSIGN ARE DUMMY. 

C ALL THE PARAMETERS ARE INTEGER. ON RETURN OF MT1 ALL THE INPUT 

C PARAMETERS ARE UNCHANGED. 

      INTEGER P(JDIM),W(JDIM),X(JDIM),C,Z 

      INTEGER XX(JDIM),MIN(JDIM),PSIGN(JDIM),WSIGN(JDIM),ZSIGN(JDIM) 

      INTEGER CH,CHS,DIFF,PROFIT,R,T 



 
 

      Z = 0 

      IF ( JCK .EQ. 1 ) CALL CHMT1(N,P,W,C,Z,JDIM) 

      IF ( Z .LT. 0 ) RETURN 

C INITIALIZE. 

      CH = C 

      IP = 0 

      CHS = CH 

      DO 10 LL=1,N 

        IF ( W(LL) .GT. CHS ) GO TO 20 

        IP = IP + P(LL) 

        CHS = CHS - W(LL) 

   10 CONTINUE 

   20 LL = LL - 1 

      IF ( CHS .EQ. 0 ) GO TO 50 

      P(N+1) = 0 

      W(N+1) = CH + 1 

      LIM = IP + CHS*P(LL+2)/W(LL+2) 

      A = W(LL+1) - CHS 

      B = IP + P(LL+1) 

      LIM1 = B - A*FLOAT(P(LL))/FLOAT(W(LL)) 

      IF ( LIM1 .GT. LIM ) LIM = LIM1 

      MINK = CH + 1 

      MIN(N) = MINK 



 
 

      DO 30 J=2,N 

        KK = N + 2 - J 

        IF ( W(KK) .LT. MINK ) MINK = W(KK) 

        MIN(KK-1) = MINK 

   30 CONTINUE 

      DO 40 J=1,N 

        XX(J) = 0 

   40 CONTINUE 

      Z = 0 

      PROFIT = 0 

      LOLD = N 

      II = 1 

      GO TO 170 

   50 Z = IP 

      DO 60 J=1,LL 

        X(J) = 1 

   60 CONTINUE 

      NN = LL + 1 

      DO 70 J=NN,N 

        X(J) = 0 

   70 CONTINUE 

      RETURN 

C TRY TO INSERT THE II-TH ITEM INTO THE CURRENT SOLUTION. 



 
 

   80 IF ( W(II) .LE. CH ) GO TO 90 

      II1 = II + 1 

      IF ( Z .GE. CH*P(II1)/W(II1) + PROFIT ) GO TO 280 

      II = II1 

      GO TO 80 

C BUILD A NEW CURRENT SOLUTION. 

   90 IP = PSIGN(II) 

      CHS = CH - WSIGN(II) 

      IN = ZSIGN(II) 

      DO 100 LL=IN,N 

        IF ( W(LL) .GT. CHS ) GO TO 160 

        IP = IP + P(LL) 

        CHS = CHS - W(LL) 

  100 CONTINUE 

      LL = N 

  110 IF ( Z .GE. IP + PROFIT ) GO TO 280 

      Z = IP + PROFIT 

      NN = II - 1 

      DO 120 J=1,NN 

        X(J) = XX(J) 

  120 CONTINUE 

      DO 130 J=II,LL 

        X(J) = 1 



 
 

  130 CONTINUE 

      IF ( LL .EQ. N ) GO TO 150 

      NN = LL + 1 

      DO 140 J=NN,N 

        X(J) = 0 

  140 CONTINUE 

  150 IF ( Z .NE. LIM ) GO TO 280 

      RETURN 

  160 IU = CHS*P(LL)/W(LL) 

      LL = LL - 1 

      IF ( IU .EQ. 0 ) GO TO 110 

      IF ( Z .GE. PROFIT + IP + IU ) GO TO 280 

C SAVE THE CURRENT SOLUTION. 

  170 WSIGN(II) = CH - CHS 

      PSIGN(II) = IP 

      ZSIGN(II) = LL + 1 

      XX(II) = 1 

      NN = LL - 1 

      IF ( NN .LT. II) GO TO 190 

      DO 180 J=II,NN 

        WSIGN(J+1) = WSIGN(J) - W(J) 

        PSIGN(J+1) = PSIGN(J) - P(J) 

        ZSIGN(J+1) = LL + 1 



 
 

        XX(J+1) = 1 

  180 CONTINUE 

  190 J1 = LL + 1 

      DO 200 J=J1,LOLD 

        WSIGN(J) = 0 

        PSIGN(J) = 0 

        ZSIGN(J) = J 

  200 CONTINUE 

      LOLD = LL 

      CH = CHS 

      PROFIT = PROFIT + IP 

      IF ( LL - (N - 2) ) 240, 220, 210 

  210 II = N 

      GO TO 250 

  220 IF ( CH .LT. W(N) ) GO TO 230 

      CH = CH - W(N) 

      PROFIT = PROFIT + P(N) 

      XX(N) = 1 

  230 II = N - 1 

      GO TO 250 

  240 II = LL + 2 

      IF ( CH .GE. MIN(II-1) ) GO TO 80 

C SAVE THE CURRENT OPTIMAL SOLUTION. 



 
 

  250 IF ( Z .GE. PROFIT ) GO TO 270 

      Z = PROFIT 

      DO 260 J=1,N 

        X(J) = XX(J) 

  260 CONTINUE 

      IF ( Z .EQ. LIM ) RETURN 

  270 IF ( XX(N) .EQ. 0 ) GO TO 280 

      XX(N) = 0 

      CH = CH + W(N) 

      PROFIT = PROFIT - P(N) 

C BACKTRACK. 

  280 NN = II - 1 

      IF ( NN .EQ. 0 ) RETURN 

      DO 290 J=1,NN 

        KK = II - J 

        IF ( XX(KK) .EQ. 1 ) GO TO 300 

  290 CONTINUE 

      RETURN 

  300 R = CH 

      CH = CH + W(KK) 

      PROFIT = PROFIT - P(KK) 

      XX(KK) = 0 

      IF ( R .LT. MIN(KK) ) GO TO 310 



 
 

      II = KK + 1 

      GO TO 80 

  310 NN = KK + 1 

      II = KK 

C TRY TO SUBSTITUTE THE NN-TH ITEM FOR THE KK-TH. 

  320 IF ( Z .GE. PROFIT + CH*P(NN)/W(NN) ) GO TO 280 

      DIFF = W(NN) - W(KK) 

      IF ( DIFF ) 370, 330, 340 

  330 NN = NN + 1 

      GO TO 320 

  340 IF ( DIFF .GT. R ) GO TO 330 

      IF ( Z .GE. PROFIT + P(NN) ) GO TO 330 

      Z = PROFIT + P(NN) 

      DO 350 J=1,KK 

        X(J) = XX(J) 

  350 CONTINUE 

      JJ = KK + 1 

      DO 360 J=JJ,N 

        X(J) = 0 

  360 CONTINUE 

      X(NN) = 1 

      IF ( Z .EQ. LIM ) RETURN 

      R = R - DIFF 



 
 

      KK = NN 

      NN = NN + 1 

      GO TO 320 

  370 T = R - DIFF 

      IF ( T .LT. MIN(NN) ) GO TO 330 

      IF ( Z .GE. PROFIT + P(NN) + T*P(NN+1)/W(NN+1)) GO TO 280 

      CH = CH - W(NN) 

      PROFIT = PROFIT + P(NN) 

      XX(NN) = 1 

      II = NN + 1 

      WSIGN(NN) = W(NN) 

      PSIGN(NN) = P(NN) 

      ZSIGN(NN) = II 

      N1 = NN + 1 

      DO 380 J=N1,LOLD 

        WSIGN(J) = 0 

        PSIGN(J) = 0 

        ZSIGN(J) = J 

  380 CONTINUE 

      LOLD = NN 

      GO TO 80 

      END 

      SUBROUTINE CHMT1(N,P,W,C,Z,JDIM) 



 
 

C 

C CHECK THE INPUT DATA. 

C 

      INTEGER P(JDIM),W(JDIM),C,Z 

      IF ( N .GE. 2 .AND. N .LE. JDIM - 1 ) GO TO 10 

      Z = - 1 

      RETURN 

   10 IF ( C .GT. 0 ) GO TO 30 

   20 Z = - 2 

      RETURN 

   30 JSW = 0 

      RR = FLOAT(P(1))/FLOAT(W(1)) 

      DO 50 J=1,N 

        R = RR 

        IF ( P(J) .LE. 0 ) GO TO 20 

        IF ( W(J) .LE. 0 ) GO TO 20 

        JSW = JSW + W(J) 

        IF ( W(J) .LE. C ) GO TO 40 

        Z = - 3 

        RETURN 

   40   RR = FLOAT(P(J))/FLOAT(W(J)) 

        IF ( RR .LE. R ) GO TO 50 

        Z = - 5 



 
 

        RETURN 

   50 CONTINUE 

      IF ( JSW .GT. C ) RETURN 

      Z = - 4 

      RETURN 

      END 
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