

 MODELING SITE DEVELOPMENT FOR GARBAGE DISPOSAL AS A 0-1

KNAPSACK PROBLEM, A CASE STUDY OF THE SEKONDI-TAKORADI METROPOLIS

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS,

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

KUMASI, GHANA

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD

OF

MASTER OF SCIENCE DEGREE IN INDUSTRIAL MATHEMATICS

INSTITUTE OF DISTANCE LEARNING

BY

ESSANDOH, KIZITO

©JUNE, 2012

DECLARATION

I hereby declare that this submission is my own work towards the Master of Science degree

and that, to the best of my knowledge it contains no material previously published by another

person nor material which has been accepted for award of any other degree of the university

except where due acknowledgement has been made in the text.

Kizito Essandoh PG4065410 ….……..………. …………

Student’s Name & ID Signature Date

Certified By

Dr. S. K. Amponsah …………………. ………..

Supervisor’s Name Signature Date

Certified By

Mr. Kwaku Darkwa ………………….. .………..

Head of Department’s Name Signature Date

ABSTRACT

Integer programming is an important class of mathematical programming problems which is a

useful tool for modelling and optimizing real-life problems. The knapsack problem is a form of

integer programming problem that has only one constraint and can be used to strengthen cutting

planes for general integer programs. These facts make the studies of the knapsack problems and

their variants extremely important area of research in the field of operations research. This thesis

seeks to apply the branch-and-bound algorithm to model site development for solid waste

disposal in Sekondi-Takoradi metropolis as a 0-1 knapsack problem. The model developed could

be adopted for any land site management problem that can be modelled as a single 0-1 knapsack

problem. Seven sites were proposed for development and the study reveals that sites A, B, F and

G should be selected to obtain an optimum output and recommend that Knapsack problem model

should be adopted by the district assembly for refuse disposal management.

DEDICATION

To the Glory of Almighty God, I dedicate this project to my dear wife Jemima Boyan and my

lovely son C.K. Essandoh. Also to all my colleagues especially Franscio Mohammed

ACKNOWLEDGEMENT

I would like to give thanks to the Almighty God for granting me the strength and knowledge to

complete this course successfully. I am very grateful to my supervisor, Dr. S.K. Amponsah of the

Department of Mathematics, KNUST, who was always ready to assist me in one way or the other

and also helped me in the compilation of this work, may God richly bless him. I also wish to

express my profound gratitude to all the lecturers at the mathematics Department who

contributed in one way or the other for the successful completion of this project. I also give

thanks to my wife Jemima Boyan for her support during the entire course.

Finally my sincere thanks go to all who in diverse ways helped in bringing this project to a

successful end.

God richly bless you all.

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

DEDICATION iii

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS v

LIST OF TABLES vi

CHAPTER 1 1

 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 4

1.3 Objectives 5

1.4 Methodology 6

1.5 Justification 6

1.6 limitations of the study 6

1.7 organization of the study 7

CHAPTER 2 8

LITERATURE REVIEW 8

CHAPTER 3 31

METHODOLOGY 31

3.0 Introduction 31

3.1 Branch-and-Bound Algorithm for Knapsacks 33

3.2 The Horowitz-Sanni Algorithm 34

3.3 The Martellow-Toth Algorithm 37

CHAPTER 4 43

DATA COLLECTION AND ANALYSIS 43

4.0 Introduction 43

4.1 Data Collection and Analysis 44

CHAPTER 5 47

CONCLUSIONS AND RECOMMENDATIONS 47

5.0 Introduction 47

5.1 Conclusions 47

5.2 Recommendations 47

REFERENCES 49

APPENDIX_1–FORTRAN 90 CODES FOR THE 0-1 SINGLE KNAPSACK PROBLEM 55

LIST OF TABLE

4.1 List of the capacity (tons/week) and the cost (1000/unit) for each site 44

4.2 Optimal solutions for the various iterative stages 46

CHAPTER 1

INTRODUCTION

Knapsack problems are among the most intensively studied NP-hard combinatorial optimization

problems. The applications of these problems span a wide canvas from industrial applications

and financial management to electronic commerce and personal health-care. The common

flavour in most of these problems is resource allocation. The allocation of a specific amount of a

single resource among competitive alternatives is often modelled as a knapsack problem or its

variants. In this chapter of the thesis, we shall give an overview of integer programming model

of which Knapsack problems falls under; a brief description of the problem statement of the

thesis is also presented as well as the objectives, the methodology, the justification and the

organization of the thesis.

 1.1 BACKGROUND OF STUDY

Mathematical programming is a fast growing branch of mathematics with a surprisingly short

history. Most of its development has occurred during the second half of this century. Basically,

one deals with the maximization (or minimization) of some function subject to one or more

constraints.

Today mathematical programming problems arise in all sorts of areas; this is the age of

optimization as a scientist stated (Geir, 1997). Modern society, with advanced technology and

competitive businesses typically needs to make best possible decisions, which e.g. involve the

best possible use of resources, maximizing some revenue, minimizing production or design

costs, etc. In mathematical areas one may meet approximation problems like solving some

equations “within some tolerance” but without using too many variables (resources). In computer

science, the very large scale integration (VLSI) area gives rise to many optimization problems:

physical layout of microchips, routing, via minimization and so on. In telecommunications, the

physical design of networks lead to many different optimization problems, e.g. that of

minimizing network design (or expansion) costs subject to constraints reflecting that the network

can support the described traffic. In fact, in many other areas, problems involving

communication networks can be viewed as optimization problems. In economics (econometrics)

optimization models are used for e.g. describing money transfer between sectors in society or

describing the efficiency of production units.

The large amount of applications, combined with the development of fast computers, has lead to

massive innovation in optimization. In fact, today optimization may be divided into several

fields, e.g. linear programming, non-linear programming, discrete optimization and stochastic

optimization.

Integer programming is an important class of mathematical programming problems used to

optimize linear systems that require the variables to be integers. It is the natural way of modeling

many real-life and theoretical problems, including some combinatorial optimization problems

and it is a broad and well-studied area with a lot of potential to improve.

With the standard linear programming problem, the assumption that choice variables are

infinitely divisible (can be any real number) is unrealistic in many settings. Integer programming

problems are typically much harder to solve than linear programming problems and there are no

fundamental theoretical results like Duality or Computational algorithms like the Simplex

algorithm to help one to understand and solve the problems. This sad realization has made the

study of integer programming problems goes in two directions. First, people study specialized

model. These problems can be solved as linear programming problems (that is, adding the

integer constraints does not change the solution). In many cases, they can be solved more

efficiently than general linear programming problems using new algorithms. Second, people

introduce general algorithms. These algorithms are not as computationally efficient as the

simplex algorithm, but can be formulated generally.

Integer programs are beneficial because, if one can solve them, then one is guaranteed to obtain

the best solution. However, this guarantee of optimality has a computational tradeoff, and integer

programs currently may require exponential times to solve. The computational problems are so

extreme that many integer programs cannot be solved, even using supercomputers (Geir,1997).

 One example of the usefulness of integer programs optimized the scheduling and deployment of

San Francisco Police Department Patrol Officers (Hillier and Lieberman, 2001). The criteria

used in this study were the level of public safety, level of officer’s morale, and cost of

operations.

The computerized system that was developed used a mathematical model to incorporate each of

the goals and increased San Francisco Police Department’s net income by 14 million dollars and

decreased response times by twenty (20) percent. Similarly, Delta Airlines saved approximately

100 million dollars per year by implementing optimal fleet assignments. More than 2,500

domestic flights and 450 airplanes per day are assigned by this integer programming (IP)

(Scheff et al., 1994).

In addition to the above application, integer programs have been used to solve a number of real-

life problems, including airline scheduling (Gutierrez, 2007), and (Huschka, 2007), sports

scheduling (Easton, et al., 2003), construction site location (Nemhauser and Wolsey, 1988),

manufacturing job scheduling, and telephone network optimizations (Tomastik, 1993). Thus,

integer programming has played an important role in supporting managerial decisions in the

areas of capital budgeting, warehouse location, and scheduling.

The Knapsack Problems are among the simplest integer programming problems which are NP-

hard. Problems in this class are typically concerned with selecting from a set of given items, each

with a specific weight and value, a subset of items whose weight sum does not exceed a

prescribed capacity and whose value is maximum. The specific problem that arises depends on

the number of knapsack (single or multiple) to be filled and on the number of available items of

each type (bounded or unbounded). Because of their wide range of applicability, knapsack

problems have known a large number of variations such as: single and multiple constrained

knapsacks, knapsack with disjunctive constraints, multidimensional knapsacks, multiple choice

knapsacks, single and multiple objective knapsacks, integer, linear, non-linear knapsacks,

deterministic and stochastic knapsacks, knapsacks with convex / concave objective functions,

etc.

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each

type. Knapsack Problems have been intensively studied over the past forty-five (45) years

because of their direct application to problems arising in industries and also for their contribution

to the solution methods for integer programming problems. Several exact algorithms based on

branch and bound, dynamic programming and heuristics have been proposed to solve the

Knapsack Problems.

1.2 PROBLEM STATEMENT

This thesis seeks to optimally select the best site among the various proposed sites that have been

ear-marked for refuse disposal in Sekondi-Takoradi Metropolis given the budget constraint.

An example of this problem is a camper going backpacking. He wishes to bring the best

combination of equipment he can. Each piece of equipment (tent, food, water, etc) has a value to

the camper that is assigned a numerical representation. Each piece of equipment also has a

corresponding weight, but the capacity of the bag is b. The camper can only bring as much

equipment as he can carry. There are various items he can carry in the bag, but the total weight

of these items is greater than the weight the bag can carry. If each item has a value, vi and a

weight wi for each i (such that i = 1, 2, 3… N, where N is the total number of items) and xi the

number of units of item i in the bag.

Two examples of areas where knapsack problems can be applied are resource allocation

(Granmo et al., 2007) and portfolio management (Bertsimas et al., 1999). In resource allocation,

a company wishes to maximize its return from resources invested into each division or product

subject to the total resources available. In portfolio management, the goal is to maximize returns

while minimizing risk. The knapsack problem is widely studied because of its importance to

integer programs. Any single constraint of a binary integer program can be viewed as a knapsack

constraint.

1.3 OBJECTIVES

The objective of the study is to model a real-life problem in site development for rubbish

disposal as a 0-1 knapsack problem, and propose branch-and-bound algorithm for solving the

problem.

1.4 METHODOLOGY

This thesis seeks to apply the branch-and-bound algorithm for solving our proposed knapsack

problem. First, the algorithm is presented along with relevant examples. A real life

computational study is performed and a code in FORTRAN 90 programming language will be

employed to implement the algorithm.

 1.5 JUSTIFICATION

 Knapsack problems are widely used in financial decision making, and very interesting from the

perspective of computer science because; there is a pseudo polynomial time algorithm using

dynamic programming, there is a fully polynomial-time approximation scheme, which uses the

pseudo-polynomial time algorithm as a subroutine, the problem is NP-complete to solve exactly,

thus it is expected that no known algorithm can be both correct and fast (polynomial-time) on all

cases, and many cases that arise in practice, and “random instances” from some distributions, can

nonetheless be solved exactly. In view of these, studies of knapsack problems and their

algorithms has been an area of much interest in the contribution to academic knowledge, hence

the reason for solving the knapsack problem.

1.6 LIMITATIONS OF THE STUDY

The revenue generation or the income of the assembly is most at times uncertain and can affect

the budgeted amount for refuse management. Also, the rate of inflation is unpredictable which

could lead to high cost of goods and services.

1.7 ORGANIZATION OF THE THESIS

The study is organized in five chapters. In chapter one, we presented a background study of

integer programming of which knapsack problems form part, the problem statement, the

objectives, methodology, justification and limitation of the study.

In chapter two, pertinent literature in the field Knapsack problems will be discussed.

Chapter three presented the branch-and-bound algorithm.

Chapter four is data collection and analysis

Chapter five, the last chapter presents conclusion and recommendations of the study.

CHAPTER 2

LITERATURE REVIEW

The knapsack problem is a classical combinatorial problem used to model many industrial

situations. Faced with uncertainty on the model parameters, robustness analysis is an appropriate

approach to find reliable solutions. Kalai and Vanderpooten (2006) studied the robust knapsack

problem using a max-min criterion, and proposed a new robustness approach, called

lexicographic α-robustness. The authors showed that the complexity of the lexicographic α-

robust problem does not increase compared with the max-min version and presented a pseudo-

polynomial algorithm in the case of a bounded number of scenarios.

Knapsack problems with setups find their application in many concrete industrial and financial

problems. Moreover, they also arise as sub-problems in a Dantzig-Wolfe decomposition

approach to more complex combinatorial optimization problems, where they need to be solved

repeatedly and therefore efficiently. Micheal et al., (2009) considered the multiple-class integer

knapsack problem with setups. Items are partitioned into classes whose use imply a setup cost

and associated capacity consumption. Item weights are assumed to be a multiple of their class

weight. The total weight of selected items and setups is bounded. The objective is to maximize

the difference between the profits of selected items and the fixed costs incurred for setting-up

classes. A special case is the bounded integer knapsack problem with setups where each class

holds a single item and its continuous version where a fraction of an item can be selected while

incurring a full setup. The authors showed the extent to which classical results for the knapsack

problem can be generalized to these variants with setups. In particular, an extension of the

branch-and-bound algorithm of Horowitz and Sahni (1974) is developed for problems with

positive setup costs.

The multidimensional knapsack problem (MKP) is a well-known, strongly NP-hard problem and

one of the most challenging problems in the class of the knapsack problems. In the last few

years, it has been a favorite playground for meta-heuristics, but very few contributions have

appeared on exact methods. Renata and Grazia (2009) presented an exact approach based on the

optimal solution of sub-problems limited to a subset of variables. Each sub-problem is faced

through a recursive variable-fixing process that continues until the number of variables decreases

below a given threshold (restricted core problem). The solution space of the restricted core

problem is split into subspaces, each containing solutions of a given cardinality. Each subspace is

then explored with a branch-and-bound algorithm. Pruning conditions are introduced to improve

the efficiency of the branch-and-bound routine.

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective function

subject to a knapsack constraint, where all coefficients are assumed to be nonnegative and all

variables are binary. The problem has applications in location and hydrology, and generalizes the

problem of checking whether a graph contains a clique of a given size. Alberto et al., (2007)

proposed an exact branch-and-bound algorithm for QKP, where upper bounds are computed by

considering a Lagrangian relaxation that is solvable through a number of (continuous) knapsack

problems. Suboptimal Lagrangian multipliers are derived by using sub-gradient optimization and

provide a convenient reformulation of the problem. The authors also discussed the relationship

between our relaxation and other relaxations. Heuristics, reductions, and branching schemes

were described. In particular, the processing of each node of the branching tree is quite fast:

Their approach does not update the Lagrangian multipliers, and use suitable data structures to

compute an upper bound in linear expected time in the number of variables. The authors reported

exact solution of instances with up to 400 binary variables, i.e., significantly larger than those

solvable by the previous approaches. The key point of this improvement is that the upper bounds

we obtain are typically within 1% of the optimum, but can still be derived effectively. They also

showed that their algorithm is capable of solving reasonable-size Max Clique instances.

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems

in this class are typically concerned with selecting from a set of given items, each with a

specified weight and value, a subset of items whose weight sum does not exceed a prescribed

capacity and whose value is maximum. The specific problem that arises depends on the number

of knapsacks (single or multiple) to be filled and on the number of available items of each type

(bounded or unbounded). Because of their wide range of applicability, knapsack problems have

known a large number of variations such as: single and multiple-constrained knapsacks,

knapsacks with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks,

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and

stochastic knapsacks, knapsacks with convex / concave objective functions, etc. The classical 0-1

Knapsack Problem arises when there is one knapsack and one item of each type. Knapsack

Problems have been intensively studied over the past forty (40) years because of their direct

application to problems arising in industry (for example, cargo loading, cutting stock, and

budgeting) and also for their contribution to the solution methods for integer programming

problems. Several exact algorithms based on branch and bound, dynamic programming and

heuristics have been proposed to solve the Knapsack Problems

Oppong (2009) presented the application of classical 0-1 knapsack problem with a single

constraint to selection of television advertisements at critical periods such as Prime time News,

news adjacencies, Break in News and peak times. The Television (TV) stations have to schedule

programmes interspersed with adverts or commercials which are the main sources of income of

broadcasting stations. The goal in scheduling commercials is to achieve wider audience

satisfaction and making maximum income from the commercials or adverts. The author

approach is flexible and can incorporate the use of the knapsack for Profit maximization in the

TV adverts selection problem, and focused on using a simple heuristic scheme (Simple flip) for

the solution of knapsack problems.

The collapsing knapsack problem is a generalization of the ordinary knapsack problem, where

the knapsack capacity is a non-increasing function of the number of items included. Whereas

previous methods on the topic have applied quite involved techniques,

Ulrich et al., (1995) presented and analyze two rather simple approaches: One approach that was

based on the reduction to a standard knapsack problem, and another approach that was based on

a simple dynamic programming recursion. Both algorithms have pseudo-polynomial solution

times, guaranteeing reasonable solution times for moderate coefficient sizes. Computational

experiments are provided to expose the efficiency of the two approaches compared to previous

algorithms.

Kosuch and Lisser (2009) studied a particular version of the stochastic knapsack problem with

normally distributed weights: the two-stage stochastic knapsack problem. Contrary to the single-

stage knapsack problem, items can be added to or removed from the knapsack at the moment the

actual weights become known (second stage). In addition, a chance-constraint is introduced in

the first stage in order to restrict the percentage of cases where the items chosen lead to an

overload in the second stage. According to the authors, there is no method known to exactly

evaluate the objective function for a given first-stage solution, and therefore proposed methods to

calculate the upper and lower bounds. These bounds are used in a branch-and-bound framework

in order to search the first-stage solution space. Special interest was given to the case where the

items have similar weight means. Numerical results are presented and analyzed.

Stefanie (2010) presented an Ant Colony Optimization algorithm for the Two-Stage Knapsack

problem with discretely distributed weights and capacity, using a meta-heuristic approach. Two

heuristic utility measures were proposed and compared. Moreover, the author introduced the

novel idea of non-utility measures in order to obtain a criterion for the construction termination.

The author argued why for the proposed measures, it is more efficient to place pheromone on

arcs instead of vertices or edges of the complete search graph. Numerical tests show that the

author’s algorithm is able to produce, in much shorter computing time, solutions of similar

quality than CPLEX after two hour. Moreover, with increasing number of scenarios the

percentage of runs where his algorithm is able to produce better solutions than CPLEX (after 2h)

increases.

 Mattfeld and Kopfer (2003) described terminal operations for the vehicle transshipment hub in

Bremerhaven as a knapsack and have derived an integral decision model for manpower planning

and inventory control. The authors proposed a hierarchical separation of the integral model into

sub models and can develop integer programming algorithm to solve the arising sub problems.

In bus transit operations planning process, the important components are network route design,

setting timetables, scheduling vehicles, assignment of drivers, and maintenance scheduling.

Haghani and Shafahi (2002) presented integer programming model to design daily inspection

and maintenance schedules for the buses that are due for inspection so as to minimize the

interruptions in the daily bus operating schedule, and maximize the utilization of the

maintenance facilities.

The setting of timetables and bus routing or scheduling are essential to an intercity bus carrier’s

profitability, its level of service, and its competitive capacity in the market. Yan and Chen (2002)

developed a model that help Taiwanese intercity bus carriers in timetable settings and bus

routing or scheduling. The model employs multiple time-space networks that can formulate bus

movements and passenger flows and manage the interrelationships between passenger trip

demands and bus trip suppliers to produce the best timetables and bus routes or schedules.

Higgins et al., (1996) described the development and use of integer programming model to

optimize train schedules on single-line rail corridors. The model has been developed with two

major applications in mind: as a decision support tool for train dispatchers to schedule trains in

real time in an optimal way and as a planning tool to evaluate the impact of timetable changes, as

well as railroad infrastructure changes. The model was developed based on a real-life problem.

Ghoseiri et al., (2004) developed an optimization model for the passenger train-scheduling

problem on a railroad network, which includes single, and multiple tracks, as well as multiple

platforms with defferent train capacities.

 Claessens et al., (1998) considered the problem of cost optimal railway line allocation for

passenger trains for the Dutch railway system. A mathematical programming model was

developed, which minimized the operating costs subject to service constraints and capacity

requirements. The model optimized on lines, line types, routes, frequencies, and train lengths.

First, the line allocation model was formulated as an integer nonlinear programming model. The

model was then transformed into an integer linear programming model with binary decision

variables. The model was solved and applied to a sub network of the Dutch railway system for

which it showed a substantial cost reduction.

The deterministic knapsack problem is a well known and well studied NP-hard combinatorial

optimization problem. It consists in filling a knapsack with items out of a given set such that the

weight capacity of the knapsack is respected and the total reward maximized. In the deterministic

problem, all parameters (item weights, rewards, knapsack capacity) are known (deterministic). In

the stochastic counterpart, some (or all) of these parameters are assumed to be random, i.e. not

known at the moment the decision has to be made.

Stefanie et al., (2010) studied the stochastic knapsack problem with expectation constraint. The

item weights are assumed to be independently normally distributed. The authors solved the

relaxed version of this problem using a stochastic gradient algorithm in order to provide upper

bounds for a branch-and-bound framework. Two approaches to estimate the needed gradients are

applied, one based on Integration by Parts and one using Finite Differences. Finite Differences is

a robust and simple approach with efficient results despite the fact that the estimated gradients

are biased; meanwhile Integration by Parts is based upon a more theoretical analysis and permits

to enlarge the field of applications.

Stefanie et al., (2009) proposed a mixed integer bi-level problem having a probabilistic knapsack

constraint in the first level. The problem formulation is mainly motivated by practical pricing

and service provision problems as it can be interpreted as a model for the interaction between a

service provider and clients. The authors assumed the probability space to be discrete which

allows us to reformulate the problem as a deterministic equivalent bi-level problem. Via a

reformulation as linear bi-level problem, we obtain a quadratic optimization problem, the so

called Global Linear Complementarity Problem. Based on this quadratic problem, the authors

finally proposed a procedure to compute upper bounds on the initial problem by using a

Lagrangian relaxation and an iterative linear min-max scheme.

The knapsack problem (KP) and its multidimensional version (MKP) are basic problems in

combinatorial optimization.

Thibaut and Jacques (2010) presented the multiobjective extension (MOKP and MOMKP), for

which the aim is to obtain or to approximate the set of efficient solutions. In a first step, the

authors classified and described briefly the existing works that are essentially based on the use of

meta-heuristics. In a second step, the authors proposed the adaptation of the two-phase Pareto

local search (2PPLS) to the resolution of the MOMKP. With this aim, the authors used a very-

large scale neighborhood (VLSN) in the second phase of the method that is the Pareto local

search. They compared their results to state-of-the-art results and showed that they obtained

results never reached before by heuristics, for the biobjective instances. Finally they considered

the extension to three-objective instances.

Eleni and Nicos (2010) presented a new exact tree-search procedure for solving two-dimensional

knapsack problems in which a number of small rectangular pieces, each of a given size and

value, are required to be cut from a large rectangular stock plate. The objective is to maximize

the value of pieces cut or minimize the wastage. The authors considered the case where there are

a maximum number of times that a piece may be used in a cutting pattern. The algorithm limits

the size of the tree search by using a bound derived from a Langrangean relaxation of a 0–1

integer programming formulation of the problem. Sub-gradient optimization is used to optimize

this bound. Reduction tests derived from both the original problem and the Lagrangean

relaxation produce substantial computational gains. The computational performance of the

algorithm indicates that it is an effective procedure capable of solving optimally practical two-

dimensional cutting problems of medium size.

Lawler (1997) presented fully polynomial approximation algorithms for knapsack problems are

presented. These algorithms are based on ideas of Ibarra and Kim, with modifications which

yield better time and space bounds, and also tend to improve the practicality of the procedures.

Among the principal improvements are the introduction of a more efficient method of scaling

and the use of a median-finding routine to eliminate sorting. The 0-1 knapsack problem, for n

items and accuracy ε > 0, is solved in (n log (1/ε) + 1/ε4) time and 0(n + 1/ε3) space. The time

bound is reduced to 0(n + 1/ε3) for the "unbounded" knapsack problem. For the "subset-sum"

problem, 0 (n + 1/ε3) times and 0 (n + 1/ε2) spaces, or 0(n + 1/ε2 log (1/ε)) time and space, are

achieved. The "multiple choice" problem, with m equivalence classes, is solved in 0(nm2/ε) time

and space.

 The 0-1 knapsack problem is a linear integer-programming problem with a single constraint

and binary variables. The knapsack problem with an inequality constraint has been widely

studied, and several efficient algorithms have been published. Balasubramanian and

Sanjiv (1988) considered the equality-constraint knapsack problem, which has received

relatively little attention. The authors described a branch-and-bound algorithm for this

problem, and present computational experience with up to 10,000 variables. An important

feature of this algorithm is a least-lower-bound discipline for candidate problem selection.

Esther et al., (1993) studied a variety of geometric versions of the classical knapsack problem.

In particular, the authors considered the following fence enclosure problem: given a set S

of n points in the plane with values vi > 0, we wish to enclose a subset of the points with a

fence (a simple closed curve) in order to maximize the value of the enclosure. The value of

the enclosure is defined to be the sum of the values of the enclosed points minus the cost of the

fence. They also considered various versions of the problem, such as allowing S to consist of

points and/or simple polygons. Other versions of the problems are obtained by restricting the

total amount of fence available and also allowing the enclosure to consist of at most M

connected components. When there is an upper bound on the length of fence available, we

show that the problem is NP-complete. We also provide polynomial-time algorithms for many

versions of the fence problem when an unrestricted amount of fence is available.

Volgenant and Zoon (1990) presented a multidimensional 0-1 knapsack problem using

heuristic, based on Lagrange multipliers, that also enables the determination of an upper bound

to the optimal criterion value. This heuristic is extended in two ways: (1) in each step, not one,

but more multiplier values are computed simultaneously, and (2) at the end the upper bound is

sharpened by changing some multiplier values. From a comparison using a large series of

different test problems, the extensions appear to yield an improvement, on average, at the cost

of only a modest amount of extra computing time.

The binary knapsack problem is a combinatorial optimization problem in which a subset of a

given set of elements needs to be chosen in order to maximize profit, given a budget constraint.

Das and Ghosh (2003) studied a stochastic version of the problem in which the budget is

random. The authors proposed two different formulations of this problem, based on different

ways of handling infeasibility, and propose an exact algorithm and a local search-based

heuristic to solve the problems represented by these formulations. The authors also presented

the results from some computational experiments.

Goyal and Ravi (2009) presented a stochastic knapsack problem where each item has a known

profit but a random size. The goal is to select a profit maximizing set of items such that the

probability of the total size of selected items exceeding the knapsack size is at most a given

threshold. The authors presented a parametric linear programming (LP) formulation and

showed that it is a good approximation of the chance-constrained stochastic knapsack problem.

Furthermore, they gave a polynomial time algorithm to round any fractional solution of the

parametric LP to obtain an integral solution whose profit is within (1 +

The knapsack problem is known to be a typical NP-complete problem, which has 2n possible

solutions to search over. Thus a task for solving the knapsack problem can be accomplished in

2n trials if an exhaustive search is applied. In the past decade, much effort has been devoted in

order to reduce the computation time of this problem instead of exhaustive search. In 1984,

Karnin proposed a brilliant parallel algorithm, which needs O(2n/6) processors to solve the

knapsack problem in O(2n/2) time; that is, the cost of Karnin's parallel algorithm is O(22n/3).

Der-Chyuan Lou and Chin-Chen Chang (1997) proposed a fast search technique to improve

Karnin's parallel algorithm by reducing the search time complexity of Karnin's parallel

algorithm to be O (2n/3) under the same O(2n/6) processors available. Thus, the cost of the

proposed parallel algorithm is O (2n/2). Furthermore, the authors extended their technique to

the case that the number of available processors is P = O (2x), where x ≥ 1. From the analytical

results, the saw that their search technique is indeed superior to the previously proposed

methods. They do believe their proposed parallel algorithm is pragmatically feasible at the

moment when multiprocessor systems become more and more popular.

Knapsack problem is a typical NP complete problem. During last few decades, Knapsack

problem has been studied through different approaches, according to the theoretical

development of combinatorial optimization. Garg and Sunanda (2009) put forward the

evolutionary algorithm for 0/1 knapsack problem. A new objective function evaluation

operator was proposed which employed adaptive repair function named as repair and elitism

operator to achieve optimal results in place of problem specific knowledge or domain specific

operator like penalty operator (which are still being used). Additional features had also been

incorporated which allowed the algorithm to perform more consistently on a larger set of

problem instances.

Their study also focused on the change in behavior of outputs generated on varying the

crossover and mutation rates. New algorithm exhibited a significant reduction in number of

function evaluations required for problems investigated.

Srisuwannapa and Charnsethikul (2007) presented a variant of the unbounded knapsack

problem (UKP) into which the processing time of each item is also put and considered,

referred as MMPTUKP. The MMPTUKP is a decision problem of allocating amount of n

items, such that the maximum processing time of the selected items is minimized and the total

profit is gained as at least as determined without exceeding capacity of knapsack. In this study,

we proposed a new exact algorithm for this problem, called MMPTUKP algorithm. This

pseudo polynomial time algorithm solves the bounded knapsack problem (BKP) sequentially

with the updated bounds until reaching an optimal solution. The authors presented

computational experience with various data instances randomly generated to validate their

ideas and demonstrate the efficiency of the proposed algorithm.

Ronghua et al., (2006) presented a new multiobjective optimization (MO) algorithm to solve

0/1 knapsack problems using the immune Clonal principle. This algorithm is termed Immune

Clonal MO Algorithm (ICMOA). In ICMOA, the antibody population is split into the

population of the non-dominated antibodies and that of the dominated anti-bodied. Meanwhile,

the non-dominated antibodies are allowed to survive and to clone. A metric of Coverage of

Two Sets are adopted for the problems. This quantitative metric is used for testing the

convergence to the Pareto-optimal front. Simulation results on the 0/1 knapsack problems

show that ICMOA, in most problems, is able to find much better spread of solutions and better

convergence near the true Pareto-optimal front compared with SPEA, NSGA, NPGA and

VEGA.

Deniz et al., (2010) studied maximization of revenue in the dynamic and stochastic knapsack

problem where a given capacity needs to be allocated by a given deadline to sequentially

arriving agents. Each agent is described by a two-dimensional type that reflects his capacity

requirement and his willingness to pay per unit of capacity. Types are private information. The

authors first characterize implementable policies. Then they solved the revenue maximization

problem for the special case where there is private information about per-unit values, but

capacity needs are observable. After that they derived two sets of additional conditions on the

joint distribution of values and weights under which the revenue maximizing policy for the

case with observable weights is implementable, and thus optimal also for the case with two-

dimensional private information. In particular, they investigated the role of concave

continuation revenues for implementation. We also construct a simple policy for which per-

unit prices vary with requested weight but not with time, and prove that it is asymptotically

revenue maximizing when available capacity/ time to the deadline both go to infinity. This

highlights the importance of nonlinear as opposed to dynamic pricing.

Computational grids are distributed systems composed of heterogeneous computing resources

which are distributed geographically and administratively. These highly scalable systems are

designed to meet the large computational demands of many users from scientific and business

orientations. However, there are problems related to the allocation of the computing resources

which compose of a grid.

Van dester et al., (2008) studied the design of a Pan-Canadian grid. The design exploits the

maturing stability of grid deployment toolkits, and introduces novel services for efficiently

allocating the grid resources. The changes faced by this grid deployment motivate further

exploration in optimizing grid resource allocations. By applying this model to the grid

allocation option, it is possible to quantify the relative merits of the various possible scheduling

decisions. Using this model, the allocation problem was formulated as a knapsack problem.

Formulation in this manner allows for rapid solution times and results in nearly optimal

allocations.

Last few years have seen exponential growth in the area of web applications, especially, e-

commerce and web-services. One of the most important qualities of service metric for web

applications is the response time for the user. Web application normally has a multi-tier

architecture and a request might have to traverse through all the tiers before finishing its

processing. Therefore, a request’s total response time is the sum of response time at all the

tiers. Since the expected response time at any tier depends upon the number of servers

allocated to this tier, many different configurations (number of servers allocated to each tier)

can give the same quality of service guarantee in terms of total response time. Naturally, one

would like to find the configuration which minimizes the total system cost and satisfies the

total response time guarantee. Zhang et al., (2004) modeled this problem as integer

optimization problem.

The strike-force asset allocation problem consists of grouping strike force assets into packages

and assigning these packages to targets and defensive assets in a way that maximizes the strike

force potential. Chi-Wei, et al., (2001) modeled this problem as integer programming

formulation, and proposed a branch and bound algorithm to solve it.

Sung-Ho (1998) presented a techniques for obtaining strategies to allocate rooms to customers

belonging to various market segments, considering time dependent demand forecasts and a

fixed hotel capacity. This technique explicitly accounts for group and multi-night reservation

requests in an efficient and effective manner. This is accomplished by combining an optimal

discrete-dynamic model for handling single-night reservation requests, bases on a static integer

programming model, developed to handle multi-night reservation requests.

 Allocation of resources under uncertainty is a very common problem in many real-life

scenarios. Employers have to decide whether or not to hire candidates, not knowing whether

future candidates will be stronger or more desirable. Machines need to decide whether to

accept jobs without knowledge of the importance or profitability of future jobs. Consulting

companies must decide which jobs to take on, not knowing the revenue and resources

associated with potential future requests. More recently, online auctions have proved to be a

very important resource allocation problem. Advertising auctions in particular provide the

main source of monetization for a variety of internet services including search engines, blogs,

and social networking sites. Additionally, they are the main source of customer acquisition for

a wide array of small online business, of the networked world. In bidding for the right to

appear on a web page (such as a search engine), advertisers have to trade off between large

numbers of parameters, including keywords and viewer attributes. In this scenario, an

advertiser may be able to estimate accurately the bid required to win a particular auction, and

benefit either in direct revenue or name recognition to be gained, but may not know about the

trade off for future auctions. All of these problems involve an online scenario, where an

algorithm has to make decisions on whether to accept an offer, based solely on the required

resource investment (or weight) and projected value of the current offer, with the total weight

of all selected offer not exceeding a given budget. When the weights are uniform and equal to

the weight constraint, the problems above reduces to the famous secretary problem which was

first introduced by (Dynkin, 1963). Moshe et al., (2008), studied this model as a knapsack

problem.

 Kleinberg (2009) presented a model for the multiple-choice secretary problem in which k

elements need to be selected and the goal is to maximize the combined value (sum) of the

selected elements.

Babaioff et al., (2007) studied the matriod secretary problem in which the elements of a

weighted matriod arrive in a random order. As each element is observed, the algorithm makes

an irrevocable decision to choose it or skip it, with the constraint that the chosen elements must

constitute an independent set. The objective is to maximize the combined weight of the chosen

elements. The authors proposed an integer programming algorithm for this problem.

Aggarwal and Hartline (2006) designed truthful auctions which are revenue competitive when

the auctioneer is constrained to choose agents with private values and publicly known weights

that fit into a knapsack.

 Boryczka (2006) presented a new optimization algorithm based on ant colony metaphor and a

new approach for the Multiple Knapsack Problem. The MKP is the problem of assigning a

subset of n items to m distinct knapsacks, such that the total profit sum of the selected items is

maximized, without exceeding the capacity of each of the knap sacks. The problem has several

difficulties in adaptation as well as the trail representation of the solutions of MKP or a

dynamically changed heuristic function applied in this approach. Presented results showed the

power of the ACO approach for solving this type of subset problems.

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the 0-1

knapsack problem, an NP-Hard problem. Due to its high computational complexity, algorithms

for exact solution of the MMKPs are not suitable for most real-time decision-making

applications, such as quality adaptation and admission control for interactive multimedia

systems, or service level agreement (SLA) management in telecommunication networks.

Shahadat et al., (2002) presented a heuristic for finding near-optimal solutions of the MMKP,

with reduced computational complexity, and is suitable for real-time applications. Based on

Toyoda’s concept of aggregate resource, the heuristic employs an iterative improvement

procedure using savings in aggregate resource and value per unit of extra aggregate resource.

Experimental results suggest that this heuristic finds solutions which are close to the optimal

(within 6% of the optimal value), and that it out-performs Moser’s heuristic for the MMKP in

both solution quality and execution time.

 Speeding up knapsack problem, one of the NP complete problems, which could be used to

design public-key cryptosystems, was presented by Lu and Feng (2004) using quantum

algorithm. How to use Grover's quantum searching algorithm to speed up the knapsack

problem was presented based on computational complexity theory. Comparisons of quantum

searching algorithm with Shor's factoring algorithm were delivered and the factors that

affected the performance of quantum algorithms were discussed from group theory point of

view. The future of the quantum algorithms was also augmented in the later.

An instance of the geometric knapsack problem occurs in air lift loading where a set of cargo

must be chosen to pack in a given fleet of aircraft. Chocolaad (1998) presented a new

heuristic to solve this problem in a reasonable amount of time with a higher quality solution

then previously reported in literature. The author also reported a new tabu search heuristic to

solve geometric knapsack problems. He then employed a novel heuristics in a Master and

slave relationship, where the knapsack heuristic selects a set of cargo and the packing

heuristic determines if that set is feasible. The search incorporates learning mechanisms that

react to cycles and thus is robust over a large set of problem sizes. The new knapsack and

packing heuristics compare favorably with the best reported efforts in the literature.

Additionally, the author proposed the JAVA language to be an effective language for

implementing the heuristics. The search is then used in a real world problem of determining

how much cargo can be packed with a given fleet of aircraft.

Knapsack problem has been widely studied in computer science for years. There exist several

variants of the problem, with zero-one maximum knapsack in one dimension being the

simplest one.

Islam 2009) studied several existing approximation algorithms for the minimization version

of the problem and propose a scaling based fully polynomial time approximation scheme for

the minimum knapsack problem. The author compared the performance of this algorithm

with existing algorithms. His experiments show that, the proposed algorithm runs fast and

has a good performance ratio in practice. He also conducts extensive experiments on the data

provided by Canadian Pacific Logistics Solutions during the MITACS internship program.

The author proposed a scaling based varepsilon-approximation scheme for the

multidimensional (d -dimensional) minimum knapsack problem and compares its

performance with a generalization of a greedy algorithm for minimum knapsack in d-

dimensions. The author’s experiments showed that the varepsilon-approximation scheme

exhibits good performance ratio in practice.

Maya and Dipti (2011) presented a research project on using Genetic Algorithms (GAs) to

solve the 0-1 Knapsack Problem (KP). The Knapsack Problem is an example of a

combinatorial optimization problem, which seeks to maximize the benefit of objects in a

knapsack without exceeding its capacity. The author’s research contains three sections: brief

description of the basic idea and elements of the GAs, definition of the Knapsack Problem,

and implementation of the 0-1 Knapsack Problem using GAs. The main focus of the research

was on the implementation of the algorithm for solving the problem. In the program, he

implemented two selection functions, roulette-wheel and group selection. The results from

both of them differed depending on whether to use elitism or not. Elitism significantly

improved the performance of the roulette-wheel function. Moreover, the author tested the

program with different crossover ratios and single and double crossover points but the results

given were not that different.

Maya and Dipti (2005) studied several algorithm design paradigms applied to a single

problem – the 0/1 Knapsack Problem. The Knapsack problem is a combinatorial optimization

problem where one has to maximize the benefit of objects in a knapsack without exceeding

its capacity. It is an NP-complete problem and as such an exact solution for a large input is

practically impossible to obtain. The main goal of the studies was to present a comparative

study of the brute force, dynamic programming, memory functions, branch and bound,

greedy, and genetic algorithms. The study discussed the complexity of each algorithm in

terms of time and memory requirements, and in terms of required programming efforts. The

author’s experimental results showed that the most promising approaches are dynamic

programming and genetic algorithms. The study examines in more details the specifics and

the limitations of these two paradigms.

Yunhong and Victor (2008) modeled a budget constrained keyword bidding in sponsored

search auctions as a stochastic multiple-choice knapsack problem (S-MCKP) and proposed a

new algorithm to solve SMCKP and the corresponding bidding optimization problem. the

authors algorithm selects items online based on a threshold function which can be

built/updated using historical data. Their algorithm achieved about 99% performance

compared to the offline optimum when applied to a real bidding dataset. With synthetic

dataset, its performance ratio against the offline optimum converges to one empirically with

increasing number of periods.

Rajeev and Ramesh (1992) presented a new greedy heuristic for the integer knapsack

problem. The proposed heuristic selects items in non-increasing order of their maximum

possible contribution to the solution value given the available knapsack capacity at each step.

The lower bound on the performance ratio for this “total-value” greedy heuristic is shown to

dominate the corresponding lower bound for the density-ordered greedy heuristic.

 George (1995) proposed the average-case behavior of the Zero–One Knapsack problem, as

well as an on-line version. The authors allowed the capacity of the knapsack to grow

proportionally to the number of items, so that the optimum solution tends to be Θ (n). Under

fairly general conditions on the distribution, they obtained a description of the expected value

of the optimum offline solution which is accurate up to terms which are o (1). The authors

then considered a simple greedy method for the on-line problem, which is called Online

Greedy and is allowed to use knowledge of the distribution, and shown that the solution

obtained by this algorithm differs from the true optimum by an average of Θ(log n); in fact,

and can determine the multiplicative constant hidden by the Θ-notation. Thus on average the

cost of being forced to give answers on-line is quite small compared to the optimum solution.

The constrained compartmentalized knapsack problem is an extension of the classical integer

constrained knapsack problem which can be stated as the following hypothetical situation: a

climber must load his/her knapsack with a number of items. For each item a weight, a utility

value and an upper bound are given. However, the items are of different classes (food,

medicine, utensils, etc.) and they have to be loaded in separate compartments inside the

knapsack (each compartment is itself a knapsack to be loaded by items from the same class).

The compartments have flexible capacities which are lower and upper bounded. Each

compartment has a fixed cost to be included inside the knapsack that depends on the class of

items chosen to load it and, in addition, each new compartment introduces a fixed loss of

capacity of the original knapsack. The constrained compartmentalized knapsack problem

consists of determining suitable capacities of each compartment and how these compartments

should be loaded, such that the total items inside all compartments does not exceed the upper

bound given. The objective is to maximize the total utility value minus the cost of the

compartments. This kind of problem arises in practice, such as in the cutting of steel or paper

reels. Doprado and Nereu (2007) modeled the problem as an integer non-linear optimization

problem for which some heuristic methods are designed. Finally, computational experiments

were given to analyze the methods.

The Multiple Knapsack Problem (MKP) is a NP-hard combinatorial optimization problem in

many real-word applications. An algorithm with the behaviors of preying, following and

swarming of artificial fish for searching optimal solution was proposed by Ma Xuan (2009).

With regard to the problem that infeasible solutions are largely produced in the process of

initializing individuals and implementing the behaviors of artificial fish due to the multiple

constraints, which undermines the algorithm performance, an adjusting operator based on

heuristic rule was designed to ensure all the individuals in the feasible solution areas.

Computational results show that the algorithm can quickly find optimal solution. The

proposed algorithm can also be applied to other constrained combinatorial optimization

problems. The above literature shows that knapsack is a very important tool which has helped

in many field.

CHAPTER 3

METHODOLOGY

 INTRODUCTION

This chapter provides an explanation of the branch-and-bound algorithm for solving our

problem. Before our introduction of the branch-and-bound for knapsack problems, we first

give a general overview of the branch-and-bound for general integer programming.

 Formally, an integer programming problem is formulated as

 Maximize cT x

Subject to: Ax ≤ b

 x ≥ 0 and integer.

 Where; A

either branch and bound or cutting planes can be used to find the solution to the integer

programming problem.

Branch and bound uses the linear relaxation as starting point to search for the optimal integer

solution. Every linear relaxation solution that is found during the branch and bound process is

given a corresponding node on the branching tree. Once a node’s relaxations point has been

found, any variable with a fractional value may be chosen as the branching variable. Two

child nodes with corresponding branches are created from this parent node. One branch

requires the branching variable to be greater than or equal to its relaxation value rounded up

to the nearest integer. The other branch requires the branching variable to be less than or

equal to the relaxation solution rounded down to the nearest integer. Using these values, two

new relaxation points are found and two more nodes are created in the tree. This process is

repeated until all nodes have been fathomed.

A fathomed node is finished, and no more nodes or branches are created below any fathomed

nodes. Fathoming a node in a branch and bound algorithm occurs under three circumstances.

If a node is found that: (i) cannot produce a feasible solution to the linear relaxation, then that

node is fathomed. (ii) returns an integer solution, then that node is fathomed. Although other

feasible solutions may exist below that node, none will be better than that node’s solution.

(iii) has a linear relaxation solution with a value lower than the value of a previously

discovered integer solution, then that node is fathomed.

 An alternative to the branch and bound method is to use cutting planes to reduce the linear

relaxation space. The basic idea of the cutting plane method is to cut off parts of the feasible

region of the corresponding linear program, so that the optimal integer solution becomes an

extreme point and can be found by the simplex algorithm. This method attempts to find a

hyper plane that intersects the solution space below the current linear relaxation point without

eliminating any integer solutions. Once such a hyper plane has been put in place, a new linear

relaxation point is found, and branch and bound can be implemented or additional cutting

planes can be added until an integer solution is returned as the solution to the linear

programming problem.

3.1 Branch-and-Bound Algorithms for Knapsacks
The first branch-and-bound approach to the exact solution of KP was presented by Kolesar

(1967). The algorithm consists of a highest-first binary branching scheme with:

(a) at each mode, selects the not-yet-fixed item j having the maximum profit per unit

weight and generates two descendent nodes by fixing xj, respectively, to 1 and 0;

(b) continues the search from the feasible node for which the value of upper bound U1 is

a maximum

The large computer memory and time requirements of the Kolesar algorithm were greatly

reduced by the Greenberg and Hegerich (1970) approach, differing in two main respects:

(a) at each mode, the continuous relaxation of the induced sub problem is solved and the

corresponding critical items ŝ is selected to generate the two descendent nodes (by

imposing X

last node generated by imposing Xŝ = 1, i.e. the algorithm is of depth – first type.

Horowitz and Sahni (1997) (and independently, Ahrens and Finke (1975)) derived from the

previous scheme on depth-first algorithm in which;

(a) selection of the branching variable Xj is the same as in Kolesar;

(b) the search continues from the node associated with the insertion of item j (condition

Xj = 1), i.e. following a greedy strategy

Other algorithms have been derived from the Greenberg – Hegerich approach (Barr and Ross

(1975), Lauriere (1978)] and from different techniques (Lageireg and Lenstra (1972),

Guignard and Spielberg (1972), Fayard and Plateau (1975), Veliev and Mamedov (1981).

The Horowitz – Sahni one is, however, the most effective, structured and easy to implement

and has constituted the basis for several improvements, including that of Martello – Toth

algorithm (Martello and Toth, 1977), which is generally considered highly effective. Hence,

we will also restrict our research work to that of the Horowitz and Sahni algorithm ad

Martello and Toth algorithm.

3.2 The Horowitz – Sanni Algorithm
Assume that the items are sorted. A forward move consists of inserting the largest possible

set of new consecutive items into the current solution. A backtracking move consists of

removing the last inserted item from the current solution. Whenever a forward move is

exhausted, the upper bound U1 corresponding to the current solution is computed and

compared with the best solution so far, in order to check whether further forward moves

could lead to a better one; if so, a new forward move is performed, otherwise a backtracking

follows. When the last item has been considered, the current solution is complete and

possible updating of the best solution so far occurs. The algorithm stops when no further

backtracking can be performed. In the following description of the algorithm we use the

notations.

 begin

insertion into the current solution of any item following the ith. The procedure is

based on the following consideration;

 The current solution could be improved only if the ith item is replaced by an item

having greater profit and a weight small enough to allow its insertion, or by at least

two items having global weight not greater than Wi +

CHAPTER 4

DATA COLLECTION AND ANALYSIS

INTRODUCTION

In this chapter, we shall consider a computational study of branch-and-bound algorithm applied

to knapsack instance. Consideration is given to the 0-1 knapsack problem where n

 N such that

n
i=1 wi

 b. Each item has a profit or cost ci and a weight wi. The problem is to select a subset

of the items whose total weight does not exceed the knapsack capacity b, and whose total profit

is a maximum.

We assume without loss of generality that all input data are positive integers. Introducing the

binary decision variable xi with xi = 1 if item i is selected, and xi = 0 otherwise, we get the

integer linear programming model:

 Maximize Z =

ni=1 cixi Subject to

Table 4.1: List of the capacity (tons/week) and the cost (1000/unit) for each site

SITE A B C D E F G

CAPACITY 70 20 39 37 7 5 10

COST 31 10 20 19 4 3 6

The problem here is to select land in such a way that the optimal capacity would be achieved

without over shooting the amount allocated for the land development.

In comparison to the knapsack problem model, the holding capacity of the bag is the resource

limit, given here as the town budget. The items to be considered are the different sites that can be

developed, the weight of any item is the cost of developing the site, and the value of the item is

the capacity of the site.

The problem can be modeled as:

 Maximize C =

n
i=1 cisi

 Subject to

n
i=1 wisi

wi = Cost of developing a site

W = Total amount available for development (resource limit)

Thus,

 Maximize C = 70s1 + 20s2 + 39s3 + 37s4 + 7s5 + 5s6 + 10s7

 Subject to: 31s1 +10s2 + 20s3 + 19s4 + 4s5 + 3s6 + 6s7

 50.

To carry out the computation of the above model, we apply the branch-and-bound algorithm of

The Horowitz – Sahni. As can be seen from Table 4.1, the items are seven, (thus, n = 7)

consisting of Site A, Site B, Site C, Site D, Site E, Site F, and Site G.

The weights of each item are wa = 31, wb = 10, wc = 20, wd = 19, we = 4, wf = 3, and wg= 6. The

values of each item are va = 70, vb = 20, vc =39, vd = 37, ve = 7, vf =5, and vg = 10. The

maximum available fund W = 50.

Let xj

 feasible solutions and Z be the value of the feasible solution.

A walk through the branch-and-bound algorithm of The Horowitz – Sahni with the above model

gives the following computational iterative values for the various optimal solutions as shown in

Table 4.2. A FORTRAN 90 code for the implementation of this is given in Appendix 1.

Table 4.2: Optimal Solutions for the various iterative stages

Iteration Feasible solution(xj) Value of the feasible solution(z) Cost

0 (0,0,0,0,0,0,0) 0 0

1 (1,0,0,0,0,0,0) 70 31

2 (1,1,0,0,0,0,0) 90 41

3 (1,1,0,0,0,0,0) 90 41

4 (1,1,0,0,0,0,0) 90 41

5 (1,1,0,0,1,0,0) 97 45

6 (1,1,0,0,1,1,0) 102 48

7 (1,1,0,0,1,1,0) 102 48

8 (1,1,0,0,1,0,0) 97 45

9 (1,1,0,0,1,0,0) 97 45

10 (1,1,0,0,0,0,0) 90 41

11 (1,1,0,0,0,1,0) 95 44

12 (1,1,0,0,0,1,1) 105 50

13 (1,1,0,0,0,0,0) 90 41

14 (1,0,0,0,0,0,0) 70 31

15 (1,0,0,0,0,0,0) 70 31

16 (1,0,0,1,0,0,0) Infeasible 51

17 (1,0,0,1,0,0,0) Infeasible 51

18 (1,0,0,1,0,0,0) Infeasible 51

19 (1,0,0,1,0,0,0) Infeasible 51

20 (1,0,0,0,0,0,0) 70 31

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

INTRODUCTION

We have described the site development problem of a town as a 0-1 knapsack programming

problem. We applied the branch-and-bound algorithm of The Horowitz – Sahni to solve the

town’s site development problem. Our research focused on the use of the Knapsack problem for

site development given a limited available fund for a town in Ghana, but can however be applied

to any situation that can be modeled as a 0-1 knapsack problem.

5.1 CONCLUSIONS

This thesis seeks to solve a real-life problem of site development for refuse disposal of Sekondi-

Takoradi Metropolis as a knapsack problem using the branch-and-bound algorithm of The

Horowitz–Sahni. It was observed that the solution that gave maximum achievable value was

(1, 1, 0, 0, 0, 1, and 1). This means that the company should spend a total cost of fifty thousand

Ghana cedis (GH¢50,000) to obtain an optimal site development of one hundred and five

thousand (105,000) tones per week, consisting of selecting Site A, Site B, Site F, and Site G.

5.2 RECOMMENDATIONS

The use of computer application in computation gives a systematic and transparent solution as

compared with an arbitrary method. Using the more scientific Knapsack problem model for the

site development of the town’s refuse disposal management gives a better result. Management

may benefit from the proposed approach for site development for refuse disposal to guarantee

optimal refuse disposal capacity in tones per week. We therefore recommend that the Knapsack

problem model should be adopted by the metropolitan and district assemblies for refuse disposal

management. We also recommend that future study may be conducted to cover the entire

country.

REFERENCES

1. Volgenant, A. and Zoon, J. A. (1990). An Improved Heuristic for Multidimensional 0-1

Knapsack Problems. Journal of the Operational Research Society 41, 963–970.

2. Aggarwal and Hartline (2006). Knapsack Auctions. www.research.microsoft.com

3. Caprara, A., Pisinger, D. and Toth, P.(2007). Exact Solution of the Quadratic Knapsack

Problem. Journals of Operations Research 55:1001-1021

4. Ram, B. and Sarin, S. (1988). An Algorithm for the 0-1 Equality Knapsack Problem.

Journal of the Operational Research Society 39, 1045–1049.

http://joc.journal.informs.org/search?author1=Alberto+Caprara&sortspec=date&submit=Submit
http://joc.journal.informs.org/search?author1=David+Pisinger&sortspec=date&submit=Submit
http://joc.journal.informs.org/search?author1=Paolo+Toth&sortspec=date&submit=Submit

5. Bertsimas D., Darnell, C. and Soucy, R. (1999). Portfolio construction through mixed-

integer programming at Grantham, Mayo, Van Otterloo and Company. Interfaces 29, n1,

Jan. – Feb. 1999, 49-66.

6. Sung-Ho, C. (1998). Tactical-Level Resource allocation procedure for the hotel industry.

Journals of Texas A & M Industrial and Systems Engineering.

7. Christopher, C. A. (1998). Solving Geometric Knapsack Problems using Tabu Search

Heuristics.

 http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier

8 Claessens T., Van Dijk, N. and Zwaneveld P.J. (1998). Coast optimal allocation of rail

passenger lines. European Journal of Operational Research 110, 474

9 Das, S. and Ghosh, D. (2003). Binary knapsack problems with random budgets . Journal

of the Operational Research Society

10 Dizdar, D., Gershkov, A. and Moldovanu, B. (2010). Revenue maximization in the

dynamic knapsack problem. Theoretical Economics 6 (2011), 157–184

11 Der-Chyuan, L. and Chin-Chen, C. (1997). International Journal of High Speed

Computing (IJHSC). Change in behaviour of outputs generated on varying the crossover

and mutation rates.

12 Doprado M. F. and Marcos, N. A.(2007).The constrained compartmentalised knapsack

problem. Journals of Computers and Operations research

13 Easton, K., Nemhauser, G., and Trick, M. (2003). Solving the travelling tournament

problem, a combined integer programming and constraint programming approach

(practice and theory of automated timetabling IV). 4th International conference, PATAT

2002, Lecture notes in computer science vol. 2740, pp. 100-109

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier

14 Lawler, E. L. (1977). Fast approximation algorithms for knapsack problems. Focs,

pp.206-213 18th Annual Symposium on Foundations of Computer Science.

15 Hadjiconstantinou, E. and Christofides, N. (2010). An exact algorithm for general,

orthogonal, two-dimensional knapsack problems. European Journal of Operational

Research

16 Arkin, E. M., Khuller, S. and Mitchell, J. S. B. (1993). Geometric knapsack problems.

http://www.springerlink.com/content/g007w81p153h3326

17 Geir, D. (1997). An introduction to convexity, polyhedral theory and combinatorial

optimization. University of Oslo, Department of Informatics

18 Lueker, G. S. (1995). Average-Case Analysis of Off-Line and On-Line Knapsack

Problems. Journal of Algorithms Volume 29, Issue 2, Pages 277-305

19 Ghoseiri K., Szidaroyszky, F. and Asgharpour, M. J. (2004). A multi-objective train

scheduling model and solution. Transportation research part B: Methodological 38, 927.

20 Granmo O. C., Oommen, B. J. Myrer, S. A. and Olsen, M. G. (2007). Learning

automated-based solutions to the nonlinear fractional knapsack problem with applications

to optimal resource allocation. IEE Transactions on systems, man and cybernetics, part B

(cybernetics), 37 n1, 166-175.

21 Gutierrez and Maria Talia (2007). Lifting general integer programs. Kansas State

University Masters thesis

22 Haghani, A. and Shafali, Y. (2002). Bus maintenance systems and scheduling: model

formulations and solutions. Transportation research part A: Policy and Practice, 36, 453.

23 Higgins, A., Kozan, E. and Ferreira, L. (1996). Optimal scheduling of train on a single

line track. Transportation research part B: Methodological, 38, 927.

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://www.springerlink.com/content/?Author=Esther+M.+Arkin
http://www.springerlink.com/content/?Author=Samir+Khuller
http://www.springerlink.com/content/?Author=Joseph+S.+B.+Mitchell
http://www.springerlink.com/content/g007w81p153h3326/
http://www.sciencedirect.com/science/journal/01966774
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0196677400X0020X&_cid=272497&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=ddc30914cd5d5f94cac3c46ccdb02af4

24 Hillier, F. S. and Lieberman, G. J. (2001). Introduction to Operations research. McGraw-

Hill, New York 576-581

25 Horowi, E. and Sahni (1974). Computing partitions with applications to knapsack

problems. Journal of ACM21, 277-292

26 Bryce, H. (2007). Finding adjacent facet-defining inequalities. Kansas State University

Masters thesis.

27 Tauhidul, I. M. (2009). Approximation algorithms for minimum knapsack problem.

Master’s degree Thesis, UNIVERSITY OF LETHBRIDGE

28 Kalai, R. and Vanderpooten, D. (2006). Lexicographic α-Robust Knapsack Problem

http://ieeexplore.ieee.org/xpl/freeabs

Michel, S., Perrot, N. and Vanderbeck, F. (2009). Knapsack problems with setups

http://ieeexplore.ieee.org/xpl/freeabs

29 Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of

computer computations; Plenum Press New York 85-103

30 Zhanhong, L. S., Wang, Y. Y. and Wei, L. (2010). Streaming Media Caching Model

Based on Knapsack Problem. Journal of Networks, Vol 6, No 9 (2011), 1379-1386.

31 Xin, L. and Denggu, F. (2004). Quantum algorithm analysis of knapsack problem.

JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, V 30(11)

32 Garg, L. M. and Gupta, S. (2009). An Improved Genetic Algorithm Based on Adaptive

Repair Operator for Solving the Knapsack Problem. Journal of Computer Science,

volume 5, issue 8, page 544-547

33 Mattfeld, D. C. and Kopfer, H. (2003). Terminal operations management in vehicle

transshipment. Transportation research part A: Policy and Practice, 37, 435.

http://ieeexplore.ieee.org/xpl/freeabs
http://www.doaj.org/doaj?func=openurl&issn=15493636&genre=journal&uiLanguage=en

34 Xuan, M. A. (2009). Artificial fish swarm algorithm for multiple knapsack problem.

Journal of Computer Applications 2010, 30(2) 469-471

35 Hristakeva, M. and Shrestha, D. (2011). Solving the 0-1 Knapsack Problem with Genetic

Algorithms. http://freetechebooks.com/file-2011/knapsack-problem

36 Hristakeva, M. and Shrestha, D. (2005). Different Approaches to Solve the 0/1 Knapsack

Problem. http://micsymposium.org/mics_2005/papers/paper102.

37 Michel, S., Perrot, N. and Vanderbeck, F. (2009). Knapsack problems with setups

http://ieeexplore.ieee.org/xpl/freeabs

38 Nemhauser, G. L. and LWolsey, L. A. (1998). Integer and Combinatorial Optimization.

John Wiley and Sons, New York.

39 On Stochastic Bilevel Programming Problem with Knapsack Constraints.

http://www.kosuch.eu/stefanie/veroeffentlichungen

40 Ofori, O. E. (2009). Optimal resource Allocation Using Knapsack Problems: A case

Study of Television Advertisements at GTV. Master’s degree thesis, KNUST

41 Kohli, R. and Krishnamurti, R. (1992). A total-value greedy heuristic for the integer

knapsack problem. Operations Research Letters Volume 12, Issue 2

42 Mansini, R. and Speranza, M. G. (2009. An Exact Algorithm for the Multidimensional

Knapsack Problem

 http://ideas.repec.org/a/eee/ejores/v196y2009i3p909-918

43 Shang, R., Ma, W. and Zhang, W (2006). Immune Clonal MO Algorithm for 0/1

Knapsack Problems. Lecture Notes in Computer Science, 2006, Volume 4221/2006, 870-

878.

http://freetechebooks.com/file-2011/knapsack-problem
http://micsymposium.org/mics_2005/papers/paper102.pdf
http://ieeexplore.ieee.org/xpl/freeabs
http://www.kosuch.eu/stefanie/veroeffentlichungen/
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0167637700X00958&_cid=271697&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=1a3f338caacb312b575ede6ebf2a7f4b
http://joc.journal.informs.org/search?author1=Renata+Mansini&sortspec=date&submit=Submit
http://joc.journal.informs.org/search?author1=M.+Grazia+Speranza&sortspec=date&submit=Submit
http://www.springerlink.com/content/?Author=Ronghua+Shang
http://www.springerlink.com/content/?Author=Wenping+Ma
http://www.springerlink.com/content/?Author=Wei+Zhang
http://www.springerlink.com/content/0302-9743/

44 Kosuch, S. and Lisser, A. (2009). On two-stage stochastic knapsack problems. Discrete

Applied Mathematics Volume 159, Issue 16

45 Khan, S., LI, K. F., Manning, E. G. and Akbar, M. D. M. (2002).SOLVING THE

KNAPSACK PROBLEM FOR ADAPTIVE MULTIMEDIA SYSTEMS.

http://studia.complexica.net/Art/RI020108

46 Srisuwannapa, C. and Charnsethikul, P. (2007). An Exact Algorithm for the Unbounded

Knapsack Problem with Minimizing Maximum Processing Time. Journal of Computer

Science, 3: 138-143.

47 Kosuch, S.(2010). An Ant Colony Optimization Algorithm for theTwo-Stage Knapsack

Problem. http://www.kosuch.eu/stefanie

48 Kosuch, S., Letournel, M. and Lisser, A. (2009). On a Stochastic Knapsack Problem.

Laboratoire de recherche en Informatique, Universite Paris Sud 91405 Orsay Cedex.

49 Stefanie Kosuch, S., Le Bodic, P., Leung, J. and Lisser, A. (2009).

50 Tomastik, R. N. (1993). The facet ascending algorithm for integer programming

problems. Proceedings on the 32nd IEEE conference on decision and control, 3, 2880-

2884.

51 Boryczka, U. (2006). The ihfluence of Trial representation in ACO for good results in

MKP. From Proceeding (505) Advances in Computer Science and Technology

52 Pferschy, U., Pisinger, D. and Woeginger, G. J. (1995). Simple but efficient approaches

for the collapsing knapsack problem. Journals of Operations Research.

53 Ravi, V. G. R. (2003). Chance Constrained Knapsack Problem with Random Item Sizes.

http://www.columbia.edu/~vg2277/stoch_knapsack

http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science/journal/0166218X
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0166218X11X00136&_cid=271602&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=0c1ab50f3a813e3e7d220bc4d3642de8
http://studia.complexica.net/Art/RI020108.pdf
http://www.kosuch.eu/stefanie
http://www.actapress.com/Content_Of_Proceeding.aspx?ProceedingID=396
http://www.columbia.edu/~vg2277/stoch_knapsack

54 Yan, S. and Chen, H. L. (2002). A scheduling model and a solution algorithm for inter-

city bus carriers. Transportation research part A: Policy & Practice, 36, 805.

55 Zhou, Y. and Naroditskiy, V. (2008). Algorithm for Stochastic MultipleChoice Knapsack

Problem and Application to Keywords Bidding.

http://research.yahoo.com/workshops/troa-2008/papers/submission

SAPPENDIX_1

SUBROUTINE MT1(N,P,W,C,Z,X,JDIM,JCK,XX,MIN,PSIGN,WSIGN,ZSIGN)

C THIS SUBROUTINE SOLVES THE 0-1 SINGLE KNAPSACK PROBLEM

C MAXIMIZE Z = P(1)*X(1) + ... + P(N)*X(N)

C SUBJECT TO: W(1)*X(1) + ... + W(N)*X(N) .LE. C ,

C X(J) = 0 OR 1 FOR J=1,...,N.

C THE INPUT PROBLEM MUST SATISFY THE CONDITIONS

C 1) 2 .LE. N .LE. JDIM - 1 ;

C 2) P(J), W(J), C POSITIVE INTEGERS;

http://research.yahoo.com/workshops/troa-2008/papers/submission

C 3) MAX (W(J)) .LE. C ;

C 4) W(1) + ... + W(N) .GT. C ;

C 5) P(J)/W(J) .GE. P(J+1)/W(J+1) FOR J=1,...,N-1.

C MEANING OF THE INPUT PARAMETERS:

C N = NUMBER OF ITEMS;

C P(J) = PROFIT OF ITEM J (J=1,...,N);

C W(J) = WEIGHT OF ITEM J (J=1,...,N);

C C = CAPACITY OF THE KNAPSACK;

C JDIM = DIMENSION OF THE 8 ARRAYS;

C JCK = 1 IF CHECK ON THE INPUT DATA IS DESIRED,

C = 0 OTHERWISE.

C MEANING OF THE OUTPUT PARAMETERS:

C Z = VALUE OF THE OPTIMAL SOLUTION IF Z .GT. 0 ,

C = ERROR IN THE INPUT DATA (WHEN JCK=1) IF Z .LT. 0 : CONDI-

C TION - Z IS VIOLATED;

C X(J) = 1 IF ITEM J IS IN THE OPTIMAL SOLUTION,

C = 0 OR OTHERWISE.

C ARRAYS XX, MIN, PSIGN, WSIGN AND ZSIGN ARE DUMMY.

C ALL THE PARAMETERS ARE INTEGER. ON RETURN OF MT1 ALL THE INPUT

C PARAMETERS ARE UNCHANGED.

 INTEGER P(JDIM),W(JDIM),X(JDIM),C,Z

 INTEGER XX(JDIM),MIN(JDIM),PSIGN(JDIM),WSIGN(JDIM),ZSIGN(JDIM)

 INTEGER CH,CHS,DIFF,PROFIT,R,T

 Z = 0

 IF (JCK .EQ. 1) CALL CHMT1(N,P,W,C,Z,JDIM)

 IF (Z .LT. 0) RETURN

C INITIALIZE.

 CH = C

 IP = 0

 CHS = CH

 DO 10 LL=1,N

 IF (W(LL) .GT. CHS) GO TO 20

 IP = IP + P(LL)

 CHS = CHS - W(LL)

 10 CONTINUE

 20 LL = LL - 1

 IF (CHS .EQ. 0) GO TO 50

 P(N+1) = 0

 W(N+1) = CH + 1

 LIM = IP + CHS*P(LL+2)/W(LL+2)

 A = W(LL+1) - CHS

 B = IP + P(LL+1)

 LIM1 = B - A*FLOAT(P(LL))/FLOAT(W(LL))

 IF (LIM1 .GT. LIM) LIM = LIM1

 MINK = CH + 1

 MIN(N) = MINK

 DO 30 J=2,N

 KK = N + 2 - J

 IF (W(KK) .LT. MINK) MINK = W(KK)

 MIN(KK-1) = MINK

 30 CONTINUE

 DO 40 J=1,N

 XX(J) = 0

 40 CONTINUE

 Z = 0

 PROFIT = 0

 LOLD = N

 II = 1

 GO TO 170

 50 Z = IP

 DO 60 J=1,LL

 X(J) = 1

 60 CONTINUE

 NN = LL + 1

 DO 70 J=NN,N

 X(J) = 0

 70 CONTINUE

 RETURN

C TRY TO INSERT THE II-TH ITEM INTO THE CURRENT SOLUTION.

 80 IF (W(II) .LE. CH) GO TO 90

 II1 = II + 1

 IF (Z .GE. CH*P(II1)/W(II1) + PROFIT) GO TO 280

 II = II1

 GO TO 80

C BUILD A NEW CURRENT SOLUTION.

 90 IP = PSIGN(II)

 CHS = CH - WSIGN(II)

 IN = ZSIGN(II)

 DO 100 LL=IN,N

 IF (W(LL) .GT. CHS) GO TO 160

 IP = IP + P(LL)

 CHS = CHS - W(LL)

 100 CONTINUE

 LL = N

 110 IF (Z .GE. IP + PROFIT) GO TO 280

 Z = IP + PROFIT

 NN = II - 1

 DO 120 J=1,NN

 X(J) = XX(J)

 120 CONTINUE

 DO 130 J=II,LL

 X(J) = 1

 130 CONTINUE

 IF (LL .EQ. N) GO TO 150

 NN = LL + 1

 DO 140 J=NN,N

 X(J) = 0

 140 CONTINUE

 150 IF (Z .NE. LIM) GO TO 280

 RETURN

 160 IU = CHS*P(LL)/W(LL)

 LL = LL - 1

 IF (IU .EQ. 0) GO TO 110

 IF (Z .GE. PROFIT + IP + IU) GO TO 280

C SAVE THE CURRENT SOLUTION.

 170 WSIGN(II) = CH - CHS

 PSIGN(II) = IP

 ZSIGN(II) = LL + 1

 XX(II) = 1

 NN = LL - 1

 IF (NN .LT. II) GO TO 190

 DO 180 J=II,NN

 WSIGN(J+1) = WSIGN(J) - W(J)

 PSIGN(J+1) = PSIGN(J) - P(J)

 ZSIGN(J+1) = LL + 1

 XX(J+1) = 1

 180 CONTINUE

 190 J1 = LL + 1

 DO 200 J=J1,LOLD

 WSIGN(J) = 0

 PSIGN(J) = 0

 ZSIGN(J) = J

 200 CONTINUE

 LOLD = LL

 CH = CHS

 PROFIT = PROFIT + IP

 IF (LL - (N - 2)) 240, 220, 210

 210 II = N

 GO TO 250

 220 IF (CH .LT. W(N)) GO TO 230

 CH = CH - W(N)

 PROFIT = PROFIT + P(N)

 XX(N) = 1

 230 II = N - 1

 GO TO 250

 240 II = LL + 2

 IF (CH .GE. MIN(II-1)) GO TO 80

C SAVE THE CURRENT OPTIMAL SOLUTION.

 250 IF (Z .GE. PROFIT) GO TO 270

 Z = PROFIT

 DO 260 J=1,N

 X(J) = XX(J)

 260 CONTINUE

 IF (Z .EQ. LIM) RETURN

 270 IF (XX(N) .EQ. 0) GO TO 280

 XX(N) = 0

 CH = CH + W(N)

 PROFIT = PROFIT - P(N)

C BACKTRACK.

 280 NN = II - 1

 IF (NN .EQ. 0) RETURN

 DO 290 J=1,NN

 KK = II - J

 IF (XX(KK) .EQ. 1) GO TO 300

 290 CONTINUE

 RETURN

 300 R = CH

 CH = CH + W(KK)

 PROFIT = PROFIT - P(KK)

 XX(KK) = 0

 IF (R .LT. MIN(KK)) GO TO 310

 II = KK + 1

 GO TO 80

 310 NN = KK + 1

 II = KK

C TRY TO SUBSTITUTE THE NN-TH ITEM FOR THE KK-TH.

 320 IF (Z .GE. PROFIT + CH*P(NN)/W(NN)) GO TO 280

 DIFF = W(NN) - W(KK)

 IF (DIFF) 370, 330, 340

 330 NN = NN + 1

 GO TO 320

 340 IF (DIFF .GT. R) GO TO 330

 IF (Z .GE. PROFIT + P(NN)) GO TO 330

 Z = PROFIT + P(NN)

 DO 350 J=1,KK

 X(J) = XX(J)

 350 CONTINUE

 JJ = KK + 1

 DO 360 J=JJ,N

 X(J) = 0

 360 CONTINUE

 X(NN) = 1

 IF (Z .EQ. LIM) RETURN

 R = R - DIFF

 KK = NN

 NN = NN + 1

 GO TO 320

 370 T = R - DIFF

 IF (T .LT. MIN(NN)) GO TO 330

 IF (Z .GE. PROFIT + P(NN) + T*P(NN+1)/W(NN+1)) GO TO 280

 CH = CH - W(NN)

 PROFIT = PROFIT + P(NN)

 XX(NN) = 1

 II = NN + 1

 WSIGN(NN) = W(NN)

 PSIGN(NN) = P(NN)

 ZSIGN(NN) = II

 N1 = NN + 1

 DO 380 J=N1,LOLD

 WSIGN(J) = 0

 PSIGN(J) = 0

 ZSIGN(J) = J

 380 CONTINUE

 LOLD = NN

 GO TO 80

 END

 SUBROUTINE CHMT1(N,P,W,C,Z,JDIM)

C

C CHECK THE INPUT DATA.

C

 INTEGER P(JDIM),W(JDIM),C,Z

 IF (N .GE. 2 .AND. N .LE. JDIM - 1) GO TO 10

 Z = - 1

 RETURN

 10 IF (C .GT. 0) GO TO 30

 20 Z = - 2

 RETURN

 30 JSW = 0

 RR = FLOAT(P(1))/FLOAT(W(1))

 DO 50 J=1,N

 R = RR

 IF (P(J) .LE. 0) GO TO 20

 IF (W(J) .LE. 0) GO TO 20

 JSW = JSW + W(J)

 IF (W(J) .LE. C) GO TO 40

 Z = - 3

 RETURN

 40 RR = FLOAT(P(J))/FLOAT(W(J))

 IF (RR .LE. R) GO TO 50

 Z = - 5

 RETURN

 50 CONTINUE

 IF (JSW .GT. C) RETURN

 Z = - 4

 RETURN

 END

	3. Caprara, A., Pisinger, D. and Toth, P.(2007). Exact Solution of the Quadratic Knapsack Problem. Journals of Operations Research 55:1001-1021
	4. Ram, B. and Sarin, S. (1988). An Algorithm for the 0-1 Equality Knapsack Problem. Journal of the Operational Research Society 39, 1045–1049.
	30 Zhanhong, L. S., Wang, Y. Y. and Wei, L. (2010). Streaming Media Caching Model Based on Knapsack Problem. Journal of Networks, Vol 6, No 9 (2011), 1379-1386.

	42 Mansini, R. and Speranza, M. G. (2009. An Exact Algorithm for the Multidimensional Knapsack Problem
	http://ideas.repec.org/a/eee/ejores/v196y2009i3p909-918
	52 Pferschy, U., Pisinger, D. and Woeginger, G. J. (1995). Simple but efficient approaches for the collapsing knapsack problem. Journals of Operations Research.

