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ABSTRACT 

Over the years, positively skewed data such as data from insurance, economics, 

laboratory, health and so on, have been analysed using conditional mean models  

suchassimplelinearregressionandlogisticregression. Estimationofthesemodels  

can be seriously deficient if constructed on some non-gaussian settings and cannot 

be readily extended to non-central location which is precisely where the interest 

of a social science research often reside. This study therefore seeks to employ a 

methodology to deal with these problems. 

This study seeks to estimate the quantiles that describe the entire distribution 

and also to obtain an appropriate statistical distribution for the birth weight  

data. Our study used birth weight data from Komfo Anokye Teaching 

Hospital. Quantile, Lognormal and Gamma regression were used in the analysis  

and Quantile-Quantle plot and Akaike’s Information Criterion(AIC) were the  

goodness of fit test for the selection of the distribution that fitted the data well.  

th th th th th 
Finally we estimated 5 , 25 , 50 , 75 and 95 quantile regression to describe 

the entire distribution of the data. The lognormal also was selected as a better 

distribution than the gamma distribution based on their AIC values and the  

graph of the Q-Q plot. 
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CHAPTER 1  

INTRODUCTION  

1.1 Background  

According to Boan Health(Chinese Manufacturer of Dietary Nutrition 

Supplement), at full term, the average baby will be about 20 inches (51cm) long  

and will weigh approximately 6 to 9 pounds(2700 to 4000 grams). Birth weight 

is the body weight of a baby at its birth. There have been numerous studies 

that have attempted with varying degrees of success, the links between birth 

weight and later life conditions, including diabetes, obesity, tobacco smoking and  

intelligence. Boan Health(www.boanhealth.com). 

MedlinePlus (USA National Library for Medicine) also defined birth weight as  

the first weight of a baby, taken just after he or she is born. A low birth weight 

is less than 5.5 pounds and a high birth weight is more than 8.8 pounds. A low 

birth weight baby can be born too small, too early (premature), or both. This can 

happen for many different reasons. They include health problems in the mother, 

genetic factors, problems with the placenta and substance abuse by the mother. 

Some low birth weight babies may be more at risk for certain health problems. 

Some may become sick in the first days of life or develop infections. Others may 

suffer from long term problems such as delayed motor and social development or 

learning disabilities. High birth weight babies are often big because the parents  

are big, or mother had diabetes during pregnancy. These babies may be at risk 

of birth injuries and problems with blood sugar. 

The prevalence of childhood obesity increased dramatically during the last decade  

in industrialized countries (Toschke et al,  2005). The increase in prevalence 

seems rather to be due to a shift of the upper part of the body mass index 
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(BMI) distribution than a shift of the entire BMI distribution as an example  

observed in the NHANES III survey from 1988 to 1994 (Flegal et al, 2005). This  

increased positive skewness could be due to exposure to obesogenic environmental 

determinants among a subpopulation with high degree susceptibility. TV 

watching, formula feeding, smoking in pregnancy, maternal obesity or parental 

social class are well known environmental, constitutional or sociodemographic  

risk factors (Toschke et al, 2005). However, it remains unknown if these factors 

affect the entire BMI distribution or only part of it. 

A recent descriptive study reported an effect of several risk factors for childhood 

obesity on upper BMI percentiles, whiles the middle part of the BMI distribution 

was virtually unaffected. However, this study did not adjust for potential 

confounders (Toschke et al, 2005). BMI data usually have skewed distribution for 

which common statistical modeling approaches such as simple linear or logistic  

regression have limitations. 

Many types of laboratory data and epidemiologic data studies involve the analysis  

of highly skewed data. When the distributions of outcome variables are highly 

skewed, the mean is sensitive to outliers and is not a good measure of central  

tendency. A transformation of the outcome variable is a popular approach to  

improve symmetry and normality for a linear regression. Quantile regression is 

another approach to analyse such data. Quantile regression analysis of hospital 

charges provide unbiased estimates even when lognormal and equal variance 

assumptions are violated. 

Estimating loss severity distribution from a historical data is an important 

actuarial activity in insurance. A standard reference on the subject is Hogg  

and Klugman(1984). The limited data in the available statistical tables(such as  

Deininger and Squire, 1996; Tabatabai, 1996) addresses the question of how to  

obtain a reasonable picture of the income distribution within a country 

Quantile regression as proposed by Koenker and Bassett (1978), has immerged  

as an important statistical methodology for addressing the limitations of simple  
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linear regression. The quantile regression model is a natural extension of the  

liner regression model by estimating various conditional quantile functions. This  

offers a strategy for examining how the covariates influence the entire response  

distribution. 

Koenker and Hallock (2001) in their journal said that most of the analysis of birth 

weights has employed conventional least square regression method. However, the  

resulting estimates of the various effects on the conditional mean of birth weights  

were not necessarily indicative of the size and nature of the effects on the lower 

tail of the birth weight distribution. A more complete picture of the covariates 

effects can be provided by estimating a family of conditional quantile functions. 

Kenneth(2011), defined lognormal distribution as a distribution whose logarithm 

is normally distributed but whose untransformed scale is skewed. Generally 

positive data are analyzed by lognormal and gamma models (McCullagh et al, 

1989; Das and Lee, 2009; Das and Park, 2012; Firth, 1988) as variance of some 

positive data set may have relation with the mean. Recently lognormal and 

models (Myers RH et al, 2002) are of interest in fitting positive data arising  

from quality improvement experiment. Das and Lee (2009) studied positive 

data for quality improvement experiment under both lognormal and gamma joint 

generalized linear models. Das et al (2012) found that the lognormal models (with 

non-constant variance) are much more effective than either traditional simple 

, multiple and logistic regression with constant variance. They also suggested 

that to reduce infant mortality due to low birth weight, mothers should be non- 

smokers. 

Positively skewed distribution of a random variable occurs in many statistical 

applications. Since it is difficult to compare population mean for several 

populations, the sample mean which is the natural estimate is compared. The 

sample mean is also very non-robust. For example, the mean cost of medically 

homogenous groups of patients are used for hospital budgeting and it is common 

to compare cost means among different hospitals or over different period of time. 
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It is easy to give examples where a few atypical stays drastically change the mean 

estimate and whose common test of means (e.g. t-test and its variants) lead to 

different decisions when these outliers are removed from the data set. 

In recent years procedures for automatic outlier detections, robust mean 

estimationandcomparisonofrobustmeansofasymmetricdatahavebeenstudied.  

For instance procedures based on robust fitting of parametric models have been 

showntobeusefulinapplications(VictoriaFeserandRonchetti, 1994,1997; Feser,  

2000; Marazzi et al, 1998). In this framework robust parametric mean is defined  

as the mean of the estimated model. 

1.2 Problem Statement  

A lot of work has been done in this area, especially comparing quantile regression 

to simple linear regression and multiple linear regression. Koenker and Bassett 

(1978) said that the conventional least square estimators may be seriously 

deficient in linear models constructed on some non-Gaussian settings, where 

quantile regression would provide more robust and consequently more efficient 

estimators. When a distribution is skewed, the mean is not a good measure  

of central tendency and for that matter the conventional least squares models  

are not good for such distributions. Quantile regression is therefore good for 

such distributions since we can determine the stochastic relationship between 

the covariates and the response variable at every quantile. Distributions such as  

gamma and lognormal distributions are also good for skewed data. Das and Park 

(2012), said the lognormal and gamma regression models ( with non-constant 

variance) are much more effective than either traditional simple, multiple, logistic  

regression and log-Gaussian models (with constant variance), because they better 

fit the data. There has not been enough study to compare these models which 

are good for skewed data (positively skewed) to come out with the best. These 

problems have motivated my interest to dive into the problem and seek for 

solutions. 
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1.3 Objectives of the Study 

The objectives of the research includes the following; 

• Determination of the quantiles that describe the entire distribution of the  

data 

• Selection of the appropriate statistical model for the birth weight data. 

1.4 Significance of the Study 

This study was geared towards demonstrating the importance of understanding  

statistical distributions for positively skewed data. This information will enable 

researchers to make important decisions regarding data that is positively skewed. 

The paper analyzes the theoretical back-ground of the modeling process which 

takes place with birth weight data. By using statistical distributions to model 

birth weight, one has a much added insight into the complexity handling birth 

weight data. 

1.5 Methodology 

In this study we were interested in a data that is positively skewed, so 

we used a birthweight data or Body Mass Index(BMI) data which is one 

of the positively skewed data. Any other positively skewed data( like data 

on finance, wealth, economic etc.) could have been used for the study. 

Quantile,lognormal and gamma regression models were all fitted using the 

data. AlkaikeInformationCriterion(AIC),Log-LikelihoodestimateandQuantile - 

Quantile(Q-Q) Plot were used to determine the distribution that fit the data. The  

response variable(dependent variable) was the birthweight of a child or the BMI  

of the child. The covariates(independent variables) were the age of the mother, 
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the occupation of the mother, marital status of the mother, the educational 

background of the mother and so on. 

1.6 Organization of the Study 

In summary the first chapter introduced the topic of the study and gave an  

overview of the background of the study. This chapter also discussed the 

statement of the research problem and the objectives of the study. A brief 

overview of the methods and the originators of the models used in this study  

has been discussed in this chapter. Chapter two elaborated on the works that 

have been done with the BMI data using some of the models used in this 

study. the chapter conceptualized the effectiveness the models with the BMI  

data and gave an overview of why the models are good in analysing BMI data. 

Comparative studies of the models and the traditional least squares models by 

different researchers have been discussed in this chapter. The chapter again 

entailed an accounts of using the models to analyse other positively skewed data 

(like data on finance, wealth, economic, etc.). Chapter three discussed thoroughly 

the methods and procedures for the study. The mathematical background of all 

the models used in the study(quantile, lognormal and gamma models), and how 

the models can be generated using Generalized Linear Models(GLM). The tools  

used for the assessment of the performance of these models(AIC,Log-Likelihood 

estimate etc) were also discussed in this chapter. The next chapter, which is  

chapter four, entails the analysis of the data and the performance of the models. 

All the summary statistics and the inferential analysis were given and elaborated  

in this chapter. Tables and Figures necessary for the analysis of our research 

questions and objectives and its interpretations have been given in the chapter. 

Chapter five further build on chapter four. Conclusions and recommendations of  

areas for further studies have been discussed in this chapter. 
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CHAPTER 2  

LITERATURE REVIEW  

2.1 Introduction  

This chapter reviews all the relevant work that relates to the our study.  This 

include works on lognormal, gamma and quantile regression with positively 

skewed data like insurance data, economic data, body mass index(BMI) data 

and so on. 

2.2 Related Works on Quantile regression  

In literature, most authors used linear or logistic regression to model effects on 

BMI measures. However, BMI data are usually positively skewed and therefore  

a transformation of the response variable and/or other regression methods might 

be more appropriate. Possible approaches include lognormal Box Cox power 

transformation of the BMI prior to linear regression modelling, gamma regression, 

quantile regression or GAMLSS models. 

Gardosi et al. (1995) used stepwise regression to model the conditional 

percentiles. They wanted to understand the relationship between the predictors  

andthetailsofthesevariables, sotheymodelledtheconditionalquantilefunctions  

of the birth outcomes. 

Infants who are born preterm (gestational period less than 37 weeks) or small  

for gestational age (below the 10th percentile of birth weight after controlling  

for gestational age) have elevated rates of morbidity and mortality (Garite et  

al., 2004). Reasons for these associations include poorly functioning organs, 

reduced metabolism, insulin resistance, and increased susceptibility to adverse  
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environmental events later in life (Barker, 2006). 

In a literature review Sr’am et al.(2005) argued that the relationships between air 

pollution and gestational age and intrauterine growth warrant further analysis. 

Their second scientific objective was to investigate the effect of maternal 

exposure to tropospheric ozone, one of the criteria pollutants regulated under 

the Environmental Protection Agency’s Clean Air Act,  on SGA and preterm  

birth (PTB). 

Classical frequentist (Koenker, 2005) models a conditional quantile rather than 

the conditional mean as a function of predictors. This enables inference of 

noncentral parts of the distribution, makes fewer assumptions, and is more robust 

to outliers than mean regression. One limitation with these approaches is that 

multiple levels can produce crossing quantiles, where for some values of the 

predictors the quantile function is decreasing in quantile level. 

Children classified as having a low or very low birth weight (below 2500g and  

1500g, respectively) or a premature birth (less than 37 full weeks of gestation at 

birth) face increased risks of a range of problems including those in the physical , 

behavioral and mental (Lorenz et al., 1998) domains. An estimated 8 percent of  

births in the U.S. are low weight and 12.8 percent are preterm, so that the average  

birth in the U.S. is well above the cutoffs (Behrman and Butler, 2007). Thus, if  

some exposure decreases the birth weights of babies who would otherwise have  

average to high birth weights by some modest amount, but it does not decrease  

the birth weights of babies who would otherwise have low birth weights, it might 

not be considered deleterious. On the other hand, if an exposure lowers the 

birth weights of babies by the same modest amount who already would have low 

birth weights, but it does not decrease the birth weights of babies who otherwise  

would have average to high birth weights, the exposure would be troubling. Thus, 

for modeling birth weights it is appropriate to consider quantile regression over 

standard linear regression, which implies that the exposure has the same effect 

across the entire response distribution. 
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Although the 1500g and 2500g cutoffs are useful benchmarks, we prefer not 

to discretize birth weights into very low, low, and normal when modeling. 

Discretizations have scientifically unjustifiable consequences. For example, it is 

much worse to be born at 1501g than 2499g, yet a discretization would treat both 

of these as equivalent. Similarly, being born at 2501g is not appreciably better 

than being born at 2499g. Quantile regression allows us to model non-central 

aspects of the birth weight distribution while considering the information that  

discretization masks (Abrevaya, 2001). 

In practice, it is not clear which single exposure metric of tobacco smoke exposure  

oneshoulduse. Labassaysofcotinine(ametaboliteofnicotine)levelsinmaternal  

blood or urine are a common measure of tobacco smoke exposure, but cotinine  

has a half-life of around nine hours in pregnant women . Hence, a single cotinine  

measurement may inaccurately reflect exposure over the course of the pregnancy. 

Alternatively, self-reported smoking measures can be biased by poor recall and  

misreporting. Wang et al. (2009) struggle with this exact issue. They find that 

cotinine levels are an important predictor of lower average birth weights, but that 

theevidenceislessclearwhenmaternalself -reportsofsmokingwereused(p. 984). 

They go on to write that, the stronger exposure-response relationship for cotinine 

concentrations suggests that this objective measure more accurately represents  

the individual differences in smoking behaviour (p. 984). While this may be true, 

it seems risky to judge the reliability of competing measurements based on the  

strength of a relationship that one simultaneously attempts to estimate. Using 

a confirmatory factor structure partially resolves this issue, in that it enables  

analysts to pool the information from these multiple, imperfect measurements in 

hopes of more accurately representing the exposure in the quantile regression. 

As a related measurement issue, some individual exposures arguably affect birth 

outcomes through a common biological pathway, so that in actuality they are  

indicators of an underlying factor. For example, suppose that psychological 

stress presents differently for many mothers. Some may feel stress because 
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they are socially isolated, some because their pregnancy was unwanted, and 

others because they feel they are incapable of influencing events that affect their 

lives (Bandura, 2010). Further, suppose that high levels of psychological stress, 

however presented, activate biological processes that have a negative effect on 

birth weights. If the indicators are modestly correlated and have low incidence  

rates marginally, individually they may not be strongly associated with birth  

weight in analyses, even though their underlying factor is. The factor structure 

offers analysts a way to represent and estimate such underlying constructs in 

regression models. 

Quantile regression has been applied in various BMI related studies. Several risk 

factors for increased adult body size had different effect on specific quantiles. 

Andreas et al, (2008) in their paper, Alternative regression models to assess 

increase in childhood BMI said that GAMLSS and quantile regression seem to be  

more appropriate than common GLMs for risk factor modelling of BMI data. 

Narchi et al. (2010) found that adjusting the conditional distribution of birth  

weight for biological variables better identified at risk infants. 

The first scientific objective was to better define the conditional distributions  

of gestational age and birth weight by incorporating personal characteristics and 

environmental factors. They use information from Texas birth certificate records, 

including maternal parity, sex of the infant, parental education level, parental age  

and race. Modeling multiplequantile levelsthrough constraintson the coefficients 

ensures monotonicity of the quantile function, as in (Bondell et al., 2010) and the  

references therein. 

The aforementioned approaches model a finite number of quantile levels and do  

not share information across quantile level. In applications where we expect 

inference at proximate quantile levels to be similar,  it is useful to encourage 

communication across the distribution. Specifying the full quantile function,  

which entails separate parameter at an uncountable number of quantile levels, 

fosters this all-encompassing approach. Recent examples of quantile function 
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modeling include Reich et al. (2011), who investigated the effects of temperature 

on tropospheric ozone using Bernstein polynomials, and Tokdar and Kadane  

(2011), who analyzed birth weights using stochastic integrals. 

Multiple conditional extremal methods exist in the literature.  Wang and Tsai 

(2009)modeledthetailindex, whichdeterminesthethicknessofthetails, through  

a linear log link function of the parameters. Wang et al. (2012) quantile 

regressed in the shallow tails and extrapolated the results into the deep tails  

for thickly-tailed data. Our application requires inference across the distribution, 

so we follow the approaches of (Reich et al., 2011) and (Zhou et al., 2012), who  

modeled the middle of the distribution semiparametrically and a parametric form  

above a threshold. In these applications either zero (Zhou et al., 2012) or one  

(Reich et al., 2011) covariate affected the distribution above the threshold. Their 

methodological challenge was modeling a discrete response. The gestational age  

measurements have been rounded into values of 25,26,...42 weeks. Canonical 

discrete regression models make restrictive assumptions about the relationship 

between the response and the predictors. Dichotomizing the response by PTB 

restricts inference to the cut point between 36 and 37 weeks. Previous approaches  

in the literature (Machado and Silva, 2005) modeled one quantile by adding 

random noise to compel the response to behave continuously. 

Lane and Jerome (2011) used Bayesian quantile regression model in the study 

of the predictors of birth weight. The results suggested that smoking during 

pregnancy is associated with decreased birth weight, even at the lower end of  

the response distribution. It was in accordance with the meta-analysis of Shah 

and Bracken (2000). However, the results did not suggest a significant effect 

of psychological factors on birth weight. Of course they missed the important 

confounders that mask effects in the study, as in the case with any observational 

study. 

Luke et al, (2013) introduced a semi-parametric Bayesian quantile approach 

that model the full quantile function rather than just a few quantile levels. 
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Their multilevel quantile function model established relationship between birth 

weight and predictors separately for each week of gestational age and between 

gestational age and the predictors separately across Texas Public Health Region. 

They showed that pooling information across gestational age quantile level 

substantially reduce MSE of predictor effects relative to standard frequentist 

quantile regression. They found ozone to be negatively associated with lower 

tail gestational age in South Texas and across the distribution of birth weight for 

high gestational age. 

Infants who are both preterm and small for gestational age (SGA) are at higher 

mortality risk than infants with either condition singly (Katz et al., 2013). Reich 

and Smith (2013) extended quantile function methodology to censored data. 

They faced three methodological hurdles in our application. PTB and low birth 

weight are closely related, but distinct, concerns. Researchers prefer to use SGA  

infants to isolate eff ects on birth weight from those on gestational age, so it 

is important to allow the relationship between birth weight and the predictors  

to vary by gestational age. While multilevel regression models are well-suited 

for jointly modeling a collection of distributions, standard hierarchical models  

assume the predictors affect only the conditional mean of the response. Second, 

considerable interest lies in the tails (particularly in very premature, SGA or  

large-for-gestational age births), so it is important to enable the tails of these  

distributions to be affected differentially by the predictors relative to the center 

of the distribution. Estimation of parameter eff ects at very low or very high 

quantiles is generally the purview of extreme value analysis. 

2.3 Related Works on Gamma and Lognormal 

Regression 

Lognormal distributions (with two parameters) have a central role in human  

and ecological risk assessment for at least three reasons. First, many physical, 
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chemical, biological, toxicological, and statistical processes tend to create random  

variables that follow Lognormal distributions (Hattis and Burmaster, 1994). 

For example, the physical dilution of one material (say, a miscible or soluble  

contaminant) into another material (say, surface water in a bay) tends to create  

non equilibrium concentrations which are Lognormal in character (Ott,  1995; 

Ott, 1990). Second, when the conditions of the Central Limit Theorem obtain 

(Mood, Graybill, and Boes, 1974), the mathematical process of multiplying a  

seriesofrandomvariableswillproduceanewrandomvariable(theproduct)which  

tends (in the limit) to be Lognormal in character, regardless of the distributions 

from which the input variables arise (Benjamin and Cornell,  1970). Finally, 

Lognormaldistributionsareself-replicatingundermultiplicationanddivision, i.e.,  

products and quotients of Lognormal random variables are themselves Lognormal 

distributions(CrowandShimizu, 1988; AitchisonandBrown, 1957), aresultoften 

exploited in back-of-the-envelope calculations. 

Most literatures (Lewit et al., 1995; Lavado et al.  2010; Reolalas and Novilla, 

2010) have found strong associations between infant mortality and low birth  

weight (LBW). Although LBW is not a direct cause, the complications due to  

it (e.g. inability to maintain body temperature) account for 13.8 percent and  

15.3 percent of infant deaths in the Philippines for the years 2006 and 2007,  

respectively. Also, these complications currently rank as the third leading cause  

of infant deaths both locally and globally (Reolalas and Novilla, 2010). 

Aside from significant associations with infant mortality, LBW also has other  

negative effects particularly on physical and mental development of children. 

Barker (1997) has found that reduced fetal growth is strongly associated with 

many chronic conditions (e.g. cardiovascular disease, diabetes, obesity) in later 

life. Now known as the Barker’s Hypothesis, it states that ?conditions in 

the maternal womb have a programming effect (fetal programming) on fetal 

physiology. For instance, when a fetus is deprived of adequate nutrient supply 

in the womb, it will develop a thrifty phenotype causing smaller body size and  
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lowered metabolic rate to name a few. In another study, LBW children are more  

likely to delay entry into school or attend special classes suggesting a direct link 

between birth weight and intelligence quotient (Corman and Chaikind, 1998). In 

the light of socioeconomic concerns, LBW babies result in higher economic costs  

for society such as higher health care costs and lower labor market payoffs. Even 

worse, socioeconomic inequality causes great disparity between LBW outcomes  

(Lewit et al., 1995). 

Cheung et al, (2000) analysed the eff ect of early postnatal growth on motor  

development in Pakistani infants using the generalized lognormal model. The 

results showed that both fatal and early postnatal growth over a broad spectrum  

may affect infant motor development. It was not just the babies who were very 

small at birth that suffered. Birth length appeared to be more influential than 

other anthropometric indicators. 

Francesca et al (2007) developed a measurement error model with counterfactual 

variables that address the scientific questions for the birth weight mortality case 

study. Their approach integrated Bayesian methods and data argumentation 

with counterfactual model and principal stratification. Francesca Dominici and 

her group first found that both Folic acid, Iron and vitamin A (F+I+A) and  

multiple nutrient and vitamin A (M+A) increase birth weight.  However, the 

F+I+A increase birth weight mainly among LBW infants whereas M+A increase  

birth weight across the entire birth weight distribution compared to vitamin a  

only. The F+I+A reduce the risk of infant mortality, whereas the M+A slightly  

increases the risk of early infant mortality, especially among the larger infants. 

The primary determinants of birth weight are gestation period and prenatal 

growth rate, while secondary factors consist of genetics and maternal behavior 

during pregnancy. External influences can be classified as environmental 

and socioeconomic factors such as educational attainment and wealth status.  

Many literatures and discussions on birth weight focus on prenatal care and  

micronutrient supplementation of the mother during her pregnancy. The 
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Department of Health (DOH) defined prenatal care as the use of health care  

during pregnancy, which includes screening for health conditions, providing 

therapeutic interventions, and educating women about safe child birth. 

Micronutrientsarecommonlyfoundinmanyironsupplementsbecauseofconstant  

concern about high prevalence of maternal iron deficiency (Allen and Gillespie, 

2001). Prenatal care quality is considered as an essential indicator for maternal 

and infant health status. Lavado et al. (2010) has found that 96.16 percent 

of mothers had prenatal care but only 49.51 percent can be considered as 

good quality care. For the past decades, micronutrient supplementation during  

pregnancy had also earned great amount of interest in research in relation to birth 

weight. While there are several micronutrients (e.g. Zinc, Vitamin A, Calcium,  

Iodine) being associated with positive outcomes, the most important are Iron and  

Folic Acid. 

The United Nations Children’s Fund (UNICEF) defined LBW babies as newborns  

weighing less than 2,500 grams with the measurement taken within the first  

hour of life. Globally, 15.50 percent of total live births in 2008 are of LBW  

classification. In the Philippines, 21.20 percent of live births in 2008 are classified  

as LBW babies which is the largest for the past 23 years. Currently, the country 

ranks as the 14th (out of 225 countries) with the highest incidence of LBW cases  

(WHO, 2012). 

Measures of body size, especially BMI, are associated with arsenic metabolism  

biomarkers. The association may be related to adiposity, fat free mass or body 

size (Mathew, 2013). 

Das et al, (2014), concluded in their paper that lognormal and gamma regression 

models (with non-constant variance) are much more effective than either 

traditional simple, multiple, logistic regression and log-Gaussian models (with 

constant variance), because they better fit the data. They also said that to  

reduce the infant mortality due to low birth weight, white mothers with lower  

age should be a non-smoker, free of hypertension, free of uterine irritability with 
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higher weight at last menstrual period and without any premature labor. 

Das(2014)inherjournalsaidthattheimpactofbiochemicalparameters, personal  

characteristics, family history and dietary factors on human plasma glucose 

concentration are explained based on mathematical relationships. Her results 

also identified many additional casual factors that explain the mean and variance  

of plasma glucose concentration. 

Neonatal death is a serious concern, both in the developing and in the developed 

worlds. While infant mortality rates have been decreasing steadily all over the  

world, changes in neonatal mortality rate have been much slower. One of the 

commonest causes of neonatal mortality in the world is prematurity and low  

birth weight (Kramer,1987,Rich-Edward et al,2003,Kramer et al,2005, Basu et 

al, 2008). Generally, it is recognized that low birth weight can be caused by  

many factors (Collins et al,1990, David et al,1987, Cole et al,2002). Because 

many questions and conflicts still remain, however, about which factors exert 

independent causal effects, as well as the magnitude of these effects, a critical 

assessment and meta-analysis of the medical literature published from 1970 to  

till the date were carried out. 

Neonate low birth weight has long been a subject of clinical and epidemiological 

investigations and a target for public health intervention. Low birth weight is  

defined by WHO as a birth weight less than 2500 g (before 1976,  the WHO 

definition was less than or equal to 2500 g), since below this value birth-weight- 

specific infant mortality begins to rise rapidly (Rich-Edward et al,2003). In 

particular, considerable attention has been focused on the causal determinants  

of birth weight, and especially of low birth weight (LBW), in order to identify  

potentially modifiable factors. Many researches have focused on factors with 

well-established direct causal impacts on intrauterine growth include infant sex, 

racial/ ethnic origin, maternal height, pre-pregnancy weight, paternal weight 

and height, maternal birth weight, parity, history of prior low-birth-weight 

infants, gestational weight gain and caloric intake, general morbidity and episodic  
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illness, malaria, cigarette smoking, alcohol consumption, and tobacco chewing  

(Cole et al,2002). Note that these factors were identified based on preliminary 

statistical methods such as frequency distribution, odds ratio, simple regression 

analysis, logisticregressionetc. Thesemethodsmaynotidentifythedeterminants  

correctly in medical systems, demography and quality engineering process, as  

the variance of the response may be non-constant, and the variance may have 

some relationship with the mean (Das et al,2011). Generally, the above methods 

identify insignificant factors as significant and vice versa (Das and Lee ,2009), 

which is a serious error in any data analysis. 

The present study analyzes the relationship of neonate birth weight (response) 

to the mother?s lifestyle explanatory variables. It has been identified that 

the response is non- constant variance. Consequently, two models (mean and 

variance) are derived. This particular analysis identifies the following: Mean 

neonate birth weight is explained by the statistically significant factors, mother 

weight at last menstrual period, her race, smoking status during pregnancy, 

history of premature labor, history of hypertension and presence of uterine 

irritability. Mother weight at last menstrual period is positively associated with 

her neonate mean weight, indicating that if  mother weight at last menstrual  

period increases, her neonate birth weight will increase. Mother race is negatively 

associated with her neonate birth weight. It indicates that neonate birth weight 

will be lower for black women than white. Mother smoking status during 

pregnancy is negatively associated with her neonate birth weight. This implies 

that higher smoking status of mother during pregnancy decreases her neonate  

birth weight. Mother history of premature labor is negatively associated with 

her neonate birth weight. I t indicates that if  the mother number of premature  

labor increases, her neonate birth weight will decrease. Mother history of 

hypertension and presence of uterine irritability are negatively associated with 

her neonate birth weight. This implies that if mother hypertension and presence  

of uterine irritability increase, her neonate birth weight will decrease. Variance of  
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neonate birth weight is positively associated (statistical significant) with mother 

age, her history of hypertension and presence of uterine irritability. Thus, the 

neonate birth weight variance will increase with the increased of mother age, her 

hypertension and presence of uterine irritability. Therefore, the neonate birth 

weight variance will be lower for a mother with lower age, without hypertension 

and uterine irritability. 

Hosmer and Lemeshow (2000) studied that the mother’s lifestyle characteristics  

on her neonate birth weight based on the data described in Results Section.  

Similar study has been done by many researchers (Kramer MS,1987,Rich-Edward 

JW et al,2003). To identify the appropriate model, the earlier investigators used  

logistic regression techniques. Hosmer and Lemeshow (2000) also noted that 

the variance of the response (neonate birth weight) was non-constant, and its 

distribution was non- normal. Therefore, the researchers used logistic regression 

techniques by changing the responses (neonate birth weight) 0 (= birth weight 

>2500 g) and 1 (= birth weight <2500 g). Original responses are neglected, 

consequently, early researchers might loose many important information. For 

heteroscedastic data, log-transformation is often recommended to stabilize the  

variance (Box GEP and Cos DR,1964). 

In practice, though, the variance is not always stabilized by this method. For 

example, Myers et al. analyzed The Worsted Yarn Data (Myers et al,2002) using  

a usual (errors are uncorrelated and homoscedastic) second-order response surface 

design. Myers et al. (2002) treated the response (y = T) as the cycles to failure  

(T), and also noticed that the variance was non- constant and the analysis was 

inappropriate. Then using log transformation of the cycles to failure (i.e., y=  

lnT), the final data analysis had been done, and it was found that log model,  

overall, was an improvement over the original quadratic fit.  The researchers 

noticed, however, that there was still some indication of inequality of variance. 

Recently, Das and Lee (2009) showed that simple log transformation was 

insufficient to reduce the variance constant, and the investigators analyzed the 
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data using joint generalized model. Das and Lee (2009) found that many factors  

were significant and the log-normal distribution was more appropriate. For 

non-constant variance of response, classical regression technique gives inefficient 

analysis, often resulting in an error so that the significant factors are classified  

as insignificant. In addition, positive data are generally analyzed by log-normal 

and gamma models (Myers et al,2002). For instance, the analysis by Myers et 

al. (2002) missed many important factors. This fault is very serious in every  

data analysis. The present authors notice that the original data set is positive, 

variance of the response is non-constant, distribution is non-normal, and original 

responses are neglected. 
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CHAPTER 3  

METHODOLOGY  

3.1 Introduction  

This chapter focuses on the type of data used in the study. The chapter also 

elaborate the statistical methods and tools used in the analysis of the data. 

3.2 Data 

The data used in this study was the 2014 Birth Records from the Komfo 

Anokye Teaching Hospital(KATH). KATH is the only teaching hospital situated  

in Kumasi, the capital city of Ashanti Region of Ghana. Data management 

and preparation were aided by medical literatures and by an expert obstetrician- 

gynecologist. 

The data consisted of 1007 observations with a set of 18 variables from which 

the researchers obtained 13 variables that are essential to the study. The data 

shows the variables (determinants of birth weight) and their descriptions. These  

variables contain information on maternal characteristics (age of mother at birth 

of child, age of the mother at first birth, educational attainment, employment  

status of the mother and total children ever born), weight gain during pregnancy, 

height of the mother and birth outcome (birth weight in kilograms and gender of  

child). The birth weight of the child was used as the response variable and the  

rest as the covariates. The variables with missing values in the original data were  

removed, so there were no missing values in the data used. 
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3.3 Models Description  

3.3.1 Quantile Regression 

For any real-valued random variable Y, with cummulative distribution function; 

F (y) = Pr(Y ≤ y) (3.1) 

th 
for any η ∈  (0, 1) or 0 ≤ η ≤ 1, the η quantile of Y is defined as; 

Q(η) = inf[y : F (y) ≥ η] (3.2) 

1 1 
The median quantile is then Q( ), the first quartile is Q( ) and the first decile is 2 4 

1 
Q( ). The quantile function provides a complete characterization of Y, just like  

10 

the distribution of F. The quantiles can be written as solutions to the following  

optimization problems. For any η ∈  (0, 1), define a piecewise linear "check 

function" also known as the loss function as; 

pη(u) = u(η − I u( ≤ 0)) (3.3) 

where I(.) is the indicator function. Solution to the minimization problem is  

then; 

Z u Z ∞ 

αb(η) = argminu∈RE[pη (Y −u)] = minu(η−1) (y−u)dFY (y)+η (y−u)dFY (y). 

−∞ u 

(3.4) 

Setting the derivative of the loss function to zero and letting qη be the solution 

is then; 

Z q Z ∞ 

η 

(1 − η) dFY (y) − η dFY (y) = 0 

−∞ qη 
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the equation then reduces to; 

FY (qη ) − η = 0 

implying that; 

FY (qη ) = η (3.5) 

th 
Hence qη is the η quantile of the random variable Y. 

The sample analogue of Q(η) is based on the random sample y ,....y1 n of Y. The 

th 
η quantile can then be identified, in a split of (3.4) above as any solution to; 

X n X  X  

αbη = qbη = argminq∈R pη (yi−q), = argminq∈R[(η −1) (yi−q)+η (yi−q)] 

i=1 y <qi yi≥q 

(3.6) 

Let xi, i = 1,...,n, be a k×1 vector of regressors, we can then write the equivalent 

of expression (1) as; 

0 
Fuη (η − x β /x i η i) = pr(yi ≤ η/xi) (3.7) 

which is essentially a different form derived from the more familiar; 

0 
yi = x βi η + µηi (3.8) 

where the distribution of the error term µηi is left unspecified, the only constraint 

being the usual quantile regression Qη (µηi/xi) = 0. Using the analogy, the 

estimation of conditional mean functions as in; 

X n 
b , 2 
β = argminβ∈RK (yi − x βi ) , (3.9) 

i=1 

the linear conditional quantile function; 

, 
QY (η / X  = x) = x βi η (3.10) 
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can be estimated by solving the equivalent of expression (3.10) for this case; 

X n 
b , 
βη = argminβ∈RK pη (yi − x βi ) (3.11) 

i=1 

3.3.2 Properties of Quantile Regression  

Quantileregressionhasthefollowingimportantpropertiesthatdistinguishitfrom  

a ordinary least square regression. 

Equivariance  

In many situation it is preferable to adjust the scale of original variables or  

reparametize a model so that its result has a more natural interpretation. Such 

changes should not affect our qualitative and quantitative conclusions based on 

the regression output. Invariance to a set of some elementary transformations  

of the model is called equivariance in this context. Koenker and Bassett (1978) 

formulated four equivariance properties of quantile regression. Once we denote 

the quantile regression estimate for a given η ∈  (0, 1) and observations (y,X) by 

b p 
β(η; y,X), then for any p × p nonsingular matrix A,γ ∈  R and a > 0 holds 

• [βb(η; ay,X) = aβb(η; y,X)] 

• [βb(η; −ay,X) = aββb (1 − η; y,X)] 

• βb(η; y + X γ , X ) = ββb (η; y,X) +  γ 
b −1 b • β(η; y,XA) = A β(η; y,X) 

This means, for example , that if we use as the measurement unit of  y millimeters 

instead of meters, that is y multiplied by 1000, then our estimate scales 

appropriately: 

βb(η; y[mm],X) = 1000.βb(η; y[m],X). 
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Invariance to Monotonic Transformations  

Quantiles exhibit besides ”usual” equivariance to monotone transformations. Let 

f(.) be a nondecreasing function on R.. then it immediately follows from the  

definition of the quantile function that for any random variable Y ; 

Qf(Y )(η) = fQY (η). 

In other words, the quantiles of the transformed random variable f(Y ) are the 

transformed quantiles of the original variable Y . This is not the case of the  

conditional expectation; 

Ef(Y ) =6 f(EY ) 

unlessf(.) isalinearfunction. Thisiswhyacarefulchoiceoftransformationofthe  

dependent variable is so important in the various econometric models when the  

ordinary least squares method is applied (unfortunately, there is ususaly no guide  

which one is correct) We can illustrate the strength of equivariance with respect 

to monotone transformation on the so-called censoring models. We assume that 

there exist, for example, a simple linear regression model with i.i.d. errors; 

, 
yi = x βi + εi 

where i ∈  1,....,n, and the response variable yi is unobservable for some 

reason. Instead we observe yei = maxy ,ai where a ∈  R is a censoring point. 

Because of censoring the standard least squares method is not consistent anymore  

(but properly formulated maximum likelihood estimator can be used). On 

the contrary, the quantile regression estimator, thanks to the equivariance to  

monotone transformations, does not run into such problems as noted by Powell 

(1986). Using 

f(x) = maxx,a 
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we can write; 

0 0 Qy f(η/xi) = Qf(y)(η/xi) = fQyi(η/xi) = f(x βi ) = maxx β,a.i 
i 

Thus, we can simply estimate the unknown parameters by; 

X n 
b P 0 
β(η) = argmin ∈  R ρη (yi − max x β,ai ). 

β 
i=1 

Robustness  

Sensitivity of an estimator to departures from its distributional assumptions is  

another important issue. The sample mean , being a superior estimate of the  

expectation under normality of the error distribution, can be adversely affected 

even by a single observation if it is sufficiently far from the rest of data points. 

On the other hand, the effect of such a distant observation on the sample median 

is bounded no matter how far the outlying observation is. This robustness of 

the median is, of course, outweighed by efficiency in some cases. Other quantiles 

th 
enjoy similar properties (the effect of outlying observations on the η sample 

quantile is bounded,given that the number of outliers is lower than, 

n min η, 1 − η 

Quantile regression inherits these robustness properties since the minimized 

objective functions in the sample quantiles (3.6) and in the case of quantile  

regression (3.11) are the same. The only difference is that regression residuals; 

0 ri(β) = yi − x βi 

. are used instead of deviations from mean; 

yi − µ 
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. Therefore, quantile regression estimates are reliable in the presence of outlying  

observations that have large residuals. 

Asympto tic  Property  

For η ∈  (0, 1), under some regularity conditions, βb is asymptotically normal: 

η 

√ d b −1 −1 n(βη − βη ) →− N(0,η(1 − η)D ΩxD ), 

where; 

0 D = E(fy(Xβ)XX ) 

and 

0 Ωx = E(X X) 

. Direct estimation of the asymptotic variance-covariance matrix is not always 

satisfactory. Inference for quantile regression parameters can be made with the  

regression rank-score tests or with the bootstrap methods. 

3.3.3 Computational Aspect  

Quantile regression has a convenient linear programming(LP) representation. 

Using (3.8) and (3.11), we can translate to matrix notation. 

X k X k 
1 2 

yi = xijβηj + µηj = xij(βηj − βηj) + ( εηi − vηi) (3.12) 
j=1 j=1 

1 2 
with βηj, βηj, εηj and vηi, non-negative (j = 1,.. . ,k, i  = 1,....,n). The matrix 

notation for primal LP problem is then; 

0 min c,zst.Az = y,z ≥ 0 (3.13) 
z 

where; 

A = (X, −X, 1n, −1n) 
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, 

1 0 2 0 0 0 0 
z = ((β ) , (β ) ,u,v ) 

0 0 0 0 c = (0 , 0 ,ηl , (1 − η)l ) 

0 further 1n is then n dimensional identity matrix, 0 is a k × 1 vector of zeros and 

l is n × 1 vector of ones. The dual side of the LP is easy to expose now after 

having obtained (3.13). 

0 0 0 max w yst.w y ≤ c (3.14) 
w 

The duality theorem implies that the solutions exist for both formation if  X 

is a full rank matrix. Further, the equilibrium theorem of LP guarantees the  

optimality of the solution. 

3.3.4 Lognormal Regression Model 

We consider a regression model where the expected value of a continuous 

lognormal respose variable Y is a linear function of the predictors X  ,X  ,. . . . . ,X 1 2 p; 

µY = β0 + β X1 1 + ...... + β X .p p (3.15) 

The variance of Y depends on both the expected value of Y, µY and the variance 

2 2 2 2 
of Z = ln(Y ), ζZ; Var(Y/X) = ζY/X(exp(ζZ) − 1).µY . Ordinary least squares 

regression (here denoted by LSlin) can be used to obtain unbiased estimates  

β ,β ,....,β .b b b However, theestimatesprovidedby LS assumeshomoscedasticity, 

0 1 p lin 

which is incorrect for lognormal variable. This incorrect variance assumption 

leads to incorrect statistical inferences. 

In a situation with heteroscedasticity, weighted least squares regression (here 

denoted by WLS) can be used. WLS can account for the heteroscedasticity by 

−2 weighing each observation, Y ,i with the inverse of its variance, W i ∝ ζY . For a i 

1 
lognormal distribution, the weight for Yi is W i = 2 , where, LSlin can provide 

µY 
i 

2 
estimates of µYi. Unlike LSlin, WLS provides an estimate of the variance ζZ. 
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When the response Y is log-normally distributed, data are often log-transformes, 

ln(Y ) = Z, and a log-linear model is estimated: 

µZ|X = δ0 + δ X1 1 + ..... + δ Xp P (3.16) 

2 
where the expected value of Y is µY |X = exp(µZ|X +ζZ/2). Ordinary least squares 

regression on Z (here denoted byLSexp) provides estimates of the relative effect 

2 
(δ ,δ ,...,δ0 1 p) as well as an estimate of the variance ζZ but no estimates of the 

absolute effects. Thus, both (3.15) and (3.16) can be used to estimate µY |X and 

ζZ. The reason for including LSexp, even if the linear model in (3.15) is assumed, 

is that LSexp is commonly used for lognormal data. 

The lognormal distribution is often approximated by the gamma distribution,  

2 
with parameters µ(expected value) and v(scale parameter, Var(Y ) = µ /v.) A 

generalized linear model (GLM) with gamma distribution and the identity link  

2 
(denoted GLMG), provides estimates β ,β ,...,β0 1 p and an estimate of ζZ can be 

2 
found through the transformation ln(1/v +1 ) = ζZ. 

Another GLM that can be used to estimate the absolute effects is one with a 

normal distribution and the link function exp(∗ ), applied to Z = ln(Y ), here 

denoted GLMN, such that; 

exp(µZ|X) = θ0 + θ X1 1 + ..... + θ X .p p (3.17) 

2 
The expected value of Y is often found as µY |X = exp(µZ|X) · exp(ζZ/2). 

The method GLMN, does not, however,take into account the stochastic variation 

2 
due to estimating ζZ. Therefore we also used a maximum likelihood method  

(MLLN), (Gustavsson et al,2012) and (Yurgens ,2004), based on the likelihood  

function of the lognormal distribution; 

2 
1 1 (ln(y) − µZ) 

fY (y) = · p exp[− ] (3.18) 

2 2 
y 2πζ 2ζZ Z 
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2 b b b 
where µZ = ln(β0 + β X1 i1 + ..... + β Xp ip) − ζZ/2. The estimatesβ ,β ,.....β0 1 p, 

2 
and ζbZ are found using iterations, for example the Newton-Rapson iteration used 

here(Jensen et al, 2013) 

Confidence Intervals  

For LSlin, WLS, GLMG and MLLN, a 95 percent confidence interval for µY |X is 

estimated as; 

q 

µY |X ± Zα/2 var(µbY |X) 

where the sample-specific variance is estimated as; 

p 

X  

2 b b b b b 
var(µbY |X) = xi · var(βi) + 2 x x0 1 · cov(β ,β0 1) +  ..... +2xp−1xp · cov(βp−1βp) 

i=1 

(3.19) 

where x = 1, var(βb ) and cov(β ,βb b ) are sample-specific estimates of the variance 

0 i i j 

q 

and the covariance (the sample-specific standard error is se(βb ) = var(βb )). 

i i 

For GLMN, a confidence interval is estimated as (exp(µY |X) ± 

p 

2 
zα/2 var(exp(µbY |X))) · exp(ζZ/2), where the sample-specific variance of 

the linear estimator is estimated as; 

p 

X  

2 b b b b b 
var(exp(µbZ|X)) = xi ·var(θi)+2x x0 1 ·cov(θ ,θ0 1)+...+2xp−1xp ·cov(θp−1,θp) 



i=0 

(3.20) 

For LSexp, a confidence interval for µY |X is estimated as; 

2 q 2 2 

ζbZ (ζbZ) 

exp(µb + ± t var(µb )2 + ) 
Z|X α/2,(n−p−1) Z|X 

2 2(n − p − 1) 

, using the modified Cox method(Niwitpong,2013). The sample-specific variance 

is estimated as; 

p 

X  

2 b b b b b 
var(µbZ|X) = xi ·var(δi)+2x x0 1·cov(δ ,δ0 1)+....+2xp−1xp·cov(δp−1,δp) (3.21) 

i=0 

where x = 1, var(δb ) and cov(δ ,δb b ) are the sample specific estimates of the  

0 i i j 
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variance and the covariance. 

Some Propert ies o f  Lognormal D is tr ibution.  

• The random Variable that is lognormally distributed, can only assign 

positive real values in it. 

• Lognormal distribution of a random variable x has two parameters (mean 

and standard deviation) which are denoted by µ and ζ respectively. Then, 

we can write x in the following way; 

µ+ζz 
x = e 

where z is referred as standard normal variable. The µ is the location 

parameter and the ζ is the scale parameter. 

• Coeefficient of variation of lognormal distribution is; 

p 

ζ2 
CV = e − 1 

. 

• Mode  and  Med ian: The mode is the global maximum of the probability 

density function. In particular, it solves the equation; 

0 (ln f) = 0 

µ−ζ2 
mode(X) = e 

1 
. The median is such a point where FX = . 2 

µ 
Med(X) = e 

. 
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• Geometric Moments :  The geometric mean of lognormal distribution is  

µ ζ 
GM(X) = e , and the geometric standard deviation is GSD(X) = e . By 

analogy with the arithmetic statistics, we can define a geometric variance, 

ζ2 ζ 
GVar(X) = e , and a geometric coefficient of variation GCV (X) = e −1. 

Because the log-transformed variable Y = ln X is symmetric and quantiles 

are preserved under monotonic transformation, the geometric mean of a 

lognormal distribution is equal to its median, Med(X). 

GM(X) < AM(X) and this is due to the AM − GM inequality, and 

corresponds to the logarithm being convex down. In fact, 

µ+1ζ2 
E(X) = e 2 

√ 
µ ζ2 

E(X) = e · e 

p 

E(X) = GM(X) · GVar(X) 

−1ζ2 
Infinance, theterm e 2 issometimesinterpretedasa convexity correction, 

fromthepointofviewofstochasticcalculus, thisisthesamecorrectionterm  

as Ito’s lemma for geometric Brownian motion. 

• Ari thmetic  Moments :  The arithmetic mean, arithmetic variance and  

arithmetic standard deviation of a log-normally distributed variable X are 

given by; 

µ+1ζ2 
E(X) = e 2 

ζ2 2µ+ζ2 
Var(X) = (e − 1)e 

ζ2 2 
Var(X) = (e − 1)(E(X)) 

p 

SD(X) = Var(X) 



p 

ζ2 
= E(X) e − 1 

2 
Thelocation µ andthescale ζ parameterscanbeobtainedifthearithmetic  
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mean and the arithmetic variance are known; it is simpler if  ζ is computed 

first: 

1 Var(X) 
µ = ln(E(X)) − ln(1+ ) 2 (E(X))2 

1 2 
= ln(E(X)) − ζ 

2 

2 Var(X) 
ζ = ln(1+ln ) (E(X))2 

th 
For any real or complex number s, the s moment of a log-normally 

distributed variable X is given by; 

s sµ+1s2ζ2 
E(X ) = e 2 

k 
A lognormal distribution is not uniquely determined by its moments E(X ) 

for k ≥ 1, that is, there exist some other distributions with the same  

moments for all k. In fact there is a whole family of distribution with  

the same moments as the lognormal distribution. 

Maximum L ike l ihood Es timation o f  Paramete rs .  

Determination of the maximum likelihood estimators for lognormal distribution 

parameters µ and ζ, follows the same procedure as the normal distribution. We  

can observe that; 
Y n 

1 
fL(x; µ,ζ) = ( )fN(ln x; µ,ζ) (3.22) 

xi 
i=1 

where fL is the probability density function of the lognormal distribution and fN 

is that of a normal distribution. This implies that we can write the log-likelihood 

function as; 

X  

`L(µ,ζ|x ,....,x1 n) = − ln xk + `N(µ,ζ| ln x ,.....1 ln xn) (3.23) 
k 

Since the first term is constant with regards to µ and ζ, both logarithmic 

likelihood functions `L and `N, reach their maximum with the same µ and ζ. 
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Hence, using the formulas for normal distribution maximum likelihood parameter 

estimators and the equality above, we can deduce that for the lognormal 

distribution, it holds that;  

X  ln x 

k 

µb = (3.24) 

n 
k 

and, 

P 

2 
k(ln xk − µb) 

ζb = (3.25) 

n 

3.3.5 Gamma Regression 

The probability density of observing a particular value yi, given the shape 

parameter αi and scale parameter βi is; 

1 (αi−1) −(y /β ) 
f(y) = · y e i i ,y ,α ,β > 0 (3.26) 

αi i i i i 
Γ(α)βi 

R ∞ 

α−1 −t 2 
where, Γ(α) = t e dt, E(yi) = α βi i and Var(yi) = α βi i . 0 

Regression with that gamma model is going to use input variables Xi and 

coefficients to make a prediction about the mean of yi, but in actuality, we are  

really focused on the scale parameter βi. Generally, we assume αi = α,αi is the 

same for all observations. Variation from case to case in µi = β αi is due simply 

to variation in βi. The shape parameter is just a multiplier (which is equal to the  

inverse of the ”dispersion parameter” θ that is defined for all distributions that  

are members of the exponential family). 



Linkage Between Mean and Variance  

The ratio of the mean to the variance is a constant; the same, no matter how 

large or small the mean is. As a result, when the expected value is small (near 

zero), the variance is small as well. Conversely, when the expected value is large, 

the observed scores are less predictable in absolute terms. 

2 
Var(yi) α βi i 

= = βi 
E(yi) α βi i 
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If the gamma variable has an expected value of 100, the variance has to be 100·βi. 

The so-called coefficient of variation, which is used in introductory statistics as a 

summary of variability, is the ratio of the standard deviation to mean. It is also  

constant; 

p p √ 

2 α β 
Var(yi) α βi i i i 1 

CV = = = = √ 
E(yi) α βi i α βi i αi 

√ If the gamma variable expected value is 100, the standard deviation is 100/ αi. 

The ratio Var/E  depends on βi but the StdDev/E depends on αi. The 

relationship between mean and variance here is different than some other 

distributions, because it is ”adjustable”. In contrast the poison and the binomial  

distribution have no such turning parameters. 

Gamma Mode l  

The gamma regression model can be viewed as a class of Generalized Linear 

Model (GLM). In general GLM has three components; 

• Random Component: This component specifies the conditional 

distributionof the response variable, Yi,(for the ith of n independently 

sampled observations), given the values of the explainatory variables 

in the model. In Nelder and Wedderburn’s original formulation, the 

dristribution of Yi is a member of the exponential family, such as 

Gaussian(Normal), Binomial, Poison, Gamma, orInverse-Gaussianfamilies 

0 of distributions. Subsequent work, however, has extended GLM s to 

multivariate exponential families (such as multinomial distribution), to 

certain non-exponential families (such as the two parameter negative 

binomial distribution), and to some situations in which the distribution  

of Yi is not specified completely. 

• Sys tematic Component:  This component is a linear function of the  

regressors (predictors). That is; 

η = α + β X1 i1 + β X2 i2 + ..... + β Xk ik. 
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As in the linear model, and in the logit and probit models, the 

regressors Xij are pre-specified functions of the explanatory variables and  

therefore may include quantitative explanatory variables , transformation of  

qualitative explanatory variables, polynomial regressors, dummy regressors, 

0 interactions, and so on. Indeed one of the advantages of of GLM s is that 

the structure of the linear predictor is the familiar structure of a linear  

model. 

• L ink Func tion:  The last component is a smooth and invertible linearizing  

linkfunction g(.), whichtransformstheexpectationoftheresponsevariable, 

µ ≡ E(Yi), to the linear predictor: 

g(µi) = ηi = α + β X1 i1 + β X2 i2 + ..... + β Xk ik 

Because the link function is invertible, we can also write, 

−1 −1 µ = g (ηi) = g (α + β X1 i1 + β X2 i2 + ..... + β Xk ik) 

and, thus, the GLM may be thought of as a linear model for a 

transformation of the expected response or the nonlinear regression model 

−1 for the response. The inverse link g (.) is also called the mean function. 

−1 The identity link simply returns its argument unaltered, ηi = g (µi) = µi, 

−1 and thus µi = g (ηi = ηi). 

Gamma as  a Member o f  Exponential  Family  

We treat this as a basis for GLM, by treating α as known feature, the same 

for all observations and βi(the scale parameter ) as the parameter of interest. 

Exponential family has the form; 

y .θi i − c(θi) 
exp[ + h(y ,θi )] (3.27) 

θ 
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Rearranging the density for the gamma as follows; 

yi α 
exp[− + ( α − 1)ln(yi) − ln(βi ) − ln[Γ(α)]] 

βi 

yi 
[exp[− + ( α − 1)ln(yi) − α ln β − ln[Γ(α)]] 

βi 

yi 
[exp[− − α ln βi + ( α − 1)ln(yi) − ln[Γ(α)]] 

βi 

Here, the natural parameter is, 

1 
θi = − βi 

α 

consequently, 

1 

− = αθi 

βi 

and 

1 
βi = − 

αθi 

Using those findingsin the previous expression, 

1 
exp[αy θi i − α ln(− ) − α ln(α) + ( α − 1)ln(yi) − ln[Γ(α)]] 

αθi 

α 
exp[αy θi i − α ln(− ) + ( α − 1)ln(yi) − ln[Γ(α)]] 

αθi 

1 
exp[αy θi i − α ln(− ) + ( α − 1)ln(yi) − ln[Γ(α)]] 

θi 

1 
exp[α(y θi i − ln(− ) ) + ( α − 1)ln(yi) − ln[Γ(α)]] 

θi 

1 1 
That was quite a lot of work to find out that α = and that c(θi) = ln(− ). θ θi 

But if we re-arrange just one more time, we find the Gamma in the form of the  

exponential density; 

y θi i − ln(−1/θi) 1 − θ −1 

exp[ + (  )ln(yi) − ln[Γ(θ )]] (3.28) 
θ θ 
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But µi = dc(θi)/dθi, and so that implies the Gamma’s µi is, 

dc(θi) d ln(−1/θi) d ln(θi) 1 
= = − = − = α βi i 

dθi dθi dθi θi 

2 2 
and that V (µi) = d c(θi)/dθi and so, in this case, 

d 1 2 2 
V (µi) = (−1/θ) = = µ = (αβi) 2 2 dθi θi 

The observed variance of yi in GLM has two components, that is; 

Var(yi) = θ Vi (µi) 

2 
. For the Gamma, we already know that E(yi) = µi = αβ and Var(yi = αβ ). 

2 2 2 
The variance function is V (µi) = µi = α β , and the dispersion parameter θi 

must be equal to the reciprocal of the shape parameter (1/α). This implies that; 

2 2 2 
Var(yi) = θ Vi (µ) = θi · α β = αβ 

where, 

1 
θi = 

α 

Canonical Link 

The canonical link for the GLM with a Gamma-distributed dependent variable 

is the reciprocal, 1/µi. this means that the expected value of the observed yi, 

(E(yi) = µi), is related to the input variables as; 

1 
= α + β xi 1i (3.29) 

µi 

which implies, 

1 
µi = (3.30) 

α + β xi 1i 
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Propert ies o f  Gamma Dis tr ibution  

The distribution has a zero lower bound and is unlimited on the right.  It is 

positively skewed,the amount of skew depending inversely on the shape factor α. 

The mode of the distribution is at β(α − 1) if α > 1 and at zero if 0 < α ≤ 1. 

In the latter case, the distribution is  J − shaped. For α = 1, the distribution 

is exponential with ordinates 1/β at y = 0; for α < 1 the ordinate at y = 0 is 

infinite. The Gamma distribution is closely related to the chi-square distribution, 

1 
for χ/2 is a gamma variate with α = n and β = 1. 2 

The moments about zero of the gamma distribution are given by the relation, 

0 r µr = β α(α +1)....(α + r − 1) 

, from which it follows immediately that the mean is, 

0 µ1 = βα 

. From the moments relationships the second, third and fourth moments about  

the mean are easily found to be, 

2 2 
µ2 = ζ = β α...........(i) 

3 
µ3 = 2β α..........(ii) 

4 
µ4 = 3β α(α +2) 

√ 
Since the skewness statistic is b1 = µ /ζ3 3 we have from (i) and (ii) that, 

p 2 

b1 = √ α 

. Hence, the skewness goes to zero with increasing α showing that the gamma 

distribution becomes symmetrical for large α;in fact, it may be shown that the  
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distribution approaches normality slowly as α increases. 

Statistical Estimators  

It has long been known that there are many ways to estimate the parameters in 

a statistical equation from a sample of data. Two of the more common methods  

are least squares and moments. It was found by Fisher (1941), that the various  

methods of estimation do not give equally good results in the sense that some  

estimates or statistics are more reliable than others.Clearly, the best estimates  

are those which have smaller variability. For example, in samples of 10 from 

normal population the mean (expected value) could be estimated by averaging  

the smallest and the largest value or it could be estimated by averaging all the  

observations. Obviously, the latter statistic using all the observation should be  

better than the one using only the two observations. In fact, it has been shown 

that the variability from sample to sample for sample size 10 as measured by the 

variance is twice as large as when the only estreme observations are averaged. 

The median, which is also an estimate of mean, has variance about one-third 

greater than the mean for a sample of 10. From this it may be inferred that if we 

use the mean range as an estimate, we in effect discard half of our data;if we use 

the median, we discard one-third of it. 

Fisher (1941), made a remarkable contribution to the statistical analysis by 

developing a method of estimation originally due to Gauss which he called the  

method of maximum likelihood (M.L.). this method consist of maximising what 

he calls the likelihood or the product of the frquency functions of the sample. If  

f(y; β,α) is any frequency function, the likelihood is defined as, 

Y n 

M = f(yi; β,α). (3.31) 

i=1 

where yi is the ith value in a sample of n. To maximise this, it is simplest to take 
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logarithms before differentiating and setting to zero. this gives, 

X n 

L = ln(yi; β,α). (3.32) 

i=1 

Differentiating partially with respect to β and α gives the M.L. differential 

equations, 

 

∂L  
= 0  

∂β 
(3.33) 

 

∂L  
= 0 

∂α 

Solving these gives the M.L. estimates commonly written as βb and αb. The 

M.L. estimates have certain remarkable advantages not always possessed other 

estimates which will now be discussed. 

In order to assess the quality of estimators in general, Fisher defined three 

desirable properties of statistics; consistency, efficiency, and sufficiency. These 

may be defined as follows: 

• I f  an estimator or statistic is consistent, it converges in probability to its  

population or parameter value. This may be expressed as, 

P (|Tn − θ| < ) > 1 − η; n > N. (3.34) 

Tn is an estimate of the parameter θ based on sample size n, and η are 

arbitrarily small quantities, and N is any integer. This means that Tn = θ 

when Tn is calculated from the whole population. 

• A consistent estimate T1 is said to be more efficient than another consistent 

estimate T2 if v(T1) < v(T2); that is the variance of  T1 is less than the 

variance of T2. An estimate is said to be efficient if  it has the smallest  

variance of a class of consistent estimates. The efficiency of an estimate is 



defined as v(Tb)/v(T ) where Tb is M.L. estimate. 
• An estimate T is said to be sufficient if it exhausts all possible information 
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on θ from a sample of any size. If T1 and T2 are two different estimate 

of θ not functionally related, an estimate T1 of θ is sufficient if  the jiont 

distribution of T1 and T2 has the form, 

f = f1(T ,θ1 )f2(T /T2 1). (3.35) 

where f1 is the frequency distribution of T1 and f2 is the distribution of  

T2 given a sample value of T1. Once T1 is known, the probability of any 

range of values for T2 is the same for all θ; hence, T2 cannot give any 

information on θ which is not already available from T1. Sufficiency is the 

most desirable property of an estimate, and such estimates are said to be  

optimum. The superiority of M.L. estimates was demonstrated by Fisher 

andotherswhentheyprovedthatM.L.estimatesareconsistentandefficient 

and if a sufficient estimate exists, it will be given by the M.L. method. 

Maximum L ike l ihood Es timation o f  Paramete rs  

Applying (3.32) to the gamma distribution equation (3.26) gives, 

X  1 X  

L = −nα ln β − n lnΓ(α) + ( α − 1) ln y − y (3.36) 
β 

where the summation is over the n sample values. Differentiating as indicated in 

equation (3.33) we find the M.L. equations, 

y/β¯ b − αb = 0 (3.37) 

∂ 1 X  

ln βb + lnΓ(αb) − ln y = 0 (3.38) 

∂αb n 

∂ 
Since lnΓ(αb) isadigammafunction, ψ(αb), wemaywrite (3.38) inthesimplified  ∂αb 

form, 



1 X  

ln βb + ψ(αb) − ln y = 0. (3.39) 

n 
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Taking logarithms of (3.37) and substituting for βb in (3.39) gives, 

1 X  

ln αb − ψ(αb) = ln¯y − ln y (3.40) 
n 

This equation is implicit in αb but may be solved with some difficulty using the 

Davis (1933) tables of the ψ-functions. Masuyama and Kuroiwa (1951) prepared  

tables of ln αb − ψ(αb) from tables of logarithms and tables of digamma functions. 

We developed the application of the gamma distribution precipitation before  

Masuyama and Kuroiwa’s tables were available although, of course, we had also  

followed the equivalent procedure of using the Davis tables. To simplify the  

technique of fitting, we developed an approximation to ln αb − ψ(αb) as follows: 

Norlund (1924), 

X m 
k−1 2k 

ψ(α) = ln α − 1/(2α) − (−1) B  /k (2kα ) +  Rm. (3.41) 
k=1 

is an asymptotic expansion in which Bk are the Bernoulli numbers, B1 = 1/6, 

B2 = 1/30, etc, and Rm is the remainder after m terms. For α ≥ 1, we may write 

the inequality, 

Bm+1 

|Rm| < . (3.42) 

(2m +2)α2m+2 

For only m = 1 and α = 1, |Rm| < 0.00833 which is less than 1.5percent of 

the table value ψ(1) = −0.57722 given by Davis (1933). The approximation, of 

course, increases in accuracy with α. At α = 2 it is within 0.1percent of table 

value. We are not, however, interested in approximating ψ but in approximating 

α. From (3.41) for m = 1 we find, 

2 
ψ(α) = ln α − 1/(2α) − 1/(12α ) (3.43) 

Subtituting in (3.40) we find, 



1 X  

2 
12(ln¯y − y)αb − 6αb − 1 = 0. (3.44) 

n 
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P 

1 
Simplifying by letting A = ln¯y − y we have, n 

2 
12Aαb − 6αb − 1 = 0, (3.45) 

which is a quadratic equation whose only pertinent root is, 

p 

1+ 1 + 4 A/3 

αb = . (3.46) 

4A 

This together with equation (3.37) gives the M.L. estimates for the gamma 

distribution. 

3.3.6 Model Evaluation and Selection 

The effectiveness of each model can be evaluated by testing the significance of  

the coefficient of the covariates. 

W ild  Tes t  

b 0 −1 . For non-normal data, we can use the fact that β ∼ N(β,θ(X W X) ) and use 

the z-test to test the significance of the coefficients. 

Specifically, we test, 

H0 : βj = 0 

vrs 

H1 : βj = 06 

using the test statistic; 

βb 



j 

Zj = p (3.47) 

θ(X W X 0 )−1 

which is asymptotically N(0, 1) under H0. 
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Standard  Erro r.  

The estimate βb have the usual properties of the maximum likelihood estimators. 

b −1 −1 0 In particular, β is asymptotically N(β,i ), where i(β) = θ (X  W X). Standard 

errorsfor βj maythereforebecalculatedasasquarerootsofthediagonalelements  

of; 

b 0c  −1 cov(β) = θ(X W X) 

0c  −1 in which (X  W X) is a by-product of the final Iterative Weighted Least 

Squares(IWLS) iteration. If θ is unknown, an estimate is required. 

There are a practical difficulties in estimating the dispersion θ by maximum 

likelihood. Therefore it is usually estimated by method of moments. If β was 

known, an unbiased estimate of θ = α vari (Y )/v(µi) would be, 

X n 2 
1 αi(yi − µi) 

n v(µi) 
i=1 

Allowing for the fact that β must be estimated, we obtain, 

X n 2 
1 αi(yi − µi) 

n − p v(µi) 
i=1 

Model Selection. 

The probability distributions of lognormal and gamma are tested to see which 

one fit the data well. Since the parameters of the distributions are obtained using  

the maximum likelihood, the criteria for choosing one distribution out of the two  

is also based on the values of the estimated maximum likelihood estimates, the  

larger the likelihood, the better the model (Fiete, 2005). 

Checking  Mode l F it  

. It is assumed that no model in the set of models is true; hence selection of the  

better approximating model is the main goal (Anderson and Burnham, 2004). 
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A distribution getting the higher log-likelihood is not sufficient evidence to show 

that it is the right distribution for the data. Therefore an assessment would be 

made on how good this distribution fit the data using the Maximum Likelihood  

Estimate, Q-Q Plots(Quantile Quantile Plot) and the A.I.C (Akaike Information 

Criterion), with a significance level of α = 0.05. 

The Quanti le -Quanti le  (Q-Q) P lo ts  

. The Q-Q plots are graphical techniques used to check whether or not a sampled  

data set could have come from some specific target distribution, that is, to 

determine how well a theoretical distribution models the set of sampled data  

provided. This study will use the Q-Q plots to check for the goodness of fit of the  

distribution that would be chosen for the data. The Q-Q plots is chosen because 

of their multiple functions while analysing data sets and also because of their 

advantages. 

The first Q stands for the quantiles of the sampled data set and the second Q  

stands for the quantile of the distribution being checked whether the data fits. In 

this case, the Q-Q plots is a plot of the target population and quantile against the  

respective sample quantile. If the sample data follows the distribution suspected, 

then the quantiles from the sample data would lie close to where they might be  

expected and the points on the plot would straggle about the lie y = x. 

Theoretically, in order to calculate the quantiles of the distribution, this target 

distribution must first be specified, i.e. its population mean and the standard 

deviation but in practise, the sample estimates are used, therefore sample mean 

and satandard deviation of the distribution were estimated to be same as the  

ones of the sampled data set. 

One of the advantages of the Q-Q plots is that the sample sizes do not need to  

be equal. Another one is that many distributional aspect can be simultaneously 

tested, for example shifts in locations, shifts from scale, changes in symmetry 

and the presence of outliers. This is important because if the data set come from  
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populations whose distributions only differ by shift in location, the points should 

lie along a straight line that is displaced up or down from the 45-degree reference 

line. 

The Akaike  I nf o rmation Cri te ria (A .I .C .)  

The A.I.C. is a type of criteria used in selecting the best model for making  

inference from a sampled group of models. It is an estimation of kullback-leibler 

information or distance and attempts to select a good approximating model for 

inference based on the principle of parsimony (Anderson and Burnham, 2004). 

The criterion was derived based on the concept that truth is very complex and  

that no ”true model” exists. Therefore in A.I.C, the model with the smallest value  

of A.I.C is selected because this model is estimated to be closet to the unknown 

truth among the candidate models considered. 

The A.I.C is a measure of fit that penalizes for the number of parameters p. It is 

defined as, 

AIC = −2ln(L) + 2 p. (3.48) 

where ln(L) is the maximized log-likelihood and p is the number of parameters 

estimated. 

A.I.C rewards goodness of fit (as assessed by the likelihood function), but it also  

includes a penalty that is an increasing function of the number of parameters  

estimated. The penalty discourages overfitting (increasing the number of 

parameters in the model almost always improves the goodness of the fit). 

Suppose that the data is generated from an unknown process f. We consider 

two candidate models to represent f; g1 and g2. If we knew f, then we could 

find the information lost from g1 to represent f by calculating the kullback-leibler 

divergence, DKL(f k g1); similarly the information lost from using g2 to represent 

f could be found by calculating DKL(f k g2). We would then choose the model 

that minimised the information loss. We cannot choose with certainty, because 

we do not know f. Akaike (1974) showed, however, that we can estimate, via 
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A.I.C, how much more (or less) information is lost by g1 than by g2. 
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CHAPTER 4  

RESULTS AND ANALYSES  

4.1 Introduction  

This chapter entails the preliminary analysis as well as the inferential analysis of  

the study. The first part of the analysis investigate whether the distribution of  

our dependent variable (birth weight of a baby) is truely positively skewed and  

the other part of the analysis try to answer our research objectives. 

4.2 Preliminary Results  

The table below gives the variables in the data. 

Table 4.1: Varaibles in the Data 

Variable Description 

MOTAGE Age of the Mother 

MSTAT Marital Status of the Mother 

FBAGE First Birth Age of the Mother  

SWATER Source of Water 

NCHILD Number of Children 

EDULEVEL Educational Level of the Mother 

emstatus Employment Status of the Mother 

GESAGE Gestational Age 

BWEIGHT Weight of the Baby 

MWEIGHT Weight of the Mother 

MHEIGHT Height of the Mother 

SEXB Sex of the Baby 

All the variables in the table above are independent variables except BWEIGHT  

which is the response variable. 
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4.2.1 Summary Statistics  

The modelling process start with the computation of the summary statistics of  

the dependent variable(BWEIGHT).These are presented in the table 4.1 below. 

This summary was necessary in pointing out the salient features of the data.  

From table 4.1 , most of the statistics computed depended on the sample size, N. 

Any data that is skewed to the right(Positively skewed), the mean is the highest 

among the three central tendencies, followed by the median with the mode being  

the smallest. From the table 4.1 below, the mean(2.04972)is the highest among  

mean,median and mode. The figures of mean, median and mode suggested that 

the data(BWEIGHT) is positively skewed. 

Table 4.2: Summary Statistics of Birth Weight of a Baby 

N Mean Median Mode Standard Dev. Skewness Kurtosis 

1007 2.04972 1.9 1.7 0.7968505 1.177815 1.329359 

Intuitively, the skewness is a measure of symmetry. When the mean of a data 

is larger than the median of that same data, then the value of skewness must 

be positive. This positive value for skewness suggest that the data from which 

the value was estimated is a positively skewed data. From the table 4.1, the 

value for skewness is positive indicating that the BWEIGHT data is a positively 

skewed data. The value for kurtosis(1.329359) from the table 4.1 indicates a 

leptokurtic(peaked distribution), since the value is positive. 

In the same concept, the histogram and a boxplot of the BWEIGHT data are  

plotted to identify the shape of the data 

4.2.2 Interpretation of  the Histogram and the Boxplot  

The shape of the histogram indicates that the data is skewed to the right, since  

the bars at the right tail is shorter than those at the left. The histogram in figure  

4.1 also has a normal curve superimposed on it.This curve shows the skewness  

of the BWEIGHT data. From the diagram, it can be seen that the original  

49 



 

Figure 4.1: Histogram and Boxplot of the response variable(BWEIGHT) 

BEWEIGHT data has a heavy right-hand tail. This means that the BWEIGHT  

data had few babies with very high weight while most of the babies were of low 

weight. 

The boxplot on the other hand also depicts a right skewed data. This is because, 

from the figure, half of the observation (red box) fall within 1.5 − 2.5(observation 

between the first and the third quartile). The whisker to the right is far longer 

than the whisker to the left, indicating a right skewed data. 

4.3 Further Results  

4.3.1 Quantile Regression Analysis  

Quantile regression models the relation between a set of independent 

variables(predictors) and a specific percentiles(quantiles) of the dependent 

variable(response variable). It specifies changes in the quantiles of the response. 

th 
For example, the median regression(50 percentile) of birth weight on mothers’ 

characteristicsspecifiesthechangesinthemedianbirthweightasafunctionofthe  

predictors. The effect of mothers’ age on median birth weight can be compared  

to its effect on other quantiles of birth weight. 

In linear regression, the regression coefficient represents change in the response 

variable produced by a one unit increase in the predictor variable associated 
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with that coefficient. The quantile regression parameter estimates the change  

in specified quantile of a response variable produced by one unit change in 

the predictor variable. This allows comparing how some percentiles of the 

birth weight may be more affected by certain mother characteristics than other 

percentiles. This is reflected in the changes in size of the regression coefficient. 

th th th th th 
Coefficient estimates for 5 , 25 , 50 , 75 , 95 quantile regression coefficient 

estimates for birth weight are presented in the following table. 

Table 4.3: Quantile Regression Coefficient Estimate 

Variable 5th 25th 50th 75th 95th 

Intercept 0.47292 0.437 1.19983 1.46745 5.27852 

MOTAGE 0.00057 0.000029 -0.00131 -0.00385 -0.03194 

MSTAT -0.03028 -0.0577 -0.06615 -0.10135 -0.57572 

FBAGE -0.00127 0.000399 -0.00482 -0.00923 -0.04571 

SWATER -0.00164 0.0203 0.07274 0.04723 0.02985 

NCHILD 0.00622 0.00581 -0.00149 -0.01064 -0.00703 

EDULEVEL 0.00362 0.0452 0.01792 0.02840 0.20855 

emstatus -0.02349 0.0967 0.05801 0.10506 0.20964 

GESAGE 0.00151 0.00184 0.00586 0.01787 0.01366 

MWEIGHT -0.00393 -0.00440 0.00314 0.00506 0.01271 

MHEIGHT 0.56053 0.622 0.07938 0.06230 -0.47079 

SEXB 0.02467 0.0813 0.10554 0.13641 -0.02304 

th 
The 5 quantile of birth weight for babies born to mothers who had no 

employment is 0.02349 kilogram(from the table above) lower than babies born 

th th 
to mothers who had employment. However from the 25 to 95 quantile, the 

estimate rose from 9.64e − 02 to 0.20964 respectively. This indicates that babies 

th th 
born to mothers who had employment contribute 9.67e − 02(25 ), 0.05801(50 ), 

th th 
0.10506(75 ) and 0.20964(95 ) kilograms to the weight of the baby. 

The mothers’ age(MOTAGE), from the table 4.3 above indicates from its 

th th 
coefficient that 0.00057(5 ) and 2.94e − 05(25 ) contribute to the weight of a 

th th 
baby. Nevertheless, from the 50 to the 95 quantile, the variable contributed 

less to the weight of the baby. The sex of the baby also had positive contribution 
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th 
to the his/her weight but 0.02304 less at the 95 quantile. Looking at 

the coefficient estimate of the variable MSTAT(marital status), it contributes  

negatively to the weight of the baby throughout the quantiles. 

The educational level(EDULEVEL) is the only variable that contributes 

positively to the weight of the baby throughout the quantiles and marital 

status(MSTAT) is also the only variable that contributed negatively to the baby 

weight throughout the quantiles. 

4.3.2 Model Equations  

QB W E IG HT (0.05|X) = 0.47292+0.00057MONTAGE−0.03028MSTAT −0.00127FBAGE  

−0.00164SWATER+0.00622NC HI LD +0.00362EDULEVEL −0.02349emstatus 

+0.00151GESAGE−0.00393MW EI GHT +0.56053MHE I G HT  +0.02467SEXB  

(4.1) 

The above model measures the relationship that exist between the dependent 

th 
variable(BWEIGHT) and the independent variables at the 5 percentile. 

That is the data points within the first 5 percent of the data set. At 

this stage of the data, variables(MSTAT,FBAGE,SWATER,emstatus  

and MWEIGHT) contribute negatively to the baby weight whiles the 

others contribute positively. This means that when there is one unit 

increment in the predictor variables, the response variable(BEWEIGHT) 

will decrease by 0.03028, 0.00127, 0.00164, 0.02349, 0.00393 for 

MSTAT,FBAGE,SWATER,emstatus and MWEIGHT respectively. 
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QB W E IG HT (0.25|X) = 4.37e−01+2.94e−05MONTAGE −5.77e−02MSTAT 

+3.99e−04FBAGE+2.03e−02SWATER+5.81e−03NC HI LD+4.52e−02EDULEVEL  

+9.67e−02emstatus+1.84e−03GESAGE−4.40e−03MW EI GHT +6.22e−01MHE I G HT  

+8.13e − 02SEXB (4.2) 

This model also represent the relationship between the response and the predictor 

th 
variables at the 25 percentile. That is the first 25 percent of the data set. At this 

point, a unit increase in the predictor variables will cause the response variable  

to decrease by 5.77e − 02, 4.40e − 03 for MSTAT and MWEIGHT respectively. 

However at this percentile only two variables contribute negatively to the weight 

th 
of a baby compared with the 5 percentile. 

QB W E IG HT (0.5|X) = 1.19983 − 0.001315MONTAGE − 0.06615MSTAT 

−0.00482FBAGE+0.07272SWATER−0.00149NC HI LD +0.01792EDULEVEL  

+0.05801emstatus+0.00586GESAGE+0.00314MW EI GHT +0.07938MHE I G HT  

+0.10554SEXB (4.3) 

At the first 50 percent of the data, the relation above(4.3) represent the 

relationship between the response variable and covariates. Four predictor 

variables(MOTAGE,MSTAT,FBAGE and NCHILD) decrease the response 

variable with a unit increase in the predictors. 
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QB W E IG HT (0.75|X) = 1.46745 − 0.00385MONTAGE − 0.10135MSTAT 

−0.00923FBAGE+0.04723SWATER−0.01064NC HI LD +0.02840EDULEVEL  

+0.10506emstatus+0.01787GESAGE+0.00506MW EI GHT +0.06230MHE I G HT  

+0.13641SEXB (4.4) 

The model above(4.4) also measures the relationship of the covariates and the  

th 
response variable at the 75 percentile. Here the variables that decreased the 

th 
response variable with a unit increase in the predictors at the 50 percentile, 

th 
also decrease the response variable at the 75 percentile. 

QB W E IG HT (0.95|X) = 1.46745 − 0.00385MONTAGE − 0.10135MSTAT 

−0.00923FBAGE+0.04723SWATER−0.01064NC HI LD +0.02840EDULEVEL  

+0.10506emstatus+0.01787GESAGE+0.00506MW EI GHT +0.06230MHE I G HT  

+0.13641SEXB (4.5) 

This model represent the relationship of the covariates and the response variable  

th 
at the 95 percentile. 

4.3.3 Maximum Likelihood Estimates  

Given any model, there exist a great deal of theories for making estimates 

of the model parameters based on the empirical data. In our case the birth 

weight(BWEIGHT) data was used to compute the maximum likelihood estimates  

of gamma and the lognormal distributions. The first step in fitting a model to  

BWEIGHT data is finding the parameter estimates of the particular statistical  

distribution. When the parameters of any distribution have been obtained using  

the BWEIGHT data , then literally, the statistical distribution has been fitted  
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to the BWEIGHT data. With regards to this work, table  4.4 below gives the 

parameters of the two distributions having been fitted to the  BWEIGHT data. 

The µ was taken to be the value of the rate parameter and  ζ was taken to 

be the shape parameter value. The 4.4 table also shows the confidence interval 

within which the parameters lie at 5 percent level of significance. The parameters  

obtained were then used in the estimation of the log-likelihoods of the two 

distributions. 

Table 4.4: Table 4.4 Estimation Results 

Distribution Log-Likelihood AIC µ ζ Parameter Conf. Int. 

Gamma -1080.491 3.4656 3.6778 7.5387 2.05 ≤ µ ≤ 4.23 

Lognormal -1060.953 2.3919 0.6499 0.3623 0.13 ≤ µ ≤ 1.14 

4.3.4 The Log-Likelihoods  

The log-likelihood theory provides rigorous and omnibus inference methods if the  

model is given, that is, after the parameters of a distribution have been obtained. 

the log-likelihoods form the basis of the selection of the distribution that fits  

the data. I t was the first tool used in the primary stage. Table 4.4 shows the 

computed log-likelihoods. R console was used to obtain the values. From the 

tabulated statistics, the lognormal distribution, with the log-likelihood value of 

−1060.953 has the higher log-likelihood value among the two distributions; hence  

the lognormal distribution was the better fit than the gamma distribution. With 

this, the lognormal distribution was selected as the statistical distribution that 

gave a relatively good fit for the BWEIGHT data as compared to the gamma  

distribution. 

4.3.5 Goodness of Fit Test 

This section is interested in the post Model selection fit to affirm the selected 

model. The central problem in analysis is which model to use for making 

inferences fro the data. The lognormal distribution emerged as having the higher 

55 



log-likelihood value than the gamma distribution but that could not have meant 

that it was a better statistical distribution to model the BWEIGHT data. With  

this argument, it was necessary to carry out a goodness of fit test in order to  

select the better statistical distribution that best fits the data. In this study, 

the goodness of fit test was done graphically and mathematically to affirm our 

decision. This called for plotting the Q-Q plots and computation of the Akaike’s 

Information Criterion(AIC). Since it was necessary to ascertain how well the  

distribution fits the data, the AIC was estimated as presented in the table 4.4 

above. Graphically the goodness of fit was established using the Q-Q plots of the 

two distributions as fitted on the BWEIGHT data.  

Quanti le -Quanti le (Q-Q) P lo t  

The Q-Q plots for each of the two distributions were constructed using R console, 

andtheselectionwasbasedonacriticallookatthedatapointsandtheline  y = x. 
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Figure 4.2: Q-Q plot for Gamma Distribution 

The plot(fig:4.2) above shows the Q-Q plot of the gamma distribution. Looking 

at the data points and the line y = x, it is clear that the distribution is not a bad 

fit to the data. I t is getting to the upper tail o f the diagram that the points are  

a little bit away from the the line. 
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Figure 4.3: Q-Q plot for Lognormal Distribution 

The plot(fig:4.3) above depicts the Q-Q plot of the lognormal distribution. The 

plot also shows that the line y = x passes through the data points except getting 

to the upper tail of the diagram, where some points are below the the line. 

The two plots almost look the same especially getting to the upper tail of the  

diagram, but at the middle the line  y = x passes through the data points well 

for lognormal distribution than the gamma ditribution.  This affirms that the  

lognormal distribution fits the data better than the gamma distribution. 

Density Curves  

The figure below, fig(4.4), shows the density curve of the gamma distribution and  

fig(4.5) shows that of lognormal distribution.The curve for lognormal stretches to  

capture the mode of the distribution while that of gamma does not. 
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Figure 4.4: Probability Density Curve of Gamma Distribution 

Figure 4.5: Probability Density Curve of Lognormal Distribution 
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4.3.6 The Akaike,s Information Cr iter ion Interpretation  

The criterion was derived based on the concept that truth is very complex and  

that no "true model" exists for any sampled data set. Therefore given the two 

statistical distributions, it was possible to estimate which distribution was close  

to the unknown true model. 

The formulae for AIC was cited in chapter 3, AIC is used in selecting the model 

for making inferences for the BWEIGHT data. In this study was computed 

by STATA software and the results are tabulated in the table(4.4). In AIC, 

one should select the model with the smallest value of AIC.From table(4.4) the  

AIC value for lognormal is  2.3919 and that of the gamma is  3.4656. It was 

therefore concluded that the lognormal distribution was a better fit than the  

gamma distribution for the BWEIGHT data since it had the smaller value of  

AIC. That is, the lognormal distribution was estimated to be the closet to the  

unknown true distribution. 

4.3.7 Gamma and Lognormal Regression Model 

Table 4.5: Gamma and Lognormal Model Coefficient 

Model Lognormal Gamma 

Intercept 0.2466 0.4410 

MWEIGHT 0.0005 0.0010 

MOTAGE -0.0009 -0.0010 

FBAGE -0.0027 -0.0050 

SWATER 0.0111 0.0110 

NCHILD -0.0013 -0.0020 

EDULEVEL 0.0160 0.0180 

SEXB 0.0418 0.0390 

emstatus 0.0311 0.0330 

MSTAT -0.0401 -.00460 

GESAGE 0.0042 0.005 

MHEIGHT 0.1469 0.0710 
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The table(4.5) above is the coefficient of the regressors in gamma and lognormal 

model. Looking critically at the coefficient of each variable, it is evident that the 

models are almost the same. Nevertheless, the lognormal looks better than the  

gamma. 

4.3.8 Comparing Predictions  

Themainobjectiveofthestudyistoknowthebestprocedurethatactual lyworks,  

not just one that has nice theory. On this data set, we can get predicted values  

for the quantiles of birth weight from quantile regression, gamma and lognormal 

model, and compare them to the actual weights. These are predicted values from  

the full model. 

Table 4.6: Actual Versus Predicted 

Quantile Quantile Predict Lognormal Predict Gamma Predict Actual 

5th 1.32 1.28 1.24 1.30 

25th 1.87 1.85 1.82 1.90 

50th 2.41 2.34 2.33 2.40 

75th 3.19 3.12 3.05 3.20 

95th 4.13 4.01 3.98 4.10 

The table(4.6) above represent the actual values of the birht weight against 

the predicted values. The quantile regression from the table has the best 

prediction. The lognormal and gamma predicted values look close, but the 

lognormal is slightly better than the gamma. We therefore conclude that the 

quantile regression is best regression analysis for our BWEGHT data. On the 

other hand, although lognormal and gamma models are among the most popular 

models used in the analysis of positively skewed data, the lognormal is better 

than the gamma with respect to our data. 
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CHAPTER 5  

CONCLUSION  

5.1 Introduction  

This chapter entails the various conclusions drawn from the analysis in chapter 

four with regards to the various regression models. Recommendations about the  

whole study has also been summarized in this chapter. 

5.2 Summary of Results  

The focus of this study was to find the relationship that exist between 

the covariates and the response variable and come up with one statistical 

distribution(between lognormal and gamma) for the birth weight data and to test 

how well this statistical distribution fits the birth weight so that this distribution 

can be used for modeling the birth weight. In a very important sense, the study 

was not concern with the steps of modeling the data; instead, the study tries to  

model the information in the data to fit a particular distribution.  

Therefore, an attempt was made to establish an appropriate statistical 

distributionthatbestfitsthebirthweightdatausingnumericalcomputationsand  

graphical implications using R software. From the analysis carried out coupled 

with the results displayed in table 4.4 it is revealed that the birth weight data for 

KATH can best be modeled using the log-normal distribution. 

According to table 4.4, the log-normal distribution has the higher log-likelihood 

value of -1060.953, which implies that between lognormal and gamma statistical 

distributions, it stands a better chance in providing a good fit for the birth weight 

data. In figure 4.4 and 4.5 the P.d.f of the two distributions have been plotted  
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in comparison with the plot of the birth weight data.  This figures illustrate 

that the log-normal distribution’s shape matches the shape of the birth weight 

indicating that it can actually be used to model the birth weight data.  To test 

whether the log-normal distribution provides a good fit to the birth weight data, 

the A.I.C is computed in the third column of table 4.4. With regard to the A.I.C,  

the lognormal distribution has the least A.I.C value of 2.3919 indicating that it 

provides a good fit for the birth weight data. 

Q-Q plots for each of the two statistical distributions was plotted on figure 4.2 to  

figure 4.3 to graphically re-affirm the goodness of fit test computed by the A.I.C. 

Figure 4.3 shows that the Q-Q plot of the log-normal distribution provides better 

fit to the birth weight data as most points plot on the reference line and only a 

few points plot deviate from the line y = x. 

Finally, table 4.6 shows the predicted values against its corresponding actual 

observations with the quantile, lognormal and gamma models. It was clear that 

the quantile regression gives the best predicted values, but lognormal was also  

better than gamma predicted values. 

5.3 Conclusions 

After carrying out each step in the regression modelling processes with diligence  

and accuracy, the study clearly indicates that the Lognormal distribution would  

provide a better fit to the BWEIGHT data than the Gamma distribution.  The 

quantile regression also provided the stochastic relationship that exist between 

the covariates and the response variables at each quantile(percentile) and the  

best predicted values among the regression used in our study. Therefore if any 

researcher wants to model the birth weight of a child, the appropriate statistical 

distribution to use (between gamma and lognormal) to yield a reliable birth  

weight forcasts would be the lognrmal distribution. 

Having tested the goodness of fit of the lognormal distribution both graphically 

using the Q-Q plots and mathematically using the A.I.C value, it is evident 
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that the steps followed in the modeling process is capable of yielding reliable  

results that can be used to make inferences useful for decision making in the  

general positively skewed data. This study has shown that the assumptions made  

before the analysis of birth weight data may greatly affect the final results as the 

assumptions made led to the choice a family of distribution consisting of the  

log-normal and gamma. Of which the log-normal distribution was proved to be 

capable of providing a good fit for the birth weight. From the modeling carried 

out using the R console, one can conclude that more right hand tailed statistical  

distributions would have been included in the study so as to increase the sample  

distributions used in the study for accuracy of findings. However the results of 

this study are dependent on a number of factors outside the modeling process.  

This means that the reseachers have to acknowledge these factors before using 

the results of this study in making future inferences. These factors are the factor 

that account for the birth weight of a child, that is, the independent variables  

and the scope of the data. 

The future forecast of the birth weight data may change if some of the factors  

talked about changes in future. Despite the dependence of the results of this  

study, the analysis has yielded results which can be used to amend the problems  

faced by the hospitals and the pregnant women. In conclusion, the modeling 

process is an important step before any decision can be made with regard to  

future policies in the area that generate positively skewed data(that is , health, 

insurance, economics, education etc), therefore more effort must be dedicated to 

ensure that the process adopted yields accurate and reliable forecast. 

5.4 Recommendations  

For further studies, the following directions may be considered: 

Include other relevant variables which are not considered in the study such as  

parental care of mothers during pregnancy and other nutritional intakes. Possible  

interaction effects among covariates of birth weight may also be taken into 
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consideration. Moreover, exploration of other model selection procedures (aside  

from stepwise selection) may help in understanding the relationships between 

variables considered. 

Use a data set with larger sample size, especially at the extreme quantiles to allow 

stability of results. It is highly encouraged to use panel data to possibly control  

for some exogenous maternal characteristics (i.e. genetics, pregnancy history, 

etc.). 

Do parallel studies for both the 2014 and the upcoming 2015 Birth 

Weight Records to compare results and look at the effectiveness of certain 

government policies regarding the improvement of maternal health through time. 

Explore other statistical information from the results obtained from quantile  

regression,lognormal and gamma regression which are currently being studied  

in a wide variety of literature. 

Thisinformationmaypertainnotonlytothe truedistributionofbirthweight(e .g.  

scale shift and skewness shift) but also to the relationships among its covariates  

(e.g. R-squared). 
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