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Abstract

We investigate solutions to the Inverse Eigenvalue Problem (IEP) of certain singular Hermi-

tian matrices. Based on a solvability lemma, we propose an algorithm to reconstruct such

matrices from their eigenvalues. That is, we develop algorithms and prove that they solve

𝑛×𝑛, singular Hermitian matrices of 𝑟𝑎𝑛𝑘𝑟. In the case of 𝑛×𝑛 matrix, the number of in-

dependent matrix elements would reduce to the extent that there would be an isomorphism

between the elements and the nonzero eigenvalues. We initiate a differential geometry and

numerical analytic interpretation of the Inverse Eigenvalue problem for Hermitian matri-

ces using fibre bundle with structure group 𝑂(𝑛). In particular, Newton type algorithm is

developed to construct non singular symmetric matrices using certain singular symmetric

matrices as the initial matrices for the iteration.
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Introduction

Background: Inverse problems are encountered in several branches of Mathematics, and

they have important real-world applications in engineering and the sciences. The direct

Eigenvalue Problem in the domain of matrix algebra, may be stated as follows: Given a

𝑛 × 𝑛 matrix 𝐴 a complex number 𝜆 is called an eigenvalue of the matrix if there exists a

vector 𝑥 ̸= 0 such that 𝐴 = 𝜆𝑥. On the other hand, a vector 𝑥 ̸= 0 that satisfies 𝐴𝑥 = 𝜆𝑥

for an admissible 𝜆 (eigenvalue) is called an eigenvector of 𝐴 belonging to 𝜆. Thus, when

the matrix 𝐴 is given, we can find an eigenvalue and then the associated eigenvectors. In

other words, when the matrix 𝐴 and 𝜆 are given, we can use the equation 𝐴𝑥 = 𝜆𝑥 to find

the associated eigenvector. It is clear, therefore, that the number 𝜆 becomes an eigenvalue

of the square matrix 𝐴 if and only if it is a root of the characteristic polynomial and satisfies

the equation 𝑑𝑒𝑡(𝐴− 𝜆𝐼) = 0.

From the view point of applications, given a system (represented by a matrix), we

can determine its spectrum (represented by the set of eigenvalues of the matrix). However,

it is not far fetched to appreciate the fact that many such real life problems also demand

that the inverse problem be solved:i.e. given a particular spectrum (eigenvalues) what is the

corresponding system (matrix)? ( ’Can one hear the shape of a drum?’ Mac Kack, 1966.)

A subset of the set of Hermitian matrices will be our main focus in this study since, being

endowed with real eigenvalues, it is, naturally, one of the most important for applications

and also among the simplest to deal with.

As mentioned above, the inverse eigenvalue problem (IEP) is concerned with the

reconstruction of a physical system from prescribed spectral data. The spectral data may

consist of the complete or only partial information of eigenvalues or eigenvectors. To make

the problem tractable, the main objective of an inverse eigenvalue problem reduces to the

construction of a physical system that maintains a certain specific structure as well as that

of the given spectral property. IEP’s arise in a remarkable variety of applications which

1



would be discussed in Chapter 2. Even though the setup of an inverse eigenvalue problem

seems relatively easy, the solution is non trivial. The tools usually employed to solve such a

problem are quite sophisticated, including techniques from orthogonal polynomials, degree

theory and optimization.

In dealing with the 𝐼𝐸𝑃 , we shall be concerned with two main issues, namely, the

theory of solvability and the practice of computability. In the theory of solvability, we

shall determine a necessary and or sufficient conditions under which the IEP for singular

Hermitian matrices has a solution. Related to the solvability is the issue of uniqueness of a

solution. Our main concern associated with computability, on the other hand is to develop

the procedure by which, knowing a priori that the given spectral data are feasible, we can

construct a matrix in a numerically stable fashion. In fact, several authors including (Chu,

2005, Boley and Golub, 1987 ) have actively used different methods to solve 𝐼𝐸𝑃 of non

singular symmetric matrices (which will be discussed in Chapter 2) and our focus will

rather be on 𝐼𝐸𝑃 of some singular Hermitian matrices. Also most of the previous work on

the 𝐼𝐸𝑃 treated tridiagonal matrices. In this thesis, we concentrate on the 𝐼𝐸𝑃 of certain

entry-wise non vanishing singular Hermitian matrices, which to our knowledge has not yet

been considered.

The problem we investigate in this thesis may be stated as follows: We seek a sys-

tematic way to solve the IEP in the special case of certain Singular Hermitian Matrices of

𝑟𝑎𝑛𝑘𝑟. We define a map between a space of eigenvalues and the space of the corresponding

singular Hermitian matrices. Specifically, the consideration of singular matrices is in aid

of the need to reduce the number of independent matrix elements from 𝑛(𝑛+1)
2

to the extent

that there is an invertible (isomorphism) map between such matrix elements and the non

zero eigenvalues.

Our main objective of the study are as follows: We develop a method, in the context

of consistency conditions for solving the direct eigenvalue problem for singular matrices

in which eigenvectors are obtained first before their associated non zero eigenvalues. We

formulate and solve, based on the above method, the IEP for full small-sized singular Her-
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mitian matrices. That is, we propose and test an algorithm to reconstruct such matrices

from their eigenvalues. Finally, we initiate a differential geometric and, hence, via New-

ton’s Method, a numerical analytic interpretation of the problem using a fibre bundle with

structural group 𝑂(𝑛) (group of orthogonal matrices).

This thesis is organized as follows: In Chapter 1, we give preliminary definitions

and basic theorems that would be used in our work. We discuss some of the various forms

of the inverse eigenvalue problems so far solved in chapter 2. We review the IEP for the

quadratic pencil, the IEP for both the Jacobi and periodic Jacobi matrices and the PIEP.

In Chapter 3, we discuss the theorems on the solvability of different types of IEPs and

computability of the different methods that we discuss about the IEP. The main results are

presented in Chapters 4 and 5. In Chapter 4 we discuss the inverse eigenvalue problem

of singular Hermitian matrices. We develop algorithm that generates singular Hermitian

matrices when their eigenvalues are given. We devote Chapter 5 for the numerical inter-

pretation of the IEP using fibre bundles with structural group 𝑂(𝑛). Given the eigenvalues

and a singular symmetric matrix as an initial matrix for direct iteration, we generate a non

singular symmetric matrix.
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CHAPTER 1

Preliminary Definitions and Basic Theorems

1.1 Introduction

We give the notations, definitions of terms and basic results that will appear through-

out this thesis in this chapter. We thus present the basic theory of the eigenvalue problem

that will be fundamental to our discussions and analyses.

Definition:(Matrix)

Complex matrices are members of 𝐶𝑚×𝑛. Thus a vector space over the field of

complex numbers. Notation: We represent matrices by upper case letters 𝐴,𝐵,𝐶, sub-

scripted lower case letters 𝑎𝑖𝑗 represent elements of a matrix in 𝑖𝑡ℎ row and 𝑗𝑡ℎ column.

We also write 𝐴 = [𝑎𝑖𝑗], 𝑖 = 1, ....,𝑚 𝑗 = 1, ...., 𝑛 so that 𝐴 ∈ 𝐶𝑚×𝑛 and 𝑎𝑖𝑗 ∈ 𝐶. Types

of Matrices: See for example (Strang, 1980 and Kreyszig, 1999)

1. Column vector; 𝑥 ∈ 𝐶𝑚×1

2. Row vector: 𝑦 ∈ 𝐶1×𝑚

3. Square matrix; 𝐴 ∈ 𝐶𝑛×𝑛

4. Hermitian matrix: 𝐴 = 𝐴𝑇

5. Anti Hermitian matrix 𝐴 = −𝐴𝑇

Operations on Matrices: As a vector space 𝐶𝑚×𝑛, the following operations hold

naturally:

1. Addition; 𝐴 + 𝐵 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗].

2. Scalar multiplication; 𝑘𝐴 = [𝑘𝑎𝑖𝑗], 𝑘 ∈ 𝐶.
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Remark:(Properties of Hermitian and Anti-Hermitian matrices)

See for example (Strang, 1980, Leon, 1990 Kreyszig, 1999, and Hardy, 2005)

1. The diagonal elements of a Hermitian matrix are real. Indeed, 𝑎𝑖𝑗 = �̄�𝑗𝑖 → 𝑎 = �̄�𝑖𝑖,

where (𝑎𝑖𝑖) = 1
2
(𝑎𝑖𝑖 − �̄�𝑖𝑖) = 0.

2. The diagonal elements of an anti-Hermitian are pure imaginary. Indeed, 𝑎𝑖𝑗 =

−�̄�𝑗𝑖 ⇒ 𝑎𝑖𝑖 = −�̄�𝑖𝑖⇒ 𝑅𝑒(𝑎𝑖𝑖) = 1
2
(𝑎𝑖𝑖 + �̄�𝑖𝑖) = 0.

3. It is also clear that any square matrix can be decomposed as the sum of Hermitian

and anti-Hermitian matrices. Indeed, 𝐴 = 1
2
(𝐴 + 𝐴𝑇 ) + 1

2
(𝐴− 𝐴𝑇 ) where 𝐴− 𝐴𝑇

is Hermitian and 𝐴− 𝐴𝑇 is anti-Hermitian.

4. 𝐶𝑚×𝑛 may constitute a ring provided multiplication (inner product) is defined as

follows: 𝐶 = 𝐴𝐵 ⇔ 𝐷𝑖𝑗 = Σ𝑝
𝑖=1𝑎𝑖𝑘𝑏𝑘𝑗 where 𝐴 ∈ 𝐶𝑚×𝑝, 𝐵 ∈ 𝐶𝑝×𝑛 and 𝐷 ∈

𝐶𝑚×𝑛

Invertibility:

If for 𝐴 ∈ 𝐶𝑛×𝑛 there exists 𝐴−1 ∈ 𝐶𝑛×𝑛 such that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛 where

𝐼 = [𝛿𝑖𝑗] and

𝛿𝑖𝑗 =

⎧⎨⎩ 1, 𝑖 = 𝑗

0, 𝑖 ̸= 𝑗

then 𝐴 is said to be invertible and 𝐼 is said to be a unit matrix. 𝛿𝑖𝑗 is known as the Kronecker

delta.

The Matrix Equation:

𝐴𝑥 = 𝐻 is known as a non homogeneous system of equations if 𝐻 ̸= 0 and is a

homogeneous system of equations if 𝐻 = 0.

Remark:

𝐴 is invertible if and only if 𝑋 = 𝐴−1𝐻 is a unique solution. Thus if 𝐴 is non

invertible for (singular) then 𝑋 is not unique. In particular, for a homogeneous system

𝑋 = 0 is a unique solution if and only if 𝐴 is invertible. Therefore 𝑋 = 0 is non trivial if

and only if 𝐴 is singular.
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Determinant:

The determinant function for an 𝑛× 𝑛 square matrix is given by;

|𝐴| = Σ𝜋∈𝑆𝑛𝑠𝑔𝑛𝜋𝑎1𝜋1𝑎2𝜋2.......𝑎𝑛𝜋𝑛 where 𝑠𝑔𝑛{𝜋} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝜋 is even

0, otherwise

−1, 𝜋 is odd

.

𝐴 is non singular if and only if |𝐴| ≠ 0

Eigenvalue Problem:

Consider 𝐵𝑋 = 0.....⋆ where 𝑋 ̸= 0 is required. Then from the foregoing 𝐵 is

singular, |𝐵| = 0. Now suppose 𝐵 = 𝐴−𝜆𝐼, then the problem ⋆ is said to be an eigenvalue

problem, where admissible values of 𝜆 are referred to as eigenvalues and the corresponding

solutions 𝑋𝜆 are called eigenvectors belonging to the eigenvalues.

1.2 Nonsingular and singular matrices

An 𝑛 × 𝑛 (square) matrix 𝐴 is called invertible or nonsingular or non-degenerate,

if there exists an 𝑛 × 𝑛 matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛 where 𝐼𝑛 denotes the 𝑛 × 𝑛

identity matrix and the multiplication used is the ordinary matrix multiplication. If this is

the case, then the matrix 𝐵 is uniquely determined by 𝐴 and is called the inverse of 𝐴,

denoted by 𝐴−1.

Theorem 1.2.1. Inverses are unique. That is if 𝐴 has inverses 𝐵 and 𝐶, then 𝐵 = 𝐶

Proof. Let 𝐴𝐵 = 𝐶𝐴 = 𝐼 . But 𝐵 = 𝐼𝐵 = (𝐶𝐴)𝐵 = 𝐶(𝐴𝐵) = 𝐶𝐼 = 𝐶

Also if 𝐴 is non-singular, then 𝐴−1 is also non-singular and (𝐴−1)−1 = 𝐴.

Theorem 1.2.2. Let 𝐴 be an 𝑛× 𝑛 matrix with the property that the homogeneous system

𝐴𝑋 = 0 has only the trivial solution 𝑋 = 0. Then 𝐴 is non-singular. Conversely, if 𝐴 is

singular, then the homogeneous system 𝐴𝑋 = 0 has a non-trivial solution.

Proof. : If 𝐴 is 𝑛× 𝑛 and the homogeneous system 𝐴𝑋 = 0 has only the trivial solution,

then it follows that the reduced row-echelon form 𝐵 of 𝐴 cannot have zero rows and must

therefore be 𝐼𝑛. Hence 𝐴 is non-singular.
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The system of equation 𝐴𝑥 = 0 has a trivial solution if 𝑥 = 0 is the solution in that

case 𝐴 is non singular and 𝐴−1 exists. The system 𝐴𝑥 = 0 has a nontrivial solution if 𝐴 is

singular and 𝑥 ̸= 0.

Non-square matrices (𝑚× 𝑛 matrices for 𝑚± 𝑛) do not have an inverse. However,

in some cases such a matrix may have a left inverse or right inverse. If 𝐴 is 𝑚× 𝑛 and the

rank is equal to 𝑛, then 𝐴 has a left inverse:an 𝑛×𝑚 matrix 𝐵 such that 𝐵𝐴 = 𝐼 . If 𝐴 has

rank 𝑚, then it has a right inverse an 𝑛×𝑚 matrix 𝐵 such that 𝐴𝐵 = 𝐼 .

Definition: (Eigenvalues and Eigenvectors) Let 𝐴 be any square matrix, real or complex.

A number 𝜆 is an eigenvalue of 𝐴 if the equation 𝐴𝑥 = 𝜆𝑥 is true for some nonzero vector

𝑥, where 𝜆 is real or complex number. The vector 𝑥 is an eigenvector associated with the

eigenvalue 𝜆. The eigenvector may also be complex.

Consider the matrix

𝐴 =

⎛⎜⎜⎜⎝
1 2 1

6 −1 0

−1 −2 −1

⎞⎟⎟⎟⎠
We see that:

𝐴𝑥1 = 0𝑥1, 𝐴𝑥2 = −4𝑥2, and 𝐴𝑥3 = 3𝑥3 where

𝑥1 =

⎛⎜⎜⎜⎝
1

6

−13

⎞⎟⎟⎟⎠, 𝑥2 =

⎛⎜⎜⎜⎝
−1

2

1

⎞⎟⎟⎟⎠ and 𝑥3 =

⎛⎜⎜⎜⎝
2

3

−2

⎞⎟⎟⎟⎠.

Hence 𝑥1 is an eigenvector of 𝐴 associated to the eigenvalue 0 and 𝑥2 is an eigen-

vector of 𝐴 associated to the eigenvalue −4 while 𝑥3 is an eigenvector of 𝐴 associated

to the eigenvalue 3. The eigenspace corresponding to one eigenvalue of a given matrix is

generated by the set of all eigenvectors of a matrix with that eigenvalue.
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1.2.1 Characteristic Polynomial

When a transformation is represented by a square matrix 𝐴, the eigenvalue equation

can be arranged as 𝐴𝑥 − 𝜆𝐼𝑥 = 0. If there exists an inverse (𝐴 − 𝜆𝐼)−1 then both sides

can be left multiplied by the inverse to obtained the trivial solution 𝑥 = 0. Thus we require

there to be no inverse by assuming from linear algebra that the determinant equals zero.

𝑑𝑒𝑡(𝐴− 𝜆𝐼) = 0. The determinant requirement is called the Characteristic Equation of 𝐴

and the left-hand side is called the Characteristic Polynomial. When expanded, this gives

a polynomial equation for 𝜆. This definition 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 of an eigenvalue does not

directly involve the corresponding eigenvector. The degree of the polynomial is the order

of the matrix. This implies that an 𝑛× 𝑛 matrix has 𝑛 eigenvalues, counting multiplicities.

1.3 Eigenvalue Problem for Hermitian Matrices

:

Theorem 1.3.1. The eigenvalue of a Hermitian matrices are real.

Proof. Let 𝐴 be a square matrix, then we have (𝐴− 𝐴𝑇 )𝑋 = 0→ 𝜆− �̄� = 0

We state the following theorem without proof.

Theorem 1.3.2. Eigenvalues belonging to distinct eigenvalues of Hermitian matrices are

orthogonal.

Definition:(Normal Matrices)

A matrix 𝐴 is said to be normal if 𝐴𝐴𝑇 = 𝐴𝑇𝐴. A matrix which has a complete

orthonormal set of eigenvectors is normal.

Theorem 1.3.3. A matrix 𝐴 is normal if and only if 𝐴 possesses a complete orthonormal

set of eigenvectors.

See Leon, (1994) for the proof.
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1.4 Hermitian matrices

A Hermitian matrix (or self adjoint matrix) is a square matrix with complex entries

which is equal to its own conjugate transpose-that is, the element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ

column is equal to the complex conjugate of the element in the 𝑗𝑡ℎ row and 𝑖𝑡ℎ column,

for all indexes 𝑖 and 𝑗, 𝑎𝑖,𝑗 = 𝑎𝑗𝑖 or 𝐴 = 𝐴𝑡

Hermitian matrices can be considered as the complex extension of real symmetric

matrices. A matrix that has only real entries is Hermitian if and only if it is symmetric

matrix, i.e., if it is symmetric with respect to the main diagonal. Thus a real, symmetric

matrix is simply a special case of a Hermitian matrix. Every Hermitian matrix is normal,

and the finite-dimensional spectral theorem applies. This says that any Hermitian matrix

can be diagonalized by a unitary matrix, and that the resulting diagonal matrix has only

real entries. This means that all eigenvalues of a Hermitian matrix are real, and, moreover,

eigenvectors with distinct eigenvalues are orthogonal. It can be easily proved that the sum

of any two Hermitian matrices is Hermitian, and the inverse of an invertible Hermitian

matrix is Hermitian as well. However, the product of two Hermitian matrices 𝐴 and 𝐵

will only be Hermitian if they commute, i.e., if 𝐴𝐵 = 𝐵𝐴. Thus 𝐴 is Hermitian if 𝐴𝑛 is

Hermitian for any integer 𝑛. The matrices 𝐴 and 𝐵 below are examples of complex and

real Hermitian matrices.

𝐴 =

⎛⎜⎜⎜⎝
1 1 + 𝑖 2𝑖

1− 𝑖 5 −3

−2𝑖 −3 2

⎞⎟⎟⎟⎠

𝐵 =

⎛⎜⎜⎜⎝
2 3 4

3 2 6

4 6 5

⎞⎟⎟⎟⎠
1.4.1 Eigendecomposition

Theorem: (Spectral Theorem)

9



The spectral theorem for matrices can be stated as follows: Let 𝐴 be an 𝑛 × 𝑛

matrix. Let 𝑞1, ..., 𝑞𝑘 be an eigenvector basis, i.e. an index set of 𝑘 linearly independent

eigenvectors, where 𝑘 is the dimension of the space spanned by the eigenvectors of 𝐴. If

𝑘 = 𝑛, then 𝐴 can be written as

𝐴 = 𝑄 ∧𝑄−1 (1.1)

where 𝑄 is the square 𝑛× 𝑛 matrix whose 𝑖𝑡ℎ column is the basis eigenvector 𝑞𝑖 of 𝐴 and

∧ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.

∧𝑖𝑖 = 𝜆𝑖.

Definition:

Let 𝐴 and 𝐵 be two 𝑛× 𝑛 matrices. We say that 𝐴 is similar to 𝐵 if there exists an

invertible matrix 𝑃 such that 𝐴 = 𝑃𝐵𝑃−1.

Theorem 1.4.1. If 𝐴 and 𝐵 are similar 𝑛×𝑛 matrices, then they have the same eigenvalues.

Proof. : See for example, (Larson and Falvo, 2010)

Because 𝐴 and 𝐵 are similar, there exists an invertible matrix 𝑃 such that 𝐵 =

𝑃−1𝐴𝑃 . By the properties of determinant, it follows that

|𝜆𝐼 −𝐵| = |𝜆𝐼 − 𝑃−1𝐴𝑃 |

= |𝑃−1𝜆𝐼𝑃 − 𝑃−1𝐴𝑃 | (1.2)

= |𝑃−1(𝜆𝐼 − 𝐴)𝑃 | (1.3)

= |𝑃−1||𝜆𝐼 − 𝐴||𝑃 | (1.4)

= |𝑃−1||𝑃 ||𝜆𝐼 − 𝐴| (1.5)

= |𝑃−1𝑃 ||𝜆𝐼 − 𝐴| (1.6)

= |𝜆𝐼 − 𝐴| (1.7)

Theorem 1.4.2. An 𝑛 × 𝑛 matrix 𝐴 is diagonalizable if and only if it has 𝑛 linearly inde-

pendent eigenvectors.
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Proof. :See for example, (Larson et al, 2010)

First, assume 𝐴 is diagonalizable. Then there exists an invertible matrix 𝑃 such that

𝑃−1𝐴𝑃 = 𝐷 is diagonal. Letting the main entries of 𝐷 be 𝜆1, 𝜆2....., 𝜆𝑛 and the column

vectors of 𝑃 be 𝑝1, 𝑝2, ...., 𝑝𝑛 produces

𝑃𝐷 = [𝑝1
...𝑝2

... · · · ...𝑝𝑛]

⎡⎢⎢⎢⎢⎢⎢⎣
𝜆1 0 · · · 0

0 𝜆2 · · · 0
...

... · · · ...

0 0 · · · 𝜆𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ (1.8)

= [𝜆1𝑝1
...𝜆2𝑝2

... · · · ...𝜆𝑛𝑝𝑛] (1.9)

Because 𝑃−1𝐴𝑃 = 𝐷,𝐴𝑃 = 𝑃𝐷, it implies

[𝐴𝑝1
...𝐴𝑝2

... · · · ...𝐴𝑝𝑛] = [𝜆1𝑝1
...𝜆2𝑝2

... · · · ...𝜆𝑛𝑝𝑛]

In other words, 𝐴𝑝𝑖 = 𝜆𝑖𝑝𝑖 for each column vector 𝑝𝑖, 𝑖 = 1, 2, ..., 𝑛. This means that

the column vectors 𝑝𝑖 of 𝑃 are eigenvectors of 𝐴. Moreover, because 𝑃 is invertible,

its column vectors are linearly independent. So, 𝐴 has 𝑛 linearly independent eigenvec-

tors. Conversely, assume 𝐴 has 𝑛 linearly independent eigenvectors 𝑝1, 𝑝2, · · ·, 𝑝𝑛 with

corresponding eigenvalues 𝜆1, 𝜆2, · · ·𝜆𝑛. Let 𝑃 be the matrix whose columns are these 𝑛

eigenvectors. That is, 𝑃 = [𝑝1
...𝑝2

... · · · ...𝑝𝑛]. Because each 𝑝𝑖 is an eigenvector of 𝐴, we have

𝐴𝑝𝑖 = 𝜆𝑖𝑝𝑖 and

𝐴𝑃 = 𝐴[𝑝1
...𝑝2

... · · · ...𝑝𝑛] = [𝜆1𝑝1
...𝜆2𝑝2

... · · · ...𝜆𝑛𝑝𝑛]
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. The right-hand matrix in this equation can be written as the matrix product below.

𝐴𝑃 = [𝑝1
...𝑝2

... · · · ...𝑝𝑛]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝜆1 0 · · · 0

0 𝜆2 · · · 0
...

... · · · ...

0 0 · ·· 𝜆𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.10)

= 𝑃𝐷

Finally, because the vectors 𝑝1, 𝑝2 ···, 𝑝𝑛 are linearly independent, 𝑃 is invertible and we can

write the equation 𝐴𝑃 = 𝑃𝐷 as 𝑃−1𝐴𝑃 = 𝐷, which means that 𝐴 is diagonalizable.

Theorem 1.4.3. For a symmetric matrix, the matrix 𝑋 such that 𝑋Λ𝑋−1 is orthogonal.

Proof. 𝐴 is real and 𝐴 = 𝐴𝑇 ,then its eigenvalue decomposition is 𝐴 = 𝑋 ∧ 𝑋𝑇 , with

𝑋𝑇𝑋 = 𝐼 = 𝑋𝑋𝑇 . On the other hand if 𝐴 is complex and 𝐴 = 𝐴𝑇 , then its eigenvalue

decomposition is

𝐴 = 𝑋 ∧ �̄�𝑇 ,

with ∧ real and �̄�𝑇𝑋 = 𝐼 = 𝑋�̄�𝑇 .

1.5 Consistency Conditions for Systems of Linear Equations

We discuss the consistency conditions which can be used to solve systems of linear

equations of the form 𝐴𝑥 = ℎ

Definition:

A system of linear equations is a collection of linear equations involving the same

12



set of variables. A general system of 𝑚 equations with 𝑛 unknowns can be written as:

𝑎11𝑥1 + 𝑎12𝑥2 + · · ·+ 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎12𝑥1 + 𝑎22𝑥2 + · · ·+ 𝑎2𝑛𝑥𝑛 = 𝑏2
...

...
...

...
...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + · · ·+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

In the above equations, 𝑥1, 𝑥2, · · ·, 𝑥𝑛 are the unknown variables and 𝑎11, 𝑎12 · ··, 𝑎𝑚𝑛 are the

coefficients of the system and 𝑏1, 𝑏2 · ··, 𝑏𝑚𝑛 are constants. A solution of the above system

of equations is an assignment of values to the variables 𝑥1, 𝑥2, · · ·𝑥𝑛 such that each of the

equations is satisfied. The set of all possible solutions is called the solution set.

A linear system may behave in any one of three possible ways:

1. The system has a single unique solution.

2. The system has infinitely many solutions.

3. The system has no solution.

1. Usually, a system with fewer equations than unknowns has infinitely many solutions or

sometimes unique sparse solutions. Such a system is also known as an under-determined

system.

2. A system with the same number of equations and unknowns usually has a single

unique solution.

3. Lastly, a system with more equations than unknowns usually has no solution.

Such a system is also known as an over-determined system.
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1.5.1 Linear Equation-Conditions for Consistency

The system of equations:

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0

1. is consistent with unique solution, if 𝑎1/𝑎2 ̸= 𝑏1/𝑏2. That is , the lines formed by these

equations intersect and hence not parallel.

2. consistent with infinitely many solutions, if 𝑎1/𝑎2 = 𝑏1/𝑏2 = 𝑐1/𝑐2. Thus, the

lines represented by these equations coincide. For a two variable system of equations to

be consistent, the lines formed by the equations have to meet at some point. But for three

variable system of equations to be consistent, the planes formed by the equations must meet

two conditions;

a. All three planes must be parallel.

b. Any two of the planes have to be parallel and the third must meet one of the

planes at some point and other at another point. Three variable system of equations with

no solution arise when the planes formed by the equations in the system neither meet at a

point nor are parallel.

3. inconsistent, if 𝑎1/𝑎2 = 𝑏1/𝑏2 ̸= 𝑐1/𝑐2. Here the lines represented by the

equations are parallel and non-coincident.

1.6 The Trace of a matrix

The trace of an 𝑛 × 𝑛 square matrix 𝐴 is defined to be the sum of the elements of

the main diagonal (the diagonal from the upper left to the lower right) of 𝐴 = [𝑎𝑖𝑗] i.e

𝑡𝑟(𝐴) = 𝑎11 + 𝑎22..... + 𝑎𝑛𝑛 =
𝑛∑︁

𝑖=1

𝑎𝑖𝑖

Proposition 1.6.1. The trace of an 𝑛× 𝑛 square matrix 𝐴 is the sum of the eigenvalues.
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Proof. :

Let’s consider the matrix

𝐴 = 𝑃−1𝐷𝑃

where 𝐷 is a diagonal matrix where the diagonal elements are the eigenvalues of 𝐴 and 𝑃

an invertible matrix whose column vectors are the eigenvectors of the matrix 𝐴. Then since

taking the trace as multiplicative and 𝑇𝑟(𝑃−1) = 1
𝑡𝑟𝑃

We have 𝑇𝑟(𝐴) = 𝑇𝑟(𝑃−1𝐷𝑃 ) =

𝑇𝑟(𝑃−1) · 𝑇𝑟(𝐷) · 𝑇𝑟(𝑃 ) = 𝑇𝑟(𝐷).

Thus 𝑇𝑟(𝐷) is the sum of the eigenvalues by definition of 𝐷.

We state the following proposition without proof;

Proposition 1.6.2. : If a square matrix 𝐴 has one row (column) as a scalar multiple of

another row (column), then 𝐴 is a singular matrix and 𝑑𝑒𝑡𝐴 = 0

1.7 Lie Group

Definition: Manifold. (Worst, 2007)

An n-dimensional manifold is a space that is equipped with a set of local Cartesian

coordinates so that points in a neighbourhood of any fixed point can be parameterized by

n-tuples of real numbers. In other words a smooth manifold is a topological space such

that in a neighbourhood of each point on it there are smooth coordinates. An example of a

manifold is a surface in space.

Definition: (Conlon, 2001)

Let 𝑋 be a set. A topology 𝑆 for 𝑋 is a collection of subsets of 𝑋 satisfying:

1. ∅ and 𝑋 are in 𝑆.

2. The intersection of two members of 𝑆 is in 𝑆.

3. The union of any member of members of 𝑆 is in 𝑆.
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The set 𝑋 with 𝑆 is called a topological space. The members of 𝑈 ∈ 𝑆 are called the open

sets.

A Lie group is a nonempty subset 𝐺 which satisfies the following conditions:

𝑎. 𝐺 is a group.

𝑏. 𝐺 is a smooth manifold. This means that 𝐺 is a differentiable manifold.

𝑐. 𝐺 is a topological group. In particular, the group operation of multiplication,

𝜇 : 𝐺×𝐺 −→ 𝐺

𝜇 : (𝑔ℎ) −→ 𝑔ℎ and the inverse map

𝑖 : 𝐺 −→ 𝐺

𝑖 : 𝑔 −→ 𝑔−1 are differentiable maps (smooth).

In particular, the 2 × 2 real invertible matrices form a group under multiplication,

denoted by 𝐺𝐿2(𝑅):

𝐺𝐿2(𝑅) = {𝐴 =

⎛⎝ 𝑎 𝑏

𝑐 𝑑

⎞⎠ |𝑑𝑒𝑡𝐴 = 𝑎𝑑− 𝑐𝑏 ̸= 0}

is a Lie group. Similarly, the rotation matrices form a group of 𝐺𝐿2(𝑅), denoted by

𝑆𝑂2(𝑅).

𝑆𝑂2(𝑅) = {

⎛⎝ 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

⎞⎠ |𝜃 ∈ 𝑅/2𝜋𝑍}

is also a Lie Group.

Other Lie groups are 𝐺𝐿(𝑛,𝐶),𝑆𝐿(𝑛,𝑅) and 𝑈(𝑛). The orthogonal group 𝑂𝑛(𝑅),

consisting of all 𝑛 × 𝑛 orthogonal matrices with real entries of dimension 𝑛(𝑛−1)
2

is a Lie

group.

When we consider linear Lie groups, the tangent space to 𝐺 at the identity, 𝑔 =

𝑇1𝐺, plays an important role. In particular, this vector space is equipped with a multiplica-

tion operation, the Lie bracket, that makes 𝑔 into a Lie algebra. Definition: (Lie Algebra.

Rossman, 2002)

A Lie algebra 𝑔 is a vector space over a field 𝐹 together with a binary operation
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[·, ·]

[·, ·] : 𝑔 × 𝑔 −→ 𝑔

which is called a Lie bracket satisfies the following axioms:

𝑎. Bilinearity:

[𝑎𝑥+ 𝑏𝑦, 𝑧] = 𝑎[𝑥, 𝑧] + 𝑏[𝑦, 𝑧][𝑧, 𝑎𝑥+ 𝑏𝑦] = 𝑎[𝑧, 𝑥] + 𝑏[𝑧, 𝑦] for all scalars 𝑎, 𝑏 ∈ 𝐹

and all elements 𝑥, 𝑦, 𝑧 ∈ 𝑔.

𝑏. Alternating on 𝑔.

[𝑥, 𝑥] = 0 for all 𝑥 ∈ 𝑔.

The Jacobi identity:

[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑔.

We have to note that the bi-linearity and the alternating properties of 𝑔 imply anti-

commutativity, that is, [𝑥, 𝑦] = −[𝑦, 𝑥] for all 𝑥, 𝑦 ∈ 𝑔, while anti-commutativity only

implies the alternating property if the field’s characteristic is not 2.

Every Lie group has an associated Lie algebra whose underlying vector space is

a tangent space of 𝐺 at the identity element where 𝐺 is a Lie group, which completely

captures the local structure of the group. We can informally say that the elements of the

Lie algebra are elements of the group that are ”infinitesimally” close to the identity, and

the Lie bracket is something to do with the commutator of two such infinitesimal elements.

We give two examples of Lie bracket.

1. The Lie algebra of a vector space 𝑅𝑛 is just 𝑅𝑛 with the Lie bracket given by

[𝑋, 𝑌 ] = 0. The Lie algebra is abelian. In general, the Lie bracket of a connected Lie

group is always 0 if and only if the Lie group is abelian.

2. The Lie algebra of the general linear group 𝐺𝐿𝑛(𝑅) of invertible matrices is the

vector space 𝑀𝑛(𝑅) of square matrices with Lie bracket given by [𝑋, 𝑌 ] = 𝑋𝑌 − 𝑌 𝑋 .

Proposition 1.7.1. For any 𝑋, 𝑌 ∈ 𝑔 there is a unique element [𝑋, 𝑌 ] ∈ 𝑔 so that

[𝑋, 𝑌 ]𝑙 = 𝑋𝑙𝑌𝑙 − 𝑌𝑙𝑋𝑙. (1.11)
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The operation (𝑋, 𝑌 ) −→ [𝑋, 𝑌 ] makes 𝑔 into a Lie algebra.

Proof. : See for example, (Rossmann, 2002)

As operators, 𝑋𝑙 = 𝑈 , and 𝑌𝑙 = 𝑉 commute with right translation 𝑎𝑟, hence so does

[𝑈, 𝑉 ] = 𝑈𝑉 − 𝑉 𝑈 , and we may define [𝑋, 𝑌 ] by the requirement that [𝑋, 𝑌 ]𝑙 = [𝑋𝑙, 𝑌𝑙].

The Jacobi Identity is a formal consequence of [𝑈, 𝑉 ] = 𝑈𝑉 − 𝑉 𝑈 .

Definitions:(Conlon, 2001, Lang, 1972 and Worst, 2007).

Tangent Space: The tangent space at a point on a surface is just the set of vectors

tangent to the surface at that point.

Tangent Bundle: The tangent bundle is the union of all the tangent spaces.

The Lie algebra 𝑠𝑜(𝑛,𝑅) of the Lie group 𝑆𝑂(𝑛,𝑅) consists of real skew symmet-

ric 𝑛 × 𝑛 matrices, is the corresponding set of infinitesimal rotations. The geometric link

between the Lie group and its corresponding Lie algebra is the fact that the Lie algebra

is viewed as the tangent space to the Lie group at the identity. The exponential map is a

map from the tangent space to the Lie group, i,e., 𝑒𝑥𝑝 : 𝑠𝑜(𝑛,𝑅) −→ 𝑆𝑂(𝑛,𝑅). The

Lie algebra is considered as a linearization of the Lie group at the identity element and

the exponential map provides ”delinearization,” that is it takes us back to the Lie group.

This shows that there is an automorphism between the Lie algebra and the Lie group (Jean

Ballier, 2011).

Given an 𝑛 × 𝑛 (real or complex) matrix 𝐴 = (𝑎𝑖𝑗), we define the exponential 𝑒𝐴

of 𝐴 as the sum of the series

𝑒𝐴 = 𝐼𝑛 + Σ𝑝≥1
𝐴𝑝

𝑝!
= Σ𝑝≥0

𝐴𝑝

𝑝!
,

letting 𝐴0 = 𝐼𝑛. This problem is well-defined as shown in the lemma below. (Jean Ballier,

2011)

Lemma 1.7.1. :

Let 𝐴 = (𝑎𝑖𝑗) be a real or complex 𝑛 × 𝑛 matrix, and let 𝜇 = 𝑚𝑎𝑥{|𝑎𝑖𝑗|, |1 ≤

𝑖; 𝑗 ≤ 𝑛}.
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If 𝐴𝑝 = (𝑎
(𝑝)
𝑖𝑗 ), then |𝑎(𝑝)𝑖𝑗 | ≤ (𝑛𝜇)𝑝 for all 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. As a consequence, the

𝑛2 series

Σ𝑝≥0
𝑎(𝑝)

𝑝!

converges absolutely, and the matrix

𝑒𝐴 = Σ𝑝≥0
𝐴𝑝

𝑝!

is a well-defined matrix.

Proof. :

We prove by induction on 𝑝. For 𝑝 = 0, we have 𝐴0 = 𝐼𝑛, (𝑛𝜇)0 = 1, and the

lemma is obvious. Assume that

|𝑎(𝑝)𝑖𝑗 | ≤ (𝑛𝜇)𝑝

for all 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then we have

|𝑎(𝑝+1)
𝑖𝑗 | =| Σ𝑛

𝑘=1𝑎
(𝑝)
𝑖𝑘 𝑎𝑘𝑗 |≤ Σ𝑛

𝑘=1|𝑎
(𝑝)
𝑖𝑘 ||𝑎𝑘𝑗| ≤ 𝜇Σ𝑛

𝑘=1|𝑎
(𝑝)
𝑖𝑘 | ≤ 𝑛𝜇(𝑛𝜇)𝑝 = (𝑛𝜇)𝑝+1,

for all 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For every pair (𝑖, 𝑗) such that 1 ≤ 𝑖, 𝑗 ≤ 𝑛, since

|𝑎(𝑝)𝑖𝑗 | ≤ (𝑛𝜇)𝑝,

the series

Σ𝑝≥0

|𝑎(𝑝)𝑖𝑗 |
𝑝!

is bounded by the convergent series

𝑒𝑛𝜇 = Σ𝑝≥0
(𝑛𝜇)𝑝

𝑝!
,
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and thus it is absolutely convergent. This shows that

𝑒𝐴 = Σ
𝐴𝑘

𝑘!

is well defined.

We illustrate the definition of the exponential of a matrix with an example of the

exponential of the real skew symmetric matrix

𝐴 =

⎛⎝ 0 −𝜃

𝜃 0

⎞⎠
We need to find an inductive formula expressing the powers 𝐴𝑛. Let us observe that⎛⎝ 0 −𝜃

𝜃 0

⎞⎠ = 𝜃

⎛⎝ 0 −1

1 0

⎞⎠
and ⎛⎝ 0 −𝜃

𝜃 0

⎞⎠2

= −𝜃2
⎛⎝ 1 0

0 1

⎞⎠ .

Then, letting

𝐽 =

⎛⎝ 0 −1

1 0

⎞⎠ ,

we have

𝐴4𝑛 = 𝜃4𝑛𝐼2, (1.12)

𝐴4𝑛+1 = 𝜃4𝑛+1𝐽, (1.13)

𝐴4𝑛+2 = −𝜃4𝑛+2𝐼2, (1.14)

𝐴4𝑛+3 = −𝜃4𝑛+3𝐽, (1.15)
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and so

𝑒𝐴 = 𝐼2 +
𝜃

1!
𝐽 − 𝜃2

2!
𝐼2 −

𝜃3

3!
𝐽 +

𝜃4

4!
𝐼2 +

𝜃5

5!
𝐽...

Rearranging the order of terms, we have

𝑒𝐴 = (1− 𝜃2

2!
+

𝜃4

4!
− 𝜃6

6!
+ ...)𝐼2 + (

𝜃

1!
− 𝜃3

3!
+

𝜃5

5!
− 𝜃7

7!
+ ...)𝐽.

We recognize the power series for 𝑐𝑜𝑠𝜃 and 𝑠𝑖𝑛𝜃, and thus 𝑒𝐴 = 𝑐𝑜𝑠𝜃𝐼2 + 𝑠𝑖𝑛𝜃𝐽 , that is

𝑒𝐴 =

⎛⎝ 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

⎞⎠
where 𝜃 is any real number in [0, 2𝜋). Thus, 𝑒𝐴 is a rotation matrix. This is a general fact.

If 𝐴 is a skew symmetric matrix, then 𝑒𝐴 is an orthogonal matrix of determinant +1. The

theorem below confirms that there is an onto mapping between the Lie algebra (𝑠𝑜(𝑛))

and the Lie group (𝑆𝑂(𝑛)). The Lie algebra is a linearization of the Lie group while the

exponential map takes it back to the Lie group (delinearization).

Theorem 1.7.1. The exponential map

𝑒𝑥𝑝 : 𝑠0(𝑛) −→ 𝑆𝑂(𝑛)

is well-defined and surjective.

Proof. : (See for example, Gallier, 2011)

First, we need to prove that if 𝐴 is a skew symmetric matrix, then 𝑒𝐴 is a rotation

matrix. For this check that

(𝑒𝐴)𝑡 = 𝑒𝐴
𝑡

.

Then, since 𝐴𝑡 = −𝐴, we get

(𝑒𝐴)𝑡 = 𝑒𝐴
𝑡

= 𝑒−𝐴,
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and so

(𝑒𝐴)𝑡𝑒𝐴 = 𝑒−𝐴𝑒𝐴 = 𝑒−𝐴+𝐴 = 𝑒0𝑛 = 𝐼𝑛,

and similarly,

𝑒𝐴(𝑒𝐴)𝑡 = 𝐼𝑛,

showing that 𝑒𝐴 is orthogonal. Also

𝑑𝑒𝑡(𝑒𝐴) = 𝑒𝑡𝑟(𝐴),

and since 𝐴 is real skew symmetric, its diagonal entries are 0, i.e.,𝑡𝑟(𝐴) = 0, and so

𝑑𝑒𝑡(𝑒𝐴) = ±1

We omit the proof for surjectivity.

When 𝑛 = 3 (and 𝐴 is skew symmetric), we can work out for an explicit formula

for 𝑒𝐴. For any real skew symmetric matrix 𝐴, we have,

𝐴 =

⎛⎜⎜⎜⎝
0 −𝑐 𝑏

𝑐 0 −𝑎

−𝑏 𝑎 0

⎞⎟⎟⎟⎠
and letting 𝜃 =

√
𝑎2 + 𝑏2 + 𝑐2 and

𝐵 =

⎛⎜⎜⎜⎝
𝑎2 𝑎𝑏 𝑎𝑐

𝑎𝑏 𝑏2 𝑏𝑐

𝑎𝑐 𝑏𝑐 𝑐2

⎞⎟⎟⎟⎠ ,

we have the following result known as 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒𝑠′𝑠𝑓𝑜𝑟𝑚𝑢𝑙𝑎(1840), (J. Gallier, 2011).

Lemma 1.7.2. The exponential map 𝑒𝑥𝑝 : 𝑠0(3) −→ 𝑆𝑂(3) is given by

𝑒𝐴 = 𝑐𝑜𝑠𝜃𝐼3 +
𝑠𝑖𝑛𝜃

𝜃
𝐴 +

(1− 𝑐𝑜𝑠𝜃)

𝜃2
𝐵,
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or, equivalently, by

𝑒𝐴 = 𝐼3 +
𝑠𝑖𝑛𝜃

𝜃
𝐴 +

(1− 𝑐𝑜𝑠𝜃)

𝜃2
𝐴2

if 𝜃 ̸= 0, with 𝑒03 = 𝐼3.

Proof. (sketch):

First, we prove that 𝐴2 = −𝜃2𝐼 + 𝐵,

𝐴𝐵 = 𝐵𝐴 = 0.

From the above, we deduce that 𝐴3 = −𝜃2𝐴,

and for any 𝑘 ≥ 0,

𝐴4𝑘+1 = 𝜃4𝑘𝐴,

𝐴4𝑘+2 = 𝜃4𝑘𝐴2,

𝐴4𝑘+3 = −𝜃4𝑘+2𝐴,

𝐴4𝑘+4 = −𝜃4𝑘+2𝐴2.

Finally, we prove the desired result by writing the powers for 𝑒𝐴 and regrouping

terms so that the power series 𝑐𝑜𝑠 and 𝑠𝑖𝑛 show up.

We state the following lemma without proof. The lemma shows that 𝐴 is a rotation

matrix while the matrix 𝐵 is a skew matrix obtained from 𝐴.

Lemma 1.7.3. For every symmetric matrix 𝐵, the matrix 𝑒𝐵 is symmetric positive definite.

For every symmetric positive definite matrix 𝐴, there is a unique symmetric matrix 𝐵 such

that 𝐴 = 𝑒𝐵.

1.8 Fibre Bundle

A fibre bundle consists of data (𝐸,𝐵, 𝜋, 𝐹 ), where 𝐸,𝐵,and 𝐹 are topological

spaces and 𝜋 : 𝐸 −→ 𝐵 is a continuous map such that every point of 𝐵 has an open

neighbourhood 𝑈 such that there is a homeomorphism 𝜙 : 𝜋−1𝑈 −→ 𝑈 × 𝐹 ,such that

𝜋−1𝑈 ,𝑈 × 𝐹 and 𝑈 commute. The space 𝐵 is called the base space of the bundle, 𝐸 the

total space, and 𝐹 the fibre. We assume that the base space 𝐵 is connected (Gallier, 2011).
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A smooth fibre bundle is a fibre bundle in the category of smooth manifolds. That

is 𝐸,𝐵, and 𝐹 are required to be smooth manifolds and all the functions above are required

to be smooth maps.

Definition (Tangent Bundle):

The tangent bundle of a differentiable manifold 𝑀 is the disjoint union of the tan-

gent spaces of 𝑀 . These tangent spaces are given by the relation;

𝑇𝑀 = ⨿𝑥∈𝑀𝑇𝑥𝑀 = ∪𝑥∈𝑀𝑥× 𝑇𝑥𝑀 (1.16)

where 𝑇𝑥𝑀 denotes the tangent space to 𝑀 at a point 𝑥. An element of 𝑇𝑀 can therefore

be thought as a pair (𝑥, 𝑣), where 𝑥 is a point in 𝑀 and 𝑣 is a tangent to 𝑀 at 𝑥. There is a

natural projection Π : 𝑇𝑀 −→𝑀 defined by Π(𝑥, 𝑣) = 𝑥.

This projection maps each tangent space 𝑇𝑥𝑀 to the single point 𝑥. The tangent

bundle to a manifold is the prototypical example of a vector bundle (a fibre bundle whose

fibres are vector spaces). The main role of the tangent bundle is to provide a domain

and range for the derivative of a smooth function. That is, if we consider the function;

𝑓 : 𝑀 −→ 𝑁 , as a smooth function, where 𝑀 and 𝑁 are smooth manifolds, its derivative

is a smooth function.

𝐷𝑓 : 𝑇𝑀 −→ 𝑇𝑁

These tangent spaces under consideration are lie groups which are differentiable

manifolds with the property that the operations are compatible with the smooth structure.

We have similarity transformation that transform symmetric matrices into other symmetric

matrices(including diagonal ones) involves orthogonal matrices. These orthogonal matrices

constitute lie group which forms a differentiable manifold. The tangent or derivative of

which are anti-symmetric matrices which give rise to the associated lie algebra.
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1.9 Parameterized Inverse Eigenvalue Problem

When we consider the unknown entries of a matrix to be constructed as parameters,

we can say that an IEP is generally a parameter estimation problem. By ”parameterized”

𝐼𝐸𝑃 , we mean the ways by which these parameters regulate the problem or how the struc-

tural constraint is regulated by a set of parameters. Although every IEP can be regarded

as parameter estimation, the emphasis in this work is on the meticulous way that these

parameters regulate them.

A generic 𝑃𝐼𝐸𝑃 can be described as: Given a family of matrices 𝐴(𝑐) ∈𝑀 where

𝑀 is a family of symmetric matrices with 𝑐 = [𝑐1, 𝑐2, ....., 𝑐𝑚] ∈ 𝐹𝑚 and the scalars

𝜆1, 𝜆2, ...,𝑛 ⊂ 𝐹 , we can find a parameter 𝑐 such that,

𝜃(𝐴(𝑐)) = 𝜆1, 𝜆2, ..., 𝜆𝑛.

We have to note that the number 𝑚, of parameters in 𝑐, are different from 𝑛, where

𝑛 determines the order of the matrix. In the PIEP, the family of matrices in the affine

subspace is given by;

𝐴(𝑐) = 𝐴0 +
𝑛∑︁

𝑖=1

𝑐1𝐴𝑖, (1.17)

where 𝐴𝑖 ∈ 𝑆𝑛, see for example, (Moody and Golub, 2001).

1.9.1 Symmetric Nonnegative Inverse Eigenvalue Problem

A real 𝑛 × 𝑛 matrix is said to be nonnegative if each of the entries is nonnegative.

A related problem is the symmetric nonnegative inverse eigenvalue problem (𝑆𝑁𝐼𝐸𝑃 ).

Given a list of some scalars 𝜆𝑖, 𝑖 = 1, 2, .., 𝑛, we can randomly construct an 𝑛 × 𝑛 sym-

metric matrices by these eigenvalues. For the solvability to Inverse real symmetric, see for

example( G. Sun, 1986) An algorithm is developed for the construction of such matrices

using eigenvalue-eigenvector decomposition as follows: Given a list of real eigenvalues

𝜆 = 𝜆1, 𝜆1, ..., 𝜆1, let 𝑀 denote the set of all real symmetric matrices with real eigenvalues

𝜆 such that

𝑀 = 𝐴 ∈ 𝑆𝑛|𝐴 = 𝑉 ∧ 𝑉 𝑇 , (1.18)
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where 𝑉 is an orthogonal 𝑛 × 𝑛 matrix and ∧ a diagonal matrix. We choose the set of

symmetric nonnegative matrices denoted by 𝑁 . We can construct the matrix 𝑋 where

𝑋 ∈ 𝑀 ∩ 𝑁 by an iterative process. The matrix 𝑋 is chosen such that it is the best

approximant in 𝑁 to 𝐴, (Orsi and Yang, 2006).

1.10 Power Method (Power Iteration)

The power iteration is an eigenvalue algorithm: given a square matrix 𝐴, the algo-

rithm will produce a number 𝜆 (the eigenvalue) and a nonzero vector 𝑥 (the eigenvector)

such that 𝐴𝑥 = 𝜆𝑥. The power iteration algorithm starts with a vector 𝑥0, which may be an

approximation to the dominant eigenvector or a random vector. The method is implemented

by the iteration,

𝑥𝑘+1 =
𝐴𝑥𝑘

|𝐴𝑥𝑘|
.

At every iteration, the vector 𝑥𝑘 is multiplied by the matrix 𝐴 and normalized. Thus,

the chosen initial vector 𝑥 is repeatedly multiplied by the matrix 𝐴, iteratively calculating

𝐴𝑥,𝐴2𝑥, ......, 𝐴𝑛𝑥.

The matrix 𝐴 and the vector 𝑥 generate the corresponding eigenvalues. We have

𝜆 =
𝐴𝑥 · 𝑥
𝑥 · 𝑥

which is called the Rayleigh quotient. With the initial vector 𝑥0, we compute 𝐴𝑥0 and scale

it such that 𝑥1 = 𝐴𝑥0

|𝐴𝑥0| . We compute 𝐴𝑥1·𝑥1

𝑥1·𝑥1
which gives 𝜆1. The process continues until it

converges to the dominant eigenvalue.

1.10.1 Lanczos Method

During the process of applying the power method for finding the eigenvalues of a

square matrix 𝐴, in order to obtain the ultimate eigenvector 𝐴𝑛−1𝑣, we also obtain series of

vectors 𝐴𝑖𝑣, 𝑖 = 0, 1, 2, .., 𝑛− 2 which were eventually discarded. The Lanczos iteration is
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therefore used to save this information and use the Gram-Schmidt process to reorthogonal-

ize them into basis that span Krylov subspace corresponding to the matrix 𝐴 (Golub and

Van Loan, 1996).

Definition(Krylov subspace): The 𝑜𝑟𝑑𝑒𝑟−𝑟 Krylov subspace is generated by an 𝑛×

𝑛 matrix 𝐴 and a vector 𝑏 of dimension 𝑛 is the linear subspace spanned by the images of 𝑏

under 𝑟 powers of 𝐴. (Starting from𝐴0 = 𝐼), that is 𝐾𝑟(𝐴, 𝑏) = 𝑠𝑝𝑎𝑛(𝑏, 𝐴𝑏,𝐴2𝑏, ..., 𝐴𝑟−1𝑏).
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CHAPTER 2

The Inverse Eigenvalue Problem

In this chapter, we discuss some of the various forms of the inverse eigenvalue problems so

far solved. As explained in chapter one, the IEP is concerned with the reconstruction of a

matrix from prescribed spectral data.The spectral data involved may consist of the complete

or only partial information of the eigenvalues or eigenvectors. Our main objective of the

IEP is to construct a matrix that maintains a certain specific structure as well as that given

spectral property as stated earlier. Depending on application, inverse eigenvalue problems

may be described in several different forms. Translated into mathematics, it is often neces-

sary in order that the inverse eigenvalue problem be meaningful to restrict the construction

to special classes of matrices, especially to those with specific structures. Our solution to

the IEP therefore satisfies two constrains: the spectral constraint referring to the prescribed

spectral data and the structural constraint referring to the desirable structure. We mention

that the entries of the matrix to be constructed usually represent physical parameters to be

determined. So an IEP can generally be regarded as a parameter estimation problem. Each

inverse eigenvalue problem carries it own characteristics.

We therefore discuss four forms of the inverse problem.

2.1 Inverse Eigenvalue Problem for the Quadratic Pencil

The IEP of the quadratic pencil arises from the active vibration control (𝐴𝑉 𝐶) of

a dynamic system. When the eigenvalues of the system are the same as the external fre-

quencies, there is an oscillations known as resonance. This resonance makes the system

unstable and may cause dangerous vibrations in vibrating structures such as aircrafts and

spacecrafts, buildings and bridges which can cause destruction that may lead to loss of hu-

man lives and properties. For example, the fall of Tacoma bridge in the USA, the collapse
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of Brought-on bridge in England and nobbling of the Millennium bridge over River Thames

in London are believed to have been caused by resonance, (Datta and Sokolov, 2009). Ac-

tive vibration control therefore means that we have to apply a control force in such a way

that a few eigenvalues of the quadratic pencil which correspond to the external frequen-

cies are eliminated from the structure while the remaining ones and their corresponding

eigenvectors are preserved.

While the active vibration control controls the vibration in the structure, the Fi-

nite element model updating (𝐹𝐸𝑀𝑈) updates the finite element model by using the few

eigenvalues and their eigenvectors so that the system always attains its features such as

symmetrical, orthogonal and positive definiteness, (Datta and Sarkissian,1999 and Datta

and Sokolov, 2009). We expect that at any point in time the eigenvectors are orthogonal.

Despite the importance of the 𝐴𝑉 𝐶 and the 𝐹𝐸𝑀𝑈 , they have some limitations. When

the problem is large and sparse, the entire spectrum cannot be computed. Apart from this,

the coefficient matrices of the dynamic system are either diagonal or tridiagonal but in our

case, we are using full singular symmetric matrices.

The quadratic IEP is associated with a quadratic matrix pencil arising in a feed-

back control of a matrix second-order system, (Dong, Lin and Chu, 2009). Consider the

following dynamic system which is associated with the quadratic pencil;

𝑀�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝑓(𝑡) (2.1)

where 𝑀 ,𝐷 and 𝐾 are 𝑛×𝑛 diagonal or tridiagonal nonsingular symmetric matrices; 𝑀 a

positive definite matrix denoted by 𝑀 > 0, and �̈�(𝑡) and �̇�(𝑡) denote second and first order

derivatives respectively of time dependent vector 𝑥(𝑡). In vibration analysis,we consider

the matrices 𝑀 ,𝐾 and 𝐷 as the mass, stiffness and the damping matrices respectively.

When we separate variables, the system gives rise to the quadratic eigenvalue problem for

the pencil below:

𝑝(𝜆) = 𝜆2𝑀 + 𝜆𝐷 + 𝐾 (2.2)
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The characteristic polynomial 𝑑𝑒𝑡𝑃 (𝜆) = 0 of the above pencil has scalars 𝜆 which are the

2𝑛 roots of the polynomial. The above system has 2𝑛 eigenvalues and 2𝑛 corresponding

eigenvectors. When we consider equation (2.1) as a vibrating system, then the eigenvalues

of 𝑝(𝜆) are related to the natural frequencies of the homogeneous system:

𝑀�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝐾𝑥(𝑡) = 0 (2.3)

and the eigenvectors are referred to as the modes of the vibration of the system.

In order to avoid oscillations of the vibratory system modeled by equation (2.1),

we introduce a control force 𝑓 = 𝐵𝑢(𝑡), where 𝐵 is an 𝑛 × 𝑚 matrix and 𝑢(𝑡) is a time

dependent 𝑚× 1 vector to equation (2.1). We choose 𝑢(𝑡) to be;

𝑢(𝑡) = 𝐹 𝑇 �̇�(𝑡) + 𝐺𝑇𝑥(𝑡)

where 𝐹 and 𝐺 are constant matrices. The system (2.1) after substitution becomes;

𝑀�̈�(𝑡) + (𝐷 −𝐵𝐹 𝑇 )�̇�(𝑡) + (𝐾 −𝐵𝐺𝑇 )𝑥(𝑡) = 0 (2.4)

Mathematically, we choose the matrices 𝐹 and 𝐺 such that the eigenvalues of the associated

closed-loop pencil becomes;

𝑝𝑐(𝜆) = 𝜆2𝑀 + 𝜆(𝐷 −𝐵𝐹 𝑇 ) + (𝐾 −𝐵𝐺𝑇 ) (2.5)

can be altered as required in order to combat the effects of resonances or ensure and im-

prove the stability of the system.

We choose a real control matrix 𝐵 of order 𝑛 × 𝑚 (𝑛 < 𝑚), and real feedback

matrices 𝐹 and 𝐺 of order 𝑛 × 𝑚 such that the spectrum of the closed-loop pencil (2.5)

is {𝜇1, 𝜇2, ..., 𝜇𝑝;𝜆𝑝+1, ...., 𝜆2𝑛} and the eigenvector set {𝑦1, ...., 𝑦𝑝;𝑥𝑝+1, ...., 𝑥2𝑛}, where

𝑥𝑝+1, ..., 𝑥2𝑛 are the eigenvectors of (2.2) corresponding to 𝜆𝑝+1, ..., 𝜆2𝑛. Direct Partial

Modal Approach, as the name implies, the system is direct because the solution is obtained
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directly from a second-order setting without resulting to a first-order reformulation. It

is Partial model because only part of the spectral data is needed for the solution. The

solutions are obtained using only those small number of eigenvalues and the corresponding

eigenvectors that are to be assigned and directly in terms of the coefficient matrices 𝑀 , 𝐷

and 𝐾. An algorithm for the Direct Partial Modal Approach which is based on the Single-

Input case or the Multi-Input for the quadratic eigenvalue problem, (Datta and Sarkissian,

1999) is given here. We present the algorithm for the Single-Input case as follows; The

inputs are,

1. The 𝑛× 𝑛 matrices 𝑀 ,𝐾 and 𝐷; 𝑀 = 𝑀𝑇 > 0, 𝐷 = 𝐷𝑇 and 𝐾 = 𝐾𝑇

2. The 𝑛× 1 control (input vector 𝑏)

3. The set {𝜇1, ..., 𝜇𝑝}, closed under complex conjugation.

4. The self-conjugate subset {𝜆1, ..., 𝜆𝑝} of the open-loop spectrum

{𝜆1, ..., 𝜆𝑝;𝜆𝑝+1, ..., 𝜆2𝑛}

and the associated eigenvector set {𝑥1, ..., 𝑥𝑝}.

The feedback vectors 𝑓 and 𝑔 are chosen such that the spectrum of the closed-loop pencil

(2.5) is {𝜇1, ..., 𝜇𝑝;𝜇𝑝+1, ..., 𝜇2𝑛}. We use the following assumptions

𝑖. The quadratic pencil is (partially) controlled with respect to the eigenvalues to be

assigned 𝜇1, ...., 𝜇𝑝.

𝑖𝑖. {𝜆1, ..., 𝜆𝑝} ∩ {𝜆𝑝+1, ..., 𝜆2𝑛} = ∅

Algorithm; Step 1. Form Λ1 = 𝑑𝑖𝑎𝑔(𝜆1..., 𝜆𝑝) and 𝑋1 = (𝑥1, ..., 𝑥𝑝)

Step 2. Solve for 𝑦1...., 𝑦𝑝: (𝜇2
𝑗𝑀 + 𝜇𝑗𝐷 + 𝐾)𝑦𝑗 = 𝑏, 𝑗 = 1, 2, ..., 𝑝

Form 𝑍1 = Λ,
1𝑌

𝑇
1 𝑀𝑋1Λ1 − 𝑌 𝑇

1 𝐾𝑋1

where 𝑌1 = (𝑦1, ..., 𝑦𝑝)

and Λ,
1 = 𝑑𝑖𝑎𝑔(𝜇1, ..., 𝜇𝑝)

Step 3. Solve for 𝛽: 𝑍1𝛽 = (1, 1, ..., 1)𝑇
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Step 4. Form

𝑓 = 𝑀𝑋1Λ1𝛽

𝑔 = −𝐾𝑋1𝛽

The algorithm for the Multi-Input case is similar to the Single-Input case.

The following theorem establishes the fact that the eigenvalues of the close loop

pencil be orthogonal. (Datta and Sokolov,2009)

Theorem 2.1.1. Theorem [Orthogonality of the Eigenvectors of the Quadratic Pencil] Let

𝑃 (𝜆) = 𝜆2𝑀 + 𝜆𝐶 + 𝐾, where 𝑀 = 𝑀𝑇 > 0,𝐶 = 𝐶𝑇 , and 𝐾 = 𝐾𝑇 . Assume that the

eigenvalues 𝜆1, ...., 𝜆2𝑛 are all distinct and different from zero. Let Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆2𝑛)

be the eigenvalue matrix and 𝜑 = (𝜑1, ..., 𝜑2𝑛) be the corresponding matrix eigenvectors.

Then there exist diagonal matrices 𝐷1, 𝐷2 and 𝐷3 such that;

Λ𝜑𝑇𝑀𝜑Λ− 𝜑𝑇𝐾𝜑 = 𝐷1 (2.6)

Λ𝜑𝑇𝐶𝜑Λ + Λ𝜑𝑇𝐾𝜑 + 𝜑𝑇𝐾𝜑Λ = 𝐷2 (2.7)

Λ𝜑𝑇𝑀𝜑 + 𝜑𝑇𝑀𝜑Λ + 𝜑𝑇𝐶𝜑 = 𝐷3 (2.8)

and

𝐷1 = 𝐷3Λ;𝐷2 = −𝐷1Λ;𝐷2 = −𝐷3Λ
2 (2.9)

Furthermore, if {𝜆1, ..., 𝜆𝑘} and {𝜆𝑘+1, ..., 𝜆2𝑛}are disjoint, then

Λ1𝑋
𝑇
1 𝑀𝑋2Λ2 −𝑋1𝐾𝑋2 = 0 (2.10)

where Λ1 = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑘, Λ2 = 𝑑𝑖𝑎𝑔(𝜆𝑘+1, ..., 𝜆2𝑛), 𝑋1 and 𝑋2 are the corresponding

eigenvector matrices.

The proof of the above theorem is treated in the next chapter where the theorems

related to some forms of the inverse eigenvalue problems treated are stated and proved.

The following is the algorithm for the quadratic inverse eigenvalue problem. The
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Inputs are; 𝑀 = 𝑀𝑇 > 0, 𝐾 = 𝐾𝑇 , Σ = 𝑑𝑖𝑎𝑔(𝜇1, ..., 𝜇𝑘), 𝑌1 The following are

the outputs; Updated stiffness matrix 𝐾𝑢 and 𝑌2 such that (𝑌 𝑇𝑀𝑋1)Ψ(𝑌 𝑇𝑀𝑋1)
𝑇 =

𝑌 𝑇𝑀Σ2 + 𝑌 𝑇𝐾𝑌 is satisfied and 𝑌 = 𝑐𝑜𝑙(𝑌1, 𝑌2) is such that 𝑌 𝑇𝑀𝑌 is a diagonal

matrix.

1. Compute 𝑌2 by solving 𝑈𝑇
2 𝑀2𝑌2Σ

2+𝑈𝑇
2 𝐾2𝑌2−𝑈𝑇

2 (𝐾1𝑌1+𝑀2𝑌1Σ
2
1) and form

the matrix

𝑌 =
(︁

(𝑌1𝑌2)
𝑇

)︁
2. Orthogonalize matrix 𝑌 , by computing 𝐿𝐷𝐿 decomposition of 𝑌 𝑇𝑀𝑌 = 𝐿𝐷𝐿𝑇 .

Update the matrix 𝑌 by 𝑌 ←− 𝑌 𝐿−𝑇 .

3. Compute Ψ by solving the following algebraic system of equation;

(𝑌 𝑇𝑀𝑋1)Ψ(𝑌 𝑇𝑀𝑋1)
𝑇 = 𝑌 𝑇𝑀Σ2 + 𝑌 𝑇𝐾𝑌

4. Update the stiffness matrix 𝐾𝑢 = 𝐾 −𝑀𝑋1Ψ𝑋𝑇
1 𝑀

Finally, we present the inverse eigenvalue problem for the symmetric tridiagonal

quadratic pencil with application to damped oscillatory systems, (Yitshak and Elhay, 1996).

The problem is associated with the second-order differential equations of the form:

𝐼
𝑑2

𝑑𝑡2
𝑥 + 𝐶

𝑑

𝑑𝑡
𝑥 + 𝐾𝑥 = 0 (2.11)

where 𝐶 and 𝐾 are n-square tridiagonal symmetric matrices, 𝐼 is an identity matrix, and 𝑥

is an n-vector depending on time 𝑡. This system may be solved by substituting 𝑥 = 𝑣𝑒𝜆𝑡,

where 𝑣 is a constant vector into (2.12), giving

𝑄(𝜆)𝑣 = 0, (2.12)

where

𝑄(𝜆) = 𝜆2𝐼 + 𝜆𝐶 + 𝐾 (2.13)
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The quadratic pencil 𝑄(𝜆) has 2𝑛 eigenvalues 𝜆1, 𝜆2, .., 𝜆2𝑛 which are the roots of

𝑑𝑒𝑡(𝑄(𝜆)) = 0 (2.14)

The problem is that when given two sets of distinct numbers {𝜆𝑘}2𝑛𝑘=1 and {𝜇𝑘}2𝑛−2
𝑘=1 }, we

are to determine tridiagonal symmetric matrices 𝐶 and 𝐾 which are such that the ma-

trix 𝑄(𝜆) = 𝜆2𝐼 + 𝜆𝐶 + 𝐾 satisfies 𝑑𝑒𝑡(𝑄(𝜆)) has zeros {𝜆𝑘}2𝑛𝑘=1 and the matrix �̂�(𝜆),

is obtained by deleting the last row and column of 𝑄(𝜆), such that 𝑑𝑒𝑡(�̂�(𝜆)) has zeros

{𝜇𝑘}2𝑛−2
𝑘=1 . (Yitshak and Sylvan , 1995), for the algorithm for determining the coefficients

{𝛼𝑖, 𝛾𝑖}𝑛𝑖=1and {𝛽𝑖, 𝛿𝑖}𝑛−1
𝑖=1 of the two symmetric tridiagonal matrices 𝐶 and 𝐾.

2.2 Inverse eigenvalue problem for Jacobi matrices

A typical Jacobi matrix is a symmetric tridiagonal matrix. We show the construction

of this type of matrix with two sets of eigenvalues which satisfy an interlacing property,

(Boley and Golub, 1986). We have the eigenvalues of the main matrix given by {𝜆𝑖}𝑛1 and

the eigenvalues of the lower principal sub matrix {𝜇𝑖}𝑛−1
1 . The lower principal sub matrix

has order (𝑛 − 1) × (𝑛 − 1) because it is obtained by deleting the first row and the last

column of the main diagonal matrix. There have been considerable research interest in the

IEP of the Jacobi and Periodic Jacobi matrices. See, for example, Xu, 1993, Ferguson,

1980, Andrea and Berry, 1992, Grey and Wilson and the references collected therein.

The following is one of the methods for constructing symmetric Jacobi matrices.

Given a Jacobi matrix 𝐴 which is a real symmetric tridiagonal matrix of the form:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎1 𝑏1 ... 0

𝑏1 𝑎2 ... 0

0 ... .... 𝑏𝑛−1

0 ... 𝑏𝑛−1 𝑎𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
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with 𝑏𝑖 > 0 . We form arbitrary symmetric matrix 𝐴 =

⎛⎝ 𝑎11 �̂�𝑡

�̂� 𝐾

⎞⎠ whose eigenval-

ues are {𝜆𝑖}𝑛1 and whose lower principal sub matrix 𝐾 has eigenvalues {𝜇𝑖}𝑛−1
1 . These

eigenvalues are distinct and satisfy the following interlacing property 𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+1,

𝑖 = 1, ...., 𝑛− 1. We compute the first row eigenvectors of the matrix 𝐴 using the relation

𝑞1𝑖2 =
Π𝑛−1

𝑗=1 (𝜇𝑖 − 𝜆𝑖)

Π𝑛
𝑗=1,𝑗 ̸=𝑖(𝜆𝑗 − 𝜆𝑖)

.

All the eigenvectors are normalized to have norm 1. 𝑎11 is obtained from the relation Σ𝑛
1𝜆𝑖−

Σ𝑛−1
1 𝜇𝑖. (Er-Xiong,2003) Lanczos algorithm is then applied to construct the tridiagonal

matrix from the arbitrary symmetric tridiagonal matrix 𝐴.

Next we discuss the IEP for the periodic Jacobi matrix. This inverse problem nor-

mally arises in inverse scattering theory problems. The periodic Jacobi matrix is a tridiag-

onal matrix with real entries. The eigenvalues are therefore real and their corresponding

eigenvectors are orthonormal. The eigenvalues of the main matrix and its leading princi-

pal sub matrix eigenvalues satisfy an interlacing property given by 𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+1, ....

𝑖 = 1, ..., 𝑛 − 1. This tridiagonal matrix is constructed with two sets of eigenvalues, the

eigenvalues of the main matrix and the eigenvalues of the leading principal sub matrix and

a set of scalars. The solution of the periodic Jacobi matrix is not unique and the number

of solution is at most 2𝑛−𝑚−1, where 𝑚 is the number of common eigenvalues of the main

matrix and the leading principal sub matrix. Throughout our discussions, we denote 𝐽𝑛 and

𝐽𝑛−1 by the main matrix and the leading principal sub matrix respectively (Xu and Jiang,

2006).
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A periodic Jacobi matrix is any real, symmetric matrix of the form:

𝐽𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑏1 ... 𝑏𝑛

𝑏1 𝑎2 𝑏2.. 0

0 𝑏2 𝑎3..... 0

0 .... 𝑎𝑛−1 𝑏𝑛−1

𝑏𝑛 0...0 𝑏𝑛−1 𝑎𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We form the following matrices from the matrix above;:

𝐽+ =

⎛⎝ 𝑎1 (𝑏+)𝑡

𝑏+ 𝐾

⎞⎠
and

𝐽− =

⎛⎝ 𝑎1 (𝑏−)𝑡

𝑏−1 𝐾

⎞⎠ ,

where 𝐾 is a Jacobi matrix given by 𝐽𝑛−1.

We denote the eigenvalues of 𝐽+ by 𝜆+
1 < 𝜆+

2 < ... < 𝜆+
𝑛 ,

those of 𝐽− by 𝜆−
1 < 𝜆−

2 < .... < 𝜆−
𝑛 which will be represented by the single scalar quantity

𝛽 = 𝑏1𝑏2....𝑏𝑛 and those of 𝐾 by 𝜇1 < 𝜇2 < .... < 𝜇𝑛−1. The following theorems are

necessary for the construction of the periodic Jacobi matrix.

We have seen that the eigenvalues of 𝐽𝑛 and 𝐽𝑛−1 satisfy an interlacing property

which shows that they have common eigenvalues. The following theorem therefore pro-

vides the necessary and sufficient conditions for the two matrices to have common eigen-

values, ( Xu and Jiang, 2006). Denote the first component of 𝑠𝑖 as 𝑠1𝑖 and the last one as

𝑠𝑛−1,𝑖.

Theorem 2.2.1. . For 𝑗 ∈ {1, 2, ...., 𝑛− 1}, 𝜇𝑗 is an eigenvalue of 𝐽𝑛if and only if

𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗 = 0. (2.15)
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𝑏𝑛, 𝑛 = 1, 2..., 𝑛 are the eigenvalues of the matrix 𝐽𝑛−1 which are represented by

the single scalar quantity 𝛽 and 𝑠𝑛 are the components of the matrix.

Proof. .

Let 𝑦𝑡 = (𝑏𝑛, 0, 0...., 𝑏𝑛−1) ∈ 𝑅𝑛−1, then

𝐽𝑛 =

⎛⎝ 𝐽𝑛−1 𝑦

𝑦𝑡 𝑎𝑛

⎞⎠ (2.16)

.

𝑑𝑒𝑡(𝜆𝐼 − 𝐽𝑛) = 𝑑𝑒𝑡

⎛⎝ (𝐼 0

𝑦𝑡(𝜆𝐼 − 𝐽𝑛−1)
−1 𝐼)

(𝜆𝐼 − 𝐽𝑛−1 −𝑦

−𝑦𝑡 𝜆− 𝑎𝑛)

⎞⎠ (2.17)

= 𝑑𝑒𝑡

⎛⎝ 𝜆𝐼 − 𝐽𝑛−1 −𝑦

0 𝜆− 𝑎𝑛 − 𝑦𝑡(𝜆𝐼 − 𝐽𝑛−1)
−1𝑦

⎞⎠
= 𝑑𝑒𝑡(𝜆𝐼 − 𝐽𝑛−1)(𝜆− 𝑎𝑛 − 𝑦𝑡(𝜆𝐼 − 𝐽𝑛−1)

−1𝑦)

= Π𝑛−1
𝑖=1 (𝜆− 𝜇𝑖)(𝜆− 𝑎𝑛 − 𝑦𝑡(𝜆𝐼 − 𝐽𝑛−1)

−1𝑦)

(𝜆𝐼 − 𝐽𝑛−1)
−1 can be expressed as (𝜆𝐼 − 𝐽𝑛−1)

−1 = Σ𝑛−1
𝑖=1

1
𝜆−𝜇𝑖

𝑠𝑖𝑠
𝑡
𝑖, where 𝜇𝑖 are

the eigenvalues of 𝐾 and 𝑠𝑖 are the components of the matrix 𝐽𝑛−1. 𝑠𝑡𝑖 is the transpose of

𝑠𝑖.

Therefore,

𝑦𝑡(𝜆𝐼 − 𝐽𝑛−1)
−1𝑦 = Σ𝑛−1

𝑖=1
(𝑠𝑡𝑖𝑦)

2

𝜆−𝜇𝑖
= Σ𝑛−1

𝑖=1
(𝑏𝑛𝑠1𝑖+𝑏𝑛−1𝑠𝑛−1,𝑖)

2

𝜆−𝜇𝑖

and

𝑑𝑒𝑡(𝜆𝐼 − 𝐽𝑛) = Π𝑛−1
𝑗= (𝜆− 𝜇𝑗)(𝜆− 𝑎𝑛 − Σ𝑛−1

𝑖=1

(𝑏𝑛𝑠1𝑖 + 𝑏𝑛−1𝑠𝑛−1,𝑖)
2

𝜆− 𝜇𝑖

). (2.18)

From equation (2.18), we know

𝑑𝑒𝑡(𝜇𝑗𝐼 − 𝐽𝑛) = −Π𝑛−1
𝑖=1,𝑖 ̸=𝑗(𝜇𝑗 − 𝜇𝑖)𝑥(𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗)

2 (2.19)
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This implies that 𝜇𝑗 is an eigenvalue of 𝐽𝑛 if and only if (2.15) is valid. Now on the other

hand, if the two matrices 𝐽𝑛 and 𝐽𝑛−1 have no common eigenvalues, that is the eigenvalues

are distinct, Then the following theorem holds.

Theorem 2.2.2. If

𝑏𝑛𝑠1𝑖 + 𝑏𝑛−1𝑠𝑛−1,𝑗 ̸= 0.𝑗 = 1, 2, ..., 𝑛− 1. (2.20)

then the eigenvalues of the matrix 𝐽𝑛 are equal to 𝑛 roots of the following equation:

𝐹 (𝜆) = 𝜆− 𝑎𝑛 − Σ𝑛−1
𝑖=1

(𝑏𝑛𝑠1𝑖 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2

𝜆− 𝜇𝑖

= 0 (2.21)

and 𝜇𝑖 strictly separate 𝜆𝑖 as follows:

𝜆1 < 𝜇1 < 𝜆2 < ... < 𝜆𝑛−1 < 𝜇𝑛−1 < 𝜆𝑛. (2.22)

Proof. (Jiang, 2003).

Applying theorem (2.2), we can conclude that, under condition (2.20), for 𝑖 =

1, 2, .., 𝑛− 1, 𝜇1 are the eigenvalues of 𝐽𝑛. Combining this with (2.18), we know 𝑑𝑒𝑡(𝜆𝐼 −

𝐽𝑛) = 0, is equivalent to equation (2.23).

As (𝑏𝑛𝑠1𝑖 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2 > 0, 𝑖 = 1, 2, .., 𝑛 − 1, for a sufficiently small positive

number 𝜖,

𝐹 (𝜇𝑖 − 𝜖) > 0, and 𝐹 (𝜇𝑖 + 𝜖) < 0, 𝑖 = 1, 2, .., 𝑛− 1,

𝐹 (−∞) < 0 and 𝐹 (+∞) > 0,

hence 2.22) holds.

Suppose some of the eigenvalues of 𝐽𝑛−1 are the eigenvalues of 𝐽𝑛. The following

theorem therefore gives the relationship between the rest of the eigenvalues of 𝐽𝑛 that do

not belong to 𝐽𝑛−1.

Theorem 2.2.3. Let 𝑁 = {1, 2, .., 𝑛 − 1}. If there is a set 𝑁1 = {𝑖1, 𝑖2, ..𝑖𝑚} ⊂ 𝑁 such

that 𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗 = 0, 𝑗 ∈ 𝑁1 and 𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗 ̸= 0, 𝑗 ∈ 𝑁
𝑁1

then 𝜇1, 𝜇2, ..., 𝜇𝑚
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are the eigenvalues of 𝐽𝑛, and the rest of the eigenvalues of 𝐽𝑛 are given as 𝑛−𝑚 roots of

the equation

𝐹 (𝜆) = 𝜆− 𝑎𝑛 − Σ𝑛−1
𝑖=1,𝑖 ̸∈𝑁𝑖

(𝑏𝑛𝑠1𝑖 + 𝑏𝑛−1𝑠𝑛−1,𝑖)
2

𝜆− 𝜇𝑖

= 0. (2.23)

From the above theorem, we deduce that except for 𝜇𝑖1, 𝜇𝑖2, .., 𝜇𝑖𝑚, the rest of the

eigenvalues of 𝐽𝑛 are 𝑛−𝑚 roots of 𝐹 (𝜆) = 0. The necessary and sufficient conditions for

an inverse eigenvalue problem for periodic Jacobi to be solvable are related to the following

two theorems. If 𝐽𝑛 and 𝐽𝑛−1 have distinct eigenvalue then the periodic Jacobi problem is

solvable provided the theorem below holds (Jiang, 2003).

Theorem 2.2.4. If all the elements in the two sets 𝜆 = {𝜆𝑗}𝑛𝑗=1 and 𝜇 = {𝜇𝑗}𝑛−1
𝑗=1 are

distinct, then the periodic Jacobi inverse eigenvalue problem (𝑃𝐽𝐼) is solvable if and only

if

Π𝑛
𝑖=1|𝜇𝑗 − 𝜆𝑖| ≥ 4𝛽(−1)𝑛−𝑗+1, 𝑗 = 1, 2, ..., 𝑛− 1. (2.24)

Furthermore, uniqueness of solution is not guaranteed and there are at most 2𝑛−1 different

solutions.

Finally, we state without proof, (see for example Jiang, 2003) for proof. The fol-

lowing theorem establishes the fact that if 𝐽𝑛 and 𝐽𝑛−1 have common eigenvalues then the

inequality 2.26 holds.

Theorem 2.2.5. If two sets 𝜆 = {𝜆𝑗}𝑛𝑗=1 and 𝜇 = {𝜇𝑗}𝑛−1
𝑗=1 have common elements, and the

number of common eigenvalues is 𝑚, then the periodic Jacobi inverse eigenvalue problem

(𝑃𝐽𝐼𝐸𝑃 ) is solvable if and only if (2.25) is valid. Furthermore, if the problem 𝑃𝐽𝐼𝐸𝑃 is

solvable, there are at most 2𝑛−𝑚−1 different solutions.

The algorithm for constructing periodic Jacobi matrix follows. (See for example

Boley and Golub, 1978).

Algorithm:

1. Two sets of eigenvalues {𝜆+
𝑖 }𝑛𝑖=1, {𝜇𝑖}𝑛−1

𝑖=1 and the single scalar 𝛽
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2. Compute the first row of 𝑄, the eigenvectors of 𝐽+ using

𝑞21𝑗 =
Π𝑛−1

𝑘=1(𝜇𝑘 − 𝜆+
𝑗 )

Π𝑛
𝑘=1,𝑘 ̸=𝑗(𝜆

+
𝑘 − 𝜆+

𝑗 )

𝑗 = 1, ..., 𝑛

3. Compute 𝑏+ and 𝑏− using the equations below;

(𝑏+𝑘 )2 = −
Π𝑛

𝑗=1(𝜆
+
𝑗 − 𝜇𝑘)

Π𝑛−1
𝑗=1,𝑗 ̸=𝑘(𝜇𝑗 − 𝜇𝑘)

(𝑏−𝑘 )2 = −
Π𝑛

𝑗=1(𝜆
−
𝑗 − 𝜇𝑘)

Π𝑛−1
𝑗=1,𝑗 ̸=𝑘(𝜇𝑗 − 𝜇𝑘)

𝑘 = 1, ...., 𝑛− 1.

4. Compute the eigenvectors of 𝐾 using, 𝑃𝑛−1 = 𝑏+−𝑏−

2𝑏𝑛

5. Compute the last row of 𝑄, 𝑧𝑛 = 𝑟𝑛 = [𝑞𝑛1, ..., 𝑞𝑛𝑛] using

𝑞𝑛,𝑘 = −𝑞1𝑘Σ𝑛−1
𝑗=1

𝑃𝑛−1,𝑗𝑏
+
𝑗

(𝜇𝑘 − 𝜆+
𝑘 )

6. Using the initial values 𝑧1 and 𝑧𝑛 and Λ+ = 𝑄𝑡𝐽+𝑄, apply Lanczos algorithm to

generate the tridiagonal matrix.

2.3 Parameterized Inverse Eigenvalue Problem

(𝑃𝐼𝐸𝑃 )

𝑃𝐼𝐸𝑃 is described as the process of adding or multiplying a vector 𝑋 which con-

tains parameters by an 𝑛 × 𝑛 square matrix 𝐴. We note that the parameter 𝑐 is in the field

𝐹 has the number of parameters 𝑚 is not the same as the order 𝑛 of the matrix.

Definition: Given an 𝑛 × 𝑛 square matrix 𝐴, we are to find the parameter 𝑐 =

{𝑐1, 𝑐2, ....., 𝑐𝑛} ∈ 𝐹𝑚 where 𝐹 is a field such that (𝐴(𝑐)) = {𝜆1, 𝜆2, ....., 𝜆𝑛} where
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{𝜆1, 𝜆2, ..., 𝜆𝑛} ⊂ 𝐹 are scalars which are the eigenvalues of 𝐴(𝑐).

Three main kinds of 𝑃𝐼𝐸𝑃 can be identified. These are Linear dependence on

parameters(𝐿𝑖𝑃𝐼𝐸𝑃 ), additive inverse eigenvalue problem(𝐴𝐼𝐸𝑃 ) and the multiplicative

inverse eigenvalue problem (𝑀𝐼𝐸𝑃 ). But we shall concentrate on 𝑀𝐼𝐸𝑃 which we are

applying in our work. The 𝑃𝐼𝐸𝑃 format arise frequently in discrete modeling and factor

analysis. By the definition, we see that the parameter 𝑐 is in the field 𝐹 where the number

of parameters 𝑚 is not the same as the order 𝑛 of the matrix.

2.3.1 MIEP

The 𝑀𝐼𝐸𝑃 is obtained from a process of pre-multiplying an 𝑛 × 𝑛 square sym-

metric matrix 𝐴 by a vector 𝑋 which contains the parameter 𝑐 = {𝑐1, 𝑐2, ...., 𝑐𝑛} such that

𝑋𝐴 = Σ𝑛
𝑖=1𝑐𝑖𝐴𝑖 where 𝑐𝑖 ∈ 𝑋 ,(Oliveira, 1972). Some row(s) become linear combination

of other row(s) after the multiplication. Some authors have treated the unsolvability of mul-

tiplicative IEP. See for example Sun, 1986. For the solvability to the MIEP, see for example

( Silva, 1986, Hadeler, 1969, Oliveira, 1972, Shapiro, 1983 and J. Sun, 1986). There are

also many numerical algorithms developed for computational purposes.

Example: Let 𝐴 =

⎛⎝ 1 4

3 1

⎞⎠ and 𝑋 =

⎛⎝ 𝑎 𝑏

0 1

⎞⎠ then

𝑋𝐴 =

⎛⎝ 𝑎 𝑏

0 1

⎞⎠⎛⎝ 1 4

3 1

⎞⎠ =

⎛⎝ 𝑎 + 3𝑏 4𝑎 + 𝑏

3 1

⎞⎠ The eigenvalues of the matrix

therefore satisfy the system;⃦⃦⃦⃦
⃦⃦ 𝜆1𝜆2 = 1𝑎

𝜆1 + 𝜆2 = 1 + 𝑎 + 3𝑏

⃦⃦⃦⃦
⃦⃦. We therefore conclude that given any 𝜆 ∈ 𝑅2, we can always

find a pair (𝑎, 𝑏) of real numbers that solves the 𝑀𝐼𝐸𝑃 . Indeed, the solution in this case is

unique.

Even though there are many types of the 𝑀𝐼𝐸𝑃 , we will deal with the one which

has 𝑛× 𝑛 square symmetric matrices with real entries.

The 𝑀𝐼𝐸𝑃 can arise from engineering application, ( Chu and Golub, 2001, Ya-

mamoto, 1990). For example, the vibration of particles on a string. Let us assume that four
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particles, each with mass 𝑚𝑖 which are uniformly spaced with distance ℎ and are vibrating

vertically subject to a horizontal tension 𝐹 . The equation of motion for such a system is a

second-order differential equation of the form

𝑑2𝑥

𝑑𝑡2
= −𝐷𝐴𝑥, (2.25)

where 𝐴 is a tridiagonal real symmetric matrix, 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 and

𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, ..., 𝑑𝑛) with 𝑑𝑖 = 𝐹
𝑚𝑖ℎ

.

To solve the second order differential equation (2.27), we consider the eigenvalue

problem

𝐷𝐴𝑥 = 𝜆𝑥, (2.26)

where 𝜆 is the square of the natural frequency of the system. The inverse problem then

amounts to calculating the mass 𝑚𝑖, 𝑖 = 1, 2, ..., 𝑛 so that the resulting system vibrates at

a prescribed natural frequency. Generally, 𝑃𝐼𝐸𝑃 can be solved using the Newton iterative

method. We discuss a typical example below.

Let us consider the Newton’s iterative method for solving 𝑃𝐼𝐸𝑃 . We concentrate

exclusively on the Newton’s method applied to Linearly dependent parameterized inverse

eigenvalue problem (𝐿𝑖𝑃𝐼𝐸𝑃 ). We consider the case where all the matrices involved 𝑆𝑛

are symmetric.

We choose to single out this method for consideration because, while Newton’s iter-

ation is typically regarded as the normal means to solve nonlinear differentiable equations,

we demonstrate how iteration can be carried out by taking into account the matrix structure.

The eigenvalues 𝜆 = 𝜆𝑘
𝑛
𝑘=1 in this context are distinct and are arranged in ascend-

ing order. We consider an affine space of symmetric matrices together with isospectral

surface 𝑀(Λ) and a Lie transformation group 𝑂(𝑛). The isospectral surface contains spe-

cial orthogonal matrices which are rotation matrices. Let the affine subspace be represented

by,

𝛽 = {𝐵(𝑐) | 𝑐 ∈ 𝑅𝑛} (2.27)
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and the isospectral surface

𝑀(∧) = {𝑄 ∧𝑄𝑇 | 𝑄 ∈ 𝑂(𝑛)} (2.28)

where 𝑄 is an orthogonal matrix. 𝑄 in this case is a rotation matrix given by Rodrigues

rotation formula. When we use the fact that 𝑄(𝑡)𝑄(𝑡)𝑇 = 𝐼 , then it follows that 𝑄(𝑡) is a

differentiable path which is embedded in 𝑂(𝑛) if and only if;

𝑄′(𝑡) = 𝐾(𝑡)𝑄(𝑡), 𝑄(𝑡) ∈ 𝑂(𝑛) (2.29)

for some family of antisymmetric matrices 𝐾(𝑡). 𝑄 is an exponential function given by

𝑄 = 𝑒𝐾 . When we translate this to the differentiable manifold 𝑀(∧), then it follows that

any tangent 𝑆(𝑋) to 𝑀(∧), at a point 𝑋 ∈𝑀(∧) is a Lie algebra given by the Lie bracket;

𝑆(𝑋) = 𝑋𝐾 −𝐾𝑋 (2.30)

for some antisymmetric matrix 𝐾 ∈ 𝑅𝑛×𝑛, where 𝐾 is obtained from a rotation matrix 𝑄

in this case.

The Newton Method (Chu, 2005) here has a similar approach as the classical New-

ton Method for finding the roots of a one-variable differentiable function. Given a function

𝑓(𝑥) and its derivative 𝑓 ′(𝑥), we begin with an initial value of 𝑥0 to obtain the first iterative

value of 𝑥1 using the fact that;

𝑥1 = 𝑥0 − (𝑓 ′(𝑥0))
−1𝑓(𝑥0). (2.31)

The process is repeated until a sufficiently accurate value is reached:

𝑥𝑛+1 = 𝑥𝑛 − (𝑓 ′(𝑥𝑛))−1𝑓(𝑥𝑛) (2.32)

The new iterate 𝑥𝑛+1 in the scheme above represents the 𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 of the line that
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is tangential to the graph of 𝑓(𝑥) at (𝑥𝑛, 𝑓(𝑥𝑛). The point (𝑥𝑛+1, 𝑓(𝑥𝑛+1)) represents a

natural ”lift” of the intercept along the 𝑦 − 𝑎𝑥𝑖𝑠 to the graph of 𝑓(𝑥) from which the next

tangent line begins.

Let us consider the isospectral surface 𝑀(∧) as playing the role of the graph of 𝑓(𝑥)

while the affine subspace 𝛽 plays the role of the 𝑥− 𝑎𝑥𝑖𝑠. We want to find the intersection

of the isospectral surface 𝑀(∧) and the affine subspace 𝛽 which is given by:

𝐵(𝑐) = 𝑄 ∧𝑄𝑇 (2.33)

Given 𝑋𝑛 ∈𝑀(∧), there exists an orthogonal matrix 𝑄𝑛 ∈ 𝑂𝑛 such that;

𝑄𝑇
𝑛𝑋𝑛𝑄𝑛 = ∧ (2.34)

which is an inverse problem.

The matrix 𝑋𝑛 + 𝐾𝑋𝑛 − 𝑋𝑛𝐾 where 𝐾 is an antisymmetric matrix represents a

tangent vector to the surface of 𝑀(∧) emanating from 𝑋𝑛. For one Newton iteration, we

have to find 𝛽 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝐵(𝑐𝑛+1) ∈ 𝛽 which belongs to the affine subspace 𝛽 and then

”lift” up this point 𝐵(𝑐𝑛+1) ∈ 𝛽 to the point 𝑋𝑛+1 ∈𝑀(∧).

See figure below

To find the 𝛽− 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, we need to find an antisymmetric matrix 𝐾𝑛 and a vector
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𝑐𝑛+1 such that;

𝑋𝑛 + 𝐾𝑛𝑋𝑛 −𝑋𝑛𝐾𝑛 = 𝐵(𝑐𝑛+1) (2.35)

The unknowns 𝐾𝑛 and 𝑐𝑛+1 in the above equation can be solved separately using equations

(2 · 34) and (2 · 35) to obtain

∧+ 𝐾*
𝑛 ∧ − ∧𝐾*

𝑛 = 𝑄𝑇
𝑛𝐵(𝑐𝑛+1)𝑄𝑛 (2.36)

where

𝐾*
𝑛 = 𝑄𝑇

𝑛𝐾𝑛𝑄𝑛. (2.37)

The above presentation of the inverse problem using Newton’s iterative method is

more theoretical and somehow cumbersome. We therefore present a more practicable and

easy iterative method using a simpler algorithm in Chapter Five. The initial eigenvalue and

the matrix for the iteration is given and therefore one can compute the rotation matrix and

consequently, the skew symmetric matrix.
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CHAPTER 3

Solvability and Computability of the Inverse Eigenvalue Problem

In this chapter, we discuss the theorems on the solvability of different types of IEP’s and

computability of the different methods we have discussed about the inverse eigenvalue

problem (IEP). We consider the theorems related to the Inverse Eigenvalue problem of the

Quadratic Pencil (IEQP), the Inverse Eigenvalue Problem of the Jacobi and Periodic Jacobi

matrices and the Parameterized Inverse Eigenvalue problem (PIEP).

We first discuss theorems related to the quadratic inverse eigenvalue problem. This

problem is as follows: Given

1. Real 𝑛 × 𝑛 matrices 𝑀 = 𝑀𝑇 > 0, 𝐷 = 𝐷𝑇 , 𝐾 = 𝐾𝑇 of the quadratic pencil

𝑝(𝜆) = 𝜆2𝑀 + 𝜆𝐷 + 𝐾,

2. The self-conjugate subset {𝜆1, ..., 𝜆𝑝}, 𝑝 < 𝑛 of the open-loop spectrum

{𝜆1, ..., 𝜆𝑝;𝜆𝑝+1, ..., 𝜆2𝑛} and the corresponding eigenvector set {𝑥1, ..., 𝑥𝑝}.

3. The self-conjugate sets of numbers and vectors {𝜇1, ..., 𝜇𝑝} and {𝑦1, ..., 𝑦𝑝} such that

𝜇𝑗 = 𝜇𝑘 implies 𝑦𝑖 = 𝑦𝑘.

We are to find the control matrix 𝐵 of order 𝑛 × 𝑚 (𝑚 < 𝑛), and feedback matri-

ces 𝐹 and 𝐺 of order 𝑛 × 𝑚 such that the spectrum of the closed-loop pencil 𝑝𝑐(𝜆) =

𝜆2𝑀 + 𝜆(𝐷 − 𝐵𝐹 𝑇 ) + 𝐾 − 𝐵𝐺𝑇 is {𝜇1, ..., 𝜇𝑝;𝜆𝑝+1, ..., 𝜆2𝑛} and the eigenvector set

{𝑦1, ..., 𝑦𝑝;𝑥𝑝+1, ..., 𝑥2𝑛}where 𝑥𝑝+1, ..., 𝑥2𝑛 are the eigenvectors of 𝑝(𝜆) = 𝜆2𝑀+𝜆𝐷+𝐾

corresponding to 𝜆𝑝+1, , 𝜆2𝑛. We have to derive three orthogonality relations between the

eigenvectors of a symmetric definite quadratic pencil. The results generalize the well-

known results on orthogonality between the eigenvectors of a symmetric matrix and those

of a symmetric definite linear pencil of the form 𝐾 − 𝜆𝑀 . The following two theorems
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are therefore important in solving problems related to the inverse problem of the quadratic

pencil.

Theorem 3.0.1. (Orthogonality of the Eigenvectors of Quadratic Pencil). Let 𝑝(𝜆) =

𝜆2𝑀 + 𝜆𝐷 + 𝐾, where 𝑀 = 𝑀𝑇 ≻ 0, 𝐷 = 𝐷𝑇 , and 𝐾 = 𝐾𝑇 . Let 𝑋 and Λ =

𝑑𝑖𝑎𝑔(𝜆1, .., 𝜆2𝑛) be, respectively, the eigenvector and eigenvalue matrix of the pencil 𝑝(𝜆) =

𝜆2𝑀 + 𝜆𝐷 + 𝐾. Assume that the eigenvalues 𝜆1, ..., 𝜆𝑛 are all distinct and different from

zero. Then there exist diagonal matrices 𝐷1,𝐷2 and 𝐷3 such that

Λ𝑋𝑇𝑀𝑋Λ−𝑋𝑇𝐾𝑋 = 𝐷1 (3.1)

Λ𝑋𝑇𝐷𝑋Λ + Λ𝑋𝑇𝐾𝑋 + 𝑋𝑇𝐾𝑋Λ = 𝐷2 (3.2)

Λ𝑋𝑇𝑀𝑋 + 𝑋𝑇𝑀𝑋Λ + 𝑋𝑇𝐷𝑋 = 𝐷3 (3.3)

Furthermore

𝐷1 = 𝐷3Λ (3.4)

𝐷2 = −𝐷1Λ (3.5)

𝐷2 = −𝐷3Λ
2 (3.6)

Proof. : (See for example, Biswa et al, 1996).

By definition, the pair (𝑋,Λ) must satisfy the 𝑛 × 2𝑛 system of equations (called

the eigendecomposition of the pencil 𝑝(𝜆) = (𝜆2𝑀 + 𝜆𝐷 + 𝐾):

𝑀𝑋Λ2 + 𝐷𝑋Λ + 𝐾𝑋 = 0. (3.7)

Isolating the terms in 𝐷, we have from above

−𝐷𝑋Λ = 𝑀𝑋Λ2 + 𝐾𝑋.

47



Multiplying this on the left by Λ𝑋𝑇 gives

−Λ𝑋𝑇𝐷𝑋Λ = Λ𝑋𝑇𝑀𝑋Λ2 + Λ𝑋𝑇𝐾𝑋.

Taking the transpose gives

−Λ𝑋𝑇𝐷𝑋Λ = Λ2𝑋𝑇𝑀𝑋Λ + 𝑋𝑇𝐾𝑋Λ

When we subtract the latter from the former we have, on rearrangement,

Λ𝑋𝑇𝑀𝑋Λ2 −𝑋𝑇𝐾𝑋Λ = Λ2𝑋𝑇𝑀𝑋Λ− Λ𝑋𝑇𝐾𝑋

or

(Λ𝑋𝑇𝑀𝑋Λ−𝑋𝑇𝐾𝑋)Λ = Λ(Λ𝑋𝑇𝑀𝑋Λ−𝑋𝑇𝐾𝑋).

Thus, the matrix Λ𝑋𝑇𝑀𝑋Λ−𝑋𝑇𝐾𝑋 which we denote by 𝐷1, must be diagonal since it

commutes with a diagonal matrix, the diagonal entries of which are distinct. We thus have

the first orthogonality relation(3.1).

Similarly, isolating the term in 𝑀 of the eigendecomposition equation, we get

−𝑀𝑋Λ2 = 𝐷𝑋Λ + 𝐾𝑋,

and multiplying this on the left by Λ2𝑋𝑇 gives

−Λ2𝑋𝑇𝑀𝑋Λ2 = Λ2𝑋𝑇𝐷𝑋Λ + Λ2𝑋𝑇𝐾𝑋.

Taking transpose, we have

−Λ2𝑋𝑇𝑀𝑋Λ2 = Λ𝑋𝑇𝐷𝑋Λ2 + 𝑋𝑇𝐾𝑋Λ2.

Subtracting the last equation from the previous one and adding Λ𝑋𝑇𝐾𝑋Λ to both sides

48



gives, after some rearrangement,

Λ(Λ𝑋𝑇𝐷𝑋Λ + Λ𝑋𝑇𝐾𝑋 + 𝑋𝑇𝐾𝑋Λ) + (Λ𝑋𝑇𝐷𝑋Λ + Λ𝑋𝑇𝐾𝑋 + 𝑋𝑇𝐾𝑋Λ)Λ.

Again, this commutativity property implies, since Λ has distinct diagonal entries, that

Λ𝑋𝑇𝐷𝑋Λ + Λ𝑋𝑇𝐾𝑋 + 𝑋𝑇𝐾𝑋Λ = 𝐷2

is a diagonal matrix. This is the second orthogonality relation (3.2). The first and second

orthogonality relations together easily imply the third orthogonality relation (3.3).

To prove (3.4) we multiply the last equation on the right by Λ giving

Λ𝑋𝑇𝑀𝑋Λ + 𝑋𝑇𝑀𝑋Λ2 + 𝑋𝑇𝐷𝑋Λ = 𝐷3Λ,

which, using the eigendecomposition equation, becomes

Λ𝑋𝑇𝑀𝑋Λ + 𝑋𝑇 (−𝐾𝑋) = 𝐷3Λ.

So, from the first orthogonality relation (3.1) we see that 𝐷1 = 𝐷3Λ

Next, using the eigendecomposition equation (3.7), we rewrite the second orthogo-

nality relation (3.2) as

𝐷2 = Λ𝑋𝑇 (𝐷𝑋Λ + 𝐾𝑋) + 𝑋𝑇𝐾𝑋Λ (3.8)

= Λ𝑋𝑇 (−𝑀𝑋Λ2) + 𝑋𝑇𝐾𝑋Λ

= (−Λ𝑋𝑇𝑀𝑋Λ + 𝑋𝑇𝐾𝑋)Λ

By the first orthogonality relation we then have 𝐷2 = −𝐷1Λ

Finally, from 𝐷1 = 𝐷3Λ and 𝐷2 = −𝐷1Λ we have 𝐷2 = −𝐷3Λ
2.

Thus, using 𝐷1, 𝐷2 and 𝐷3, we obtain the following results,

𝑥𝑇
𝑖 (𝜆𝑖𝜆𝑗𝑀 −𝐾)𝑥𝑗 = 0 (3.9)

𝑥𝑇
𝑖 (𝜆𝑖𝜆𝑗𝐶 + (𝜆𝑖 + 𝜆𝑗)𝐾)𝑥𝑗 = 0

𝑥𝑇
𝑖 ((𝜆𝑖 + 𝜆𝑗)𝑀 + 𝐶)𝑥𝑗 = 0, 𝑖 ̸= 𝑗
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We remind the reader that matrix and vector transposition here does not mean conjugate

for complex quantities.

The Direct modal approach as discussed in the previous chapter, is the process

of finding a solution to the quadratic pencil problem using only a few eigenvalues of the

characteristic polynomial (𝑝(𝜆)) of the closed loop pencil. We remind our readers that

Single-input and Multi-input are algorithms that were explained and used to compute the

feedback matrices in the previous chapter.In order to solve the inverse eigenvalue problem

of the quadratic pencil for both the Single- input and the Multi-input cases for problem

𝑀�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝑓(𝑡),

we apply the following theorems.

Theorem 3.0.2. (Solution to the Single-Input Partial Eigenvalue Assignment Problem for

a Quadratic Pencil). If {𝜆1, ..., 𝜆𝑝} ∩ {𝜆𝑝+1, ..., 𝜆2𝑛} = ∅ then

(𝑖). For any arbitrary vector 𝛽, the feedback vectors 𝑓 and 𝑔 defined by

𝑓 = 𝑀𝑋1Λ1𝛽 (3.10)

and

𝑔 = −𝐾𝑋1𝛽 (3.11)

are such that 2𝑛− 𝑝 eigenvalues 𝜆𝑝+1, ..., 𝜆2𝑛 of the closed-loop pencil

𝑝𝑐(𝜆) = 𝜆2𝑀 + 𝜆(𝐷 − 𝑏𝑓𝑇 ) + 𝐾 − 𝑏𝑔2

are the same as these of the open-loop pencil 𝑝(𝜆) = 𝜆2𝑀 + 𝜆𝐷 + 𝐾

(𝑖𝑖). Let 𝑦1, ..., 𝑦𝑝 be the set of 𝑝 vectors such that for each 𝑘 = 1, 2, .., 𝑝,⎛⎝ 𝑦𝑘

1

⎞⎠ ∈ 𝑛𝑢𝑙𝑙(𝜇2
𝑘𝑀 + 𝜇𝑘𝐷 + 𝐾,−𝑏).

(Equivalently, the pencil 𝑝(𝜆) is partially controllable with respect to 𝜇1, .., 𝜇𝑝).

Define 𝑍1 = Λ
′
1𝑌

𝑇
1 𝑀𝑋1Λ1 − 𝑌 𝑇

1 𝐾𝑥1
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where 𝑍1 is a single matrix.

The problem under discussion has a solution in the form (3.10)-(3.11) if and only

if the system of equations

𝑍1𝛽 = (1, 1, ..., 1)𝑇

has a solution.

The proof of the above theorem is related to Algorithm 3.2. (Datta and Sarkissian

1996).

Theorem 3.0.3. (Solution to Multi-input Partial Eigenvalue Assignment Problem for a

Quadratic Pencil)

If {𝜆1, ..., 𝜆𝑝} ∩ {𝜆𝑝+1, ..., 𝜆2𝑛} = ∅. Then (𝑖). For any arbitrary matrix Φ, the

feedback matrices 𝐹 and 𝐺 defined by 𝐹 = 𝑀𝑋1Λ1Φ
𝑇 and 𝐺 = −𝐾𝑋1Φ

𝑇 are such that

2𝑛− 𝑝 eigenvalues 𝜆𝑝+1, ..., 𝜆2𝑛 of the closed-loop pencil 𝑝𝑐(𝜆) = 𝜆2𝑀 + 𝜆(𝐷−𝐵𝐹 𝑇 ) +

𝐾 −𝐵𝐺𝑇 are the same as those of the open-loop pencil 𝑝(𝜆) = 𝜆2𝑀 + 𝜆𝐷 + 𝐾.

(𝑖𝑖). Let {𝑦1, ..., 𝑦𝑝} and {𝛾1, ..., 𝛾𝑝} be the two sets of vectors chosen in such a

way that 𝜇𝑗 = 𝜇𝑘 implies 𝛾𝑗 = 𝛾𝑘 and for each 𝑘 = 1, 2, .., 𝑝,

⎛⎝ 𝑦𝑘

𝛾𝑘

⎞⎠ ∈ 𝑛𝑢𝑙𝑙(𝜇2
𝑘𝑀 +

𝜇𝑘𝐷 + 𝐾,−𝐵) (equivalently, the pair (𝑝(𝜆), 𝐵) is partially controlled with respect to the

modes 𝜇1, ..., 𝜇𝑝) Define 𝑍1 and 𝑌1 as in Theorem (3.2). The problem under discussion (in

the multi-input case) has a solution with 𝐹 and 𝐺 given by 𝑖, provided that Φ satisfies the

linear system of equations: Φ𝑍𝑇
1 = Γ, where Γ = (𝛾1, .., 𝛾𝑝).

Proof. :

Using the first orthogonality relation (3.1), it is easy to verify that

𝑀𝑋2Λ
2
2 + (𝐷 −𝐵𝐹 𝑇 )𝑋2Λ2 + (𝐾 −𝐵𝐺𝑇 )𝑋2 = (𝑀𝑋2Λ

2
2 + 𝐷𝑋2Λ2𝐾𝑋2)

− 𝐵Φ(Λ1𝑋
𝑇
1 𝑀𝑋2Λ2 −𝑋𝑇

1 𝐾𝑋2)

= 0,

which proves Part (𝑖).
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To prove (𝑖𝑖), we note using the closed-loop and the open loop pencil above, that

𝑃𝑐(𝜇𝑘)𝑦𝑘 = (𝜇2
𝑘𝑀 + 𝜇𝑘(𝐷 −𝐵Σ𝑝

𝑗=1𝜑𝑗𝜆𝑗𝑥
𝑇
𝑗 𝑀) + (𝐾 + 𝐵Σ𝑝

𝑗=1𝜑𝑗𝑥
𝑇
𝑗 𝐾))𝑦𝑘

= 𝐵𝛾𝑘 −𝐵(Σ𝑝
𝑗=1𝜑𝑗𝑥

𝑇
𝑗 (𝜇𝑘𝜆𝑗𝑀 −𝐾))𝑦𝑘

= 𝐵(𝛾𝑘 − Σ𝑝
𝑗=1𝜑𝑗𝑧𝑘𝑗),

where Φ = (𝜑1, ...., 𝜑𝑝) and 𝑧′𝑘𝑗𝑠 are the elements of the matrix 𝑍1. Then 𝑃𝑐(𝜇𝑘)𝑦𝑘 = 0 for

𝑘 = 1, 2, .., 𝑝 can be written in the form of the single matrix equation Φ𝑍𝑇
1 = Γ

We now show that the matrix 𝐹 and 𝐺 obtained this way are real matrices. Since,

if 𝛾1, .., 𝛾𝑝 are chosen in such a way that 𝜇𝑗 = 𝜇𝑘 implies 𝛾𝑗 = 𝛾𝑘, then this also implies

𝑦𝑗 = 𝑦𝑘 and, then, as in the proof of Theorem (3.2), there exist permutation matrices 𝑇 and

𝑇
′ such that

𝑋1 = 𝑋1𝑇, ¯𝑋1Λ1 = 𝑋1Λ1𝑇, Γ̄ = Γ𝑇
′
, 𝑌1 = 𝑌1𝑇

′
𝑎𝑛𝑑 ¯𝑌1Λ

′
1 = 𝑌1Λ

′

1𝑇
′
.

Thus, conjugating 𝑍1 = Λ
′
1𝑌

𝑇
1 𝑀𝑋1Λ1−𝑌 𝑇

1 𝐾𝑋1, gives 𝑍1 = (𝑇
′
)𝑇𝑍1𝑇 and, conjugating

Φ𝑍𝑇
1 = Γ, we get

Φ̄𝑇 𝑇𝑍1𝑇
′
= Γ𝑇

′
,

which implies that Φ̄ = Φ𝑇 . Therefore

𝐹 = 𝑀(𝑋1Λ1𝑇 )(𝑇 𝑇Φ𝑇 ) = 𝐹

and

�̄� = −𝐾(𝑋1𝑇 )(𝑇 𝑇Φ𝑇 ) = 𝐺

showing that 𝐹 and 𝐺 are real matrices.

The Quadratic Inverse Eigenvalue Problems, Active Vibration Control and Modal

Updating, can be classified as Direct and Partial model. It is ”direct” because the problem

is solved directly in second-order setting, without transforming it to a standard first-order

stage-space model. In this case, it avoids a possible ill-conditioned inversion of the mass

matrix and the loss of some of the exploitable properties, very often offered by practical
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problems, such as definiteness, sparsity and bandness. It is ”partial-model” because the

problem is solved using only a few eigenvalues of 𝑃 (𝜆) that need to be reassigned and

their corresponding eigenvectors. The ”no spill-over” property in this case is established

and confirmed in the proof of the theorem below and no model reduction is needed no

matter how large the model may be, (Sarkissian, 2001).

Theorem 3.0.4. Let the matrix 𝐵 be of full rank. Let the scalars {𝜇1, ..., 𝜇𝑘} and the eigen-

values of the pencil (𝑀,𝐶,𝐾) be such that sets {𝜆1, .., 𝜆𝑘}, {𝜆𝑘+1, ..., 𝜆2𝑛} and {𝜇1, .., 𝜇𝑘}

are disjoint and each set is closed under complex conjugation. Let 𝑌 = (𝑦1, .., 𝑦𝑘) be the

matrix of left eigenvectors associated with eigenvalues {𝜆1, .., 𝜆𝑝}. Let the pair (𝑃 (𝜆), 𝐵)

be partially controllable with respect to {𝜆1, .., 𝜆𝑘}, i.e. 𝑦*𝑖𝐵 ̸= 0, 𝑖 = 1, .., 𝑘. Let

Γ = (𝛾1, .., 𝛾𝑘) be a matrix such that 𝛾𝑗 = 𝛾𝑗 , whenever 𝜇𝑗 = 𝜇𝑖. Set Λ1 = 𝑑𝑖𝑎𝑔(𝜆1, .., 𝜆𝑘)

and set Σ = 𝑑𝑖𝑎𝑔(𝜇1, .., 𝜇𝑘). Let 𝑍 be the unique nonsingular solution of the Sylvester

equation

Λ1𝑍 − 𝑍Σ = −𝑌 *𝐵Γ,

Define the real feedback matrices by

𝐹 = Φ𝑌 *𝑀

, and

𝐺 = Φ(Λ1𝑌
*𝑀 + 𝑌 *𝐶),

where Φ satisfies the linear system Φ𝑍 = Γ. Then matrices 𝐹 and 𝐺 are real and the

closed-loop pencil (𝑀,𝐶 − 𝐵𝐹 𝑇 , 𝐾 − 𝐵𝐺𝑇 ) will have {𝜇1, .., 𝜇𝑘, 𝜆𝑘+1, .., 𝜆2𝑛} as its

eigenvalues and the eigenvectors corresponding to the eigenvalues {𝜆𝑘+1, .., 𝜆2𝑛} will re-

main unchanged.

Proof. :

We omit the proof of the first part which is lengthy and can be found for example Brahma

et al 2009. Let Λ2 = 𝑑𝑖𝑎𝑔(𝜆𝑘+1, .., 𝜆2𝑛) and 𝑋2 be the corresponding eigenvector matrix.
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In matrix notations we then need to prove that

𝑀𝑋2Λ
2
2 + (𝐷 −𝐵𝐹 𝑇 )𝑋2Λ2 + (𝐾 −𝐵𝐺𝑇 )𝑋2 = 0.

The result follows by substituting for 𝐹 and 𝐺 into the left-hand side of the equation and

noting that (𝑋2,Λ2) is a matrix eigenpair of 𝑃 (𝜆), that is:

𝑀𝑋2Λ
2
2 + 𝐶𝑋2Λ2 + 𝐾𝑋2 = 0

and the eigenpairs (Λ1, 𝑋1) and (Λ2, 𝑋2) satisfy the orthogonality relation Λ1𝑋
𝑇
1 𝑀𝑋2Λ2−

𝑋1𝐾𝑋 − 2 = 0.

Some recent results on Model Updating methods can be found in (Frishwell and

Mottershead, 1995, Carvalho, Datta, Gupta and Lagadapati, 2007, Carvalho Datta, Lin,

and Wang, 2006, Ewins, 2000, Friswell, Inman and Pilkey, 1998, Halevi and Bucher, 2003

and Kenigsbuch and Halevi, 1998)

We need the following theorems in order to discuss the Periodic Jacobi Inverse

Eigenvalue Problem (𝑃𝐽𝐼). First we state the following two lemmas which are fundamen-

tal to our approach to the Periodic Jacobi Inverse Eigenvalue Problem, ( Ying-Hong and

Jiang, 2006).

Lemma 3.0.1. Let 𝜆1 < 𝜇1 < .... < 𝜇𝑛−1 < 𝜆𝑛, then the following linear algebraic system

𝑥1

𝜆𝑖 − 𝜇1

+
𝑥2

𝜆𝑖 − 𝜇2

+ .. +
𝑥𝑛−1

𝜆𝑖 − 𝜇𝑛−1

= 𝜆𝑖 − 𝑎𝑛, 𝑖 = 1, 2, .., 𝑛− 1, 𝑛. (3.12)

The term 𝑎𝑛 on the right side is equal to Σ𝑛
𝑖=1𝜆𝑖 − Σ𝑛−1

𝑖=1 𝜇𝑖, has a unique solution 𝑥 =

(𝑥1, ..., 𝑥𝑛−1)
𝑇 and

𝑥𝑗 = −Π𝑛
𝑖=1(𝜆𝑖 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑗(𝜇𝑖 − 𝜇𝑗)

−1 > 0. (3.13)

We note that the linear system (3.12) is overdetermined with 𝑛 equations and 𝑛− 1
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unknowns.

Lemma 3.0.2. (Paige C C, 1971) For a Jacobi matrix 𝐽𝑛−1, we have

𝑠1𝑗𝑠𝑛−1,𝑗 =
𝑏1𝑏2...𝑏𝑛−2

𝑥′(𝜇𝑗)
.𝑗 = 1, 2, .., 𝑛− 1, (3.14)

where

𝑥
′
(𝜇𝑗) = [𝑑𝑒𝑡(𝜇𝑗𝐼 − 𝐽𝑛−1)] = Π𝑛−1

𝑖=1,𝑖 ̸=𝑗(𝜇𝑗 − 𝜇𝑖) = (−1)𝑛−𝑗−1Π𝑛−1
𝑖=1,𝑖 ̸=𝑗|𝜇𝑗 − 𝜇𝑖|. (3.15)

The following is the proof of Theorem 2.5 which was stated in Chapter Two.

Proof. : For a periodic Jacobi matrix 𝐽𝑛, if the eigenvalues of 𝐽𝑛 and 𝐽𝑛−1 are distinct,

then the strict inequality (2.22) holds and by Theorem (2.3), its eigenvalues are the 𝑛 roots

of (2.21), that is,

𝜆𝑖 − 𝑎𝑛 − Σ𝑛−1
𝑘=1

𝑥𝑘

𝜆𝑖 − 𝜇𝑘

= 0, 𝑖 = 1, .., 𝑛. (3.16)

where

𝑥𝑗 = (𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2, 𝑗 = 1, .., 𝑛− 1 (3.17)

By Lemma 3.1 , gives that the above equations (3.16) has a unique solution

𝑥 = (𝑥1, ..., 𝑥𝑛−1)
𝑇 , and

𝑥𝑗 = −Π𝑛
𝑖=1(𝜆𝑖 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑗(𝜇𝑖 − 𝜇𝑗)

−1 > 0, 𝑗 = 1, .., 𝑛− 1. (3.18)

By Lemma 3.2 and Π𝑛
𝑖=1𝑏𝑖 = 𝛽 , we get

𝑠𝑛−1,𝑗 =
𝛽

𝑏𝑛−1𝑏𝑛𝑥
′(𝜇𝑗)𝑠1𝑗

, 𝑗 = 1, .., 𝑛− 1 (3.19)

Substituting (3.19) into (3.17) leads to

𝑏4𝑛[𝑥
′
(𝜇𝑗)]

2𝑠41𝑗 + [
2𝛽

𝑥′(𝜇𝑗)
− 𝑥𝑗]𝑏

2
𝑛[𝑥

′
(𝜇𝑗)]

2𝑠21𝑗 + 𝛽2 = 0.
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Solving the above equation, we have

𝑠21𝑗 =
|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±
√︀

∆𝑗

2𝑏2𝑛|𝑥
′(𝜇𝑗|

(3.20)

where

∆𝑗 = |𝑥′
(𝜇𝑗)𝑥𝑗|2 − 4𝛽(−1)𝑛−𝑗−1|𝑥′

(𝜇𝑗)𝑥𝑗| (3.21)

= (Π𝑛
𝑖=1|𝜇𝑗 − 𝜆𝑖|)(Π𝑛

𝑖=1|𝜇𝑗 − 𝜆𝑖| − 4𝛽(−1)𝑛−𝑗−1).

Since 𝐽𝑛−1 is a Jacobi matrix, then by lemma 3.2, we have 𝑠1𝑗 > 0, 𝑗 = 1, .., 𝑛− 1, and we

get ∆𝑗 ≥ 0

|𝑥′
(𝜇𝑗)𝜇𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +

√︀
∆𝑗 > 0.

or ∆𝑗 ≥ 0

|𝑥′
(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 −

√︀
∆𝑗 > 0.

From the above inequalities, (2.24) follows. The necessary condition is proved. We are

to show that (2.24) is also a sufficient condition for 𝑃𝐽𝐼 . We first use the given data

{𝜆𝑗}𝑛𝑗=1, {𝜇𝑗}𝑛−1
𝑗=1 and 𝛽 to construct a periodic Jacobi matrix. We define

𝑏𝑛 = [Σ𝑛−1
𝑗=1 (
|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±
√︀

∆𝑗

2|𝑥′(𝜇𝑗)|
)]

1
2 , (3.22)

and

𝑠1𝑗 = (
|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±
√︀

∆𝑗

2𝑏2𝑛|𝑥
′(𝜇𝑗)|

)
1
2 , 𝑗 = 1, .., 𝑛− 1 (3.23)

where ∆𝑗 is defined in (3.21) and for each 𝑗, there are two choices for the sign of
√︀

∆𝑗 .

From (2.24), we see that

∆𝑗 = Π𝑛
𝑖=1|𝜇𝑗 − 𝜆𝑖|2 − 4𝛽(−1)𝑛−𝑗−1Π𝑛

𝑖=1|𝜇𝑗 − 𝜆𝑖| ≥ 0
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and

|𝑥′
(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 −

√︀
∆𝑗 > |𝑥

′
(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 −

√︀
∆𝑗 + 4𝛽2 = 0.

Under condition (2.24), we know that 𝑛− 1 terms of the sum of 𝑏𝑛 and 𝑠21𝑗 are greater than

0 whenever the sign ± are chosen to be + or −. Consequently, we observe that the signs

± in 𝑏𝑛 can be chosen arbitrary, but we can choose the sign in 𝑠1𝑗 the same way as the

sign in 𝑏𝑛 for the same value of 𝑗. When the sign ± in 3.23 is chosen to be positive, we

denote 𝑠1𝑗 by 𝑠+1𝑗 and we denote 𝑠1𝑗 by 𝑠−1𝑗 when the sign is negative. If we have a choice

for each sign of
√︀

∆𝑗 , then we can obtain a 𝑏𝑛 from (3.22), and let 𝑔 = (𝑔1, ..., 𝑔𝑛−1)
𝑇 be

a (𝑛 − 1) × 1 vector whose 𝑗𝑡ℎ component 𝑔𝑗 is equal to 𝑠+1𝑗 or 𝑠−1𝑗 determined by 𝑏𝑛. It

has been established that by 𝜇1, .., 𝜇𝑛−1 and 𝑔, we can construct a matrix 𝐽𝑛−1 in a unique

manner, (Boley and Golub 1987, Parlett B. 1980).We then compute

𝑏𝑛−1 =
𝛽

𝑏1𝑏2...𝑏𝑛−2𝑏𝑛
(3.24)

We have

𝑎𝑛 = Σ𝑛
𝑖=1𝜆𝑖 − Σ𝑛−1

𝑖=1 𝜇𝑖 (3.25)

This completes the reconstruction of the matrix 𝐽𝑛.

Next, we are to show that the reconstruction matrix 𝐽𝑛 is a solution to the 𝑃𝐽𝐼 . It

is therefore sufficient to prove that {𝜆𝑗}𝑛𝑗=1 are the eigenvalues of 𝐽𝑛. We can also as well
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assume that 𝑔𝑖 be 𝑠+1𝑗 . From (3.19), (3.22) and (3.23),

(𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2 = (𝑏𝑛𝑠1𝑗)

2 + 2𝑏𝑛𝑏𝑛−1𝑠1𝑗𝑠𝑛−1,𝑗 + (𝑏𝑛−1𝑠𝑛−1,𝑗)
2

= 𝑏2𝑛𝑠
2
1𝑗 +

2𝛽

𝑥′(𝜇𝑗)
+

𝛽2

[𝑥′(𝜇𝑗)]2𝑏2𝑛𝑠
2
1𝑗

=
[𝑥

′
(𝜇𝑗)]

2𝑏4𝑛𝑠
4
1𝑗 + 2𝛽𝑥

′
(𝜇𝑗)𝑏

2
𝑛𝑠

2
1𝑗 + 𝛽2

[𝑥′(𝜇𝑗)]2𝑏2𝑛𝑠
2
1𝑗

=
[|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗]
2

2|𝑥′(𝜇𝑗)|[|𝑥′(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗

+
4𝛽(−1)𝑛−𝑗−1[|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗] + 4𝛽2

2|𝑥′(𝜇𝑗)|[|𝑥′(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗]

=
|𝑥′

(𝜇𝑗)𝑥𝑗|2 + ∆𝑗 + 2|𝑥′
(𝜇𝑗)𝑥𝑗|

√︀
∆𝑗

2|𝑥′(𝜇𝑗)|[|𝑥′(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗]

=
2|𝑥′

(𝜇𝑗)𝑥𝑗|2 − 4𝛽(−1)𝑛−𝑗−1|𝑥′
(𝜇𝑗)𝑥𝑗|+ 2|𝑥′

(𝜇𝑗)𝑥𝑗|
√︀

∆𝑗

2|𝑥′(𝜇𝑗)|[|𝑥′(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗]

= 𝑥𝑗

We therefore have,

𝜆𝑖 − 𝑎𝑛 − Σ𝑛−1
𝑘=1

(𝑏𝑛𝑠1𝑘 + 𝑏𝑛−1𝑠𝑛−1,𝑘)2

𝜆𝑖 − 𝜇𝑘

= 0, 𝑖 = 1, 2, ..., 𝑛

which in agreement with Theorem 2.3, and we know that

𝑑𝑒𝑡(𝜆𝑖𝐼 − 𝐽𝑛) = 0, 𝑖 = 1, 2, .., 𝑛,

we therefore conclude that the reconstruction matrix 𝐽𝑛 is a solution to 𝑃𝐽𝐼 .

We note that different choices of the signs of
√︀

∆𝑗 in 𝑏𝑛 will consequently, give rise

to different vectors 𝑔 and thus different 𝐽𝑛−1. As the choices of the signs in 𝑏𝑛 are more

than 2𝑛−1, the number of the constructed periodic Jacobi matrices 𝐽𝑛 is at most 2𝑛−1.

Theorem 2.6 covers the case that the matrices 𝐽𝑛 and 𝐽𝑛−1 have common eigenval-

ues.
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Proof. We prove Theorem 2.6. For simplicity, suppose 𝑚 = 1, that is 𝐽𝑛 and 𝐽𝑛−1 have

common eigenvalues 𝜆𝑝 = 𝜇𝑝. By theorem 2.2, we have

𝑥𝑝 = (𝑏𝑛𝑠1𝑝 + 𝑏𝑛−1𝑠𝑛−1,𝑝)
2 (3.26)

= 0

Combining this with (3.19),

𝑠21𝑝 =
(−1)𝑛−𝑝𝛽

𝑏2𝑛|𝑋
′(𝜇𝑝)|

(3.27)

and as 𝑠21𝑝 > 0, it follows that

(−1)𝑛−𝑝−1 < 0 (3.28)

In fact, (3.32) is equivalent to

0 = Π𝑛
𝑖=1|𝜇𝑝 − 𝜆𝑖| ≥ 4𝛽(−1)𝑛−𝑝−1. (3.29)

Consider equation (3.16), for 𝑖 = 𝑝, since 𝑥𝑝 = 0, the equation can be rewritten as

Σ𝑝−1
𝑘=1

𝑥𝑘

𝜆𝑖 − 𝜇𝑘

+ Σ𝑛−1
𝑘=𝑝+1

𝑥𝑘

𝜆𝑖 − 𝜇𝑘

= 𝜆𝑖 − 𝑎𝑛, 𝑖 = 1, 2, .., 𝑝− 1, 𝑝 + 1, ..., 𝑛. (3.30)

This system is a special case of equation 3.12 with 𝑛 − 1 equations and 𝑛 − 2 unknowns.

The system has a unique solution in accordance with lemma 3.1,

𝑥 = (𝑥1, .., 𝑥𝑝−1, 𝑥𝑝+1, .., 𝑥𝑛−1)
𝑇 ,

𝑥𝑗 = −Π𝑛
𝑖=1,𝑖 ̸=𝑝(𝜆𝑖 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑝,𝑗(𝜇𝑖 − 𝜇𝑗)

−1 > 0,

𝑗 = 1, 2, .., 𝑝− 1, 𝑝+ 1, .., 𝑛− 1. For 𝑗 ̸= 𝑝, we observe that, 𝜆𝑝−𝜇𝑗 = 𝜇𝑝−𝜇𝑗 ̸= 0 yields

the following:

𝑥𝑗 = −Π𝑛
𝑖=1(𝜆𝑖 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑗(𝜇𝑖 − 𝜇𝑗)

−1 > 0, 𝑗 = 1, 2, .., 𝑝− 1, 𝑝 + 1, .., 𝑛− 1 (3.31)
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By Theorem 2.4, we have, 𝑥𝑗 = (𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2, 𝑗 = 1, .., 𝑝− 1, 𝑝 + 1, .., 𝑛− 1. As

discussed in theorem 2.5 and combining (3.29), we see that (2.24) holds. The necessity

condition is therefore completed. We use the data given to reconstruct a periodic Jacobi

matrix. Computing 𝑏𝑛 from the expression below

𝑏𝑛 = [Σ𝑛−1
𝑗=1,𝑗 ̸=𝑝(

|𝑥′
(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±

√︀
∆𝑗

2|𝑥′(𝜇𝑗)|
) +

𝛽

|𝑥′(𝜇𝑝)|
]
1
2 . (3.32)

Let 𝑔 = (𝑔1, ..., 𝑔𝑛−1)
𝑇 , where for 𝑗 − 𝑝,

𝑔𝑝 = 𝑠1𝑝 = (
𝛽

𝑏2𝑛|𝑥
′(𝜇𝑝)|

)
1
2 (3.33)

for 𝑗 = 1, 2, .., 𝑝− 1, 𝑝 + 1, .., 𝑛− 1

𝑔𝑗 = 𝑠1𝑗 = (
|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±
√︀

∆𝑗

2𝑏2𝑛|𝑥
′(𝜇𝑗)|

)
1
2 . (3.34)

When we consider equation (2.24), we can easily see that 𝑛 − 2 terms of 𝑏𝑛 and 𝑠1𝑗 are

always greater than 0 whenever the signs± are chosen to be + or −. If 𝑗 ̸= 𝑝, for the same

value of 𝑗, the sign in the definition of 𝑏𝑛 and 𝑔𝑗 should be chosen the same. Analogous to

the construction in theorem 2.5, the matrix 𝐽𝑛 can be determined completely.

We now show that the matrix 𝐽𝑛 is a solution to 𝑃𝐽𝐼 . As 𝜇𝑝 is an eigenvalue

common to the matrices 𝐽𝑛 and 𝐽𝑛−1, then from equation (2.24), we have (−1)𝑛−𝑝−1 ≤ 0.

From (3.19) and (3.33) we have,

𝑏𝑛𝑠1𝑝 + 𝑏𝑛−1𝑠𝑛−1,𝑝 = 𝑏𝑛(
𝛽

𝑏2𝑛|𝑥
′(𝜇𝑝)|

)
1
2 +

𝛽

𝑏𝑛𝑥
′(𝜇𝑗)𝑠1𝑝

(3.35)

= (
𝛽

|𝑥′(𝜇𝑝)|
)
1
2 + (−1)𝑛−𝑝−1(

𝛽

|𝑥′(𝜇𝑝)|
)
1
2

= 0

Notwithstanding, if 𝑗 ̸= 𝑝 and supposing 𝑔𝑗 is the same as 𝑠+1𝑗 then from (3.19), (3.32) and
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(3.34), we have

(𝑏𝑛𝑠1𝑗 + 𝑏𝑛−1𝑠𝑛−1,𝑗)
2 = 𝑏2𝑛𝑠

2
1𝑗 +

2𝛽

𝑥′(𝜇𝑗)
+

𝛽2

[𝑥′(𝜇𝑗)]2𝑏2𝑛𝑠
2
1𝑗

=
2|𝑥′

(𝜇𝑗)𝑥𝑗|2 − 4𝛽(−1)𝑛−𝑗−1|𝑥′
(𝜇𝑗)𝑥𝑗|+ 2|𝑥′

(𝜇𝑗)|
√︀

∆𝑗

2|𝑥′(𝜇𝑗)|[|𝑥′(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 +
√︀

∆𝑗]

= 𝑥𝑗

= −Π𝑛
𝑖=1,𝑖 ̸=𝑝(𝜆𝑖 − 𝜇𝑗)(𝜆𝑝 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑝,𝑗(𝜇𝑖 − 𝜇𝑗)

−1(𝜇𝑝 − 𝜇𝑗)
−1

= −Π𝑛
𝑖=1,𝑖 ̸=𝑝(𝜆𝑖 − 𝜇𝑗)Π

𝑛−1
𝑖=1,𝑖 ̸=𝑝,𝑗(𝜇𝑖 − 𝜇𝑗)

−1.

Therefore, for 𝑖 = 1, 2, .., 𝑝− 1, 𝑝 + 1, .., 𝑛,

𝜆𝑖 − 𝑎𝑛 − Σ𝑝−1
𝑘=1

(𝑏𝑛𝑠1𝑘 + 𝑏𝑛−1𝑠𝑛−1,𝑘)2

𝜆𝑖 − 𝜇𝑘

− Σ𝑛−1
𝑘=𝑝+1

(𝑏𝑛𝑠1𝑘 + 𝑏𝑛−1𝑠𝑛−1,𝑘)2

𝜆𝑖 − 𝜇𝑘

= 0,

then

𝑑𝑒𝑡(𝜆𝑖𝐼 − 𝐽𝑛) = 0, 𝑖 = 1, .., 𝑝− 1, 𝑝 + 1, .., 𝑛.

We can therefore conclude that the matrix 𝐽𝑛 is a solution to the problem 𝑃𝐽𝐼 . The choices

of the signs in 𝑏𝑛 are no more than 2𝑛−2, so there are at most 2𝑛−2 different solutions.

We want to summarize the above discussions by assuming that 𝜇𝑗𝑗𝑖 ∈ {1, 2, .., 𝑛−

1} are elements of the sets 𝜆 and 𝜇 and letting 𝑞 be a subscript set of 𝜇𝑗 . If the solution to

𝑃𝐽𝐼 exists, the following procedure can be used to construct the solution. Compute

𝑏𝑛 = [Σ𝑛−1
𝑗=1,𝑗 ̸=𝑞(

|𝑥′
(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±

√︀
∆𝑗

2|𝑥′(𝜇𝑗)|
) + Σ𝑛−1

𝑗=1,𝑗 ̸=𝑞

𝛽

|𝑥′(𝜇𝑗)|
]
1
2 . (3.36)

where |𝑋 ′
(𝜇𝑗)𝑥𝑗| = Π𝑛

𝑖=1|𝜇𝑗−𝜆𝑖|, |𝑥
′
(𝜇𝑗)| = 𝜇Π𝑛−1

𝑖=1,𝑖 ̸=𝑞|𝜇𝑗−𝜇𝑖|. We can pick a (𝑛−1)×1

vector 𝑔 = (𝑔𝑗), where

𝑔𝑗 = 𝑠1𝑗 = (
𝛽

𝑏2𝑛|𝑥
′(𝜇𝑗)|

)
1
2 , 𝑗 ∈ 𝑞. (3.37)

𝑔𝑗 = 𝑠1𝑗 = (
|𝑥′

(𝜇𝑗)𝑥𝑗| − 2𝛽(−1)𝑛−𝑗−1 ±
√︀

∆𝑗

2𝑏2𝑛|𝑥
′(𝜇𝑗)|

)
1
2 , 𝑗 ̸∈ 𝑞. (3.38)
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Finally, we state some theorems and their proofs of the solvability and computabil-

ity of the (𝑃𝐼𝐸𝑃 ). Let 𝐴𝑛 ∈ 𝐻𝑛, 𝑛 = 1, 2, .., 𝑛 be the set of all 𝑛× 𝑛 Hermitian matrices.

We are to find a sufficient condition under which the following problem is solvable. Let

𝐴 = [𝑎𝑖𝑗] ∈ 𝐻𝑛 be given, and 𝜆 = (𝜆1, .., 𝜆𝑛) be a given vector in 𝑅𝑛. We are to find

𝑐 = (𝑐1, .., 𝑐𝑛) ∈ 𝑅𝑛 such that the matrix

𝐴(𝑐) = 𝐴 + Σ𝑛
𝑖=1𝑐𝑖𝐴𝑖 (3.39)

has eigenvalues 𝜆1, .., 𝜆𝑛.

The following are the definitions and terms we are going to use in the lemmas and

theorems below.

𝑎 = (𝑎1, 𝑎2, .., 𝑎𝑛) = (𝑎11, 𝑎22, .., 𝑎𝑛𝑛),

𝐴(0) = 𝐴− 𝑑𝑖𝑎𝑔(𝑎1, 𝑎2, ..., 𝑎𝑛)

𝐴
(0)
𝑡 = 𝐴𝑡 − 𝑑𝑖𝑎𝑔(𝑎

(𝑡)
11 , 𝑎

(𝑡)
22 , ..., 𝑎

(𝑡)
𝑛𝑛,

𝐴 = 𝐴(0) − Σ𝑛
𝑡=1𝑎𝑡𝐴

(0)
𝑡 .

For 1 ≤ 𝑘 < 𝑗 ≤ 𝑛 denote

𝜆𝑘,𝑗 = 𝜆𝑚𝑎𝑥(𝐴[𝑘, 𝑘 + 1, .., 𝑗]),

𝜆𝑘,𝑗 = 𝜆𝑚𝑖𝑛(𝐴[𝑘, 𝑘+!, .., 𝑗]),

𝜆
(𝑡)

𝑘,𝑗 = 𝜆𝑚𝑎𝑥(𝐴
(0)
𝑡 [𝑘, 𝑘 + 1, .., 𝑗]),

𝜆
(𝑡)
𝑘,𝑗 = 𝜆𝑚𝑖𝑛(𝐴

(0)
𝑡 [𝑘, 𝑘 + 1, .., 𝑗]),

𝜔
(0)
𝑘 = 𝜆

(𝑡)

1,𝑘+1 − 𝜆
(𝑡)
𝑘,𝑛,

𝜔
(𝑡)
𝑘 = 𝜆

(𝑡)
1,𝑘+1 − 𝜆

(𝑡)

𝑘,𝑛,

𝑟𝑘,𝑗 = 𝑔(𝐴[𝑘, 𝑘 + 1, .., 𝑗]), 𝑔
(𝑡)
𝑘,𝑗 = 𝑔(𝐴

(0)
𝑡 [𝑘, 𝑘 + 1, .., 𝑗]),

𝑟
(𝑡)
𝑘 = 𝑔

(𝑡)
1,𝑘+1 + 𝑔

(𝑡)
𝑘,𝑛.
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Since 𝑡𝑟𝐴 = 𝑡𝑟𝐴
(0)
𝑡 [𝑘, 𝑘 + 1, .., 𝑗] = 0, then

𝜆𝑘,𝑗 ≤ 0 ≤ 𝜆𝑘,𝑗

𝜆𝑡
𝑘,𝑗 ≤ 0 ≤ 𝜆

(𝑡)

𝑘,𝑗,

𝜔
(𝑡)
𝑘 ≤ 0 ≤ 𝜔

(𝑡)
𝑘 (𝑡 = 1, 2, ..𝑛)

Before we state any theorem for the solvability of the above problem, we need the following

Lemmas provided in ( Horn and Johnson, 1985).

Lemma 3.0.3. (Cauchy-Poincare). Let 𝐴 ∈ 𝐻𝑛. Then

𝜆𝑘(𝐴) ≤ 𝜆𝑘(𝐴[𝑖1, .., 𝑖𝑚]) ≤ 𝜆𝑛−𝑚+𝑘(𝐴)

for each 𝑘 = 1, ..,𝑚, where 𝑚 ≤ 𝑛. As a result, we have

𝜆𝑚𝑖𝑛(𝐴[𝑘, 𝑘 + 1, .., 𝑛]) ≤ 𝜆𝑘(𝐴) ≤ 𝜆𝑚𝑎𝑥(𝐴[1, 2, .., 𝑘])

for each 𝑘 = 1, 2, .., 𝑛.

Lemma 3.0.4. (Weyl). Let 𝐴,𝐵 ∈ 𝐻𝑛. Then

𝜆𝑘(𝐴) + 𝜆𝑚𝑖𝑛(𝐵) ≤ 𝜆𝑘(𝐴 + 𝐵)𝜆 ≤ 𝜆𝑘(𝐴) + 𝜆𝑚𝑎𝑥(𝐵) (3.40)

for each 𝑘 = 1, 2, .., 𝑛.

For real vectors 𝑢 and 𝑣, ”𝑢 > 𝑣” means that 𝑢 majorizes 𝑣.

Lemma 3.0.5. (Schur). Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝐻𝑛. Then

(𝑎11, 𝑎22, .., 𝑎𝑛𝑛) > (𝜆1(𝐴), 𝜆2(𝐴), .., 𝜆𝑛(𝐴)). (3.41)

Lemma 3.0.6. . Let {𝑑𝑖}𝑛𝑖=1, {𝑦𝑖}𝑛𝑖=1 be real numbers and Σ𝑘
𝑖=1𝑦𝑖 ≤ Σ𝑘

𝑖=1𝑑𝑖(𝑘 = 1, 2, .., 𝑛).

Then for 𝑣1 ≥, ..,≥ 𝑣𝑛 ≥ 0 one has the inequalities

Σ𝑘
𝑖=1𝑦𝑖𝑣𝑖 ≤ Σ𝑘

𝑖=1𝑑𝑖𝑣𝑖, 𝑘 = 1, 2, .., 𝑛. (3.42)
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Proof. : Writing the sums using summation by parts, we have

Σ𝑘
𝑖=1𝑦𝑖𝑣𝑖 = Σ𝑘−1

𝑗=1Σ𝑗
𝑖=1𝑦𝑖(𝑣𝑗 − 𝑣𝑗+1) + 𝑣𝑘Σ𝑘

𝑖=1𝑦𝑖

≤ Σ𝑘−1
𝑗=1(𝑣𝑗 − 𝑣𝑗+1)Σ

𝑗
𝑖=1𝑑𝑖 + 𝑣𝑘Σ𝑘

𝑖=1𝑑𝑖.

The inequality (3.42) can be established easily. (See for example,Horn and Johnson 1991)

Similarly, if

Σ𝑘
𝑖=1𝑑𝑖 ≥ Σ𝑘

𝑖=1𝑦𝑖(𝑘 = 1, 2, .., 𝑛),

then for 𝑣1 ≤ 𝑣2 ≤, ..,≤ 𝑣𝑛 ≤ 0, we have

Σ𝑘
𝑖=1𝑑𝑖𝑣𝑖 ≤ Σ𝑘

𝑖=1𝑦𝑖𝑣𝑖, 𝑘 = 1, .., 𝑛.

If Σ𝑛
𝑖=𝑘𝑑𝑖 ≤ Σ𝑛

𝑖=𝑘𝑦𝑖(𝑘 = 1, 2, .., 𝑛), then for 0 ≤ 𝑣𝑖 ≤ ... ≤ 𝑣𝑛, we have

Σ𝑛
𝑖=𝑘𝑑𝑖𝑣𝑖 ≤ Σ𝑛

𝑖=𝑘𝑦𝑖𝑣𝑖, 𝑘 = 1, 2, .., 𝑛.

Lemma 3.0.7. Let {𝑏[𝑡]}𝑛𝑡=1 be the increasing arrangement of the real numbers {𝑏𝑡}𝑛𝑡=.

Then one has the inequalities

Σ𝑚
𝑡=1𝑐𝑡𝑏

[𝑛−𝑡+1] ≤ Σ𝑚
𝑡=1𝑐𝑡𝑏𝑡 ≤ Σ𝑚

𝑡=1𝑐𝑡𝑏
[𝑡],

Σ𝑛
𝑡=𝑚+1𝑐𝑡𝑏𝑡 ≤ Σ𝑛

𝑡=𝑚+1𝑐𝑡𝑏
[𝑡]

for real numbers

𝑐1 ≤ .. ≤ 𝑐𝑚 < 0 ≤ 𝑐𝑚+1 ≤ .. ≤ 𝑐𝑛

.

Proof. :

In reference to the first inequality in this lemma, we set 𝑑𝑖 = 𝑏𝑖 and 𝑦𝑖 = 𝑏[𝑖](𝑖 =

1, 2, .., 𝑛), while 𝑣𝑖 = 𝑐𝑖 for 𝑖 > 𝑚 and 𝑣𝑖 = 0 for 𝑖 ≤ 𝑚. We then get the second inequality.

The proof of the first inequality is similar.

Lemma 3.0.8. Let 𝐴 = 𝑋 + 𝐵, where 𝑋 = 𝑑𝑖𝑎𝑔(𝑥1, .., 𝑥𝑛) with 𝑥1 ≤ ... ≤ 𝑥𝑛 and
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𝐵 = 𝑏𝑖𝑗 ∈ 𝐻𝑛 with 𝑏𝑖𝑖 = 0(𝑖 = 1, 2, .., 𝑛). Then

𝜆𝑘+1(𝐴)− 𝜆𝑘(𝐴) ≤ (𝑥𝑘+1 − 𝑥𝑘) + 𝜆𝑚𝑎𝑥(𝐵[1, 2, .., 𝑘 + 1])

− 𝜆𝑚𝑖𝑛(𝐵[𝑘, 𝑘 + 1, .., 𝑛])

Proof. :

We have to note that 𝐴[𝑘, 𝑘 + 1, .., 𝑘 + 𝑚] = 𝑑𝑖𝑎𝑔(𝑥𝑘, 𝑥𝑘+1, .., 𝑥𝑘+𝑚) +

𝐵[𝑘, 𝑘 + 1, .., 𝑘 + 𝑚]. Lemmas (3.7) and (3.8) imply that

𝜆𝑘+1(𝐴) ≤ 𝜆𝑚𝑎𝑥(𝐴[1, 2, .., 𝑘 + 1])

≤ 𝑥𝑘+1 + 𝜆𝑚𝑎𝑥(𝐵[1, 2, .., 𝑘 + 1])

and

𝜆𝑘(𝐴) ≥ 𝜆𝑚𝑖𝑛(𝐴[𝑘, 𝑘 + 1, .., 𝑛])

≥ 𝑥𝑘 + 𝜆𝑚𝑖𝑛(𝐵[𝑘, 𝑘 + 1, .., 𝑛])

We see that the above lemma is easily established.

Theorem 3.0.5. Let 𝑎(𝑡)𝑖𝑖 = 𝛿𝑖𝑡(𝑖, 𝑡 = 1, .., 𝑛) and 𝜆1 ≤ 𝜆2 ≤ .. ≤ 𝜆𝑠 < 0 ≤ ... ≤ 𝜆𝑠+1 ≤

.. ≤ 𝜆𝑛. Suppose

𝜆𝑘+1 − 𝜆𝑘 ≥ �̄�1,𝑘+1 − 𝜆𝑘,𝑛 + Σ𝑠
𝑡=1𝜆𝑡𝜔

[𝑡]
𝑘 + Σ𝑛

𝑡=𝑠+1𝜆𝑡�̄�
[𝑡]
𝑘

for each 𝑘 = 1, 2, .., 𝑛− 1. Then problem (3.39) is solvable.

Proof. :(Adapted from Luoluo, 1995)

We assume that the assumptions in the statement of the above theorem hold. For

the vectors 𝜆 and 𝑎 define

𝐷(𝜆, 𝑎) = {𝑥 = (𝑥1, .., 𝑥𝑛) ∈ 𝑅𝑛 : 𝑥 + 𝑎

> 𝜆, 𝑥1 + 𝑎1 ≤ 𝑥2 + 𝑎2 ≤ .. ≤ 𝑥𝑛 + 𝑎𝑛}
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We can verify that 𝐷(𝜆, 𝑎) is a nonempty, bounded, convex and closed set in 𝑅𝑛. For

𝑥 ∈ 𝐷(𝜆, 𝑎) define 𝐴(𝑥) = 𝐴 + Σ𝑛
𝑡=1𝑥𝑡𝐴𝑡. Let 𝜆𝑖(𝑥) be the 𝑖𝑡ℎ smallest eigenvalue of

𝐴(𝑥). Let us assume that 𝑗𝑥 is the index satisfying 1 ≤ 𝑗𝑥 ≤ 𝑛 and

𝑥1 + 𝑎1 ≤ 𝑥2 + 𝑎2 ≤ ... ≤ 𝑥𝑗𝑥 + 𝑎𝑗𝑥 < 0

≤ 𝑥𝑗𝑥+1 + 𝑎𝑗𝑥+1 ≤ ... ≤ 𝑥𝑛 + 𝑎𝑛

Since 𝐴(𝑥) = 𝑑𝑖𝑎𝑔(𝑥1 + 𝑎1, 𝑥2 + 𝑎2, .., 𝑥𝑛 + 𝑎𝑛) +𝐴+ Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 , then by Lemma

(3.8) we have

𝜆𝑘+1(𝑥)− 𝜆𝑘(𝑥) − (𝑥𝑘+1 + 𝑎𝑘+1) + (𝑥𝑘 + 𝑎𝑘)

≤ 𝜆𝑚𝑎𝑥((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[1, .., 𝑘 + 1])

− 𝜆𝑚𝑖𝑛((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[𝑘, 𝑘 + 1, .., 𝑛])

Applying Lemma (3.4), we have

𝜆𝑚𝑎𝑥((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[1, .., 𝑘 + 1]) (3.43)

≤ 𝜆1,𝑘+1 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝜆

(𝑡)
1,𝑘+1

+ Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)𝜆

(𝑡)

1,𝑘+1

and

𝜆𝑚𝑖𝑛((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[𝑘, 𝑘 + 1, .., 𝑛]) (3.44)

≥ 𝜆𝑘,𝑛 + Σ𝑗𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝜆

(𝑡)

𝑘,𝑛 +

Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)𝜆

𝑡
𝑘,𝑛. (3.45)
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Combining the two inequalities above, we have

𝜆𝑘+1(𝑥)− 𝜆𝑘(𝑥)− (𝑥𝑘+1 + 𝑎𝑘+1) + (𝑥𝑘 + 𝑎𝑘) (3.46)

≤ 𝜆1,𝑘+1 − 𝜆𝑘,𝑛

+Σ𝑗𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)(𝜆

(𝑡)
1,𝑘+1 − 𝜆

𝑡

𝑘,𝑛 (3.47)

+ Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)(𝜆

(𝑡)

1,𝑘+1 − 𝜆
(𝑡)
𝑘,𝑛.

The following is the implication of the inequalities in lemma (3.6) and lemma (3.7)

Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)(𝜆

(𝑡)

1,𝑘+1 − 𝜆
(𝑡)
𝑘,𝑛) (3.48)

= Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)𝜔

(𝑡)
𝑘

≤ Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)𝜔

(𝑡)
𝑘

≤ Σ𝑛
𝑡=𝑗𝑥+1𝜆𝑡𝜔

(𝑡)
𝑘

≤ Σ𝑛
𝑡=𝑠+1𝜆𝑡𝜔

(𝑡)
𝑘 .

We have to note that the last inequality holds for either 𝑗𝑥 ≥ 𝑠 or 𝑗𝑥 < 𝑠. Similarly, we

note again that the inequalities in lemmas (3.6) and (3.7) above imply that

Σ𝐽𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)(𝜆

(𝑡)
1,𝑘+1 − 𝜆

(𝑡)

𝑘,𝑛) (3.49)

≤ Σ𝑗𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝜔

(𝑡)
𝑘

≤ Σ𝑗𝑥
𝑡=1𝜆𝑡𝜔

(𝑡)
𝑘

≤ Σ𝑠
𝑡=1𝜆𝑡𝜔

(𝑡)
𝑘 .

We therefore conclude from the inequalities above that there hold for 𝑘 = 1, 2, .., 𝑛−
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1 the inequalities

𝜆𝑘+1(𝑥)− 𝜆𝑘(𝑥)− (𝑥𝑘+1 + 𝑎𝑘+1) + (𝑥𝑘 + 𝑎𝑘)

≤ 𝜆1,𝑘+1 − 𝜆𝑘,𝑛 + Σ𝑠
𝑡=1𝜆𝑡𝜔

(𝑡)
𝑘

+ Σ𝑛
𝑡=𝑠+1𝜆𝑡𝜔

(𝑡)
𝑘

We define the continuous map 𝑓 : 𝐷(𝜆, 𝑎) → 𝑅𝑛, 𝑓(𝑥) = 𝜆 + 𝑥 − 𝜆(𝑥), where 𝜆(𝑥) =

(𝜆1(𝑥), 𝜆2(𝑥), .., 𝜆𝑛(𝑥)). By the assumption of the above Theorem (3.5) and the above

inequality, we can verify that for each 𝑘 = 1, 2, .., 𝑛− 1

𝑓𝑘(𝑥) + 𝑎𝑘 ≤ 𝑓𝑘+1(𝑥) + 𝑎𝑘+1, (3.50)

where 𝑓𝑘(𝑥) is the 𝑘𝑡ℎ component of 𝑓(𝑥). In addition to this, since {𝑥𝑡 + 𝑎𝑡}𝑛𝑡=1 are the

diagonal entries of 𝐴(𝑥), then by Lemma (3.5), we have 𝑥 + 𝑎 > 𝜆(𝑥) and therefore

𝑓(𝑥) + 𝑎 = 𝑥 + 𝑎− 𝜆(𝑥) + 𝜆 > 𝜆. (3.51)

The two equations above mean that 𝑓(𝑥) ∈ 𝐷(𝜆, 𝑎). By Brouwer’s fixed-point

theorem we know that there exists a vector 𝑐 = (𝑐1, 𝑐2, .., 𝑐𝑛 ∈ 𝐷(𝜆, 𝑎) such that 𝑓(𝑐) =

𝑐, that is 𝜆(𝑐) = 𝜆. In other words, the matrix 𝐴(𝑐) = 𝐴 + Σ𝑛
𝑡=1𝑐𝑡𝐴𝑡 has eigenvalues

𝜆1, 𝜆2, .., 𝜆𝑛 and hence problem (3.39) is solvable.

Theorem 3.0.6. Let 𝑎(𝑡)𝑖𝑖 = 𝛿𝑖𝑡(𝑖, 𝑡 = 1, 2, .., 𝑛) and 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑠 < 0 ≤ ... ≤

𝜆𝑠+1 ≤ ... ≤ 𝜆𝑛. Suppose

𝜆𝑘+1 − 𝜆𝑘 (3.52)

≥ 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 + Σ𝑠
𝑡=1|𝜆𝑡|𝑟[𝑛−𝑡+1]

𝑘

+ Σ𝑛
𝑡=𝑠+1𝜆𝑡𝑟

[𝑡]
𝑘

for each 𝑘 = 1, 2, .., 𝑛− 1. The problem (3.39) is solvable.
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Proof. : ( Luoluo, 1995).

The proof of this theorem is similar to the above proved theorem. We only have to

replace two inequalities in theorem (3.5) by

𝜆𝑘+1(𝑥)− 𝜆𝑘(𝑥)− (𝑥𝑘+1 + 𝑎𝑘+1) + (𝑥𝑘 + 𝑎𝑘) ≤

𝜆𝑚𝑎𝑥((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[1, .., 𝑘 + 1]) (3.53)

− 𝜆𝑚𝑖𝑛((𝐴 + Σ𝑛
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝐴

(0)
𝑡 )[𝑘, .., 𝑛])

≤ 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 − Σ𝑗𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)(𝑔

(𝑡)
1,𝑘+1 + 𝑔

(𝑡)
𝑘,𝑛)

+ Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)(𝑔

(𝑡)
1,𝑘+1 + 𝑔

(𝑡)
𝑘,𝑛)

≤ 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 − Σ𝑗𝑥
𝑡=1(𝑥𝑡 + 𝑎𝑡)𝑟

[𝑛−𝑡+1]
𝑘

+ Σ𝑛
𝑡=𝑗𝑥+1(𝑥𝑡 + 𝑎𝑡)𝑟

(𝑡)
𝑘

≤ 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 − Σ𝑗𝑥
𝑡=1𝜆𝑡𝑟

[𝑛−𝑡+1]
𝑘

+ Σ𝑛
𝑡=𝑗𝑥+1𝜆𝑡𝑟

(𝑡)
𝑘 (3.54)

≤ 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 − Σ𝑠
𝑡=1𝜆𝑡𝑟

[𝑛−𝑡+1]
𝑘

+ Σ𝑛
𝑡=𝑠+1𝜆𝑡𝑟

(𝑡)
𝑘 (3.55)

= 𝑟1,𝑘+1 + 𝑟𝑘,𝑛 + Σ𝑠
𝑡=1|𝜆𝑡|𝑟[𝑛−𝑡+1]

𝑘

+ Σ𝑛
𝑡=𝑠+1𝜆𝑡𝑟

(𝑡)
𝑘 , (3.56)

the second inequality comes from the Gerschgorin disc theorem, the third comes from

lemma (3.7), and the fourth comes from lemma (3.6). The details are omitted.
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CHAPTER 4

IEP for a class of Singular Hermitian Matrices

In this chapter, we consider the solution of the IEP for a class of Hermitian matrices. We

restrict ourselves to singular symmetric matrices. The IEP has been more famous by Mack

Kac’s 1966 article ”Can I hear the shape of a drum?” Literally it is difficult, if not impos-

sible to determine the shape of a drum from its vibration modes. The problem becomes

solvable only when certain parameters are prescribed. This includes prescribing that the

matrix is tridiagonal. This case has been extensively investigated already. The case for

singular symmetric matrices, however, have received little to no attention. We therefore

discuss the inverse eigenvalue problem for singular Hermitian matrices. We will consider

full singular symmetric matrices. Hermitian matrices are endowed with real eigenvalues.

This makes the problem more tractable. We therefore want to construct singular 𝑛 × 𝑛

symmetric matrices of this form from their eigenvalues. We therefore develop and prove

an algorithm using matrix invariants for solving direct eigenvalue problem for singular

symmetric matrices.

For an 𝑛× 𝑛 symmetric matrix, the following properties hold:

1. The matrices are singular and symmetric

2. The eigenvalues are real and the number of distinct values is the same as the rank.

3. The matrices concerned have arbitrary non zero elements for 𝑟 > 1.

Let 𝑀 and 𝑁 denote the subset of square matrices where 𝑀 ∈ 𝐻𝑛, 𝐻𝑛 is the set of

Hermitian matrices. Our 𝑀 in this case is the set of some singular symmetric matrices

with real entries. 𝑁 denotes a class of matrices which contains parameters. Given a matrix

𝐴 ∈ 𝑀 , scalar {𝜆1, 𝜆2, ...., 𝜆𝑛} ∈ 𝐹 and a class of matrices 𝑁 , we are to find some

parameters 𝑋 ∈ 𝑁 such that 𝜎(𝑋𝐴) = {𝜆1, 𝜆2, ..., 𝜆𝑛}. The IEP under the outlined
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conditions for ’large’ matrices is generally unsolvable. As such we begin with the 2 × 2

singular symmetric matrices and extend to the highest possible 𝑛 × 𝑛 singular symmetric

matrix.

4.1 Preliminaries

In what follows, we denote the 𝑛 × 𝑛 singular symmetric matrix (𝑎𝑖𝑗) such that

𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝑖, 𝑗 = 1, ..., 𝑛 by 𝐴𝑛. Without loss of generality, singularity is achieved by

multiplying the first row by prescribed scalars. We denote a singular symmetric matrix of

rank 𝑟 by 𝐴(𝑛,𝑟). In this case we write 𝑅𝑖 = 𝑘𝑅𝑖+1 to denote that the 𝑖𝑡ℎ row is 𝑘 times the

first row, where 𝑘 ∈ R. Finally, we denote the spectrum of 𝐴𝑛 by Λ𝑛 = {𝜆1, ..., 𝜆𝑛}. If the

rank of 𝐴 is 𝑟, then we assume 𝜆𝑖 ̸= 0 for 𝑖 = 1, ..., 𝑟, but 𝜆𝑖 = 0, 𝑖 = 𝑟 + 1, ..., 𝑛.

Lemma 4.1.1. Let 𝐴 be a non-traceless, symmetric matrix of rank 𝑟 with non-vanishing

elements. Then there exits an isomorphism between the elements of 𝐴 and its distinct non-

zero eigenvalues if and only if 𝑟 = 1.

Corollary: The inverse eigenvalue problem has a unique solution for singular symmetric

matrices of rank 1 with prescribed linear dependence relation.

4.1.1 Specific Case 1

(n=2, r=1): We begin by considering 𝐴(2,1). By definition, 𝐴(2,1) is of the form:

𝐴(2,1) =

⎛⎝ 𝑎11 𝑘𝑎11

𝑘𝑎11 𝑘2𝑎11

⎞⎠
= 𝑎11

⎛⎝ 1 𝑘

𝑘 𝑘2

⎞⎠ .

Let Λ2 = {𝜆1, 𝜆2}. Since 𝐴(2,1) is singular of rank 1, it follows that 𝜆2 = 0. We have:

𝑇𝑟(𝐴(2,1)) = 𝜆 = 𝑎11(1 + 𝑘2). Therefore 𝑎11 = 𝜆
1+𝑘2

.
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Hence:

𝐴(2,1) =
𝜆

1 + 𝑘2

⎛⎝ 1 𝑘

𝑘 𝑘2

⎞⎠ .

Thus 𝐴(2,1) has been reconstructed for given 𝜆 and prescribed scalar 𝑘.

We see from this formula that for any given 𝜆 and parameter 𝑘, we can generate any

2× 2 singular symmetric matrix of rank one. For example if 𝑘 = 2, 𝜆 = 5, we have

𝐴(2,1) =

⎛⎝ 1 2

2 4

⎞⎠ .

4.1.2 Extension to Hermitian matrices

We now extend the above to Hermitian matrices of order 2 × 2. 𝐴 is Hermitian

implies that, 𝑎21 = 𝑎12. Linear dependence of rows is given by 𝑎21 = 𝑘𝑎11 and 𝑎22 = 𝑘𝑎12,

so that 𝑎21 = 𝑎12 = 𝑘𝑎11. Then 𝑎22 = 𝑘(𝑘𝑎11) = |𝑘|2𝑎11. (Note that the diagonal elements

of Hermitian matrix are real.) We now rewrite the matrix as;

𝐴(2,1) =

⎛⎝ 𝑎11 𝑘𝑎11

𝑘𝑎11 |𝑘|2𝑎11

⎞⎠

= 𝑎11

⎛⎝ 1 𝑘

𝑘 |𝑘|2

⎞⎠
Thus 𝑇𝑟𝐴 = 𝜆 = 𝑎11(1 + |𝑘|2) =⇒ 𝑎11 = 𝜆

1+|𝑘|2 . From this, we see that any 2 × 2

Hermitian matrix which has a parameter with the same value as the modulus 𝑘 satisfies the

above formula. Example: Let 𝑘 = 1 + 𝑖, 𝜆 = 5 and 𝑘 = 1− 𝑖. We have 𝑎11 = 5
3

and

𝐴(2,1) =
5

3

⎛⎝ 1 1− 𝑖

1 + 𝑖 2

⎞⎠
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4.2 New Results

We generalize the method above in the following two theorems, first for an 𝑛 × 𝑛

singular symmetric matrix of rank 1 and then of rank 𝑟, where 1 ≤ 𝑟 < 𝑛.

Theorem 4.2.1. Given the spectrum and the row multipliers 𝑘𝑖, 𝑖 = 1, ..., 𝑛−1, the inverse

eigenvalue problem for a 𝑛× 𝑛 singular symmetric matrix of rank 1 is solvable.

Proof. Given the spectrum Λ𝑛 = {𝜆1, 𝜆2, ..., 𝜆𝑛}, since rank 𝐴𝑛 = 1, it follows from our

notation above that𝜆1 ̸= 0 and 𝜆𝑖 = 0, 𝑖 = 2, ..., 𝑛. Let 𝑘𝑖, 𝑖 = 1, ..., 𝑘𝑛−1 be the row

multiples. Letting

𝐴(𝑛,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎11𝑘1 𝑎11𝑘1𝑘2 · · · 𝑎11𝑘1𝑘2 · · · 𝑘𝑛−1

𝑎11𝑘1 𝑎11𝑘
2
1 𝑎11𝑘

2
1𝑘2 · · · 𝑎11𝑘

2
1𝑘2 · · · 𝑘𝑛−1

𝑎11𝑘1𝑘2 𝑎11𝑘
2
1𝑘2 𝑎11𝑘

2
1𝑘

2
2𝑘3 · · · 𝑎11𝑘

2
1𝑘

2
2𝑘3 · ·�̇�𝑛−1

...
...

...
...

𝑎11𝑘1𝑘2 · · · 𝑘𝑖−1 𝑎11𝑘
2
1𝑘2 · · · 𝑘𝑖−1 𝑎11𝑘

2
1𝑘

2
2𝑘3 · · · 𝑘𝑖−1 · · · 𝑎11𝑘

2
1𝑘

2
2𝑘

2
3 · · · 𝑘2

𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then 𝑇𝑟(𝐴) = 𝜆 = 𝑎11(1 + 𝑘2

1 + 𝑘2
1𝑘

2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−1). Hence

𝑎11 =
𝜆

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−1

.

The result follows by induction on 𝑛.

We state the following theorem for the general case where 𝐴𝑛 has rank 𝑟:

Theorem 4.2.2. The inverse eigenvalue problem for an 𝑛 × 𝑛 singular symmetric matrix

of rank 𝑟 is solvable provided that 𝑛− 𝑟 arbitrary parameters are prescribed.
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Proof. Let 𝐴(𝑛,𝑟) = [𝑎𝑖𝑗], where 𝑛 ≥ 2. It is obvious that,

𝑎𝑖𝑗 = 𝑎11

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏︀𝑗−1

𝑠=0 𝑘𝑠, 𝑖 < 𝑗

(
∏︀𝑖−1

𝑠=0 𝑘𝑠)
2, 𝑖 = 𝑗∏︀𝑖−1

𝑠=0 𝑘𝑠, 𝑖 > 𝑗

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

𝑎11 =
𝜆1

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−𝑟

and

𝑎𝑖𝑗 = 𝜆2, where 𝑖 = 𝑗 = 𝑛− 𝑟 + 2

... =
... (4.1)

𝑎𝑛𝑛 = 𝜆𝑟

𝜆1, 𝜆2......𝜆𝑟 ∈ R such that 𝑅𝑖 = 𝑘𝑖−1𝑅1 where 𝑘𝑖 ∈ 𝑅, 𝑖 = 2, ....𝑛− 𝑟 + 1

and 𝑅𝑖 is the 𝑖𝑡ℎ row of 𝐴.

𝑇𝑟(𝐴) = 1 +
∑︀𝑛

𝑠=1(
∏︀𝑖−1

𝑠=1 𝑘𝑠)
2. We see that for 𝑟 = 1:

𝑎11 =
𝜆1

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−1

.

𝑟 = 2:

𝑎11 =
𝜆1

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−2

.

𝑟 = 3:

𝑎11 =
𝜆1

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−3

.

𝑟 = 4:

𝑎11 =
𝜆1

1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3 + · · ·+ 𝑘2

1𝑘
2
2 · · · 𝑘2

𝑛−4

.

The result follows for any rank 1 < 𝑟 < 𝑛.
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4.3 Numerical Examples

In this section, we illustrate the results above with small matrices of size 3 ≤ 𝑛 ≤ 5

of rank 1 ≤ 𝑟 ≤ 4. We begin with the singular 3 × 3 symmetric matrix of rank 1, 𝐴(3,1),

which is of the form:

𝐴(3,1) = 𝑎11

⎛⎜⎜⎜⎝
1 𝑘1 𝑘1𝑘2

𝑘1 𝑘2
1 𝑘2

1𝑘2

𝑘1𝑘2 𝑘2
1𝑘2 𝑘2

1𝑘
2
2

⎞⎟⎟⎟⎠
𝑎11 = 𝜆

1+𝑘21+𝑘21𝑘
2
2

For 𝑘1 = −1, 𝑘2 = 2, 𝜆 = 6, we have;

𝐴(3,1) =

⎛⎜⎜⎜⎝
1 −1 −2

−1 1 2

−2 2 4

⎞⎟⎟⎟⎠
We extend the above result to Hermitian matrix of order 3 × 3. By symmetry, we

have

𝑎12 = 𝑎21, 𝑎13 = 𝑎31, 𝑎23 = 𝑎32. Row dependency is of the form; 𝑘1𝑅1 =

𝑅2, 𝑘2𝑅2 = 𝑅3 =⇒ 𝑘1𝑘2𝑅1 = 𝑅3. The off diagonal elements are;

𝑎12 = 𝑎21 = 𝑘1𝑎11

𝑎13 = 𝑎31 = 𝑘1𝑘2𝑎11

𝑎23 = 𝑎32 = 𝑘1𝑘2𝑎12 = 𝑘1𝑘2𝑘1𝑎11 = |𝑘1|2𝑘2𝑎11
The diagonal elements are;

𝑎22 = 𝑘1𝑎12 = 𝑘1(𝑘1) = |𝑘1|2𝑎11
𝑎33 = 𝑘1𝑘2𝑎13 = 𝑘1𝑘2(𝑘1𝑘2)𝑎11 = |𝑘1|2|𝑘2|2𝑎11.

Thus the general Hermitian 3× 3 matrix is presented below;

𝐴(3,1) = 𝑎11

⎛⎜⎜⎜⎝
1 𝑘1 𝑘1𝑘2

𝑘1 |𝑘1|2 |𝑘1|2𝑘2
𝑘1𝑘2 |𝑘1|2𝑘2 |𝑘1|2|𝑘2|2

⎞⎟⎟⎟⎠
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The trace 𝑇𝑟𝐴 = 𝜆 = (1 + |𝑘1|2 + |𝑘1|2|𝑘2|2)𝑎11 ⇒ 𝑎11 = 𝜆
1+|𝑘1|2|𝑘2|2 .

Any parameter which has the same value as the modulus of 𝑘1 and 𝑘2, generates the

same 3× 3 Hermitian matrix.

Numerical Example: For 𝜆 = 3, 𝑘1 = 2𝑖, 𝑘1 = −2𝑖, 𝑘2 = 2 + 𝑖, 𝑘2 = 2− 𝑖, we have

𝑎11 = 3
10

and

𝐴(3,1) =
3

10

⎛⎜⎜⎜⎝
1 −2𝑖 −(2 + 4𝑖)

2𝑖 4 8− 4𝑖

−2 + 4𝑖 8 + 4𝑖 20

⎞⎟⎟⎟⎠
n = 4, r = 1

Given 𝑘1, 𝑘2, and 𝑘3, we obtain the following singular symmetric matrix:

𝐴(4,1) = 𝑎11

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝑘1 𝑘1𝑘2 𝑘1𝑘2𝑘3

𝑘1 𝑘2
1 𝑘2

1𝑘2 𝑘2
1𝑘2𝑘3

𝑘1𝑘2 𝑘2
1𝑘2 𝑘2

1𝑘
2
2 𝑘2

1𝑘
2
2𝑘3

𝑘1𝑘2𝑘3 𝑘2
1𝑘2𝑘3 𝑘2

1𝑘
2
2𝑘3 𝑘2

1𝑘
2
2𝑘

2
3

⎞⎟⎟⎟⎟⎟⎟⎠
In this case, 𝑎11 = 𝜆

1+𝑘21+𝑘21𝑘
2
2+𝑘21𝑘

2
2𝑘

2
3
. When 𝜆 = 2, 𝑘1 = 3, 𝑘2 = 2 and 𝑘3 = 4, we obtain

the following 4× 4 singular symmetric matrix of rank one:

𝐴(4,1) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

311
3

311
6

311
24
311

3
311

9
311

18
311

72
311

6
311

18
311

36
311

144
311

24
311

72
311

144
311

576
311

⎞⎟⎟⎟⎟⎟⎟⎠
Finally, we present singular Hermitian matrix of order 4 × 4. By symmetry, we have:

𝑎12 = �̄�21, 𝑎13 = �̄�31, 𝑎23 = �̄�32, 𝑎14 = �̄�41, 𝑎24 = �̄�42 and 𝑎34 = �̄�43. Row dependence is
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given by the expressions;

𝑘1𝑅1 = 𝑅2

𝑘2𝑅2 = 𝑅3 (4.2)

𝑘3𝑅3 = 𝑅4

⇒ 𝑘1𝑘2𝑅1 = 𝑅3, 𝑘1𝑘2𝑘3𝑅1 = 𝑅4. The off-diagonal elements are;

𝑎12 = �̄�21 = 𝑘1𝑎11

𝑎13 = �̄�31 = 𝑘1𝑘2𝑎11

𝑎23 = �̄�32 = |𝑘1|2𝑘2 (4.3)

𝑎14 = �̄�41 = 𝑘1𝑘2𝑘3𝑎11 (4.4)

𝑎24 = �̄�42 = |𝑘1|2𝑘2𝑘3𝑎11 (4.5)

𝑎34 = �̄�43 = |𝑘1|2|𝑘2|2𝑘3𝑎11

The following are the diagonal elements;

𝑎22 = 𝑘1𝑎12 = |𝑘1|2𝑎11

𝑎33 = 𝑘1𝑘2𝑎13 = |𝑘1|2|𝑘2|2𝑎11

𝑎44 = 𝑘1𝑘2𝑘3𝑎14 = 𝑘1𝑘2𝑘3(𝑘1𝑘2𝑘3)𝑎11 = |𝑘1|2|𝑘2|2|𝑘3|2𝑎11

We obtain the following singular Hermitian matrix;

𝐴(4,1) = 𝑎11

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝑘1 𝑘1𝑘2 𝑘1𝑘2𝑘3

𝑘1 |𝑘1|2 |𝑘1|2𝑘2 |𝑘1|2𝑘2𝑘3
𝑘1𝑘2 |𝑘1|2𝑘2 |𝑘1|2|𝑘2|2 |𝑘1|2|𝑘2|2𝑘3
𝑘1𝑘2𝑘3 |𝑘1|2𝑘2𝑘3 |𝑘1|2|𝑘2|2𝑘3 |𝑘1|2|𝑘2|2|𝑘3|2

⎞⎟⎟⎟⎟⎟⎟⎠
The trace, 𝑇𝑟𝐴 = 𝜆 = 𝑎11(1 + |𝑘1|2 + |𝑘1|2|𝑘2|2 + |𝑘1|2|𝑘2|2|𝑘3|2). Rewriting the above
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equation, 𝑎11 = 𝜆
1+|𝑘1|2+|𝑘1|2|𝑘2|2+|𝑘1|2|𝑘2|2|𝑘3|2 .

Lemma 4.3.1. Entries of singular Hermitian matrix 𝐴 = [𝑎𝑖𝑗] of 𝑟𝑎𝑛𝑘1 with nonzero

eigenvalue 𝜆 ∈ 𝑅 and which is such that 𝑅𝑖 = 𝑘𝑖−1𝑅𝑖−1 where 𝑘𝑖 ∈ 𝐶, 𝑖 = 2, ....𝑛 and the

𝑅𝑖 is the 𝑖𝑡ℎ row of 𝐴 can be generated from; 𝑎11 = 𝜆
1+|𝑘1|2+|𝑘1|2|𝑘2|2+....+|𝑘1|2...|𝑘𝑛−1|2 and

𝑎𝑖𝑗 = 𝑎11(Π
𝑖−1
𝑠=0𝑘𝑠)

Singular Hermitian matrix of 𝑟𝑎𝑛𝑘𝑟 ≥ 2 is left out for future research work.

We now consider the IEP for 𝑛× 𝑛 singular symmetric matrices of rank 2. 𝐴(3,2) is

of the form:

𝐴(3,2) =

⎛⎜⎜⎜⎝
𝑎11 𝑘𝑎11 𝑎13

𝑘𝑎11 𝑘2𝑎11 𝑘𝑎13

𝑎13 𝑘𝑎13 𝑎33

⎞⎟⎟⎟⎠
Here, 𝑇𝑟(𝐴) = 𝜆1 + 𝜆2 = 𝑎11(1 + 𝑘2) + 𝑎33 and 𝜆1𝜆2 = 𝑎11(1 + 𝑘2)𝑎33. Hence 𝑎33 =

𝜆1𝜆2

𝑎11(1+𝑘2)
. Thus

𝑎211(1 + 𝑘2)2 − 𝑎11(1 + 𝑘2)(𝜆1 + 𝜆2) + 𝜆1𝜆2 = 0.

which yields 𝑎11 = 𝜆1

1+𝑘2
and 𝜆2 = 𝑎33. Therefore 𝑎13 becomes a free variable. When

𝜆1 = 2, 𝜆2 = 3, 𝑘 = 4 and 𝑎13 = 5, for example, we obtain the following singular

symmetric matrix:

𝐴(3,2) =

⎛⎜⎜⎜⎝
2
17

8
17

5

8
17

32
17

20

5 20 3

⎞⎟⎟⎟⎠ .

In general, the solution of the IEP for 𝐴𝑛,𝑟 leads to the solution of an 𝑟th degree polynomial
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equation in 𝑎11 of the form:

0 = 𝑎𝑟11(1 + 𝑘2
1 + ... + 𝑘2

𝑛−𝑟)− (
𝑟∑︁

𝑖=1

𝜆𝑖)(1 + 𝑘2
1 + ... + 𝑘2

𝑛−𝑟)𝑎
𝑟−1
11

+
𝑟∑︁

𝑘=1

(Π𝑘+1
𝑖=𝑘 𝜆𝑖)(1 + 𝑘2

1 + ... + 𝑘2
𝑛−𝑟)𝑎

𝑟−2
11

−
𝑟∑︁

𝑘=1

(Π𝑘+2
𝑖=𝑘 𝜆𝑖)(1 + 𝑘2

1 + ... + 𝑘2
𝑛−𝑟)𝑎

𝑟−3
11 + ...− (Π𝑟

𝑖=1𝜆𝑖) (4.6)

To solve the case for 𝑛 = 4 and 𝑟 = 2, we deduce from the general polynomial equation

above that the following quadratic in 𝑎11 holds:

𝑎211(1 + 𝑘2
1 + 𝑘2

1𝑘
2
2)2 − (𝜆1 + 𝜆2(1 + 𝑘2

1 + 𝑘2
1𝑘

2
2)𝑎11 + 𝜆1𝜆2 = 0.

This yields: 𝑎11 = 𝜆1

1+𝑘21+𝑘21𝑘
2
2
, 𝑎44 = 𝜆2 and 𝑎14 becomes a free variable. For 𝜆1 = 6, 𝜆2 =

5, 𝑘1 = 4, 𝑘2 = 3 and 𝑎14 = 2, we obtain a singular symmetric matrix below:

𝐴(4,2) =

⎛⎜⎜⎜⎜⎜⎜⎝
6

161
24
161

72
161

2

24
161

96
161

288
161

8

72
161

288
161

864
161

24

2 8 24 5

⎞⎟⎟⎟⎟⎟⎟⎠
Similarly, for 𝐴(5,2), we obtain the following quadratic in 𝑎11:

𝑎211(1 + 𝑘2
1 + 𝑘2

1𝑘
2
2 + 𝑘2

1𝑘
2
2𝑘

2
3)2 − (𝜆1 + 𝜆2)(1 + 𝑘2

1 + 𝑘2
1𝑘

2
2 + 𝑘2

1𝑘
2
2𝑘

2
3)𝑎11 + 𝜆1𝜆2 = 0.

The solution gives: 𝑎11 = 𝜆1

1+𝑘21+𝑘21𝑘
2
2+𝑘21𝑘

2
2𝑘

2
3

and 𝜆2 = 𝑎55 where 𝑎15 is a free vari-

able. When 𝜆1 = 2, 𝜆2 = 5, 𝑘1 = 3, 𝑘2 = 5, 𝑘3 = 7 and 𝑎15 = 4, we obtain a singular
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symmetric matrix below:

𝐴(5,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
11260

6
11260

30
11260

210
11260

4

6
11260

18
11260

90
11260

630
11260

12

30
11260

90
11260

450
11260

3150
11260

60

210
11260

630
11260

3150
11260

22050
11260

420

4 12 60 420 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By the same method, 𝐴(4,3) leads to the following cubic equation:

𝑎311(1+𝑘2)3−(𝜆1+𝜆2+𝜆3)𝑎
2
11(1+𝑘2)2+𝑎11(1+𝑘2)(𝜆1𝜆2+𝜆1𝜆3+𝜆2𝜆3)−𝜆1𝜆2𝜆3 = 0.

Solving the above cubic equation we obtain the following roots. 𝜆1 = 𝑎11(1+𝑘2)⇒ 𝑎11 =

𝜆1

1+𝑘2
, 𝜆2 = 𝑎33 and 𝜆3 = 𝑎44, where 𝑎13, 𝑎14 and 𝑎34 are free variables.

Finally, we want to consider 5 × 5 singular symmetric matrix of rank 4. Using

equation (2). we obtain the following quartic equation in 𝑎11 where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are

the nonzero members of the spectrum.

𝑎411(1 + 𝑘2)4 − (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4)𝑎
3
11(1 + 𝑘2)3) +

(𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆1𝜆4 + 𝜆2𝜆3𝜆2𝜆4 + 𝜆3𝜆4)𝑎
2
11(1 + 𝑘2)2 −

(𝜆1𝜆2𝜆3 + 𝜆1𝜆2𝜆4 + 𝜆1𝜆3𝜆4 + 𝜆2𝜆3𝜆4)𝑎11(1 + 𝑘2) + 𝜆1𝜆2𝜆3𝜆4 = 0.

Factoring the above quartic equation, we obtain the following results: 𝑎11 = 𝜆1

1+𝑘2
,

𝜆2 = 𝑎33, 𝜆3 = 𝑎44 and 𝜆4 = 𝑎55. The free variables are 𝑎13, 𝑎14, 𝑎15, 𝑎35, 𝑎34 and 𝑎45.

As an example, if we let 𝜆2 = 4, 𝜆3 = 7, 𝜆4 = 11, 𝑘 = 2, 𝑎13 = 8, 𝑎14 = −4, 𝑎15 =
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5, 𝑎35 = 14, 𝑎34 = 6 and 𝑎45 = 17

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.3 2.7 8 −4 5

2.6 5.4 16 −8 10

8 16 4 6 14

−4 −8 6 7 17

5 10 14 17 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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CHAPTER 5

Numerical analytic interpretation of the 𝐼𝐸𝑃 for Hermitian Matrices using fibre bundles

with structure group 𝑆𝑂(𝑛)

In this chapter we give numerical analytic interpretation of the IEP using fibre bundles with

structural group 𝑆𝑂(𝑛). The previous work on 𝐼𝐸𝑃 using the idea of tangent bundles was

more theoretical. The initial matrix for the iteration was not known and therefore the special

orthogonal matrix 𝑄 could not be determined and consequently the skew symmetric matrix

𝐾. Our work is more practicable and provide information for the initial matrix which in our

case is a singular symmetric matrix. Given the initial matrix, we could obtain the matrices

𝑄 and 𝐾 for the iterative process. Finally, we expect the iteration to converge to a matrix

which is a nonsingular symmetric matrix such that its eigenvalues are in the neighbourhood

of the eigenvalues of Λ, a diagonal matrix.

We consider the general linear group 𝐺𝐿(𝑛,𝑅) which is a Lie group. The gen-

eral linear group is a group of all invertible and square matrices whose subgroup is the

orthogonal group 𝑂(𝑛,𝑅). Our Lie group under consideration is a group of matrices.

We will deal with two subspaces, the affine subspace which contains symmetric

matrices and the isospectral surface 𝑂(𝑛,𝑅) whose normal subgroup is 𝑆𝑂(𝑛,𝑅). The

𝑆0(𝑛,𝑅) is a special orthogonal group. The normal subgroups we will deal with are 𝑆𝑂(2)

and 𝑆𝑂(3) whose corresponding Lie algebras are 𝑠𝑜(2) and 𝑠𝑜(3) respectively, which are

real 𝑛×𝑛 skew symmetric matrices with null trace. Let us denote the isospectral surface by

𝑀(Λ) which contains the same spectrum.We know from Proposition 1.3 that a fibre from

the affine subspace to a point 𝑋 ∈ 𝑀(Λ) which is a differentiable manifold is of the form

𝑇 (𝑋) = 𝑋𝐾 −𝐾𝑋 . This is the Lie bracket of the Lie algebra 𝑠𝑜(𝑛).

Let

𝑀(Λ) = {𝑄Λ𝑄𝑡|𝑄 ∈ 𝑆𝑂(𝑛)}
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where Λ contains the set of distinct eigenvalues. This implies 𝑑𝑒𝑡𝑄 = 1 and 𝑄𝑄𝑡 = 𝐼𝑛. If

𝑄(𝑡) is a one-parameter subgroup of 𝑆𝑂(𝑛) parameterized by 𝑡, then differentiating 𝑄𝑄𝑡

with respect to 𝑡 gives 𝑄
′
(0) + 𝑄

′
(0)𝑡 = 0 and so the Lie algebra 𝑠𝑜(𝑛) consists of all

skew-symmetric 𝑛× 𝑛 matrix. We have

𝑄Λ𝑄𝑡 = 𝑋 ⇒ Λ = 𝑄𝑡𝑋𝑄

which is an inverse problem. We know that by Lemma 1.1, 𝑄 is a rotation matrix given by

Rodrigues rotation formula below, ⎛⎝ 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

⎞⎠
But by Lemma 1.1, we have

𝑄 = 𝑒𝐾 = 𝐼 + 𝐾 +
𝐾

2!
....,= Σ𝑝≥0

𝐾𝑝

𝑝!
.

Ignoring highest powers of 𝐾, we have 𝑄 = 𝐼 + 𝐾 and we obtain

𝐾 = 𝑄− 𝐼 =

⎛⎝ 0 −𝜃

𝜃 0

⎞⎠ ,

where 𝜃 is a real number between [0, 2𝜋].

Our function is therefore given by 𝑓(𝑥) = 𝑄Λ𝑄𝑡 −𝑋 = 0 and the derivative is the

Lie bracket 𝑋𝐾 − 𝐾𝑋 . We therefore formulate a Direct iterative method instead of the

Newton Ralphson method. At the isospectral surface, 𝑀(Λ), we have

𝑄(𝐴𝑖)Λ𝑄𝑡(𝐴𝑖) = 𝑋 𝑖+1...(1), 𝑖 = 1, 2...

where 𝐴𝑖 is a singular symmetric matrix, 𝑄 the normalized eigenvectors of the matrix 𝐴𝑖

and Λ a diagonal matrix which is similar to the matrix 𝑋 𝑖+1 and therefore, they have the
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same eigenvalues. At the tangent space of the Lie group which is the Lie Algebra, we

obtain the following equation,

𝑋 𝑖+1 + 𝑋 𝑖+1𝐾 −𝐾𝑋 𝑖+1 = 𝐴𝑖+1...(2), 𝑖 = 1, 2...

where 𝐾 is a skew symmetric matrix which is given by, 𝐾 = 1
2
(𝑄 − 𝑄𝑡) or 𝐾 =⎛⎝ 0 −𝜃

𝜃 0

⎞⎠ , 0 ≤ 𝜃 ≤ 2𝜋. At this point, the iteration continues with 𝐴𝑖+1 being the

initial matrix until the iteration converges at where the eigenvalues of 𝐴𝑖+1 are in the same

neighbourhood of the eigenvalues of Λ. At the convergence stage, the skew symmetric

matrix is zero.

5.1 Numerical Example

In this section, we illustrate the results above with small matrix of order 2× 2. We

begin with an initial 2× 2 singular symmetric matrix of the form;

𝐴 =

⎛⎝ 1 2

2 4

⎞⎠ ,

with the eigenvalues as, 𝜆1 = 5, 𝜆2 = 0. The normalized eigenvectors are the column

vectors of the matrix

𝑄 =
1√
5

⎛⎝ 1 −2

2 1

⎞⎠
and

𝑄𝑡 =
1√
5

⎛⎝ 1 2

−2 1

⎞⎠ .

Let Λ =

⎛⎝ 3 0

0 −1

⎞⎠.
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Step 1: We use the equation; 𝑄1(𝐴𝑖)Λ𝑄(1)𝑡(𝐴𝑖) = 𝑋 𝑖, to obtain;

𝑋1 =
1√
5

⎛⎝ 1 −2

2 1

⎞⎠⎛⎝ 3 0

0 −1

⎞⎠ 1√
5

⎛⎝ 1 2

−2 1

⎞⎠
=

⎛⎝ −0.2 1.6

1.6 2.2

⎞⎠ (5.1)

Step 2:

The following equation is used;

𝑋1 + 𝑋1𝐾 −𝐾𝑋1 = 𝐴1

where 𝐾 = 1
2
(𝑄−𝑄𝑡) = 1√

5

⎛⎝ 0 −2

2 0

⎞⎠ to obtain the following results;

𝐴1 =

⎛⎝ −0.2 1.6

1.6 2.2

⎞⎠ + [

⎛⎝ −0.2 1.6

1.6 2.2

⎞⎠ 1√
5

⎛⎝ 0 −2

2 0

⎞⎠−
1√
5

⎛⎝ 0 −2

2 0

⎞⎠⎛⎝ −0.2 1.6

1.6 2.2

⎞⎠] (5.2)

=

⎛⎝ 2.6622 3.7466

3.7466 −0.6622

⎞⎠ (5.3)

The normalized eigenvectors of the matrix 𝐴1 are the column space vectors of

𝑄2 =

⎛⎝ 0.83831 0.54519

0.54519 −0.83831

⎞⎠ .

This is used for the next iteration.
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Step 3:We solve for 𝑋2:

𝑄2Λ𝑄(2)𝑡 =

⎛⎝ 0.83831 0.54519

0.54519 −0.83831

⎞⎠⎛⎝ 3 0

0 −1

⎞⎠⎛⎝ 0.83831 0.54519

0.54519 −0.83831

⎞⎠
=

⎛⎝ 1.8111 1.8282

1.8282 0.18893

⎞⎠ (5.4)

We conclude from the above results that since the nonsingular matrix 𝑋2 has the eigenval-

ues 𝜆1 = 3.001, 𝜆2 = −1.0, it is similar to the matrix Λ. We have therefore used a singular

symmetric matrix to obtain a nonsingular symmetric matrix. We state the following lemma

to justify our claim:

Lemma 5.1.1. A nonsingular symmetric matrix can be generated using a singular symmet-

ric matrix as initial matrix the following recursive equations are used;

𝑄𝑖(𝐴𝑖)Λ𝑄(𝑖)𝑡(𝐴𝑖) = 𝑋 𝑖, 𝑖 = 1, 2, ...

and

𝑋 𝑖 + 𝑋 𝑖𝐾𝑖 −𝐾𝑖𝑋 𝑖 = 𝐴𝑖+1.

We provide in the appendix, a program that generates any dense 𝑛×𝑛 singular sym-

metric matrix of rank 1 for given row multipliers. The program could be easily modified

for rank 1 < 𝑟 < 𝑛.

5.2 Appendix

The following is the program to generate any 𝑛 × 𝑛 singular symmetric matrix of

𝑟𝑎𝑛𝑘1

function ()

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here
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lambda=input(’Enter a positive number as trace of the

generalized matrix’)

k = input(’1.Enter m positive numbers that characterize the

generalided matrix’)

m = length(k);h(1)=1;ss=[];

for i=1:m

h(i+1)=h(i)*k(i);

end

h;kk=1;

for i=m:-1:1

kk=kk*(k(i)ˆ2)+1;

end

kk;

format short eng

a=lambda/kk

ss=a*h;

mm(1,:)=ss;

for i=2:(m+1);

mm(i,:)=k(i-1)*mm((i-1),:);

end

mm

%fprintf(’The required singular matrix of rank 1 is:\n %d \n’,mm)

tr=trace(mm)

sing=det(mm)
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CHAPTER 6

Conclusion and Future Work

We have developed algorithms to generate singular symmetric matrices with an extension

to singular Hermitian matrices of rank 1 when the eigenvalues and some parameters are

given. In our presentation, numerical examples are provided. We have also developed

direct iterative method to generate non singular symmetric matrices of orders two and three

when the eigenvalues are provided. Singular symmetric matrix is used as an initial iterative

matrix to generate a non singular symmetric matrix.

We shall consider the following for future work:

1. Consider singular Hermitian matrices of 𝑟𝑎𝑛𝑘 ≥ 2.

2. Use singular symmetric matrix to generate non singular symmetric matrix of order

greater than three using direct iterative method.
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