KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
COLLEGE OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

GABRIEL OSEI-TUTU

OPTIMIZING THE PROCEDURES FOR THE MOVEMENT OF GOODS IN THE

ECOWAS SUB REGION USING MULTITHREADED ALGORITHMS.

A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE, KWAME
NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI. IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MPHIL. COMPUTER SCIENCE

T AUGUST, 2012

DECLARATION

I hereby declare that this submission is my own work towards the MPHIL and that to the best
of my knowledge, it contains no material previously publish by another person nor material
which has been accepted for the award of any other degree of the University, except where

due acknowledgement has been in the text.

Osei-Tutu, Gabriel

llllllllllllllllllllllll

(PG5091510) Signature Date

Certified by :

DR. J.B. Hayfron-Acquah

(Supervisor)

Certified by:

DR. J.B. Hayfron-Acquah

(Head of Department)

11

ABSTRACT

In our work we modeled the procedures for the movement of goods using the maximum
network flow problem. We used the ‘generic’ push relable algorithm as the procedure
responsible for the movement of goods. We then used a computational directed acyclic graph
with the intuition of vertices as States within the ECOWAS and edges as communications
between them. Direct as paths from one State to another. Acyclic as there are no loops in the
movement of goods in the transit trade. The computations at the vertices are memoized and
are recalled recursively. We implemented the resulting sequential algorithm (Transit
Algorithm) by multithreading it using the lock free multithreaded method which results in an

interleaving model that functions atomically.

1

DEDICATION

To my wife Esther and my children Angelo, Jessica, Gabriela, and Michael for the patience

and space you gave me. Much of the time I was to be with you I denied you but to my

research.

TABLE OF CONTENTS

DECLARATION ii
ABSTRACT iii
DEDICATION iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER ONE 1
INTRODUCTION 1
1.1 Background]
1.2 Statement of problems 3
1.3 Objectives of the study 4
1.3.1 The main objective 4
1.3.2 The specific objectives 5
1.4 Hypothesis 5
1.5 Justification of study 5
1.6 Scope of the study 8

The scope of the study is all the transit modules for the Customs Administration Systems

in the ECOWAS sub region. 8

1.7 Limitations 8

1.8 Organization Of The Study 9
CHAPTER TWO 11
LITERATURE REVIEW 11
2.1 Introduction 11
2.1.1 Facilitating Regional Transport and Transit 13
2.1.2 Progress of Implementation: 16
2.1.3 Trade Flux And Transit Facilitation Challenges In West Africa 16
2.1.4 West Africa Transit trade flows characteristics 18
2.2 Review of relevant literature 25
2.2.1 The Existing System 26
2.3 Theoretical Framework 34
2.3.1 Maximum-flow minimum-cut Theorem 34
2.3.2 The push relabel Method 38
2.3.3 The Blocking flows method 40
2.3.4 Heuristics 40
2.3.5 Parallel algorithms for the maximum flow problem. 41
2.3.6 Summary of Worst case bounds of algorithms in the theoretical framework 42
2.3.7 Multithreading 43
CHAPTER THREE AT 56
METHODOLOGY 56
3.0 Introduction 56
3-1-Study Area 58
3.2 Design of study 61
3.2.1 Initialize Preflow 65
3.2.2 Discharge Pseudocode 68
3.2.3.The Pseudocode of the push operation 70
3.2.4 Recursion of computation dag 74

3.2.5 Parallelizing the Transit Sequential Algorithm 77

3.2.6.Parallelizing the push and the relable methods 81
3.2.7 Parallelizing the Computation Dag. 82
3.3 Vanables 83
3.3.1. Parallel Global Updates 83
3.3.2 .Concurrent Global-Update 83
3.3.3 Computational Dag Global Variables (Edges) And Private Variables (Vertices) 84
3.4 Methods of Analysis 84
3.4.1 Informal approaches to correctness 85
3.4.2 Graph framework 86
3.4.3 The Algorithms Framework 87
3.4.4 Sub Domains as packages 89
3.5 Constraints/ Problems 90
CHAPTER FOUR 91
ANALYSIS OF FINDINGS 91
4.0 Introduction 91
4.1 RESULTS 92
4.2 Shared Memory 95
4.3 Distributed Memory 95
4.4 Petri nets model 96
4.5 The Interleaving Model 97
4.5 The dynamic multithreading 98
4.6 Multithreading Computation 99
4.7 Scheduling 100
4.8 The Target Multiprocessor platform 101
4.9 Implementation 102
4.9.1 The Push Relabel Algorithm By Goldberg 102
4.9.2 Implementation of the transit algorithm using Bo Hong’s lock-free multithreaded
method 104
4.9.3 The Transit Algorithm 106
4.10 Testing Of Hypothesis 110
4.10.1 INTRODUCTION 110
4.10.2 Performance Measure 111
4.10.3 Developing Tools To Analyze Multithreaded Algorithms 115
4.10.4 Greedy Scheduler 119
4.10.5 Analysing The Transit Multithreaded Algorithm 122
4.10.6 The Complexity Bound. 124
CHAPTER FIVE 126
CONCLUSION AND RECOMMENDATION 126
5.1 SUMMARY 126
S2CONCLUSION 127
5.3 RECOMMENDATION 127
REFERENCES 128

LIST OF ACRONYMS 134

Vi

LIST OF TABLES

Table 1.1 from USAID-WATH 7
Table 2.1 Economic and Demographic Indicators 17
Table 2.2 International trade of Mali 23
Table 2.3 An Implementation of a transit tracking system 33
Table 4.1: 10 worst-case bound algorithms 92
Table 4.2:CPU time taken(in seconds on convex) 92
Table 4.3:. Variable Access Characteristics 105
e e =g

Vil

LIST OF FIGURES

Figure 1.1 States making up the Ecowas 3
Figure 1.2 West Africa- First Priority Corridors Check points, Bribes and Delays 6
Figure 2.1 Maritime Transit for Burkina Faso, Mali and Niger 19
Figure 2.2 Total Transit for Burkina Faso, Mali and Niger 20
Figure 2.3 Maritime Transit for Burkina Faso 21
Figure 2.4 Maritime Trade of Burkina Faso (CBC) 22
Figure 2.5 Maritime Transits for Mali 22
Figure 2.6 International Trade of Mali by Corridor 24
Figure 2.7: 3-Tier architecture of the existing system 26
Figure: 2.8 Data layer levels 27
Figure: 2.9 Interfacing for Ecowas 28
Figure 2.10: Cargo tracking data aggregation 29
Figure 2.11: ISRT transit operation 31
Figure 2.12 Flow network G and flow f 37
Figure 2.13: Super Source and Super Sink 38
Figure 2.14 : The parallelization steps 48
Figure 2.15: Six possibilities of interleaving of push and lift operations 54
Figure 2.16:Sequence of saturation pushes on (u,v) 54
Figure 2..17 Single Declaration Document Transit Model 55
Figure 3.1: Transit Model Sil
Figure 3.2: Flowchart of Transit algorithm 64
Figure 3.3:Flowchart of initialize preflow (G,s) 68
Figure:3.4 Discharge Flowchart 70
Figure 3.5: Push (u,v) Operation flowchart 71
Figure 3.6 Flowchart of Relable Operation 73
Figure 3.7: Flowchart of Computation Dag 76
Figure 3.8: UML Representation of Recursion 77
Figure 3.9: Flowchart Of Parallelizing Transit Algorithm 78
Figure 3.10: Graph Framework 88
Figure 3.11:0bject Oriented representation of parallel algorithm 89
Figure 4.1 A computation direct acyclic graph (TRANS N) 94
Figure 4.2:A Directed Computation Dag Representing Trans (4) 112
Figure 4.3: Work and span of composed sub computations 122
- e
Y
M S i B k;:‘:;ﬂ‘r*;zﬂﬁo‘uﬁ
BN gueE ¢
5\‘1 0:0 o P 2

viii

CHAPTER ONE
INTRODUCTION

1.1 Background

Before the formation of ECOWAS the movement of goods across countries in the ECOWAS
sub-region was the responsibility of that countries Customs department and for that matter the
procedures governing customs clearance. For instance in Ghana goods are deemed not to be in
Ghana unless the necessary regimes governing the movement of goods to Ghana i.e Direct
Import, Re-Importation, Temporary Importation etc are adhered to. The Customs jargon
Entered could be used to attest to the fact that movement is synonymous with Customs
procedures. For goods to enter into Ghana the Bill of Entry otherwise known as Declaration
form is filled and submitted to the Customs department. Another example of movement being
synonymous with Customs procedures, that is given a free zones status in a free zone enclave
for a company in Shangai in the People’s Republic of China in dzorwulu a suburb of Accra in
Ghana, the company after the production of goods can enjoy the local market unless the goods
move into Ghana by going through the Direct Import for Home use regime. The various
countries in the sub-region also have these procedures and movement of goods, through their
countries were governed by these procedures. Goods for instance in transit from Ghana to
Niger would have the Bill of Entries of Ghana then that of Burkina Faso on entering into that
country and finally that of Niger the country of destination. In order to have a common policy
about the movement of goods the Economic Community of West African States (ECOWAS)
was formed, and the policy became one of the major cardinal points of the Union. By the
research of Dr Sadok Zerelli et al, [1] West African Road Transport and Transit Facilitation
Strategy, we ean conveniently say that the Economic Community of West African States
(ECOWAS) was established in 1975 through the Lagos treaty with the aim to promote

e —

economic development through cooperation among its members. It proposes a staged

approach towards a Customs Union, elimination of Customs duties between partners.
Establishment of a common external tariff elimination of obstacles to free movement of
capital services joint development of transport infrastructure, harmonization of economic
policies. In West Africa, inter-state road transport and transit schemes are governed by two
agreements. The Inter-State Road Transport Convention, which handles the technical norms
and conditions to fulfill in order to participate in interstate road transport of goods and set the
itineraries to use. The Inter-State Road Transport Convention which treats inter-state road
transit issues more specifically. In effect Ecowas member states adopted the ISRT scheme
under convention A/P4/82 on 29" May 1982 in Cotounou, further completed on 30" May
1990 in Banjul, which contains the ISRT operations guarantee mechanism, the mechanism
mainly aim at removing successive customs procedures throughout the different transit
countries. Facilitating the movement of vehicles and transported goods among member States.
Enabling the collection of regular, and reliable statistics of interstate road transit goods. The
implantation of the convention depends on three basic conditions. The issuance of a single,
coincise ISRT declaration form, the establishment of a guarantee fund that shall serve as
security, the standardization of license vehicles according to defined criteria, indestructible
and sealing. This is the context under which Ecowas decided to develop synergies and define a

regional programme to facilitate inter-state road transport and transit of goods.

ECOWAS member countries

Figure 1.1 States making up the Ecowas

Source: West Africa Road Transport And Transit Facilitation Strategy

1.2 Statement of problems
In order to produce a single declaration document for the movement of goods then data should
mean the same thing throughout the system. Data sets and data formats that should be

exchanged should be agreeable by all the countries. Data integrity is not compromised. Also

the data exchange is permissible by law.
i
e == //
fipds. Be o
3

1.3 Objectives of the study

1.3.1 The main objective

To design a system, such that the system will execute the procedures for the movement of
goods, would produce a single transaction document.

There has been a strategy for the adoption of a single ISRT voucher which involves the use of
a single document for international transit operations known as “inter-state transit”, within the
ECOWAS region. This document is to cover the entire operation, i.e. from the place of
loading the vehicle up to the destination, where the consignment shall undergo customs
formalities (for instance, imports for consumption, The ISRT logbooks currently in use in the
ECOWAS member states are not the same from one country to the other, which creates
difficulties in using the document. In addition, they are poorly produced, which introduces
doubt as to their validity and even authenticity. Thus, most of the ISRT logbooks issued in
Mali are not the “real” ones distributed by the Chamber of Commerce (which are identifiable
by their “sticker”).

Therefore, there is need to harmonize the logbooks and also homogenize their production
conditions. The format and texture of the vouchers are totally obsolete and hamper the proper
computerization of the procedure, which is under the supervision of the Customs Service and
Guarantee Fund. The harmonization of the logbook (and its leaflets) according to international
standards and recommendations is a prelude to reactivating the scheme (placement in the
customs warehouse, upgrading or temporary entry). This means that several conditions have to
be met. In that regard, from Dr. Zadok et al [1] it is appropriate to ensure that the ISRT

logbook matches the TIR mmd by the International Road Transport Union (IRU) as

much as possible.

1.3.2 The specific objectives

To design a parallel computational model system, using the maximum flow network problem
to model the procedures for the movement of goods by way of push relabel and multithreading

algorithms.

1.4 Hypothesis

The proposed parallel computational model would provide an abstract method for modeling
the transit prqcedure, using the network maximum flow problem and multithreading, which
will enable the realization of a single transaction documentation that will lead to efficient

service delivery.
1.5 Justification of study

A survey conducted by Dr Zadock et al, [1] shows the valuable time wasted as a result of this
illegal road blocks and fees collected as depicted in figure 1.2 For a round trip between Tema
or Lome to Bamako and return, C&F agents are indicating an average of 41 days, out of which
only 9 are spent driving (the rest is corresponding to various waiting times). A better
knowledge of the other sources of delays would complete the scope of the transport
observatories. According to figures quoted from clearing and forwarding agents, border
crossing delays and terminal delays during the clearing of the goods are representing a high

proportion of the total round.

./ BURKINA
FASO

4.56 cheex ponis ”ﬁ"_r“
m.lﬁ' ifl Dades j
Ouagadougou
L

38 mivies delay :;

JR s

X e

o A T GHANA pe 100 km
= A A

27 - 2.23 chach polats

: 5
{ COTE D'IVOIRE v 3417 i bobes

£ 21 I"Il'l.‘!'l.lhh‘f
5
CHECK POINTS
| === Polce
= Cusloms

Gendammere

— Ofthers : Transport Deparimant
amﬁ-. Urions, Forestry Department.
2a

100 km
™~
Pllee shudy cennd
Tema - Qusgaccenou - 16 Col 04 - 20 Way CT
Lomé - Duapadaugou: ' Apel 07 - 20 May U7
Cugadougeu - Bomako : 1 Apn OF - 22 May 67

Eoure

inproved Road Trargpont Governanze (IRYG
richeamP = s nuh oo

ol 0233244 310148

GHANA

Accra [

\.\‘ NIGER

2.01 chaz: ponts
$8.73 in trinm
21 minses dedy

; i
Q TOGO per 100km

] 1.50 check paints
| | §3.33 in orkes
g \ 16 minutes detay
! i
TOEO,
f. i
| NIGERIA

Lomeé
Tema

ATLANTIC OCEAN

Figure 1.2 West Africa- First Priority Corridors Check points, Bribes and Delays

Source: West Africa Road Transport And Transit Facilitation Strategy

For all corridors, they are greater than the pure driving time. Number of illegal checkpoints.

Table 1.1 from USAID-WATH

Corridor Number of Number of Number of check Number of

check points check points points per 100 km check points per
Period : 27 100 km
Period:26 ~ May 200710 pony. 56 A ol
26 October 2007 to 26

October 2006 2007 October 2006 to o 7
to 26 May 26 May 2007 ctober 200
2007

Bamako - 24 25 2.5 25

Ouagadougou

Mali 19 17 45 4

Burkina 5 8 1 1.6

Lome - 18 16 , 1.7 1.5

ou.g.doum" R 7 ?ﬁ N ': "o e

Togo 11 12 1 1.6

Burkina 7 4 4 1.5

Téma - 25 20 2.5 2

Ouagadougou 2L

Ghana 18 13 2.2 1.6

Burkina 7 7 2.5 2.5

With regard to illegal tolls, the following comparative table reveals:

These individual customs procedure of member states summed up to a prolonged customs
procedures affecting trade At each crossing there is interruption of transit regime reported by
World Customs Organization [2]. As the clearance for home consumption becomes
mandatory, a bond system which is only valid for the country of origin is executed, additional
mechanisms such as escort for monitoring, and each country concerned with transit will have
to have his own bond system. This bond is the tax that have to be paid by the trader should the
goods fail to exit the country that granted the bond.

The construction of a joint border post by member States of Ecowas. With the proposed
system which is this paper, will promote a joint border post which would render an efficient

— S

service to traders, this is because the processing of the various procedures would happen at the
vertiees and could be coordinated among themselves at the same location. Illegal road blocks

would be eliminated and its attendance extortions of illegal fees would be a thing of the past.

= 7

Border crossing delays and terminal delays during the clearing of the goods which represent a
high proportion of the total round trip time for all corridors, would be less than the pure
driving time. Introduction of single document system, harmonization of the guarantee system
for inter-state transit operations data exchange, that is how data be requested, how data will be
formatted for exchange, where it will be hosted awaiting pickup and be consumed have been
addressed by the parallel computational model being proposed as the system abstracts the
parallel architectural model that takes care of this concurrency platform and also by means of
this joint border post. On the proposed system data definitions would be constant and as a
result data would mean the same thing on every vertex thereby automating data exchange. For
example since the system is a maximum network flow a field like the declaration number in
one vertex carry the same connotation as the field for the declaration number in another
vertex. There would not be difficulty in upgrading the system

Ecowas vision of the elimination of Customs duties between partners, the elimination of
restrictions, the establishment of a common external tariff, harmonization of economic 1Ssues,
and the elimination of obstacles to free movement of capital and services would not affect the

running of the system should any of these mentioned policies changes.

1.6 Scope of the study

The scope of the study is all the transit modules for the Customs Administration Systems in

the ECOWAS sub region.

1.7 Limitations
The parallel randem access machine has four levels of abstraction. We are using the parallel
computational model for this project. The rest, namely parallel machines model, parallel

architecture model and parallel programming model could not be covered in this project due to

time constraint . As a result they are out of scope.

= 8

1.8 Organization Of The Study

This study 1s organized into five chapters.

Chapter one: Introduction

The background in this chapter provides the historical background to the targeted period of
research thereby relating practices preceding the targeted period to form the background for
the main work. The reason for the formation of Ecowas stem from the fact that each state was
an island to itself and as such could not facilitate the movement of goods through its territorial
borders. Therefore doing business in the sub region was cumbersome, time wasting and not
profit worthy. Unnecessary road blocks, illegal collection of fees, the execution of individual
procedures, executions of bonds covering the goods, and lack of coordination of information
about the transport which carry the goods between the participating countries of the transit
transaction hampered trade. The main objective of this paper is to design a system that would
process all the procedures of the transit transaction and present it on a single document in an
efficient manner. This leads to specifics of using maximum flow problem to model the
procedures at each state and also to provide an abstract of an architectural model for
implementation. A parallel computational model that would perform efficiently on a real
computer given its running time is the hypothesis of this paper. This paper is justified by way
of the advantages of providing a joint border post with its attendance advantages,
harmonization and simplification of regulations and procedures and the ability of the system
by way of its scalability and adaptability. This project will involve the maximum network
flow problem, that will model the transit procedures seamlessly and the multithreaded aspect
that would take advantage of the multicore technology now available to ensure an efficient

system. Limitatiens, by wayef Time constraint in treating the rest of the parallel random

access machine models.

___._n—-'-"'-.

Chapter two Literature review

Deals with literature review. Review of relevant literature. That is literature connected with
the subject we are discussing. We are discussing the single ISRT documentation in the
Ecowas sub region. The theoretical framework is concerned with the ideas and principles on
which a particular subject is based. Here we are discussing how to use the maximum network
flow problem to solve the research problem. We deliberated on the use of the preflow push
relable method. Our investigation reveals the generic push relabel algorithm from the push
relable method. The computational directed acyclic. graph is reviewed as well as
multithreading and finally we summarized the chapter and concluded on it.

Chapter three Methodology

Methodology is organized first, by way of introduction to the methodology used in this paper.
The study area follows suit and provides the philosophical foundation of inquiry of this
research paper. Formative research of the study design comes next having an important and
lasting influence on the development of the model which is this paper. The variables which are
qualitative assumptions come next while the methodical issues like the informal method of
analysis of this paper follows and lastly the constraints and problems.

Chapter four Analysis Of Finding

This chapter starts with introduction of the analysis of findings and it is followed by the
implementation of the design of the study. Implementation is used for coding and it is also
equally right to use programming as well as development for coding too. The testing of the
hypothesis followed. The testing is by way of determining the termination of the Transit
algorithm, the runtime or the upper bounds of the algorithm.

Chapter five Gﬁ;IfCIIISiBII and-Recommendations

This chapter deals with the summary of the analysis of findings and the conclusions arrived at.

_;-‘-.

Finally recommendations from the research is given for subsequent follow up.

= 10

CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

The organization responsible for collecting and accounting for duties and taxes on imports
exports and local manufactures world-wide especially the developing countries are Customs
Administration. Assessment, collection/accounting and protecting the revenue which are
under the field of Customs and Excise are the revenue functions of Customs Administration.
With the intention to determining the amount of duties and taxes payable a critical
examination ;{)f the documents and goods are assessed by customs officials. Collection and
accounting of monies taken which are paid into the banks and subsequently accounted for are
eventually transferred into Government chest with the accountancy connected therewith.
Preventing and detecting evasions of the revenue laws referred as protection are the duties
mentioned earlier of Customs Administration. Duties and taxes of goods, are only applicable
to goods which are in the country for use or consumption. Depending on the particular policy
of a country goods may attract various rates of duties. For example in Ghana, the government
want to promote export trade, most of the goods that originate from Ghana that enter into
international trade are zero rated. Goods moving from one country called the country of origin
to another, in this instance called country of destination and intermediate countries have roles
to play to ensure the safety and the protection of revenue of those goods. Countries particular
in the West Africa community trade, with each other and also serve at times as conduit for
goods meant for their neighbors to get to them. It came therefore as no surprise when

countries in the West Africa sub region decided to form a union. One of the cardinal points of

e
-

that union was-to-promote free Tovement of goods and services. The Economic Community
of West African States was established in 1975 through the Lagos treaty. It proposed a staged

e m——

approach towards a customs Union accordingly from Dr. Zadok et al [1]:

= 11

* . climination of customs duties between partners
* . climination to restrictions to trade between partners
* . establishment of a common external taniff
* .)oint development of transport infrastructure
* . harmonization of economic policies.
The implementation of the Convention depends on three basic conditions:
* The issuance of a single, concise ISRT declaration form at the beginning of the inter-
state road transit operations
* The establishment of a guarantee fund that shall serve as security
* The standardization of licensed vehicles according to defined criteria indestructibility
and sealing;
This is the context under which ECOWAS and WAEMU decided to develop synergies and
define a regional programme to facilitate inter-state road transport and transit of goods. The
West African regional transport and transit facilitation programme is therefore based on the
projects developed or implemented in that regard by these two institutions. The UEMOA
Council of Ministers, at its meeting held on June 27th 2002, adopted two texts related to

transport:

* Recommendation 02/2002/CM/UEMOA relating to the simplification and

harmonization of port procedures

* Directive 04/2002/CM/UEMOA relating to Shippers’ Councils. The
Recommendation and the Directive relate more closely to facilitation, and their
content 1s lhere’gxg_discussed under the relevant section of this chapter. The
Recommendation 02/2002/CM/UEMOA relating to the simplification and

harmonization of port procedures requests member states:

)
Lapnart
UMY :
wame N CHNOL D
i gy oF SCIENGE A T8
jMrVERS ‘"vlﬁ \

* to establish National Facilitation Committees

* to ratify the FAL Convention

* to ratify the Kyoto Revised Convention

* to liberalize port handling services

* for Customs, to adopt the principle of advance declaration, and simplified
declaration for transhipment and transit traffic

* 1o avoid duplication of the capture of the manifest between port authority and

Customs through the creation of computerized links between the two

institutions

2.1.1 Facilitating Regional Transport and Transit

The texts relating to transport facilitation cover the definition of the instruments such as the
guarantee regime for transit, or the motor insurance scheme, and also the institutions created

to accelerate and monitor their implementation.
Inter-State Road Transport:

The Protocol A/P.2/5/82 on Inter-State Road Transport (also known as “Convention ISRT”) is

aiming at regulating the conditions of transport by road between member states.

Application of the TRIE Convention is the responsibility of customs services and the consular
offices appointed to protect national interests in administering the TRIE guarantee fund, as
laid down in the TRIE Convention. However, ratification and actual implementation proved
problematic, and the Authority adopted the additional convention A/SP.1/5/90, which is
defining a chain c;f national bodies-responsible for the guarantee, with each national body
designated by each member state. With a view to limit road checks for transit trucks, UEMOA

adopted Directive 08/2005/CM/UEMOA on December 16th 2005. Containers, reefer trucks,

tanker trucks, and all compliant trucks (according to the Inter-State Road Transit Convention)
- 13

— =

were to be controlled only at departure, arrival, and at border crossings. Other controls are
forbidden. The practical modalities of the controls are defined in the Decision
15/2005/CM/UEMOA adopted the same day.
Brown Card Insurance scheme:
The final main facilitation instrument is the Protocol A/P.1/5/82, establishing the ECOWAS
Brown Card, a third party motor vehicle insurance. The Protocol is supplemented by the
Decision C/DEC.2/5/83 relating to the implementation of the Brown Card scheme.
Joint border posts
The lead for the establishment of joint border posts has been taken by UEMOA, and later
absorbed by the ECOWAS. The creation of joint border posts is contained in the resolution
04/97/CM/UEMOA adopting the Action Plan for transport infrastructure.
The EU through the World Bank [3] support to the ECOWAS Regional facilitation
programme includes the creation of Joint Border Posts. However, the EU funding is partly
conditioned to the achievement of specific milestones, and the Council adopted Resolution
C/RES.2/09/08 to assist in the process.
Integrated Facilitation Programme
The Conference of Heads of States and Governments issued Decision A/DEC.13/01/03 dated
January 31, 2003, relating to the establishment of a Regional road transport and transit
facilitation programme in support of intra-community trade and cross-border movements.
The main components of the Programme are:

* Harmonization and simplification of regulations and procedures (introduction

of single document system, harmonization of the guarantee system for inter-

_state transit operations)

* Construction of joint border posts

* Improvement of a information system by implementing the ACIS model
(Advance Cargo information System with Road Tracker and Port Tracker
modules) and by creating observatories of abnormal practices along the inter-
States roads; The Trans-Coastal Lagos/Nouakchott and the Trans-Sahelian
Dakar/Ndjamena corridors are selected for the implementation of the program,
Facilitation Institutions
The National Committees established by the Decision A/DEC.3/8/94 have a scope which
includes facilitation. This scope was also confirmed by UEMOA, in the Recommendation
04/97/CM/UEMOA..
Decision A/DEC.9/01/05 dated January 19th 2005 re organised the institutional framework for
the implementation of the facilitation programme, by reformatting or establishing three layers
of organs:
* National Facilitation Committees (with a revised composition)
* Cross Border Corridor Management Committees
* A Regional Inter-State Road Transport and Transit Facilitation Committee
The Committee, which partly duplicates for UEMOA the functions of the ECOWAS Regional
Facilitation Committee, comprises the following representatives from each member state:
= arepresentative of Customs
" arepresentative of Police
" arepresentative of Gendarmerie
= arepresentative of Plant Health Services
= the Director for Land Transport
" a represei;-i;ativé of the- National Facilitation Committee

* two representatives from the private sector

——-—l-'-'_--

2.1.2 Progress of Implementation:

The multiplication of decisions and recommendations did not improve the transport situation
in the region. The adequacy of the instruments developed was not questioned, but the
identified issue was their effective implementation. The remedy identified was adopting an
appropriate governance structure for facilitation issues, and increased coordination between
ECOWAS and UEMOA.

This approach was developed and formally approved by the organs of the two RECs during

the second half of 2003,

2.1.3 Trade Flux And Transit Facilitation Challenges In West Africa

West Africa context

One of the striking features of the region is the contrast:

- contrast between countries, which comprise small island state and landlocked countries,
large and small countries

- contrast in the population, with one country, Nigeria, representing more than half of the
Community population

- contrast in levels of development, although most countries are classified under the category
of the least developed countries

- contrast in density, from highly populated coastal areas to deserts The main economic and
demographic indicators are summarized in the table below.

Table: Main indicators (World Bank Development Indicators — reference year 2006 Economic

and Demographic Indicators [4]
gra e o

Table 2.1 Economic and Demographic Indicators

. @ s ~| =% =

56 |82 | 28| 5 | §= | 3

- = = £ ® E E] O — O

&= 8588 ~ 0 x 3 = = — g -

s E -~ 2 v . 33 = Q

85 | 8% |t83| 3z | aE | &
BENIN 88| 31 1126] 48| 41 5445
BURKINA FASO 14 .4 3,0 2740 6,2 6.4 4297
CAPEVERDE 0,5 2,3 4.0 1,1 6,1] 21923
GAMBIA | Rl 281, il . .0 S| 45 307,2
GHANA 23,0 2.1 2385 12,9 6,2 561,1
GUINEA | 92| 2,0 2459 3,3 2,8 361,7
gylﬂEA BlSSAU 1,7 30/ 361 0,3 4,2 1818
IVORY COAST 18,9 BN\ P25 L 178 0,9 928,1
LlBERlA s). 1 36 1S90 \B14ll NOB] 78 176,0
MALI e 12,0 3,0/ 12402 5,9 53 4904
NIGER | 137 . 3.5] 12670/ 37| = 48 266.4
NIGERIA 0 s A 24| 9238| 1153 52| 7970
SENEGAL 12,1 25| 1967 B2 2,3 7614
SIERRA LEONE 5,7 2.8 Faa 717 15 7.4 2526
TOGO 6,4 2,7 56.8 2,2 4.1 3448

Source: West Africa Road Transport And Transit Facilitation Strategy
As a continent, Africa south of Sahara is marginalized in the world trade, accounting fora
share of 1%, despite the fact that it is one of the most dependent regions on world markets,

with a share of 40% of its GDP dependent on exports.

Trade patterns have little changed over the last decades, only in terms of trading partners, with
Europe loosing its dominance, and the share of Asia growing, while in terms of composition,
it remained stable There are two types of corr_idors in the Ecowas area:the gateway corridors
linking the hinterland to the main seaports, primarily supporting the overseas trade of the
region and marginally the intra- regional trade. intra-regional corridors, key transport

infrastructures and services constituting a pipeline for a mix of regional trade flows.

(www.atlas-oue§t§frique.or22///

Due to the characteristics of the transport infrastructure of the ECOWAS area, a number of

Gateway corridors share common parts. The main corridors are linking the main seaports of

L1IDRARY
N 17 KWAME NKRUMAH
INIVERSITY OF SCIENCE B TECHNOLU!
KUMAS !

Dakar, Abidjan, Tema, Lome and Cotonou to the landlocked countries of Burkina Faso, Mali
and Niger. Significantly, in a number of corridors, Burkina Faso is playing a key role as transit

country.

2.1.4 West Africa Transit trade flows characteristics

The information on trade flows in West Africa is scarce and fragmented, sometimes

inconsistent. The information compiled in this section has been obtained through various

channels:
e official websites of the West Africa port authorities
s direct communications with port authorities
o Shipper’s Councils
g Extensive literature review

There are basically two options to approach corridor trade flows, from a port perspective, and
from the landlocked countries perspective.

Port transit traffic refers to direct trade between the landlocked countries and overseas
partners. However, the corridor trade flows also include bilateral trade with the coastal
countries, which may or may not be linked to maritime trade. This adds some confusion in the
strict comparison of figures. Whenever possible, several sources have been used and included
in this section, in order to enable future comparison of trends by referring to the relevant

series.

1998 1999 2000 2001 2002 2003 2004 2005 2006

B Burkina Faso B Mali B Niger

Figure 2.1 Maritime Transit for Burkina Faso, Mali and Niger
Source: World Bank(2007)

The Ivory Coast crisis, starting in September 2002, had a deep impact on the transit patterns,
with the diversification of routes for the landlocked countries. However, overall transit
volumes for the three landlocked countries of West Africa have not been significantly
affected, and the general trend is an increase since the year 2000. On the total maritime trade
of the three landlocked countries (Burkina Faso, Mali and Niger) passing through the ports,
the respective share of each port is illustrated in the following chart. However, when analyzed

from country to country, the evolutions are different.

19

1998 1999 2000 2001 2002 2003 2004 2005 2006
8 Dakar @ Conakry O Abidian B Takorad: B Tema 8 Lomé @ Cotonou

Figure 2.2 Total Transit for Burkina Faso, Mali and Niger

Source: world Bank (2007)

According to Dr. Zadok et al, [1] the effect of the Ivory Coast crisis is clear, and the Ghana
ports benefited from the resulting reorganization of the traffic, although the figures reveal that
the diversification started before the crisis, with the first signs of political uncertainties.
Figures from the Port of Abidjan however indicate that since the signing of the peace
agreement in March 2007, transit traffic is sharply picking up again in Abidjan, showing a

renewed confidence in the port as a maritime gateway.

Analyzed country per country, the situation is slightly different. Only two countries were
relying heavily on Abidjan as maritime gateway, Mali and Burkina Faso. The effect of the
Ivory Coast crisis is therefore more apparent than for Niger, for which Abidjan never played a

significant role.

The emergence of Takoradi is’l@e saturation of the port of Tema, which had to face
almost overnight huge volumes of cargo rerouted from Abidjan. For the port of Conakry, the

figures are missing, but is seems that the surge of traffic was short-lived.

20

Burkina Faso

The main gateway of Burkina Faso prior to the Ivory Coast crisis was Abidjan. However, the
emerging role of the Ghana ports started before the main closure of the border, at a time the
political situation in Ivory Coast prompted the landlocked countries to diversify their access
routes to the sea. In September 2002, the border closed for several months. preventing any

transit through.
Abidjan. However, once reopened, transit resumed but at a lower level.

1 600 000

1 400 000

1 200 000

1000 000

o |

400 000

200 000

0 T T mp———— T ' Y T

1998 1999 2000 2001 2002 2003 2004 2005 2006
D Abidjan @ Takoradi @ Tema @ Lome @ Cotonou

Figure 2.3 Maritime Transit for Burkina Faso

Source: world Bank (2007)

21

1 400 600

1 200 800

1 000 €00

£00 000

Mﬂﬂﬂ*—.‘

200 000

2000 2001 2002 2083 2004 2005 2006

|DAbjan BTakoradi BTema BLlome BCotonos |

Figure 2.4 Maritime Trade of Burkina Faso (CBC)

Source: world Bank (2007)

1600 000

1400 000

1200 000

1000 000

800 000 i—

600 000

400 000

200 000

0

1998 1999 2000 2001 2002 2003 2004 2005 2006

W Dakar @ Conakry OAbidjan @ Takoradi BTema B Lome @ Cotonou

Figure 2.5 Maritime Transits for Mali

Source: world Bank (2007) -,

22

For Mali, the Ivory Coast crisis resulted also in a sharp decrease of the role of Abidjan as
gateway for Mali trade, but the situation is partly reverting to the prior situation, with Abidjan
slowly gaining shares again.
However, the reshuffling of the corridors did not fully benefit to the port of Dakar, as
illustrated by the growing share of the Ghana and Togo ports. This can be partly linked to the
congestion of the port of Dakar, with limited spare capacity to handle increased volumes of
transit traffic.
To the contrary of Burkina Faso, there is no equivalent figure from the Mali Shippers’
Council, although two alternative sources can be considered:

. Entrepots Maliens, a parastatal managing warehouses in the West Africa ports

* The Ministry of Transport, monitoring the international (including regional) trade of

Mali.

The information obtained from the Ministry of Transport is recent, but does not provide any

indication on the respective share of each corridor.

Table 2.2 International trade of Mali

International trade of Mali 2003 2004 2005 2006
import 1,181,669 1,405,961 1,891,060 2,109.572
Petroleum products 311,837 245,512 . 279,601 330,107
export 18,3818 227,004 428,289 237,827
total 1,677,324 1,878,477 2,598,850 2,677,506

Source: world Bank (2007)

3 000 000,00

2 500 000,00 t

1= 2 000 000,00
: —
-
2 1500 000,00 — ===
"~ 1000 000,00

500 000.00 i

D'UU _J T T T

2001 2002 2003 2006

B Nouakchot — Bamako @ Dakar — Bamako @ Conakry - Bamako
D Abidjan — Bamake B Ghana — Bamako BLome — Bamako

Figure 2.6 International Trade of Mali by Corridor

Source: world Bank (2007)

Abolition of unnecessary road blocks and illegal fees

Too many road blocks and illegal fees have constituted a hindrance to trade in the sub region.
Their negative consequences are known to all Governments, yet despite the appeals by the
Authorities of sub-regional institutions, despite several meetings, resolutions,
recommendations and other instruments the phenomenon is growing from day to day. Thus in
its Resolution C/RES/1/12/88 of 6 December 1988 — the ECOWAS Council of Ministers
invited member States to reduce the number of road blocks by rationalizing the control
services and simplifying road control procedures. These road blocks also compromise road

safety, as they are not only traffic hold up but are also not easily obvious especially in the

night.

24

The best source of statistical information on this issue remains by far the results from

Observatory of Abnormal Practices (OPA) set up by WAEMU and published by WATH(West

Africa Trade Hub) on the following corridors:
* Tema — Ouagadougou;
* Lomeé — Ouagadougou;
* Bamako — Ouagadougou.
These results relate to:
* The number of check points;
J The times wasted at check points;
* The illegal collections demanded mainly by the law enforcement officials. The
table below compares the number of check points for the period between 27
May 2007 and 26 October 2007 with the number earlier obtained for the period
between 21 October 2006 and 26 May 2007. It reveals that:
= Mali recorded a noticeable drop in the number of check points per tripfrom 4.5
to 4 points per 100 km

* World Bank: “The Cost of Being Landlocked” available at:[4]

2.2 Review of relevant literature

Various Customs Administration in the sub-region have done some form of automation of
their procedures in collecting duties and taxes for their various countries. There have been
attempts to bring these systems together in order to harmonized these procedures in the sub
region. The following shows the various systems in place that the Customs have been using.

2.2.1 The Existing System

INTERCONNECTION OF CUSTOMS COMPUTERISED SYSTEMS

Architectural Model

There is a general consensus that the ECOWAS/UEMOA countries operate systems that are
widely “incompatible”. The analysis by the proponents of this school of thought is that since
the systems operate different architectures and are on different platforms at times, they cannot
be integrated. Further, the widely divergent formats of standard customs declarations in use
make it “impossible” for such kinds of integration.

The software system in use at the Customs Administration in the ECOWAS region roughly
conform to the 3-tier architectural model regardless of whether they are implemented as
distributed database systems or centralized database systems as below in Figure: 2.7: 3-tier
software architecture

Figure 2.7: 3-Tier architecture of the existing system

Presentation tier . 3
Sty otsl: 3
i GCat all
The top-most kevel of the application is the | Paprest TORCRE Declaration 1
user interface. The main function of the made todaw Daclaration 2

Declaration 3

interface is to translate tasks and results to
something the user can understand

A
|
Logic tier
This layer coordinates the application Y
processes commands. makes logical Fetch all Format all results
decisions and evaluations, and performs "“!“;3';“:1“"5 for display
calculations. It also moves and processes iy Sy
data between the two surrounding layers I T
Cecl 1
QUERY Decl 2

Data tier Decl 3
Here information is stored and retrieved
from a database or file system. The

inforrmation is then passed back to the logic
tier for processing, and then eventually
back to the user. -

Database

Source: West Africa Road Transport And Transit Facilitation Strategy
26

—_— T W e R ™

Therefore, any attempt at integrating the different customs administration systems will have to
take into consideration the suitability at integrating at the presentation layer, the logic layer or
the database layer. The customs administration systems in the ECOWAS/UEMOA region fall
roughly into six categories, each category having differing characteristics on each tier of its 3 -
tier software architecture. ASYCUDA 2.7, ASYCUDA++ and ASYCUDA World do not have
the same presentation, logic and database implementations even though they are from the
same family of software. Neither do the GCMS, the SYDAM and the GAINDE shatre much in
common.

Therefore, it is quite obvious that it is an extremely hard endeavor to try and integrate these
systems at the presentation or at the business logic tier. The best attempt at integration can
only be made by integrating at the database layer.

Figure: 2.8 Data layer levels

!

.......

Faial §
#Fa Sl ®
wgle s daw

Integration of the customs

I/ e authorities systems at the data . l/
\1 layer levels i
> -
Dl s

Source: West Africa Road Transport And Transit Facilitation Strategy

This kind of integration is made possible by the proposed system, because the Transit

algorithm integrates the various data of the vertices at the database layer and can use relational

-

database management system for the data layer.

27

e —————

Figure: 2.9 Interfacing for Ecowas

-
R T [R——

Data
_m
Server
ﬁ-

Source: West Africa Road Transport And Transit Facilitation Strategy.

Since the transit routes are designated and documented, and there are checkpoints on these
transit routes, then a regional cargo tracking system can be established based on data collected
on transit passing through these transit routes. The ports and customs authorities are critical
players in this kind of approach, as most transits will start from or end at the port and the
customs administrations have a vested interest in monitoring these transits as they travel on

the corridor.
This will mean that, at the bare minimum, the following must be done:

* (Customs administrations have to fully implement the transit modules of the

customs systems and to endeavor to implement the interconnectivity between

administrations for information exchange.

* Ports and customs have to implement at least a manifest collection module to

gather data from —impending consignments to the ports. Ideally, such

information should be ready before the vessel docks.

28

* Ports and customs must develop gate-pass systems to capture outgoing cargo

that has been cleared from the ports or the cargo that is going into the ports for

export.

* Customs transit monitoring units in the region must develop methods of
capturing information on the cargo as it crosses borders and customs
checkpoints. Further, these points must be connected to the customs

administration centralized database at headquarters via reliable communication

links.

T il o N

* Any permanent weigh-bridges should be automated and modules to capture s
information on consignments passing through should be captured. All this
information will then be aggregated on a prescribed frequency on the regional
cargo tracking platform and will be linked to provide a seamless window into

the movement of the cargo.

Figure 2.10: Cargo tracking data aggregation

CTS SERVERS

Data into CTS - Data transmitted into CTS

I
Port/Customs GatePass Data : Data at the !
systems capture. al borders. TR welghbridges. ,
Sent to CTS. Sent to CTS. Sent to CTS -i
PORT GATE (Custnm;f?nrt:} BORDERS (Customs) WEIGHBRIDGE |
—— . /_-/— ;
Source: World Customs Organization (2007)
e

29

Typically, the linking of the data would happen as follows:

*.
o

*

*

LG

As the good leave the port, the information on the container numbers, seal
numbers, customs declaration number, trailer registration number and the truck
number are captured.

Assuming the next point is a weighbridge, the data that could typically be
captured at that point would include truck registration number, trailer number,
axle loads.

The data could be enhanced to record customs documents numbers, container
numbers and seal numbers if the customs transit monitoring units are also
based at that weighbridge. At this point, it’s easy to use any of the captured
data to link it with the previous data at the port.

At the border points, customs would typically capture customs declaration
numbers, truck and trailer registration numbers, container numbers. If there is a

weighbridge, then axle loads and other details are captured.

By using the information captured, it would be possible to relate it back to the data captured at

the previous weighbridge which is already related back to the data captured at the port gates

and hence a seamless picture is captured as the transit moves on the route. Although such

tracking will have time-lags as the data must be collected by the entity at the transit point

before it is transmitted to the cargo tracking centralized database, the frequencies of

information collection will be made such that the data still remains relevant by the time it is

centralized and formatted. This kind of tracking is also susceptible to errors made on data

entry by the entity collecting the data and if the data is wrong at one point it may not be

"

possible to correlate it with the-dataat the other points, hence some portions of that transit

might be rendered “invisible”. Therefore data quality must be agreed upon and enforced by all

e

participating stakeholders.

. iR ARS
CWAME NKRUMAH
: ; TECHNMOL U
. 30 NIVERSITY OF SCIENGE S5
e W LIAAR S

The plus side is that this method is not as expensive as the satellite, GPS and GPRS based

methods. However, remote border stations that have no electricity and infrastructure to

support computerized operations will necessarily need to be upgraded to at least have the basic

internet connection and to meet the basic security requirements.

Also, since distances between the various data collection points are well-known, it is possible
to set up alerts on the system to monitor any inordinately long time periods between the last
sighting of the transit vehicle at the last checkpoint and the expected sighting at the next. This

will serve as an early warning system against diversions.

The tracking of containerized cargo will basically be accomplished the same way as the
tracking of the loose cargo under this kind of tracking system. In particular, if weighbridges
are included as data collection points, it may be possible to notice any significant weight

changes as the truck moves from one check point to the other and use that as an alert system.

The architectural model and the tracking data aggregation gives the ISRT transit operations

model which is the model now operating in the sub region and it is shown below.

Figure 2.11: ISRT transit operation

_Copy 4 lo__
nalional alamhn;

Copy 3 sent lo depart

— e e S — Sma

for reconciliation

*» [ggue transit documents
» Affix or check seals * Check saals |,
* Take copy 1 & 5_.f
r_:,__ . //—‘—/ i
I (]
DEPARTURE BORDER DESTINATION

Source: World Customs Organization (2007)

o 31

Ll il ol R —

T - —— WL e -

The ISRT works by using a set of leaflets within the ISRT declaration booklet which contain
details of the importer and of the consignment as many “Approvals to Transit” leaflets as there
are transit countries. Any customs documentation and any other documentation needed for the
transit of the cargo 1s also carried with the cargo. In the transit operation, the first leaflet is
retained at the office of departure while the second, third and fourth leaflets travel with the
cargo to the destination. At destination (and if the transit was compliant) the third leaflet is
sent back to the office of departure for matching and guarantee acquittal while the fourth
leaflet 1s forwarded to the national office of statistics. While en-route, the transporter shows
the “Approval to transit” at every border point they cross when demanded. The ISRT
convention’s intentions are to facilitate traffic by ensuring that transit is faster, customs
revenue 18 protected by the issuing of transit guarantees, and also to address the faster acquittal
of the guarantees on successful completion of transit in order to free up traders’ capital
investments tied up as guarantees. The ISRT transit operation therefore operates by focusing
on: - Seals and secure means of transportation: these are attached after inspection at the office

of departure so that the goods arrive at destination in the same form, quantity and status.

The issuance of a single ISRT declarations form was one of the three principles on which the
ISRT convention was adopted in order tolcurtail malpractices of customs officials and allied
agencies at the intermediate checkpoints and the border post. From figure 2.1 above it 1s clear
that the ISRT aim could not be achieved as a survey conducted by them reveal malpractices

documented in the figure below.

As summary, to implement a tracking system as below, the following milestones must be
achieved and could also be said that this is actually the reason why we need a new system by

way of this research.

__._._.—--'-'_

T T B S e e e o

Table 2.3 An Implementation of a transit tracking system

operations at the ports.

_ Activity Objective Responsible
Customs Development of business | Customs administrations
administrations to | processes, installation of
implement transit | appropriate modules for
modules transit in ASYCUDA,

GAINDE, GCMS and

SYDAM.
Ports and Customs to | Development of business | Ports and Customs
implement an | processes and software | administrations
automated manifest | interfaces for capturing ship
system manifest information prior to

ship's arrival.
Ports and Customs to | Development of business | Ports and Customs
implement GatePass | processes and software | administrations
systems modules to enable the

capturing of all in/out

Customs to link border
points to headquarters

Development of a Wide Area
Network to ensure all major
border points are networked
into the customs systems at
headquarters.

Customs administrations

system via a
WAN/LAN
Permanent
Weighbridge
infrastructure to be
upgraded and the
operations to be
computerized,

including linkage to the
CTS

Ensure that the infrastructure
at weighbridges is secure
enough to ensure security if
any ICT installations and to
ensure that weighbridge data
capture is computerized.

Ministries of Transport /
Ministries of Public Works
and/or Customs Transit Units

Establishment of
steering committee for
the CTS

To provide the general
direction at policy level for

the implementation of the
CTS.

ECOWAS, Customs and
Ports as key stakeholders

Focal points to be
established within
stakeholders as the
technical committee for
implementation

The technical committee will
act as the technical
validation point for the

implementation of the CTS
system and as the main
actors within the

Customs, Ports, Clearing
and Forwarding Agents,
Transporters, Shipping
Agents, relevant Ministries
and other trade and transport
facilitation stakeholders.

Source: World Customs Organization(2007)

Y

Cont’d An Implementation of a transit tracking system

Training workshops for
the pilot phase

Training sessions in each
participating member country
for all the stakeholders in

order to enable the
stakeholder community to

donate data for tracking and
to be able to use the system
for tracking.

ECOWAS CCC, Customs
Training Centers, Ports
Training Centers

Preparation of bidding
documents and
contracting of a vendor
for implementation -
Implementation Phase

To enable the procurement
of services from a vendor
interested in running the
CTS for profit.

Steering Committee,

ECOWAS

Formation of an
oversight
body/company by the
stakeholders

To monitor the execution of
the contract by the selected
vendor in as far as the CTS
IS concerned.

Stakeholders participating in
the scheme

CTS Hosting and
Sustainability -
Implementation Phase

To move the implementation
of the CTS for management
by an independent
outsourced entity and to

Qutsourced company with
oversight by the oversight
body/company of
stakeholders

work out the sustainability
measures and the oversight
duties of the stakeholders
CTS oversight body.

Source: World Customs Organization (2007)

2.3 Theoretical Framework

2.3.1 Maximum-flow minimum-cut Theorem

If fis a flow network G = (V,E) with source s and sink t, then the following conditions are

equivalent:
o . dobich
f1s a minimum flow in G “1; ti:K MAR ot
KW CIENCE & TECHNCL

The residual network Gy contains no augmenting paths

-

B T for some cut () of G,

A classical method for finding maximum flows was described by Ford and Fulkerson [6]. This

is a method than an algorithm in the sense that there are several implementations with

L= 34

T S F R e

differing running times. The Ford and Fulkerson method depends on three ideas that goes
beyond the method and are important to many flow algorithms and problems. These are
residual networks, augmenting paths, and cuts. An application of this method is finding a
maximum matching in an undirected bipartite graph. Intuitively, given a flow network G and a
flow f, the residual network Gt consists of edges with capacities that represent how we can
change the flow on edges with capacities that represent G. An edge of the flow network can
admit an amount of additional flow equal to the edge’s capacity minus the flow on that edge.
If the value is positive we place that edge into G¢ with a residual capacity. The intuition of this
is that a flow is increased by forward movement but is decreased by backward movement. By
the same intuition given a flow network G = (V,E) and a flow f, an augmenting path p is a
simple path from s to t in the residual network G¢. From Ford and Fulkerson we may increase
the flow on an edge of an augmenting path by the flow capacity of that edge. This amount can
be maximum of the residual capacity. Ford and Fulkerson also show us that a maximum flow
can actually be deduced from a cut of the of the flow network. The running time of Ford-
Fulkerson depends on how we find the augmenting path. If we choose it poorly, the algorithm
might not even terminate.

Ford-Fulkerson Method

Initialize flow f to 0

While there exist an augmenting path p in the residual network Gy

Augment flow f along p

Return f

Edmonds and Karp [7] improve the bound on Ford-Fulkerson by finding the augmenting path
with a breadth-ﬁfs;‘;earch. That-is—to choose the augmenting path as a shortest path from
source to the sink in the residual network, where each edge has unit distance(weight). Dinic

e —

independently using the breadth—first search [8] proved that this strategy yields a polynomial-

- 35

Ry L e =

time algorithm. A related idea of using blocking flows was also first developed by Dinic [8].
All the above authors used the capacity constraint and did not relax the flow conservation in
arriving at their various solutions. The capacity constraint simply says that the flow from one
vertex to another must be non negative and must not exceed the given capacity. The flow
conservation says that the total flow into a vertex other than the source or sink must equal the
total flow out of that vertex. Informally we can say that flow in equals flow out.

Defining flows formally

Let G = (V,E) be a flow network with capacity c. Let s be the source of the network, and let t 3
be the sink. A ﬂow in G is a real-valued function f: V x V — R that satisfies the following

properties: Capacity constraint: For all u,v € V, we require 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V —{s,t}, we require) yev f(v,u) =D vevf(u,v).

Karzanov [9] first developed the idea of preflows. That is leaving the traditional way of
solving the max-flow min-cut flow problem by relaxing the flow conservation and

maintaining the capacity constraint.

Relaxation of flow conservation
Preflow is a function f: VxV —R
Capacity constraint: For all u,v € V, we require 0 < f(u,v) < c(u,v)
e(u) = Yyevf(v,u)- Yyevf(u,v) =20
We say that the excess at a vertex is the amount by which the flow in exceeds the flow out. |

We also say that a vertex u € V — {s,t} is over flowing if e(u) > 0.

s e AL .

The flow network G and flow f Augmenting Path method (G, s, t) —
et /_'_,_

i)

T e T T o S e S S

)

")

Figure 2.12 Flow network G and flow f |

Source: Introduction to Algorithms (2008)

Converting a multiple source a multiple sink into a single source and sink

Super Source and Super Sink

(1) (b)
Figure 2.13: Super Source and Super Sink

Source: Introduction to Algorithms (2008)

2.3.2 The push relabel Method

The push relable method is due to A.V Goldberg [10] and Goldberg and Tarjan [11]. To date

many of the asymptotically fasm flow algorithms are push relabel algorithms, and
the fastest actual implementations of maximum flow algorithms are based on the push relabel

method. Push relabel algorithm work in a more localized manner than the Ford-Fulkerson

— 38

method. Rather than examine the entire residual network to find an augmenting path, push
relabel algorithms work on one vertex at a time, looking all the vertex neighbors in the
residual network. As mentioned above push relabel method do not maintain the flow
conservation property throughout their execution. The intuition behind the push relabel
algorithm is that directed edges correspond to pipes. Vertices which are pipe junctions, have
two properties. First to accommodate excess flow, each vertex has an outflow pipe leading to
an arbitrarily large reservoir that can accommodate fluid. Second each vertex, its reservoir,
and all its pipe connections sit on a platform whose height increases as the algorithm
progresses. Vertex height, determine how flow is pushed. We push flow only downhill, that is,
from a higher vertex to a lower vertex. The flow from a lower vertex to a higher vertex may be
positive, but operations that push flow push it only downhill. We fix the height of the source
at |V| and the height of the sink at 0. sink at 0. All other vertex heights start at 0 and increase
with time. The algorithm first sends as much flow as possible downhill from the source toward
the sink. The amount it sends is enough to fill each of the outgoing pipe to capacity. When
flow first enters an intermediate vertex it collects in the vertex reservoir. From here we
eventually pushed it downhill. We may eventually find that the only pipe that leave a vertex u
of its excess flow, we must increase its height, an operation called relabeling vertex u. We
increase its height one unit more than the height of its neighbors to which it has an unsaturated
pipe. After a vertex is relabeled, it has at least one outgoing pipe through which we can push
more flow. Eventually all the flow that can possibly get through to the sink has arrived there.
No more can arrive, because the pipe obey the capacity constraints, the amount of flow across
any cut is still limited by the capacity of the cut. To make the preflow a legal flow the

algorithm then sends the excess celtected in the reservoirs of the vertices back to the source by

continuing to relabel vertices to above the fixed height |V| of the source.

e

Several other researchers have developed push relabel maximum flow algorithms. Ahuja and
Orlin [12] and Ahuja, Orlin, and Tarjan [13] gave algorithms that used scaling. Cheriyan and
Maheshwari [14] propose pushing flow from the overflowing vertex of maximum height.

Cheriyan and Hagerup [15] suggested randomly permuting the neighbor lists.

2.3.3 The Blocking flows method

All algorithms stated above use some notion of distance, for instance the push relabel
algorithms use the analogous notion of height, with a length of 1 assigned implicitly to each
edge. This new algorithm takes a different approach and assigns a length of 0 to high capacity
edges and a length of 1 to low capacity edges. Informally, with respect to these lengths,
shortest paths from the source to the sink tend to have high capacity, which means that fewer
iterations need be performed. The algorithm of King, Rao, and Tarjan [16] is such an
algorithm. Noga Alon [17], Stephen Phillips and Jeffrey Westbrook [18] These researchers
developed clever ways that prevented randomly permuting the neighbor list, leading to a

sequence of faster algorithms.

2.3.4 Heuristics

Global relabel and Gap relabel heuristics are very essential when implementing a push relabel
algorithm. Goldberg and Cherkassky [19] and Goldberg [20] studies reveal that the push
relabel algorithm has poor practical performanbé because relabel is a local operation, the
method loses the global picture of the distances. A new maximum flow by Goldberg [21] uses
the global relabel heuristic and updates the distance function by computing shortest path
distances in the residual graph from all nodes to the sink. This can be done in linear time by a

backward breadth first search which is computationally expensive compared to the push and

relabel operations. Global relabeling are performed periodically, example after every n

relabeling. This heuristic drastically improves the running times. Another useful relabeling

(= 40

heuristic 1s gap relabeling discovered independently by Karzanov [22] and Derigs and Meier
[23], and based on the following observations. Let g be an integer and 0 < g < n. Suppose at
certain stage of the algorithm there are no nodes with distance label g but there are nodes v
with g < d(v) <n. Then the sink is not reachable from any of these nodes. Therefore the labels
of such nodes may be increased to n. Remember such nodes will never be active. If for every I
we maintain linked list of nodes with distance label i the overhead of detecting the gap is very

small. Most work done by the gap relabeling is useful. It involves processing the nodes

determine to be disconnected from the sink.

2.3.5 Parallel algorithms for the maximum flow problem.

Goldberg’s method of parallelizing the push relable algorithm is almost the same as that of
Karzanov [22] and latter by others like R.V Cherkassy [22], Z.Galil [25], Y. Shiloach and
Viskin [26], R.E Tarjan [16]. R. Anderson and J. Setubal [27] On the parallel Implementation
of Goldberg’s “maximum flow algorithm” The algorithm begins with a blocking preflow and
moves flow excess through the network while maintaining a blocking preflow, until
eventually this flow movement produces a blocking flow. The algorithm maintains a partition
of the vertices into two states: blocked and unblocked. We call an arc (0, w) admissible if it is
residual and w is unblocked. The algorithm blocks a. vertex w when it discovers that none of
the arcs leaving v is admissible; once v is blockgd_, every path from v to t contains a saturated
arc.,

Excess on blocked vertices is returned from whence it came, by decreasing thé flow on
appropriate incoming arcs. To keep track of the detailed flow movements, the algorithm
maintains a partitifuii: of the ﬂow w atoms. Consider a time during an execution of the

algorithm. An atom is a maximal quantity of excess that has moved in exactly the same way

-_—

_—-——.-—__-

so far. An atom a at a vertex v consists of an amount of excess denoted by size(u); the vertex v

is denoted by position(a). An atom located at a vertex other than s or 1 called active.
Ih 41

Associated with an atom a at a vertex v is a path of arcs in E+ from s to 2.7 that the atom
followed in arriving at v. This path is denoted by trace(a). Also associated with v is a simple
path from s to v denoted by path(a), of arcs in E through which the atom moved forward but
not backward in the course of reaching w from s. The relationship between truce(a) and

path(a) is that path(a) contains each arc (w,a) such that (w,a) but not (w, v) is on trace(a).

2.3.6 Summary of Worst case bounds of algorithms in the theoretical framework

Ahuja et al, [13] limited their study to the best previous maximum flow algorithms and some
recent algorithms that are likely to be efficient in practice. Their study encompasses ten
maximum flow algorithms whose discoverers and worst-case time bounds are given in Table
2.17. In the table, n denotes the number of nodes, m denotes the number of arcs, and U the
largest arc capacity in the network.

1. Dynamic Programming

Although this paper uses the parallel computational processing as its model some aspects of
dynamic programming is used. That is recursion and memoization. R. Bellman[30] began the
systematic study of dynamic programming in 1955. The word “programming,” both here and
in linear programming, refers to using a tabular solution method. Although optimization
techniques incorporating elements of dynamic programming were known earlier, Bellman
provided the area with a solid mathematical basis [30]. Galil and Park [31] classify dynamic-
programming algorithms according to the size of the table and the number of other table
entries each entry depends on. They call a dynamic-programming algorithm tD/eD if its table

size is O(n') and each entry depends on O(n°) other entries

- b memar et S
Greedy Algorithms

—

Greedy algorithms for scheduling will be used at the latter part of this paper. Algorithms for

optimization problems typically go through a sequence of steps, with a set of choices at each
: 42

oo,
= -

L .

ey P =

I AL W L

step. For many optimization problems, using dynamic programming to determine the best
choices is overkill; simpler, more efficient algorithms will do. A greedy algorithm always
makes the choice that looks best at the moment. That is, it makes a locally optimal choice in
the hope that this choice will lead to a globally optimal solution. Much more material on
greedy algorithms and matroids can be found in Lawler [32] and Papadimitriou and Steiglitz
[33]. The greedy algorithm first appeared in the combinatorial optimization literature in a
1971 article by Edmonds [34], though the theory of matroids dates back to a 1935 article by
Whitney [35]. The proof of the correctness of the greedy algorithm for the activity-selection
problem is based on that of Gavril [36]. The task-scheduling problem is studied in Lawler

[32]; Horowitz, Sahni, and Rajasekaran [37]; and Brassard and Bratley [38]

2.3.7 Multithreading

The data-parallel model according to J.S. Bulldog [39] and Stone [38] is another popular
algorithmic programming model, which features operations on vectors and matrices as
primitives. Graham [41] and Brent [42] showed that there exist schedulers achieving the
bound of T(n) = ® (¢") where ¢ = (1+ \5)/2 Eager, Zahorjan, and Lazowska [43] showed that
any greedy scheduler achieves this bound and proposed the methodology of using work and
span (although not by those names) to analyze parallel algorithms. Blelloch [44] developed an
algorithmic programming model based on work _and span (which he called the “depth” of the
computation) for data-parallel programming. Blumofe and Leiserson [45] gave a distributed
scheduling algorithm for dynamic multithreading based on randomized “work-stealing” and
showed that it achieves the bound E [Tp; < Ti/P + O(Ts) Arora, Blumofe, and Plaxton [46]
and Blelloch, Gi_@@_@;ﬁs, and Matias also provided provably good algorithms for
scheduling dynamic multithreaded computations. The silk [47,48] project at MIT and the

__.—-—-""_"_--_

silk++ [47] extension to C++ distributed by silk Arts Inc. have an influence on the

. - “ . . Y
computation dag pseudocode in this paper. L1iBREAR
: 2 £ KWAME NKRUMAK

i o 'NIVERSITY OF SEIENCE & TECHNOLOGY
KUMAS |

The coding of a parallel program according to Thomas Rauber et al, [50] for a given algorithm
is strongly influenced by the parallel computing system to be used. The term computing
system comprises all hardware and software components which are provided to the
programmer and which form the programmer’s view of the machine. The software aspects
include the specific operating system, the programming language and the compiler, or the
runtime libraries. The same parallel hardware can result in different views for the
programmer, i.€., in different parallel computing systems when used with different software
installations. A very efficient coding can usually be achieved when the specific hardware and
software installation is taken into account. But in contrast to sequential programming there are
many more details and diversities in parallel programming and a machine-dependent
programming can result in a large variety of different programs for the same algorithm. In
order to study more general principles in parallel programming, parallel computing systems
are considered in a more abstract way with respect to some properties, like the organization of
memory as shared or private. A systematic way to do this is to consider models which step
back from details of single systems and provide an abstract view for the design and analysis of

parallel programs.
Models for parallel systems

In the following, the types of models used for parallel processing according to T. Heywood et
al [51] are presented. Models for parallel processing can differ in their level of abstraction.
The four basic types are machine models, architectural models, computational models, and
programming models. The machine model is at the lowest level of abstraction and consists of
a description of h_z}}':d;are and WStem, e.g., the registers or the input and output
buffers. Assembly languages are based on this level of models. Architectural models are at the

next level of abstraction. Properties described at this level include the interconnection network

of parallel platforms, memory organization, synchronous or asynchronous processing, and
— 44

el
r e~

- ™

e L
e L e B

AEGT TR N

execution mode of single instructions by SIMD or MIMD. The computational model (or
model of computation) is at the next higher level of abstraction and offers an abstract or more
formal model of a corresponding architectural model. It provides cost functions reflecting the
time needed for the execution of an algorithm on the resources of a computer given by an
architectural model. Thus, a computational model provides an analytical method for designing
and evaluating algorithms. The complexity of an algorithm should reflect the performance on
a real computer. For sequential computing, the RAM (random access machine) model is a
computational model for the von Neumann architectural model. The RAM model describes a
sequential computer by a memory and one processor accessing the memory. The memory
consists of an unbounded number of memory locations each of which can contain an arbitrary
value. The processor executes a sequential algorithm consisting of a sequence of instructions
step by step. Each instruction comprises the load of data from memory into registers, the
execution of an arithmetic or logical operation, and the storing of the result into memory. The
RAM model is suitable for theoretical performance prediction although real computers have a
much more diverse and complex architecture. A computational model for parallel processing
is the PRAM (parallel random access machine) model, which is a generalization of the RAM
model. The data parallel model according to Thomas Rauber et al [50] is an aspect of the

computational model.

The programming model is at the next higher level of abstraction, and describes a parallel

computing system in terms of the semantics of the programming language or programming

environment. A parallel programming model specifies the programmer’s view on parallel

computer by defining how the programmer can code an algorithm. This view is influenced by
= f/-_’_,— . = . "

the architectural design and the language, compiler, or the runtime libraries and, thus, there

exist many different parallel programming models even for the same architecture. There are

several criteria by which the parallel programming models can differ:

o 45

AR TR A

o the level of parallelism which is exploited in the parallel execution (instruction level,

statement level, procedural level, or parallel loops)
* the implicit or user-defined explicit specification of parallelism

* the way how parallel program parts are specified

* the execution mode of parallel units (SIMD or SPMD, synchronous or asynchronous)

* the modes and pattern of communication among computing units for the exchange of

information (explicit communication or shared variables)

* synchronization mechanisms to organize computation and communication between

parallel units.
Parallelization of Programs

The parallelization of a given algorithm or program is typically performed on the basis of the
programming model used. Independent of the specific programming model, typical steps can
be identified to perform the parallelization. We assume that the computations to be
parallelized are given in the form of a sequential program or algorithm. To transform the
sequential computations into a parallel program, their control and data dependencies have to
be taken into consideration to ensure that the parallel program produces the same results as the
sequential program for all possible input values. The main goal is usually to reduce the
program execution time as much as possible by using multiple processors or cores. The
transformation into a parallel program is also referred to as parallelization. To perform this

transformation in a systematic way, it can be partitioned into several steps:
—_— /—-—J

Decomposition of the computations: The computations of the sequential algorithm are

—

decomposed into tasks, and dependencies between the tasks are determined. The tasks are the

46

& LE . & N e -
e e

T & o et b -t

smallest units of parallelism. Depending on the target system, they can be identified at
different execution levels: instruction level, data parallelism, or functional parallelism. In
principle, a task is a sequence of computations executed by a single processor or core.
Depending on the memory model, a task may involve accesses to the shared address space or
may execute message-passing operations. Depending on the specific application, the
decomposition into tasks may be done in an initialization phase at program start (static

decomposition), but tasks can also be created dynamically during program execution. In this o

P =

case, the number of tasks available for execution can vary significantly during the execution
of a program. At any point in program execution, the number of executable tasks is an upper
bound on the available degree of parallelism and, thus, the number of cores that can be
usefully employed. The goal of task decomposition is therefore to generate enough tasks to
keep all cores busy at all times during program execution. But on the other hand, the tasks
should contain enough computations such that the task execution time is large compared to the
scheduling and mapping time required to bring the task to execution. The computation time of
a task is also referred to as granularity: Tasks with many computations have a coarse-grained
granularity, tasks with only a few computations are fine-grained. If task granularity is too fine-
grained, the scheduling and mapping overhead is large and constitutes a significant amount of
the total execution time. Thus, the decomposition step must find a good compromise between

the number of tasks and their granularity.

Assignment of tasks to processes or threads: A process or a thread represents a flow of control

-

executed by a physical processor or core. A process or thread can execute different tasks one

= T

-
'.g-__‘_‘MP-.--i-

after another. The number of processes or threads does not necessarily need to be the same as

i

" /,"_—-—_— . .
the number of physical processors or cores, but often the same number 1s used. The main goal

STERCETE YR TE A

of the assignment step is to assign the tasks such that a good load balancing results, or thread
should have about the same number of computations to perform. But the number of memory

= 47

accesses (for shared address space) or communication operations for data exchange (for
distributed address space) should also be taken into consideration. For example, when using a
shared address space, it is useful to assign two tasks which work on the same data set to the
same thread, since this leads to a good cache usage. The assignment of tasks to processes or
threads is also called scheduling. For a static decomposition, the assignment can be done in

the initialization phase at program start (static scheduling). But scheduling can also be done

during program execution (dynamic scheduling).
Mapping of processes or threads to physical processes or cores

In the simplest case, each process or thread is mapped to a separate processor or core, also
called execution unit in the following. If less cores than threads are available, multiple threads
must be mapped to a single core. This mapping can be done by the operating system, but it
could also be supported by program statements. The main goal of the mapping step is to get an

equal utilization of the processors or cores while keeping communication between the

processors as small as possible.

/ process | y process 3

v °°/ Pl | P2
/QELF/{C’Q/:$>1 1

° ¥ /ﬁ // P3 | P4
Q' B GD
prmr_u 2 prmwa 4/
partitioning scheduling mapping
LipRAaARY
i 14 izati S - NKRUMAKH
Figure 2.14 : The parallelization step “NERSI‘::,:;A:‘GIENCE & TECHNOLUG Y
KUMAS |
Source: Verlag Berlin Heidelberg 2010
e S e =

In general, a scheduling algorithm is a method to determine an efficient execution order for a

__—-"'-"_---_

set of tasks of a given duration on a given set of execution units. Typically, the number of

tasks is much larger than the number of execution units. There may be dependencies between
48

Wl

L &

- | oamma T — g

the tasks, leading to precedence constraints. Since the number of execution units is fixed, there
are also capacity constraints. Both types of constraints restrict the schedules that can be used.
Usually, the scheduling algorithm considers the situation that each task is executed
sequentially by one processor or core (single-processor tasks). But in some models, a more
general case is also considered which assumes that several execution units can be employed
for a single task (parallel tasks), thus leading to a smaller task execution time. The overall goal
of a scheduling algorithm is to find a schedule for the tasks which defines for each task a
starting time and an execution unit such that the precedence and capacity constraints are
fulfilled and such that a given objective function is optimized. In this project no scheduling

algorithm is used as it is out of scope.

Often, Parallel Programming Models the overall completion time (also called make span)
should be minimized. This is the time elapsed between the start of the first task and the
completion of the last task of the program. For realistic situations, the problem of finding an
optimal schedule is NP-complete or NP-hard Ananth Grama [63]. A good overview of
scheduling algorithms is given by C.E Leiserson and B.M Maggs [24]. Often, the number of
processes or threads is adapted to the number of execution units such that each execution unit
performs exactly one process or thread, and there is no migration of a process or thread from
one execution unit to another during execution. In these cases, the terms “process™” and

“processor” or “thread” and “core” are used interchangeably.

The demand of ECOWAS for a single declaration document at the country of origin, that is at
the beginning of every transit and the futile attempt by the existing system in solving this
problem has led to ll“}’ig paper. In /th/is’,ﬂgeLﬂle procedures responsible for the transit of goods
through the sub region is modeled on a parallel computational direct acyclic graph which

__._.---""'"-_-

process these procedures at the vertices. To ensure a maximum flow of this process a push

AL 49

-

- P

WA TR Y

relabel method is employed and a computation acyclic graph to process the various procedures

at the vertices.

Shared memory model

The main model of parallel computation is the shared-memory model. In this model all
processing units have direct access to a common memory. Such an access is assumed to cost
constant time. In addition the processing units have a local memory in which they can store
local data. When considering computers with a shared memory, it is important to specify

which type of access to the memory are allowed explained by P. Brocker [53]

The EREW, Exclusive Read Exclusive Write, model is the most restrictive. Here it is assumed

that in a step each position in the main memory can be accessed by at most one processing

unit,

The CREW, Concurrent Read Exclusive Write, model is more convenient. Here it is assumed

that in a step arbitrarily many PUs can read a position while at most one PU can write a

position.

The CRCW, Concurrent Read Concurrent Write, model is the most powerful. Here it is

assumed that in a step a position can be read and written by arbitrarily many processing units..

last case there are several possible ways of handling write conflicts, leading to a further

subdivision of the model:

On a Common CRCW machine, concurrent writes are only allowed if all written values are

equal. We will see how on such a machine the maximum of n numbers can be computed with
O(n) work in O(log n) time.

i

On an Arbitrary CRCW machine it is allowed to write different values and one of them will be

written. The model does not specify which element is written, so the algorithms designer must

be prepared for the worst possible choice.

On a Random CRCW machine it is allowed to write different values and a randomly selected

one of them will be written. In this model the algorithms designer may exploit that some kind

of average value will succeed.

On a Maximum CRCW machine it is allowed to write different values and the largest of them

will succeed.

Depending on the underlying hardware, any of these models may be realistic. They are not far
apart anyway: the most powerful of these models, a step of a Maximum CRCW machine with
P processing units can be simulated on an EREW machine in O(log P) steps. The main
parallel computer model considered in this text is the PRAM model. A PRAM, Parallel
Random Access Machine, is a synchronous parallel computer with a shared memory. When
specifying the performance of a PRAM algorithm we will mostly specify the memory access

model, so we may say "On a CREW PRAM ... ".

It would be most correct to formulate a PRAM algorithm including load and store operations
specifying which data have to be copied from the global memory to the local memory and vice
versa. However, the existence of a local memory is mostly ignored, specifying algorithms as if
all the processing units operate directly on the shared memory itself. This 1s similar to the
practice of writing sequential algorithms without mentioning the memory management. The
main reason why the PRAM model is so popular is that it allows us to concentrate on the work

to perform. The shared memory model entirely neglects the aspects of data exchange. Thereby

it allowsus fo concentrate on the fundamental aspects of parallelizability.

Work-Time Framework

The PRAM model is simple, but the work-time framework allows to concentrate even more
on the underlying concepts. The idea is to not specify the number of involved processing units
an algorithm 1s composed of steps, and in each step there are operations to be executed in

parallel. Such an instruction may be of the type "for all i, 0 <= i < n, a[i] = b[i] + c[i]". for

example.

An algorithm is evaluated with two cost parameters: the time, that is, the number of parallel
steps; and the work, the sum over all steps of the number of performed operations. Specifying
the performance of an algorithm in this way leaves the allocation of the work to the processing
units unsolved. In principle it should be possible to perform a step in which w operations are

executed on a PRAM with P processing units in roundup (w / P) time, but only if each

processing units knows which operations to execute.

If the work-allocation problem can be solved, then a WT algorithm gives a PRAM algorithm:

if W(n) and T(n) are the work and time for a problem of size n, respectively, then
PRAM algorithm
T(P, n) =sum_{step i} round_up(w_i/P)
<=T(n) + sum_{stepi} w_1/P
<=T(n) + W(n) /P,

C(P,n) =P * T(P, n)

."-FF
—

<=P*T(n) + W (n).. e

These relations immediately suggest a close to optimal choice of P for a given value of n: take

P = P(n) = W(n) / T(n): for that value T(P, n) <=2 * T(n) and C(P, n) <=2 * W(n). So, for this
_ 52

choice of P, the completion time is at most twice the minimum value, and the cost is at most

twice as large as the work. This is a good compromise: taking P larger, C(P, n) increases
rapidly, without giving a substantial reduction of T(P, n). Taking P smaller gives substantially

larger T(P, n), without giving a substantial reduction of C(P, n).

If there is a parallel algorithm in the work-time framework solving a problem of size n with
work W(n) and time T(n), then, provided the work allocation can be solved, there is a PRAM

algorithm with time O(T(n)) and cost O(W(n)). Thomas Rauber et al [50]

A directed acyclic graph representing the execution of Trans (4) procedures. Each circle
represent one strand, with circles representing either base cases or the part of the procedure
(instance) up to the spawn of Trans (n), shaded circles representing the part of the procedure
that calls Trans(n-1) and suspends until the spawn of Trans (n)returns, and white circles
representing the part of the procedure after it was suspended and where it saves the vertices in
the list. Each group of strands belonging to the same procedure is surrounded by a rounded
rectangle, lightly shaded for spawned procedures and heavily shaded for called procedures.
Spawn edges and called edges point downward, continuation edges point to the right, and

return edges point upward.

After execution of procedures at the vertices which by the push relabel method was only a
temporal storage area would now send the executions to its destination and could then be

printed, so that at the beginning of every transit all the necessary information would be

available on a single document.

] LIBRARY
KWAME NKRUMAM
INIVERSITY OF SCIENCE & TECHNOLUWL?
KUMAS

53

Source: Bo Hong Drexel University, Philadelphia, PA 19104

Figure 2.16:Sequence of saturation pushes on (u,v)

Height (Label) of mode
’2\6
‘\ Second Push

Source: Prof. Dorit Hochbaum, IEOR 266,Fall (2003)

Figures 2.16 and 2.17 shows the action taken after the computations at the vertices from the

—

mmlhesink.dq:icﬁngmsacﬁonsﬁomﬂwmunu'yofoﬁginwdwﬁmﬁm

-..#'-_'—-

el S5 o S

s i e %

Figure 2..17 Single Declaration Document Transit Model

Single Declaration Single Declaration Single Declaration

2.4 Summary And Conclusion

The Ecowas in their quest to integrate their procedures in the transit of goods, in order to have
a single declaration which will among other things ensure the free movement of goods, have
initiated a lot of policies. Many of the States in Ecowas have partially automated their
procedures, whilst others still use the manual system. Ecowas policy is to integrate the various
systems mentioned earlier to form a single unit. The implementation of this idea 1s very
difficult practically. We in this paper, are proposing a parallel computational model of a
maximum flow network to take advantage of the multicore technology now available. With
this model all the procedures needed in the transit of goods between Ecowas states could be
captured on a single document. The advantages of the proposed model are those which
Ecowas want to achieve, i.e the abolition of the quota system, improvement in the conditions
of the road transport market (freight centre), harmonization of traffic rules and traffic code,

abolition of unnecessary road btocks and illegal fees and rallying towards international

standards enumerated earlier.

_—

e TS P

ENEAAF TR %N AW

CHAPTER THREE
METHODOLOGY

3.0 Introduction

The main purpose of this thesis is to model the procedures of the movement of goods in the
Ecowas sub-region such that a single transaction document of all the procedures involve in the
transaction are captured once. This problem is modeled with maximum flow as a transit
algorithm is developed, which is a combination of push relabel method and a Computational
Dag (Direct Acyclic Graph). In Customs jargon movement of goods is likened to the
processing of the customs procedures that is prior to the spatial displacement of the goods.
Goods are therefore deemed moved when the procedures responsible for that movement 1s
completed though the goods would have been at the very position first placed. The intuition
behind the transit algorithm is as follows, directed graph of the network have a path from one
vertex to another and transit of goods should have a predefined route. The network is directed
acyclic graph as there should be no loops in the movement of goods. The vertices in the
network represent states in the transit corridor. Edges connecting vertices in the network
represent communication links between states along the transit corridor. The super source of
the flow network is the logical location of the start vertex of all goods coming from various
sources to converge on the one source called coﬁntry of origin which is the starting vertex.
The super sink of the flow network located at the end of the flow 1s the logical location of all
the goods converging on the country of destination of the goods. The computation Dag at the
vertices represents the processing of procedures of states in the transit corridor. The resultant
outcome of the list could be represented as a single declaration document of the transit

transaction. The maximum flow problem therefore facilitates an efficient services rendered 1n

the transit transaction.

-

» T P e

» L, e e T T il
A N C W

Figure 3.1: Transit Model

3 R

ORIGIN

| INTE
Fon AR le—»| DESTINATION

, . I

SINGLE DECLARATION DOCUMENT

" /i

Source: Author (2012)

Modeling problems with maximum flow, is just as we can model a road as a directed graph in
order to find the shortest path from one point to another. We can also interpret a directed
graph as a “flow network™ and use it to answer questions about material flows. Let us imagine
a material coursing through a system from a source where the material is produced to a sink,
where it is consumed. The source produces the material at some steady rate and the sink
consumes at same rate. The “flow” of the material at any point in the system is intuitively the
rate at which the material moves. We can think of each directed edge in a flow network as a
conduit for the material. Each conduit has a stated capacity given as a maximum rate at which
the material can flow through the conduit such as four hundred litres per hour through a pipe.
Vertices are conduit junctions, and other than the source and sink, material flows through the
vertices without collecting in them. We can say in other words the rate at which the material
enters a vertex must equal the rate at which it leaves the vertex. We call this property flow
conservation.

In the maximum problem we wish to compute the greatest rate at which it leaves the vertex.
We will ship the material from the source to the sink without violating any capacity

constraints. This problem could my efficient algorithms. Basically there are two
general methods for solving maximum flow problem. The classical method as demonstrated

by Ford-Fulkerson [6], for finding maximum flow. Secondly the push-relabel method as

_ 57

demonstrated by A.V Karzanov [9] which underlies many of the fastest algorithms for
network flow problems. A particular implementation of the push-relabel method is the
relabel-to-front algorithm that runs in time O(V?). That is the generic algorithm by A.V
Goldberg [10]. A computational direct acyclic graph is incorporated in the maximum network
flow problem to process the various procedures at the vertices. A sequential algorithm is thus
designed with push-relabel method and computation direct acyclic graph as a model for transit
of goods in the Ecowas. This sequential algorithm is then multi-threaded so as to take

advantage of the multicore technology now available. This is done in Chapter 4 where the

variables are multithreaded.
3.1 Study Area

The definitions and theory covered in part of this section follows from definitions and theory
of maximum flow by Thomas H. Cormen et al [5]. We will have as the study area flow
networks and flows, push-relabel method, Computation Dag, parallel processing, multi-
threading in particular. We choose the push relable method over A graph theoretic definition
of flow networks, their properties and definitions of maximum flow problem precisely. A flow
network G= (V,E) is a directed graph in which each edge (u,v) € E has a non —negative
capacity c(u,v) > 0. We further require that if E contains an edge (u,v) then there is no edge
(v,u) in the reverse direction. If (u,v) ¢ E, then for convenience we define c(u,v) = 0, and we
disallow self - loops. We distinguish two vertices in a flow network, source s and sink t. For
convenience, we assume that each vertex lies on some path from the source to the sink. That
is for each vertex v € V, the flow network contains a path s to v to t. The graph is therefore
connected and sineé--é;ch vertex otherthan s has at least one entering edge, |E| = [V| -1. The

definition of a flow formally, let G = (V,E) be a flow network with a capacity function c. Let s

e

LiBEH ‘?ﬁ.:"‘h
i‘.'f‘llf‘ME‘ N ERUMAS G“‘
. g TECHNCLUS
siTY OF SCIENCE
58 INIVER e aMAS

be the source of the network, and let t be the sink. A flow in G is a real valued function f: VxV

R that satisfies the following properties.

Capacity constraint for all u,v € V we require 0 < f (u,v) < ¢ (u,v)
Flow Conservation : For all u € v- {s,t}, we require ¥ey f(v,u) = Yyev f(u,v)
When (u,v) ¢ E, there can be no flow from u to v, and f(u,v) = 0. We call the non negative
quality f(u,v) the flow from vertex u to vertex v. The value |f] of a flow is defined as |f] = Yvev
f(s,v) - 2vev (v,8), that is the total flow out of the source minus the flow into the source.
Typically a flow network will not have any edges into the source and the flow into the source
given by the summation),y f(v,s) will be 0. We include it however because when we
introduce residual networks it will become significant. In the maximum flow problem we are
given a flow network G with the source s and the sink t, and we wish to find the maximum
flow. A maximum flow problem may have several sources and sink, rather than just one of
each, we can reduce the problem of determine a maximum flow problem. We converts the
network from multiple source and multiple edges to an ordinary flow network with a single
source and a single sink by adding a Supersource s and add a directed edge (s,s;) with capacity
c(s,s;) = o for each i = 1,2,...m. We also create a Supersink t and add a directed edge (ti,t)
with capacity c(t;,t) = oo for each 1= 1,2...n.
The push-relabel approach to computing maximum flows is employed in this paper over the
Ford-Fulkerson method . These are the following advantages, why the former method 1s
adopted:

+ Push relabel algorithm runs faster than Ford-Fulkerson method

« Ford-Fulkerson algorithm may not terminate if the path is chosen poorly.

+ Push relabel algm:{es the law of conservation and thus facilitates

___—— preflows.

59

- R N A ———— .

e e e e e, o L o S B S e i i

Push relabel works in a more localized manner than Ford-Fulkerson which

examine the entire residual network.

Goldberg’s generic maximum flow algorithm, which has simple implementation that runs in
O(VZE) time thereby improving on the Edmonds-Karp algorithm [7]. The push relabel to front
algorithm refines the generic algorithm to obtain a runtime of O(v’) preflow, which is a
function f: V x V — R that satisfies the capacity constraint and the following relaxation
conservation: D vev f(v,u) - Dvev f(u,v) > 0 for all vertices u € V — {s}. That is the flow into a
vertex may exceed the flow out. We call the quantity e(u) = ¥ v f(v,u) - ¥ vev f(u,v) the
excess flow into vertex u. The excess at a vertex is the amount by which the flow in exceeds

the flow out. A vertex u € V — {s,t} is overflowing if e(u) > 0.

The intuition behind the generic push relabel algorithm is that directed edges correspond to
pipes. Vertices, which are pipe junctions, have two properties. First to accommodate excess
flow, each vertex has an outflow pipe leading to an arbitrarily large reservoir that can
accumulate fluid. Second, each vertex its reservoir, and all its pipe connections sit on a
platform whose height increase as the algorithm increases as the algorithm progresses. Vertex
heights determine how flow is pushed. We push flow only downhill, that is, from a higher
vertex to a lower vertex. The flow from a lower vertex to a higher vertex may be may be
positive, but operations that push flow push it only downhill. We fix the height of the source
at [V| and height of the sink at 0. All other vertex heights start at 0 and increase with time. The
algorithm first sends as much flow as possible downhill from the source toward the sink. The

amount it sends is exactly enough to fill each outgoing pipe from the source to capacity, that 1s

, it sends the capacity of the cut (s,V - {s}). When flow enters an intermediate vertex, it
collects in the vertex’s resewoi’ﬂre we eventually push it downhill. We may find that
the only pipes that leave a vertex u and are not already saturated with flow connect to vertices

that are on the same level as u of its neighbors to which it has unsaturated pipe. After a vertex

60

is relabeled, therefore, it has at least one outgoing pipe through which we can push more flow.

Eventually all the flow that can possibly get through to the sink has arrived there. No more can
arrive, because the pipes obey the capacity constraints, the amount of flow across any cut is
still limited by the capacity of the cut. To make the preflow a legal flow the algorithm then
sends the excess collected in the reservoirs of overflowing vertices back to the source by
continuing to relabel vertices to above the fixed height |V| of the source. Once we have

emptied all the reservoirs, the preflow is not only a legal flow, it is also a maximum flow.

The third model is the computational model which is at the next higher level of abstraction
and offers an abstraction or more formal model of a corresponding architectural model. Thus a
computational model provides an analytical method for designing and evaluating algorithms.
The complexity of an algorithm should reflect the performance on a real computer. This view
is influenced by the architectural design and language, compiler, or the runtime libraries and
thus , there exist many different parallel programming models even for the same architecture.
In this paper, computational model is used to abstract the model of the movement of goods. In
other words a computational model of a maximum flow problem is abstracted using a network

flow which is finally multithreaded.
3.2 Design of study

The design of this study expresses how the transit algorithm is to be constructed. It describes
the parts involved and how they are to be assembled. This design consists of a set of
documents, these are diagrams, together with explanations of what the diagram mean. A form

of design which is flowcharts are used together with pseudocodes
e //'l

61

e i i e i

N R N I M N SN

Transit Pseudocode:

Let G = (V,E) be a flow network with source s and sink t and let f be a preflow in G . Let the
neighbor list u.N for a vertex u € V be a singly list of neighbors of u in G. Let u.N.head be an

attribute points to the first vertex in u.N, v.next-neighbor points to the next vertex, u.current

points to the vertex under current consideration. !
The Transit pseudocode y
Initialize preflow 3
List of vertices in any order with the exception of the source s and the sink t.

For each vertex u € G.V — {s,t}

The current pointer points to the first vertex.

Start with first vertex in the List

While there are more vertices Do

Old height = Current height

Else stop

If vertex is the first in list then

Compute transit procedure]

Store computation in List ;
Else send vertex to-be discharged— :q

Discharge-flow

If current height is greater than old height, true
62

move vertex to the front of List
Else maintain vertex position in List

Shift pointer to the next vertex in the neighbor list

<D

(Inmahize oreflow

l* 12

[List = G.V)

For eachvertexue GV

-]

[Curmrent vertex is the head ofneighbor list]

|

[Vertex is the current head of hinked list]

2

While vertex= = Nil

False
[Old height = current height J
Source : Author (2012)
I _,.—--""‘"-———_

Con’t Flowchart of Transit algorithm

—-—._r

63

o e *

AR T e e T

il e i T

If Vertex=Head of Linked List

@

True Else

[Compute transit procedures J

@

1

@

{ Save results in List]
[Discharge flow]
@
Else If current height> Old height
Trug

E
(Movc current vertex to the front of Linked List J

Figure 3.2: Flowchart of Transit algorithm

-

Source: Author (2612) S

..uh‘ \'

In this section we will explain the intuition behind the Transit pseudocode. Line 1 initializes

the preflow and heights to the same values as the generic push relabel algorithm.

Line 2 initializes the Linked List of the vertices with the exception of the source s and the sink
t to contain all potentially overflowing vertices in any order.

Line 3-4 initializes the current vertex of each neighbor list as the first vertex of the neighbor
list

Line 5 make the process start with the first vertex of the Linked List

The While loop of lines 6-11 runs through the Linked list

The current height of the vertex is stored in the old height variable in line 7

If vertex is equal to nil then processes end in line 8

Line 9 check to see if the current vertex is the head of the Linked List

If true line 10 compute the transit procedures whilst line 11 stores the results in the list

If vertex is not the first in Linked list then it is send to be discharged in line 12

Line 13 discharges flow and line 14 compares the height of the current vertex with its height
before discharge

Line 15 moves current vertex to the front of linked list if itg height is greater than its height
before it was discharged

Line 16 maintains vertex position in list

3.2.1 Initialize Preflow

The generic push relabel algorithm uses the following subroutine to create an initial preflow
network.

For each vertex v belongstoG.V.

Initial height of vertex = 0

—

———--'-.-_-

[nitial excess flow at vertex =0

For each edge (u,v) € G.E
65

wuraAR S Y

All other vertex carry no flow

Fix the height of source s = |V|

For each vertex v € s.Adj (adjacent to source s)

Vertex u adjacent to Source s has excess flow to capacity

[nitializes excess at Source to the negative of the sum of the capacities.

Initialize each vertex to the flow of the capacity

Initialize preflow f creates an initial preflow f defined by

(u,v).f= ¢ (u,v) if u = s or 0 otherwise. That is we fill to capacity each edge leaving the source
s, and all other edges carry no flow. For each vertex u adjacent to the source we initially have
v.e = ¢(s,v), and we initialize s.e to the negative of the sum of these capacities. The generic
algorithm also begins with an initial height function h, given by uh = [V| if u = s or 0
otherwise. The above equation defines a height function because the only edges (u,v) for
which u.h > v.h + 1 are those for which u = s and those edges are saturated, which means that
they are not in the residual network. Initialization followed by a sequence of push and relabel
operations executed in no particular other yields the generic relabel algorithm.

Flowchart of initialize preflow (G,s)

66

Ty e g, i, |

T SR

w el

For each vertex

True

[Tnitial height of vertex =0]

b

[Initial excebd Aok of Yertéxs 0

For each edge

[All other vertices carry no flow]

l

[Fix the height of the source s_= |V]

Source: Author(2012)

67

- e b b B *

ABEE W T .

Foreachvertexve s.adj.

True

Vertex v adjacent to source have excess flow
to capacity

Initialize excess at source to the negative of
the sum of capacities

r_

. l
B - N\
Initialize each vertex to the flow of the
capacities
e J

Figure 3.3:Flowchart of initialize preflow (G,s)
Source: Author (2012)

3.2.2 Discharge Pseudocode

An overflowing vertex u is discharged by pushing all of its excess flow through admissible

edges to neighboring vertices relabeling vertex u as necessary 10 cause edges leaving u to

become admissible. The pseudocode goes-on as follows;

Discharge Pseudocode

—

e

While There is excess flow

68

Vertex v = u.current
If vertex v == Nil, (that is the last vertex in the neighbor list)

Relabel(u)

U.current = u.n.Head

Blseif cg(u,v) > 0and uh==vh+1

Push (u,v)

Else u.current = v.next-neighbor

The while loop of line 1-8 executes as long as vertex u has positive excess such that the
pseudocode steps 1s several iterations. Each iteration performs exactly one of three actions,
depending on the current vertex v in the neighbor list u.N

Line 4 relabels vertex u if v is Nil meaning we have run off the end of u.N and then line 5
resets the current neighbor of u to be the first one in u.N

Determine by the text in line 6 if v is non —NIL and (u,v) is an admissible edge then line 7
pushes some or possibly all of u’s excess to vertex v.

If v is non-NIL but (u,v) is inadmissible, then line 8 advances u.current one position further In
the neighbor list u.N

If discharge is called on an overflowing vertex u, then the last action performed by Discharge
must be a push from u. The procedure terminates only when excess flow u.e becomes zero,
and neither the relabel operation or advancing the pointer u.current affects the value of excess

flow u.e. We must be sure that when Push or Relabel operation is called by Discharge, the

operation applies.

69

CAUTARS B

T T T mapramm g W W B N W O P B T RN Ty TNy

P e

O

False Whiley e>0
7 §
@ [Vertex v = current vertexu }

Elself /\ If v=Nil (vertex is last)
@ J True l
{ RELABEL

True

Vertex is not last and edge isladmissible

® s
neighbor list

Current vertex =the head of]
g J' \/ TR l‘ @

} [PUSH EXCESS

Shift carrent pointer to
next vertex

G

Figure:3.4 Discharge Flowchart

Source : (2012)

3.2.3.The Pseudocode of the push operation

Introduction of some useful notation of the push operation are as follows; cr (u,v) is a residual
capacity in constant time given ¢ and f. The attribute u.e, is where the excess flow at the

vertex u is stored -._ﬁie attribute maght of u. The expression d (u,v) 1s a temporal

variable that stores the amount of flow that we can push from u to v.

70

.{_x_\M;h‘E‘ b

_— T ey wrTT

g —

T T I R R T w———

T T T

Push pseudocode
The push operation applies when: u is overflowing, ¢, (W,v)>0,anduh=v.h+1
Push d; (u,v) = min(u.e, ¢¢(u,v)) units of flow from u to v
d; (u,v) = min(u.e, cr (u,v))
If (u,v) €E
(u,v).f = (u,v).f+ dr (u,v)
Else (v,u).f = (v,u).f - df (u,v)
u.e = u.e - dr (u,v)

Figure 3.5: Push (u,v) Operation flowchart

Push (u.v) Operation flowcharnt

o False If vertex is overflowing and residual capacityis
positive and vertex height > adjacent vertex
True
[Incrcasc flowfromutov J

by minimum of excess

Computes the value of
pushed flow

False Ifedge(uyv)e f

True

[Decrease the flow on edge (v&)J (Increase the flow on edge (u.v)]

l

[Update the current flow into vertex u]

Update the excess flow into
vertex v

Source : Author (2012)
71

!-Q_'I-M;L'E' b

The Push method operates as follows:

We can increase the flow from u to v by df (u,v) = min(u.e, ¢; (u,v) without causing u.e 10
become negative or the capacity c(u,v) to be exceeded. because vertex u has a positive excess
u.e and the residual capacity of (u,v) is positive. Line 3 computes the value of di (u,v) and line
4-6 updates f. Line 5 increase the flow on edge (u,v), because we are pushing flow over a
residual edge that is also an original edge. Line6 decreases the flow on edge (u,v) because the
residual edge is actually the reverse of an edge in the original network. Lines 7-8 updates the

excess flow into vertices u and v and thus f is a preflow before Push is called, it remains a

preflow afterward.

We realize that nothing in the push pseudocode depends on the height of u and v, but we
prevent it from being invoked unless u.h = v.h + 1. This implies that we push excess flow
downhill only by a height differential of laccording to A.V Goldberg [10] no residual edges
exist between two vertices whose heights differ by more than 1 and thus as long as the
attribute h is indeed a height function we would gain nothing by allowing how to be pushed
downhill a height differential of more than 1. We call the operation Push (u,v) a push from u
to v if a push operation applies to some edge (u,v) leaving a vertex u, we also say that the push
operation applies to u. It is a saturating push if edge (u,v) in the residual network becomes
saturated (c¢ (u,v) = 0 afterwards) ;otherwise, it is a non saturating push. If an edge becomes

saturated, it disappears from the residual network.

.I }L -..,fLJ-

KWAME NKRUMAR

TY OF SCIENCE & TECHNOL 7V

THE PSEUDOCODE OF RELABEL OPERATION "NWERSITEC 00 oy

A graph theoretical definition of heights of vertices. Let G = (V,E) be a flow network with
sources s and sink t and let f be a preflow in G. A function h: v —N1s 2 function if h(s) = [V],
h(t) = 6-and h(u) < h(v) + 1 for every residual edge (u,v) € Er. We immediately obtain the
following lemma: Let G = (V,E) be a flow network, let f be a preflow in G, and let h be a

= 72

o AARAR S ¢

S W e L e PSSy —

T W W RN e

e R e o . A

height function on V, for any two vertices u,v € V, if h(u) > h(v0 + 1 then (u,v) is not an edge
in the residual network . The basic operation Relabel (u) applies if u is overflowing and if u.h
< v.h for all edges (u,v) € E¢. In other words we can relabel an overflowing vertex u if for

every vertex v for which there is residual capacity from u to v, flow cannot be pushed from u
to v because v is not downhill from u. The source s and the sink t by definition cannot be

overflowing and so s and t are negligible for relabeling.

Relabel (u) pseudocode

Relable applies when u is overflowing and for all v € V such that (u,v) € Ef we have u.h < v.h
Increase the height of u: vvh=1+min{v.h: (u,v) € E¢}

Figure 3.6 Flowchart of Relable Operation

@ false Ifue>0anduh<vh

True

Y

[Increase the height of vertex]

|

(Hcight of vertex = 1 + min. of adjacent vertex }

heioht

©

__-—-__._._—-—"'.

Source : Author (2012)
73

. AABAR™ O

When we call the operation Relabel (u) we say that the vertex u is relabeled. Note that when u
relabeled , E must contain at least one edge that leaves u, so that the minimization in the code
is over a nonempty set. This property follows from the assumption that u is overflowing,
which in turn tell us that: u.e = v f(u,v) - ¥.ev f(u,v) > 0. Since all flows are nonnegative,
we must therefore have at least one vertex v such that (v,u).f> 0. But then, ¢ (u,v) > 0, which

implies that (u,v) € Er. The operation Relable (u) thus gives us the greatest height allowed by

the constraints on height functions.

COMPUTATION DIRECT ACYCLIC GRAPH (COMPUTATION DAG)

The computation dag algorithm executes the procedures at the vertex and stores the output in
the list .

THE COMPUTATION DAG PSEUDOCODE

Initializes the list to contain all potentially overflowing vertices excluding the source s and the
sink t.

Initialize the computation of no vertex to 0

Test if there are no vertices

If true then return no vertex

Else compute vertex and store in attribute U;

Compute the previous list and put in another attribute Ui,

Put the attributes U; and U;.; in List L

Return results

3.2.4 Recursion of computation dag

The intuition behind this is that because the procedures of customs in the Ecowas could be
_ //‘——_/
represented as direct acyclic graph, computations of procedures also could happen at the

d AVABAR S

—

vertices.

74

A tree of recursive procedure instances when computing could be formed. Each instance of
computation with the same argument does the same work to produce the same results
providing an efficient way to compute the direct acyclic graph. By applying dynamic method
which works as follows, efficient results are obtained. Having observed that a naive recursive
solution is inefficient because it solves the same sub problems repeatedly, we arrange for each
sub problem to be solved only once, saving its results. If we need to refer to this sub problem’s
solution again later, we can just look it up, rather than re-compute it. Dynamic programming
thus uses additional memory to save computation time. It serves an example of time — memory
trade off. The savings may be dramatic an exponential time solution may be transformed into
a polynomial-time solution. A dynamic programming approach runs in polynomial time when
the number of distinct sub problems involved is polynomial in input size and we can solve
each sub problem in polynomial time. We will use top down with memoization. In this
approach we write the procedure recursively in a natural manner but modified to save the
result of each sub problem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this problem. If so it returns the saved value, saving
further computation at this level, if not the procedure computes the value in the usual manner.

We say that the recursive procedure has been memoized, it remembered what results it has

computed previously.

CAITAR S

FALSE

~ Figure 3.7: Flowchart of Computation Dag

Number of vertices < 1

4

Compute Current vertex
and the previous vertex

1

D

Source : Author (2012)

M
@

76

TRUE

v

[Return number of vertex]

Y

Y *

L \VITAR S

r RECURSION OF COMPUTATION DAG (UML REPRESENTATION)

i_
. Figure 3.8: UML Representation of Recursion

Vertex

L Comp() «

AN

Inheritance

Non Head Vertex Head vertex

<> Agoregate
Comp() Comp()

Source : Author (2012)

The vertex is a base class with Comp method of which the Non-head vertex Class and Head

vertex Class inherit also with comp method. Because the Head vertex is recursive it

aggregates in the Base vertex Class in figure 3.9 above.

3.2.5 Parallelizing the Transit Sequential Algorithm

PSEUDOCODE OF THE PARALLEL TRANSIT ALGORITHM
= /__

Initialize the variables

__n—-"""-_--_

If variables are independent

77

= W3 T = s

]
]

1
|

process Relable method, Push method, Compute routine and Compute sub routine together

Else process sequentially

Return results

Figure 3.9: Flowchart Of Parallelizing Transit Algorithm

[Initialize variables 1

If variables are independent

True \ False

Parallel Processing

l [Comp routine }

[Eon sub-Routine]
| |]
|

[Process Sequentially]
{?4
[Return Results]

Source : Author (2012)

e

The sequential Transit algorithm

made up by the combination of a Push Relabel method and a

Computation Direct Acyclic Graph is parallelized with its attendant property of concurrency.

From Peter Wind et al [57] a parallel algorithm could be described as the steps involved 1n

1 78

DA T

solving a given problem on a parallel computer, This however, is an over simplification, as the

development of parallel algorithms involves much more than just describing the steps of the
computation. At the very least, a parallel algorithm has the added dimension of concurrency
and the algorithm designer must specify the sets of steps that can be executed simultaneously.
Simultaneously or concurrent execution is essential for obtaining any performance benefits

from the use of a multi-core computer. In practice, designing a nontrivial concurrent algorithm

may include some or all of the following steps :

Access control (synchronization)

Access control is the controlling the access to data shared by multiple threads using
synchronization. The above items is the parallelization technique used in this thesis, but is just
one out of many possible ways of parallelized an algorithm. A parallelization technique should
not be seen as an exact science and varies depending on the actual problem. Usually the steps
also vary depending on both the underlying architecture and the programming paradigm
(programming language). It is also important to note that not all sequential algorithms are
suited for parallelization, often because each sub problem relies on results from the previous
Sub problem. This creates a large communication overhead and the benefit of parallel
computing is lost. A sequential algorithm's potential benefit by being converted into a parallel
algorithm is theoretically defined by Amdahl's Law [56]. The law predicts that if P is the
portion of a program that can be made parallel (i.e. Beneﬁt from parallelization), and (1-P) is
the portion that cannot be parallelized (remains sequential), then the maximum speed up that

can be achieved by using N processors is given by the equation 1/(1-P) + P/N

>

By taking the limit-as N approachgs»irrﬁﬁfﬁfﬁe are left with the equation 1/(1 — P) and clearly

as the factor of parallelization increases the speed up Increases.
_.__—l—"'-'.-.-.-.-

79

i, VIDAR =

Another important problem to have in mind when decomposing a problem is the granularity of
the decomposition. The granularity refers to the size of the subtasks compared to the main
problem. If the decomposition consists of a large number of small tasks it is called fine-

grained, and if the decomposition consists of fewer larger tasks it is called coarse- grained.

The granularity can have a big impact on the performance of an algorithm in two ways. If the

decomposition is too fine-grained, each task is not very computation heavy and much time

is used on communication between the different tasks. If the decomposition on the other hand
is too coarse-grained, not enough operations can be done concurrently and some processors
may be idle for some time. The key is to find the correct task-size so that each processor is
always occupied and only minimal time is spent on communication. This optimal task-size can

be hard to figure out and is most often achieved trough trial-and-error.
Recursive decomposition

Recursive decomposition represents a different and complementary way of thinking about
problems. In this approach, the initial focus is on the computation that is to be performed
rather than on the data manipulated by the computation. This method is useful if the
computation can be divided into disjoint tasks which often is the case for algorithm usually
solved using the divide-and-conquer strategy. In this technique, a problem is solved by first
dividing it into a set of independent sub problems. Each one of these sub problems is solved
by recursively applying a similar division into smaller sub problems followed by a
combination of their results. The divide-and- conquer strategy results in natural concurrency,

as the different sub_problems can be solved concurrently. If the sub problems are not

S

completely disjoi_nt (as they are In divide-and-conquer algorithms), the recursive

decomposition technique can still be used. However, this requires some communication

o L1 A P 2

the different tasks, which in - .]
between ; many cases isn't trivial. If the communication overhead

is too large the data decomposition method should be considered instead.

3.2.6.Parallelizing the push and the relable methods

In this chapter we are not going to indulge very much on mapping process since it is the
preserve of implementation. We will therefore go straight to parallelizing the push relabel
method which is an integral part of the Transit algorithm. The idea behind parallelizing push-
relabel according to Victoria Popic et al [59] is to find a way to discharge active nodes in
parallel. Discharging nodes in parallel (as well as running the concurrent global update)
introduces many races. In order to avoid them, locks need to be used in several sections of the
code. For example, when flow is pushed between two nodes, both nodes are locked in order to
update the flow excess and residual capacity values and prevent a concurrent relabeling of one
of the nodes. The node being relabeled needs to be locked throughout the entire operation in
order to update its distance label and prevent flow from being pushed to it creating an
admissible arc at a lower level. Adding newly activated nodes to the buckets, also requires a
locking mechanism or an atomic operation. Finally, we also need to ensure that the updates to
the global variables (such as a Max) are performed correctly (a lock is currently used in all the

implementations to achieve this).

From the ensuing reason of the push pseudocode and Relable pseudocode we can parallelize
the push and the relabel methods as the excess flow into vertices u and v and thus f 1s a
preflow before Push is called, it remains a preflow afterward. We realize that nothing in the
push pseudocode depends on the height of u and v, but we prevent it from being invoked
unless u.h = v.h +; This impm push excess flow downhill only by a height
diﬂ'ereggi_gl_gi 1. A.V. Goldberg [10] which states that given G= (V,E) be a flow network, f be

a preflow in G, and h be a height function on V, for any two vertices u,v € V if h(u) > h(v) +

i 81

L WVITAR &

Ithen (u,v) 1s not in the residual network, no residual edges exist between two vertices whose
heights differ by more than 1 and thus as long as the attribute h is indeed a height function we
would gain nothing by allowing how to be pushed downhill a height differential of more than
|. We call the operation Push (u,v) a push from u to v if a push operation. From the above
analysis parallelizing the push method and the relable method is feasible. An overflowing
vertex can be either pushed or relabeled. That is let G= (V,E) be a flow network with source s

and sink t, let f be a preflow, and let h be any height function for f. If u is any overflowing

vertex, then either a push or relabel operation applies to it.

Proof: For any residual edge (u,v) , we have h(u) < h(v) + 1 because h is a height function. If
a push operation does not apply to an overflowing vertex u, then for all residual edges (u,v),
we must have h(u,v) < h(v) + 1, which implies h(u) < h(v). Thus, a relabel operation applies

tfo u.

3.2.7 Parallelizing the Computation Dag.

Many multithreaded algorithms involving nested parallelism follow naturally from the divide
and conquer paradigm. Moreover just as serial divide and conquer lend themselves to analysis
by solving recurrences, so do multithreaded algorithms. From the section on recursion above ,
it emerged that a tree of recursive procedure instances when computing could be formed. Each
instance of computation with the same argument. does the same work to produce the same
results providing an efficient way to compute the direct acyclic graph. By applying dynamic
method which works as follows, efficient results are obtained. Having observed that a naive

recursive solution is inefficient because it solves the same sub problems repeatedly, we

——
g

arrange for each subproblem to be-sotved only once, saving its results. If we need to refer to
this sub problem’s solution again later, we can just look it up, rather than re-compute it. We

can thus allocate the procedure of a sub problem to be computed at the same time as its sub

82 LiBRARY
KWAME NKRUMAH
NIVERSITY OF SCIENCE & TECHNOLO®"
KUIMA S !

L WVIPAE 2

procedure known as its child and the parent as the procedure itself. By this way we parallelize

the computation dag. In parallel programming paradigm it is known as spawning the child

procedure.
3.3 Variables

3.3.1. Parallel Global Updates

From [parallelizing] Parallel global update condition, states that given any vertex u, it must be
the case that h(u) < h(v)+1 for all the edges (u,v) in the residual graph G and a violation of
this condition might result in incorrect results. They associate a wave number with each node,
which stores the number of times the node was globally relabeled. It is only allowed to push
flow between nodes with the same wave number and the two nodes must be both locked when
the push occurs. It is also important to make sure that in any distance label update the node’s
distance label is never decreased. The relabel operation needs to lock the node being relabeled,
similarly the global update also needs to lock each node it reaches. There are two global
variables to store the current global update wave number and the current level in the breadth
first search tree. Further information and correctness proofs can be found in Thomas H.

Cormen et al [5].

3.3.2 .Concurrent Global-Update

The global update needs to run periodically during the push-relabel algorithm. If the push-
relabel algorithm is parallelized, then all the processors would need to be suspended in order

to run the global update. Anderson et al [27] has presented a correct method for running the

f . .
global update concurrently with a parattet implementation of the push relabel algorithm. This

method ensures that the valid labeling condition of Goldberg’s algorithm is met. The valid

e —

labeling order to guarantee an approximate highest-level first traversal.

83

. LIV ¥

3.3 Computational Dag Global Variables (Edges) And Private Variables (Vertices)

-

*W H. Cormen et al [5] we can think of a multithreaded computation as the set of
_he instructions, executed by a processor on behalf of a multithreaded program, as a
directed acyclic graph G = (V,E) called a computation dag. Conceptually, the vertices in V
are instructions, and the edges in E represent dependencies between instructions, where (u,v) ¢
E means that instruction u must execute before instruction v. For convenience, however, if a
chain of instructions contains no parallel control (no spawn, sync, or return from a spawn via
either an explicit return statement or the return that happens implicitly upon reaching the end
of a procedure), we may group them into a single strand, each of which represents one or more
instructions. Instructions involving parallel control are not included in strands, but are
represented in the structure of the dag. For example, if a strand has two successors, one of
them must have been spawned, and a strand with multiple predecessors indicates the
predecessors joined because of a sync statement. Thus, in the general case, the set V forms the
set of strands, and the set E of directed edges represents dependencies between strands
induced by parallel control. From the above it can therefore be deduced that edges represent

global variables where as the vertices or the structure of the dag house the private variables.

3.4 Methods of Analysis

Methods of analysis is to verify the correctness of designs, in other words its sufficiency, from
Eric Braude [55] there are informal and formal approaches to these questions. To verify a
design informally is to be convinced that it covers the required functionality. Formal methods
for establishing correctness involves applying mathematical logic to analyzing the way in
which the variables change. Formal methods for correctness are usually applied when design
enters the detailed stage. In this paper we will use informal approach to correctness as the
method of analysis.

84

P

i LB -

3.4.1 Informal approaches to correctness

Informal approaches to correctness are based on the common sense approaches to
correctness, which are based on the idea that before we can proclaim a design to be correct we
have to understand it completely. Thus designs and implementation should be readable. Since
designs are most often complex, we have to modularize designs, that is break them down into
separate understandable parts. Since modularization is a key way to assess the correctness of a
design, we first need to understand how client code uses modules. Modules for this paper will
either be classes or packages of classes. An interface is a set of function forms (or prototypes).
A modules interface defines its uses. This paper is parallel computational processing rather
than parallel programming processing nevertheless several object oriented concepts are used.

For modularization, all related objects has been divided into the following modules.
. algorithm: The top package for all algorithm related subdomains.
. algorithm.parallel: Contains all versions of the parallelized algorithms.
. algorithm.sequentiel: Contains the basic sequential push relabel algorithms.
. edge: Contains all classes related to edges in a graph.
_vertex: Contains all classes related to vertices in a graph.

_graph: Contains all classes related to the representation of a graph.

All the above packages define the graph framework and the algorithm. As describes earlier, all

classes implements an interface and all relations between classes passes through these

-'FFF{.
-

interfaces. e ~

85

3.4.2 Graph framework

Graph framework describes how graph components are represented. There exists several pre-
made Graphs Frameworks such as the Java Universal Network Graph Framework (JUNG)
Joshua O’Madahain et al [60] which represents graphs edges etc. but a simple framework is
made and that allow us to define the exact functionality. From Peter Wind and John Hansen

[57] the definitions of the objects are as follows:
Vertex

A Vertex is very simple in our framework. It only consists of an identifier to make it uniquely
determinable. A vertex could also simply have been represented by index numbers in an array,
but as this thesis is written with the Object Oriented programming paradigm in mind, we have

chosen to let a vertex be a class of its own.
Edge

As the name implies, this is a representation of an edge in a graph. It contains information
about the two vertices it connect (source and target), and a reference to the complement edge -
that is, the edge which has opposite source and target respectively. An edge also contains

information about its current flow and capacity which both can be set or retrieved.

Edge Container

The Edge Container class contains a list of Edge Interface's and is in other word a wrapper.
The reason for using a wrapper to contain edge Interface's is to have a standard way of

collecting edges. If there is a need to change the data structure in which the edges is collected
S ///_’—
in, only one class should be changed.

__-—I-'-"-.—F

A Ty Fm =

Graph

A Graph contains information of all vertices in the graph. The graph has association to several
vertices and two vertices are explicitly defined as being the source and the sink. The graph
also has references to several Edge Container objects. There exist one Edge Container for each

vertex, and Edge Containers are used to represents all outgoing edges for the corresponding

vertex (the neighbors of the vertex).

3.4.3 The Algorithms Framework

This section describes how the algorithm framework is modularized and also an UML-like
illustration of the complete algorithm framework. It is shown that every algorithm implements
the Max-Flow Algorithm Interface. This makes it easy to develop new algorithms and use it in
our existing framework. An abstract object Max-Flow Algorithm represents the basic
functionality in a Maximum Flow algorithm without the actual algorithm. The packages
algorithm.reference and algorithm.sequentiel contains algorithms which are extending by the
Max-Flow Algorithm and will not be discussed further as the title of the classes should be self

explanatory.

The algorithm.parallel-package contains all the parallel implementations of the algorithms. In

this package, some classes are introduced:

PushRelabelParallel Worker: This class acts as the worker that performs the relabel and push

operations and because it extends a thread it can have multiple instances running

simultaneously.

-

PushRelabelParallel Works as arr"organizer" or manager which creates a number of worker

threads and. "distribute" the subproblems to them. The worker threads are represented by

87

pushRelabelParallelWorker's and the number of associated workers are defined by the number

of processes chosen.

ComputationDagParallelWorker: This class acts as the worker that is responsible for nested

pamllelism, that is, it allows a subroutine to be spawned allowing the caller to proceed while
the spawned subroutine is computing its results, and also the execution of parallel loops

whereby the iterations of the loop can execute concurrently.

ComputationDagParallel works as an organizer or manager which creates a number of threads

and distribute the subroutines and loops to them.

Figure 3.10: Graph Framework

graph
<<Interface>>
Graphlnterface vertex
¥
Graph :E;i“ <<Intedace>>
VertexInterface
gdae <<Interface>> 1
EdgeC :
<<Edgelnterface>> gl Vertex t
EdgeContainerInterface |
source
L4
edge target
complement

Source : Java Universal Network Graph Framework(J UNG)

88

Figure 3.11:Object Oriented representation of parallel algorithm

algorithm
<<Interface>> <<Interface>>
i : tial :
Algorithm.sequentia MaximumFlowAlgorithmInterface Graphlnterface
_... . ®
B nsitalorithm MaximumFlowAlgorithm
Algorithm.parallel / \
e \
PushRelabelAlgorithm ComputationDagAlgorithm

4 2

PushRelabelParallelAlgorithmWorker

ComputationalDagParallelWorker

Source : Author(2012)

3.4.4 Sub Domains as packages

The above design is divided into the following sub-domains which all should be represented

as a package:
. algorithm: The top package for all algorithm related subdomains.

. algorithm.parallel: Contains all versions of the parallelized algorithms.

he

—

—

correctness of the results gained from the parallelized algorithms.

. algorithm.sequentiel: Contains the basic sequential push relabel algorithms.

89

_edge: Contains all classes related to edges in a graph
_yertex: Contains all classes related to vertices in a graph

. graph: Contains all classes related to the representation of a graph.

3.5 Constraints/ Problems

One limitation of using our own graph framework is that it is harder to utilize pre made graph
illustration tools and since this paper is not about graph construction our graph framework
allow us to define the exact functionality and frame work. The termination of the algorithm
has been proved theoretically. But it may be difficult to design a practical implementation to
detect the termination without using locks. As is shown in the implementation in chapter four,
the algorithm terminates when no further push or relabel operations can be applied. However,
the absence of applicable push or relabel operations at an individual vertex does not imply the
termination, because other vertices may be active. Furthermore, another vertex may push flow
to this idling vertex, making it active again. The termination of the algorithm, which becomes
true only when we do not have any applicable push or relabel operations at any vertices, needs
to be detected with the help of a global barrier. Barriers are implemented using locks,
however. To derive a completely lock-free algorithm, further study is needed for the efficient

detection of algorithm termination. If lock free termination detection is infeasible, we need to

develop efficient methods that are practically implementable.

90

% CHAPTER FOUR
! ANALYSIS OF FINDINGS
4.0 Introduction

The words “implementation™ and “programming” are used for “coding”, according to Eric
Braude [55] The word “development” is sometimes used. This section discusses
implementation in the context of parallel computation. According to Victoria Popic et al [61] a
possible definition of concurrency in computer science is a property of a system in which
several computational processes or tasks are executing at the same time, possibly interacting
with each other. These tasks may be implemented as separate programs or threads within a
single program. In this paper the term task is used instead of the more classical term process 10
denote the computational process which takes place. This is done to clearly distinguish it from
the term processor which denotes a CPU core. On modern computers all tasks may execute in
parallel (true parallelism), however it is most often the case that the number of processors is
less than the number of tasks. As a result of this, parallelism is often obtained by the method
of time-slicing, where the operating system controls the scheduling of tasks between the
available processors. A consequence of this is that the actual execution time of a single task 1s
unknown. As stated, tasks in a concurrent system can interact with each other while they are
executing. This, combined with the time-slicing method, results in highly unpredictable order
of execution between the different tasks, and it is often up 1o the developer to use different
techniques to control this execution order. The interaction between tasks is described more

formally later in this section. In general when two or more tasks are interacting with each

— /’-—"‘-——'_ ') .
other, they are said to be "communicating”. Communication is however a very vague term and

in concuriency theory two different communication strategies has been defined more formally

91

y

4.1 RESULTS

Table 4.1: 10 worst-case bound algorithms

§.No. | Algorithm Discoverer(s) Time
1. Dinic's algorithm Dinic [1970) ;mw
2. Karzanov's algorithm Karzanov [1974] O<n3;n}
3. Shortest augmenting 3
Pﬂﬂl ﬂignﬁthm Ahuja and Orlin [1991) On?m)
4. Capacity scaling algorithm Gabow [1985] and O(nm log U)
s Ahuija and Orlin [1991]
- 7
Preflow-push algorithms
Highest-label algorithm Goldberg and Tarjan [1986] O(nmm) 1
FIFO algorithm Goldberg and Tarjan [1986] O(n?)
Lowest-label algorithm Goldberg and Tarjan |1986] O(n®m)
1. Excess-scaling algorithms
8. Original excess-scaling Ahuja and Orlin [1989] O(nm + nzlngU)
9. Stack-scaling algorithm Ahuja, Orlin and Tarjan [1989] O(nm + %fg%-)
. Wave-scaling algorith i i
10 av ng algorithm Ahuija, Orlin and Tarjan [1989] 0 (nm 1 \ﬁEg_U)
Source: Laboratory for Computer Science, MIT, 1995
Table 4.2:CPU time taken(in seconds on convex)
——T-?——-*————— S A = - == - v 1
Shortest PREFLOW-PUSH EXCESS SCALING
Aug. |Capacity] Dinic |Highest| FIFO | Lowest | Excess | Stack | Wave |Karzanov
r__p d| Path | Scaling Label Label | Scaling | Scaling | Scaling
|50 [5T o4t T 171 T03 [ol |ol5 027] 021 | 021 [05 | 03 |
{1000 |5]| 125 4.81 1.27 .28 0.38 0.82 0.54 0.54 0.58 1.02
2000 |5] 384 [1517 | 397 0.76 1.12 2.62 1.54 1.47 1.68 3.18
00 151 780 | 3330 | 714 | 132 | 197 | 529 | 260 | 249 | 280 | 554 |
4000 |5 | 1589 74.02 13.82 1.98 3.14 11.67 4.50 4.01 493 12.37
5000 |5]| 1974 93.14 18.30 2.89 431 | 13.4) 5.69 5.30 6.24 14.33
6000 |5 | 26.80 110.53 | 24.6] 365 5.80 21.31 7.86 7.29 8.72 20.05
700 |5 | 3309 | 13719 | 3164 | 425 | 674 [2635 [952 | B60 | 1058 | 2599 |
8000 15 1 3507 | 16713 | 4024 | 488 | 811 | 3013 | 1136 | 1026 | 1282 | 3161 |
9000 |5 | 46.81 202.26 | 4218 5.55 9.53 36.83 12.91 11.81 14.40
10000 15 | 6748 | 26388 | 5737 | 694 | 1143 | 5241 | 1640 | 1485 | 1824

(Mean | | 2383 | 10211 | 2190 | 29 | 479 | 1826 | 665 | 607 | 738

P

-

——

/”’_—'.’l
Source : : Laboratory for Computer Science, MIT, 1995

__,—H-.-—-—'--.

1. The preflow-push algorithms generally outperform the augmenting path algorithms

rmance improves as the problem size gets bigger.

and their relative perfo)

2. Among the three implementations of the Goldberg-Tarjan preflow-push algorithms
that was tested, the highest-label preflow-push algorithm is the fastest. In other words,
among these three algorithms, the highest-label preflow-push algorithm has the best

worst-case complexity while simultaneously having the best empirical performance.

3. In the worst-case, the highest-label preflow-push algorithm requires O(n* ¥m) but its

s o Yol 1.5
empirical running time is O(n") on four of the five classes of problems that we tested.

4. All the preflow-push algorithms have a set of two '"representative operations": (i)
performing pushes, and (i1) relabels of the nodes. See also Ahuja and Orlin [12].
Though in the worst-case, performing the pushes is the bottleneck operation, the
empirical this time is no greater than the relabel time. This observation suggests that
the dynamic tree implementations of the preflow-push algorithms worsen the running

time in the practice, though they improve the worst-case running time.

5 It was found out that the number of non saturating pushes is 0.8 to 6 times the number

of saturating pushes.

6. The excess-scaling algorithms improve the worst-case complexity of the Goldberg-
Tarjan preflow-push algorithms, but this does not lead to an improvement empirically.
It was observed that the three excess scaling algorithms tested are somewhat slower
than the highest-label preflow-push algorithm. The stack-scaling algorithm was
detected to be the fastest of the three excess-scaling algorithms, but it is on the average

twice slower than the highest-label preflow-push algorithm.

7, The runniqg; times of DiEiE'/__salggr_it_hm and the shortest augmenting path algorithm are

comparable, which is consistent with the fact that both algorithms perform the same

__..—--'-"'"—‘-‘ ; i
sequence of augmentations (see Ahuja and Orlin [12]).

93

anal

T

| i S Ly > |
| Though in the worst-case Dinic's algorithm and the successive shortest path algorithm perform

0(nm) augmentations and take O(n” m) time, empirically we find that they perform no more
thau O(n1 ©) augmentations and their running times are bounded by O(n”). Dinic's and the
successive shortest path algorithms have two representative operations: (1) performing
augmentations whose worst-case complexity is O(n® m); and (ii) relabeling the nodes whose

worst-case complexity 1s O(nm). It was found out that empirically the time to relabel the

nodes grows faster than the time for augmentations.

Figure 4.1 A computation direct acyclic graph (TRANS N)

Source: Author (_2012)

———— //—‘——J_ .
Consider the computation P-FIB.4/ in Figure 27.2, and assume that cach strand tilie"js} 811_1112t b
time. Since the work is T; = 17 and the span is T =8, the par:':lllﬁehsm is Ty Te— ;1 1123
Consequenitly, achieving much more than double the speedup is impossible, no matter how
many processors we employ to execute the computation.

94

w

.2 Shared Memory

Which this paper uses is a memory system, whereby the different processors and memory
jules are interconnected, and tasks can therefore share the same memory locations. The
gommunication between tasks is carried out by altering some shared variable which then is
ible to other tasks. Because different tasks, or threads as they are most often called in this
context, are sharing the same memory locations, consistency issues can occur. These issues
km be handled by utilizing some kind of locking mechanism (synchronization primitives),
ijhich controls the access to the memory locations and preserved the program invariants. The

main problem with the locking solution is, that it is up to the programmer to ensure that the

consistency issues are taken care of, which leaves room for errors.

4.3 Distributed Memory

In a distributed memory system all processors are still interconnected, but each processor
now has its own memory module. This can be achieved within a single computer (a multi-
computer), but the distributed memory model is also suited for connections across a network
(network system). The communication between the processors is in a distributed system
handled by message parsing. The concept of message parsing means that tasks communicate
by exchanging messages. The exchange of messages may be done both synchronously
(blocking) or asynchronously (non-blocking). There exists a number of models for modeling
the behavior of systems using message parsing, one of them ,rendezvous, may be used to
model blocking implementations, in which the sender blocks until the message is received.
Message parsing systems are often easier to reason about than shared memory systems, and

- SRS

they are often very scalable in size.-The downside of distributes memory systems is, that they

have atarger communications overhead than shared memory systems and thereby doesn't

LIHHARY
05 KWAME NNMRUMARM

i ' NIVERSITY OF SCIENCE 8 TECHNOLOG
KUMAS |

gtilize the processing power as optimal. By parring safety and liveness properties it can be

implied that a program "eventually does something good".

To model and prove properties of concurrent programs, different models have been developed.
In this section two useful models for modeling concurrent behavior is introduced, namely Petri
Nets and the interleaving model. These models also serve as useful models for introducing

several of the most important terms of concurrent programs. Of course several other models

exists, but they are out of the scope of this paper.

4.4 Petri nets model

Formally a Petri Net is a bipartite, directed graph that can be used to describe the dynamic
behavior of a system, especially the concurrency and synchronization aspects according to
Hans [60]. A Petri Net graph consists of two kinds of nodes/vertices. Places which represents
states of a system and transitions which represents activities in the system. Places are drawn as
circles and transitions are drawn as bars or boxes. Places and transitions are connected via
arcs that indicate the dependencies between states and activities. Furthermore, places in a Petr1
Net may contain zero or more tokens, and a distribution of tokens across a Petri Net is called a

marking.

As stated, A Petri Net can describe how a system behaves dynamically over time. This is done

by showing how the different states and activities of a system influence each other. The

change of state is modeled by letting an initial marking evolve through "firing" of transitions,

meaning that a transition consumes a specified number of tokens from its input places (one

token per incoming éifé), performs some processing task, and produces a specified number of

tokens into each of the output places (one token per outgoing arc). A transition is set to be
e —

enabled, if each of its input places contains at least one token, and a firing of a transition,

which is performed in a single, non pre-emptible step, can only take place if the transition 1s
96

ed. Enabled transitions can fire at any time, and happens in a non-deterministic manner

ing that multiple transitions may fire simultaneously exactly like the execution of

?nmu'rcnt threads. Mutual exclusion is when certain actions (or sequences of actions) are not
ﬂowed to be executed at the same time. Usually this is to prevent the two or more threads
access the same resource or data-structure at a time. Mutual exclusion is easily modeled using
Petri Nets by using an auxiliary place with a single token that represents the "right” to execute.
By letting the transitions, which should not be executed at the same time, claim this single
token, the firing rules prevents that more than one of the transitions to be fired at the same

time. The auxiliary place with a single token is in most programming languages known as a

lock. The lock is acquired before critical code is executed and released when done.

4.5 The Interleaving Model

If one is not interested in the properties related to whether actions are actually performed in
parallel, but solely in the properties related to the sequence of states a task will go through,
one may use the inter- leaving model of the task behavior. For any given task the execution
ow can be modeled by a finite or infinite sequence of the form: so— @, S1— a1, S2— a2 ... where
5 is the initial state of the task and the a's are actions/transitions. The execution of action agp
will change the state of the task from s to s, etc. If the actions of a program always executes
task is said to be sequential. In the interleaving model, a concurrent program is composed of
two or more sequential tasks overlapping in time. Because of the overlap in time we need to
introduce the concept of atomic actions. An atomic action is an indivisible action, meaning
that no other tasks are able to detect. With the introduction of the atomic action, the question

is which executions are possible—for—aprogram. The execution speed of each action and

thereby also each task is unknown, meaning that the execution of a program is given by all

__-—ﬂ_—-_—

possible interleaving of all possible sequences of actions of the tasks.

97

4,5 The dynamic multithreading

From Thomas H. Cormen et al [5.] One important class of concurrency platform is dynamic
multithreading, which is the model we shall adopt in the computation dag. Dynamic
multithreading allows programmers to specify parallelism in applications without worrying
about communication protocols, load balancing, and other vagaries of static-thread
programming. The concurrency platform contains a scheduler, which load-balances the
computation automatically, thereby greatly simplifying the programmer’s chore. Although
them functionality of dynamic-multithreading environments is still evolving, almost all
support two features: nested parallelism and parallel loops. Nested parallelism allows a
subroutine to be “spawned,” allowing the caller to proceed while the spawned subroutine is
computing its result. A parallel loop is like an ordinary for loop, except that the iterations of
the loop can execute concurrently. These two features form the basis of the model for dynamic
multithreading that we shall study in this chapter. A key aspect of this model is that the
programmer needs to specify only the logical parallelism within a computation, and the
threads within the underlying concurrency platform schedule and load-balance the

computation among themselves.

This model for dynamic multithreading offers several important advantages:

& It Is a simple extension of our serial programming model. We can describe a
multithreaded algorithm by adding to our pseudocode just three “concurrency’
keywords: parallel, spawn, and sync. Moreover, if we delete these concurrency
keywords from the multithreaded pseudocode, the resulting text is serial pseudocode

for the same problem, whichiwe call the “serialization” of the multithreaded algorithm.

% Tt provides a theoretically clean way to quantify parallelism based on the notionsof

“work” and ‘““span.”
LIBHARY

98 KWAME NEKRUMAH .
'NIVERSITY OF SCIENCE & TECHNOLOG"
KUMAS |

« Many multithreaded algorithms involving nested parallelism follow naturally from the

divide-and-conquer paradigm. Moreover, just as serial divide-and conquer algorithms

lend themselves to analysis by solving recurrences, so do multithreaded algorithms.

 The model is faithful to how parallel-computing practice is evolving. A growing

number of concurrency platforms support one variant or another of dynamic

multithreading.

4.6 Multithreading Computation

We will consider dynamic multithreading computation by agreeing with Thomas H. Cormen
et al [5]. In this paper by explaining our target multiprocessor platform., let us consider the
execution of multithreaded algorithms on an ideal parallel computer, which consists of a set of
processors and a sequentially consistent shared memory. Sequential consistency means that
the shared memory, which may in reality be performing many loads and stores from the
processors at the same time, produces the same results as if at each step, exactly one
instruction from one of the processors is executed. That is, the memory behaves as if the
instructions were executed sequentially according to some global linear order that preserves
the individual orders in which each processor issues its own instructions. For dynamic
multithreaded computations, which are scheduled onto processors automatically by the
concurrency platform, the shared memory behaves as if the multithreaded computation’s
instructions were interleaved to produce a linear order that preserves the partial order of the
computation dag. Depending on scheduling, the ordering could differ from one run of the
program to another, but the behavior of any execution can be understood by assuming that the

instructions are executed in som’ér—rlem‘—;rder consistent with the computation dag. In addition

to makingassumptions about semantics, the ideal-parallel-computer model makes some

99

performance assumptions. Specifically, it assumes that each processor in the machine has

equal computing power, and it ignores the cost of scheduling.

Although this last assumption may sound optimistic, it turns out that for algorithms with

sufficient “parallelism” (a term we shall define precisely in a moment), the overhead of

scheduling is generally minimal in practice.

4.7 Scheduling

The actual running time of a multithreaded computation depends not only on its work and its
span, but also on how many processors are available and how the scheduler allocates strands
to processors. Good performance depends on more than just minimizing the work and span.
The strands must also be scheduled efficiently onto the processors of the parallel machine.
Our multithreaded programming model provides no way to specify which strands to execute
on which processors. Instead, we rely on the concurrency platform’s scheduler to map the
dynamically unfolding computation to individual processors. In practice, the scheduler maps
the strands to static threads, and the operating system schedules the threads on the processors
themselves, but this extra level of indirection is unnecessary for our understanding of
scheduling. We can just imagine that the concurrency platform’s scheduler maps strands to
processors directly. A multithreaded scheduler must schedule the computation with no
advance knowledge of when strands will be spawned or when they will complete it must
operate on-line. Moreover, a good scheduler operates in a distributed fashion, where the

threads implementing the scheduler cooperate to load-balance the computation. Provably good

on-line, distributed schedulers exist, but analyzing them 1s complicated.

— ,/_,.-—-‘-__—__ I
The Transit algorithm which is this paper and is made up of the combination of the push

___-.-—————‘ . "
relable method and the computation dag 1s implemented using the lock free multithreaded

method. The target multiprocessor platform for the Lock Free multithreaded algorithm for the
100

maximum flow problem which has been explained component by component from the

beginning of this chapter is presented as a whole below.

4.8 The Target Multiprocessor platform

The target multiprocessor platform for this paper as espoused by Bo Hong [58] consists of
multiple processor that access a shared memory. We assume that the architecture supports
sequential consistency and atomic ‘read-modify-write’ instructions, as most modern parallel
architectures do. A system provides sequential consistency if every node (processor cores in a
multi-core architecture) of the system sees the memory accesses in the same order, although
the order may be different from the order as defined by real time (as observed by hypothetical
external observer or global clock) of issuing the operations. Atomic ‘read-modify-write’

instructions allow the architecture to sequentialize such instructions automatically.

For example, suppose x +« x+td, and x « xtdy are executed by two processors
simultaneously, the architecture will atomically complete one instruction at a time, thus the
final value of x will be the accumulation of d1 and d2. ‘Read-modify-write’ instructions can
be used to implement locks as implemented in many actual architectures. The difference is
that a ‘read-modify-write’ instruction protects individual accesses to a memory location while
a lock can be used to protect a sequence of accesses. Locks are much more expensive as it has
to implement mechanisms to suspend a processor/thread in case the lock 1s unavailable. Our
algorithm is specially designed to take advantages of the ‘read-modify-write’ instructions and
thus avoiding lock usages. We limit shared variable accesses to ‘read-add-write’ and read,
thus the accesses can be executed atomically by the architecture. More importantly, the
specially designeafpush and rem&ions do not need to be executed atomically, even

though-eactr one of them consists of a sequence of accesses to shared variables

101

4.9 Implementation

4.9.1 The Push Relabel Algorithm By Goldberg

Implementation, programming, and sometimes development are used for coding according to
Eric Braude in [55]. This section discusses The implementation of the Transit algorithm using

the lock free algorithm method and it is not intended to be a parallel programming per se but

in the context of parallel computation.

The algorithm listed below 1s based on the generic push relabel algorithm by Goldberg [].
Before stating the algorithm we briefly restate the notations used in the lock-free algorithm.
Given a direct graph G(V,E), function f is called a flow if it satisfies the three constraints
above. Given G(V,E) and flow f, the residual capacity c¢ (u, v) is given by ¢y, — f(u, v), and the
residual network of G induced by fis G¢ (V,E¢), where Es= {(u, v)jue V, v eV, ¢t (u, v) > 0}.
Thus (u, v) € E¢, ¢ (u, v) > 0 For each node u € G, e(u) is defined as e(u) = 2. wev f(w, u),
which is the net flow into node u. Constraint 3 in the problem statement requires e(u) = 0 for u
e V — {s, t}. But the intermediate result before an algorithm terminates may have non-zero
e(u)’s. We say vertex u € V —{s, t} is overflowing if e(u) > 0. An integer valued height
function h(u) is also defined for every nodeu € V.. We say u is higher than v if h(u) > h(v).

The algorithm, listed below, is based on the push and relabel algorithm by Goldberg [20].
1. Initialize h(u), e(u), and f(u, v)

2. While there exist one or more applicable push or lift operations execute the applicable

operations asynchronously where the operations of initialize, push, and lift are defined as

follows: _,. : e

102

« [nitialize h(u), e(u), and f(u, v):
h(s) < [V |
for eachu eV — {s}
h(u) < 0
for each (u, v) € E
f(u,v) <0
f(vu) «<0
for each (s, u) € E
f(s, u) « csu
f(u, s) « —f(s,u)
e(u) « csu
» Push(u, "v): applies if u is overflowing, and d ve V s.t. (u, v) € Er and h(u) > h(v),
v <« argminv[h(v) | cf (u, v) > 0 and h(u) > h(v)]
d < min(e(u), cf (u, "v))
f(u, "v) « f(u,’v) +d
fCv,u) « f("v,u)—d
e(u) «— e(u)—d

e("v) «— e("v) +d

» Lift(u): applies if u is overflowing, and h(u) _h(v) for all (u, v) € E¢,
h(u) < min{h(v)cf (v, v) > 0} + 1
The push operation is performed on an active node u, for which there exists an outgoing

residual edge (U.,Y_):EI-Ef and the node-u-satisfies the height constraint: h(u) = h(v) + 1. If the

node u is active and every edge (u,v) € Er does not satisfy this constraint then the relabel
e

operation is performed. It can be shown that the generic push-relabel algorithm is correct,

103

ferminates and its running time is O(V “E). In 2008 Hong [58] presented a lock-free multi-
threaded algorithm for the max flow problem based on Goldberg’s version [10] of the push-
relabel algorithm. Implementation of Hong’s algorithm requires a multi-threaded architecture
that supports read-modify-write atomic operations. Without lost of generality we assume that
the number of running threads is |V | and each of them handles exactly one node of the graph,
including all push and relabel operations on it. In several, a few nodes can be handled by one
thread. Let u be the running thread representing the node u € V . In Hong’s algorithm each of
the running threads has the following private attributes. The variable é stores the excess of the
node u. The variable h” stores the height of the currently considered neighbour v of u such that
(u,v) € Er. The variable h stores the height of the lowest neighbour v of u.

Other variables are shared between all the running threads. Among them there are the arrays
with excesses and heights of nodes, and residual capacities of edges. First, the Init operation is
performed by the master thread. This init code 1s the same as its counterpart in the sequential
push-relabel version. Next, the master thread starts the threads executing in parallel the lock-

free push-relabel algorithm.

4.9.2 Implementation of the transit algorithm using Bo Hong’s lock-free multithreaded
method

In the trans algorithm we maintain a linked list L consisting of all vertices in V — {s,t}. The
vertices are topologically sorted according to the admissible network. The pseudocode
assumes that the neighbor list have already been created for each vertex u. It also assumes that
a pointer points to the vertex that follows u and is null if u is the last vertex in the list. In this
algorithm as is in Bo-Hongs algorithm computation starts from the lowest vertex from u which
is the major chaﬁ_g—; from that m Simply because from the transit model the system

i§ to capture once the computations from the country of origin to the country of destination

and this is done recursively.
104

Table 4.3:. VARIABLE ACCESS CHARACTERISTICS

 Shared variables | Private Variables Written by threads | Read by threads
h(u) u u and w where (w,u)
€ Ef
e(u) u or w where (u,w) [u
€ Es
ci(u) uorv uand v
L(u) u uand v
Trans(u) u uand v
é.h v h.,dud per thread per thread

Source: Author (2012)

The algorithm leads to the following lock-free programming implementation where €, “v, “h,
and h’, 4, 0 are per thread private variables and h(u), e(u), and c¢ (u, v) (e V, (u, v) € Er),
L(u),Trans(u) are shared among all threads. The sharing characteristics of the variables are
listed in Table 4.3. For programming convenience, the implementation maintains ¢t (u, V)
rather than f(u, v). The constraint f(u, v) < cuv in the problem statement translates to c¢ (u, V)
> 0. Also, ce (u, v) > 0, (u, v) € E¢. Upon termination of the algorithm, the flow f(u, v)
along each edge(u,v) € E can be derived easily from c¢ (u, v) since ¢r (u, v) = cuv — f(u, v).

Initially, only the master thread is running.

Before stating the algorithm we briefly restate the notations used in the Transit algorithm.

Given a direct graph G(V,E), function f is called a flow if it satisfies the three constraints

above. Given G(V,E) and flow f, the residual capacity c¢ (u, V) is given by Cuy — f(u, v), and the

residual network of G induced by fis Gr (V,E¢), where Ee= {(u, V)lueV,veV,ce(u,v)>0}.

Thus (u, v) € Er, ¢t (u, v) > 0 For each node u € G, e(u) is defined as e(u) = X wev f(W, 0),

which is the net flow into node u. Constraint 3 in the problem statement requires e(u) = 0 foru
e

€ V — {s, t}. But the intermediate result before an algorithm terminates may have non-zero

e(u)’s. We say vertex u € V —{s, t} 1s overflowing if e(u) > 0. An integer valued height
105

function h(u) 1s also defined for every node u e V . We say u is higher than v if h(u) > h(v).

The algorithm, listed below, is based on the push and relabel algorithm by Goldberg [10], and

the lock-free algorithm of Bo Hong [58]

The destination for pushes is to the neighbor list of each vertex until excess flow is zero, and
is essential for the correctness of the Trans algorithm where the push and lift operations are
executed asynchronously, as will be presented in the next two sections. The algorithm can be
easily multi-threaded by assigning each thread Ti a distinct subset of the vertices V; (s.t. Vi N
Vj) = @ ; if 1 #J, and U;{Vi} = V). The initialization step is performed by the main thread
before spawning all the multiple threads. After the initialization step, each thread Ti checks
whether any push or lift operations can be applied to any of the vertices in Vi, and then the
computations at the vertex is executed before the applicable operations if there exist any.
When implementing the algorithm on a real computer, it is reasonable to have the same
number of threads as the number of processor cores. Additionally, it is desirable to have
balanced load across the threads, letting each thread execute (close-to) the same number of
operations. Load balance is determined by the assignment of vertices to the threads (of course,
also by the topology of the input graph). Because the focus of this paper is on the lock-free
property of the multi-threaded algorithm, we leave the optimal vertex assignment problem for
future as it is another open research problem by itself. Without loss of generality, we assume
that for each vertex u € V there is one thread responsible for executing push (u,”v) and lift (u).

In the following analysis, we will use u to denote both vertex u and the thread responsible for

vertex u, which can be easily clarified given the context.

4.9.3 The Transit Algorithmf/_‘__,,

Initially, only the master thread 1s running.
Y UL

1. The master thread initializes h(u), e(u), and c¢ (u, V)

106

h(s) < [V|
e(s) <0
forallue V- {s} do
h(u) « 0
e(u) < 0
for each (u, v) € E¢
cr(u, V) « Cuy
Ce(V, 1) & Cwy
for each (s, u) € Es
cr(s,u) < 0
ce(u,) « Cust Ca
e(u) «— Cu
The master thread creates one thread for each vertex u € V — {s, t}, and then terminates
itself.
Each of the newly created thread u executes the following code: (lines 4-3 3)

4. Whileu=>0

¥, do

6. Trans (u)

i 1 «—Uu

8. 1 « spawn comp(i-1) /* The procedure instance, the parent-may continue to

execute in parallel with the spawned subroutine —its child */

9. i < comp(i-2)

—

10. // Sync — Ifud Wﬂf}t’explicit as shared variable updates in L(u) and

Trans(u) are all in the form x <X + d’so due to the
e

support of atomic read-modify-write instructions they

107

can be executed correctly by the architecture without any

locks */
ik L(u) <« [0,1]
12. Return L(u)
13. if e(u) > 0 and h(u) > |v| then
14. ¢ «— e(u)
/* search for u’s lowest neighbor in Ef */
5. heoo
16. foreach(u,v)eEs do /* 1.e, for each ¢ (u, v) >0 */
17. h" « hW"

e if h'< h(v') then

19. Viev

200 heh

2l endIf

22. end for /* "v is u’s lowest neighbor in E¢ */
23, if h(u) > h’ then /* h(u) > min{h(v)|(u, v) € E¢ } ,

qv € V s.t. (u, v) € Er & h(u) > h(v), push 1s applicable */
24. d «— min(é, c¢(u, v'))
25. ce(u, v*) «— (ce(u, v')-d
26. ci(v*u)e—(ce(v',u)+d
27 e(u) «— (e(u)-d
28. e(v") «— (e(v")+d
29. else I h(u) < min{h(}u;v)€ Er }, lift (u) is applicable®/
30 h(u) « h+1

—

31. endIf

108

32. u <« u-l

33 end while

The sequential consistency property of the architecture guarantees that each thread executes its
own lines(4-33) in the order specified above. Updates to shared variables c¢ (u *v), ¢t (v, u),
e(u), and e("v) (lines 24-28), and computation dag shared variable L(u) (lines 6-12,32), due to
the support of atomic ‘read-modify-write’ instructions, are executed atomically by the
architecture. Other than the two execution characteristics provided by the architecture, we do
not impose any order in which executions from multiple threads can or should be interleaved,
as it will be left for the sequential consistency property of the architecture to decide. Shared
variable updates in push(u, v) are all in the form of x «— x + d so they can be executed
correctly by the architecture without any lock protection. Note that h(u) is updated by and only
by thread u during a lift(u) operation and L(u) is also updated by thread u during the spawning
of the subroutine (u) operation. Thus even though h(u) is shared (multiple threads may read its
value), h(u) does not need lock protection because only the single thread u needs to update it.
When another thread reads h(u) while it is being updated by thread u, the reader thread will
get the value of h(u) either before or after the update. Our algorithm does not require a strict
order as to what value must be obtained by the reader thread. Now we have shown that the
algorithm indeed can be implemented without using any locks. Next we will prove that despite
the seemingly uncontrolled and unpredictable execution order, the algorithm still solves the
maximum flow problem. In fact, letting the threads advance without lock-based
synchronization is the essence of our lock-free multi-threaded algorithm.

The basic changes, introduced by Hong, deal with the selection of operation (push or relabel)

that should be exﬁfzﬁted by u, a/lld,m_whieh of the adjacent nodes v; (u, "v) € Er, a flow must

be pushed. In opposite to the push operation of the generic sequence version where any node v

___-'-"-—-

connected by a residual edge to u such that h(u) = h(v)+1 could be pushed, it selects the lowest

109

node among all the nodes connected by a residual edges. Next if the height of v is less than
the height of u the push operation is performed Otherwise, the relabel operation is performed,
that is, the height of u is modified to h ("v) + 1. Note that the relabel operation need not be
atomic because only the u thread can change the value of the height of u. Furthermore, all
critical lines in the code where more than two threads execute the write instruction are atomic.

Hence it is easy to see that the algorithm is correct in respect to read and write instructions.

4.10 Testing Of Hypothesis

4.10.1 INTRODUCTION

The testing phase consists of supplying input to the application and comparing the output with
that mandated by the software Requirements Specification provided by Eric Braude in [55]
Tests on parts of an application (individual methods, classes, etc.) are called unit tests; Tests

of an entire application are system tests.

. Testing and Correctness: Testing is indispensable because it helps to uncover defects.

Testing proves the presence of bugs, but never their absence.
. Types of Testing: The principal kinds of testing are;

- Informal developer tests that is performed by individual developers, documented informally

in their notebooks.

Unit tests on parts such as methods or classes which may be formally documented
Intermediate tests perform on a collections of classes, but not on the whole application System

tests perform on whole application and it is thoroughly documented.
—_— ,/..----'_'"__ N

For each of these, are two ways to go about designing the tests cases (inputs), white box and
__.—--"'"-—-.

black box.

110

Black box testing compares the output obtained with the output specified by the requirements

ment. The selection of black box test cases does not take into account the manner in

Qo

which the application is designed.

‘White box testing on the other hand is based on the design. White box test cases are selected
to exercise specific features such as branching, loops, interfaces between modules, limits on
storage, etc. We will adopt the white box testing in this paper. When developing and
implementing an algorithm it can be hard to verify and prove that the algorithm performs as it
should. In the case of this paper the focus is on the modeling process and performance and not
‘necessarily on proving correctness. The push relabel algorithm has been proven to be correct

in earlier studies by Goldberg [10].

' 4.10.2 Performance Measure

'MODEL FOR MULTITHREADED EXECUTION
It helps to think of a multithreaded computation the set of runtime instructions
executed by a processor on behalf of a multithreaded program—as a directed

acyclic graph G = ('V,E) called a computation dag.

111

Figure 4.2:A DIRECTED COMPUTATION DAG REPRESENTING TRANS 4)

Source : Author (2012)

A directed acyclic graph representing the computation _of four vertices ,Trans(4) Each circle
represents one strand, with black circles representing either base cases or the part of the
procedure (instance) up to the spawn of Trans(u),‘ shaded circles representing the part of the
procedure that calls Trans(u) up to the where it suspends until the spawn of Trans(u-1) returns,
and white circles representing the part of the procedure after the sync where it stores comp in

L(u) up to the point where it returns the result. Each group of strands belonging to the same

procedure 1s sungjiﬁaed by a @_glde.d-reetangle, lightly shaded for spawned procedures and

| heavily shaded for called procedures. Spawn edges and call edges point downward,

it ey
continuation edges point horizontally to the right, and return edges point upward. Assuming

112

: & o

{ that each strand takes unit time, the work equals 17 time units, since there are 17 strands, and
1

- the span is 8 time units, since the critical path—shown with shaded edges—contains 8 strands.
~ For the purpose of getting tools to measure the performance measure let us use the figure 4.2
. to arrive at some notations that will help us in the performance measure. If G has a directed

| path from strand u to strand v we say that the two strands are (logically) in series. Otherwise,

| strands u and v are (logically) in parallel. We can picture a multithreaded computation as a

-~ dagof strands embedded in a tree of procedure instances.

-Ii We can classify the edges of a computation dag to indicate the kind of dependencies between
'~ the various strands. A continuation edge (u, 1) drawn horizontally, connects a strand u to its
successor U within the same procedure instance. When a strand u spawns a strand v the dag
~ contains a spawn edge (u,v) which points downward in the figure. Call edges, representing

l : : :
~ normal procedure calls, also point downward. Strand u spawning strand v differs from u

l
~ calling v in that a spawn induces a horizontal continuation edge from u to the strand U
following u in its procedure, indicating that @ is free to execute at the same time as v, whereas
a call induces no such edge. When a strand u returns to its calling procedure and X is the strand
~ immediately following the next sync in the calling procedure, the computation dag contains
return edge (u, G), which points upward. A computation starts with a single initial strand, the
* black vertex in the procedure labeled Trans(4) and ends with a single final strand, the white
vertex in the procedure labeled Trans(4) is free t;') execute at the same time as v, whereas a call
* induces no such edge. When a strand u returns 1o its calling procedure and 1 is the strand

immediately following the next sync in the calling procedure, the computation dag contains

return edge (u, () which points upward.
— “-’_"——-_-——___

. Notations to gauge the theoretical efficiency of a multithreaded algorithm
—

113

-The Work: Of a multithreaded algorithm is the total time to execute the entire computation on

one processor. That is the work is the sum of the times taken by each of the strands.

The Span is the longest time to execute the strands along any path in the dag.

The Critical path in the dag is the longest path of vertices. We can find a critical path in a dag

G=(V,E)in O(V +E) time

Let us take as an example the serial pseudocode of the Trans computation in order to develop

the performance measure.

Trans(u)
[fu<l
Return u
else x = Trans(u-1)
y = Trans(u-2)

Return x+y

Since the Trans procedure does not memoize, instances of the Trans procedure return the same

result, that is replicates the work that the first call performs.

Let T (n) denote the running time of Trans (n)Since Trans(n) contains two recursive calls

plus a constant amount of extra work, then according to Brent [42] we obtain the recurrence

The running times of serial Trans(u)

T(u) =T(u-1) + T(u-2) + ©(1) ‘This recurrence has solution

== D
T(u) = O(F,) using substitution method .

— For an inductive hypothesis, we assume that

T(u) < a(F,) — b where a > 1, and b > 0 m are constants, substituting we obtain

114

T(u) < (aFy. - b) + (aFyu2-b) + (1)
=a(Fy1+ Fu2)-2b+0(1)
< aF, — b If we choose b large enough to dominate the constant in the ®(1)

We can then choose a large enough to satisfy the initial condition.

The analytical bound

T(u) = O(¢") where = (1+V5)/2 From Brent [42]

4.10.3 Developing Tools To Analyze Multithreaded Algorithms

The two recursive calls Trans (u-1) and Trans(u-2) can run in parallel. We augment our
pseudocode to indicate parallelism by adding the concurrency keywords, spawn and sync. In
our case of lock free multithreading sync is not explicitly declared but implicitly the reason
being that every procedure executes a sync implicitly before 1t returns, thus ensuring that all

its children terminate before it does.

The parallel Transit algorithm

Trans(u)
[fu<l
Return u
Else x = spawn Trans(u-1)

Y = Trans(u-2)

//sync
Return x+y
The keyword spawn does not say, however, that a procedure must execute concurrently with

its spawned children, only that—t—may. The concurrency keywords express the logical
parallelism of the computation, indicating which parts of the computation may proceed in

—---.-—-

parallel. At runtime, it is up to a scheduler to determine which sub computations actually run

115

imunlybymimingﬂanwﬂhbkprmuthcwmmm
running time of a multithreaded computation depends not only on its work and its span, but
'llloonhowmanypmccmrsmwaihblcmdhowthexhedmadmwmdtopmm
'; In the development of tools to analyze multithreaded algorithms we shall investigate the
execution of multithreaded algorithms on an ideal parallel computer, which consists of a set of
processors and a sequentially consistent shared memory. Sequential consistency means that
the shared memory, which may in reality be performing many loads and stores from the
~ processors at the same time, produces the same results as if at each step, exactly one

? instruction from one of the processors is executed. That is, the memory behaves as if the

p . : . ‘
 instructions were executed sequentially according to some global linear order that preserves

the individual orders in which each processor issues its own instructions. For dynamic
multithreaded computations, which are scheduled onto processors automatically by the
concurrency platform, the shared memory behaves as if the multithreaded computation’s
instructions were interleaved to produce a linear order that preserves the partial order of the
computation dag. Depending on scheduling, the ordering could differ from one run of the
program to another, but the behavior of any execution can be understood by assuming that the
instructions are executed in some linear order consistent with the computation dag. In addition
to making assumptions about semantics, the ideal-parallel-computer model makes some
 performance assumptions.

Specifically, it assumes that each processor in the machine has equal computing power, and it
ignores the cost of scheduling. Although this last assumption may sound optimistic, it turns

out that for algorithms with sufficient “parallelism” (a term we shall define precisely in a

moment), the overhead of sched/u'lj,u.g,is_gencmlly minimal in practice.

The actualrunning time of a multithreaded computation depends not only on its work and its

span, but also on how many processors arc available and how the scheduler allocates strands

116

to processors. To denote the running time of a multithreaded computation on P processors, we
shall subscript by P. For example, we might denote the running time of an algorithm on P
processors by Tp. The work is the running time on a single processor, or T;. The span is the
running time 1f we could run each strand on its own processor—in other words, if we had an
unlimited number of processors—and so we denote the span by T;. The work and span

provide lower bounds on the running time Tp of a multithreaded computation on P processors:

. In one step, an ideal parallel computer with P processors can do at most P units of work, and

thus in Tp time, it can perform at most
PTp work.
Total work to do 1s T},
we have PTp > T;.
Dividing by P yields the work law
The work law = Tp=>T,/P
A P-processor ideal parallel computer cannot run any faster than a machine with an unlimited
number of processors. Looked at another way, a machine with an unlimited number of
processors can emulate a P-processor machine by using just P of its processors.
Thus, the span law follows
Tp2 Ty
We define the speedup of a computation on P prbcessors
by the ratio T;/Tp,
which says how many times faster the computation is on P processors than on 1 processor.

By the work law,
— //_
we have Tp > Ti/P, which implies that

Ty/[p=F. [hus;the speedup on P processors can be at most P

117

When the speedup is linear in the number of processors,

that is, when the computation is

T\/Tp = O(P) exhibits linear speedup and

when T,/Tp =P, we have perfect linear speedup.
The ratio of the work to the span

Ti/T» = parallelism of the multithreaded computation.

We can view the parallelism from three perspectives.

1.As a ratio, the parallelism denotes the average amount of work that can be performed in

parallel for each step along the critical path.

2. As an upper bound, the parallelism gives the maximum possible speedup that can be

achieved on any number of processors.
3.The parallelism provides a limit on the possibility of attaining perfect linear speedup.

Specifically, once the number of processors exceeds the parallelism, the computation cannot

possibly achieve perfect linear speedup.

To see this last point, suppose that

P >T,/T., in which case the span law implies
that the speedup satisfies T\/Tp = T\/T« <P. Moreover,
if the number P of processors in the ideal parallel computer greatly exceeds the
parallelism that is, if
S /_,’—"—"l .
then T, << Ty/ P, so that the speedup 1s
muchTess than the number of processors. In other words, the more processors we

use beyond the parallelism, the less perfect the speedup
118

T\/To/P =T /(PT,), is the parallel slackness
which is the factor by which the parallelism of the computation exceeds the number of

processors in the machine.

Thus, if the slackness is less than 1, we cannot hope to achieve perfect linear speedup, because
T\/(PTy) <1
and the span law imply that the speedup on P processors satisfies

TI/TP < Tlf{Tm <

4.10.4 Greedy Scheduler

Good performance depends on more than just minimizing the work and span. The strands
must also be scheduled efficiently onto the processors of the parallel machine. Instead, to keep
our analysis simple, we shall investigate an on-line centralized scheduler, which knows the
global state of the computation at any given time. In particular, we shall analyze greedy
schedulers, which assign as many strands to processors as possible in each time step. If at least
P strands are ready to execute during a time step, we say that the step is a complete step, and a
greedy scheduler assigns any P of the ready strands to processors. Otherwise, fewer than P

strands

are ready to execute, in which case we say that the step is an incomplete step, and the

scheduler assigns each ready strand to its Own processor.

From the work law, the best running time we can hope for on P processors 1s

Tp = T,/P , and from the span law the best we can hope for is

.-"-'- T

—

e TP N Tw.'/

--—.‘F_

The following theorem shows that greedy scheduling 1s provably good in that it achieves the

sum of these two lower bounds as an upper bound.

119 L. lis i s~y X
- K*AME NN ELUMNA

'WIVERSITY OF SCIENCE & TECHNOL e

KUUMAS T

Theorem 4.0

On an ideal parallel computer with P processors, a greedy scheduler executes a

multithreaded computation with

work T; and span T in time
Tp = 1T1/P+Ts
Proof We start by considering the complete steps. In each complete step, the
P processors together perform a total of P work. Suppose for the purpose of
contradiction that the number of complete steps is strictly greater than T,/P
Then, the total work of the complete steps is at least
P(T,/P]+1)=P[Ty/P]+P
=T;—(Tymod P) +P
>TI,
Thus, we obtain the contradiction that the P processors would perform more work than the
computation requires, which allows us to conclude that the number of complete steps 1s at
most [Ti/P]. Now, consider an incomplete step. Let G be the dag representing the entire
computation, and without loss of generality, assume that each strand takes unit time. (We can
replace each longer strand by a chain of unit-time strands.) Let G be the sub graph of G that
has yet to be executed at the start of the incomplete step, and let G be the sub graph
remaining to be executed after the incomplete step. A longest path in a dag must necessarily
start at a vertex with in-degree 0. Since an incomplete step of a greedy scheduler executes all
strands with in-degree 0 in G’, the length of a longest path in G*> must be 1 less than the
length of a longest path in G’. In other words, an incomplete step decreases the span of the

unexecuted dag b.yil . Hence, th;;umbewf incomplete steps is at most T.

Since each step is either complete or incomplete, the theorem follows.

o —

The following corollary to Theorem 4.0 shows that a greedy scheduler always performs well.

120

Corollary 4.1

The running time Tp of any multithreaded computation scheduled by a greedy scheduler on an
ideal parallel computer with P processors is within a factor of 2 of optimal.
Proof Let TP be the running time produced by an optimal scheduler on a machine with P

processors, and let Ty and T, be the work and span of the computation, respectively. Since the

work and span laws give us
Tp = max(T/P, Ty)
Theorem 4.0 implies that
Ty, < (TV/P +Ty)
< 2 max(T;/P, Tx)
<2Tp
The next corollary shows that, in fact, a greedy scheduler achieves near-perfect linear speedup
on any multithreaded computation as the slackness grows.
Corollary 4.0
Let Tp be the running time of a multithreaded computation produced by a greedy scheduler on
an ideal parallel computer with P processors, and let T, and T, be the work and span of the
computation, respectively. Then, if P <<Ti/T, we

have Tp = T,/P , or equivalently, a speedup of approximately P.

Proof
If we suppose that P << T}/Tc, then we also have T, << T,/P, and
hence Theorem 4.0 gives us Tp = T)/P + T.. = T,/P . Since the work
law dictates that Tp > T\/P , we conclude that Tp = T,/P , or equivalently,
- o
that the speedup is Ti/Tp = P.

121

4.10.5 Analysing The Transit Multithreaded Algorithm

The work and span of composed sub computations

Figure 4.3: Work and span of composed sub computations

Source : Introduction to Algorithms (2008)
Work: T{(A U B) =T (A) + Ti(B)
Span: Tw(A U B) = Tw(A) + Tew(B)
(a) Work: T1(A U B) =Ty(A) + T1(B)
(b) Span: Tew(A U B) = max(Tw(A), Tw(B))

The work and span of composed sub computations. (a) When two sub computations are joined
in series, the work of the composition is the sum of their work, and the span of the
composition is the sum of their spans. (b) When two sub computations are joined in parallel,

the work of the composition remains the sum of their work, but the span of the composition is

only the maximum of their spans.

122

We now have all the tools we need to analyze multithreaded algorithms and provide good
bounds on their running times on various numbers of processors. Analyzing the work is
relatively straightforward, since it amounts to nothing more than analyzing the running time of
an ordinary serial algorithm—namely, the serialization of the multithreaded algorithm. From
figure 4.6 illustrates how to analyze the span. If two sub computations are joined in series,
their spans add to form the span of their composition, whereas if they are joined in parallel,

the span of their composition is the maximum of the spans of the two sub computations.
The original Transit procedure is essentially the serialization of Trans(u), and
hence T;(u) = T(u) =0(¢") From Brent [42]

For Trans(u), the spawned call to Trans(u-1) in line 3 runs in parallel with the call to Trans(u-

2) in line 4. Hence, we can express the span of Trans(u) as the recurrence
To(u) = max(Tx(u — 1), T(u- 2)) + ©(1)
= T,(u-1) + O(1)
which has solution To(u) = O(u)
The parallelism of Trans(u) is Ti(u)/Te(u) = ©(¢"/u), which grows dramatically

As u gets large. Thus, on even the largest parallel computers, a modest value for u suffices to
achieve near perfect linear speedup for Trans(u) because this procedure exhibits considerable

parallel slackness. This proves the effectiveness of the computation dag aspect of the whole

Transit algorithm.

123

4.10.6 The Complexity Bound.

In this section, because we are using the lock free method of Bo Hong,[55] the ensuing
discussion is what Bo Hong did to show that the algorithm indeed terminates, and indeed it
executes at most O(|V |*|E|) push/lift operations for a given graph G(V,E). Note that the
complexity is analyzed in the number of push and lift operations rather than in the execution
time. This is because the algorithm is executed by multiple threads simultaneously. The time
complexity depends on multiple factors including the number of threads and the assignment of
vertices to the threads. The total number operations is therefore a more concrete measure of
the complexity of the algorithm. The proof technique is similar to that used by Goldberg in
[9]. We first set a bound on the height of the vertices, which is then used to bound the number
of lift and push operations. The proofs of the lemmas and the theorems can be found in the

work of Bo Hong’s Lock free Multithreaded Algorithm for the maximum flow problem.
Theorem 1: Given graph G, if the algorithm terminates, then the calculated function f 1s
maximum flow for G.

Lemma 1: If the algorithm terminates, then there is no path from s to t in the residual graph Gg

when the algorithm terminates. Here f is the flow function calculated by the algorithm

Lemmal, says that there is no path from s to t in G; . According to the maximum-flow

minimum-cut theorem, f must be a maximum flow in G.

Lemma 2: During the execution of the algorithm, for any vertex u s.t. e(u) > 0, there exists a

path from u to s in the residual graph Gr.

=

124

Lemma 3: Given graph G, source vertex s, and sink vertex t, then during the execution of the

algorithm, if e(u) > 0, then there exists a path u; — u,... — u, in the residual graph from u to

s(uy=u,u.=s)and h(y)) < h(u.))+1fori=1,.. . k- 1.

Lemma 4: Given graph G(V,E), source vertex s and sink vertex t, then during the execution of

the algorithm, we always have h(u) <2|V|—=1forueV.

Lemma 5: Given graph G(V,E) with source vertex s and sink vertex t, then during the

execution of the algorithm, the total number of lift operations is less than 2|V =V

Lemma 6: Given graph G(V,E) with source vertex s and sink vertex t, then during the

execution of the algorithm, the number of saturating pushes is less than (2|V | = 1)E|.

Lemma 7: Given graph G(V,E) with source vertex s and sink vertex t, then during the

execution of the algorithm, the number of non-saturating pushes 1s less than 4|V |2|E|.

Theorem 2: Given graph G(V,E) with source vertex s and sink vertex t, the algorithm executes

O(|V |2|E|) push and lift operations
Proof immediately from lemmas 5,6,7

In this section, we show that the algorithm indeed terminates: it executes at most O(|V FIE|)

push/lift operations for a given graph G(V.E).

125

CHAPTER FIVE
CONCLUSION AND RECOMMENDATION

5.1 SUMMARY

We modeled the procedures for the movement of goods in the Ecowas sub region as a network
flow problem. The directed edges in the flow network serve as a conduit for the movement of
processed procedures from one vertex to another. The vertices are the conduit junctions and
store no flow. As the computation of the procedures in a transit transaction could be
represented as a computational directed acyclic graph, we use it to execute the procedures at
the vertices, likened to the States in a transit corridor. The results of the computed procedures
are recursively call upon whenever needed. We then employed the maximum network flow
problem as a solution for the transit transaction for a qualitative service delivery. We then call
upon the push relabel method which is one of the maximum network flow methods and
specifically the generic push relable algorithm which is very efficient is used. We then
combine the Computational Directed Acyclic Graph and the push relable method to get a
sequential algorithm which we call the Transit algorithm that depicted the processing of
procedures of the model at the vertices which represented the States in the transit corridor. We
then multithreaded the resultant sequential algorithm (the Transit algorithm) by atomically
performing the relable operation, the push operation and the spawn procedures concurrently,
the shared memory behaves as if the multithreaded computation’s instructions were
interleaved to produce a linear order that preserves the partial order of the computation dag. It
therefore means that a single resultant procedure is achieved with all the needed results all at

RS /—_
once.

—

126

5.2 CONCLUSION

Our aim of achieving a single transit document at the beginning of a transit transaction has
been achieved. This is because the parallel computational process we adopted in this paper
abstracts the architectural model of a network flow and by the complexity of the ensuing
algorithm we can safely predict that the performance of our model on a real computer would
reflect the bound of our algorithm which is good. Here the performance measure is not based
on theoretical cost models but on measured execution times of our algorithm. The algorithm
indeed terminate, it executes at most O([V[*|E|) push/lift operations for a given graph G(V,E)
and the parallelism of the Transit algorithm Trans(u), which is T(u) = O(¢"/u), which grows
dramatically as u gets large. Thus on the largest parallel computers, a modest value of u
suffices to achieve near perfect linear speedup for Trans(u) because this procedure exhibits

considerable parallel slackness.

5.3 RECOMMENDATION

The model we adopted for this paper is the computational model. The parallel random access
machine (PRAM) has four levels of abstraction. The remaining three of the abstractions are
parallel machine, parallel architecture and parallel programming. Our model of this research
serves as a blue print for developing for example a parallel programming software for the
Transit algorithm, which can perform well on parallel machines as well as on parallel

architecture. This research of ours, is therefore an incentive for a vast area of research given

all the four leve_l_s__{)f ﬂébstractiollio/fjhﬂ_parallel random access machine.

127

REFERENCES
[1] Dr. Zadok Zerelli, Mr. Olivier Hartmann, Mr. Bernard Stoven, Mr. Kristian Bernauw, Mr.

Athman Mohamed Athman ALI, Mr. Azoumana Moufaye, Mr. Gerard Delanne, - West

Africa Road Transport And Transit Facilitation Strategy.
[2] World Customs Organization; TRS Methodology. Available at:

http://www.wcomd.org/files1%20public%20files/PDFandDocuments/Procedures%20%Facilit

ation/TimeRelease%20StudyENG.pdf

[3] World bank. SSATP Discussion Paper No. 7 “Lessons to be learnt on corridor

performance measurements” Available at: http://siteresources.worldbank.org/

EXTAFRSUBSAHTRA/ Resources/DP07with-cover.pdf.

[4] World bank. :"The Cost of Being Landlocked”. Available at:

http:/fsiteresources.worldbank.arg/EXTAFRSUBSAI—ITRA/Resources/DP07with-cover.pdf.

[5] Thomas H. Cormen, Charles E. Leisorson, Ronald L. Rivest, Clifford Stein. Introduction
to Algorithms. — third edition

[6] Lester R. Ford Jr. and D. R. Fulkerson. — Flows in networks, Priceton University Press
1962

[7] Jack Edmonds and Richard M. Karp. Theoretical Improvements in the algorithmic
efficiency for network flow problems, Journal of the ACM, 19(2). 248-264, 1972

[8] E.A. Dinic. Algorithmic for solution of a problem of maximum flow in a network with
power estimation. Soviet mathematics. Doklady, 11(5); 1277-1280,1970

[9] A.V. Karzanov. Determinig the maximal flow in a network by the method of preflows.
Soviet mathematics. Doklady , 15(2),434-437, 1974

[10]Andrew V. G;aldberg, Efficient-Graph Algorithms for sequential and parallel computers.

Phd thesis, Department of Electrical Engineering and Computer Science MIT, 1987

e

128

[11] Andrew V. Goldberg and Robert E. Tarjan. A New Approach to the maximum flow
problem. Journal of the ACM, 35(4):921-940, 1988

[12] Ravindra k. Ahuja and James B. Orlin. A fast and simple algorithm for the maximum
flow problem . SIAM Journal on campus,18(5):939-954,1989

[13]Ravindra K. Ahuja, James B, Orlin and Robert E. Tarjan, Improved line bounds for the
maximum flow problem SIAM Journal on computing, 18(6): 1057-1086,1989

[14] Joseph Cheriyan and S.N Maheshwari. Analysis of preflows push algorithm for
maximum network flow. SIAM journal on computing, 18(6):1057-1086, 1989

[15] Joseph Cheriyan and Torben Hagerup. A randomized maximum flow algorithm. SIAM
Journal on computing. 24(2); 203-226, 1995

[16] King Rao and Robert E, Tarjan. A faster deterministic maximum flow algorithms,
17(3);447-474, 19994

[17] Noga Alon: Generating pseudo-random permutations and maximum flow algorithms.
Information processing Letters, 35204, 1990

[18] Stephen Phillips and Jeffrey Westbrook. Online load balancing and networkflow. In
proceedings of the 25" Annual ACM symposium on Th;eory of computing pages 402-411,
1993

[19]Boris V. Cherkassy, Andrew V. Goldberg. On Implementing the push —relable method
for the maximum flow problem. Stanford University, Stanford, CA,USA, Tech.Rep,1994

[20] A.V. Goldberg. Processor-Efficient Implementation of a Maximum Flow Algorithm .

Information processing letters, pages 179-185, 1991

[21] A.V Goldberg. A new Max-Flow. Technical MIT/LCS/TM-291, Laboratory for

Computer Sg.i;nce, MIT, 1'9,9,5,’———’

[22] A.V Karzanov. Efficient Graph Algorithms for Sequential and Parallel Computers. PHD

e

thesis, MIT, January

g o LS kR A Hny
R
= 123 KWAME NKRUMA NOLOG

TECH
¥ OF SCIENCE &
wWIVERSIT CUMA S 1

[23] U. Derigs and W. Meier. Implementing Goldberg’s Max-Flow Algorithms -
Computational Investigation. ZOR, - Methods and Models of Operational Research,
33:383 — 403, 1989

[24] C.E. Leiserson, and B. M. Maggs, Communication- Efficient Parallel Graph Algorithms.
In proc. Of International Conference on Parallel Processing pages 861-868, 1996

[25] Y. Shiloach and U Vishkin. An 0(n’logn). Parallel Max-Flow Algorithm. J.Algorithms

3:128-146, 1982

[26] Z. Galil, An 0(V>"*E*”) algorithm for the maximum flow problem. Acta Informatics,
14:221 — 242. 1980

[27] R. Anderson and J. Setubal, “On the parallel Implementation of Goldberg’s “maximum
flow algorithm”™ 1n 4™ Annual Symposium. Parallel Algorithms and architectures (SPAA-
92), San Diego, CA July 1992 pp, 168-177

[28] D. Bader and V.SACHDEVA. “A Cache- Aware parallel implementation of the push
relabel network flow algorithm and experimental evaluation of the gap relabeling
heuristics,” in the 18th ISCA International Conference on Parallel and Distributed
Computing (PDCS 2005), September 12-14, 2005

[29]- W. Daniel Hillis and Jr. Guy L. Steele. Data Parallel algorithms Communications of the
ACM, 29(12): 1170-1183, 1986

30] Richard Bellman, Dynamic Programming, Princeton University Press, 1957

31] Zvi Galiland and Kumzoo Park. Dynamic Programming with conxity, concavity and
sparsity. Theoretical Computer Science, 92(1): 49-76, 1992
[32] Eugene L. Lawler. Combinatorial Optimization: Networks and Mariods. Halt, Rinchart

and Winstorl,j 976 S

[33] Christos H. Papadimitriou and Keneth Steiglitc. Combinatorial Optimization. Algorithms

——

and Complexity, Pinceton Hall. 1982

130

[34] Jack Edmonds , Matroids and The Greedy Algorithm. Mathematical Programming, 1(1):

127-136, 1971

[35] Hassler Whitney: On the abstract paper properties of linear dependence. American
Journal of Mathematics 57(3);509-533, 1935

[36] F. Gavril. Algorithms for minimum coloring ,maximum clique, minimum covering by
cliques and maximum independence. Set of a chordal graph. SIAM Journal on computing

[37] Ellis Horowitz, Sartaj Sahni and Sanputhevar Rajasekaran. Computer Algorithms.
Computer Science Press 1998.

[38] Gilles Brassard and Paul Bratley, Fundamentals of algorithmics, Prentice Hall 1996

[39] J.R. Ellis Bulldog. A compiler for VLIW Architectures. MIT Press, Cambridge, MA,
USA, 1986

[40] H. S. Stone. An efficient algorithm for the solution of a tridiagonal linear System of
equations. Journal of the ACM, 20:27 — 38, 1973.

[41] Ronald L. Graham. Bounds for certain Multiprocessor anomalies. Bell System Technical
Journal, 45(9); 1563-1581, 1966

[42] Richard P. Brent The Parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2); 201- 206, 1974.

[43] [30] Derek L, Edger, John Zahorjan and Edward D. Lazowska, speed up versus efficiency
in Parallel Systems. IEEE Transactions on Computers, 38(3); 408-423,1989

[44] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. Phd thesis, Department of
Electrical Engineering and Computer Science MIT, 1989, Available as MIT Laboratory
for Computer Science Technical Report MIT/LCS/TR-463

(45] Robert D. Blumofe and Charles E-Leiserson. Scheduling multithreaded computations by

work stealing. Journal of the ACM, 46(5), 720- 748, 1999

e —

131

[46] Nimar S. Arora, Robert D. Blumofe, C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In Proceedings of the 10" Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 119-129 1998

[47] Robert D. Blumofe, Christopher F. Georg, Bradley C. Kuszmanl, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk; An efficient multithreaded runtime System.
Journal of Parallel and Distributed Complexity 37(1); 55 — 69 1996.

[48] Matteo Frigo, Charles E. Leiserson and Keith H. Randall. The Implementation of the
Cilk- 5. Multithreaded language . In Proceedings of the 1998 ACM SIGPLAN
Conference on Programmers Language Design and Implementation pages 212-223, 1998

[49] Cilk Arts, Inc., Burlington, Massachussets, Cilk ++ Programmer’s Guide, 2008,

Available at http://www.cilk.ccom/archive/docs/cilk1guide

[50] Thomas Rauber, Gudula Runger. Parallel Programming for Multicore and Cluster
Systems. Springer-Verlag Berlin Heidelberg 2010

[51] T Heywood and S. Ranka. A practical hierarchical model of parallel computation.
Journal of Parallel and Distributed Computing 16: 212-249, 1992

[52] M.R. Garey and D.S Johnson, Computers and Intractability. A guide to the theory of NP-
Completeness, Freeman, New York. 1979.

53] P. Brucker. Scheduling Algorithms. 4™ edition , Springer-Verlag,, Berlin , 2004

54] A.V. Goldberg. An efficient Parallel Algorithm for the Single Function Coarsest
Partition Problem on EREW PRAM available at: http://

[55] Eric Braude. Software Design from Programming to Architecture. Boston University
Johnson Wiley and sons. 2004

[56] Gene M. &fn&ahl. Validity of-the single processor approach to achieving large-scale

computing capabilities. Pages 7-81, 2000.

__——"'-._-F-

132

[57] Peter Wind and John Hansen Design Implementation and analysis of algorithms on
multicore Systems. Technical University of Denmark,Informatic and Mathematics

Modelling.

[58] B. Hong, “A lock free multithreaded algorithm for the maximum flow problem; in IPDS,
IEEE,2008, PP 136-146

[59] Guy E. Blelloch, Phillip B. Gibons, and Yossi Mathias. Provably efficient scheduling for
languages with fine grained parallelism. In Proceedings of the 7" Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 1-12. 1995

[60] Joshua o’ Madahain, Daniel Fischer, Scott White , and Yan — Biao Boey. Java Universal

Network/graph. World Wide Web electronic publication, http://jung.sourceforge.net/,

2006.

[61] Victoria Popic and Javier Valez. Parallelizing the Push Relabel Max-Flow Algorithm.

Available | at:

http://courses.csail.mit.edu6.884spring10pmiectsuiq_valezi_maxﬂowerpot.pdf

[62] Hans Henrik L_vengreen. Basic Concurrency Theory. Informatics and Mathematical

Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building

321, DK-2800 Kgs. Lyngby, Denmark, 1.1 edition, 2005.

[63] Ananth Grama. Introduction to parallel computing. Addison-Wesley, Harlow, England,

2nd edition, 2003.

133

10.

12.

13.

14.

15.

16.

17.

18.

19.

. ASYCUDA :

BCEOM :

. ECOWAS :

EU:

i AL

GAINDE :

GCMS :

GPRS:

IMO :

ISRT :

KYOTO:

MARPOL :

RECS :

RDBMS :

SSATP :

SDAM :

UEMOA :

WAEMU :

LIST OF ACRONYMS

Automated System For Customs Data
The Bureau Central d’Etudes pour les Equipment d'Outre-Mer
Economic Community of West African States

European Union
The Fussil Automatic Ledger

Customs Computer System used by Senegal for the clearance of goods
Ghana Customs Management System

General Packet Radio Service

International Maritime Organization

Inter-State Road Transit

Kyoto protocol was adopted in Kyoto, Japan

Marine Pollution

Renewable Energy Certificate

Relational Database Management System

Sub Saharan African Transport Policy Program

Systeme de Douanement des Machandises

Union Economique et Monetaire Ouest African

West Africa Economic And Monetary Union

UN/EDIFACT : United Nations/ Electronic Data Interchange For Administration,

Commerce and Transport

134

	001_L(9).pdf (p.1)
	003_L(7).pdf (p.2)
	005_L(6).pdf (p.3)
	007_L(6).pdf (p.4)
	009_L(5).pdf (p.5)
	011_L(4).pdf (p.6)
	013_L(4).pdf (p.7)
	015_L(4).pdf (p.8)
	017_L(4).pdf (p.9)
	019_L(4).pdf (p.10)
	021_L(4).pdf (p.11)
	023_L(4).pdf (p.12)
	025_L(4).pdf (p.13)
	027_L(4).pdf (p.14)
	029_L(4).pdf (p.15)
	031_L(4).pdf (p.16)
	033_L(4).pdf (p.17)
	035_L(4).pdf (p.18)
	037_L(4).pdf (p.19)
	039_L(4).pdf (p.20)
	041_L(4).pdf (p.21)
	043_L(4).pdf (p.22)
	045_L(4).pdf (p.23)
	047_L(4).pdf (p.24)
	049_L(4).pdf (p.25)
	051_L(4).pdf (p.26)
	053_L(4).pdf (p.27)
	055_L(4).pdf (p.28)
	057_L(4).pdf (p.29)
	059_L(4).pdf (p.30)
	061_L(4).pdf (p.31)
	063_L(4).pdf (p.32)
	065_L(4).pdf (p.33)
	067_L(4).pdf (p.34)
	069_L(3).pdf (p.35)
	071_L(3).pdf (p.36)
	073_L(3).pdf (p.37)
	075_L(3).pdf (p.38)
	077_L(3).pdf (p.39)
	079_L(3).pdf (p.40)
	081_L(3).pdf (p.41)
	083_L(3).pdf (p.42)
	085_L(3).pdf (p.43)
	087_L(3).pdf (p.44)
	089_L(3).pdf (p.45)
	091_L(3).pdf (p.46)
	093_L(3).pdf (p.47)
	095_L(3).pdf (p.48)
	097_L(3).pdf (p.49)
	099_L(3).pdf (p.50)
	101_L(3).pdf (p.51)
	103_L(3).pdf (p.52)
	105_L(3).pdf (p.53)
	107_L(3).pdf (p.54)
	109_L(3).pdf (p.55)
	111_L(3).pdf (p.56)
	113_L(3).pdf (p.57)
	115_L(3).pdf (p.58)
	117_L(3).pdf (p.59)
	119_L(3).pdf (p.60)
	121_L(3).pdf (p.61)
	123_L(3).pdf (p.62)
	125_L(3).pdf (p.63)
	127_L(3).pdf (p.64)
	129_L(3).pdf (p.65)
	131_L(3).pdf (p.66)
	133_L(3).pdf (p.67)
	135_L(3).pdf (p.68)
	137_L(3).pdf (p.69)
	139_L(3).pdf (p.70)
	141_L(3).pdf (p.71)
	143_L(3).pdf (p.72)
	145_L(3).pdf (p.73)
	147_L(3).pdf (p.74)
	149_L(3).pdf (p.75)
	151_L(3).pdf (p.76)
	153_L(3).pdf (p.77)
	155_L(3).pdf (p.78)
	157_L(3).pdf (p.79)
	159_L(3).pdf (p.80)
	161_L(3).pdf (p.81)
	163_L(3).pdf (p.82)
	165_L(3).pdf (p.83)
	167_L(3).pdf (p.84)
	169_L(3).pdf (p.85)
	171_L(3).pdf (p.86)
	173_L(3).pdf (p.87)
	175_L(3).pdf (p.88)
	177_L(3).pdf (p.89)
	179_L(3).pdf (p.90)
	181_L(3).pdf (p.91)
	183_L(3).pdf (p.92)
	185_L(3).pdf (p.93)
	187_L(3).pdf (p.94)
	189_L(3).pdf (p.95)
	191_L(3).pdf (p.96)
	193_L(3).pdf (p.97)
	195_L(2).pdf (p.98)
	197_L(2).pdf (p.99)
	199_L(2).pdf (p.100)
	201_L(2).pdf (p.101)
	203_L(2).pdf (p.102)
	205_L(2).pdf (p.103)
	207_L(2).pdf (p.104)
	209_L(2).pdf (p.105)
	211_L(2).pdf (p.106)
	213_L(2).pdf (p.107)
	215_L(2).pdf (p.108)
	217_L(2).pdf (p.109)
	219_L(2).pdf (p.110)
	221_L(1).pdf (p.111)
	223_L.pdf (p.112)
	225_L.pdf (p.113)
	227_L.pdf (p.114)
	229_L.pdf (p.115)
	231_L.pdf (p.116)
	233_L.pdf (p.117)
	235_L.pdf (p.118)
	237_L.pdf (p.119)
	239_L.pdf (p.120)
	241_L.pdf (p.121)
	243_L.pdf (p.122)
	245_L.pdf (p.123)
	247_L.pdf (p.124)
	249_L.pdf (p.125)
	251_L.pdf (p.126)
	253_L.pdf (p.127)
	255_L.pdf (p.128)
	257_L.pdf (p.129)
	259_L.pdf (p.130)
	261_L.pdf (p.131)
	263_L.pdf (p.132)
	265_L.pdf (p.133)
	267_L.pdf (p.134)
	269_L.pdf (p.135)
	271_L.pdf (p.136)
	273_L.pdf (p.137)
	275_L.pdf (p.138)
	277_L.pdf (p.139)
	279_L.pdf (p.140)
	281_L.pdf (p.141)
	283_L.pdf (p.142)

