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ABSTRACT

After many years of using fingerprint as a biometric, a complete and accurate
characterization and subsequent recognition of person using fingerprint still remain
a problem due to perhaps how fingerprint features are extracted. The way a person’s
finger is scanned may create different impressions making it difficult to use one
type of feature to characterize and identify a person by his finger leading to poor
recognition rate. Some of such features are the local dominant orientation and edge
parameters. Extraction of unique features for fingerprint recognition requires many
algorithms but the effective one still remains a problem. Fingerprint has numerous
features and this make extraction difficult. The solution is to use perhaps an efficient
algorithm that can robustly combine several feature vectors into a single feature
vector for recognition. In this work, the reverse bi-orthogonal wavelet family in
3 levels of resolution was applied to the fingerprint image and information in the
verti_c_ié.l,-.diagunal Eg_g_)mdzontal directions extracted and concatenated to form the
feature vectors for the recognition. A new Equal Error Rate(EER) of 0.0464 at 95%
recognition rate on the respective dataset was recorded as an improvement over the

existing methods.
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CHAPTER 1

INTRODUCTION

1.1 Background

The authentication or identification of persons based on the measure and analysis
of their physiological or behavioral characteristic is termed as biometrics (Prabhakar
et al., 2003; Chouhan and Khanua, 2011). Among the most widely used biometric
factors are: iris, spatial geometry of the face, fingerprint and voice patterns. Physical
access control to secured areas and materials is generally based on locks and keys
which can easily get lost or stolen by malicious individuals (Zhang, 2000). Because
access is based on locks and keys, the authentication factor is “something you have”
whic!l_mvkkmg’u};mﬂn the person entering or accessing the material is the
actual individual granted the access. The same is for computerized systems where

: mmudhmlywmwmmﬁmthmww

“something you know”. Unfortunately, the user is given the respousibility to mem-
orize such an amount of password or pin code making them apply password policy
practice badly by writing down password, keeping password as simple as possible
and even to the extent of using the same password always.

A solution to the above is the biometric, which has its access control factor as
“something you are” and provides better security. This is because, the measure



of physiological or behavioral characteristic is often more difficult to forge, steal or
imitate as is the case of passwords or keys. Again, users do not need to remember
it and they cannot by accident leave it at home. These merit posed by biometric,

make its demand higher as a tool for verification and authentication purposes.

In theory, humans can be identify with many features that can be used as a
biometric for authentication or identification. However, such features need to be
universal (ie. something everybody has), unique (ie. possible to separate individuals
from another), easy to collect and not easily imitable (Prabhakar et al., 2003). For

these reasons, fingerprint as a biometric tool is mostly considered.

In many forensic research and application, fingerprint is known to be unique and
reliable from the biological point of view due to some profound characteristic that
it posses (Qinghui and Xiangfei, 2010). These fact has really aided most researchers
for many years in person identification and authentication and it still remains one
of the oldest and most popular. Although most researchers have dealt a lot in this
field, the issue of attaining a higher accuracy still remains a problem due to perhaps

how the feature are extracted or how the data were collected.

As’éyfresult of the stated issues, many pattern recognition methods which generally
involve statistical pattern recognition, feature extraction, cluster analysis and image
processing and analysis have been used in many areas including voice recognition,

face recognition, fingerprint recognition and even gait recognition (Zhang, 2000).

The motivation for-this research actually arise from machine learning and com-
puter vision studies, which provide more evidence that, fingerprint image taken at
different impressions contain a signature that is unique to each individual (Pankanti
et al., 2002) even to the extent that twins having resembling DeoxyriboNucleic Acid

(DNA) are believed to have different fingerprint image. These indeed has lead to an



increase use of automatic fingerprint verification system, which has evolve in its es-
tablishment in many disciplines such as: in the military, financial institution, airport
and governmental organization where security is a major requirement to overcome

possible threats.

1.2 Problem Statement

It is well known that, solutions to fingerprint registration, feature extraction and
characterization and matching are major problems encountered by almost all previ-
ously proposed techniques for fingerprint recognition (Yan et al., 1997). The ability
to identify a person by his fingerprint whiles avoiding impressions made during fin-
gerprint registration especially based on minutia algorithm is also a major issue. For
example, people with no or few minutia points such as surgeons who often wash their
hands with strong detergents and people with special skin conditions will have low
recognition rate. Hence, the number of minutia points becomes a limiting factor for
security response using the minutia algorithm. Again, results from minutia algorithm

can be confused with false minutia points (i.e areas of fudging that appears due to

low-quality enrollmjw%@rprint ridge details).

L

Generally, during scanning of fingerprints for recognition purposes; the following

observations are made (Dechman, 2012):

1. Different scanners for fingerprint registration make different but significant im-

pressions on the fingerprint images and these impressions actually affect the

recognition rate.

9. The choice of threshold during matching of fingerprint against known finger-

print database also affect recognition rate.



3. Small fingerprint scanners requires significantly low complexity based methods

due to low processing power used by these devices.

The fundamental problem of this thesis, is to find a significantly low complexity
based method, that can robustly and accurately extract features, across multiple

impressions based dataset of fingerprint in order to increase recognition rate.

1.3 Objective

The objectives of this thesis are to:

1. Identify the best wavelet transform among the lot which can robustly extract

fingerprint features more uniquely across multiple impression based dataset.

9. Define a common threshold value across the multiple impression dataset in

order to identify the best windowing technique.

3. Increase the recognition rate with the chosen wavelet and its corresponding

threshold value irrespective of the impressions made by different scanners.

1.4 Methodology
S /

In order to address the fundamental problems of this thesis, an efficient mathe-
— " matical tool for multiple resolution analysis was considered. Wavelet transform, as
a method of choice was considered due to the following advantages over. it peers as

identified by Sifuzzaman et al. (2009). These are:
1. They provide simultaneous localization in time and frequency domain.

2. They are computationally very fast.

3. They can be used to decompose a signal into their component wavelets.



4. Finally, they have the capability of revealing aspects of data like trends, break-

down points and discontinuities.
Below are the laid down methodology used to achieve these objectives.

1. Acquisition of both source and test database used for this study was from the

standard database named Fingerprint Verification Competition 2004 (FVC2004).

9 Wavelet Transform from different wavelet families was used to extract different

but unique features from the fingerprint image.

3. The fingerprint matching between the test and source database against several
predefined threshold was performed using the Euclidean Distance Transform

algorithm in order to identify -the best predefined threshold.

4. The False Acceptance and Rejection Rate (i.e. FAR and FRR) were calculated

from the resulting matching algorithm.

5. The performance of the method was analyzed using the Receiver Operating
Characteristic (ROC) curve based on the Equal Error Rate (EER) performance

iadicator.

S /’
1.5 Justification of the Study

The design of fingerprint recognition system base on our proposed method will

help increase the security of the nation in the following areas;

1. LAW ENFORCEMENT AGENCIES
Application of the fingerprint recognition system in the law enforcement agen-
cies such as the court or police station can successfully execute an arrest or

delivery as soon as the identity of the individual is verified.



e

2. Accgess CONTROL
Currently, fingerprint based access control devices have certain disadvantages
in its usability. Often a user may need to repeatedly scan their finger before
they are granted access. These may be caused by inconsistencies between the
fingerprint data recorded by the capture device and the data stored within the
systems database. This inconsistency increases the systems margin of error
which increase false rejectionsiand a lower degree of confidence with every
match. In high security access control;-an additional measure can be taken to
further increase the degree of confidence with every match as resolved in this

study.

3. FINANCIAL TRANSACTION
In the commercial sector, accurate biometric based authentication can be im-
plemented in electronic commerce. Methods of authentication such cards, pass-
words and pins are widely being used today. Biometric methods can be supple-
mented by accurate fingerprint based authentication to obtain a higher degree

of user confidence, as well as decrease the presence of fraud in online transac-
Vi M,
1.6 Organization of Chapters

The thesis is divided into five-chapters.
The first chapter is an-introduction and discussion of some underlying scientific and
historical facts about fingerprint recognition. It take into account the problem in the
field of fingerprint recognition and a gist of methods to be adopted to solving the
problem at hand including the chapter organization.

The second chapter gives the literature review of the techniques and approaches



that describes signal and image analysis as far as fingerprint is concerned. The
chapter further reviewed some mathematical concepts used through out the study.

The third chapter, which is the methodology, explains the theory and concepts
which form the basis of the thesis. This deals with how digital filters, image algebra,
image transform and some discussion on mathematical morphology in image process-
ing and pattern recognition. It also explains how wavelet transforms are formulated
and used to achieve higher accuracy in fingerprint image recognition.

The fourth chapter basically discuss the data used in the thesis and analysis
as well as experimental results from the Fingerprint Verification Competition (FVC
2004) database was discussed. A study was also made on the current methods used in
fingerprint recognition whiles some useful technique found were employed in carrying
on with the research. Finally, methods to extracting features relevant to this work
was illustrated.

Chapter Five concludes the work with some recommendations made on the rele-

vance of the undertaken project.



CHAPTER 11

LITERATURE REVIEW

2.1 Introduction

Every fingerprint possesses structural patterns which have very rich information
in them making it possible to be used for fingerprint recognition and these patterns
can be categorized into Global and Local features. As discussed in the introductory
chapter, there are several methods but the most widely used are the Correlation,
Minutiae and Ridge Feature based methods for fingerprint recognition. This chapter
first reviews some related studies on the respective subject and try to elaborate on the
methods and techniques which have been used throughout this work. It also reviews
some related fundamental mathematical concepts that are used in establishing these

i s
methods.

2.2 Related Work

In pattern recognition, the representation of patterns can be considered as feature
extraction and is divided into four groups; statistical pixel features, algebraic fea-
tures, visual features and transform coefficient features (Hong, 1991). The following

provide a short description of some of these techniques:

1. Minutiae based technique: These are the ridge ending and ridge bifurcation

LA r: g6 0L ™
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of a fingerprint and are represented by the location (z,y) and orientation 6.
However a preprocessing on fingerprint image is required to extract a true

minutia which is time consuming.

2. Image based technique: Thus where fingerprint preprocessing at optimal and
spatial domain are processed to generate features using mean, standard devia-

tion, variance, energy, gradient and directional features.

3. Transform domain technique: Here, fingerprint image is converted into fre-
quency domain using Fast Fourier Transform (FFT), Discrete Cosine Trans-

form (DCT), Dual Tree Complex Wavelet Transform (DTCWT) and Discrete

Wavelet Transform (DWT) to generate the feature vectors.

4. Multiple Classifier Technique: This is where test fingerprint features are com-
pared with features in the database using multiple classifiers such as Euclidean

Transform (ED) and Support Vector Machine (SVM).

Khan et al. (2009) in his research presented a new approach which uses wavelet
based features fused with minutiae based features for matching purpose. This is
becalﬂl_s_:e_' the mintl@wﬁﬂdﬁpproach requires very lengthy preprocessing during
minutiae extraction, however the result still contains false minutiae serving as a
drawback. Although previous attempts where made to overcome this challenge by
performing post-processing on the fingerprint image yet led to elimination of some
valid minutiae along with false ones. Hence they concluded that the strength of
this matching algorithm depends highly on the strength of features extracted. This
features extraction can either be made directly from the gray-scaled image or from
a thinned image and the resulting values matched which also depends on the best

matched minutiae pairs from both images. Different kinds of features are extracted



from extracted minutiae which allows us to have rotation and translation invariance
and this was the contribution made. It was found that, among the algorithms stud-
ied, their proposed work gained significant effects on overall performance which was
revealed from their experimental results. It was also realized that using these fea-
tures make the matching process much more accurate even in the presence of false

minutiae.

In the same year, Bhowmik et al. (2009) in this paper, proposed a Euclidean dis-
tance based minutia matching algorithm to further improve the matching accuracy
in fingerprint verification system by extracting the matched minutia pairs from test
and template fingerprints image by using the smallest minimum sum of closest Eu-
clidean distance (SMSCED) corresponding to rotation angle and empirically chosen
statistical threshold values. Their proposed algorithm uses only the minutia location
instead of using the minutia type and orientation angle as widely employed in exist-
ing algorithms to reduce the effect of non-linear distortion. From the experimental
results, he concluded that the proposed method has higher accuracy with improved

verification rate and rejection rate,

At the vear lhal.. El_l_lg_ﬂa,.ml article by Qinghui and Xiangfei (2010) made a sys-
tematic elaboration on the correlation theories of fingerprint recognition technology
~ and several essential algorithms. The study shows that combining the characteristic
of fingerprint image in the pretreatment process is a key technology especially taking
into consideration fingerprint image intensification which is based on the gradation
standardization, directional diagram and filters that in turns uses the auto-adapted
algorithm which is also based on partial smooth threshold value to carry on with
binarization. The experimental result indicates that the processing effect is good

when it come to fingerprint recognition and verification.

10



Conti et al. (2010) in their study reckon to the fact that fingerprint classification
and matching are the two key issues in automatic fingerprint recognition. They noted
that, fingerprint recognition is based on sets of relevant local characteristics such as
the ridge endings and bifurcations. It was clear that fingerprint classification is based
on fingerprint global features such as the core and delta singularity points however
it is unfortunate for these singularity points to be present in all fingerprint image
hence the acquisition process is not ideal. This make classification of fingerprints
that belong to the arch class very difficult. To this case, they proposed a pseudo
singularity points algorithm which will detect and extract all possible singularity
point to be used in fingerprint, classification and matching. An experimental trials
was conducted on the Fingerprint Verification Competition (FVC) databases and

results show the effectiveness of the proposed method.

Chengming et al. (2009) acknowledge that, fingerprint matching is very impor-
tant for automatic fingerprint recognition system (AFIS) but the problem is that,
after local structure matching, one minutia in query fingerprint may have multiple
candidate matching minutiae in template fingerprint and so getting the right one-
to-one matching pairs has great impart on the performance of fingerprint matching
algor-i-t;ﬁ. In the study they proposed a global fingerprint matching algorithm for

——— acquiring a one-to-one matching pairs based on motion coherence which is very useful
for fingerprint feature matching. Upon testing the algorithm on a public database

FV(C2002 DB1_A and FVC2004 DB1_A, the results proved that the proposed algo-

rithm performed well compared with other ones.

At a point in time, Xuzhou and Yu (2009) proposed a minutiae matching al-
gorithm that uses minutiae centered circular regions to help ensure the stability of

matching and its robustness to non-linear distortion. In this method, a circular region

11



is constructed around each minutia, which can be regarded as a secondary feature.
From the constructed regions, the proposed algorithm can find matched minutiae
more rapidly via regional matching. This study shows the algorithm is more tolerant
to non-linear distortion when compared to global matching approaches since each
minutia region is formed from only a small area of the fingerprint. On the other
hand, it was noted that, the algorithm gives a more reliable and distinct features
when the area of the constructed region is much larger than that of local neighbor-
hood in local matching approaches. Experimental results show the algorithm has

better robustness and stability.

Khalil et al. (2010), in their paper presented a statistically analyzed biometric
fingerprint images for personal identification where a sub-image of 129 x 129 was
extracted from the original image and transformed into a co-occurrence matrix. Ap-
plication of four different types of relative positioned distance were used to generate
the matrices and the results analyzed by the Program for Rate Estimation and Sta-
tistical Summaries (PRESS). The efficiency of this proposed method demonstrated

that the further the distance of the relative position the lower the error equal rate.

Seung-Hoon et al. (2009) in their study understood that Fingerprint verification

systems are very co-lwenient and secured. However, existing systems can cause errors
as a result of the size and quality of fingerprint images that are read only with the
use of minutiae. In sorting solution to this problem, they proposed an enhanced
security performance algorithm which has the ability to decrease the False Match
Rate (FMR). In conclusion they found that, ZeroFMR decreased from 29% to 9.9%,

which indicates enhanced security performance.

Zheng et al. (2009) also established from their studies that, fingerprint identity

key and the challenge response of authentication based on biological feature requires
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fingerprint matching algorithm based on minutiae with high accuracy and robustness.
This lead to a proposal to introduce a novel fingerprint matching algorithm based
on minutiae which does not rely on fingerprint global feature such as core points and
ridge structure but uses a method of similar vector triangle to solve the key problem
of point pattern matching algorithm. The experimental results indicated that, the
proposed algorithm can be invariant to translation, rotation and deformation and

also proves to be robust for fingerprint matching.

In situations where many fingerprint images are of poor quality, then one needs
to expect a great damage on the performance of the automatic fingerprint identifi-
cation system (AFIS). Attempt to ensure that performance is robust with respect
to the quality of input fingerprint images requires an enhancement algorithm. Since
Gabor filter is a very effective tool for image enhancement, Zhang and Jing (2010),
took hold of the advantages of its characteristic in both spatial and spectral domain
to dynamically estimate the gabor filter’s parameters and bandwidth. Finally, the
images were filtered in the frequency domain using the obtained gabor Frequency-
domain filter function and experimental result shows that the images were greatly

improved.
— ._,-“”-_-_‘_—J__

A new approach for fingerprint verification based on wavelets and pseudo Zernike
" moments (PZMs) was proposed by Pokhriyal and Sushma (2010) which is robust to
noisy images, invariant to rotation and have a good image reconstruction capability:
They used this method for global analysis and global feature extraction whiles they
used the Wavelets for local analysis and local feature extraction from a fingerprint
image. With this hybrid approach they extracted most significant features from the
fingerprint images and achieve better verification rate. Different types of wavelets

were used for the study but the result shows that Symmlet orthonormal wavelet of
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order 8 gives bost verification rate.

Ying et al. (nd) in their study, propose an effective fingerprint matching al-
gorithm based on error propagation since the traditional methods treat problem as
point pattern matching which is cssentially an intractable problem doe to the vanous
sonlinear deformations commonly obwerved in fngerprint inages. They adopted to
the ridge information and Hough tragsfrmation 1o extract several pairs of match-
ing minutise from which the matched st which inchades the correspondence and its
surtoutsding malcted muutiae pairs ate estabdssbod  Here the submequont matching
process is gusded by the conoept of error propagation  the matching errors of each
unmatched minutise are ostimated scconding 1o those of it most relevant neigh-
bot minutiae. 1o otdor (o prevent the process from being misguided by mismatched
minutiae pairs. they adopt a Beoble propagaton scheme and experimental results
demonstrate that thetr algorithm s robust 16 mon-Unear defor matsons

Karu and Anil (1996) presented a fingerpont unage classification algonthm which
extracts singular poasts (cores and deltas) in a fingerpetnt image and performs class-
kdmhdmlhw‘udkxmmdmw-uumm This make
the classificr invanant 1o rolation, translation and small amount of scale changes.
" The classifier is rule-based, whete the rubs are genorated indepondent of a given
data set and was tested on 4000 images in the NIST-4 database and on 5400 images
i the NIST-9 database. For the NIST-4 database, clasification accurackes of 85.4%
for the five-class problem and 91.1% for the four-class problem (with arch and tented
arch placed in the same category) were achieved. Using a reject option, the four
class classification error can be reduced 10 less than 6% with 10% fingerprint inages

rejected.
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Roddy and Stosz (1997) presents a model that defines the parameters necessary
to estimate the performance of fingerprint authentication systems without going
through the rigors of intensive system testing inherent in establishing error rates.
The model was developed to predict the performance of the pore based automated
fingerprint matching routine developed internally in research and development divi-
sion at the National Security Agency. In addition they linked together the realms of
automated matching and statistical evaluations of fingerprint features and their re-
sult provided knowledge of practical performance limits of any automated matching

routine that utilizes pores or minutia features.

Alfredo et al. (n.d.) proposed a fast fingerprint authentication method based on
the core and minutiae detection of the fingerprint. They also established the rela-
tionship between authentication reliability and region size during their experimental
study. Application of bank of Gabor filters orientated at different angles was ap-
plied to the image to clean it from noises that can result in authentication mistakes.
Their approach extracts the core using the flow field and determines the angle to
which Eﬂf}] vector of the flow field has with respect to the horizontal. From the core

extraeted, vectors wilkbotrace to the minutiae for the purpose of image alignment

and fingerprint matching.

Unlike the conventional minutiae matching algorithms, Ackerman and Ostrovsky-:
(n.d.) propose an algorithm which takes into account region and line structures that
exist between minutiae pairs which allows for more structural information of the fin-
gerprint to be accounted for thus resulting in stronger certainty of matching minutiae.
Evidence from the testing of the preprocessed images gives stronger assurance that

using such data could lead to faster and stronger matches.

-
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One problem besetting fingerprint matching is distortion which changes both
geometric position and orientation, leads to the difficulties in establishing a match
among multiple impressions acquired from the same fingerprint. Marking all the
minutiae accurately as well as rejecting false minutiae is another issue still under
research. Manvjeet et al. (2008) in their research combined many methods to build a
minutia extractor and a minutia matcher. Also some novel changes like segmentation
using morphological operations, improved thinning, false minutiae removal methods,
minutia marking with special consideration of the triple branch counting, minutia
unification by decomposing a branch into three terminations and matching in the
unified z — y coordinate system after a two-step transformation are used.

In context, Elmir et al. (2009) proposed an algorithm development of the original
image processing, minutiae and S'ingﬁlar points localization where Gabor filter coding
was tested on well known databases such as: FVC2004 databases and FingerCell
database. Promising results using radial basis function neural network and support
vector machine pushed them to continue the exploitation of new version of neural
networks which is spike neural networks and to develop codification and recognition
algorithms. Performance Evaluation has proved that, spike neural network achieved

s /’/—_’I i :
a good recognition rate closer to rates achieved by other methods but in a very short

______time and this make it more useful in online applications.

Singular points (including cores and deltas) not only represent the local ridge
pattern characteristics but also determine the topological structure (i.e. fingerprint

type) and the work of Jie et al. (2007) tries to analysis performance for singular

points in two aspects.

1. Based on the topology theory in 2D manifold, they deduced the relationship

between cores and deltas in fingerprints and also proposed a flexible method
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to compute the Poincare Index for singular points.

2. Proposal of a novel algorithm for singular point detection using global ori-
entation field after the initial detection with the widely used Poincare Index
method. An optimal singular points are selected to minimize the difference
between the original orientation field and the model based orientation field

reconstructed from the singular points.

The core-delta relation was used as a global constraint for final decision and experi-

mental results shows that their algorithm is accurate and robust.

A fingerprint verification system based on a set of invariant moment features
and a nonlinear Back Propagation Neural Network (BPNN) verifier was proposed
by Yang and Park (2008) which was used to overcome the demerits of traditional
minutiae based methods and other image based methods. The proposed system
contains two stages: an off-line stage for template processing and an on-line stage
for testing with input fingerprints. Preprocessed fingerprints help detect a reliable
uniqyuii'_e*ference poi/nw_rmine a Region-of-Interest (ROI). A total of four sets

of seven invariant moment features were extracted from four partitioned sub-images

—  of the ROL Matching between the feature vectors of a test fingerprint and those

of a template fingerprint in the database is evaluated by a nonlinear BPNN and
its performance is compared with other methods in terms of absolute distance as a
similarity measure. The experimental results show that the proposed method with
BPNN matching has a higher matching accuracy, while the method with absolute
distance has a faster matching speed. Comparing results with other famous methods

also show that the proposed method outperforms them in verification accuracy.

i i 50 X S i 3
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Saquib et al. (2011) also proposed a method for reliable detection of singular
points which is largely insensitive to the degradation of fingerprint quality. The
approach involves two phases, wherein, the first phase detects the singular points
which operates on the quadrant change information. The second phase involves the
analysis and extraction of the locations having high probability of the existence of
singular points which is based on the orientation reliability measure of the filtered
fingerprint image. This model tested on some selected noisy images from a publicly
available (Cross Match Verifier 300 sensor) fingerprint database scanned at 500dpi
shows that the approach effectively eliminates the spurious singular points in the

noisy images.

Methods for deciding which part of an image belongs to the foreground and which
part to the background was proposed by Xiang et al. (2009). Two kinds of pixel
features, it being the coherence of direction and the variance of gray level were used
in the segmentation where the fuzzy c-mean clustering algorithm was used to select
threshold. Morphology technology is applied at post processing to obtain a smooth
contour lines and experimental results demonstrate the effectiveness of the proposed
method-especially in low quality images in terms of including less background and

S e

excluding less foreground. In addition, this robust segmentation algorithm is capable

——of filtering efficiently spurious boundary.

Kingsbury (2006) describes a technique for using dual-tree complex wavelets to
obtain rich feature descriptors of key points in images. The main aim was to de-
velop a method for retaining the full phase and amplitude information from the
complex wavelet coefficients at each scale whiles presenting the feature descriptors in

a form that allows for arbitrary rotations between the candidate and reference image
patches.
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Kulwinder et al. (2011) presented a work on a new fingerprint feature detection
algorithm to counter the presence of noise in fingerprint images leading to spurious
minutiae. The proposed method was used in matching the template for finding bifur-
cation and termination. The new smoothing algorithm is proposed for the detection
of the features of fingerprints. Finally, a method was introduced for finding ridges in
the fingerprint image with the help of eight different masks. The results showed the
accuracy of the algorithm in terms of genuine acceptance rate, false rejection rate

and false acceptance rate.

Patil et al. (2006) describes the fingerprint verification based on wavelet transform
and the local dominant orientation where Daubechie’s wavelet was use to decompose
the fingerprint image. The local dominant orientation is computed using the coher-
ence. The train and test fingerprint images are aligned around the core point whiles
the core point is detected as a maximum curvature point. This lead to 85% genuine

acceptance rate at 6% false acceptance rate (FAR).

An accurate estimation of fingerprint orientation fields is an essential step in the
overall fingerprint recognition process but conventional gradient based approaches
are popular but very sensitive to noise. Due to this conditions, Wang et al. (2007)

e — ’,..-—-"'"""-_-_
proposed a novel implementation to improve the performance of gradient based meth-
~ods. The enhanced algorithm chooses the best orientation estimate from four over-
lapping neighborhoods of every image block, where the voting scheme 1s based on
the reliability measures. The experiment results suggest that the enhanced algorithm

achieves better noise resistance with modest computation time in comparison with

other gradient based methods.

Lavanya and Raja (2011) present a work on Performance Evaluation of Finger-

print Identification based on DCT (Discrete Cosine Transform) and DWT (Discrete
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Wavelet Transform) using Multiple Matching Techniques. The fingerprint is seg-
mented into four cells of size 150 x 240 each. The DCT is applied on each cell while
the Harr Wavelet is applied on DCT coefficient of each cells. The directional infor-
mation features and center area features are computed on LL sub band with final
Feature Vector being the concatenation of Directional Information and Center Area
Features. The matching techniques viz, ED (Euclidean Distance) and SVM (Sup-
port Vector Machine) are used to compare test image feature with database image
features. It was observed that the values of TSR (Total Success Rate) and FRR
(False Rejection Rate) are better in the case of the proposed algorithm compared to

existing algorithm.

In order to ensure that the performance of an automatic fingerprint identifica-
tion system is robust with respect to the quality of input fingerprint images, it 1s
essential to incorporate a fingerprint enhancement algorithm in the minutiae extrac-
tion module. To this, Hong et al. (1998) presented a fast fingerprint enhancement
algorithm, which can adaptively improve the clarity of ridge and valley structures
of input fingerprint images based on the estimated local ridge orientation and fre-
quency.-The performance evaluation of the image enhancement algorithm using the

S //"’_‘_’
goodness index of the extracted minutiae and the accuracy of an online fingerprint

_—verification system shows that incorporating the enhancement algorithm improves

both the goodness index as well as the verification accuracy.

Little are the work done in providing detailed evaluation of methods for ridge
distance estimation, in particular, the traditional spectral analysis method applied
in the frequency field. Yilong et al. (2004) presented a novel method on non overlap
blocks called the statistical method to estimate the ridge distance. Direct Estima-

tion Ratio (DER) and Estimation Accuracy (EA) are defined and used as parameters
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along with Time Consumption (TC) to evaluate performance of these two methods
for ridge distance estimation. Based on comparison of performances of these two
methods, a third hybrid method was developed to combine the merits of both meth-
ods. Experimental results indicate that DER was 44.7%, 63.8%, and 80.6%; EA
as 84%, 93%. and 91%; and TC as 0.42, 0.31, and 0.34 seconds, with the spectral

analysis method, statistical method, and hybrid method, respectively.

Most fingerprint enhancement algorithms rely heavily on local orientation of ridge
flows however significant orientation changes occur around the delta and core points
in the fingerprint images and this poses a challenge to the enhancement of ridge flows
in those high-curvature regions. Instead of identifying the singular points, Chaohong
and Govindaraju (2006) calculated an orientation coherence map and determined
the minimum coherence regions as high-curvature areas. Gaussian filter window sizes
were adaptively chosen to smooth the local orientation map. Because the smoothing
operation is applied to local ridge shape structures, it efficiently joins broken ridges
without destroying essential singularities and even enforces an increase in continuity
of the directional fields. Experimental results demonstrate the effectiveness ot the
proposed method.

Finally, Mansukhani et al. (2007) says to compensate for the different orientations

— " of two fingerprint images, matching systems should use a reference point and a set of

transformation parameters. Fingerprint minutiae are compared with their positions
relative to the reference points using a set of thresholds for the various matching
features. However a pair of minutiae might have similar values for some of the
features compensated by dissimilar values for others and this trade off cannot be
modeled by arbitrary thresholds since this might lead to a number of false matches.

Instead given a list of potential correspondences of minutiae points, we could use a
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static classifier, such as a support vector machine (SVM) to eliminate some of the
false matches. A 2—class model was built using sets of minutiae correspondences
from fingerprint pairs known to belong to the same and different users. Using this
recognizer reduces the number of false minutiae matches by 19%, while only 5% of

the minutiae pairs corresponding to fingerprints of the same user are rejected.

2.3 Definition of Some Mathematical Concepts Used

In trying to establish an appropriate method that can robustly extract fingerprint
features for recognition, it is always important to revise the fundamental mathemat-
ical concepts in order to choose the most efficient mathematical tools. Most finger-
print images are formated as vector graphics and therefore there is the need to review
vector spaces, their respective related algebra and some useful transformation that

can help extract these features economically.

2.3.1 Vector Spaces

Definition 2.3.1 (Vector Spaces). A vector space V over C is a set with two op-

erators, + (vector addition) and - (scalar multiplication), such that the following
_ /——(’_-_
properties holds:

1. (Closure of +): For any u,v € V,u+v eV
2. (Commutativity of +): u +v = v + u for any u,v € V
3. (Associativity of +): (u+v) +w =u+ (v+w) for all u,v,w €V

4. (Additive Identity): There is an element of V denoted by 0 such that v+0=v

forallveV
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5. (Additive Inverse): For every v € V, there is a u € V such that v +u = 0. We

denote such u by —v.
6. (Closure of -): Foreverya € CandveV,a-veV
7. (Behavior of 1): 1-u = for every u € V
8 (Associativity of -): a- (B -u) = (af)-u forevery a, B € C,u €V
9. (Distributive Property 1): a-(u+v) = a-u+a-v forevery a € Cand u,v € V

10. (Distributive Property 2): («+8) -u = a-u+ - u for every o, € C and

u€eVY
Definition 2.3.2 (Linear Combination). Let vy, v2,--- ,v, € Vand n € N. A linear
combination of vy, vy, -+ - , v, is any vector of the formula

U + @y =+ - - - + U, With ag, a0, -+ ,a, € C

Definition 2.3.3 (Linear Independence). Let {vy,--- ,v,} € V. The vectors, vy, -, Un

are linearly dependent if there exist a;, - , @, € C not all zero such that
(2.3.15/_ ”/—‘-r_:x.;ul 4+ oy + - -+ apv, =0

e

otherwise the vectors are said to be linearly independent. Here, equation 2.3.1 holds

only when a; =0 for alli=1,2,--- ,n.

Definition 2.3.4 (Basis). A subset U C V is said to be basis for V if U is linearly

independent and the span U =V

Definition 2.3.5 (Standard Basis). The standard basis or Euclidean Basis for C" is -

E = {e1,e3, -+ ,en}, where e; is the vector with a 1 in the 7" spot and ('s elsewhere,
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l.e

1 0 0

0 1 0
ElE= y €2 = y En =

0 0 1

Hence any «; € C can be written as:

71 1 0 0
85 0 ], 0 n
= 1 + g + <o 0y, :Z&jﬁj
2 : = j=1
o, 0 0 n

Definition 2.3.6 (Invertible Matrix Theorem). Let A be an n x n matrix. Then

the following conditions are equivaleﬁt:

1. A is invertible
2. Az = 0 has only the trivial solution
3. The columns of A are linearly independent

4. Az = b has a solution for z for any b € C"
5. det(A) # 0

——

2.3.2 Inner Product Spaces

Definition 2.3.7 (Inner Product). Let V be a vector space over C. A (complex)

inner product is the map:

<.,..>:¥xV->C
such that

1. (Additivity): < u+v,w >=< u,w > + < v,w > for every v,v,w € V.
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2. (Scalar Homogeneity): < au,v >=a < u,v > for all @ € C and u,v € V
3. (Conjugate Symmetry): < u,v >=<v,u > forall u,v €V

4. (Positive Definiteness):; < u,u >> 0 for all v € V and < u,u >= 0 if and only

it =10

Definition 2.3.8. A vector space equipped with a (complex) inner product is called

a (complex) inner product space

Definition 2.3.9. Define the space of square summable sequence as folows
oo
= {{zj 721 :2; € Clorallj € NandZ\:BjF < oo}
j=1
Then for z = z;, w = w; € £*(N), the inner product is defined as:

0o
< W,z >= Zwﬁj

=1
Definition 2.3.10. Define the space of complex valued square integrable functions

on K as:

B(f~m,m) =4 fif=mm o C: [ I @Fas < oo}

.:-"H--'

Then for f, g € LL?([=#-m)J, the inner product is defined as:

< Fg>= /_ f(0)g(6)do

Definition 2.3.11 (Normed Linear Spaces). A vector space V over C is a normed
linear space (pre-Banach) if to every u € V there corresponds a real scalar |[ul| such

that the following holds:
1. |lul| > 0 and ||u|| =0 if and only if u =0
2. ||au|| = a||u|| for all o € C
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3. ||u+ || < [|u]| + ||v| for all u,v € N (Schwartz Inequality)

Definition 2.3.12. Let V be a complex inner product space. For v € V, define the

norm (associated to the inner product, < .,. >), ||v|| as follows:

vl = /< v,v >, where v <0 and v € R foreveryv eV
Theorem 2.3.1 (Cauchy Schwartz). For every u,v € V we have
F< w0 >42 ful|lv]
Theorem 2.3.2. For every u,v € V we have: ||u+v| > ||lu| + ||v||

Definition 2.3.13 (Orthogonality). Two vectors u,v € V are said to be orthogonal

if <u,v>=0
Definition 2.3.14. Let B C V then
1. B is an orthogonal set if < u,v >= 0 for every u,v € B with u # v.

2. B is an orthogonal set if B is an orthogonal set and < v,v >= 1 for every

vED.

Lemma 2.3.1. Let B C V be an orthogonal set of vectors with 0 not in B. Then B

o —

" is linearly independent set

Proof. Let uy,- -+ ,ux € B and suppose that

a Uy + aous + - - +apur =0forag,--- ,ax € C

Next we take the inner product of both sides with u; for j = 1,2,--- , k. Then from, _

< Uy + -+ QplUg, U >=< O,Hj >=0
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we see that the left side can be rewritten in the following way:

:::alu1~|~---+akuk}uj > = o < U, Uj }—f-ﬂfj < Uj, Uj }+"'+ﬂk‘:uk:u;j >

= o ; < uj,u; > .By Orthogonality

Since 0 is not in B and u; € B, < u;,u; >= 0. Thus, combining, we get: a; = 0.
which is true for any j
In other words, ayu; + - -+ + arur = 0 only when a; = 0 for every j. Thus, the set

B must be linearly independent [J

Definition 2.3.15. Let z € C" with a function defined by the sequence, z(j) = z;
whose domain is the finite set given by {0,1.--- ,N — 1}. We denote this set of

functions as ¢?(Zy). Here we define inner product as follows:

Ly —1
<w,z>=Y w;z; forall w,z€CY =(Z")
3=0

and the associated norm as follows:

2l = {i |z(j)x2}

Again we define periodicity of z as follows:

e

For anym € Z,z(j + mN) = z(3)

Theorem 2.3.3. Let V be a complex inner product space with finite dimensional

basis U = {uy,--- ,u,}. Then,

1.v=Y) 7, <wvu;> for everyv eV

2. <wvw>=) ¢ <v,u; > < w,u; > for every v,w €'V
3. [l = >0 | < v, > 2 for everyv € V

27



From the standard basis (definition 2.3.5) that E = eg, ey, -+ ,ex_y forCN = (2(ZV).

Which implies that

ISt —
ej(n) =
O i n=y
Hence for z € C" = (2(Zy)
20 1 0 0
A = 0 1 0
o= = z(k)er = 2o +.21 S - S
: = : .
i\ —1 i 0 O l

Our goal s to transform this and write it with respect to a basis that consists of pure

frequencies. So we define Ey, By, -+ ,En_1 € CN = 02Z"N by

(2.3.2)
1 I —Rawis | s T 1 2riN-1)n
Ey(n) = —,Fi(n)=—=e N ,--- B, (n)=—e ¥ ,--- ,Ey_1(n)=—=€ ¥

form,ne{0,1,--- ,N —1}

2.3.3 Fourier Basis and Transform

Let z = [2(0) 2 ez (W=} Cr= 2(Zy). Form=0,1,--- , N — 1, define

n s /H_—f— 2rimn
(m) 2(n)e"" 8 and 2= [2(0)z(1)--- (N = 1)]

n=0

iy

e

The operator A : Cy — Cy is called the Discrete Fourier Transform (DFT)

Notation.2.3.1. 1. 2z(m) = VN < z,E,, > . Thus, the discrete Fourier trans-

form (up to a constant of \/—1\7) is just 2|z By By

2. The operation, A (DFT) is a linear transformation. Thus for a,b € C and
z,w € CVN = 3((Zy)),

(az + bw)" = az + bw

LIt a 2y
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The application of the above notation is enshrined in the following.

Theorem 2.3.4. Let z = (2(0)z(1)---z(N = 1)),w = (w(0)w(1)---w(N — 1)) €
CN = (?3(Zy) then the following holds:

N-1

1. z(n) =% > ze"N"  (Fourier inversion formula)
m=(
N-1
2. < z,w>=x Y, Z(m)w(m) < 2,% > (Parseval’s relation)
m=0
N-1
3. 2|2 =% X |2(m)|* = %lI21* " (Plancherel’s formula)
m=0

The operator A (DFT) preserves the norm (size and the inner product which cor-
responds to the angle between the vectors) and by Parseval’s relation and Plancherel’s

formula, this is true up to a constant which is independent of the function.

Example 2.3.1. Let N=4and z=[92; 3 1—=i |- Wecan find z, the Discrete

Fourier Transform of z, by the following: First we write the basis as follows:

r i -~ P be =% = = =T N
1 1 1 1
T L] A | S g PPVRURE L s
{EﬂiElrEﬁaEIi':{ E :5‘ 15 1§ >
1 1 1 =1
il S22 1 =N _p M

This gives us:

e —

——

50) = 2-1+i-143-1+(1—4)-1=6

51) = 2-14i-(—)+3-(-1)+Q—i)- () =i+1
32) = 2-1+i-(-1)+3-1+(1—1)-(-1)=4
33) = 2-1+i-i+3-(-1)+(1—19)-(=i)=-3—1

Hence, 2=[6 (i+1) 4 (-3—1) | and |2|* = 36 + 2+ 16 + 10 = 64
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Definition 2.3.16 (Fourier Basis and Inversion). . Define F,, € CN = ¢*(Zy) by

2mimn

Fm(n)=%{—e v form,n=0,1,2,--- , N —1

Let ' = Fy, Fy,- -+ , Fy_1 then F,,, = -;;;Rm F' is therefore an orthogonal basis since

all F,,’s are orthogonal basis. Hence

ot

= Z z2(m)F,

=0

which makes DFT a linear change of basis, i.e 2 = [z]F

Definition 2.3.17. To take a look at the change of basis in matrix form we define

N—-1
wﬂn an Ezw;;rmn and 2 = Z é(meR}n
m=0
In matrix form Zz is given as follows:
1 1 1 1
1 T w3 wﬁ_l
2= 1 wa; Wi wiEN_l} z= Wy
y - _112
1 wﬁh"—l) wi}N 1) wfuN 1)
That is Wy = [w"] hence 2 = W,-
Example 2.3.2. Let
1 1 1
il 1y /3
Wos Pl =p—iy —getd s
1, V3 1 _ /3
- A
and let s _
0
= 3\/75 €cC
2




m—

Hence z will be given by:

1 1 1 0 2 +iV3
s=Worm |1yl peif | o =] pea
1 e e || 2] [g-a

This shows that the operator A is invertible, i.e if 2 = w, then z = w.
Definition 2.3.18. Let w = (w(0), w(1),-- ,w(N — 1)) € CV = #(Zy) and define

> " w(m)e ¥, forn =0,1,:-- ,N=1andw = (1(0),w(1),--- ,b(N-1))

=)

N-1
w(n) =
m

&
N

The map V : (?(Zy) — £*(Zy) is called the inverse discrete Fourier transform (IDFT).

That is
N-1
(2)V(n) = Y 2(m)e™F* = 2(n) and (@)" = w
m=(0

Definition 2.3.19. Define the space of functions as follows

(2.3.3) [2(R) = { f:R=C: / |f(z)2dz < oo}
| R

(2.3.4) with an inner product, < f,g >= / f(z)g(z)dz and the norm as
®

@3s5) — T il ( / If(-r)l”d-r)
R

Then for f € L*(R) and £ € R, define f, the Fourier transform of f, to be the

- i

function

(2.3.6) i(€) = / f(z)e"dz
R

And for f € L*([—pi,n)) and £ € R, define f, the inverse Fourier transform of f to

be the function in (L*([—pi, pi))) as follows:

(237) f(©) = 57 [ f©e = dg and(i)* = (1) = 1
R
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Theorem 2.3.5 (Properties of the Fourier Transform). For f,g € L*(R), we have:

5

1. If f xg(z) = [ f(z — y)9(y)dy then(f * )" = fg

R

2. If Ryf(z) = f(z —y), then (Ryf)§) = e ¥ f(€)

3. If fu(x) = f(2), then fA(€) = tf(t)

4. If f(z) = oo, then (f)(€) = (i€) £(€)

5. If of(z) € L*(R), then %/(&)'= ((iz)f(2))"(€)

6. If f € L}(R) U L2(R), then as & — oo, f(£) = 0
2.3.4 Wavelet Basis and Transforms

Definition 2.3.20. Z € CV = ¢*(Zy) is localized in space near ng if most of the
components z(n) of Z are 0 or at least relatively small except for a few values of n
close to ng.

The Euclidean or standard basis is well localized in space but poorly frequency
localized. Although the Fourier (Discrete) transform could be frequency localized,

it is also not well localized in space. We proceed by discussing wavelets which will

help us find basis whichare-well localized both in space and frequency

Definition 2.3.21 (Translate). For z € £2(Zy) = C" and k € Z define the translate

—

of z by the follows:

Rrz(n) = z(n — k) fork € Z

Definition 2.3.22 (Convolution). For z,w € ¢*(Zy) = C" and k € Z define convo-

lution z x w € £%(Zy) = CV as follows:

N-1
z *x w(m Zz m —n)w(n) form=0,1,--- ,N —1

m=0
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Definition 2.3.23 (Subspace). Let V be a vector space. A subset W C V is a
subspace of V if W is itself a vector space with the same operation (i.e vector addition

+ and scalar multiplication -) as V

Definition 2.3.24 (The Orthogonal Complement). Let V be an inner product space

and W C V a subspace of V. Then, the orthogonal complement of W is given by:

W+ = {v e V.:<,w>= 0 for everyw € W}

W+ consist of the vectors in V that are orthogonal to every element in W

Definition 2.3.25. Let V be an inner product space and W C V a subspace of

V. Suppose that B = {w;,ws, - ,w} is an orthogonal basis for W and define the

projection of v onto W , by vg, by

e

k
< U, Wy >
E A, wiEWtheﬂU"—*UBEH;J'
< Wi, W; >

That shows that < v — vg, w >= 0 for every w € W. Since B is a basis for W, we

can write any w € W in the form

k
Zﬁjwj = fyw; + Pawz + -« - - + Brwy for some 1, B2, , B €C
j=1
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Hence

<V — VB, W > = <ULW>— <Up,W>

k
L D T R <U51 Zﬁj‘lﬂj>
J=1

I

I
A\
=
S
V

L ]

ASS
A
i

N

=
V

I
A
C.‘i
E’é
V
C.Fb
..--'E:'"q\..
NIA
Eile
g |8
vV
&
E
S e

Z—Z < W >
— {Ui’w:}_ 6} <w1,wl>
: < W s >
j=1 i=1
— <V, W; >
= KWW > j < wj,w; >

{
A
&2
S
V
.
_fﬂ
o
&
=

<v,w>-—<v,w>=0

|

The definition above proves the orthogonal decomposition theorem given below where

w=vp and wl =v — vg
Definition 2.3.26 (Orthogonal Decomposition Theorem). Let V be an inner prod-

“uct space and let W be a finite dimensional subspace of V. Then, any v € V can be

written as v = w+w 1 with w € W and w L€ W+

Definition 2.3.27 (F irs;Stage Wavelet, Basis for Zy). To find a basis which consists
of translated and scaled versions of a single function we assume that N is a a power

of 2, i.e N = 2" for some n € N. Then by the orthogonal decomposition theorem;

CNa=vVv*=vV*"1lgpw"!
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If we find two functions, u,v € ¢*(Zy) = CV =~ V" so that {u('r — 2k)}2 )t =
{(Raxu)(z)}2~, ~" is an orthogonal basis for V*~! and {v(z—2k)}?", ~* = {(Raxv)(z)}ory
is an orthogonal basis for W"~! then the result of the union, {(Roxu)(z)}i, =y

{(Rav)(2) Y3z, "1 for V" &~ CV is called the first wavelet basis with u and v being

the mother and father wavelets respectively.
Theorem 2.3.6. Suppose M € N and N = 2M. Let u,v € (*(Zy) = CV. then
= {(Raru) }yio' U {(Raiv) 15
is an orthogonal basis for (*(Zy) = C¥ if and only if
1. |a(n)|? + |a(n + M)|* = 2

2. [o(n)]* + |o(n+ M)|* =2

3. w(n)o(n) + aln + M)o(n +M) =0
foralln=0,1,--- , M=1

Definition 2.3.28 (Mother Wavelet). A function 1 € L*(R) is a mother wavelet if

||| =1and 7 /

the following holds:

f{{oo

2.3.5 Discrete Wavelet and Multiresolution Analysis
Definition 2.3.29. For 2, '(,/) € L?(R) and j, k € Z, define Pik> '[/Jjﬁ & LQ(R) b}'

pix(x) = 28p(2x — k) and P k(x) = 2392z — k) where|[y;k|| = [|¢]

Definition 2.3.30 (Wavelet System). A system of wavelet is a a complete orthogonal
set in L2(R) of the form {t;};kez for some 1) € L*(R). That is the set for which
< f,¥;x >=0for all j,k € Z only if f = 0. We note that the function 1; x are called

wavelets and the v is the mother wavelet
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Definition 2.3.31. If {,};kez is a wavelet system, then any f € L?(R) can be

expanded in terms of the 1;; and this gives the identity below:

T=0 N e =

JEZ keZ

The function T f(j,k) =< f,%;r > is called the discrete wavelet transform (DWT)

where T'f(j,k) = W (277, k)

Definition 2.3.32 (Multiresolution Analysis). The multiresolution analysis (MRA)
with scaling function ¢ is sequence {V;};ez of the subspace of L?(R) with the fol-

lowing properties:

1. V; C Vj4, for all j € Z (Nesting or Monotonicity)

2. There exist a function ¢ € V; such that {¢g x}r—z is orthogonal and

Vo = {Z z(k)porlz = {z(k)} € FQ(Z)} Existence of Scaling function

keZ

Which implies that {0} is an orthogonal basis for 1
3. For any j € Z, f(z) € V if and only if f(z) € V;, (Dilation or Scaling)
4. Ujeglr’;' = {D} (Sepa.ration)
- e

5. UjéZLG is dense in L*(R) (Density)

— Lemma 2.3.2. Let {V;}jcz be a MRA with scaling function ¢ and scaling sequence

w. Then {Rorulk € Z is an orthogonal set in {3(7Z)

Proposition 2.3.1. Suppose u = (u(j))jez € ¢2(Z) is such that {Ryputk € Z is

orthogonal in €5(Z). Define v = (v(j));jez € €2(Z) by

v(j) = (-1)"u(l - j)
Then {Roru}rez i an orthogonal
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Lemma 2.3.3. Let {V;};cz be a MRA with scaling function ¢ and scaling sequence

u = (u(k))rez. Define v = (v(k))rez by:

v(k) = (=1)*'u(l = k) for allk € Z, and define) by

Y(@) =) v(k)pix(a) =D v(k)V2p(2z — k)
keZ keZ
Then {Yox} is an orthogonal set in L*(R)

Define W, = {Z (L)Uu Ll~ = (2(k))rez.E.L (Z)} then, Vi = Vo & Wy

kEZ
Theorem 2.3.7 (Mallet’s Theorem). Let {V;};cz be a MRA with scaling function

v and scaling sequence u = (u(k))xez. Define v = (v(k))rez by

v(k) = (=1)*7'u(l — k) andy(z) = > v(k)1x(z)

keZ
Then {¥;x}xez is a wavelet system in L*(R)

Example 2.3.3. In this example we demonstrate how to construct wavelet using

the Haar MRA. Given Haar MRA as

V; = {f € L*(R)|f is constant on [27k,27(k + 1)) for all k € Z} and

1 ifz €[0,1)

0 otherwise
\

The key is to find the scaling-sequence u = (w(k))rez. For example,
V2 ifz e [& k)

0 otherwise

pr1k(z) = \/_‘P 2z — k) =

Then we have

u(k)

I

< @, P1.k >

/ ol

R

Il

Y2 ifk=0,1
\/ﬁd:c = 4 ,
/[;11)”[%1&%'1') 0
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Hence the scaling equation becomes; p(z) = ¢(2z) + ¢(2z — 1). Define v according

to Lemma (2.3.3), v(j) = (—=1)"*u(i — j), we get

v(0) = —%;‘U(l) = %;‘U(k) = (0fork 401

Next, we define v using the same definition in Lemma, (2.3.3) as follows:

P(z) = v(k)V2p(2z — k)

ked

which gives us

r

—-1 ifz € 0,3)

Y(z) = —v2z)+ ¢z —1)=¢ 1 ifze [% 1)

0 otherwise

N

And hence evaluating %;x, we get a wavelet system, {1 };x € Z as follows

.
b A s 1
—22. ifx € [‘2,__,_.-,2_3;'}'53’_]._1)

V(@) =\ 2% ifo € [ + 5 5)

0 otherwise
\
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CHAPTER 111

METHODOLOGY

3.1 Introduction

The extraction and analysis of fingerprint features is not new in the area of
biomedical engineering however research in this area tries to understand how features
of a fingerprint can be extracted fully and used to identify person’s uniquely with no
commission of error.

All human being posses fingerprint and these fingerprints are result of unique ridge
and valley structure formed by skin over the fingers (Woodward et al., 2003). Ridges
and valleys often run in parallel and these structures have bifurcation and ridge
endings called termination. This ridge structure as a whole takes different shapes
characterized by high curvature, crossover or bufucation and are called singularity.

—These singularities may be categorize into three main topologies thus, the loop, delta
and the whorl but what makes fingerprint distinct is the dispersion of such structures
at local level and these are called minutiae (Kekre and Bhatnagar, 2007). Minutiae
simply means small details and this refers to the various ways that the ridges can be
irregular. An unexpected ridge end is termed termination while when it divides into
two is called bifurcations.

By this insight, computer vision methods related to fingerprint analysis are en-
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gaged to detect, track and extract these features automatically to recognize peoples
identity. But these features can be efficiently extracted when the appropriate fun-
damental mathematical tools are engaged. The following discusses the appropriate

tools that was considered in order to efficiently extract features for recognition.

3.2 Image Processing

3.2.1 Introduction

Let f be a real-valued funetion defined on the real line R and square integrable

as follows:

(3.2.1) /m FA(t)dt < oo

If f(t) is considered as a value of a signal at some time ¢, then the signal f can be
analyzed in ways other than the time-value form, i.e ¢ — f(¢). Signals are analyzed
in terms of frequency components and various combinations of time and frequency
components. These component parts of the signal are at times altered to remove
unwanted features or compressed to get more efficient storage however it is essential
for this signal to be reconstructed from its component parts and this constitute the
Analysis; ;P'rocessing and Synthesis in Image Processing.
Analysis of signai in to other words mean to decompose a signal into it basic com-
— ponents. Consider a signal space as a vector space then this signal can be broken up
into series of sums of subspace where each subspace captures a speeial feature of the
signal. Processing of signal also involves the modification of some basic components
of the signal that are obtained from the analysis. Reconstruction of a signal from
its component parts after been altered is what we call synthesis. All these helps to

understand signals when it comes to comparing the altered signals with respect to

the original signal in test for convergence.
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3.2.2 Image Formation

An image may be viewed as being derived from a continuous image function,
f : Rt U{0} by taking a finite number of samples where the functional value f(z)
represents the intensity and some desired parameters of the physical image at the
point z € R?. Digital image may be defined as a matrix (a two-dimensional array) of
pixels Nixon and Aguado (2002) where the value of each pixel is proportional to the
brightness of the corresponding point and its value is often derived from the output
of an Analog/Digital (A/D) converter.

A matrix of pixels, which is the image can be describe as an M x N, p—bit pixels
where N and M are the number of points along the horizontal and vertical axis
respectively whiles p is the brightness value and gives a range of 27 values, ranging
from 0 to 27 — 1 value of 8 giving the brightness levels between 0 and 255 which is
usually displayed as black and white respectively with a shades of gray in between
them. Smaller values of p gives fewer levels which reduce the contrast of the image

Color images follow a similar strategy in specifying it pixels intensity but instead
of one image plane, it uses g intensity components where ¢ is the number of colors
corresponding to the image plane. Example, the (R— G — B) image space has ¢ = 3

= o
corresponding to red, green and blue colors components.

In any colors mode, the pixel’s color can be specified in two ways. First, you can
associate an integer value, with each pixel, that can be used as an index to a table
that stores the intensity of each color component. The index is used to recover the
actual color from the table when the pixel is going to be displayed or processed. In
this method, the table is know as the image palette and the display is performed by
color mapping.

The alternative is to use several image planes to store the color components of
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each pixel. This method is known as true color and it represents an image more
accurately, essentially by considering more color. The most common format uses 8
bits for each of the three R — G — G components. These images are known as 24-bit

true color and they can contain 2% = 16777216 different colors simultaneously.

3.2.3 Image Processing Techniques

Image Arithmetic

In image arithmetic, one of the standard arithmetic operations or logical opera-
tions is applyed to two or more images. The operators are applied in a pixel-by-pixel
fashion, which means that the value of a pixel in the output image depends only
on the values of the corresponding pixels in the input image. Hence, the images
normally have to be of the same size. Image arithmetic is very important because of

its application and beside are very simple and fast.

Pixel Addition

The Pixel Addition operator or offset take as input, two identical sized images
and produces as output a third image of the same size as the first two. Each pixel
value is’t:hé sum of the values-of the corresponding pixel from each of the two input
images. This property can however be expanded to allow more than two images to be

combined by using various additive law Davies (1990). The addition of two images

is performed in a single pass. The output pixel values are given by:

(3.2.2) I(3,5) = Pi(i, J) + P2(i, 5)
A constant value K can also be added to a single image by using the following:

(3:2.3) 1(G,5) = P(i,j) + K
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If the pixel values in the input images are actually vectors rather than scalar values
thus for example a color image then the individual components red, blue and green
are simply added separately to produce the output value. In situations where the
pixel addition is greater than the maximum allowed pixel value, the overflowing pixel
values could be set to the maximum allowed value which then result in saturation

effect.
Pixel Subtraction

The pixel subtraction o difference takes two images as input and produces as
output a third image whose pixel values are those of the first image minus the cor-
responding pixel values from the second image. It is also often possible to just use
a single image as input and subtract a constant value from all the pixels. Some
versions, Marion (1991); Davies (1990) of the operator will output the absolute dif-
ference between pixel values rather than the signed output. The output pixel values

are given by:
(3.2.4) I(i,j) = P(i,j) = Pa(2,))

If the operator computes absolute difference between the two input image then:

(3.2.5) I, 3) = | P2, 5) — P(3, )]
or if desired to subtract a constant value K from a single image then:
(3.2.6) I(i,5) = Py(i,j) — K

If the operator calculates absolute differences and the two input images use the same
pixel value type, then it is impossible for the output pixel values to be outside the
range that may be represented by the input pixel type and so this problem those not

arise and hence the advantage of using absolute differences.
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Pixel Multiplication and Scaling

Pixel multiplication usually comes in two main forms thus the first one takes two
input images and produces an output image in which the pixel values are just those
of the first image multiply by the values of the corresponding values in the second
image while the second one is termed the scaling method where each pixel value is

multiplied by a specified constant.

The multiplication of two images is performed in a single pass using the formula:
(3.2.7) I(z,7) = Pa(t,5) x Pa(i, j)
Scaling by a constant is performed using:
(3.2.8) 70, i PitePr) x K

The constant K is often a floating point number ad may be less than one which will
reduce the image intensities. It may even be negative at time if the image format
supports that. If the pixel value is actually vectors rather than scalar value thus
color image then the individual components (i.e Red, Blue and Green components)
are mu_ltipliecl separate/ly’ﬁorproduce the output value. Again if the output values
are calculated to be larger than the maximum allowed pixel value then they may
— either be truncated at that maximum value or wrap-around and continue upwards
from the minimum -allowed number again (Boyle and Thomas, 1988). A scaling
factor greater than one will brighten an image and when less than one will darken
the image. Scaling generally produces a much more natural brightening/darkening
effect rather than simply adding an offset to the pixels (Boyle and Thomas, 1988),
since it preserves the relative contrast of the image better. Scaling is also usetul prior

to other image arithmetic in order to prevent pixel values going out of the range.
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Using pixel-by-pixel multiplication, a binary image can be used to multiply an-
otherimageinordartoactaanumkwhidiaachiewdbymulﬁplml(m)to
pixels that are to be preserved 0 (zero) to those that are not.

Pixel Division

The pixel division operator takes two images as input and produces a third pixel
values that are pixel values of the first dived by the corresponding pixel values of the
second image. This can also be implemented by dividing with a specified constant

the single input image. The division of two images, P, and P, is given by the formula:
(3.2.9) I(3,7) = Pi(1,3) = Pal(i, 1)

Division by a constant K is also given by:

(3.2.10) I(i,7) = Pi(1,3) + K

The division operator may only handle integer or floating-point division. If integer
division is performed, then the resulting image is rounded down to the next lowest

integer for output. Unlike in pixel subtraction which gives absolute change for each

pixel, division gives the fractional change between the corresponding pixel value

3.2.4 Point Processing-Operators

Single point processing is an image enhancing technique which determines a pixel

-__"-.

value in the enhanced image depending only on the value of the corresponding pixel
in the image. Thepmmbedmbemlh themnppmgfunctm-follow

(Marion, 1991):
(3.2.11) S = M(R)

Where R and S are the point values in the input and output images respectively.
The form of the mapping function, M determines the effect of the operation. It can
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also be define in an ad-hoc manner using the thresholding or gamma correction or

can be computed from the input image using histogram equalization[section 3.2.6].

Point operators are also know as Look-Up Table (LUT) Transformations, since
the mapping function in the case of a discrete image can be implemented in a look-up
table. A subgroup of the point processors is the set of anamorphosis operators. The
describe all point operators with a strictly increasing or decreasing mapping function.
Examples of such include the logarithm operator, exponential operators and many

among others.

3.2.5 Thresholding

Thresholding is used to separate out the regions of the image corresponding to the
objects of interest from the regions of the image that correspond to th background.
Thresholding, (Marion, 1991; Nixon and Aguado, 2002) often provides an easy and
convenient way to perform this segmentation based on the different intensities or
colors in the foreground and background regions of an image. Thresholding also
enables one to see what areas of an image consist of pixels whose values lie within a

specified range of intensities.
— d--"""-'_-—_-—___

The input to a thresholding operation is typically a gray-scale or color image.

In its implementation the output is a binary representing the segmentation. Black

pixels correspond to background and white pixels correspond to foreground. This
segmentation is determined by a single parameter known as the intensity threshold.
In a single pass, each pixel in the image is compared with this threshold. If the
pixel’s intensity is higher than the threshold, the pixel is set to white in the output
or otherwise it is set to black. In other implementations, multiple thresholds can be

specified so that an intensity value can be set to white whiles everything else is set
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to black. For example in color image or multi-spectral image, it may be possible to
set different thresholds for each color channel and that makes it possible to select

just those pixels within a specified RGB space.

Not all images can be clearly segmented into foreground and background using
simple thresholding and as to whether an image can be correctly segmented this
way can be determined using the intensity histogram of the image. If is possible
to separate out the foreground of an image on the basis of pixel iﬁtensity, then the
pixels within the foreground objects must be distinctly different from the intensity
of pixels within the background. In this case distinct peak value is expected in the
histogram corresponding to the foreground such that the thresholds can be chosen
to isolate this peak accordingly. If such a peak does not exist, then it is unlikely
that simple thresholding will produce a good segmentation. In this case adaptive

thresholding may be a better option to be considered.

3.2.6 Histogram Eqgualization

Histogram equalization techniques provides a method for modifying the contrast
of an image by altering that image such that its intensity has a desired shape. His-
O
togram equalization employs a monotonic, non-linear mapping which re-assigns the
—intensity values of pixels in the image such that the output image contains a uniform
distribution of intensities.

This technique is usually introduced by using continuous rather than discrete
process function (Semmlo, 2004). Therefore, supposing that the images of interest
contain continuous intensity level on the interval [0, 1] and that the transformation
function f which maps an input image A(z,y) onto an output image B(z,y) is

continuous within this interval. Assuming that the transfer law Dg = f(D ) where D
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s the intensity level, single-valued and monotonic increasing then the corresponding

inverse law from Boyle and Thomas (1988) can be defined as:

Dy = f~Y(Dp)

All pixels in the input image with densities in the region Dy to Dy + dD 4 will have
their pixel values re-assigned such that they assume an output pixel density value in
the range from Dp to Dp +dDp: The surface areas hs(D4)dD4 and hp(Dg)dDpg

will therefore be equal giving us:

(3212) h-B(DB) = hA(DA) — ri(D_q)
where
(D) = L2

This result in the language of probability theory can be written if the histogram h is
regarded as a continuous probability density function P describing the distribution

of the intensity levels as follow (Marion, 1991; Davies, 1990):
(3.2.13) Pg(Dp) = Pa(Da) + d(Da)

In the case of histograri equalization thus from section3.2.6, the output probability
densities should all be an equal fraction of the maximum number of intensity levels

in the input image Djy; where the maximum level considered is 0 (zero). The transfer

function necessary to archive this result is:

(3214) hE(DA) = L)yg X PA(DA)
therefore,
D A
0
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where Fy(D4) is the cumulative probability distribution or the cumulative histogram
of the original image.

Thus, an image which is transformed using its cumulative histogram produces an
output histogram which is flat. A digital implementation of histogram equalization

1s usually performed by defining a transfer function of the form:

(3.2.16) FA(Dy) =maz (U, round [DM X %J - 1)

where N is the number of image pixels and nyis the number of pixels at intensity
level k or less. In Marion (1991)’s implementation, the output image will not be
necessarily be fully equalized and there may be ’holes’ in the histogram which are
unused intensity levels. These effects are likely to decrease as the number of pixels
and intensity levels in the output image increase and this is effective for detailed

enhancement of images and in the correction of non-linear effects introduced by

digitizers and the likes.

3.2.7 Intensity Histogram

In the context of image processing, histogram of an image is normally referred
to a hisj:ggram of the_ E}’cg_’_,linﬁensity values. This histogram is a graph showing the
number of pixels in an image at each different intensity value found in that image.
For an 8-bit gray-scale image, there are 256 different possible intensities and so the
histogram will graphically display-256 numbers showing the distribution of pixels
amongst those gray-scale values.

Histogram can also be taken of color images, individual histogram or red, green
and blue channels can be taken or a 3— D histogram can be produced with three axis
representing the channels and brightness at each point representing the pixel count,

however the exact output from the operation depends heavily on it implementation.
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One common use of histogram is to decide what value of threshold to use when
converting a gray-scale image to a binary on by thresholding. If the image is suitable
for thresholding, then the histogram will be bimodal thus the pixel intensities will
be clustered around two well distinct values. A suitable threshold for separating
these two groups will then be found somewhere in between the two peaks in the

histogram otherwise it will be unlikely that a good segmentation can be produced

by thresholding.

3.2.8 Local Enhancement

The histogram processing techniques discussed are global in the sense that they
apply a transformation function whose form is based on the intensity level distribu-
tion of an entire image. Although this method can enhance the overall contrast of
an image thereby making certain details more visible but there are cases (Stollnitz
et al., 2006; Oberst, 2007) where enhancement of details over small areas may be de-
sired. The solution in these cases is to derive a transformation based on the intensity

distribution in the local neighborhood of every pixel in the image.
S _'_,..--"""_'—'

The procedure involves defining a neighborhood around each pixel and using the

‘histogram characteristics of this neighborhood to derive a transfer function which

maps that pixel into an output intensity level. This is performed for each pixel in
the image, this is because moving across rows and down columns only adds one
new pixel to the local histogram hence updating the histogram from the previous
calculation with new data introduced at each motion is possible. Local enhancement

may also be defined on transforms based on pixel on pixel attributes other than

histogram like intensity mean or intensity variance.
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3.2.9 Image Analysis

Many categories of image processing operators transform an input image to form
a new image without attempting to extract usable global information fro the image.

The following operators do extract globally usable information such as:
1. Pixel Value Distribution (the number of pixels having each value)

2. Classified Pixels (the category of scene entity that the corresponding pixel is

taken from)

3. Connected Components (the groups of pixels all of which have the same label

or classification)

It is possible to represent some of this information as an image thus an image
whose pixels are the category or index number of the scene structure but the infor-
mation need not always be so represented nor even necessarily be represented as an
image. This category of operation is often considered part of the middle level image
interpretation (i.e a signal to symbol transformation or feature extraction) and whose
results might ultimately be used in higher level image interpretation (i.e symbol to

symbol transformations such as scene description or object location)

___Cllassification

Classification includes a broad range of decision theoretic approaches to the iden-
tification of images or part-of images. All classification algorithms are based on the
assumption, Boyle and Thomas (1988); Marion (1991); Davies (1990) that the image
in question depicts one or more features and that each of these features belongs to
one of the several distinct and exclusive classes. The classes may be specified a priori

by an analyst (i.e supervised classification) or automatically clustered (i.e unsuper-
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vised classification) into sets of prototype classes where the analyst merely specifies

the number of the desired categories.

Image classification analyzes the numerical properties of various image features
and organizes data into categories. Classification algorithms typically employ two
phases of processing: training and testing. In the initial training phase, characteris-
tics properties of typical image features are isolated based on these unique description
of each classification category thus training class is created. In the subsequent testing

phase, these feature space partitions are used to classify image features.

The description of training classes is an extremely important component of the
classification process. In supervised classification, statistical processes based on an
a priori knowledge of probability distribution functions or distribution free processes
can be used to extract class descriptors. Unsupervised classification relies on clus-

tering algorithms to automatically segment the training data into prototype classes.

In either case the motivating criteria for constructing training classes are that
they are independent thus a change in the description of one training class should
not change the value of another, disecriminatory thus different image features should
have significantly different description and reliable thus all image features within a

— //""—-——_

training group should share the common definitive descriptions of that group.
~  The convenient way of building a parametric description of this sort is through
a feature vector (vy,vs,- - ,v,) where n is the number of attribute which describe
each image feature and training class. This representation allows us to consider
each image feature as occupying a point and each training class as occupying a sub

space within the n-dimensional classification space. Viewed as such, the classification

problem is that of determining to which sub-space class each feature vectors belongs.

Considering an application where we must distinguish two different types of ob-
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jects (e.g. book and pen) based upon a set of two attribute classes. If we assume that
we have a vision system capable of extracting these features from a set of training
images, we can plot the result in the 2-D feature space.

To be able to distinguish two different types of objects base on a set of two
attribute classes, one may need to decide how to numerically partition the feature
space so that if we are given the feature vector of the a test object. It can be
determined quantitatively to which of the two classes it belongs. On e of the most
simple technique is to employ a supervised, distribution free approach know as the

mean (minimum) distance classifier.

Mean Distance Classifier

Suppose that each training class is represented by a prototype thus in our case

mean vector:

i M
(8.2.17) b 3%

T=Wy

where N; is the number of training pattern vectors from class w;. Based on this, we
an assign any given pattern z to the class of its closest prototype by determining its
proximity of each m;. If Euclidean distance is our measure of proximity then the
distancgg; the prototype is given by:

i 0.2.18) D;(z) = ||x — mj|| forj =1,2,--- M
This is equivaleilt to computing

di(z) = tTm; — %(m}qmj) forj=1,2,--- , M

and assigning z to class wj; if d;(z) yields the largest value.
Finally, the decision boundary which separate class w; from wj is given by values

for = for which d;(z)—d;(z) = 0. The surface defined by this decision boundary is the
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perpendicular bisector of the line segment joining m; and m;. In practice the mean
distance classifier works well when the distance between means is large compared to
the spread or randomness or each class with respect to its mean.

It is simple to implement and is guaranteed to give an error rate within a fac-
tor of two of the ideal error rate obtained using the statistical or supervised Bayes’
classifier. The Bayes’ classifier is a more informed algorithm as the frequencies of
occurrence of the features of interest are used to aid the classification process. With-
out this information the mean distance classifier can yield biased classifications. This
however, can be combated by applying training patterns at the natural rates at which

they arise in the raw training set.
3.2.10 Mathematical Morphology

Morphological operators often take a binary image and a structuring element as
input and combine them using a set oﬁe-:ratﬂr (intersection, union, inclusion, comple-
ment). They process objects in the input image based on characteristics of its shape
which are encoded in the structuring element.

Usually, the structuring element is sized 3 x 3 ad has its origin at the center pixel.
It is shift;ﬂ over the im each pixel of the image, its elements are compared
with the set of the underlying pixels. If the two sets of elements match the condition

fdeﬁned by he set operator, the pixel underneath the origin of the structuring element

is set to a predefined value (0 or 1 for binary images). A morphological operator is

therefore defined by its stﬁlcturing element and the applied set operator.

Dilation

To dilate means to grow or expand. Dilation is one of the two basic operators in

the area of mathematical morphology, the other being erosion. It is typically applied
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regions of foreground pixels. Thus areas of foreground pixels grow in size while holes
within those regions becomes smaller.

The dilation operator takes two picces of data as inputs. The first is the image
which is to be dilated whiles the second is the set of coordinate points known as
a structuring element also known as the kernel It is this structuring element that
determines the precise effect of the dilation on the input image. The mathematical
definition of dilation for binary images is as follows. Suppose that X is the set of
euclidean coordinates corresponding to the input binary image and that K is the set
of coordinates for the structuring oll.-nm

Let KX denote the translation of K so that the origin is at X. Then the dilation
of X by K is the set of all points X such that the intersection of KX with X is
non-empty. The mathematical definition of gray-scale dilation is identical except for
the way in which the set of coordinates associated with the input image is derived.
In addition to this, the coordinates are 3-Dinensional rather than 2-Dimensional

5 o

—" To erode also means to shrink or reduce and is applied to binary images but
may also work on gray-scale image. The basic effect of the operator on & binary
image is to erode away the boundaries of regions of foreground pixels. Thus, area of
foreground pixels shrink in size and holes within those areas become larger.

The erosion operator takes two data as inputs of which the first is the image which
is 10 be eroded and the second is a set of coordinate points know as & structuring
element or kernel  The structuning element determines the precase effect of the eroson



on the input image.

The mathematical definition of erosion for binary image is as follows. Suppose
that X is the set of Euclidean coordinates corresponding to the input binary image
and that K is the set of coordinates for the structuring element. Let KX denote
the translation of K so that it origin is at X. Then the erosion of X by K is the set
of all points X such that KX is a subset of X. Again, the mathematical definition
for gray-scale erosion is identical except in the way in which the set of coordinates

associated with the input image is derived and their coordinates are 3-Dimensional

rather than 2-Dimensional.

Thinning

Thinning is a morphological operation that is used to remove selected foreground
pixels from binary images just like erosion or opening. It is commonly used to
tidy up the output an edge detectors by reducing all lines to single pixel thickness.
Thinning is normally only applied to binary images and produces another binary
1mage as output. Just like other morphological operators the behavior of the thinning
operation is determined by a structuring element. The structure elements used for
thinning are of the extended-type described under the hit-and-miss transform.

The thinning operation is related to the hit-and-miss transform and can be ex-

_Bressed in terms of it. The thinning of an image I by a structuring element .J is

(3.2.19) thin(I,J) = I — ham(I, J) where ham = hit — and — miss

where the subtraction is a logical subtraction defined by X — Y = X N Y. The
thinning operation is calculated by translating the origin of the structuring element
to each possible pixel position in the image and at each such position comparing it

with the underlying image pixels. If the foreground and background pixels in the
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structuring element exactly match foreground and background pixels in the image
then the image pixel underneath the origin of the structuring element is set to back-

ground otherwise it is left unchanged. The structuring element must always have a

one or a blank at it origin if it is to have any effect.

The choice of structuring element determines under which situations a foreground
pixel will be set to background and hence it determines the application for the
thinning operation. One of the most common uses of thinning is to reduce the
threshold output of the edge detectors such as the Sobel operator to lines of a single

pixel thickness while preserving the full length of those lines.

3.2.11 Digital Filters

In image processing, filters are use to suppress either the high frequencies in the
image thus smoothing the image or the low frequencies thus enhancing or detecting
edges in the image. Images are often corrupted by noise from several sources and
the most frequent of which are the additive noise (example is Gaussian noise) and
impulse noise (e.g. salt and pepper noise). Linear filters such as the mean filters are

= --'—"'—-‘-—.—l--ﬁ . . . N .
the primary tool for smoothing digital images degraded by additive noise. An image

___can be filtered either in the frequency or in the spatial domain.

The former involves transforming the image into the frequency domain by mul-
tiplying it with the frequency filter function and re-transforming the result into the
spatial domain. The filter function is shaped so as to attenuate some frequencies and
enhance others. For example, a simple lowpass function is 1 for frequencies smaller

than the cut-off frequency and 0 for all others.

The corresponding process in the spatial domain is to convolve the input image
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F(i,7) with the filter function H(i, ). This can be written as:
(3.2.20) G(i,3) = h(i,7) © f(5,7)

The mathematical operation is identical to the multiplication in the frequency space
but the results of the digital implementations vary since we have to approximate the
filter function with a discrete and finite kernel.

The discrete convolution can be defined as a ’shift and multiply’ operation where
we shift the kernel over the image and multiply its value with the corresponding
pixel values of the image. For a square kernel with size M x M, we can calculate the

output image with the follow formula:

=

(3.2:21) G(i,7) = Z Z h(m,n)f(i —m,j — n)

_
Various standard kernels exist for specific applications, where the size and the form
of the kernel determine the characteristics of the operation.

In contrast to the frequency domain, it is possible to implement non-linear filters
in the spatial domain. In this case, the summations in the convolution function are

replaced with the non-linear operator:

(3.2.22) _ Clr=Opn[h(m,n) f(i —m,j —n)]

For most non-linear filters the elements of H (7, 7) are all 1

Mean Filter

Mean filtering also called smoothing or averaging filtering is a method for smooth-
ing thus reducing the amount of intensity variation between one pixel and the next

image. It is often used to reduce noise in images.
The idea of mean filtering is to replace each pixel value in an image with the

average value of its neighbors including itself. This has the effect of eliminating pixel
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values which are unrepresentative of their surroundings. Mean filtering like other
convolution filters is based around a kernel which represents the shape and size of
the neighborhood o be sampled when calculating the mean. Smaller kernels are often

used. Applying a small kernel more than once produces a different effect as in single

pass with large kernel.

Median Filter

Median filter also known as the rank filter is used to reduce noise in an image.
However, it preserves useful details in the image much better than the mean filter.
The median filter considers each pixel in the image in turn and looks at its nearby
neighbors to decide whether it is representative of its surroundings. Instead of re-
ducing the pixel value with the mean of neighboring pixel values, it replaces it with
the median of those values. The median is calculated into numerical order and then
replacing the pixel being considered with the middle pixel value. If the neighborhood
under consideration contains an even number of pixels, the average of the two middle

pixel values is used.

Gaussian Smoothing

—— H’______,_._-—-—"— ’ J | ! -
The Gaussian Smoothing operator, (Davies, 1990) is a 2-Dimensional convolution

___operator that is used to blur images and remove detail and noise. In this sense, it is

similar to the mean filter but it uses a different kernel that represents the shape of

a Gaussian hump. This kernel has the following special properties:

1. The Gaussian distribution in 1-Dimension has the form

1 22
& = T 202
(3.2.23) (1) = Z5=e3

where o is the standard deviation of the distribution.
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2. In 2-Dimensions, a circularly symmetric Gaussian has the form:

22
(3.2.24) Clz,y) = ——e- S
2mo?

The idea of Gaussian smoothing is to use the 2-Dimensional distribution as a
point-spread function and is achieved by convolution. Since the image is stored as
a collection of discrete pixels, a discrete approximation to the Gaussian function
is required before convolution can be performed. In theory Gaussian distribution
1s zero everywhere which will require and infinitely large convolution kernel but in
practice it is effectively zero more than about three standard deviations from the
mean and so the kernel can be truncated at this point.

A further way to compute a Gaussian smoothing with a large standard deviation
1s to convolve an image several times with a smaller Gaussian. Although this is
computationally complex, it can have applicability if the processing is carried out

using a hardware pipeline.

3.2.12 Edge Detectors

Edges are places in the image with strong intensity contrast. Since edges often
occur at iﬁ}ﬁge locatiwjllg object boundaries, edge detection is extensively
used in- image segmentation when dividing the image into areas corresponding to

— different objects. Representing an image by its edges has an advantage of reducing
the amount of data significantly while retaining most of the image information.

Edge consist of mainly high frequencies and can be detected by applying a high
pass frequency filter in the Fourier domain or by convolving the image with an

appropriate kernel in the spatial domain. In practice, edge detection is performed

in the spatial domain because it is computationally less expensive and often yields

better results.
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Edges again, correspond to strong illumination gradients and can therefore be
highlighted by calculating the derivatives of the image. The position of the edge
can be estimated with the maximum of the first derivatives or with the zero-crossing

of the second derivatives. For a discrete one-dimensional function f(7), the first

derivatives is approximated by:

(3.2.25) tg((:)) = f(i+1) — &)

and this is equivalent to convolving the function with [—1,1]. Similarly, the second
derivative can be estimated by convolving f(i) with [1,—2,1]. Different edge detec-
tion kernels which are based on the above formula are used in evaluating the first or
second derivative of a 2-Dimensional image.

There are two common approaches:' Prewitt compass edge detection and gradient
edge detection used to estimate the first derivative in a 2-Dimensional image. Prewitt
compass edge detection involves convolving the image with set of kernel which is
usually 8 and each of which is sensitive to a different edge orientation. The kernel
producing the maximum response at a pixel location determines the edge magnitude
and orientation. Different sets of kernels might be used of which example includes
Sobel and _ﬁobinson kerpels——

Gradient edge detection is the second and more widely used technique. Here
the image is convolved with only two kernels, one estimating the gradient in the

x-direction, G, and the other gradient in the y-direction, G,. The absolute gradient

magnitude is then given by:

(3.2.26) G| = \/GE + G2
and is often approximated with
(3.2.27) G| = |Gz| + |Gyl
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In many implementations, the gradient magnitude is the only output of a gradient

edge detector, however the edge orientation might be calculated within

(3228) 6 = arctan(%) i %

T

The most common kernels used for the gradient edge detector are the Sobel, Robert
Cross and Prewitt operators. After having calculated the magnitude of the first
derivative, pixels corresponding to the edge areidentified. A good way is to threshold
the gradient image (Mallat, 1989) assuming that all pixels having a local gradient
above the threshold must represent an edge. An alternative technique is to look for
the local maximal in the gradient image, thus producing one pixel wide edge. A more
sophisticated technique is used by the Canny edge detector (Canny, 1986). It first
applies a gradient edge detector to the image and then finds the edge pixels using
non-maximal suppression and hysteresis tracking.

A general problem for edge detection is its sensitivity to noise and the reason being
that calculating the derivative in the spatial domain corresponds to accentuating high
frequencies and hence magnifying noise. This problem is addressed in the Canny
and Marr operators (Canny, 1986; Marr, 1982; Marr and Ullman, 1981; Marr and

e A

Hildreth, 1980), by convolving the image with a smoothing operator (Gaussian)

— belore calculating the derivative.

The operators included in this section are those whose purpose is to-identify
meaningful features on the basis of distributions of pixel gray-levels. The two cate-
gories of operators included here are Edge Pixel Detectors which assigns a value to
a pixel in proportion to the likelihood that the pixel is part of an image edge. The
second is th Line Pixel Detectors, which also assigns a value to a pixel in proportion

to the likelihood that the pixel is part of an image line.
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Sobel Edge Detector

The Sobel operator performs a 2-D spatial gradient measurement on an image
and so emphasizes on regions of high spatial frequency that correspond to edges.
Typically it is used to find the approximate absolute gradient magnitude at each
point in an input gray-scale image. In theory, at least, the operator consists of a pair
of 3 x 3 convolution kernels as shown in the figure below. One kernel is simply the
other rotated by 90° and is very similar to the Roberts Cross operators.

These kernels are designed to respond maximally to edges running vertically and
horizontally relative to the pixel grid, one kernel for each of the two perpendicular
orientation. The kernels can be applied separately to the input image to produce

separate measurements of the gradient component in each orientation. These can

| 0 +1 T +1

by 0 +2 0 0 0

< | 0 +1 -1 -2 -1
D, G,

Figure 3.1: Sobel convolution kernel
e

then be combined together to find the absolute magnitude of the gradient at each

i ]3-;:}th and the orientation of that gradient. The magnitude of the gradient is given

by:

(3.2.29) G| = /G2 + G2

An approximate magnitude is computed using

(3.2.30) |G| = |Gz| + |Gy

63



The angle of orientation of the edge relative to the pixel grid giving rise to the spatial

gradient is written as:

(3.2.31) 6 = arctan(-gi)

xr

In this case, orientation ¢ is taken to mean that the direction of maximum contrast
from black to white runs from left to right on the image and other angles are measured
anti-clockwise from this. Often, this absolute magnitude is the only output the user
sees and the two components of the gradient are conveniently computed and added
in a single pass over the input image using the pseudo-convolution operator shown

in Figure 3.2.12 below. Using this kernel, the approximate magnitude is given as:

Figure 3.2: Pseudo-convolution kernels for computing approximate gradient magni-
tude

--"'-__-—i

—

(3.2.32)
IG| = |(P,+2 % Py+P3)| — |(Pr+2X Ps+ Py)| +|Ps+2 % Ps+ Po| +|Pi +2 x Py + Py|

The Sobel operator is slower to compute but its large convolution kernel smoothen
the input image to a greater extent and so makes the operator less sensitive to noise.

This operator also generally produce considerably higher output value for similar

edges as compared with the others.
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Canny Edge Detector

The Canny operator, Canny (1986) was designed to be an optimal edge detector.
It takes as input a gray-scale image and produces as output an image showing the

positions of tracked discontinuities. The Canny operator works in a multi-stage

-1 0 | +1 +1 | +1 | +1

-1 0 +1 0 0 0

=1 0| +1 1) |11 | -1
Gy G,

r Figure 3.3: Prewitt gradient edge detector

process. First of all the image is smoothed by Gaussian convolution and then a 2-
| Dimensional first derivative operator is applied to the smoothed image to highlight
regions of the image with high first spatial derivatives. Edges give rise to ridges in the

gradient magnitude image. The algorithm then tracks along the top of these ridges

and sets to zero all pixels that are not actually on the ridge top to give a thin line in

| the output by a process known as non-maximal suppression. The tracking process

exhibits hysteresis controlled by two thresholds: 73 and 75, with 73 > T5. Tracking
S _,—r—"—-‘----_"_

can only begin at a point on the ridge higher than 7;. Tracking then continues

—11 both directions out from that point until the height of the ridge falls below 75.

This hysteresis helps to ensure that noisy edges are not broken up into multiple edge

fragments. !
The effect of the Canny operator is determined by three parameters; the width of
the Gaussian kernel used in the smoothing phase, the upper and lower thresholds used

by the tracker. Increasing the width of the Gaussian kernel reduces the detector’s

sensitivity to noise at the expense of losing some of the finner details in the image.
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The localization error in the detected edges also increases slightly as the Gaussian
width is increased.

Setting the lower threshold too high will cause noisy edges to break up and setting
the upper threshold too low increases the number of spurious and undesirable edge
fragments appearing in the output. One problem with the basic Canny operator is to
do with Y-junctions thus places where three ridges meet in the gradient magnitude
image. Such junctions can oecur where an edge is partially occluded by another
object. The tracker will treat two of the ridges as a single line segment and the third

on as a line that approaches but does not quite connect to that line segment.

Prewitt Compass Edge Detector

Prewitt Compass Edge Detection is an alternative approach to the differential
gradient edge detection. The operation outputs two images, one estimating the local
edge gradient magnitude and the other estimating the edge orientation of the input
image.

When using this edge detection the image is convolved with a set of usually 8
convolution kernels, each of which is sensitive to edges in a different orientation.
For each pixel the local edge-gradient magnitude is estimated with the maximum

response of all 8 kernels at this pixel location:

p—

(8:2.33) |G| = max(|G;| :i=1---n)

where G, is the response of the i kernel at the particular pixel position and n is
the number of convolution kernels. The local edge orientation is estimated with the
orientation of the kernel that yields the maximum response. Various kernels can be
used for this operation. Two templates out of the set of 8 kernels is produced by
taking one of the kernels and rotating its coefficients circularly. Each of the resulting
R REE P e 52
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Figure 3.4: Prewitt compass edge detecting templates sensitive to edges at 0° and
45°

kernels is sense to an edge orientation ranging from 0° to 315° in steps of 45° where

0° corresponds to a vertical edge.

The maximum respond G for each pixel is the value of the corresponding pixel in
the output magnitude image. The values for the output orientation image lie between

1 and 8 depending in which of the 8 kernels produced th maximum response.

The compass edge detector is an appropriate way to estimate the magnitude and

orientation of an edge. Although differential gradient edge detection needs a rather
time consuming calculation to estimate the orientation from the magnitudes in the
x-direction and y-direction, the edge detector obtains the orientation directly from
the kernel with the maximum response. In our case the compass operator is limited
to 8 possible orientation. However experiments, (Korner, 1996; Vetterli and Herley,

B J_-""'-—-F.-——-.--—_
1992) shows that most direct orientation estimates are not much more accurate.

— On the other hand, the compass operator needs 8 convolutions for each pixel,

whereas the gradient operator needs only 2 one kernel being sensitive to edges in
vertical direction and the other to the horizontal direction. The result for the edge
magnitude image is very similar wit both methods provided the same convolving

kernel is used. There are various kernels that can be used for Compass Edge Detection
and the most common ones are shown in Figure3.2.12

For every template, the set of all eight kernels is obtained by shifting the coef-
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ficients of the kernel circularly. The result for using different templates is similar:
the main difference is the different scale in the magnitude image. The advantage of
Sobel is that only 4 out of the & magnitude values must be calculated. Since each
pair of kernels rotated about 180° opposite is symmetric, each of the remaining four

values can be generated by inverting the result of the opposite kernel.

-1 0 | +1 0 [+1]+2
-2 110 [ +2 -1 10 | +1
-1 10 [+1 -2.0-11| O

SOBEL

KIRSCH
-1 1 0 | +1 0 [ +1 | +1
-1 1 0 | +1 -1 0 | +1
fIRROS +1 slailinly O
ROBINSON

Figure 3.5: Examples compass edge detecting kernels with each showing two kernels
out of the eight
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Line DeT:?action

— While edges thus boundaries between regions with relatively distinct gray-scale

are by far the most common type of discontinuity in an image, instances of thin lines

in am image occur frequently enough that it is usetul to have a separate mechanism

for detecting them. Here we present a convolution based technique which produces

an image description of the thin lines in an input image.

The line detection operator consists of a convolution kernel tuned to detect the

presence of lines of a particular width n, at a particular orientation 6. Figure 3.2.12
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shows a collection of four such kernel of which each respond to lines of single pixel

width at the particular orientation shown. These masks are tuned for light lines

o i N S S T ST S T T B3 e
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Figure 3.6: Four line detection kernels which respond maximally to horizontal, ver-
tical and oblique single pixel wide lines

against a dark background and would give a big negative response to the dark lines
against the light background. If you are only interested in detecting dark lines against
a light background, then you should negate the mask values. Alternatively, you might
be interested in either kind of line in which case you could take the absolute value of
the convolution output. In the discussion and examples below. we will use the kernels
above without an absolute value. Let R; denotes the response of kernel 7 and each of
the kernels across an image. Then for any particular point, if R; > R; for all h # i,
that point is more likely to contain a line whose orientation and width corresponds
to that of kernel 7,. Usually thresholding R; will eliminate weak lines corresponding
to edgﬁsa{;d other featuresWith intensity gradients which have a different scale than

the desired line width. In order to find complete lines, line fragments are joined

—

—

together.
3.2.13 Distance Transform

The distance transform is an operator normally only applied to binary images.
The result of the transform is a gray-scale image that looks similar to the input
image, except that the gray-level intensities of points inside the foreground regions

are changed to show the distance to the closest boundary from each point. The figure

69



(=jlellejlejleleRl
O = = = - O
O ek e [ (O

OI00 00 0o

Figure 3.7: The distance transform of a simple shape using chessboard distance met-
ric

the background region rather than the i'oreground region. It can be considered as a
process of inverting the original image and then applying the standard transform as
above.

There are several different sorts of distance transform, depending upon which
distance metric is being used to determine the distance between pixels. The example
shown in Figure 3.2.13 uses the chessboard distance metric but both the Euclidean
and City'-l;.l;mk metric m’ as well. The distance transform can be calculated

___much more efficiently using algorithms in only two passes and the algorithm is based

on recursive morphology.

Distance metric is useful in image processing to be able to calculate the distance
between two pixels in an image, but this is not as straightforward as it seems. The
presence of the grid makes several distance metric possible which often give different
answers to each other for the distance between the same pair of points. Three of the
most important ones are being discussed below.
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Euclidean Distance

This is the familiar straight line distance that most people are familiar with. If

the two pixels that we are considering have coordinates (z1,22) and (z;,73), then

the Euclidean distance is given by:

(3.2.34) Dpudia = \/(z1 — 22)% + (3 — Ya)?

City Block Distance

This is also known s the Manhattan distance. This metric assumes that in going
from one pixel to the other it is only possible to travel directly along pixel grid lines.

Diagonal moves are not allowed. Therefore, the city block distance is given by:

(3—235) DOity — |I1'* $2| =15 |yl = y2|
Chessboard Distance

This metric assumes that you can make moves on the pixel grid as if you were
a King making moves in chess thus diagonal move counts the same as a horizontal

move. This means that the metric is given by:

(3.2.36) ,”‘Q_ah.e.ns—: maz(|z1 — Za|, |th = 2l)

However it should be noted that the last two metrics are usually much faster to

e

compute than the Euclidean metric and so are sometimes used where speed is critical

but accuracy is not too important.
3.2.14 Image Synthesis

Image synthesis is the process of creating new images from some form of image
description. Images that are normally synthesized include computer graphics, scenes

or image based on geometric shape description. Synthetic images are often used to
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verify the correctness of operators by applying them to known images and images

could be binary, gray-scale or color.

3.3 Analysis of Fingerprint Data

Galton who turn out to be the first scientific on the study fingerprint image
divided fingerprint into three major classes namely arches, loops, and whorls. Henry,
later refined Galtons classification by increasing the number of classification which

is well-known and widely accepted. In this view the position of cores and deltas are

claimed to be enough to classify the fingerprints into six categories, which include

arch, tented arch, left-loop, right-loop, whorl, and twin-loop.

. The loops is believe to have constitute 60 to 70 percent of the patterns en-

countered. In a loop, one or more of the ridges enters on either side of the
impression running from the delta to the core and terminates on or in the di-
rection of the side where the ridges entered and they have exactly one delta in
1t. Loops that have ridges that enter and leave from left side are called the left
loops and those that enter and leave from right side are called the right loops.
In En.:rin loops the ridges-eentaining the core points have their exits on different

sides.

. In the whorl, some of the ridges make a turn through at least one circuit and

any pattern containing two or more deltas is considered a whorl.

. In arch patterns, the ridges run from one side to the other of the pattern with

no backward turn and they come in two types thus plain or tented. The plain
arch tends to flow easily through the pattern with no significant changes whiles

the tented arch does make a pronounced change with no easy flow.
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In simple terms, classification of fingerprints are made with the assumption that pat-
terns without delta is an arch, a loop when it contains one and only one delta and
always a whorl when it contains 2 or more delta. On the order ranking, fingerprint
ridge details are predominantly described at three levels namely, patterns, minutiae
points and pores and ridge shape forming the level one, two and three respectively
however Automated Fingerprint Identification Systems (AFISs) only admits Level
one and Level two features.| No two fingerprints are alike, but the pattern of fin-
gerprint is inherited from close relatives and people in our immediate family and
that is considered “level one details”. The details of an actual finger or palm print
are not inherited which is deemed “level 2 and level 3 details” and is used to iden-
tify fingerprints from person to person. The method below explained how this is

achieved:

1. SEGMENTATION
Image segmentation is the first step in fingerprint enhancement algorithm and is
the process of separating the foreground regions from the background regions of
an image. The foreground regions usually correspond to the clear fingerprint
area-having the ridges and valleys which is the area of interest whiles the

background corresponds to the regions outside the borders of the fingerprint

— area, which do not contain any valid fingerprint information. Cropping out of

these regions (background) is made to minimize the number of operations to
undertake on the fingerprint image. Exhibition of a very low gray-scale variance

value is profound in the background regions of a fingerprint image whereas the

foreground regions have a very high variance hence a method based on variance
threshold can be used to perform the segmentation. The steps involved in these

mean and variance based segmentation are illustrated as below:
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(a) Firstly, the image I(i, j) is divided into non overlapping blocks of size

w X Ww.

(b) The mean value M () is then evaluated for each block using the following

equation:
w/2 w/2

f‘/f(1)=;u;—2 Do S )

i=—w/2 j=—w/2

(¢) The mean value calculated above is then used to find the variance using

the equation below:
w/2 w/2

VD=2 3" 3 UGg) - MG,j)y

i=—w/2 j=—w/2

(d) If the variance is less than the global threshold value selected empirically,
then the block is assigned to be a background region otherwise it is as-

signed to be part of the foreground.

2. NORMALIZATION
Next to segmentation is normalization, which is a process that changes the
range of pixel intensity values. For instance if the intensity range of the image
is 50 to 180 and the desired range is 0 to 255 then the process entails subtracting
50 from each of pixel intensity resulting in the range of 0 to 130. Then each
pixel intensity is multiplied by 255/130, giving the range 0 to 255. Let (1, )
denote the gray-level value at pixel (z, j), My and V, denote the estimated mean

and variance of I, respectively, and N (7, j) the normalized gray-level value at

pixel (i, j). The normalized image is defined as follows:

(

Mo+ /VoI(i,J) — My)? if I(i,5) < M
N(i,7) = §

My — /Vo(I(i,7) — M;)? otherwise

Normalization is a pixel-wise operation and does not change the clarity of the

ridge and valley structures. The main purpose of normalization is to reduce
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the variations in gray-level values along ridges and valleys, which facilitates the

subsequent processing steps.

. ORIENTATION ESTIMATION

The orientation flow is then estimated from the least square method using the
following equations after dividing the input image [ into non overlapping blocks

of size w x w and then computing the gradients §, and d, at each pixel.

i+w/2  j+w/2

V(b= Y WD 26,(w,v)8, (u, v)

u=i—w/2 v=i—w/2

Hw/2 jHw/2

Z Z 62 (u, v)d; (u, v)

u=i—w/2 v=1—w/2

Where 0, (u,v) and 6,(u, v) represents gradient magnitudes at each pixel in z
and y directions respectively. The direction of block centered at pixel (4,7) is

then computed using the following equation:

(i, j) = %&mt&“ (583)

Due to the presence of noise, corrupted ridge and valley structures in the input

image, the estimated local ridge orientation, 6(i, 7), may not always be correct

hence a low-pass filter1sused to modify the corrupted local ridge orientation.

. SMOOTHING AND FINE TUNING

Smoothing of ridges is performed, which is a process of finding out the valid

frequency of the binary image of ridges. Filters corresponding to these distinct
frequencies and orientations are then generated. The direction of gravity of

progressive blocks are then determined, using the following equations given

(P=/B):
P-1P-1 sl et
k=0 [=0 k=0 [=0
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Given the fact that singular points are points where the orientation fields are
discontinuous, makes orientation play a crucial role in estimating the core point
of a fingerprint image. Hence, the need for another mechanism to fine tune the
orientation field so as to avoid any spurious core points and irregularities that
may occur due to the presence of noise. The orientation field for coarse core
point is fine tuned by adjusting the orientation using the following proceeds:
If: B(i,7) # 0 then: 0= 0.5tan'(B/A)

else: 0 =mx/2

if 0 <0 then

if: A<O0 then: 0=0+n/2

else: O=0+n

else if A<( then: #= 1r/‘2‘

The @ value is then calculated which gives the orientation of the image.

The above are the essential steps involved in the overall fingerprint recognition
process however an accurate estimation of such parameters is what researchers are
still aiming high at achieving so as to make precise conclusion in fingerprint iden-
tification and recognition.In the year 2007 Y. Wang et al. propose an enhanced

gradient-based algorithm for coarse estimation of fingerprint orientation fields. The
—bhasic idea of the scheme was to estimate the dominant orientation of a base block
from its four overlapping neighborhoods.

In this method, gradient vectors are first calculated by taking the partial deriva-
tives of image intensity at each pixel in the Cartesian coordinates which is denoted
as [g:, g,]7 and this orientation maps represent the directions of ridge flow in regular
spaced grid. The magnitude of these ficlds are omitted since only the angle informa-
tion is of interest and is commonly represented as {6,, }, where 8., € [0, x|, however
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the orientation ¢ is orthogonal to 7 where ¢ is the dominant gradient angle of a local
base block. Since a ridge line has two edges, the gradient vectors at both sides of a
ridge are opposite to each other and calculation of @ by taking just the average of
gradient angles directly in a local base block may likely lead to the cancellation of
each other. To solve this problem, Kass and Witkin (1987) proposes a simple but
clever idea of doubling the gradient angles before the averaging process so as (¢ + )
becomes (2¢ + 27) which is equal to 2¢ however, in practice, 2p are the angles
of squared gradient vectors [gs;, gs|” that has the following relation with [g,, 9,17

according to trigonometric identities:

2 2 R Ul g
Jsa g° cos 2 g°(cos® — sin” ) 9z = Gy

Jsy g*sin2p | g°(2sinp cos ) 2029y

The average squared gradient [g,,,9,,] of a block specified by a window size W can

therefore be calculated by

T o Z 9sx Z(gg = 1 g:)
(3.3.37) [ =W
gsy Z 9szx Z Qgrgy
= = L W gl il -

but conventional gradient-based methods divide the imput fingerprint image into

.-"H-rr'-'-
-

equal sized-blocks of N> Ppixels, and average over each block independently. The

direction of orientation field in a block B can be calculated by
-_.-—'-.._--.—. N " ® = -
Z 29:(1*3)9;;(!*1)

=

: ' 2 2
(3.3.38) Op = 5 arctan | % N T
> 3 62.1) - 6.

1=

H

N | N

—_—

but it should be noted that function arctan(*) gives an angle value whose range is
[, 7) and corresponds to the squared gradients, whiles 5 is the desired orientation
angle between [0, 7). In order to measure the reliability of estimation for s, Kass

and Witkin (1987) introduced a metric called coherence which calculates the strength

[




.

—

of the averaged gradient in the distribution of local gradient vectors and can be

evaluated (Kass and Witkin, 1987) as

(3.3.39) Gahpl = szfl zﬂzl(gsr(i:j)w%y(i:j))‘
Zz’-—nl Ej:l Igsm(i:j): g&y(i,j)’

Instead of using equal-sized blocks, Jain et al. (1997) proposes a ranked scheme

to adjust the estimation resolution of local orientation fields via iterative steps by
introducing the concept of consistency level which is a normalized deviation that
compares the orientation estimates of the other blocks in a neighborhood from the
centered objective block. If the consistency level is above a certain threshold, the
local orientations around the objective block are re-estimated with a smaller window
size.

However, if the window size is small, the ridge lines over the whole site becomes
parallel and slowly varied since the genéral parallel and anisotropy properties of

the ridge patterns from the four overlapping neighborhoods of the target block are

Figure 3.8: Example of a real 3 x 3 fingerprint image block site: paralleled ridge
pattern.

highly correlated to each other as shown in Figure 3.8. This outstanding feature
of fingerprint ridge is what Y. Wang et al. tried to exploit by enhancing the tradi-

tional gradient-based methods and that was achieved by first grouping every 2 x 2
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interconnecting blocks into a neighborhood 1) and every 3 x 3 interconnecting blocks
into a site with the four neighborhoods overlapping with each other. An example of
such formulation is illustrated in Figure 3.9. Taking into considaration the centered
block V' in Figure 3.9 for which the dominant orientation field is to be estimated. let
blocks {I, I1, IV, V} form a neighborhood marked D,;. Similarly, blocks {11, 111,
V, VI} form D2, blocks {IV, V.VII, VIII} form D3, and blocks {V, VI, VIII,
[X} form D4 but should be taken to notice that the target block V is included in
all four neighborhoods but placed at different corners. From Eqn 3.3.38 and 3.3.39,
the averaged square gradients and their corresponding coherence measure can be
calculated for each neighborhood D,, Dy, D, D, respectively whiles the result yield
two paired vectors 6 = {0, 0, 6., 64} and Coh = {Coh,, Coh,, Coh,. Cohg}. The
maximum value in C'oh is sellected and assigned to the corresponding angle in 6 of

the centered block V. For instance, if

Cohy, = mazx{Coh,, Cohy, Coh.,Coh,},

then

05 = Oy.

Here, noise must be well inferred in other to be better aceept how this scheme can

lmprove noise resistance of the estimation.

___—The most common type of noise appearing in fingerprint images is the smudges
that link parallel ridges together and these are usually caused by dirt and result
of poor separation in ridge lines. By assumption, we claim the presence of dirt is
uncorrelated and the random noise follows symmetric distribution with zero mean.
However the ridge lines on the contrary have strong directions, meaning, the variation

of gray intensities along a ridge flow is much slower than that in its perpendicular di-
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Figure 3.9: A four overlapping neighborhoods Py, D, Ds, D4 of 3x 3 bloc with target
block V in the center.

rection and this feature is termed anisotropy (Kass and Witkin, 1987). In a smudged
area, the anisotropy feature of ridge structures is corrupted by the random noise
whose orientation pattern is symmetric distributed over all directions making the
resulting orientation estimate of the contaminated area puzzled.

Consider a noisy region of pixels IV, the gradient vector at each pixel is composed

of true gradients of the original ridges [g;., g;ty]T and the disturbance gradients of noise

factor [A g., A g,]*. That is,

9z Jiat+ D G
[3310) _
e | —~—— Sy | B eyt O Gy l
Substituting Eqn. (3.3.40) into Eqn. (3.3.37) yields
B ] [ D || St 8907 - (Gt 5 9,)?)
S — w 18, W ‘
?.sy ngy 22(9t1:+ A g:ﬂ)(gty'l' A gy)
- : L W d L W J

and above expression is evaluated for g, as

9sz = Z(gtz+ A gz)z — (gz+ & 91)2
w

(33#1)2(931 - gfy) + 2 (Z Giz O Gz — thy A gy) s (Z A 9'5'_ Z A 93)
w W w W w
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Since the variances of random noise in = and y directions are the same, the third

term in the above equation can be crossed out. Therefore, Eqn. (3.3.41) can be

simplified as

W W

(33'42) Fg&m — Z(gf.r T gtz'y) 1 (Z Gtz O gz — thy A gy)
W

where the first term is the expected value for gs; Whiles the second term is the
difference between the covariances of noise and the two original gradients. Similarly,

the expression g, can also be evaluate to get

Ty = . 2gtat b 92)(gy+ B gy)
w

(3.343) =423 gingsy H2 (ng Agy+Y gy A gI) +£23 Ag, A g,
4% w W w

Since the original gradients and the noise gradients are independent variables on the

orthogonal directions, the covariances in the second term above are equal to

th:r Agy = Zgﬁx : Zg'ﬂy =
W

- thyﬁgz
W

S /—

taking into account that the mean of the noise distribution is zero. Therefore, Eqn.

|
=
S
o
H

|

=

— (3.3.43) can be simplified as

(3.3.44) Gy =2 Gy +2) B g: b gy
W W

If the noise factor is very small (i.e., A g, = 0,A g, — 0), the last terms in both
Eqns. (3.3.42) and (3.3.44) approaches zero, making the estimation closer to the
expected value. However, if the previous assumption of noise distribution is no

longer symmetric with zero mean, the cross terms in Eqns. (3.3.41) and (3.3.43)
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Figure 3.10: A patched site where the target block is at an edge.

cannot be canceled. For such cases, the estimates obtained from averaging over the
same area can suffer from strong noise.effects. Since fingerprints can be viewed as
smooth and continuous textures, ridge flows that pass through a base block are most
likely to extend into one of the four neighborhoods as was defined previously. In this
approach, g, and g,, of each base block was estimate over four times rather than
only once. Taking the example shown in Figure (3.9), the four estimates would be
Is(z.y)| Das Tsey)Dos Gs(zy)|De A0 Gz D, and the best estimation is then selected
from the least noise-affected neighborhood according to the reliability measure of
P R
coherence. Since the coherence measure in a region is influenced by the local noise
—¢ffect, the redundant estimation from four different but overlapping neighborhoods
is able to give better results. Another interesting point is that this enhanced scheme
actually separate the estimation window and the one that watches noise, that is, the
averaging process is taken over each neighborhood whiles the noise is controlled in
the bigger site that surrounds the centered objective block. In order to eliminate

noise. it is better to have larger window size to include more information of the

ridge structures. A smaller estimation window is desired to maintain the resolution
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especially for higher curvatures. For a target block at an edge,the scheme is applied

by patching the site with virtual blocks of which the gradients are assumed to be

zeros and this is illustrated in Figure (3.10)

3.4 Focus of the Study

Although the Fourier transform is a useful tool for analyzing the frequency com-
ponents of a signal, has the problem of its inability to tell at what time a particular
frequency rises or falls since it ‘take over the ‘whole time axis at a time making it
global. The Short-Time Fourier Transform thus STFT in attempt to solve this prob-
lem introduced the concept sliding window, which gives information in both time
and frequency. However, another problem arises where the length of the window
limits the resolution of the frequency. At this point the Wavelet Transform became
the suggested solution to the above stated problem and this transform is based on

small wavelets with limited duration.

3.4.1 Overview of the Method

Assume the sequences {a(k)}7 ., which belong to the space I; Ul,, the discrete-
time signals. The 2 transform-ef & signal {a(k)} is defined as A(z) = :fio 2z %a(k)

where z = . Given a signal z = {z(k)}>_., a lifting scheme of the wavelet

_#'.--

transform can be constructed either in the primal or dual mode with the following

steps:

1. Decomposition: Generally, the primal lifting scheme for decomposition of sig-
nals consists of four steps: a) split; b) predict; c¢) update or lifting; and d)

normalization. Let = be a signal and X (z) its z transform.

(a) Split: The signal  is split into even and odd subarrays: e; = {e;(k) =
R, 3 b3 58 o 181D
KWAKE NEPRUNMARM
83 iNIVERSITY OF SCIENCE & TECHNOLOG:
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z(2k)}, 01 = {o1(k) = z(2k + 1)}, k € Z. In the z—transform domain,
this operation corresponds to the following relation: E(z) = (X(z) +
X(=2))/2, O4(2) = 2(X(z) - X(-z))/2, where E;(z) and O,(z) denote

the z—transforms of e; and 01 respectively.

(b) Predict: The even array e, is used to predict the odd array o,. Then, the
new odd array O is defined as the difference between the existing array
01 and the predicted one. To be specific, we apply some prediction filter U
to the array ey, in order for the result to approximate the array o,. Then,
we subtract this result from the array o, : O}(2) = 0,(z) - U(z)E(z).
This denote the new array provided the filter U/ is properly chosen and

this step results in decorrelation of the signal.

(c) Update/Lifting: The even array is updated using the new odd array that is
being convolved with the update filter whose transfer function we denote
by V(2)/2 : E{(z) = Ey(z) + (1/2)V(2)0O}(2). Generally, the goal of
this step is to eliminate high frequencies which appears when the original
signal z is downsampled into e;. By doing so e; is transformed into a

dgwﬂs_ampled and smoothed (low-pass filtering) replica E} of z.

e

(d) Normalization: Finally, the smoothed array s, and the array of details d,

ks | are obtained from the following operation: s, = V2EY, d; = 0Y/v/2. The

key issue in this lifting scheme is how to properly choose the filters I/ and
V‘ =y o=

2. Reconstruction: The reconstruction of the signal r from the arrays s, and d,

is implemented in a reverse order.
(a) Undo Normalization: Ey = s/ V2 and O = v/2d,.

N



(b) Undo Update/Lifting: The even array Fy(z) = Ef(z) — V(2)0y(2)/2 is

restored.

(¢) Undo Undo Predict: The odd array Oy(z) = O,(2)+U(z)E,(2) is restored.

(d) Undo Split: It is the standard restoration of the signal from its evenx and

odd components. In the z domain, it appears as X(z) = Ei(2)+27104(2).

3. Dual Mode

(a) Update: The even array is averaged with the filtered odd array EY(z) =
(Er(2) + V(2)04(2))/2

(b) Predict: The odd array is predicted with the filtered new even array
O} (z) = O:1(z)—U(2z) EY(z). The reconstruction is achieved in the reverse

order.

The scheme presented above yield efficient algorithms for the implementation of the
forward and backward transforms of the signal # < s, Ud,. For completeness, we

denote ¢(z) = (1 + z7'U(2*%))/2 and define the following filters:

— G(2)=+2zp(=2), H(2)=V2(1+2V(*)$(-2))
H(z) = V264(2), G(z) = V2z71(1 — 2V (2%)¢(2))

_#;l;ére, H(z) and G(z) are the low- and high-pass primal analysis filters respectively

and H(z) and G(z) are the low- and high-pass primal synthesis filters respectively.

The decomposition and reconstruction equations can be represented as follows:

Si) = F(HEX() + A(-2)X(-2)
DY) = (GX()+E(-2)X(-2)
X(z)r= H(2)S1(z%) + G(2)Dy(2?)
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where S1(z) and D;(2) are the z transforms of the arrays s; (smooth) and d; (details)
respectively.

In this work, the Reverse Bi-orthogonal mother wavelet (B-Spline) in versions of
3.1, 3.9 and 4.4 was used to give the directional characteristics of the decomposed
fingerprint image clearly. Precisely, the LH band represents the vertical information,
the HL band gives the horizontal characteristics, the LL band shows the overall infor-
mation of the original fingerprint while the HH represent the diagonal characteristics.
Wavelet transform is always defined in terms of a 'mother’ wavelet 1 and a scaling
function ¢ along with their dilated and translated versions. In 2D, scaling function
¢(z,y) and mother wavelet ¢(z,y) is defined as tensor products of the following

1 — D wavelets 9(x), 1(y) and scaling functions ¢(z), ¢(y) as shown with equation

below.

(3.4.45) Secaling Function: ¢(z,y) = ¢(z) X ¢(y)
(3.4.46) Vertical Wavelets: ¥Y(z,y) = o¢(z) x ¥ (y)
(3.4.47) Horizontal Wavelets: Y% (z,y) = v (z) X ¢(y)
(3.4.48) Diagonal Wavelets: ¢%(x,y) = (z) x 1 (y)

.--"'"'.-_-‘_

——— -

The use of wavelet trﬁnsform on image shows that the transform can analyze singu-
—tarities easily that are horizontal, vertical or diagonal. This gives the hope to using
the directional resolving power of wavelet in the fingerprint recognition to track the
variation in orientation of fingerprint ridges. Wavelets provides time-scale map of
any signal and can provide extraction of features that vary in time. The above men-
tioned features makes wavelet an ideal tool for analyzing signals of temporary or

non-stationary nature. Hence the use of wavelet in fingerprint recognition system to

increases performance of system.
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3.5 Fingerprint Feature Extraction and Methods Involved

Directional information obtained from wavelets does not represent all directions
and hence cannot used directly as the feature vectors to represent a given fingerprint.
For this reason, the need for a feature vector which describes in detail the directional
information contained in the fingerprint is desired. To the satisfaction of this, the

gradient of Gaussian and coherence is applied to the wavelet decomposed image. The

50 0 150 200 250

Diag, Detail swd

50 100 150 b 250

Figure 3.11: Fingerprint Wavelet Decompostion.

gradient G,,;;, and its corresponding angle 6,,,, at the position (m,n) are defined as
S _.-"""'—-_‘-_'_

mn . ([Gmn‘ + |G$nn‘)

R

GY
—1 mrn
(3.5.49) On = tam {Gﬁm]

The quantities G}, and G7,,, represent the components of G,,,, in the horizontal and

vertical directions respectively. Once Gmn and 6, are obtained, the coherence is

computed next. The coherence pmy, 1S defined as
Z Gij COS (an —= 'gij)
o (i,7)ew

(4.)€w

87



with window w of size (5 x 5) whiles the images of the coherence are shown in Figure

(3.12). From thence, the dominant loca] orientation ¢ is calculated from the gradient

and coherence and this is defined as

M N
{ 22 2. P SiD (20,
(3551) g = -itan . Ml Nl -+ _é.
>, D p2._cos (26,
m=1 n=1

Where, M and N are equal to 8: Thus, each' 8 %8 witidow represents one directional

information All the sub band of the fingerprint 1mmage after applying wavelet is con-

A: Approximate image  B: Horizontal details

Figure 3.12: Coherence Image of the Approximation image and Horizontal Details.

sidered for the center area features. The center point for the sub band is made fixed
by considering only the pixel with the maximum variance along rows and columns.

b A 16 x 16-sized window-is-taken around the center point where the Correlation, Con-

trast, Homogeneity and Energy are determined forming another set of fingerprint

-

—

features. Below are the explanations and formulations to the individual components

constituting the center area features.

1. CORRELATION: It is a measure of how correlated a pixel is to its neighbor over
the whole image. The range of values taken on by the Gray-Level Co-occurrence

Matrix (GLCM) is [-1,1]. Correlation is 1 or -1 for a perfectly positively

or negatively correlated image. Correlation 1s NaN thus Not-a-Number for a
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constant image and is given by the Equation 3.5.52

N N . Iy
(3.5.52) Correlation = ZZ (¢ — pa)( )P(‘hj‘)

=1 j=1

. ENERGY: It is the sum of squared elements in the GLCM. The range for GLCM

is given by [0,1]. Energy is 1 for a constant image and Equation 3.5.53 gives

the Energy of the center area of the fingerprint image.

N N
(3.5.53) Energy = ZZPz
J=1

. CONTRAST: It is a measure of the intensity contrasts between pixels and its
neighbors and that is given by Equation 3.5.54. The range for Gray-Level
Co-occurrence Matrix is given by [0, (size(GLCM, 1) — 1)?] and is zero for a
constant image.

N N
(3.5.54) Contrast = ZZ(H—]'DEP(?:J)

i=1 j=1

. HOMOGENEITY: It is the measures the closeness of the distribution of elements
in the GLCM to the diagonal. The range for gray-level co-occurrence matrix
is [0, 1] and is 1 fﬁonal GLCM. By using Equation 3.5.55, homogeneity

of center area in the fingerprint image can be evaluated.

(3.5.55) Homogeneity = Z z 1+ (t + J)

=10n=1

For fingerprint image alignment, the Core and Delta which are the singular points

are used. Many are the methods that exit for detecting these singular points but the

most popular one is based on Poincar index. Figure 3.13. shows a typical core point

detected in a fingerprint image
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Figure 3.13: Core Point Position in Image.

3.6 Fingerprint Recognition

A biometric recognition system usually runs into two distinct modes thus identi-

fication or verification.

1. IDENTIFICATION: It is the means of trying to find out a person’s identity

by examining the biometric pattern calculated from the person’s biometric
features. In the case of identification, the system is trained with the patterns
of several persons and for each of the persons, a template is calculated. Patterns
to be identified is matched against every known template which yield a score
or a ;tlista.nce describing likeness between the pattern and the template. The
system sets the pattern to the person with the most similar template and to
avoid impostor patterns from being correctly identified, the agreemen‘t- has to

exceed a certain level. If this level is not reached, the pattern is rejected.

_ VERIFICATION: In this process, a person’s identity is asserted a priori and

only patterns to be verified are collated with the individual templates. In like

manner, system is checked whether the similarity between pattern and template
; |

is adequate to provide access to secured area. Scores also known as weights and
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distance transform are used to declare the similarity between the pattern and

the template. The higher the score or the smaller the distance is, the higher is

the similarity between them.

As explained above, access is only granted to secured areas if the score for a trained
person or the person whose pattern is to be verified against is higher than a particular
threshold. In theory, genuine scores (distance) should always be greater (less) than
the scores (norm) of the impostors. If this would be true then a single threshold that
separates the two bands of scores could be used to discriminate between genuine and

impostors.

3.6.1 Performance of the Recognition Systems

In the real world of biometry, for several reasons, this assumption as stated above
| ever hardly holds since there are some cases where impostor patterns generate scores
that are higher than the scores of some genuine patterns. This situation however
| present a fact that no matter how the threshold is selected some classification errors
| will still occur. Higher threshold may be chesen such that no impostor scores will
exceed that limit leading to no patterns falsely accepted by the system however gen-

—/,—-‘-‘-’_._

I uine patterns with scores lower than the highest impostor scores are falsely rejected.

——hropposition to this, one may choose a very low threshold such that no genuine pat-
terns are falsely rejected but may lead to some impostor patterns falsely accepted.
As this point a considerable threshold may be chosen somewhere between these two
points where both false rejections and false acceptances may occur. With reference
to the impostor patterns, assume a test data consisting both impostor and genuine

patterns. As depicted in Figure 3.14, the belonging scores would be somehow spread

around a certain mean score depending on the choice of the classification threshold
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between all and none of the impostor patterns are falsely accepted by the system.

The threshold depending fraction of the falsely accepted patterns divided by the
number of all impostor patterns is called False Acceptance Rate (FAR). Its value is
one, if all impostor patterns are falsely accepted and zero if none of the impostor
patterns is accepted. The figure to the right of Figure 3.14 give the values of FAR

for the score distribution with varying threshold. Similar to the impostor scores is

ﬁiq impostor

sCores

CLL TN 5 Y
h".“".' .-1I."-.

Tresnond

mean

Figure 3.14: Determination of False Acceptance Rate (Impostor Score)

| the genuine scores, where its mean score is higher than the mean value of the impos-

tor patterns as shown in Figure 3.15. If the classification threshold applied to the
classification scores is too high, some of the genuine patterns will be falsely rejected.
The fraction of the number of rejected genuine patterns divided by the total number
of genuine patterns is called the False Rejection Rate (FRR) and its value lies in

between zero and one. Again the figure to the right of Figure 3.15 gives the FRR

: /—'— -
for the score distribution with varying threshold. The choice of the threshold value

e

__then becomes a problem if the distributions of the genuine and the impostor scores

overlap, as can be found in Figure 3.16. When the score distributions overlap, the
FAR and FRR intersect at a certain point with a value equal for both of them and
this is called the Equal Erm; Rate (EER). Comparison of two biometric systems
using the FAR and FRR is not sufficient to judge its betterment. Since the FAR and

FRR are threshold dependent, a change in its value may cause undesirable result
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Figure 3.15: Determination of False Rejection Rate (Genuine Score)
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Figure 3.16: Estimation of Equal Error Rate (EER) value

and there will be no reasonable way to conclude if a system with a higher FAR and a
lower FRR performs better than a system with a lower FAR and a higher FRR value.
Hence the need for EER which is threshold independent performance measure. The
smaller the EER is, the better is the system’s performance. This in theory works

fine, if the EER of the system is calculated using an infinite and representative test

set, which of course is not possible under real world conditions. To get comparable
: ot possible

B

results it is therefore necessary that the EERs that are compared are calculated on

—tho same test data using the same test protocol.

3.6.2 Matching Approach

In fingerprint matching, the final feature vectors of the test fingerprints are com-

pared with the final features of the database (source) fingerprints to verify whether a

person should be accepted or rejected using matching techniques such as Euclidean
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Distance, Support Vector Machines and many among others. For the purpose of this
work we restrict the study to Euclidean Distance. In this approach, three consecutive

steps are involved thus Euclidean Distance determination of feature vectors. sum of

matched dominant features and finally matching.

1. EUCLIDEAN DISTANCE DETERMINATION: This stage is where the two fingers
features are stored to a single matrix and the feature point of first row matched
with associated feature point of second row using the standard Euclidean func-

tion where in our case is the second norm.

2. SUM OF MATCHED DOMINANT FEATURES: Here the Dominant features are
extracted features obtained by concatenation of the local dominant orientation,
center area and the canny edge parameters after apply the Discrete Wavelet
Transform on the fingerprint ima.gt;. For two fingers dominant features to
be matched, select any one feature from each finger dominant features, and
calculate the similarity of the two features associated with the two referenced
feature points. If the similarity is larger than a threshold, assign value one to

that feature and finally get the sum of that features as one value.

3. MATCHING STEP: This stage uses the elastic match algorithm to decide

whether the two matchm which is based on Euclidean distance

and Sum of matched dominant features.




CHAPTER IV

ANALYSIS OF FEATURE EXTRACTION AND
RECOGNITION

4.1 Introduction

This chapter discusses the data that was used and how the extraction was done
as well as the performance of the proposed method. It also explains the process
involved and a vivid description of how some parameters are evaluated. Subsequent

sections takes care of the detailed analysis to achieving the objectives of the study.

4.2 Source of Data

There are a number of dataset available that captures difficult scenarios that

makes fingerprint recognition harder. Among which are:

1. National Institute of Standards and Technology (NIST)

i

2. Fingerprint Verification Competition 2000 (FVC2000)

3. Fingerprint Verification Competition 2002 (FVC2002)

4. Institute of Automation Chinese Academy of Sciences (CASIA)

5. Fingerprint Verification Competition 2004 (FVC2004)
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Among the listed, FVC2004 database which contains DB1_A, DB2_A, DB3_A and
DB4_A datasets but only DB3_A dataset was used for the thesis. Thirty volunteers
with average age of twenty four was selected at random. This dataset (DB3_A) from
FVC2004 database was established by capturing the fore and the middle fingers of
both the hands (four fingers in total) of each volunteer present and this was done at
three sessions where no efforts were made to control the image quality and the sensor
plates not systematically cleaned. At each section, four impressions were acquired

of each of the four fingers of each volunteer.

1. during the first sessions, individuals were asked to put the finger at a slightly
different vertical position (in impressions 1 and 2) and to alternate low and

high pressure against the sensor surface (impressions 3 and 4);

2. during the second session, individuals were requested to exaggerate skin dis-

tortion (impressions 1 and 2) and rotation (impressions 3 and 4) of the finger;

3. during the third session, fingers were dried (impressions 1 and 2) and moistened

(impressions 3 and 4).

At the end of the data collection, a total of 120 fingers and 12 impressions per finger
— P

(1440 impressions) were gathered. Eight impressions out of the twelve impressions

—ard 110 fingers out of the 120 fingers was selected at random making 880 fingerprint

in all. However, fingers from 1 to 100 with the 8 impressions was kept in one set

and named DB3_A while the fingers from 101 to 110 was kept in another set and

named as DB3_B which was made available for fingerprint competition for parameter

tuning of algorithms. Figure 4.1 shows a display of the 8 fingerprint impressions of

the 100th volunteer.
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Figure 4.1: The eight impressions of the 100th volunteer showing different variance.

4.3 Fingerprint Feature Analysis

With the chosen dataset (DB3_A), a MATLAB (Matrix Laboratory) code was
written using MATLAB2012b-Linux application running on Corbet Pack Machine

with the following specification
1. 1.6 GHz Intel Dual Core (Processor)

2. 2GB of RAM (Memory)

-

3. 320 GB (Hard Disk] & '+ &

“having Ubuntu12.04 installed on it as the Operating System (OS). This MATLAB

code works by

1. first reading the fingerprint image to obtain its matrix representation and resiz-
. | = =

ing it from a resolution of 300 x 480 to a resolution of 256 x 256, since wavelet

1 ] ] sion in the powers of two where in
transform best work on images with dimens! I

DT case is 28 = 256 at both dimensions as In Table 4.1. Here, fingerprint 1_1.tit
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" 0.2902

Table 4.1: Matrix Representation of Fingerprint 1_1.tif

0.3137 0.3137 0.3137 0.3333 ... 0.2902 0.2706 0.2902 0.3137

0.2706 0.3137 0.3333 0.3333 0.3137 --. 0.2902 0.2902 0.3137 0.2706
0.2706 0.3137 0.3137 0.3333 0.3333 -.. 0.2902 0.2706 0.3137 0.3137
0.2902 0.3137 0.3529 0.3137 0.3137 --- 0.3137 0.2902 0.2902 0.2902

| 0.3137 0.2902 0.3333 0.3137 0.3333 0.3333 0.2902 0.3333 0.2902
0.2510 0.3137 0.3137 0.3529 0.3137 --- 0.4157 0.2706 0.1882 0.1647
0:2902 0.2706 0.3137 0.3137 0.3137 --. 0.5020 0.3765 0.2510 0.1020

0.2706 0.2902 0.3137 0.3333 0.2902 - --
0:2510 0.2902 0.3137 0.3838 0.3987%_.
- 0.2510 0.3333 0.3137 0.3137 0.2706

.The application of

will be used to illustrate all the process involved in the data analysis.

A series of test was performed by subjecting the matrix representation of the
fingerprint image to the various wavelet transforms available as show in Table
4.9 with Haar Wavelet inclusive thus fifty two in all at three levels of multi-
resolution which decomposed the matrix in to four sub matries. This contains
the directional characteristics of the matrix, thus, features from the horizon-

tal details, vertical details and diagonal details along with the approximation

— /”"————/—
coefficient. Fiecure 4.2 shows these directional characteristics m the four di-
- o a & I o 4 - ?

rections aforementioned at level one resolution using fingerprint image 1_1.tif.

these family wavelet transforms in image processing pro-

vide a refined ground to directional feature extraction however these features

extracted does not represent the full directional information. Consequently,

these can not be used directly as a feature vector to represent a given finger-

print uniquely hence the need for a feature vector which fully describes in detail

the directional information of the fingerprint image.

938

0.2
0.2!
0.2
0.2
0.2°

0.1
0.1

0.4784 0.4392 0.3333 0.2078 0.1«
0.4392 0.4588 0.4392 0.2902 0.2(
0.4157 0.4392 0.4588 0.3529 0.2



Table 4.2: List of all the Wavelet 'D'ansform Families Used.

S/N | Bi-orthogonal Reverse Bi- | Daubechies | Coiflets | Symlets
Wavelet Family | orthogonal Wavelet
Family

1 biorl.1 rbiorl.1 dbl coifl svym?2
2 | biorl.3 rbiorl.3 db?2 coif2 sg.rmS
3 | biorl.5 rbiorl.5 db3 coif3 sym4
4 | bior2.2 rbior2.2 db4 coif4 Sym5
5 | bior2.4 rbior2.4 db5 coifb sym6
6 | bior2.6 rbior2.6 db6 sym?7T
7 | bior2.8 rbior2.8 db7 sym§
8 | bior3.1 rbior3.1 db8

9 | bior3.3 rbior3.3 db9

10 | bior3.5 rbior3.5 db10

1 Nbiora. 7 rbior3.7

12 | bior3.9 rbior3.9

13 | bior4.4 rbior4.4

14 | bior5.5 rbiord.5

15 | bior6.8 rbior6.8

of the wavelet transform at level one of reso-
is the Approximation and Diagonal
| and Vertical Details

Figure 4.2: Directional characteristicg
lution of fingerprint 1_1.tif Row one

Details whiles Row is the Horizonta
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3. To address this problem at hand, the Gaussian gradient in the x and y direction

thus G? d GY in Fi i
mn @0d G7 - as shown in Finger 4.3 respectively are used to produce the

angle (orientation) of the features thus 6,,, as in Finger 4.4

Figure 4.4: Orientation of the fingerprint after extracting the Gradient in the x and

y direction

4. The magnitude of the-gradient (Gpn) along with the coherence (3mn) as in

Figure 4.5 and Figure 4.4 respectively, are applied to the wavelet directional

foatures extracted to generate the local dominant orientation (6) as formulated

in Section 3.5 .

These matrix images, thus the coherence and the local dominant orientation,

contains some vital information which can be used to represent a fingerprint

uniquely and these features are:

(a) correlation
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Figure 4.5: Magnitude of Gradient of the fingerprint

Figure 4.6: Coherence image of the fingerprint after applying reverse bi-orthogonal

wavelet 3.1 =




. W e ——

(b) energy
(c) homogeneity and

(d) contrast

as defined in Equation 3.5.52 , Equation 3.5.53, Equation 3.5.55 and Equation
3.9.94 respectively. Table 4.3 gives a display of these unique features extracted
from the coherence and the local dominant orientation matrix of the approx-
imation coefficient image with fingerprint 1_1.tif as an example at one level
resolution using the reverse bi-orthogonal wavelet 3.1 whiles Table 4.4 gives
that of reverse bi-orthogonal wavelet 3.9 and finally, Table 4.5 represent the
unique features using reverse bi-orthogonal wavelet 4.4. These wavelet men-
tioned was not selected at random but was chosen according to performance.
They prove to be good by providing significant result among the many family

wavelet considered which will be further explained in Section 4.4.

Table 4.3: Unique feature vector from local dominant orientation and coherence ma-
trix using reverse bi-orthogonal wavelet 3.1

Contrast Currelﬂtilz}n - 1 HTTHGB'-‘UE;T.\’ ' : 1 ] E"ETE}'l 1
U.T{:’ﬂ? ﬂ.???ﬁd U.?{':"_!_l{i- D.T['E]H'I [}.i}%{lﬁ ﬂ.ﬂ[j]l?ﬂ 0.0205 I].U{?fiﬂ EJ.?iZ‘H E'}.TlHEF D.?‘fﬂ{] U.?;EIJ] D.Ei}fi? {}.2;]4{} ﬂ.?lljl?ﬁ ﬂ.?;]d?
0.3{31'24 n.sgzg_._ﬂ;;m u.sL;mi [1.0?2@_,;&5&18"@%5' 0.0106 {1,?112? {].T:]ﬁ:} n.?ln?g ﬂ.?1103 {].I;JE:.'] u.1195u u.1195? n.11939
H.EJ[]II.E? ﬂ.B[;.‘JE ﬂ.ﬂ?i?ﬂ l‘l.ﬂ{-;!]ﬁ {].ﬂ?iﬁ-i {}.1[3}16 U.{]UEEE -U.{?ﬂﬁl 0.7120 | 0.7073 | 0.7010 | 0.6955 | 0.1764 | 0.1741 | 0.1712 | 0.1752

-—

_.-—l—"'_"-.

Table 4.4: Unique feature vector from local dominant orientation and coherence ma-
trix using reverse bi-orthogonal wavelet 3.9

=2 Energy
= Homogeneity
Contrast 5 (uﬁorrela 5 0 1 ],, ! . iﬂl [|21143 ﬂ'}:JE-“I (}9:]54 []_211]26
S ﬂ : 0738 [ 0.0257 | 0,038 | 0.7210 | 07153 [ 0.7223 | 071 = T Al 1
7751 | 0.7801 | 07838 | 0.7720 | 0. L - 0 I 1 : - 5102005 [ 0.1961
0 0 L £ g 0437 [ 0.0421 | 0.0283 | 0.7135 | 0.7166 D.7200 [ 0.7123 | 0.1976 | 0.19 .-l 5
0.8071 | 0.7920 | 0.8003 | 0.8041 D.HSET U-D — 5 1 1 1 1953 mlss:; ; 11133., 01553 101864
{15%34 ug[:m ug%zn nul:laaﬁ 5499 | -0.00431 | 0.0730 | -0.0467 | 0.7028 | 0.7048 | 0.7133 0.6

As could be seen from Table 4.3, the odd rows represent the features from the
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l Table 4.5: Upique feature vector from local dominant orientation and cohérence ma-
t trix using reverse bi-orthogonal wavelet 4.4

| Contrast Correlation Homogeneity Energy
0 0 0 0 0 0 0 0 1 1 1 1 1 1 &1 1
0.7743 | 0.7803 | 0.7766 | 0.7725 [ 0.0147 | 0.0044 | 0.0123 | 0.0139 | 0.7203 | 07163 [ 0.7206 0516 0.2068 | 0.2049 | 0.2077 | 0.2044
! 0 0 0 0 0 0 0 0 1 i ] A p o
0.8319 | 0.8017 | 0.8244 | 0.8099 | 0.0053 | 0.0350 | 0.0138 | 0.0255 | 0.7145 | 0.7145 | 0.7143 | 0.7091 [0.1670 101651 151663 T o 666
l 0 0 0 0 0 0 0 0 1 1 1 1 1 | 1 |
t 0.9676 ) 0.9093 | 0.9838 | 0.9633 [ 0.0262 | 0.0552 | -0.0109 | 0.0037 | 0.7034 | 0.7048 | 0.6961 | 0,688 [ 01756 {01767 (01773 01743
|

nant orientation matrix. For each feature say correlation, four values are generated by
looking at the coefficient image (coherence and local dominant orientation) at differ-
ent offsets (angles) thus 0°, 45°, 90° and 135° of the Gray Level Co-occurrence matrix
| (GLCM). The same explains the content of Table 4.4 and Table 4.5. The Gray Level
i Co-occurrence Matrix (GLCM) as mentioned was evaluated by calculating how often
a pixel with gray-level (grayscale intensity) value 7 occurred horizontally adjacent to
a pixel with the value ;.

In this work, GLCM at angles (offsets) of 0°, 45°, 90° and 135° were taken into
| account in order to make the features tf) _be extracted from the fingerprint image
more invariant and robust to rotation. These features extracted from a particular

fingerprint image form the feature vector, where in this illustration we chose again

fingerprint 1_1.tif as an example. The standard deviation and the threshold values

—

F was also extracted from-the wavelet decomposed fingerprint image, which represent

the edge parameters as shown in Table 4.6, 4.7 and 4.8 llSiIlg the reverse bi—Dl‘thDgDnﬂl

]
f I

wavelet 3.1, 3.9 and 4.4 respectively.

Table 4.6: Threshold and standard deviation of the edge detector using reverse bi-

let 3.1 Y
' orthogonal WevEs Threshold Values | Standard Deviation
Approximation | 0.1 188 [ 0.2969 0. 32392
Horizontal 0.1125 [ 0.2812 0', =
Vertical 0.1188 0.296? O.jg?s
Diagonal 0.1250 | 0.3125 0.
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Table 4.7: Threshold and standard deviation of t

he edge detector using reverse bi-

orthogonal wavelet 3.9
Threshold Values | Standard Deviation
Approximation [ 0.1188 [ 0.2969 0.5590
Horizontal 0.0375 | 0.0938 0.2322
Vertical 0.1000 | 0.2500 0.2697
Diagonal 0.0625 | 0.1562 0.2727

Table 4.8: Threshold and standard deviation of the edge detector using reverse bi-

orthogonal wavelet 4.4
Threshold Values | Standard Deviation
Approximation | 0.1250 | 0.3125 0.7215
Horizontal 0.0438 | 0.1094 0.1464
Vertical 0.0813 | 0.2031 0.1763
Diagonal 0.0625 | 0.1562 0.1090

As usual, the columns, one and two of Table 4.6 represent the threshold values
of the approximation coefficient, horizontal details, vertical details and the diagonal

details of the decomposed fingerprint using reverse bi-orthogonal wavelet 3.1 whiles

- the last one is the standard deviation. The same holds for Table 4.7 and Table 4.8
using reverse bi-orthogonal wavelet 3.9 and 4.4 used respectively.
Finally, a region of 16 x 16 sized image is cropped from the wavelet decomposed

fingerprint hﬂage around the point at which the maximum variance is detected in

—_—

both the row and column. Features as extracted from the coherence and dominant

—Sientation is also extracted from this cropped image, constituting the final stage of

the feature extraction. Below are the tabular representation of the features extracted,

Table 4.9 represent features from reverse bi-orthogonal 3.1, Table 4.10 for reverse bi-

orthogonal wavelet 3.9 and Table 4.11 for reverse bi-orthogonal wavelet 4.4 in that

order.

F h of the 800 fingerprint 1mage, the features extracted from level one of
or each of t

o form a row vector. The same is done at level two

resolution are concatenated t

104



Table 4.9: Feature vector representation of the
orthogonal wavelet 3.1

B | L Cont rast Correlation
;\,ppru_xmmlhnﬂ | .Bi'ﬂﬂ 16,6222 | 13.1333 | 9.8267 | 0.8877 -0.0038 | 0.2117 [0.4060 | 0.7717 0.4370 | 0.5000 | 0.5610 | 0.2202 [ 0.0901 | 0.1060 | 0.1274
Horizontal 2.37 ﬁ_l']- IT.I‘}E-I-I 1 fi.ﬂl'lﬂ 12,0644 | 0.8307 |-0.2667 -0.1810 | 0.0396 | 0.7923 [ 0.5135 0.5321 | 0.5602 ﬂ‘33ﬂ7 {}‘ 1743 l]‘] 865 D-IQQ‘Z
\Tﬂtk‘n] 15.88 .'. 5 | 18.7689 | 74083 | 6.2400 |-0.1988 -0.4344 | 04224 | 0.5247 [ 0.5296 [ 0.4133 0.6456 | 0.6898 ﬂ:l?l& ﬂ'lﬂﬂ.'i {]-22'?9 ﬂ.?ﬁlﬂ
Dmgml.nl 14.2375 | 6.1511 | 11.0583 | 12.3827 -0.0705 | 0.5087 | 0.1031 | 0.0048 0.5632 | 0.7149 | 0.6298 | (.5G18 0.1870 1]:"..’5'?4 {I:?54ﬂ U:IB?ﬁ

center area using the reverse bi-

Homogeneity Energy

Table 4.10: Feature vector representation of the center area using the reverse bi-
orthogonal wavelet 3.9

Contrast Correlation Homogeneity Energy
Approximation | 1.8542 | 15,9644 | 12.8667 | 9.9289 | 0.8905 | 0.0702 0.2534 | 0.4191 | 0.7745 [ 0.4563 | 0.5090 | 0.5595 | 0.2192 | 0,0936 0.1065 | 0.1253
Horizontal 24208 | 9.8544 | 9.9375 | 9.0311 | 0.6920 | -0.2575 | -0.2686 | -0.1346 0.7622 | 0.5622 | 0.5743 | 0.5946 | 0.3269 | 0.1714 | 0.1768 | 0.1966
_".'m ical 6.0058 59867 | 2 ‘Tfll_| 1.2356 | -0.2459 | -0.2438 | 0.3650 | 0.1200 | 0.6338 | 0.6324 | 0.7566 | 0.7185 0.2424 | 0.2435 | 0.3547 | 0.3175
Diagonal 74202 | 41111 | R SU42 | 4.1911 | -0.2660 | 0.3044 | -0.3875 | 0.2907 | 0.5261 | 0.6718 | 0.4905 | 0.6542 0.1341 | 0.2207 | 0.1199 | 0.2104

Table 4.11: Feature vector representation of the center area using the reverse bi-
orthogonal wavelet 4.4

_{ ‘ontrast Correlation Homogeneity Energy

Approximation | 36375 | 208480 [ 175333 [ 138178 | 0.8122 [ -0.0634 | 0.1052 | 0.2936 | 0.7885 | 0.4681 | 0.5271 | 0.5863 | 0.2600 | 0.1285 | 0.1380 | 0.1523
Horzontal 1.2553 :a-.=.f.k"t"‘q‘{EE‘J'F1 29156 | 0.4589 | -0.1736 | -0.2483 | -0.2055 | 0.8105 | 0.6770 | 0.6649 | 0.6756 | 0.4057 | 0.2827 | 0.2770 | 0.2762
Vertical 17583 | 16880 | 15067 | 10022 | -0.0760 | -0.0259 | 0.0356 | -0.1565 | 0.7244 | 0.7257 | 0.7433 | 0.7225 | 0.3155 | 0.3192 | 0.3301 | 0.31%4
Diagonal 1.2000 | 1.0756 | 1.2917 k'I-IT"J.'nﬁ -0.1240 | 0.0371 | -0.2016 | 0.4670 | 0.7712 [ 0.7904 | 0.7576 | 0.8626 | 0.3928 | 0.4035 | 0.3785 | 0.4923

and level three of resolutions. All these three feature vectors represent a particular
fingerprint image uniquely which is stored and used for recognition purpose.

Any fingerprint recognition system typically returns a matching score on the basis
of similarity between the input (test) and the database (template) image which is
based on the Euclidean distance. The smaller the value is the more certain it 1s that

the two fingerprint images come from the same individual. A fingerprint recognition
system have two types of errors thus:
— /,.-"'"'"—_-_

1. Two different fingerprint image seen as the same (called false match or false

__._.-.-"'-

acceptance) and

2. Two same fingerprint image seen as different (called false non-match or false

rejection).

There are two ways for testing the system performance which are mostly used as per

the FVC2004 Protocol. Firstly, total genuine attempts are measured by comparing

ts remaining versions and the second method is measuring

each fingerprint image to I
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total impostor attempts which are measured by comparing the first impression of
each fingerprint image to the first image of all remaining impression of different
fingerprint leading to a total of 2800 genuine attempts and 4950 impostor attempts
respectively. The ratio of the number of false match to the impostor attempts is
called False Acceptance Rate (FAR) while the number of false non-match to the
genuine attempts is called the False Rejection Rate (FRR). Both FAR and FRR are
dependent on each other and there is a trade-off between them (Maio and Maltoni.
1997) which measures the Equal Error Rate (EER). However, this EER can be
estimated from the plot of False Reject Rate (FRR) and False Acceptance Rate
(FAR) against all possible values of thresholds. The smaller the value of EER is as

compared to other recognition system, the more efficient recognition system will be.

4.4 Analysis of Fingerprint Recognition

The expectation of an increase in recognition rate as well as best choice of mother
wavelet using %FAR and %FRR as performance indicators is highly dependent on the

nature of the feature vectors extracted and how they are used for recognition. Tables

4.3 -4.11 a,sfgiscussed aw&a summary of all the needed features extracted,

however, the organization of these features was not discussed. This organization is
)

i ontain the uniqueness of a particular fingerprint image

very important since they c

and also.guide us on how the threshold should be set to make the recognition system

more robust.

In this work. the organization of the total extracted features was categorized into
3 o

three main groups base on the level of resolution. Hence, each level contains exactly

108 feature values after feature concatenation and since a three level of resolution

was applied to the fingerprint image, a total of 3 x 108 = 324 was expected for each
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fingerprint impression. Using Figure 4.7 - 4.9 as a case study, it could be noted that

- each figure has in all three graphs marked as red, blue and black.

e

- =

Al | —atrwes &
% | | =
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Figure 4.8: Level two feature extration using reverse bi-orthogonal wavelet 3.1

The red and blue are representation a plot of the feature vector from the same

fingerprint image where in this example, finger 1_1.tif and 1_2.tif was considered. The

rprint image thus finger 2.1.tif not belonging to the same

black one is a different finge
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Figure 4.9: Level three feature extration using reverse bi-orthogonal wavelet 3.1

class of image. It is expected that, graph of the same image (i.e red and blue) should
coincide with each whiles the different image (i.e black) should disassociate itself from
the graph, but unfortunately, this is not so which is due to the inconsistency which
was intensional introduced into the dataset (i.e DB3.A) provided so as to test the
efficiency and robustness of the recognition system. From the figures, it is difficult to
tell which fingerprint image belong to the same class with the eye, hence the need for
a better way to do that with the help of computer vision. Since the dataset is very
noisy, recognition of an-authorized user from an unauthorized user is accomplished by
== - e ' '
setting three criteria for which each fingerprint image must be tested against. This
_is-done by ensuring that, the differences between the test image and the template

image at level one, two and three against the predefined threshold is satisfied before

accepting it as an authorized_used otherwise is tag as an unauthorized user. The

same is true when using the reverse bi-orthogonal wavelet 3.9 and 4.4 as shown In

Figure 4.10 - 4.12 and Figure 4.13 - 4.15 respectively.

The performance parameters such as FAR, FRR and TSR for the various mother
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Figure 4.10: Level one feature extration using reverse bi-orthogonal wavelet 3.9
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Figure 4.12: Level three feature extration using reverse bi-orthogonal wavelet 3.9
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Figure 4.14: Level two feature extration using reverse bi-orthogonal wavelet 4.4
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Figure 4.15: Level three feature extration using reverse bi-orthogonal wavelet 4.4
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wavelets employed based on the extracted feature vectors are computed as shown in
Table 4.12, 4.13, and 4.14 respectively. It is observed that the FAR increases whiles
the FRR decreases as the threshold value increases since they are dependent and this

happens to be a well known fact established from the theoretical point of view. The

Table 4.12: FAR, FRR and TSR for various threshold values using the reverse bi-
orthogonal wavelet 3.1

Threshold | % FAR | % FRR | % TSR
12 1V N 76.25 | 23.75
15 002 | 53.75| 46.25
18 0.10 | 3321 | 66.79
21 063 | 17.64 | 82.36
24 2.06 9.00 | 91.00
27 5.13 464 | 95.36
30 1168 | 232 | 97.68
33 4 21479 00.86. | 99.14
36 33.47- | 0.39 | 99.61
39 47.07 | 011 | 99.89
42 61.66 | 0.04 | 99.96
45 7366 | 0 100
48 82.48 0 100

variations of FAR and FRR with different threshold values as shown in Figure 4.16,
4.17 and 4.18 gives the graphical view of the data found in Table 4.12, 4.13 and 4.14

displaying t'h;-IEER valwmrrespanding to the variable y and the threshold

value corresponding to the x variable. It is found that the EER value for Figure 4.16

“in u orthogonal mother wavelet 3.1 as indicated on the graph is

in using the reverse bi-

0.04643 which is 4.64% and that is the value at which the FAR and FRR becomes

equal and this happen at a threshold value of 27 as represented with the x-variable

shown on the graph. This mother wavelet used to generate the value of EER as per

Table 4.12 yields a total success rate (TSR) of 95.36%.
rse bi-orthogonal mother wavelet 3.9. an EER value of 0.0575

4.17 and this occurred at a threshold value

In using the reve

thus 5.75% is noted as found on Figure
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Figure 4.16: Graph of variation of FAR and FAR using rbio3.1 wavelet.

of 24 giving the total success rate of 94.25% as could be seen from Table 4.13

Perfornance ofrbio3.9
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— e H
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=]
.

70 80 9 100

Figure 4.i;araph of VMR and FAR using reverse bi-orthogonal 3.9
| wavelet.

__..f..-,.

Again, in the application.of the reverse bi-orthogonal mother wavelet 4.4 in this

experiment, an EER value of 0.05464 thus 5.467% was achieved at a threshold value

of 26 as depicted in Figure 4.18. A total success rate from Table 4.14 reveals a value

of 94.54%. From the analysis above, it is seen that the mother wavelet named reverse

bi-orthogonal wavelet 3.1 which in short is rbio3.1 produced a better recqgnition rate
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Table 4.13: FAR, FRR and TSR for various threshold values using reverse bi-
orthogonal wavelet 3.9

Threshold | % FAR | % FRR | % TSR
12 0 68.61 31.39
15 0.02 45.07 04.93
18 0.53 25.54 74.46
21 2.34 12515 87.89
24 6.73 5.75 94.25
27 14.81 2.64 97.36
30 b 25.47 1.32 08.68
33 38.08 0.54 99.32
30 51.23 0.18 99.82
39 62.95 0.04 99.96
42 ' 73.13 0 100
45 81.92 0 100
48 87.86 0 100

Table 4.14: FAR, FRR and TSR for various threshold values using reverse bi-
orthogonal 4.4 wavelet.

Threshold | % FAR | % FRR | % TSR
12 0 62.68 | 37.32
: T 14.64 | 55.36
- /ilg’f 020 | 2854 || 71.46
21 105 | 1604 | 83.96
— 24 3 871 | 91.29
26 5.58 546 | 94.54
30 16.46 | 1.96 | 98.04
33 9776 | 1.00 | 99.00
36- 1904 | 046 | 99.54
39 7646 | 0.18 | 99.82
42 6992 | 011 | 99.89
45 7935 | 0.04 | 99.96
48 86.48 0 100
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of 95.36% as compared to the other wavelet functions used. By this proceeds, we
are prone to accepting 5.14% of the impostors whiles rejecting 4.64% of the genuine
candidate so as to commit a minimal error of 4.64% which is the trade-off (EER).
Table 4.15 - 4.21 gives a summary of all the wavelet families used in this thesis sorted
in ascending order of performance. From the summary, mother wavelet Reverse Bi-
Orthogonal 3.1, Reverse Bi-Orthogonal 4.4 and Reverse Bi-Orthogonal 4.4 gives a
better result on performance, hence, for convenience sake we explained only such ones

fully in this thesis however these process applies to.the rest of the wavelet families

not discussed here.

Performance ofrbiod.d
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Figure 4.18: Graph of variation of FAR and FAR using reverse bi-orthogonal 4.4

— wayvelet.

Table 4.15: Summary of Families of Mother Wavelet used with their corresponding

EER values = M4 [RBIO24 | RBIO22 | DB6
bt B104.4 | RBIO3.9 | BIOR3.1] S . :
WAVELET NAME RB;‘;S'I L == = o1 5456 | 2238 | 2334 | 23.88
Liisaadl =1 005464 | 0.0575_| 0.05812 | 0.06104 | 0.06187 | 0.06222 [0.06442
(3] -
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Table 4.16: Summary of Families of Mother

Wavelet used with their correspondin
EER values (Continued) )

WAVELET NAME | BIOR3.5 | RBIO35| DBS BIOR2.6 | BIOR5.5 | BIOR3.9[ DB9 | RBIO2.6
THRESHOLD 25.18 23 24 25.81 19.19 25.38 23.75 24.04
EER 0.0646 0.065 | 0.06536 | 0.06595 0.066 0.06605 | 0.06631 | 0.06656
7EER 6.46 6.50 6.54 6.60 6.60 6.61 6.63 6.66

Table 4.17: Summary of Families of Mother Wavelet used with their corresponding
EER values (Continued)

WAVELET NAME | BIOR3.3 | RBIO3.7 [ DB10 | COIF1 | RBIO2.8 | SYM7 | COIF5 | BIOR3.7
THRESHOLD 23.87 24 24.66 24 22 47 23 25.05 24.14
EER 0.06706 | 0.06714 | 0.06744 | 0.06893 | 0.06994 | 0.07047 | 0.07111 | 0.07163
Z%EER 6.71 6.71 6.74 6.89 6.99 7.05 7.11 7.16

Table 4.18: Summary of Families of Mother Wavelet used with their corresponding
EER values (Continued)

WAVELET NAME | BIOR2.4 | RBIO6.8 | COIF4 | DB2 | RBIO5.5 | COIF2 | BIOR1.3 | SYM5
THRESHOLD 25.25 25 24. 72 | 23.83 26 23.9 24.42 23.34
EER 0.07181 | 0.0725 [0.07261 | 0.07285 | 0.07286 | 0.07324 | 0.07331 | 0.07285
%EER 7.18 7.25 7.26 7.29 7.29 7.32 7.33 7.41

Table 4.19: Summary of Families of Mother Wavelet used with their corresponding
EER values (Continued)

WAVELET NAME | BIOR2.2 | SYM2 | BIOR1.5 | DB7 SYM6 DB4 | RBIO1.3 | BIOR2.8
THRESHOLD 25.14 23.73 24.81 23.78 24 23.44 22.39 24.91
EER 0.07446 | 0.0751 | 0.07541 | 0.07543 | 0.07561 | 0.07607 | 0.07677 | 0.07688
%EER 7.45 7.51 7.54 7.54 7.56 7.61 7.68 7.69

-

Table 4.207 Summary of Families of Mother Wavelet used with their corresponding
EER values (Continued)

WAVELET NAME [ RBIO1.1 | SYM3 | SYMS8 DB3 | COIF3 | DB8 | HAAR | RBIO1.5

T ‘ 23.61 23.36 23.11 22.16
THRESHOLD 23.2 24.34 28 23.34
EER 007778 | 0.07785 | 0.07786 | 0.07789 | 0.07874 0.07923 | 0.07966 | 0.08045

7EER 7.78 7.79 7.79 7.79 7.87 7.92 O 8.0

Table 4.21: Summary of Fan;ilies of Mother Wavelet used with their corresponding
EER values (Continued)

WAVELET NAME | DBl BIOR4.4 | BIOR6.8 | BIORL.1 | RBIO3.3
THRESHOLD 23 22.07 23.62 22.93 24
EER 008214 | 0.08222 | 0.08333 | 0.08338 | 0.08357
“WEER 8.12 8.22 8.33 8.34 8.36
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4.5 Analysis of Choice of Threshold

Thresholding as it stands in fingerprint recognition plays an important role and
this is a predefined value used in determining whether a particular fingerprint (test
data) matches any know fingerprint in the template database. This decision is based
on calculating the Euclidean distance (norm,) between the test data and the tem-
plate database. When the distance value is less the set threshold then the test data
is deemed to be found in the template database and this information in totality helps
in evaluating the FAR and the FRR. Many are the choice of defining the threshold
range to be used for performance analysis but the most commonly used once are
base on the dispersion of distance values, while evaluating the Euclidean distance
by choosing the minimum and maximum distance value found. However, this values

when greater than 100 can be normalized so they range from zero to hundred.

In this work, since the dispersion of distance remains in the domain of zero to
hundred. we chose to use the full range as shown in Table 4.22. The point at which
the %FAR equals the %FRR which determines our %ERR is captured that form

the basis in analysis the performance of a fingerprint algorithm. This value must be

-

Table 4.22: Comparison between the three selected mother wavelet.

Wavelets Name | Threshold | % FAR | % FRR % TSR | % ERR
R rbio3.1 27 5.13 464 | 9536 | 4.64
rbio3.9 24 6.73 5750 oA 25N s 75
rbiod.4 26 5.58 546 | 9454 | 5.46

small as possible and from the table, the reverse bi-orthogonal mother wavelet 3.1

proved to be the best with a threshold value of 27 with recognition rate of 95.36%.

Hence the value of 27 serves as the best threshold to minimize to the barest minimum

the error committed in the FAR and FRR whiles maximizing the recognition rate.
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4.6 Comparison with Related Work

In other to prove the efficiency of our method as compared to other related works.
a comparison was made as shown in Table 4.23. In the table, the mathematical
algorithms were abbreviated by the taking the first alphabet of the authors last
name. Since performance of algorithm is based on EER (Equal Error Rate) value,
out proposed method happens to perform significantly compared to the minutia
based system proposed. At this point, it should be noted that, such comparison

Table 4.23: Experimental Results on Database DB3_A of FVC2004
MATHEMATICAL ALGORITHM l EER VALUE

YJ (Jiang and Yau, 2000 24.5
PN (Parziale and Niel, 2004 19.7
WLC (Wang et al., 12.0
QYW (Qi et al., 2005 96
| TK (Tico and Kuosmanen, 2003 7.1
M3gl (Medina-Perez et al., zo_f'ln o1 ':l

Proposed Method | 46 |

can only be done if those you competing with used the same dataset from the same
database. In our case, the dataset is DB3.A from FVC2004 database. Hence, we

are comfortable to say our method performs better even to the extent that those

which we claim do nu['i;'efrform b;tw this reverse bi-orthogonal wavelet 3.9 ad 4.4
_produces a minimal EER values making it efficient to the existing system (Minutia

base).




CHAPTER V

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

This thesis proposes a fingerprint recognition technique using a wavelet based
texture pattern recognition method. It was observed that fingerprint captured from
different scanners will not be a problem in fingerprint recognition using the proposed
method. The Discrete Wavelet Transform (DWT) used in extracting the associated
statistical properties or features in fingerprint such as Directional Information, Cen-
ter Area with Edge parameters from all the four sub band provides a much more

substantial Tesult with less computational time since no preprocessing was required

S

as is the case of minutiae based systems.

— It was also observed that the directional resolving power of wavelets extracts the

texture information in Horizontal, Vertical and Diagonal directions of the fingerprint

] i i on leads to an increase in the performance
images and the use of this texture information

rate. The use of multi-resolution, compactness and de-noising property of wavelets

makes it useful in fingerprint recognition system. We conclude by emphasizing that

using reverse bi-orthogonal wavelet transform helps in increasing the recognition rate

compared to the existing system.
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5.2 Further Work

There are number of research in pattern recognition that uses wavelet transform
leading to new research area where more and new wavelets are been constructed to
solve specified problems that facades the accuracy fetching good properties to aid in
recognition process. Although a better result has been achieved in using this wavelet

transform, there is still more to be done by considering different views and scenario.
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