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ABSTRACT 

 

This research work presents a case study of the optimal visitation of Base Transceiver Station 

(BTS) site in a mobile communication network. The main objective is to formulate a 

mathematical model that takes into consideration the actual distances between the twenty four 

(24) BTS Site. Also to determine the optimal route for visiting the entire twenty four (24) BTS 

Site within the New Juabeng Municipality to minimize travelling cost, time and distance for 

Vodafone maintenance Engineers and entire sub-contractors working on the BTS sites. The 

problem is formulated as an Integer Programming Model and solution is presented via the 

simulated Annealing Algorithms based Meta-heuristic for the Travelling Salesman Problem. 

Data on distances were collected from potential length Between the BTS and with a Matlab 

implementation codes, results are obtained. In comparison with the existing routing system at 

Vodafone Network the results evince the outperformance of the simulated Annealing algorithm 

in terms of efficiency. In fact, the simulated Annealing results reveal a tremendous improvement 

in the total route length by approximately 45%. 
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CHARPTER ONE 

1.0 INTRODUCTION 

Overview of Telecommunications in the Ghana 

The first telegraph line in Ghana (then known as the Gold Coast) was a ten mile link 

installed in 1881 between the castle of the colony, then governor in Cape Coast and 

Elmina. The line was then extended to Christiansburg Castle near Accra, which became 

the seat of government, and later extended still further to Aburi, 26 miles outside Accra.  

In 1882, the first public telegraph line stretching over a distance of 2.5 miles, was erected 

between Christiansburg and Accra. Between 1887 and 1889, these telegraph lines were 

extended to cover Accra, Prampram, Winneba, Saltpond, Sekondi, Ankobra, Dixcove, 

and Shama. All colonial castles or fort towns as well as commercial ports and fishing 

centers. In 1886, telegraph lines were extended to the middle and northern parts of Ghana 

into the territory of the Ashantis.  

In order to improve communications in the southern part of the country, the first manual 

telephone exchange (70 lines) was installed in Accra in 1892. Twelve years later, in 

1904, a second manual exchange consisting of 13 lines was installed in Cape Coast.  

Ghana‟s telecommunications infrastructure was laid down and expanded by the colonial 

administration mainly to facilitate the economic, social, and political administration of 

the colony. In 1901, for example, the Ashantis were brought under British colonial rule, 

and telegraph lines were accordingly extended from Accra to the capital of the Ashanti 
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Kingdom and beyond. By the end of 1912, 1,492 miles of telegraph lines had been 

constructed to link forty-eight telegraph offices spread throughout the country. Before the  

beginning of World War I in 1914, 170 telephone subscribers had been served in Ghana, 

but it was between World War I and 1920 that the backbone of the main trunk telephone 

routes--Accra-Takoradi, Accra-Kumasi, Kumasi-Takoradi, and Kumasi-Tamale--was 

built using unshielded copper wires. By 1930, the number of telephone exchange lines in 

Ghana had grown to 1,560, linking the coastal region with the central and northern parts 

of the country.  

Due to the depressed global economy of the 1940s, there was little or no growth in 

telecommunications in Ghana during and immediately after the Second World War. 

Nevertheless, during that period carrier equipment (1+1) was installed on the Accra-

Takoradi, Accra-Kumasi, Kumasi-Takoradi, and Kumasi-Tamale physical trunks. These 

were later augmented with carrier equipment (3+1), thus increasing the trunks connecting 

these towns threefold.  

In 1953, the first automatic telephone exchange with 200 lines was installed in Accra to 

replace the manual one erected 63 years earlier. Three years later, in 1956, the trunk lines 

connecting Accra, Kumasi, Takoradi, and Tamale were upgraded through the installation 

of a 48- and 12-channel VHF network. The attainment of independence by Ghana in 

1957 brought new dynamism to the country's telecommunications development. A seven-

year development plan launched just after independence hastened the completion of a 

second new automatic exchange in Accra in 1957. By the end of 1963, over 16,000 

telephone subscribers and 32,000 rotary-type telephones were in use in Ghana.  
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Due to the rapid growth in commercial activities in mining, timber, cocoa, shear butter, 

and the like in outlying parts of the country, new manual exchanges were installed at 

Cantonments, Accra, Swedru, Koforidua, Ho, Tamale, Sunyani, and Kumasi during the 

post-independence years. The installed exchanges were Strowger (step-by-step) and 

PhilipUR49 Switch. The management of Ghana‟s telecommunication institutions was 

initially assigned to the Public Works Department but was transferred to the post office 

following the enactment of the Post Office Ordinance in 1886. Telecommunications was 

later administered by the government's Post and Telecommunications (P&T)  Department 

until the early 1970s. 

A new chapter in the development of Ghana's telecommunications system began in 

November 1974, when the Post and Telecommunication Department was declared a 

public corporation by National Redemption Council Decree No. 311. The department 

was placed under the authority of the Ministry of Transport and Communication, which is 

still responsible today for policy formulation and the control of Ghana‟s 

telecommunications sector. (Akorli & Allotey, 1999) 

In 1975, the P & T contracted loans from many multilateral and bilateral financial 

institutions in order to undertake a number of development projects to modernize and 

expand both national and international telecommunication services in Ghana. 

Even though the project suffered delays due to changes in government, economic 

recession and other factors, it was completed in 1985. As part of Ghana‟s long-term 

telecommunication development program, a Second Telecommunication Project (STP) 

with an eight-year time frame was initiated in 1987. This project was intended to provide 
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further rehabilitation, modernization, and expansion of the telecommunications facilities 

not covered by the FTP, as well as, the restructuring of the P & T. 

The components of the STP were as follows:  

(i) Expansion of the microwave transmission network and provision of coast station 

facilities at Tema for maritime telecommunication services;  

(ii) Rehabilitation and expansion of Ghana‟s switching network in thirteen urban centers 

and twenty-six rural communities;  

(iii)  Rehabilitation and expansion of the external cable network to match the switching 

component described above;        

(iv)  Rehabilitation of Ghana‟s satellite earth station;  

(v) Provision of 330-line international telephone switch and a 1,000-line telex switch;  

(vi)  Procurement of subscriber terminal equipment, spare parts, vehicles, and personal 

computers; and separation and restructuring of the P & T into two entities. 

The impact of the completed portion of the STP on telecommunication services in Ghana 

was modest but appreciable between 1986 and 1990. There was 20% growth in 

subscription. . In addition, the number of direct exchange lines in working order 

increased from 60 % in 1987 to 89 % in March 1992. Also the availability since October 

1988 of international direct dial service In twelve (12) exchange areas resulted in the 

promotion of international business and trade. The number of international satellite 

circuits also grew--from 41 satellite circuits in 1988 to 193 satellite circuits and 84 

terrestrial circuits in 1992 (World Bank Project Report, 1995).  
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At the end of 1992 the project had introduced AT&T direct service; airlines became 

capable of making reservations through SITA (Societé International Telecommunication 

Aeronautique) facilities; a meteorological department was created to send meteorological 

and seismological data from various locations throughout Ghana to Accra; and press 

agencies/news houses, commodity markets, and financial institutions gained increased 

information and data transfer capabilities for transmission to and from the outside world. 

Other benefits of the completed project were the capability of the Ghana Broadcasting 

Corporation (GBC) to transmit voice cast (radio commentary) and live television 

telecasts via satellite and simultaneous TV transmission from all GBC transmitters in the 

country. 

Despite the achievements of the STP, Ghana's telephone density, in 1994, (0.31 per one 

hundred inhabitants), is still among the lowest in Africa. Typical telephone densities for 

other African nations include 9 % for Libya, 1.3 % for Zimbabwe, 0.5 % for the Ivory 

Coast, 0.33 % for Togo, 0.2 % for Nigeria, and 0.1 % for Burkina Faso. The enormity of 

the task facing Ghana and other African nations attempting telecommunications 

modernization becomes apparent when African telephone density rates are compared to 

those of selected nations in Europe and Asia: 62.4 telephones per one hundred inhabitants 

in Sweden, 43 in the United Kingdom, 42 in Japan, 41 in France, and 8 in Malaysia, 

(Akorli and Allotey, 1999). 

The deregulation of the telecommunication sector by the Government of Ghana in 1987 

saw the emergence of private companies in the sector. By 1992, about forty telephone 

companies were in operation, including a local cellular company and a paging company. 
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Other companies supply, install, and maintain terminal equipment such as facsimiles, 

telephones, Private branch exchange and Private automatic branch exchange (PBX, and 

PABX). In spite of the improvements that resulted from this development, 

telecommunications in Ghana was still extremely inadequate. In 1995, only 37 of the 110 

administrative districts of the country had telephone exchange facilities, and there were 

only 35 payphones in the entire country with 32 in Accra, (Salia, 1995). 

In 1995, the Post and Telecommunications Corporation was split into two autonomous 

divisions by the government of Ghana, Ghana Postal Services and Ghana Telecom. This 

was done in order for the company to function as a commercially viable entity        

(Akorli and Allotey, 1999). 

According to Missing Link, (the 1994 report of the International Telecommunication 

Union's (ITU) Independent Commission for World Telecommunication), “penetration of 

telephones in Ghana in 1992 was only 0.32 per one hundred inhabitants”. In 1996 Ghana 

privatized its incumbent telecommunication firm by selling 30 percent of Ghana Telecom 

to the G-Com consortium, in which Telekom Malaysia (TM) holds an 85% stake, for 

USD 38 million, (Haggarty, 2002). 

Ghana licensed a second network operator, and allowed multiple mobile firms to enter 

the market. The reforms yielded mixed results. Landline telephone penetration increased 

dramatically while the number of mobile subscribers surpassed even this higher level of 

fixed line subscribers. On the other hand, the network did not reach the levels the 

government hoped, the second network operator, Western Telecommunication Company 
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Ltd (Westel), never really got off the ground, and the regulator remained weak and 

relatively ineffective.  

In February, 2002 government of Ghana contracted Telenor Management Partners (TMP) 

of Norway to provide a management consultancy to Ghana Telecom. A Ghanaian 

management later took over the affairs of Ghana Telecom prior to its acquisition by 

Vodafone.    

In 2006 it had around 400,000 customers for fixed and mobile telephony and internet 

services. On 16
th

 April, 2009 Ghana Telecom was rebranded as Vodafone               

(Akorli and Allotey, 1999). 

1.1 Background of Eastern region and Koforidua municipality 

 

The Eastern Region, with an area of 19,323 square kilometers, occupying 8.1 per cent of 

the total land area of Ghana, is the sixth largest region of the country. A total of 

2,106,696 populations for the region, representing 11.1 per cent of Ghana‟s population. It 

is the third most populous region, after the Ashanti and Greater Accra. The population is 

made up of 49.2 per cent males and 50.8 per cent females, giving a sex ratio of 96.8 

males to 100 females, which comprises of Seventeen (17) districts.  

Koforidua, also popularly known as Kof-town, is a city in the West African republic of 

Ghana, about two hours by road from the capital city, Accra. It is the administrative 

capital of the Eastern Region of Ghana and has a total population of one hundred and  

sixty eight thousand (168 000)(2011 census) with a land area of one hundred and 
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 ten(110) square kilometers which serves as a commercial center for the region and New-

Juabeng  Municipal District. 

The businesses in the municipality are mostly small and medium scale enterprises 

(SMEs). The municipality has 20 second cycle institutions, 35 basic schools, 1 college of 

education, 2 nursing training schools and 1 polytechnic and 1 university. All of these 

institutions are potential customers of Vodafone network. (Wikipedia) 

 

Figure 1.1 Map of New Juabeng Municipality Eastern Region .(Google images) 
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The use of Base Transceiver Station provides a fast establishment and expansion 

of the connection between operator and end-user The Base Transceiver Station is  

logically connected to the mobile  stations  through the air interface  and one base 

station can be connected to a number of end-users (Point to Multipoint access - 

PMP). One base station can host up to 6 sectors and each sector has a capacity of 

37Mbps (Megabits per second Gross bit rate full duplex. One sector covers the 

end-users in an area within an angle of 90
0
with a maximum transmission range at 

approximately 5 km. This means that a base station with 4 sectors has a total 

potential coverage area that can be approximated by a circle with centre at the 

base station and a maximum radius of five kilometers (5 km). 

The major challenge in Telecommunication Network Planning is to identify the          

location of Base Stations for optimal visitation. This enhances effective 

preventive  and routine maintenance on the BTS equipment, fault restoration, 

installations, refueling of  standby plant,  BTS integration , running pre-

acceptance test and for the commission of (BTS). 

The Vodafone Network in the New Juabeng Municipality has twenty four (24) 

Base transceiver Station sites. The BTS location and coordinates are as shown in 

Table 1.1. 
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 Table 1.1: BTS location and number allocated in the New Juabeng municipality  

NUMBER 

ALLOCATED 
BTS LOCATION 

NUMBER ALLOCATED 

Longitude Latitude 

1  Koforidua radio station -0.243330 6.088360 

2  Nyerede  Adawso -0.256840 6.063335 

3  Adukrom -0.075240 6.020460 

4  Somanya -0.014630 6.104280 

5  Huhunya_Ex -0.167640 6.174700 

6  Krobo Odumasi -0.000740 6.134670 

7  Akuse_Ex -0.114660 6.093550 

8  Akosombo_2 -0.054870 6.288470 

9  Asesewa -0.147490 6.401820 

10  Begoro -0.378790 6.376920 

11  Kukurantumi -0.370831 6.185835 

12  New Tafo -0.372489 6.232176 

13  Apedwa -0.488680 6.112400 

14  Kibi -0.554130 6.170800 

15  Akim-Asafo -0.473681 6.178264 

16  Asiakwa -0.496510 6.266440 

17  Osino -0.480660 6.341860 

18  Akrade -0.077105 6.203555 

19 Koforidua_Ex_1 -0.259600 6.091700 

20 Koforidua_Ex_2 -0.254270 6.096790 

21 Koforidua_North -0.256996 6.078823 

22 Koforidua_High-Court -0.027965 6.129740 

23 Akosombo radio station -0.040190 6.244540 

24 Juapong -0.134800 6.250090 
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1.2 Statement of the Problem  

Visitation to Base transceiver stations Site is one the major task affecting the Vodafone 

Operation within the Eastern Region of Ghana, as a result, aiding to a lot of outages 

within the network and also impede the preventive maintenance of Base Transceiver 

Stations, increasing mean time to restored (MTTR), fault incident rate and refueling of 

standby plants.  

 The town and country planning Survey report for (2010-2011) reveals that the Eastern 

Region has land sides of 19,323 square kilometers, occupying 8.1 per cent of the total 

land area of Ghana and is the sixth largest region in the country. 

Taking the optimal route by visiting all the Base transceiver Station Site is one sure way 

by which cost can be reduced. This is what this thesis seeks to 

 1.3 Objectives of the Study 

      The objectives of this thesis are: 

(i) To formulate a mathematical model that takes into consideration the actual distance 

between the twenty four (24) Base Transceiver Station Site within the New Juabeng 

Municipality   

(ii) To determine the optimal route for visiting the entire  twenty four (24) Base 

Transceiver Station Site within the New Juabeng Municipality to minimize travelling 

cost, time and distance for Vodafone maintenance Engineers and entire sub-contractors 

working on the BTS site. Especially Huawei, Eton and ICK Company.   
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1.4 Justification of Study 

This study introduces a more proactive approach in the dealing with the visitation of Base 

transceiver station (BTS) site. An algorithm that proposes the optimal visitation of BTS  

Site, will help increase a faster response to; 

(i)       Faults and help increase customer satisfaction. 

(ii) Enhance effective preventive Maintenance on the Base Transceiver Station Site. 

(iii) Refueling Base Transceiver Station Site Standby Plant (BTS). 

(iv) Co-location of the Base Transceiver Station Site (BTS). 

(v) Integration Base Transceiver Station Site (BTS). 

(vi) Pre- Acceptance Test of Base Transceiver Station Site (BTS). 

(vii) Commission of Base Transceiver Station Site (BTS). 

1.5.0 Methodology  

In this research work, realistic mathematical models for the visiting of Base transceiver 

station site are formulated and solved using the Meta-heuristics, Simulated Annealing 

Algorithm. It goes beyond developing Meta-heuristic to solve simple strategies to 

optimize the visitation tour.  

The idea is to create a core program that, with the correct input data files is able to assist 

in the optimal tour. The visualization of the result is made using function developed in 

the program Matlab. The sources of data for the thesis are the internet and libraries for 

relevant literature, Vodafone Company Ghana on current information on Base 

Transceiver Station (BTS) and New Juabeng Municipal Assembly was also consulted for 

information on the demarcation as well as distances of the network routes between 

suburbs, towns within the municipality and the region. 
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1.5.1 Synopsis of some heuristics algorithms 

These are adhoc, trial-and-error methods which do not guarantee to find the optimal 

solution but are designed to find near-optimal solutions in a fraction of the time required 

by optimal methods. A heuristic is typically a simple intuitively designed procedure that 

exploits the problem structure and does not guarantee an optimal solution. Because most 

of practical problems and many interesting theoretical problems are NP-hard, heuristics 

and approximation algorithms play an important role solving high level optimization 

problems.  

Such algorithms are used to find suboptimal solutions when the time or cost required to 

find an optimal solution to the problem would be very large. A meta-heuristic (“meta” 

means “beyond”) is a general high-level procedure that coordinates simple heuristics and 

rules to find good approximate (or even optimal) solutions to computationally difficult 

combinatorial optimization problems. A meta-heuristic does not automatically terminate 

once a locally optimal solution is found, (Keuthen, 2003).  
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1.5.2 Greedy heuristics 

These are simple iterative heuristics specifically designed for a particular problem 

structure. A greedy heuristic starts with either a partial or infeasible solution and then 

constructs a feasible solution step by step based on some measure of local effectiveness 

of the solutions. In each iteration, one or more variables are assigned new values by 

making greedy choices. The procedure stops when a feasible solution is generated. As an 

extension of greedy heuristics, a large number of local search approaches have been 

developed to improve given feasible solutions, (Tian and Yang, 1993).  

1.5.3 Lagrangian heuristics  

This exploits the solution process of the Lagrangian dual in order to obtain feasible 

solutions to the original problem. Most Lagrangian heuristics proposed so far attempt to 

make the optimal solution to the Lagrangian relaxation feasible, e.g., by means of a 

simple heuristic, (Fisher, 1981).  

1.5.4 Local search.  

This is a family of methods that iteratively search through the set of solutions. Starting 

from an initial feasible solution, a local search procedure moves from one solution 

optimal within a neighboring set of solutions; this is in contrast to a global optimum, 

which is the optimal solution in the whole solution space solution to a neighboring 

solution with a better objective function until a local optimum is found or some stopping 

criteria are met. The next two algorithms simulated annealing and tabu search, enhance 

local search mechanisms with techniques for escaping local optima,                      

(Kolohan and Liang, 2000).  
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1.5.5   Simulated annealing 

This is a probabilistic meta-heuristic derived from statistical mechanics (Bradley 

Buckham and Casey Lambert, 1999). This iterative algorithm simulates the physical 

process of annealing, in which a substance is cooled gradually to reach a minimum-

energy state. The algorithm generates a sequence of solutions and the best among them 

becomes the output. The method operates using the neighborhood principle, i.e., a new 

solution is generated by modifying a part of the current one and evaluated by the 

objective function (corresponding to a lower energy level in physical annealing). The 

new solution is accepted if it has a better objective function value. The algorithm also 

allows occasional non-improving moves with some probability that decreases over time, 

and depends on an algorithm parameter and the amount of worsening. A non-improving 

move means to go from one solution to another with a worse objective function value. 

This type of move helps to avoid getting stuck in local optimum. It has been proved that 

with a sufficiently large number of iterations and a sufficiently small final temperature, 

the simulated algorithm converges to a global optimum with a probability close to one. 

However, with these requirements, the convergence rate of the algorithm is very low. 

Therefore, in practice it is more common to accelerate the algorithm performance to 

obtain fast solution approximations, (Tian and Yang, 1993). 

1.5.6 Tabu search  

This is a meta-heuristic technique that operates using the following neighborhood 

principle. To produce a neighborhood of candidate solutions in each iteration, a solution 

is perturbed a number of times by rules describing a move. The best solution in the 

neighborhood replaces the current solution. To prevent cycling and to provide a 
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mechanism for escaping locally optimal solutions, some moves at one iteration may be 

classified as tabu if the solutions or their parts, or attributes, are in the tabu list (the short-

term memory of the algorithm), or the total number of iterations with certain attributes 

exceeds a given maximum (long-term memory). There are also aspiration criteria which 

override the tabu moves if particular circumstances apply, (Kolohan and Liang, 2000).  

1.5.7 Genetic algorithm 

These are probabilistic meta-heuristics that mimic some of the processes of evolution and 

natural selection by maintaining a population of candidate solutions, called individuals, 

which are represented by strings of binary genes. A genetic algorithm starts with an 

initial population of possible solutions and then repeatedly applies operations such as 

crossover, mutation, and selection to the set of candidate solutions. A crossover operator 

generates one or more solutions by combining two or more candidate solutions, and a 

mutation operator generates a solution by slightly perturbing a candidate solution. Thus, 

the population of solutions evolves via processes which emulate biological processes. 

The basic concept is that the strong species tend to adapt and survive while the weak ones 

tend to die out, (Goldberg, 1989). 

1.5.8 The Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied generally in some field of engineering, operations research and computer science. 

Given a number of nodes/location/ports/cities and their pair wise distances, the major 

task is to find the shortest possible tour that visits each node/location/port/city exactly 

once.  
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The Travelling Salesman Problem (TSP) has been studied during the last five decades 

and many exact and heuristic algorithms have been proposed and used to solve problem 

which otherwise have no direct ways of having an optimal solutions. Notable among such 

algorithms used include construction algorithms, iterative improvement algorithms, 

branch-and-cut exact branch-and-bound and algorithms and many metaheuristic 

algorithms, such as tabu search (TS), simulated annealing (SA), genetic algorithm (GA) 

and ant colony (AC), ( Lin and Kernighan, 1973). 

1.6.0 The Scope of the Study  

The study partly parallels with the travel salesman problem but more closely, it mimics a 

type of the Chinese Postman Problem (CPP), the heuristic procedure consists of cluster 

first, route second method.   

1.7 Limitations of the study 

Unplanned nature of  the town makes the determination of the distances very difficult. 

  The limited time at the researcher„s disposal lead to few document being reviewed as a 

literature. The quality of data depends not only on the amount of time one spends in 

gathering them but partially on how much money one is prepared to spend in gathering 

them.  

The researcher also encountered certain difficulties in connection with data collection. 

Other information, like the distance at a particular point with reference to a given 

geographical direction, etc.  
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1.8 Organization of the thesis  

Chapter one covers the introduction to the thesis. In chapter two, we shall put forward 

relevant literature on simulated Annealing.  Chapter three denoted for the methodology of 

the study. Chapter four presents data collection and analysis. Chapter five deals with the 

conclusion and recommendation of the study. 

1.9 Summary  

In this chapter, we presented brief history of Vodafone Ghana, background to the study, 

statement of the problem, objectives of the study, methodology, importance of a visit to 

the Base Transceiver Station site and the organization of the thesis.  

In the next Chapter, we shall put forward relevant literature on simulated annealing on 

the Travelling Salesman problem. 
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CHAPTER TWO 

LITERATURE REVIEW 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied in operations research and theoretical computer science. Given a list of cities and 

their pairwise distances, the task is to find the shortest possible tour that visits each city 

exactly once.  

The Travelling Salesman Problem (TSP) has been studied during the last fifty years and 

many exact and heuristic algorithms have been developed. These algorithms include 

construction algorithms, iterative improvement algorithms, branch-and-bound and 

branch-and-cut exact algorithms and many metaheuristic algorithms, such as Simulated 

Annealing (SA), Tabu search (TS), Ant Colony (AC) and Genetic Algorithm (GA).  

Some of the well-known tour construction procedures are the nearest neighbor procedure 

by Rosenkratz et al, (1993) and the Clark and Wright, (1974), savings algorithm, the 

insertion procedures, the partitioning approach by Karp and the minimal spanning tree 

approach by Christotides.  

The branch exchange is perhaps the best known iterative improvement algorithm for the 

TSP. The 2-opt and 3-opt heuristics described in Lin. Lin and Kernighan, (1973) made a 

great improvement in quality of tours that can be obtained by heuristic methods. Even 

today, their algorithm remains the key ingredient in the successful approaches for finding 

high quality tours and is widely used to generate initial solutions for other algorithms or 

developed a simplified edge exchange procedure requiring only Q (n
2
)    
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operations at each step , but producing tour nearly as good as the average performance of 

3-opt algorithm.  

One of the earliest exact algorithms is due to (Dantzig, 1954) in which linear 

programming (LP) relaxation is used to solve the integer formulation by suitably chosen 

linear inequality to the list of constraints continuously. Branch and bound (B & B) 

algorithm are widely used to solve the TSP„s. Several authors have proposed B &B 

algorithm based on assignment problem (AP), relaxation of the original TSP formulation. 

These authors include (Eastman, 1958), (Held and Karp, 1970). 

Besides the above mentioned exact and heuristic algorithms, metaheuristic algorithms 

have been applied successfully to the TSP by a number of researchers. SA algorithms for 

the TSP were developed by Bonomi and Lutton, Golden and Skiscim and Nahr et al. Lo 

and Hus etc. Tabu search metaheuristic algorithms for TSP have been proposed by Knox 

and Fiechter. The AC is a relative new metaheuristic algorithm, which is applied 

successfully to solve the TSP.  

(Applegate et. al 1994) solved a traveling salesman problem which models the production 

of printed circuit boards having 7,397 holes (cities) and in (1998) the same authors solved 

a problem over the 13,509 largest cities in the U.S. For problems with large number of 

nodes as cities the TSP becomes more difficult to solve. 

In Homer's Ulysses problem of a 16 city traveling salesman problem, one finds that there 

are 653,837,184,000 distinct routes, (Grötschel and Padberg, 1993). Enumerating all such 

roundtrips to find the shortest one took 92 hours on a powerful workstation.  
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The TSP and its solution procedures have continued to provide useful test grounds for 

many combinatorial optimization approaches. Classical local optimization techniques 

Rossman,(1958) ; Applegate,(1999) ;Riera-Ledesma,(2005) ;Walshaw,(2002) ; Walshaw, 

(2001) as well as many of the more recent variants on local optimization, such as 

simulated annealing by Tian and Yang, (1993), tabu search by Kolohan and Liang, 

(2003) neural networks by Potvin, (1996) and genetic algorithms have all been applied to 

this problem, which for decades has continued to attract the interests of researchers.  

Although a problem statement posed by Karl Menger on February 5, 1930, at a 

mathematical colloquium in Vienna, is regarded as a precursor of the TSP, it was Hassle 

Whitney, in 1934, who posed the traveling salesman problem in a seminar at Princeton 

University, (Flood, 1956).  

In 1949 Robinson, with an algorithm for solving a variant of the assignment problem is 

one of the earliest references that use the term "traveling salesman problem" in the 

context of mathematical optimization. (Robinson, 1949), However, a breakthrough in 

solution methods for the TSP came in 1954, when Dantzig, (1954) applied the simplex 

method (designed by George Dantzig in, 1947) to an instance with 49 cities by solving 

the TSP with linear programming.  

There were several recorded contributions to the TSP in 1955. Heller, (1955) discussed 

linear systems for the TSP polytope, and some neighbor relations for the asymmetric TSP 

polytope. Also Kuhn, (1955) announced a complete description of the 5-city asymmetric 

TSP polytope. Morton and Land, (1955) presented a linear programming approach to the 

TSP, alongside the capacitated vehicle routing problem. Furthermore, Robacker, (1955) 
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reported manual computational tests of some 9 cities instance using the Dantzig-

Fulkerson-Johnson method, with average computational times of about 3 hours. This time 

became the benchmark for the next few years of computational work on the TSP 

(Robacker, 1955).  

Flood (1956) discussed some heuristic methods for obtaining good tours, including the 

nearest-neighbor algorithm and 2-opt while Kruskal, (1956) drew attention to the 

similarity between the TSP and the minimum-length spanning trees problem. The year 

1957 was a quiet one with a contribution from Barachet, (1957) described an enumeration 

scheme for computing near-optimal tours.  

Croes, (1958) proposed a variant of 3-opt together with an enumeration scheme for 

computing an optimal tour. He solved the Dantzig-Fulkerson-Johnson 49-city example in 

70 hours by hand. He also solved several of the Robacker examples in an average time of 

25 minutes per example. Bock, (1958) describes a 3-opt algorithm together with an 

enumeration scheme for computing an optimal tour. The author tested his algorithm on 

some 10-city instance using an IBM 650 computer.  

By 1958, work related to the TSP had become serious research to attract Ph.D. students. 

A notable work was a Ph.D. thesis Eastman, (1958) where a branch-and-bound algorithm 

using the assignment problem to obtain lower bounds was described. The algorithm was 

tested on examples having up to 10 cities. Also that same year, Rossman and Twery, 

(1958) solved a 13-city instance using an implicit enumeration while a step-by-step 

application of the Dantzig-Fulkerson-Johnson algorithm was also given for Barachet's 

10-city example. Bellman, (1960) showed the TSP as a combinatorial problem that can 

be solved by dynamic programming method.  
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In Miller et al, (1960), an integer programming formulation of the TSP and its 

computational results of solving several small problems using Gomory's cutting-plane 

algorithm was reported.  

Lambert, (1960) solved a 5-city example of the TSP using Gomory cutting planes. Dacey, 

(1960) reported a heuristic, whose solutions were on average 4.8 percent longer than the 

optimal solutions. TSP in 1960 achieved national prominence in the United States of 

America when Procter & Gamble used it as the basis of a promotional context. Prizes up 

to $10,000.00 were offered for identifying the most correct links in a particular 33-city 

problem. A TSP researcher, Gerald Thompson of Carnegie Mellon University won the 

prize in Applegate et al, (2007).  

Müuller- Merbach, (1961) proposed an algorithm for the asymmetric TSP; he illustrated 

it on a 7-city example.  

Ackoff et al, (1961) gave a good survey of the computational work on the TSP that was 

carried out in the 1950„s. By 1962, when the computer was becoming a useful tool in 

exploring TSP, the dynamic programming approach gained attention. Gonzales solved 

instances with up to 10 cities using dynamic programming on an IBM 1620 computer by 

Gonzales, (1962), similarly, Held and Karp, (1962) described a dynamic programming 

algorithm for solving small instances and for finding approximate solutions to larger 

instances.  

Little et al, (1963) coined the term branch-and-bound. Their algorithm was implemented 

on an IBM 7090 computer and they gave some interesting computational tests including 

the solution of a 25-city problem that was in the Held and Karp test set. Their most cited 

success is the solution of a set of 30-city asymmetric TSPs having random edge lengths. 
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In an important paper, (Lin, 1965) a heuristic method for the TSP was published. The 

author defined k-optimal tours, and gave an efficient way to implement 3-opt, extending 

the work of Croes, (1958) with computational results given for instances with up to 105 

cities.  

The year 1966 was another fruitful one for the TSP in terms of published works. Roberts 

and Flores, (1966) described an enumerative heuristic and obtained a tour for Karg and 

Thompson's 57-city example, having cost equal to the best tour found by Karg and 

Thompson. Also, in a D.Sc. thesis at Washington University, St. Louis, Shapiro, (1966) 

describes an algorithm similar to Eastman's branch-and-bound algorithm. Gomory1966 

gave a very nice description of the methods contained in Dantzig et al, (1954), Held and 

Karp, (1962) and Little et al, (1963). Similarly, in Lawler and Wood, (1966) descriptions 

of the branch-and-bound algorithms of Eastman, (1958) and Little et al, (1963) were 

given. The authors suggested the use of minimum spanning trees as a lower bound in a 

branch-and-bound algorithm for the TSP.  

Bellmore and Nemhauser, (1968) presented an extensive survey of algorithms for the 

TSP. They suggested dynamic programming for TSP problems with 13 cities or less, 

Shapiro„s branch-and-bound algorithm for larger problems up to about 70-100 and Shen 

Lin's `3-opt' algorithm for problems that cannot be handled by Shapiro's algorithm. 

Raymond, (1969) is an extension to Karg and Thompson„s, (1964) heuristic for the TSP 

where computational results were reported for instances having up to 57 cities.  

Held and Karp in there, (1970) paper introduced the 1-tree relaxation of the TSP and the 

idea of using node weights to improve the bound given by the optimal 1-tree. Their 

computational results were easily the best reported up to that time. Another notable work 
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on the TSP in the 70s is the Hong, Ph.D. Thesis, at The Johns Hopkins University in 

1972 written under the supervision of Bellmore, and the work was the most significant 

computational contribution to the linear programming approach to the TSP since the 

original paper of Dantzig et al, (1959).  

The Hong„s algorithm, (1972) had most of the ingredients of the current generation of 

linear-programming based algorithms for the TSP. The author used a dual LP algorithm 

for solving the linear-programming relaxations; he also used the Ford-Fulkerson max-

flow algorithm to find violated subtour inequalities.  

The algorithm of Held and Karp, (1971) was the basis of some major publications in 

1974. In one case, Hansen and Krarup, (1974) tested their version of Held-Karp, (1971) 

on the 57-city instance of Karg and Thompson, (1964) and a set of instances having 

random edge lengths. In 1976 a linear programming package written by Land and Powell 

was used to implement a branch-and-cut algorithm using subtour inequalities. 

Computational results for the 48-city instance of Held and Karp and the 57-city instance 

of Karg and Thompson, (1964) were given.  

Smith and Thompson, (1977) presented some improvements to the Held-Karp algorithm 

tested their methods on examples which included the 57-city instance of Karg and 

Thompson 1964 and a set of ten 60-city random Euclidean instances. In 1979, Land 

described a cutting-plane algorithm for the TSP. The decade ended with a survey on 

algorithms for the TSP and the asymmetric TSP in Buckard, (1979).  

A very impressive work heralded the 1980s. Crowder and Padberg, (1980) gave the 

solution of a 318-city instance described in Lin and Kernighan, (1973). The 318-city 

instance would remain until 1987 as the largest TSP solved. Also, in 1980, Grötschel 
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gave the solution of a 120-city instance by means of a cutting-plane algorithm, where 

subtour inequalities were detected and added by hand to the linear programming 

relaxation in Grötschel, (1980).  

In 1982, Volgenant and Jonker described a variation of the Held-Karp algorithm, together 

with computational results for a number of small instances by Volgenant and Jonker, 

(1982). A very important work of 1985 is a book (Lawler et al., 1985) containing several 

articles on different aspects of the TSP as an optimization problem. Padberg and Rinaldi, 

(1987) solved a 532-city problem using the so-called branch and cut method.  

The approach for handling the subtours elimination constraints of the TSP integer LP is 

another area for re-examination. Researchers have identified the issue of feasibility or 

subtour elimination as very crucial in the formulation of the TSP or similar permutation 

sequence problem. ―No one has any difficulty understanding subtours, but constraints to 

prevent them are less obvious, says Radin, (1998). Methodologies or theoretical basis for 

handling these constraints within the context of algorithm development has been the basis 

of many popular works on the TSP. 

 A classical example of this approach is in Crowder and Paderg, (1980) where a linear 

programming relaxation was adopted such that if the integral solution found by this 

search is not a tour, then the subtour inequalities violated by the solution are added to the 

relaxation and resolved.  

 

Grötschel, (1980) used a cutting-plane algorithm, where cuts involving subtour 

inequalities were detected and added by hand to the linear programming relaxation. 

Hong, (1972) used a dual LP algorithm for solving the linear-programming relaxations, 



27 
 

the Ford-Fulkerson max-flow algorithm, for finding violated subtour inequalities and a 

branch-and-bound scheme, which includes the addition of subtour inequalities at the 

nodes of the branch-and-bound tree. Such algorithms are now known as "branch-and-

cut". The problem of dealing with subtour occurrences algorithm development has been a 

major one in the in the TSP studies in the literature.  

The works in the 1990„s were mostly application in nature. A large number of 

scientific/engineering problems and applications such as vehicle routing, parts 

manufacturing and assembly, electronic board manufacturing, space exploration, oil 

exploration, and production job scheduling, etc. have been modeled as the Machine Setup 

problem (MSP) or some variant of the TSP are found in (Al-Haboub-Mohamad and 

Selim Shokrik, (1993), Clarker and Ryan, (1989), Crama et al, (2002), Ferreir, (1995), 

Foulds and Hamacher, (1993), G¨unther et al, (1998), Keuthen, (2003), Kolohan and 

Liang,  (2000), Mitrovic-Minic and Krishnamurti, ( 2006 ).  

One of the ultimate goals in computer science is to find computationally feasible exact 

solutions to all the known NP-Hard problems; a goal that may never be reached. Feasible 

exact solutions for the TSP have been found, but there are restrictions on the input sizes. 

An exact solution was found for a 318-City problem by Crowder and Padberg in, (1980). 

The basic idea in achieving this solution involves three phases. In the first phase, a true 

lower bound on the optimal tour is found. In the second phase, the result in the first phase 

is used to eliminate about ninety-seven percent of all the possible tours. Thus, only about 

three percent of the possible tours need to be considered. In the third phase, the reduced 

problem is solved by brute force. This solution has been implemented and used in 

practice. Experimental results by Apple Gate et al, (1998) showed that running this 
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algorithm, implemented in the C programming language and executed on a 400MHz 

machine, would produce a result in 24.6 seconds of running time. 

Other exact solutions have been found, as mention in, (1998), a 120-city problem by 

Grötschel, (1980), a 532-city problem by Padberg and Rinaldi, (1987). However, none of 

the algorithms that provide an exact solution for input instances of over a thousand cities 

are practical for everyday use. Even with today‟s super computers, the execution time of 

such exact solution algorithms for TSPs involving thousands of cities could take days.  

Computer hardware researchers have been making astonishing progress in manufacturing 

evermore powerful computing chips. Moores Law in 

(http://en.wikipedia.org/wiki/Moore's_law), which states that the number of transistors 

that can fit on a chip will double after every 18 months, has held ground since, (1965). 

This basically means that computing power has doubled every 18 months since then. 

Thus, we have been able to solve larger instances of NP-hard problems, but algorithm 

complexity has still remained exponential.  

Moreover, it is highly speculated that this trend will come to an end because there is a 

limit to the miniaturization of transistors. Presently, the sizes of transistors are 

approaching the size of atoms. With the speeds of computer processors rounding the 

5GHz mark, and talks about an exponential increase in speeds of up to 100GHz 

(http://en.wikipedia.org/wiki/Moore's_law), one might consider the possibility of us 

exceeding any further need of computational performance. However, this is not the case. 

Although computing speeds may increase exponentially, they are, and will continue to 

be, surpassed by the exponential increase in algorithmic complexity as problem sizes 
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continue to grow. Moore„s law may continue to hold true for another decade or so, but 

different methods of computing are being researched. 

2.2 Summary 

In this chapter, we put forward relevant literature on travel salesman program (TSP) and 

some meta-heuristic algorithms. 

In the next chapter we shall consider the methodology of the study. 
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CHAPTER 3 

METHODOLOGY 

 

The travelling salesman problem is combinatorial optimization problem. According to 

Hillier and Lieberman, (2005) it has been given this picturesque name because it can be 

described in terms of a salesman (or saleswoman) who must travel to a number of cities 

during one tour. Starting from his or her home city, the salesman follows to visit each city 

exactly once before returning to his home city as to minimize the total length of the tour.  

The figure below shows an example of a small travelling salesman problem with seven 

cities. 
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Figure 3.1 Traveling Salesman Problem 
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City 1 being the salesman„s home city, he starts from this city, and must choose a route to 

visit each of the other cities exactly once before returning to city 1. The number next to 

each link between each pair of cities represents the distance between  

these cities. The objective is to determine which route will minimize the total distance 

that the salesman must travel. The Sub-tour Reversal Algorithm, the Tabu Search and the 

simulated annealing will each be used to find the optimal solution for the travelling 

salesman problem above later in this chapter.  

There have been a number of applications of travelling salesman problems that have 

nothing to do with salesmen. For example, when a presidential aspirant leaves his home 

city and visits a number of cities campaigning and returns to his home city after a period, 

the problem of determining the shortest route for doing this tour is a travelling salesman 

problem. Another example involves the manufacture of printed circuit boards for wiring 

chips and other components. When many holes need to be drilled into a printed circuit 

board, the process of finding the most efficient drilling sequence is a travelling salesman 

problem.  

The difficulty of travelling salesman problems increases rapidly as the number of cities 

increases. For a problem with n cities, the number of feasible routes to be considered is 

(n- 1)!/2 since there are (n-1) possibilities for the first city after the home city, (n-2) 

possibilities for the next city, and so forth. The denominator of 2 arises because every 

route has an equivalent reverse route with exactly the same distance. Thus, while a 10-

city travelling salesman problem require less than 200,000 feasible solutions to be 
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considered, a 20-city problem has roughly 10
16 

feasible solutions while a 50-city problem 

has about 10
62

 feasible solutions.  

3.1 Formulation of TSP model  

 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph 

with vertices V, |V|=n, where n is the number of cities, and edges E with edge length 
ijd   

for (i,j). The focus is on the symmetric TSP in which case 
ijd  = 

jid  for all (i,j). This 

minimization problem can be formulated as an integer programming as shown below in 

Equations (1) to (5). The problem is an assignment problem with additional restrictions 

that guarantee the exclusion of sub-tours in the optimal solution. Recall that a sub-tour in 

V is a cycle that does not include all vertices (or cities). Equation (1) is the objective 

function, which minimizes the total distance to be travelled.  

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each 

city is entered from only one other city, while (3) ensures that each city is only departed 

to on other city. Constraint (4) eliminates sub-tours. Constraint (5) is a binary constraint, 

where 
ijx  = 1 if edge (i,j) in the solution and 

ijx = 0, otherwise. 
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However, the difficulty of solving TSP is that sub-tour constraints will grow 

exponentially as the number of cities grows large, so it is not possible to generate or store 

these constraints. Many applications in real world do not demand optimal solutions.  

3.2 The Sub-Tour Reversal Algorithm  

This adjusts the sequence of cities visited in the current trial solution by selecting a sub-

sequence of the cities and simply reversing the order in which that sequence of cities is 

visited.  

Initialization: Start with any feasible tour as the initial trial solution.  

Iteration: For the current trial solution, consider all possible ways of performing 

 a sub-tour reversal except reversal of the entire tour. Select the one that provides 

 the largest decrease in the   

Stopping Rule: Stop when no sub-tour reversal will improve the current trial solution. 

 Accept this solution as the final solution.  



34 
 

Applying this algorithm to the problem above and starting with 1 – 2 – 3 – 4 – 5 – 6 – 7 - 

1 as the initial trial solution, there are four possible sub-tour reversals that would improve 

upon this solution as shown below  

3.3 Tabu Search  

According to Hillier and Lieberman Tabu Search is a widely used metaheuristic that uses 

some common sense ideas to enable the search process to escape from a local optimum. 

The concept of tabu search (TS) is derived from artificial intelligence where intelligent 

use of memory helps in exploiting useful historical information. The restrictions put on 

the information in the memory reminiscent of the definition of the word „tabu„ as a set 

apart as charged with a dangerous supernatural power and forbidden to profane use or 

contact.. Tabu search can also incorporate some more advanced concepts. One is 

intensification, which involves exploring a portion of the feasible region more thoroughly 

than usual after it has been identified as a particularly promising portion for containing 

very good solutions. Another concept is diversification, which involves forcing the search 

into previously unexplored areas of the feasible region. The focus will however be on the 

basic form of tabu search summarized below.  

(i) Initialization : A starting solution generated by choosing a random solution, x   S. 

The evaluating function f(x) is used to evaluate x. The solution is stored in the algorithm 

memory called the tabu list.  

(ii) Neighborhood exploration: All possible neighbours µ(x) of the solution x are 

generated and evaluated. Solutions in the tabu list are considered unreachable neighbours, 

they are taboo (tabu). An immediate neighbor can be reached by making a sub-tour 

reversal.  
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(iii) New Solution: A new solution is chosen from the explored neighborhood. This 

solution should not be found in the tabu list before it is discovered and has to have the 

best move evaluation value of f(x) for all reachable neighbors of x.  

Do tabu check on the new solution. If it is successful replace the current  

solution and update the tabu list and other tabu attributes. Here the new solution 

evaluation value can be worse compared with that of current solution. This enables the 

solution not to be trapped at local optimum.  

The tabu check applied based on the move being the best move.  

(i) If the solution is in the tabu list then check the aspiration level. If successful replace 

the current solution and update the tabu list and other tabu attributes. The aspiration 

check uses the function evaluation and the success of the check depends on the function  

evaluation of the new solution being better than that of the current best solution.  

(ii) If checks (i) and (ii) are not successful then keep the current solution otherwise 

replace the current solution by the new solution.  

(iii) Compare the best solution to the current solution, if the current solution is better than 

the best solution, replace the best solution.  

(iv) Until loop condition is satisfied go to step Until termination condition is satisfied go 

to step1.  

(v) Stop after three consecutive iterations without an improvement in the best objective 

function value. Also stop at any iteration where the current trial solution has no 

immediate neighbours that are not ruled out by their tabu status.  

To apply this tabu search algorithm to the problem above,  

Let initial trial solution = 1 – 2 – 3 – 4 – 5 – 6 – 7 - 1 Distance = 69  
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Tabu list : Blank at this point  

Iteration 1:  

reverse 3 - 4  

Delete Links: 2 - 3 and 4 - 5  

Added links: 2 - 4 and 3 - 5  

Tabu list : Links 2 - 4 and 3 - 5 :New trial solution: 1 – 2 – 4 – 3 – 5 – 6 – 7 - 1  Distance 

= 65  

Iteration 2  

Reverse 3-5-6  

Delete links: 4 - 3 and 6 - 7  

Added links: 4 - 5 and 3 - 7  

Tabu list: links 2 - 4, 3 - 5, 4 - 6 and 3 - 7  

New trial solution: 1 – 2 – 4 – 6 – 5 – 3 – 7 - 1 Distance = 64  

 

The tabu search algorithm now escapes from this local optimum by moving next to  

the best immediate neighbor of the current trial solution even though its distance is  

longer. Considering the limited availability of links between pairs of cities in fig…..,  

the current trial solution has only the two immediate neighbors listed below.  

Reverse 6 – 5 - 3: 1 – 2 – 4 – 3 – 5 – 6 – 7 - 1 Distance = 65  

Reverse 3-7: 1 – 2 – 4 – 6 – 5 – 7 – 3 - 1 Distance = 66  

Reversing 2 – 4 – 6 – 5 – 3 - 7 to obtain 1– 7 – 3 – 5 – 6 – 4 – 2 - 1 is ruled out since it is 

simply the same tour in the opposite direction. However the of these immediate 

neighbours must be ruled out because it would require deleting links 4  -  6 and 3  -  7, 
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which is tabu since both of these links are on the tabu list. This move could still be 

allowed if it would improve upon the best trial solution found so far but it does not.  

Ruling out this immediate neighbor does not allow cycling back to the preceding trial 

solution. Therefore by default, the second of these immediate neighbours is chosen to be 

the next trial solution as summarized below. 

Iteration 3  

Reverse 3 - 7  

Delete links: 5  -  3 and 7  -  1  

Add links: 5 -  7 and 3  -  1  

Tabu List: 4  -  5, 3  -  7, 5  -  7 and 3  -  1  

New trial solution: 1 – 2 – 4 – 6 – 5 – 7 – 3 - 1 Distance = 66  

The sub- tour reversal for this iteration can be seen in the fig……., where the dashed  

lines show the links being deleted (on the left) and added (on the right) to obtain the  

new trial solution.  

The new trial solution has the four immediate neighbours listed below.  

Reverse 2 – 4  -  6 – 5 - 6: 1- 7 – 5 – 6 – 4 – 2 – 3 - 1 Distance = 65  

Reverse 6 - 5: 1 – 2 – 4 – 5 – 6 – 7 – 3 - 1 Distance = 69  

Reverse 5 - 7: 1 – 2 – 4 – 6 – 5 – 7 – 3 - 1 Distance = 63  

Reverse 7 - 3: 1 – 2 – 4 – 6 – 5 – 3 – 7 - 1  

Both of the deleted links 4  - 6 and 5 - 7 are on the tabu list. The second of these  

immediate neighbours is therefore tabu. The fourth immediate neighbor is also tabu.  

Thus, there are only two options, the first and the third immediate neighbours. The  
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third immediate neighbor is chosen since it has shorter distance.  

Iteration 4  

Reverse 5 - 7  

Delete links: 6 - 5 and 7 - 3  

Add links: 6 - 7 and 5 - 3  

Tabu list: 5 - 7, 3 - 1, 6 - 7 and 5 - 3  

(4 - 6 and 3 - 7 are now deleted from the list)  

New trial solution: 1 – 2 – 4 – 6 – 7 – 5 – 3 - 1 Distance = 63  

The only immediate neighbor of the current trial solution would require deleting links  

6 - 7 and 5 - 3, both of which are on the tabu list so cycling back to the preceding trial  

solution is prevented. Since no other immediate neighbours are available, the stopping  

rule terminates the algorithm at this point with 1 – 2 – 4 – 6 – 7 – 5 – 3 - 1 as the final 

solution with Distance = 63.  

3.4 Model assumptions  

(i) The traffic situation does not affect the weight (distance) on each edge of the graph 

(street).  

(ii)The model considers the weight of each edge of the graph in terms of distance instead of 

time. 

(iii)Road conditions are the same between all the towns within which the BTS are located. 

 (iv) (OBTS which are less than one km are exempted and represented by the BTS centrally  
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3.5 Simulated Annealing 

According to Amponsah and Darkwah (2007) the concept of Simulated Annealing is 

derived from Statistical mechanics in the area of natural sciences. A piece of regular 

metal in its natural state has the magnetic direction of its molecules aligned in uniform 

direction. As the metal is heated, the kinetic energy of the molecules increases and the 

cohesive force decreases till when the molecules are free to move about randomly. The 

magnetic directions of the molecules are oriented randomly.  

To achieve regularity of alignment of the magnetic direction so as to make the metal 

stable for use, it must be cooled slowly. This slow cooling of the metallic material is 

called annealing. 

 In 1953 Metropolis and others recognised the use of Boltzmann‟s law to stimulate the 

efficient equilibrium condition of a collection of molecules at a given temperature and 

thus facilitate annealing. When the metal is heated to higher temperature and it is being 

cooled slowly it is assumed that for a finite drop in temperature the system state change  

in the sense that the molecules assume new configuration of arrangement. The 

configuration depends on parameters like temperature, the energy of the system and 

others. An energy function can be obtained by combining the parameters. In 1983 Kirk 

Patrick showed how Simulated Annealing of Metropolis could be adapted to solve 

problems in Combinatorial Optimization. The following analogy was made  

(i) Annealing looks for system state at a given temperature. 

(ii)   Optimization looks for feasible solution of the combinatorial problems 
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(iii)  Cooling of the metal is to move from one system state to another b) Search 

procedure (algorithm scheme) tries one solution after another in order to find the 

optimal solution.  

(iv)   Energy function is used to determine the system state and energy 

(v)   Objective (cost) function is used to determine a solution and the objective function 

value.  

(vi)   Energy results in evaluation of energy function and the lowest energy state 

corresponds to stable state.  

(vii) Cost results in evaluation of objective function and the lowest objective function 

value corresponds to the optimal solution  

(viii) Temperature controls the system state and the energy  

(ix)    A control parameter is used to control the solution generation and the objective 

function value  

Simulated annealing (SA) is a generic probabilistic meta-heuristic for the global 

optimization problem of applied mathematics, namely locating a good approximation to 

the global minimum of a given function in a large search space. It is often used when the  

search space is discrete (e.g., all tours that visit a given set of cities). For certain 

problems, simulated annealing may be more effective than exhaustive enumeration 

provided that the goal is merely to find an acceptably good solution in a fixed amount of 

time, rather than the best possible solution. 

3.5.1 Using simulated Annealing to solve TSP  

The TSP was one of the first problems to which simulated annealing was applied, serving 

as an example for both Kirk Patrick et al. (1983) and Cerny (1985). Since then the TSP 
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has continued to be a prime test bed for the approach and its variants. Most adaptations 

have been based on the simple schematic, with implementations differing as to their 

methods for generating starting solutions (tours) and for handling temperatures, as well as 

in their definitions of equilibrium, frozen, neighbor and random. 

3.5.2 General scheme for a simulated annealing algorithm 

(a) Generate a starting solution  and set the initial solution *   

(b) Determine a starting temperature .

(c) While not yet at equilibrum for this temperature, do the following:

(d) Choose a random 

S S S

T



neoghbor *  of the current solution

(e) Set  = Length( *), Length( )

(f)  Length( *)  0 (downhill move): Set   *

(g)  Length( ) < Length( *), set *

(h)  Length( ) < length( *) (uphill move):

S

S S

if S S S

if S S S S

if S S



 



Choose a random number  uniformly from [0,1]

 ,   *

i) End "while not yet equilibrum" loop.

(j) Lower the temperature 

(k) End "While not yet frozen loop"

(l) Return *

 

T

r

if r e set S S

T

S

 
 
  
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( 1)
,

3.1 Prototype Example

         Considering Figure 3.1

Taking the initial solution to be in the tour in the order: 

1- 2 - 3 - 4 - 5 - 6 - 7 - 1 using the parameters;

20,       = 0.5

Stop when

k k
oT T T 


 

1

 T<0.1

First Iteration

Assuming = 1 - 2 - 3 - 4 - 5 - 6 - 7 - 1

d( ) = d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+(7,1) = 69

Using the sub-tour reversal as local search to generate the new solution 

 =

o

o

x

x

x

1

1 0

0 1

0

 1 - 3 - 2 - 4 - 5 - 6 - 7 - 1

d( ) = d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1) = 68

=d( )-d( )

Since <0, set  

Updating the temperature T1= T  = 0.5(20) = 10 

x

x x

x x








 

0

1

1

Second Iteration 

d( ) = 68

By the sub-tour reversal as local search to generate the new 

solution 1 - 2 - 3 - 4 - 5 - 6 - 7 - 1

= 1 - 2 - 3 - 4 - 5 - 6 - 7 - 1

d( ) = d(1,2)+d(2,3)+d(3,5)+(5,4)+(4,6)+

x

x

x

1 0

0 1

2

d(6,7)+d(7,1) = 65

 d( ) - d( ) = 65 - 68 = 3

Since <0, set  

Updating the temperature, T  = 0.5(10) = 5

x x

x x








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0

1

1

Third Iteration

d( ) 65

Using the sub-tour reversal as local search to generate the new 

solution 1 - 2 - 3 - 4 - 6 - 5 - 7 - 1

 = 1 - 2  - 3 - 4 - 6 - 5 - 7 - 1

d( ) = d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,

x

x

x



 2

1 1

0 1 0 1

5)+d(5,7)+d(7,1) = 66

( ) ( ) 65 64  1

Since 0,  apply Boltzmann's condition m=e  = 0.82

A random number will be generated from a computer say 

If m > ,  then set    otherwise   

Updat

T

d x d x

x x x x













    



 

3
 = ing the temperature, T 0.5(5) = 2.5

This process will continue until the final temperature and the 

optimal solutions are obtained.

 

3.6 Genetic Algorithm  

The genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin, (1859)  

and recently discussed by Dawkins, (1986) .Holland 1975 invented Genetic Algorithm  

as an adaptive search procedure. Generalized chromosome genetic algorithm ( GCGA)  

was proposed for solving generalized traveling salesman problems (GTSP). 

Theoretically, the GCGA could be used to solve classical traveling salesman problem 

(CTSP) by (Yang, 2008).  
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3.6.1 Genetic Algorithm 

 The GA has the following simulations of the evolutionary principles;  

Table 3.1 The Relationship between Evolution and Genetic Algorithm 

EVOLUTION GENETIC ALGORITHM 

An individual is a genotype of the species. An individual is a solution of the optimization 

problem 

Chromosomes defined the structure of an 

individual.  

Chromosomes are used to represent the data 

structure of the solution.  

Chromosomes consist of sequence of cells called 

genes which contain the structural information. 

Chromosomes consist of sequence of gene 

species which placeholder boxes containing 

string of data whose unique combination gives 

the solution value. 

The genetic information or traits in each gene is 

called an allele. 

An allele is an element o data structure stored 

in a gene place holder. 

 Fitness of an individual is an interpretation of 

how the chromosomes have adopted to 

competition environment. 

Fitness of a solution consists in evaluation of 

measures of the objective function for the 

solution and comparing it to the evaluations 

for other solutions. 

A population is a collection of species found in a 

given location. 

A population is a set of solution that forms 

domain search space. 

A generation is a given number of individual of 

the population identified over a period of time. 

A population is a set solution taken from the 

population (domain) and generated at an 

instant of time or in iteration. 
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Selection is pairing of individual as parent for 

reproduction. 

Selection is the operation of selecting parents 

from the generation to produce offspring. 

Crossover is mating and breeding of offspring by 

chromosomes characteristics are exchanged to 

form new individuals. 

Crossover is the operation where by pairs of 

parents exchange characteristics of their data 

structure to produce two new individuals as 

offspring. 

Mutation is a random chromosomal process of 

modification where by the inherited genes of the 

offspring from their parents are distorted. 

Mutation is a random operation whereby the 

allele of a gene in a chromosomes of the 

offspring is changed by a probability pm. 

Recombination is a process of nature‟s survival 

of the fittest. 

Recombination is the operation whereby 

elements of the generation and elements of the 

offspring form an intermediate generation and 

less fit chromosomes are taken from the 

generation. 

 

Given a population at t, genetic operators are applied to produce a new population  

at time (t+1). A stepwise evolution of the population from the time (t) to (t+1) is called  

generation. The GA for a single generation is based on the general framework of  

selection, crossover, Mutation and Recombination. 

3.6.2 Representation of individuals  

For the purpose of crossover and mutation operations the variables in the genetic  

algorithm may be represented by an amenable data structure.  
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Suppose we have the search space   = 0,1,2,…..10  then the    values form the  

individual. The elements of the search space in a binary sequence are encoded by  

expressing    =10 and   =0 in binary sequence to obtain 10=10102  and 0 =00002 

 

Thus   =10 is an individual and 1010 is its chromosome representation. The  

chromosome has 4 genes placeholder for the alleles. The allele information in the  

genes will be the binary numbers 0 and 1.the chromosome for   = 9 is therefore  

Table 3.2 

1     0 0 1 

 

There are 2
4
 permutations for a binary string of length 4.These 2

4
 permutation  

consist of both infeasible and feasible solutions. There are 11 feasible solutions which  

constitute the search space and the rest for the infeasible set. Since the solution set is  

restricted to the integers we look for suboptimal solution. In general the data structure  

used for the representation of individual depends on variables of the problem at hand.  

3.6.3 Fitness function  

This the measure associated with the collective objective functions of the optimization  

problem. The measure indicates the fitness of a particular chromosome representation  

of a particular individual solution. In the TSP, the fitness function is the sum of the  

path between the cities.  
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2 2
5 5

4, 2 4, 3

4 4 4max max ,
7 7 7

ij ij

j i j i

f f

g g

   

 
     

   
 

 

3.6.4 Mutation  

Mutation operation is performed on individual chromosome whereby the alleles are  

changed probabilistically.  

3.6.5 Random swap mutation  

In random swap two loci (position) are chosen at random and their values swapped.  

3.6.6 Move-and-insert gene mutation  

Using move-and-insert, a locus is chosen at random and its value is inserted before or  

 after the value at another at another randomly chosen locus.  

3.6.7 Move-and-sequence mutation  

Sequence mutation is very similar to the gene move-and-insert but instead of a single  

locus a sequence loci is moved and inserted before or after the value at another  

randomly chosen locus.  

3.7 Vehicle Routing Problem (VRP) 

With regards to a particular number of vehicles, vehicle routing is the problem of 

determining which customer should be served by which vehicles, and in what order each 

vehicle should visit its customers. The constraints may include the available fuel, 
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Capacity of each vehicle and available time windows for customers. TSP-based 

algorithms have been applied in this kind of problem and may also be applied to routing 

problems in computer networks, (Gerard, 1994). 

The figure below shows an example of Vehicle Routing Problem (VRP) with four routes 

where the triangle in the middle denotes the source node 

 

     1

4

2

3

 

           Figure 3.2: A typical solution for a VRP with 4 routes. (The square in the Middle 

denotes the source node) 
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3.8.0 Cutting Plane Method  

Cutting plane methods are exact algorithms for integer programming problem. They have 

proven to be very useful computationally in the last few years, especially when combined 

with a branch and bound algorithm in a branch and cut framework. These methods work 

by solving a sequence of linear programming relaxations of the integer programming 

problem.  

The relaxations are gradually improved to give better approximations to the integer 

programming problem, at least in the neighborhood of the optimal solution. For hard 

instances that cannot be solved to optimality, cutting plane algorithms can produce 

approximations to the optimal solution in moderate computation times, with guarantees 

on the distance to optimality.  

Cutting plane algorithms have been used to solve many different integer programming 

problems, including the traveling salesman problem.  

J‟unger et al, 1995, contains a survey of applications of cutting plane methods, as well as 

a guide to the successful implementation of a cutting plane algorithm. Nemhauser and 

Wolse, (1992) provides an execellent and detailed description of cutting plane algorithms 

as wel as other aspects of integer programming. Research by Schrijver, 1986 and his 

article in (Schrijver, 1995) are excellent sources of cutting plane applications. 

3.8.1 Using the fractional algorithm of cutting plane  

In this algorithm all coefficients including the right hand side need to be integer. This 

condition is necessary as all variables (original, slack and artificial) are supposed to be 

integers as shown below.  
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In case a constraint with fractional coefficient exist then both sides of the inequality 

(equality) are multiplied by the least common multiple of the denominator (LCMD).  

1 2 1 2

1 2
For instance 3   becomes 45 3 10

5 3
x x x x   

 

 

3.8.2 Procedure for cutting plane algorithm 

(i) Solve the integer programming problem as a Linear Programming Problem.  

(ii) If the optimal solution is integer stop else go to step (iii).  

(iii)  Introduce secondary constraints (cut) that will push the  

   solution towards integrality (Return to (i).  

           We show how to  the secondary constraints in the following sections.  

3.8.3 The construction of the secondary constraints: 

Given the integer problem  

Minimize Z = C
T x  

Subject A x  ≤  b 

           x  ≥ 0,  integer x  = Vector of decision variable.  

C
T
 = Vector coefficients  

A = the given matrix  

B = vector coefficient  

The optimal tableau of the Linear programming Problem is given in table  below: 
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 

   1 1

For simplicity  of natation let us have  ,

......    .....

B NB

B M NB N

x x x

x x x and x x x



 
 

 Table 3.2: The variables to be considered in the Cutting Plane Method. 

 

  

 x  x 1…. x i ….  W1… WJ …. WN Solution  

 1 
ix  C1…   Cj ….  CN β0 

ix  

 

ix  

 

 

ix  

 

  0 

 

 

0 

 

 

  0 

 

 

0 

 

 

1        0         

0 

 

 

0        1         

0 

 

 

0         0         

1 

 11…   1j ….  

 1N 

 

 

 i1…   ij ….  

 iN 

 

 

 M1…   Mj ….  

 MN 

 

β1 

 

 

βi 

 

 

βM 
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Consider the ith equation where x i was required to be integer but found not integer.  

ix = 
i

  –
1

( . )
N

ij j

J

W


    and 
i

  non-integer : i = 1,….,M  

(i) Any real number can be written as the sum of two parts, integer part and the fractional 

part.  

Let 
i

  = (
i

 ) + fi and
ij  = ( ij  )  + 

ijg                                                                    (2) 

Then  

 

 

     
1 1

i

N N

i ij j i ij ij

j j

f g w x a w
 

                                                                (3) 

Where [ ]  is integer part of ); 0 <  > 1; 0 1

([ ]  and ([ ] is the integer part of )

(note that  > 0 as  is presently not integer)

Since all ( 1,....., ) and all  ( 1,...., ) must b

i i j

i i

i j

f g

f x

x i M W j N

  

   

  



  e integer, 

the right hand-side is consequently integer and therefore the 

left-hand side is also integer thus from the table above

 

1

( )
i

N

ij j

i

f g w


               (Integer)                                                                    (4) 

ijg  ≥ 0 and jw  ≥ 0 then from equation (3) with Xi > (
i

 )
1

( ) 0
N

i ij j

i

f g w


   

Therefore 

1

( )       1,.....
i i

N

ij j

i

f f g w for all i N


                                                                      (5) 

1

[ ] ([ ] )  
i i i ij

N

ij j

J

x f g w and 


   
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since 0 <
i

f < 1 we have 
1

( ) 
i

N

ij j

i

f g w


 < 1 and using (4) we obtain  

1

( ) 0
N

i ij j

i

f g w


                                                                                                   (6) 

Constraint (6) is the cut and can be expressed as a secondary constraints by adding slack 

variable: 

This gives  

  

 

where 0is  (integer slack variable)                                                               (7) 

3.8.4 Choice of the cut  

Suppose two rows in table 2.0 gives non-integer solutions in ix  and kx  then there will be 

two cuts based on ix  and kx  having the following conditions: 

1

( )                  ( )
k

N

ij j

i

i f g w


  

1

(ii)                ( )
k

N

kj j

i

f g w


  

Cut (i) is stronger than cut (k) if  

(iii)                      and  for and i k i jf f g j  

With the strict inequality happening at least once.  

In other words a cut is deeper in ix  direction as if  increases and ijg  decreases  

0

1 1

( ) ( )  for all 1,...
i i

N N

i ij j ij j i

i i

f g w s s g w f i M  

 

    
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The Condition (iii) is difficult to implement computationally and therefore empirical rule 

that take into account the above definition have been developed.  

Criterion (b) is more efficient as this represents the definition given by (iii) better. 

1

1

1

 

1

1

 

1

( )  max ; 1,.... ;  a Specified k

( )  max ; 1,.... ;   required to be integer

( )  max ; 1,.... ;  a

N

j

N

j

N

j

fi
iN

grk
rk

j

fi
N

grj
rj

j

fi
iN

gik
ik

j

fr
a i M x for

g

fr
b i M xi but xi

g

fr
c i M x for

g













 
 

  
  

 
 

   
  

 







 Specified k

 
 
 
  

 

 

 

 

 

 

 

 

 

1 2

1 2

1 2

1 2

1 2 1 2

1 2 1

Phototype Example

Maximize  7 9

subject to 3 6

                7 35

                  0, 0,integer

solution

Maximise 7 9 0 0

subject to

                  3 1 6

         

z x x

x x

x x

x x

z x x s s

x x s

 

  

 

 

   

   

1 2 2         7 1 35x x s  
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      Table 3.3 Final tableau for first iteration  

 
jc  7 9 0 0  

bc  Basic variable 
1x  2x  1s  2s  Solution 

9 
2x  0 1 7

22
  1

22
  7

2
  

7 
1x  1 0 1

22
  1

22
 9

2
 

 
jz  7 9 0 0 63 

 
j jc z  0 0 28

11
  15

11
   

1 3 2 4 5

2 1

2 1

2 3 4

Let , ,

7 9from the tableau the optimal solution becomes 63,where ,and 
2 2

since  and  are not integers,we apply the concepts  of cutting plane techniques

7 1 2         
22 22 7

s x s x z x

z x x

x x

x x x

  

  

  

     

   

1 2 3 4

2 3 4

1 3 4

                                 (1)

7 910                                 (2)
22 22 2

Choice of Cut

Taking the equations(1) and (2)

7 1 10 0 3                (1)
22 2 2

321 11 0 4
22 22

x x x x

x x x a

x x x

   

     

                    (2)
2

b

 

          

3 4 2 3 4

3 4 1 3 4

2 23 24

3 23 34

71 1 0 0                         (3) integer     (1 )
2 22 2

31 21 0                        (4) integer    (2 )
2 22 22

71 1, ,
2 22 2

31 21, ,
2 22 22

x x x x x a

x x x x x b

f g g

f g g

    

    

  

  
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1 1

2 23 24

4

3

33 34

4

3

using;

max ; 1,.... ;   required to be integer

where 2, 3,4

71 1, ,
2 22 22

7 81
22 22 22

 3, 3,4

321 , .
22 22

7 3 24
22 22 22

1
2max

ir
N N i i

rj rj

j j

ij

j

ij

j

ff
i M x but x

g g

t j

f g g

g

when i j

g g

g

 



 



 
  

   
 
  

 

  

  

 

  

 





1
2,

8 24
2222

    
    

      
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3 4

3 4 3

3 4 3

1 2 3 4

22 22 22max ,
16 48 16

hence(la) would be considered to be part of the new constrains.

71 1Thus  0
2 22 22

71 1and 0
2 22 22

7 1 1
22 22 2

The system of equations becomes;

7 9 0 0 0

x x

x x s

x x s

z x x x x x

  
 

  

   

    

     5

2 3 4

1 2 3 4

3 4 5

3 5

subject to;

7 71
22 22 2

3 910
22 22 2

7 1 1
22 22 2

x x x

x x x x

x x x

s x

  

   

    



 

Table 3.4 Final tableau for second iteration  

 Cj 7 9 0 0 0  

bc  Basic variable 1x  2x  3x  4x  3s  Solution 

9 2x  0 1 0 0 1 3 

7  1 0 0    

0 3x  0 0 1 1
7  

22
7



 

11
7

  

 jz  7 9 0 1 0 59 

 j jc z  0 0 0 -1 -8  
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max 2 1 3

1 3

1 4 5

1

32 1159, 3, ,  
7 7

since x  and x  are not integers we apply the cutting plane techniques.

using the fractional algorithm;

321 1                                              (1)*
7 7 7

x

z x x and x

x x x

   

  

    

   

 

4 5

1 4 5 4 5

3 4 5

3 4 5

3 4 5 4 5

61 4+ 0 1 4
7 7 7

64 10 1 4            integer  (1a)*
7 7 7

1 22 11x +                                             (2)*
7 7 7

61 4x + 0 4 1
7 7 7

64 10 4 1            intege
7 7 7

x x

x x x x x

x x

x x

x x x x x

     

     

 

      

     

2 24 25

3 34 35

r  (2a)*

Choice of Cut

64 1From  (1a)*   = , ,
7 7 7

64 1From  (2a)*   = , ,
7 7 7

f g g

f g g

 

 
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1 1

25

24

5

4

3 35

34

5

4

using;

max ; 1,.... ;   required to be integer

where 2, 3,4

642 ,
1 77,  g ,=

7

Therefore

61 1
7 7

when 3, 4,5

64 ,
1 77,  g ,=

7

61 1
7 7

m

ir
N N i i

rj rj

j j

ij

j

ij

j

ff
i M x but x

g g

t j

f g

g

i j

f g

g

 





 
  

   
 
  

 

 

  

 

 

  

 





2 2
5 5

4, 2 4, 3

3 5

1 2

4 4 4ax max
7 7 7

Tie will be broken arbitrary by choosing equation (2)*as the new constrains to be added.

where 

The system of equations becomes;

7 9

ij ij

j i j i

f f

g g

s x

Z x x

   

 
 

     
  

  



  

 

3 4 5 4

2

1 4 5

1 4 5

4 5 4

0 0 0 0

subject to

3

321 1
7 7 7

1 1 11
7 7 7

61 4
7 7 7

x x x s

x

x x x

x x x

x x s

  



  

  

    
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                  Table 3.5 Final tableau for last iteration  

 Cj 7 9 0 0 0 0  

bc  

Basic 

variable 
1x  2x  3x  4x  5x  5s  Solution 

9 
2x  0 1 0 0 0 0 3 

7 
1x  1 0 0 0 -1 1 4 

0 
3x  0 0 1 0 -4 1 1 

0 
4x  0 0 0 1 6 -7 4 

 
jz  7 9 0 0 -7 7 55 

 -
j jc z  0 0 0 0 7 -7  

max 2 1 3 4Now the 55,  3,    4,  1,      4  

since the variables are integers, we stop here

z x x x and x    
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  CHAPTER 4                                                                                                                                             

4.0 DATA ANALYSIS AND RESULTS 

For the purpose of this work, the twenty four (24) Base transceiver Station site are 

numerically represented within the New Juabeng Municipality, within which the 

arbitrary numbers have been allocated to each BTS. Number Allocated, Distance 

Matrix for New Juabeng Municipality, are as shown in Table 4.2 

Table 4.1: BTS location and number allocated in the New Juabeng municipality  

NUMBER 

ALLOCATED 
BTS LOCATION 

NUMBER ALLOCATED 

Longitude Latitude 

1  Koforidua radio station -0.243330 6.088360 

2  Nyerede  Adawso -0.256840 6.063335 

3  Adukrom -0.075240 6.020460 

4  Somanya -0.014630 6.104280 

5  Huhunya_Ex -0.167640 6.174700 

6  Krobo Odumasi -0.000740 6.134670 

7  Akuse_Ex -0.114660 6.093550 

8  Akosombo_2 -0.054870 6.288470 

9  Asesewa -0.147490 6.401820 

10  Begoro -0.378790 6.376920 

11  Kukurantumi -0.370831 6.185835 

12  New Tafo -0.372489 6.232176 

13  Apedwa -0.488680 6.112400 

14  Kibi -0.554130 6.170800 

15  Akim-Asafo -0.473681 6.178264 

16  Asiakwa -0.496510 6.266440 

17  Osino -0.480660 6.341860 

18  Akrade -0.077105 6.203555 

19 Koforidua_Ex_1 -0.259600 6.091700 

20 Koforidua_Ex_2 -0.254270 6.096790 

21 Koforidua_North -0.256996 6.078823 

22 Koforidua_High-Court -0.027965 6.129740 

23 Akosombo radio station -0.040190 6.244540 

24 Juapong -0.134800 6.250090 
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The table below shows the distance matrix obtained from distances between the 

Twenty four (24) Base Transceiver station within the New Juabeng Municipality.  

For BTS which have no direct link, the minimum distance along the edges is 

considered.  

             Cij = The distance from BTS i to BTS j  

             Cii = Cjj = 0 = There is no distance. 
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Table 4.2 Distance Matrix for 24 Base transceiver Stations (BTS) in the New Juabeng 

municipality in Kilometers.  
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4.1 Formulation of the TSP model 

 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with  

Vertices V, |V|=n, where n is the number of BTS, and edges E with edge length dij for (i,j).  

We focus on the symmetric TSP case in which Cij =Cji, for all (i,j).  

 We formulate this minimization problem as an integer programming, as shown in Equations  

(1) to (5). 

Subject to 

 

 

The problem is an assignment problem with additional restrictions that guarantee the  

exclusion of sub tours in the optimal solution. Recall that a sub tour in V is a cycle that does  

not include all vertices (or BTS). Equation (1) is the objective function, which minimizes the  

total distance to be traveled.  

 

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each BTS  

is entered from only one other BTS, while (3) ensures that each BTS is only departed to on  

    other BTS. Constraint (4) eliminates sub tours. Constraint (5) is a binary constraint, 

    where    ijx = 1 if edge (i,j) in the solution and = 0, otherwise.  

1: min                                                                                                        (1)P

1                                                         

ij
i v j v

C
ij

ij

j v
j i

x

x i v

 






  (2)

(3)

0  1 (4)

, 

= 0  1

   

1                                                            

| | 1    ,    ,             

      ,                                 

ij

j v
j i

orij ij

i s j s

orij

x j v

x s s v x i j v

x i j v






 

 

     







(5)                        
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4.2 Data Analysis 

 

To satisfy the constrains (2) and (3) we choose the random 

initial tour ( ox ) =18 – 2 – 5 – 6 – 17 – 7 – 10 – 9 – 11 – 12 – 15 – 4 – 3 – 13 – 8 – 16 – 

14  - 19 -20 – 21 – 22 – 23 - 24 

From the objective function (1) the initial distance = d( ox ) = 

10-4-3-6-8-15-21-18-24-20-7-9-17-14-11-5-2-1-13-12-16-19-22-23 

D(10,4)+d(4,3)+d(3,6)+d(6,8)+d(8,15)+d(15,21)+d(21,18)+d(18,24)+d(24,20)+d(20,7)+

d(7,9) 

+d(9,17)+d(17,14)+d(14,11)+d(11,15)+d(5,2)+d(2,1)+d(1,13)+d(13,16)+d(16,19)+d(19,2

2)+d (22, 23) = 988km 

 

 

  k1

The initial temperature is taken to be 4069.00, 0.99.

Temperature is updated by using the formula; 

T T  where k is the number of iterations.

Stop when T 42.00

o

k

T 




 





 

4.3 Computational Procedure 

 

Matlab 2009 software version was installed on Dell Latitude| E6400 Laptop  

Computer with Intel® Core ™ 2 Duo CPU P8700@ 2.53GHZ, 783MHZ, 1.95GHZ of RAM. 

Simulated annealing algorithm was used to obtain the final solution.  After 1500 iterations in 

370.25 seconds . The execution time was varied with number of iterations  
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4.4 Results 

After performing 1600 iterations the optimal tour = 1- 20 – 19 – 22 – 2 – 21 – 5 – 11 -  12 

– 17 – 16 – 14 – 13 – 15 – 10 – 3 – 4 - 6 – 18 – 23 – 8 – 24 – 7 – 9 

Thus 

d(1,20)+d(20,19)+d(19,22)+d(22,2)+d(2,21)+d(21,5)+d(5,11)+d(11,12)+d(12,17)+d(17,1

6)+d(16,14)+d(14,13)+d(13,15)+d(15,10)+d(10,3)+d(3,4)+d(4,6)+d(6,18)+d(18,23)+d(2

3,8)+d(8,24)+d(24,7)+d(7,9) = 453km 

 

 The optimal tour was found to be the same after it was run nine times. 

The optimal tour is as follows: 

   

 Koforidua _ RS  Koforidua _ 2    Koforidua _1     Koforidua _ High Court

Nyerede Adewso   Koforidua _ North     Huhunya    Kukurantumi

New Tafo    Osino    Asiakwa     Kibi  Apedwa Akim Asafo

  Begoro  Aduk

    

    

       

  rom   Somanya _ Ex  Krobo Odumasi Akrade

Akosombo _ RS  Akosombo _ 2  Juapong  Akuse  Asesewa  

   

    

 

 

 

 

 

 



67 
 

CHAPTER 5 

OBSERVATION, CONCLUSION AND RECOMMENDATION 

5.0 Conclusion 

 

The simulated annealing algorithm can be a useful tool to apply to hard 

combinatorial problems like that of TSP. Using simulated annealing as a method 

in solving the symmetric  TSP model has been proved that it is possible to 

converge to the best solution.  

It could therefore be concluded that the objective of finding the minimum tour 

from the symmetric TSP model by the use of simulated annealing algorithm was 

successfully achieved. The study shows clearly that, any visit to the Base 

transceiver station site within the Vodafone Network New Juabeng Municipality 

must undertake the visit in the order below to minimize cost of Traveling and 

mean Time to restored (MTTR) in order to reduced the Operation cost. Also, 

recommended that similar exercise should be replicated in the other region.   The 

order is as follows: 

  

 Koforidua _ RS  Koforidua _ 2    Koforidua _1     Koforidua _ High Court

Nyerede Adewso   Koforidua _ North     Huhunya    Kukurantumi

New Tafo    Osino    Asiakwa     Kibi  Apedwa Akim Asafo

  Begoro  Aduk

    

    

       

  rom   Somanya _ Ex  Krobo Odumasi Akrade

Akosombo _ RS  Akosombo _ 2  Juapong  Akuse  Asesewa  

   

    
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5.1 Recommendations 

 

After a comprehensive study of TSP and Simulated annealing algorithm, the following  

a. Recommendation should be considered. Vodafone engineer  or  contractor  who 

visit the Base Transceiver Station site within the New Juabeng Municipality  for 

fault restoration, preventive maintenance, installation,  integration of site, co-

location of site, pre-acceptance test(PAT) etc, should consider the routes below in 

other to minimize their cost. 

 

 

 Koforidua _ RS  Koforidua _ 2    Koforidua _1     Koforidua _ High Court

Nyerede Adewso   Koforidua _ North     Huhunya    Kukurantumi

New Tafo    Osino    Asiakwa     Kibi  Apedwa Akim Asafo

  Begoro  Aduk

    

    

       

  rom   Somanya _ Ex  Krobo Odumasi Akrade

Akosombo _ RS  Akosombo _ 2  Juapong  Akuse  Asesewa  

   

    
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KOFORIDUA RS

KIBI

APEDWA

AKRADE

HUHUNYA

NYEREDE AWESO

KOFORIDUA NORTH

NEW TAFO

KOFORIDUA HIGH COURT

OSINO

KOFORIDUA 2

KUKURANTUMI

KOFORIDUA 1

ASIAKWA

AKIM ASAFO
ADUKROM

KROBO ODUMASE

BEGORO

AKOSOMBO 2
AKOSOMBO

SOMAYA

ASESEWA
JUAPONG

AKUSE

1
2

12

 

Figure 5.1 Interconnection of BTS within the New Juabeng municipality 

 Students can use this work for further research covering the other regions in Ghana. 

 



70 
 

REFERENCES 

  

 

1. Ackoff R.L Arnoff, E.L  Sengupta, S.S. (1961). Mathematical Programming. In  

progress in Operations Research. R.L. Ackoff, editor. John Wiley and Sons: New York: NY.  

105-210.  

 

2. Akorli K. F and Allotey F. K. A. (1999). Telecommunications in Ghana, Journal of 

communications and Information, Paper VII. (www.vii.org/papers/ghana.htm) 

 

3. Al-Hboub-Mohamad H. and Selim Shokrik, Z. (1993). A Sequencing Problem in the  

weaving Industry. European Journal of Operational Research (The Netherlands).  

66(1):6571.  

 

4. Applegate D., Bixby,  R., Chv'atal, V, and Cook, W. (1999). .Finding Tours in the 

TSP.Technical Report 99885. Research Institute for Discrete Mathematics, Universitaet Bonn:       

bonn, Germany.  

 

5. AppleGate D, Bixby R., Chvatal V and Cook W. (1998). On the Solution of the Traveling  

      Salesman Problems. Documenta Mathematica – Extra Volume ICM, chapter 3, pp. 645-656  

 

6. Applegate, D., Bixby, R., Chv'atal, V. and Cook, W. (2007): The Traveling Salesman  

    problem. Princeton University Press: Princeton, NJ.  

 

7. Applegate, D., Bixby, R., Chv´atal, V., and Cook, W. (1994): Finding Cuts in the  

     TSP (A preliminary report), Tech. rep., Mathematics, AT&T Bell Laboratories, Murray Hill,  

       

8. Amponsah, S .K and F.K Darkwah (2007): Lecture notes on operation Research, IDL  

     KNUST 62-67   

 

9. Bellmore, M. and Nemhauser, G.L. (1968). The Traveling Salesman Problem: A    Survey.     

     operations Research. 16:538-558.  

 

 

 10  Bellmore .M and. Nemhauser G. L, (1968) The Traveling Salesman Problem: A Survey  

      operations Research, Vol. 16, No. 3 pp. 538-558. http://www.jstor.org/stable/168581  

 

11. Bock, F. (1958). An Algorithm for Solving Traveling-Salesman' and Related Network        

     optimization Problems . Research Report, Operations Research Society of America   

      Fourteenth National Meeting: St. Louis, MO. Problems. Research Report, Operations  

      Research Society of America Fourteenth National Meeting: St. Louis,  MO.  

 

 

12. Burkard, R.E. (1979). Traveling Salesman and Assignment Problems: A Survey. In:        

    discrete Optimization 1. P.L. Hammer, E.L. Johnson, and B.H. Korte, eds. Annals of Discrete       

    mathematics Vol. 4, North-Holland: Amsterdam. 193-215.  



71 
 

 

13. Carpaneto, G., Dell„Amico, M. and Toth, P., (1995), .Exact Solution of Large-scale  

     asymmetric Traveling Salesman Problems. ACM Transactions on Mathematical Software,  

      21, pp.394–409.  

 

14.Cerny, V. (1985) Thermodynamical Approach to the Traveling Salesman Problem: An  

     efficient Simulation Algorithm, J. Opt. Theory Appl., 45, 1, 41-51.  

 

15. Crama,Y. ,Van de Klundert, J., and Spieksma, F. C.R. (2002). .Production Planning  

     problems in Printed Circuit Board Assembly.. Discrete Applied Mathematics. 123:339-361.  

 

16. Croes, G.A. 1958. A Method for Solving Travelling-Salesman Problems. Operations  

      research. 6:791-812.   

 

 17. Dacey, M.F. 1960. Selection of an Initial Solution for the Traveling-Salesman Problem.  

     operations Research. 8:133-134. Darwin.C, (1859).On the origin of spacies,1st edition  

     (facsimile-1964), Harvard University Press,MA  

 

18. Datta, S,(2000).Application of operational Research to the Transportation Problems  

    in Developing Countries:A review, Global Business Review, Volume 18,No.1 pages  

    113-132  

 

 19. Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1954). Solution of a Large-Scale  

   Traveling-Salesman Problem. Operations Research. 2: 393-410.  

.  

20. Eastman, W.L. (1958). Linear Programming with Pattern Constraints. Ph.D.  

    dissertation. Harvard University: Cambridge, MA.  

 

21. Ferreir, J.V. (1995). .A Travelling Salesman Model for the Sequencing of Duties in Bus  

     crew Rotas. Journal of Operational Research Society (UK). 46(4): 415-426.  

 

22. Fischetti, M., Lodi, A., Toth, P., (2002). Exact Methods for the Asymmetric Traveling  

    Salesman Problem. In: Gutin, G., Punnen, A.P. (Eds.), the Traveling Salesman Problem and  

    its Variations. Kluwer, Dordrecht, pp. 169–194 (Chapter 9).  

 

 

23. Foulds, L.R. and Hamacher, H.W. (1993). .Optimal Bin Location and Sequencing in  

      printed Circuit Board Assembly.. European Journal of Operational Research (Netherlands).  

     66(3):279- 290.  

 

 

24.  Garey M.R. and Johnson D.S. (1979).Computers and Intractability: A Guide to the  

theory of NP Completeness, W.H .Freeman, San Francisco. Hitchcock F.L.,The Distribution                          

of Product from Several Sources to Numerous Localities, J. Math. Phys., 20, No. 2, 1941, 

217–224.  

 



72 
 

25 Genetic Algorithms. In Ibrahim H. Osman and James P. Kelly, editors, Proceedings of the  

    meta-heuristics Conference, pages 53–62, Norwell, USA,. Kluwer Academic Publishers  

 

26. Gerard Reinelt, (1994). The Traveling Salesman: Computational Solutions for TSP  

    applications.  

 

27. Goldberg, D.E, (1989). Genetic Algorithm for Search, Optimization and Machine  

      learning, Addison-Wesley.  

 

28. Golden B.L., Wasil E.A., Kelly J.P, and. Chao I-M, (1998). Metaheuristics in Vehicle  

     routing. In Fleet Management and Logictics, T.G. Crainic and G. Laporte (eds), Kluwer,  

     Boston, 33-56.  

 

29. GoldenB.L.and Assad A.A.,(1988). Vehicle Routing: Method sand Studies, 

     Elsevier Science, Amsterdam  

     

30. Gomory, R.E. (1960). Solving linear programming problems in integers. In Bellman, R.,  

     Hall Jr., M. (eds) Combinatorial Analysis: Proceedings of Symposia in Applied Mathematics  

     X. American Mathematical Society, Providence, Rhode Island, pp. 211–215.  

 

31. Gonzales, R.H. (1962). Solution to the Traveling Salesman Problem by Dynamic  

    programming on the Hypercube. Technical Report Number 18, Operations Research Center,  

    Massachusetts Institute of Technology: Boston, MA.  

 

32.Gr¨otschel, M., J¨unger, M., and Reinelt, G. (1984). A cutting plane algorithm for the  

      linear ordering problem in  Operations Research 32, 1195  

  

33.Gr¨otschel, M., Martin, A., and Weismantel, R. (1996): Packing Steiner trees: a cutting  

    plane algorithm and computational results„, Mathematical Programming 72 ,125–145.  

 

34.Grötschel, M. (1980). On the Symmetric Travelling Salesman Problem: Solution of a  

   120-City Problem. Mathematical Programming Study. 12: 61-77.  

 

35. Grötschel M and Padberg .M, (1993). Ulysses 2000: In Search of Optimal Solutions  

       to hard Combinatorial Problems, Technical Report, New York University Stern  

     School of business      

 

 

 36. G¨unther, H.O., Gronalt, M., and Zeller, R. (1998). .Job Sequencing and Component Set- 

       up on a Surface Mount Placement Machine. Production Planning & Control. 9(2):201–211.  

 

37. Gutin, G. and Punnen, J. (2002). The TSP and its Variations. Kluwer Academic Publishers. 

 

 

38 .Haggarty, L.; Shirley M. M. and Wallsten, S. (2002). Telecommunication Reform in  Ghana                                                                                                                       

World Bank Policy Research Working Paper No. 2983, World Bank, Washington DC. 



73 
 

 

39. Hatfield, D. J. AND J. F. Pierce, (1966).Production sequencing by  

       Combinatorial Programming, IBM Cambridge Scientific Center, Cambridge, Mass.  

 

 

40. Helbig, H.K. and Krarup, J. (1974). Improvements of the Held-Karp Algorithm for the  

      Symmetric Traveling-Salesman Problem. Mathematical Programming. 7:87-96.  

 

41. Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum  

     Spanning Trees. Operations Research. 18:1138-1162.  

 

42. Held, M. and Karp, R.M. (1971). The Traveling-Salesman Problem and Minimum  

     Spanning Trees: Part II. Mathematical Programming. 1:6-25.  

 

43. Heller, I. (1955). On the Travelling Salesman's Problem. Proceedings of the Second  

      Symposium in Linear Programming: Washington, D.C. Vol. 1.  

 

44. Hillier F.S and Lieberman G.J (2005): Introduction to operations Research. McGraw-hill  

     companies inc,1221 Avenue of the Americas, New York ,NY 10020.  

 

45. Hong, S. (1972). A Linear Programming Approach for the Traveling Salesman Problem.  

    Ph.D. Thesis. The Johns Hopkins University: Baltimore, MD.  

 

46. Johnson D.S and Mcgeoch L.A (2002): Experimental Analysis of Heuristics for STSP, In  

     The Traveling Salesman Problem and its Variations (G. Gutin and A. P. Punnen, eds.),  

      Kluwer.  

 

47. Johnson, D.S., Gutin, G. McGeoch, L.A., Yeo, A., Zhang, W., and Zverovitch, A.    

      (2002). Experimental Analysis of Heuristics for the Asymmetric Traveling Salesman  

 

48. Kahng, A.B. and Reda, S. (2004). 'Match Twice and Stitch: A new TSP Tour Construct 

     heuristic.. Operations Research Letters. 32(6): 499-ion 509.  

 

49. Karg, R.L. and. Thompson, G.L. (1964). A Heuristic Approach to Solving Travelling  

     Salesman Problems. Management Science. 10:225-248. 

  

 

50. Karp, R.M., Steele, J.M., (1990). Probabilistic Analysis of Heuristics. In The Traveling 

     Salesman Problem, Wiley, New York, pp. 181–205 .  

 

51. Keuthen, R. (2003). .Heuristic Approaches for Routing Optimization.. PhD thesis at the  

      University of Nottingham: UK.  

 

52. Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimizations by simulated  

     annealing. Science, 220, 671-681.  

 



74 
 

 

53. Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, (1983). Optimization by Simulated  

    annealing, Science, 220, 4598, 671-680.  

 

54. Kolohan, F. and Liang, M. (2000). .Optimization of Hole Making: A Tabusearch  

     approach.. International Journal of Machine Tools & Manufacture. 50:1735-1753.  

 

55. Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling  

      Salesman Problem. Proceedings of the American Mathematical Society. 2:48-50.  

 

56. Kwon, S., Kim, H., and Kang, M. (2005). Determination of the Candidate Arc Set for the  

     asymmetric Traveling Salesman Problem. Computers and Operations Research. 32(5):  

     1045-1057.  

 

57. Lambert, F. (1960): The Traveling-Salesman Problem. Cahiers du Centre de Recherche  

     opérationelle. 2:180-191.  

 

58. Lawler, E.L. and Wood, D.E. (1966): Branch-and-Bound Methods: A Survey.  

    Operations Research. 14:699-719.  

 

59. Lawler, E.J., Lenstra, J.K., Rinnoy Kan, A.H.G., and Shmoys, D.B. (1985). .The  

    Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization.. John Wiley &  

     Sons: New York, NY.  

 

60. Lawler and. Wood D. E, (1966) Branch-and-Bound Methods: A Survey, Opns. 

        Res. 14, 69-719  

 

 61. Lin, S. and Kernighan, B.W. (1973). An Effective Heuristic Algorithm for the Traveling- 

     Salesman Problem. Operations Research. 21:498-516.  

 

62. Little, J. D. C., K. G.Murty , D. W. Sweeney, AND C. Karel , (1963). An Algo- 

        rithm for the Traveling Salesman Problem, Opns. Res. 11, 979-989 .  

 

 63. Little, J.D.C., Murty, K.G., Sweeney, D.W., and Karel, C. (1963). An Algorithm for the  

      Traveling Salesman Problem. Operations Research. 11: 972-989.  

 

64. M. L. Fisher (1981). The Lagrangian relaxation method for solving integer programming 

      problems. Management Science, 27:1–18 

 

65. Miller, D. and Pekny, J. (1991),Exact Solution of Large Asymmetric Traveling Salesman  

       Problems, Science, 251:754–761  

 

66. Mitchell, J. E., and Borchers, B. (1997): Solving linear ordering problems with a  

        Combined interior point/simplex cutting plane algorithm, Tech. rep. 

         Mathematical Sciences,  

 



75 
 

67. Mitchell, J. E., and Borchers, B. (1996): Solving real world linear ordering problems  

       using a primal-dual interior point cutting plane method, Annals of Operations 

       Research 62, 253–276.  

 

68. Mitrovic-Minic, S. and Krishnamurti, R. (2006). The Multiple TSP with Time Windows:  

     Vehicle Bounds Based on Precedence Graphs. Operations Research Letters. 34(1): 111-120.  

 

69. Morton, G. and Land, A.H. (1955). A Contribution to the Travelling-Salesman'  

    Problem. Journal of the Royal Statistical Society, Series B. 17:185-194.  

 

70. Nemhauser, G. L., and Sigismondi, G. (1992): A strong cutting plane/branch-and-bound  

       algorithm for node packing, Journal of the Operational Research Society 43 443–457.  

 

71. Padberg, M.W. and Rinaldi, G. (1987). Optimization of a 532-city Symmetric Traveling  

     Salesman Problem by Branch and Cut. Operations Research Letters. 6:17.  

 

72. Padberg M. and Rinaldi G. (1991) A branch-and-cut algorithm for the resolution of large- 

     scale traveling salesman problem, SIAM Review,33, 60–100.  

 

73. Padberg, M., and Rinaldi, G. (1991): A branch-and-cut algorithm for the resolution of  

        large-scale symmetric traveling salesman problems, SIAM Review 33(1)), 60–100.  

 

74. Papadimitriou C.H. and Stieglitz K.(1982). Combinatorial Optimization:  

       algorithms and Complexity, Prentice-Hall Inc., Englewood Cliffs, New Jersey 

 

75. Potvin, J.Y. (1996):The Traveling Salesman Problem: A Neural Network Perspective..  

     ORSA Journal on Computing. 5:328-347.  

 

 

76. Problem.. In: Gutin G and Punnen H (eds). The Traveling Salesman Problem and it  

       Variations. Kluwer Academic Publishers.  

 

 

77. Rachev and Ruschendorf (1993), constrained transportation Problems, Decision  

      and Control, Proceedings of the 32nd IEEE conference ,Volume 3,Pages 2896-2900 . 

 

 78. Radin, L.R. (1998):Optimization in Operations Research. Prentice Hall Inc. New Jersey.  

 

79. Rajkumar, K. and Narendran, T.T. (1996): A Heuristic for Sequencing PCB Assembly to  

      Minimize Set-up Times, Production Planning & Control. 9(5): 465–476.  

 

80. Raymond, T.C. (1969). Heuristic Algorithm for the Traveling-Salesman Problem. IBM  

      Journal of Research and Development. 13:400-407.  

 

 

 



76 
 

81. Rego C and Glover, F (2002) Local Search and Metaheuristic, in G. Gutin and A.P.  

      punnen (eds.): The Traveling Salesman Problem and its Variations, Kluwer, Dordrecht.  

 

82. Riera-Ledesma, J. and Salazar-González, J.J. (2005). .A Heuristic Approach for The  

      Travelling Purchaser Problem. European Journal of Operations Research. 162(1):142-152.  

 

83. Robacker, J.T. (1955). Some Experiments on the Traveling-Salesman Problem. RAND  

      research Memorandum.  

 

84. Roberts, S.M. and Flores, B. (1966). An Engineering Approach to the Traveling  

     Salesman Problem. Management Science. 13:269-288.  

 

 85. Robinson, B. (1949). On the Hamiltonian Game (A Traveling-Salesman Problem).  

     research Memorandum.  

 

86. Rossman, M.J and Twery, R.J. (1958). A Solution to the Travelling Salesman Problem.  

     operations Research. 6:687.  

 

 87. Salia, E. (1995). Telecommunications in Ghana: A Changing Horizon,  

       Africa Communications   

                 

88. Shapiro, D. (1966). Algorithms for the Solution of the Optimal Cost Traveling Salesman  

       problem. Sc.D. Thesis, Washington University: St. Louis, MO.  

 

 

89. Shapiro, D., (1966) Algorithms for the Solution of the Optimal Cost Traveling  

        Salesman Problem, Sc.D. Thesis, Washington University, St. Louis,  

 

90. Schrijver, A. (1986): Theory of Linear and Integer Programming, John Wiley,  

      Chichester.  

 

 

91. Tian, P. and Yang, S. (1993). An Improved Simulated Annealing Algorithm with Generic  

    characteristics and Travelling Salesman Problem. Journal of Information and Optimization  

     Science. 14(3):241-254.  

 

92. Volgenant, T. and Jonker, R. (1982). A Branch and Bound Algorithm for the Symmetric  

    Traveling Salesman Problem Based on the 1-Tree Relaxation. European Journal of  

    operational Research. 9:83-89.  

 

93. Walshaw, C.A. (2002). Multilevel Approach to the Travelling Salesman Problem.  

      operations Research. 50(5):862-877.  

 

 

 

 



77 
 

APPENDIX A 

 

Matlab Program  

 

%function simanneal()  

 

% **********Read distance (cost) matrix from Table 3.2 ******  

clc  

d = xlsread('dist.xls');  

dorig = d;  

start_time = cputime;  

summ=0;  

dim1 = size(d,1);  

dim12 = size(d);  

for i=1:dim1  

d(i,i)=10e+06;  

end  

for i=1:dim1-1  

for j=i+1:dim1  

d(j,i)=d(i,j);  

end  

end  

%d  

% *****************Initialize all parameters**********************  

d1=d;  

tour = zeros(dim12);  

cost = 0;  

min_dist=();  

short_path=();  

%*****************************************************************  
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%************Initialize Simulated Annealing parameters************  

%T0 Initial temperature is set equal to the initial solution value  

Lmax = 400; %Maximum transitions at each temperature  

ATmax = 200; %Maximum accepted transitions at each temperature  

alfa = 0.99; %Temperature decrementing factor  

Rf = 0.0001; %Final acceptance ratio  

Iter_max = 1000000; %Maximum iterations 13  

start_time = cputime;  

diary output.txt  

% *******generate Initial solution - find shortest path from each node****  

% if node pair 1-2 is selected, make distance from 2 to each of earlier  

%visited nodes very high to avoid a subtour  

k = 1;  

for i=1:dim1-1  

min_dist(i) = min(d1(k,:));  

short_path(i) = find((d1(k,:)==min_dist(i)),1);  

cost = cost+min_dist(i);  

k = short_path(i);  

% prohibit all paths from current visited node to all earlier visited nodes  

d1(k,1)=10e+06;  

for visited_node = 1:length(short_path);  

d1(k,short_path(visited_node))=10e+06;  

end  

end  

tour(1,short_path(1))=1;  

for i=2:dim1-1  

tour(short_path(i-1),short_path(i))=1;  

end  

%Last visited node is k;  

%shortest path from last visited node is always 1, where the tour  

%originally started from  
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last_indx = length(short_path)+1;  

short_path(last_indx)=1;  

tour(k,short_path(last_indx))=1;  

cost = cost+d(k,1);  

% A tour is represented as a sequence of nodes starting from second node (as  

% node 1 is always fixed to be 1  

crnt_tour = short_path;  

best_tour = short_path;  

best_obj =cost;  

crnt_tour_cost = cost;  

 

obj_prev = crnt_tour_cost;  

fprintf('\nInitial solution\n');  

crnt_tour  

fprintf('\nInitial tour cost = %d\t', crnt_tour_cost);  

nbr = crnt_tour;  

T0 = 1.5*crnt_tour_cost;  

T=T0;  

iter = 0;  

iter_snc_last_chng = 0;  

accpt_ratio =1;  

%*********perform the iteration until one of the criteria is met***********  

%1. Max number of iterations reached***************************************  

%2. Acceptance Ratio is less than the threshold  

%3. No improvement in last fixed number of iterations  

While (iter < Iter_max && accpt_ratio > Rf)  

iter = iter+1;  

trans_tried = 0;  

trans_accpt = 0;  

while(trans_tried < Lmax && trans_accpt < ATmax)  
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trans_tried = trans_tried + 1;  

city1 = round(random('uniform', 1, dim1-1));  

city2 = round(random('uniform', 1, dim1-1));  

While (city2 == city1)  

city2 = round (random ('uniform', 1, dim1-1));  

end 

if (city2>city1)  

i=city1;  

j=city2;  

else 

i=city2;  

j=city1;  

end  

nbr(i)=crnt_tour(j);  

nbr(j)=crnt_tour(i);  

 

if i==1  

if j-i==1  

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))-  

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));  

else  

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))-  

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))-  

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j- 

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));  

end  

else  

if j-i==1  

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))-  

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));  

else  
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nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))-  

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))-  

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j-  

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));  

end  

end  

delta = nbr_cost - crnt_tour_cost;  

prob1 = exp(-delta/T);  

prob2 = random('uniform',0,1);  

if(delta < 0 || prob2 < prob1)  

summ = summ+delta;  

crnt_tour = nbr;  

crnt_tour_cost = nbr_cost;  

trans_accpt = trans_accpt + 1;  

if crnt_tour_cost < best_obj  

best_obj = crnt_tour_cost;  

best_tour = crnt_tour;  

end  

else  

nbr = crnt_tour;  

 

nbr_cost = crnt_tour_cost;  

end  

 

end  

accpt_ratio = trans_accpt/trans_tried;  

fprintf('\niter#=%d\t, T=%2.2f\t,obj= %d\t, accpt ratio=%2.2f', iter,T,crnt_tour_cost,accpt_ratio);  

if crnt_tour_cost == obj_prev  

iter_snc_last_chng = iter_snc_last_chng + 1;  

else  

iter_snc_last_chng = 0;  
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end  

if iter_snc_last_chng == 10  

fprintf('\n No change since last 10 iterations');  

break;  

end  

obj_prev = crnt_tour_cost;  

T = alfa*T;  

iter = iter + 1;  

end  

fprintf('\nbest obj = %d', best_obj);  

fprintf('\n best tour\n');  

best_tour  

end_time = cputime;  

exec_time = end_time - start_time;  

fprintf('\ntime taken = %f\t\n', exec_time);  

diary off  
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