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ABSTRACT

The energy sector in Ghana has been undergoing deregulation with the aim of increasing power
generation and the effective and efficient transmission of power. There is the need therefore to
find out ways power can be transmitted effectively but in a cost effective manner. In this study a
minimum spanning tree was found for National Interconnected Transmission System. The
shortest path distance between the substations in the transmission network was also found.
Prim’s Algorithm was used to determine the minimum spanning tree, whiles Floyd Warshall’s
Algorithm was used to determine the shortest path distances. The study reveals that a total
minimum distance of two thousand, five hundred and forty two kilometers (2542 km) will be
covered in connecting the forty seven (47) 161kv substations on the National Interconnected
Transmission System. It was recommended that the Ghana Grid Company Ltd adopt this study
in their operations to reduce the material cost in constructing grid lines. It will also help them to

determine the shortest route to use in case of emergency at their substation to enhance response

time.
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CHAPTER ONE

1.0 INTRODUCTION
This chapter will introduce the study and put forward the background. The problem statement,

the objectives and the significance of the study will also be looked at.

Energy is the lifeblood of the global economy. The world today has become very industrialized
with the production of new technological equipment which needs power to run them. Every
economy needs energy to run it industry that produce goods and services, energy to light and
beautify it cities, energy to entertain its people and for their basic amenities. The dependence on
energy has become increasingly paramount hence the need for good planning in the sector to
meet the energy needs for both domestic and industrial purposes. Energy efficiency is emerging
as a key policy solution to address high energy cost and the treatment of climate change
(Howland et al., 2009).

In Ghana the energy sector has been undergoing deregulation with the aim of increasing our
power generatiﬁfi_ and the em;fﬁciem transmission of power. There is the need

therefore-to find out ways power can be transmitted effectively but in a cost effective manner.

1.1 BACKGROUND TO STUDY

In Ghana, the power sector is categorized in three (3) folds: Generation, Transmission and
Distribution. In time past the Volta River Authority (VRA) was solely responsible for power
generation and transmission of bulk power to the Electricity Company of Ghana (ECG) for

distribution to various consumers. Reforms in the energy sector saw the birth of other power




generation companies like Asogli Power. It has also seen the formation of the Ghana Grid
Company Limited (GRIDCo), which has been solely charged with the responsibility of
transmission of bulk power to the ECG and Northern Electricity Department (NED) who

distribute to various consumers.

1.1.1 TRANSMISSION

Transmission/Electric Power Transmission has been defined in many ways suitable to the use to
which it is needed. The Farlex Dictionary defined Electric Power Transmission as ‘The transport
of generator-produced electrical energy to loads’. According to the Wikipedia free encyclopedia,
‘Electric-power transmission is the bulk transfer of electrical energy, from generating power
plants to electrical substations located near demand centers. This is distinct from the local wiring
between high voltage substations and customers, which is typically referred to as electric power

distribution’.

1.1.2 TRANSMISSION GRID

Transmission/Power Grid is dm Energy Dictionary (www.EnergyVortex.com) ‘as a
system -of interconnected generating facilities, transmission corridors and power lines that
provide energy to a group of customer. This term can refer to anything from a network that
serves a single suburb or section of a city to a nation’s entire power distribution system.
Typically grid refers only to high-voltage transmission network that transport large volumes of
energy from production facilities to urban area, industrial sites and end-use customers.

In Ghana, the Ghana Grid Company Limited (GRIDCo) is the Company responsible for

transmission and the control of the transmission grid (National Interconnected Transmission



System). It establishment is intended to develop and promote competition in Ghana’s wholesale
power market by providing transparent, non-discriminatory and open access to the transmission
grid for all the participants in the power market particularly, power generators and bulk

consumers and thus bringing efficiency in power delivery.

1.1.3 GHANA GRID COMPANY LIMITED (GRIDCo)

GRIDCo was established in accordance with the Energy Commission Act, 1997 (Act 154) and
the Volta River Development (Amendment) Act, 2005 Act 692, which provided for the
establishment and exclusive operation of the National Interconnected Transmission System
(NITS) by an independent utility and the separation of the transmission functions of the Volta
River Authority (VRA) from its other activities within the framework of the Power Sector
Reform. GRIDCo was incorporated on December 15, 2006 as a private limited liability
Company under the Companies Code, 1963 Act 179 and granted a certificate to commence
business on December 18, 2006. The Company became operational on August 1, 2008 following
the transfer of the staff and the power transmission assets from VRA to GRIDCo.

1.1.4 FUNCTIONS
The functions of the Ghana Grid Company Ltd (GRIDCo) are:
. Undertake economic dispatch and transmission of electricity from wholesale
suppliers (generating companies) to bulk customer, which include the Electricity
Company of Ghana (ECG), Northern Electricity Department (NED) and the Mines;

. Provide fair and non-discriminatory transmission services to all power market

participants;
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. Acquire, own and manage assets, facilities and systems required to transmit electrical

energy;
. Provide metering and billing services to bulk customers;
. Carry out transmission system planning and implement necessary investment to

provide the capacity to reliably transmit electric energy; and manage the Wholesale

Power Market.

1.1.5 MODE OF POWER TRANSMISSION

GRIDCo owns and operates over 4,000 km of high voltage (comprising mainly 161kV)
transmission lines across the country. These lines carry power from various generating stations to
transformer substations. At these substations the power is stepped down to lower voltages

including 34.5kV, and 11kV for the major bulk customers and the distribution companies.

1.2 PROBLEM STATEMENT

There are several construction and reconstruction of substations and grid lines that are added to
the National Grid from time t(m are also some system challenges which needs the
urgent attention of men on cite to maintain continuous transmission of power. There is also
routine maintenance works performed on the various substations and Grid lines. There are
several routes which can connect the_se substations and the grid lines. There is the need therefore
to find out which of the routes will give us minimum connectivity and will be more economical
in terms of cost of materials used in constructing grid lines, travelling distance and time it takes

to cover such distance. There is also the need to find the shortest path from one point of the



network to the other to easily access, any time there is the need to respond to system challenges
or any emergency.

On this background the research has been undertaken to find the minimum spanning tree route
for the National Interconnection System (NITS), and also find the shortest path from any point of

the network to the other.

1.3 OBJECTIVES OF STUDY
The objectives of study are:
(i) to find using Prim’s Algorithm, a minimum spanning tree route for the National
Interconnection Transmission System (National Grid)
(ii) to determine using Floyd Warshall Algorithm, to find the shortest path that connect one

point of the transmission network to the other.

1.4 METHODOLOGY

Data for the study was collected—from the Ghana Grid Company Limited (GRIDCo), and the

Center for Remote Sensing and Geographic Information System (CERGIS), University of

..—-'-'".-

Ghana.

The data involved information about the various substations and grid lines within the National
Grid. ArcGIS software, MATLAB and Microsoft Excel Spreadsheet where used in getting high
level accuracy in the distance calculation and the determination of the minimum spanning by

implementing the Prim’s Algorithm, and the shortest path by implementing Floyd’s Warshall

Algorithm.



1.5 JUSTIFICATION/SIGNIFICANCE OF STUDY

Finding the minimum spanning tree route will help reduce cost in terms of resources used in
constructing grid lines, and cost associated with traveling since distance to be covered will be
reduced. Finding the shortest path between any given locations within the network will also
reduce travelling time and the cost associated with it. This will improve access to the various
substations and the grid lines across the country and reduce the cost associated with carrying out
routine maintenance works. It will also reduce response time in case of an emergency at any

location within the network. These will however, help in reducing transmission losses.

1.6 SCOPE OF THE STUDY

Electric power is transmitted to at least every corner of the country. The National Interconnected
Transmission System is designed to cover the length of the entire country. The study covers the

entire country. Data is collected from all the ten (10) regions of Ghana, where is there is a

substation and asse?s_s to electric power. ——

1.7 LIMITATIONS OF STUDY
The limitations of the study are:

(i) Wide area coverage (across the country)

(ii) Limited time to complete the study



1.8 ORGANIZATION OF THESIS

In Chapter 1, we considered the introduction of the study. This consists of the background of the
study with emphasis on electric power transmission, problem statement and the objectives of
study. The justification and methodology were also put forward. Chapter 2 presents relevance
and adequate literature on the subject matter. Chapter 3 presents methodology for solving the
minimum spanning tree and shortest path problem. Chapter 4 will put forward data collection
and analysis. Chapter 5 which is the last chapter of the study will consider the conclusions and

recommendation of the study.

1.9 SUMMARY

In this chapter we considered the introduction and the background of the study. We also
considered the problem statement and the objectives of the study. The justification and

methodology was also put forward.

In the next chapter, we shall putmewed literature related to the study.



CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

In this chapter, we will review related literature to the study as it will help identify the theory
behind our study and guide in the research process. A lot of studies have been conducted on
Minimum Spanning Tree and Shortest Path Problems. Minimum Spanning Tree is of high
importance in optimization (Zhou and Gen (1999)). Some have been finding ways of improving

the algorithms in computing these problems whiles others compared the algorithms.

2.1 REVIEW OF RELATED LITERATURE

Moret et al., (1991) compared algorithms for the construction of a minimum spanning tree
through large scale experimentation on randomly generated graphs of different structures and
different densities. In order to extrapolate with confidence, the authors used graphs with up to
130,000 nodes (sparse) or 750,000 edges (dense). Algorithms included in their experiments were
Prim's algorithm _(i}rlplement-edmty of priority queues), Kruskal's algorithm (using
presorting_or demand sorting), Cheriton and Tarjan's algorithm, and Fredman and Tarjan's
algorithm. The authors also ran a large variety of tests to investigate low-level implementation
decisions for the data structures, as x’fell as to enable them to eliminate the effect of compilers
and architectures. Within the range of sizes used, Prim's algorithm, using pairing heaps or
sometimes binary heaps, is clearly preferable. While versions of Prim's algorithm using efficient
implementations of Fibonacci heaps or rank-relaxed heaps often approach and (on the densest

graphs) sometimes exceed the speed of the simpler implementations, the code for binary or



pairing heaps 1s much simpler, so that these two heaps appear to be the implementation of
choice.

Some conclusions regarding implementation of priority queues also emerge from their study: in
the context of a greedy algorithm, pairing heaps appear faster than other implementations,
closely followed by binary, rank-relaxed and Fibonacci heaps, the latter two implemented with

sacks, while splay trees finish a decided last.

According to Wei et al., (2011), Minimum Spanning Tree is a classical problem in graph theory
that plays a key role in a broad domain of applications. The authors proposed a minimum
spanning tree algorithm using Prim’s approach on Nvidia GPU under CUDA architecture. By
using new developed GPU-based Min-Reduction data parallel primitive in the key steps of the
algorithm, higher efficiency is achieved. Experimental results show that the authors obtain about
two times speedup on Nvidia GTX260 GPU over the CPU implementation and three times

speed-up over non-primitives GPU implementation.

Harish and Narayanan (2007) smmraﬁng large graph algorithms on the GPU using
CUDA.." The authors saw that large graphs involving millions of vertices are common in many
practical applications and are challenging to process. Practical-time implementations using high-
end computers are reported but are aEcessible only to a few. Graphics Processing Units (GPUs)
of today have high computation power and low price. They have a restrictive programming
model and are tricky to use. The G80 line of Nvidia GPUs can be treated as a SIMD processor
array using the CUDA programming model. The authors presented a few fundamental

algorithms — including breadth first search, single source shortest path, and all-pairs shortest path




- using CUDA on large graphs. They can compute the single source shortest path on a 10 million
vertex graph in 1.5 seconds using the Nvidia 8800GTX GPU costing $600. In some cases
optimal sequential algorithm is not the fastest on the GPU architecture. GPUs have great

potential as high-performance co-processors.

Dussert et al., (1986) developed a new approach for studying order and disorder in sets of
particles. The authors approach is based on a graph constructed from the set of points locating
the positions of the particles. This graph, which is called the minimal spanning tree, allowed
them to deduce two parameters, namely, the average edge length m and the standard deviation o,
which are characteristic of the repartition to be studied. The method is applied to particles of an
aggregated lithium thin film deposited on a di-electric substrate. These particles are found to be
partially ordered. The use of a diagram involving both m and o turns out to be a powerful tool for

the determination of the degree of order in very various systems.

In a related work Dusser et al., (1987) developed a new approach to study order and disorder in
biological membranes and moﬁ'm; in biological structures. It is based on a graph
constructed on the set points representing the position of particles. From this graph, which is
called the minimal spanning tree, it is possible to deduce two parameters, namely the average
length m and the standard deviation o, which are characteristic of the repartition to be studied.
The use of a diagram involving both m and o makes it possible to determine the degree of order

by taking a simple reading in the (m, o) plane.
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Gower and Ross (1969) explained Minimum Spanning Trees (MST) and single linkage cluster
analysis (SLCA). It is shown that all the information required for the SLCA of a set of points is
contained in their MST. Known algorithms for finding the MST are discussed. They are efficient
even when there are very many points; this makes a SLCA practicable when other methods of
cluster analysis are not. The relevant computing procedures are published in the Algorithm
section of the same issue of Applied Statistics. The use of the MST in the interpretation of vector

diagrams arising in multivariate analysis is illustrated by an example.

Vandervalk et al.,, (2009) described the application of two well-known graph algorithms,
Edmonds' algorithm and Prim's algorithm, to the problem of optimizing distributed SPARQL
queries. In the context of their paper, anldquo-distributed SPARQL queryrdquo is a SPARQL
query which is resolved by contacting any number of remote SPARQL endpoints. Two
optimization approaches were described. In the first approach, a static query plan is computed in
advance of query execution, using one of two standard graph algorithms for finding minimum
spanning trees (Edmonds' algorithm and Prim's algorithm). In the second approach, the planning
and execution of the query are mo that as each potential solution is expanded it is
permitted to follow an independent query plan. Their optimization approach requires basic
statistics regarding RDF predicates which must be obtained prior to the user's query, through

automated querying of the remote SPARQL endpoints.

Graham and Hell (1985) in their study “On the history of the minimum spanning tree problem”
were of the view that, it was standard practice among authors discussing the minimum spanning

tree problem to refer to the work of Kruskal (1956) and Prim (1957) as the sources of the

11



problem and its first efficient solutions, despite the citation by both of Boruvka (1926) as a
predecessor. In fact, there are several apparently independent sources and algorithmic solutions
of the problem. They have appeared in Czechoslovakia, France, and Poland, going back to the
beginning of this century. The authors explored and compare these works and their motivations,

and relate them to the most recent advances on the minimum spanning tree problem.

According to Michailidis (2005), a minimum spanning tree (MST) connects all the vertices of a
weighted graph by existing edges whose total weight is minimum. It has been the object of
intensive study due to its importance in combinatorial optimization. The author discussed the
formulation of the MST problem, present some of the most commonly used algorithms for its

construction, and discuss several of its applications in statistics, probability, and data analysis.

Zhou and Gen (1999) in their work on “Genetic algorithm approach on multi-criteria minimum
spanning tree (MST) problem” came out that the multi-criteria MST (mc-MST) is a more
realistic representatf_qg of the practical problem in the real world, but it is difficult for the
traditional nemorﬁbtimization'm deal with. A genetic algorithm (GA) approach was
developed to deal with this problem. Without neglecting its network topology, the proposed
method adopts the Priifer number as the tree encoding and applies the Multiple Criteria Decision
Making (MCDM) technique and non-dominated sorting technique to make the GA search give
out all Pareto optimal solutions either focused on the region near the ideal point or distributed all
along the Pareto frontier. Compared with the enumeration method of Pareto optimal solution, the
numerical analysis shows the efficiency and effectiveness of the Genetic Algorithm (GA)

approach on the mc-MST problem.

12



Bortivka presented in 1926 the first solution of the Minimum Spanning Tree Problem (MST)
which i1s generally regarded as a cornerstone of Combinatorial Optimization, NeSetfil et al.,
(2001). The authors presented the first English translation of both of his pioneering works. This
was followed by the survey of development related to the MST problem and by remarks and
historical perspective. Out of many available algorithms to solve MST the Bortivka's algorithm i1s

the basis of the fastest known algorithms.

According to Ahuja et al., (2001), the capacitated minimum spanning tree (CMST) problem is to
find a minimum cost spanning tree with an additional cardinality constraint on the sizes of the
sub trees incident to a given root node. The CMST problem is an NP-complete problem, and
existing exact algorithms can solve only small size problems. Currently, the best available
heuristic procedures for the CMST problem are tabu search algorithms. These algorithms use
two-exchange neighborhood structures that are based on exchanging a single node or a set of
nodes between two sub trees. The authors however, generalize their neighborhood structures to
allow exchanges of nodes amom sub trees simultaneously; they referred to such
neighborhood structures as multi-exchange neighborhood structures. The first multi-exchange
neighborhood structure allows exchanges of single nodes among several sub trees. The second
multi-exchange neighborhood structure allows exchanges that involve multiple sub trees. The
size of each of these neighborhood structures grows exponentially with the problem size without
any substantial increase in the computational times needed to find improved neighbors. Other

approach, which is based on the cyclic transfer neighborhood structure due to Thompson and

Psaraftis and Thompson and Orlin transforms a profitable exchange into a negative cost subset-

13



disjoint cycle in a graph, called an improvement graph, and identifies these cycles using variants
of shortest path label-correcting algorithms. Their computational results with GRASP and tabu
search algorithms based on these neighborhood structures reveal that:
(i) for the unit demand case our algorithms obtained the best available solutions for all
benchmark instances and improved some; and
(ii) for the heterogeneous demand case our algorithms improved the best available solutions
for most of the benchmark instances with improvements by as much as 18%. The running
times our multi-exchange neighborhood search algorithms are comparable to those taken

by two-exchange neighborhood search algorithms.

Graph theoretical arguments are used to show that the hierarchical clustering scheme induced by
Tamura's N-step fuzzy relation f is contained in the maximal single linkage hierarchy, Dunn
(1974). A method of computing f is proposed, based upon Prim's algorithm for generating
maximal spanning trees and a result reported by Hu on maximal capacity routes in maximal
spanning trees. It is shown that this procedure is superior to Tamura's generalized matrix

-

multiplication algorithm with regard to both computing time and storage requirements.

Kershenbaum and Van Slyke (1972) researched on “Computing minimum spanning trees
efficiently”. Their motivation was that, a ubiquitous problem in mathematical programming is
the calculation of minimum spanning trees. Minimum spanning tree algorithms find application
in such diverse areas as: least cost electrical wiring, minimum cost connecting communication

and transportation networks, network reliability problems, minimum stress networks, clustering

and numerical taxonomy, algorithms for solving traveling salesman problems, and multi-terminal
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network flows. It is therefore important to know how to carry out these computations as
efficiently as possible. The problem is to find a spanning sub tree of a given connected network
which has minimum total length. Kruskal in 1956 showed that a "greedy" algorithm could be
used; that is, if one looks at arcs in order of increasing length the first tree that can be formed is a
minimum spanning tree. Shortly thereafter Prim and Dijkstra suggested another algorithm which
appeared to be more efficient. Recent work suggests that a suitable implementation of Kruskal's
Algorithm is computationally more efficient in a number of interesting cases, in particular when
the network under consideration is sparse. A modification of Kruskal's Algorithm for the
solution to the MST problem is presented and is compared with Prim's Algorithm. Prim's
Algorithm is shown to have an upper bound on the number of calculations on the order of NN2,
when applied to a network with NN nodes, regardless of the number of arcs in the network. The
modification of Kruskal's Algorithm is shown to have an upper bound on the order of NA log?2
NA calculations, where NA is the number of arcs in the network. Thus for sparse networks a
dramatic reduction in execution time can be obtained by the use of Kruskal's Algorithm. The
effect is enhanced by the fact that Prim's Algorithm achieves its upper bound while the Kruskal
modification, in gen:éi‘al, does not—Modifications to both Prim's and Kruskal's Algorithms are
introduid__ which give significant improvements for the complete range of sparseness.The
relative merit of each algorithm is a function of sparseness of the network, the form in which the
problem data is represented, the tradeoff between computation speed and storage requirements,

the amount of time one wants to spend in coding, as well as many other factors.

Stoer and Wagner (1994) presented an algorithm for finding the minimum cut of an edge-

weighted graph. It is simple in every respect. It has a short and compact description, is easy to
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implement and has a surprisingly simple proof of correctness. Its runtime matches that of the
fastest algorithm known. The runtime analysis is straight-forward. In contrast to nearly all
approaches so far, the algorithm uses no flow techniques. Roughly speaking the algorithm
consists of about |V| nearly identical phases each of which is formally similar to Prim's minimum

spanning tree algorithm.

An investigation to empirically test parallel algorithms for finding minimal spanning trees was
done by Barr et al., (1989). Computational tests were conducted on three serial versions of Prim's
algorithm, a serial version of Prim's algorithm, and a serial version of Sollin's algorithm. It was
found that for complete graphs, the implementation of the Prim algorithm is best. As the graph
density is reduced, the implementation of Kruskal's algorithm is superior, and for very sparse
graphs, the Sollin algorithm dominates. Parallel implementations of both the Prim algorithm and
the Sollin algorithm were empirically tested on a Sequent Symmetry S81 multicomputer. In tests
involving ten processors, the speedups ranged from a low of 2.79 to a high of 6.81.

Bentley (1980) studiéd a new parmhm that constructs an MST of an N-node graph in
time proportional to N lg N, on an <img height="18" border="0" style="vertical-align:bottom"
width="162" alt="View the MathML source" title="View the MathML(source" http://ars.els-

cdn.com/content/image/1-s2.0-0196677480900048-si1.gif)computing system. The primary

theoretical contribution of his paper is the new algorithm, which is an improvement over Sollin's

parallel MST algorithm in several ways. On a more practical level, this algorithm is appropriate

for implementation in VLSI technology.

16



Gonina et al., (2007) described parallel implementation of Prim’s algorithm for finding a
minimum spanning tree of a dense graph using MPI. The authors’ algorithm uses a novel
extension of adding multiple vertices per iteration to achieve significant performance
improvements on large problems (up to 200,000 vertices). The authors describe several
experimental results on large graphs illustrating the advantages of our approach on over a

thousand processors.

Hassin (1992) studied two fully polynomial approximation schemes for the shortest path problem
with an additional constraint. The main difficulty in constructing such algorithms arises since no
trivial lower and upper bounds on the solution value, whose ratio is polynomially bounded, are
known. In spite of this difficulty, one of the algorithms presented here is strongly polynomial.

Applications to other problems were also discussed.

Lawler (1972) presented a general procedure for computing the best, 2nd best,...,Kth best
solutions to a given discrete optimization problem. If the number of computational steps required
to find an optimal 'Eﬁlﬁtioﬁ to a Mh n(0, 1) variables is c(n), then the amount of
computation required to obtain the if best solutions i1s O(Knc(n)).

The procedure specializes to published procedures of Murty and of Yen for the assignment
problem and the shortest path problem, respectively. A method was presented for reducing the
required amount of storage by a factor of n, compared with the algorithms of Murty and of Yen.
It is shown how the K shortest (loopless) paths in an n-node network with positive and negative
arcs can be computed with an amount of computation which is O(Kn3). This represents an

improvement by a factor of n, compared with Yen's algorithm.
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Chabini (1998) provided a solution for what appears to be a 30-year-old problem dealing with
the discovery of the most efficient algorithms possible to compute all-to-one shortest paths in
discrete dynamic networks. This problem lies at the heart of efficient solution approaches to
dynamic network models that arise in dynamic transportation systems, such as intelligent
transportation systems (ITS) applications. The all-to-one dynamic shortest paths problem and the
one-to-all fastest paths problems are studied. Early results are revisited and new properties are
established. The complexity of these problems is established, and solution algorithms optimal for
run time are developed. A new and simple solution algorithm is proposed for all-to-one, all
departure time intervals, shortest paths problems. It is proved, theoretically, that the new solution
algorithm has an optimal run time complexity that equals the complexity of the problem.
Computer implementations and experimental evaluations of various solution algorithms support
the theoretical findings and demonstrate the efﬁciency of the proposed solution algorithm. The
findings should be of major benefit to research and development activities in the field of

dynamic management, in particular real-time management, and to control of large-scale ITSs.

—

-

Pallottino (2006) presented a nemeach for shortest-path problems. Based on this
approach, a computational method was developed which consists of determining shortest paths
on a finite sequence of partial graphs defined as the “growth of the original graph.” It was show
that the proposed method allowed to interpret within the same framework several different well-
known algorithms, such as those of D'Esopo-Pape, Dijkstra, and Dial, and leads to a uniform
analysis of their computational complexity. The author also stresses the existing parallelism

between the proposed method and the matrix-multiplication methods of Floyd-Warshall, and

Dantzig.
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According to Han et al., (2006), a recent trend in computing are domain-specific program
generators, designed to alleviate the effort of porting and re-optimizing libraries for fast-
changing and increasingly complex computing platforms. Examples include ATLAS, SPIRAL,
and the codelet generator in FFTW. Each of these generators produces highly optimized source
code directly from a problem specification. The authors extend this list by a program generator
for the well-known Floyd-Warshall algorithm that solves the all-pairs shortest path problem,
which is important in a wide range of engineering applications. As the first contribution, the
authors derive variants of the FW algorithm that make it possible to apply many of the
optimization techniques developed for matrix-matrix multiplication. The second contribution is
the actual program generator, which uses tiling, loop unrolling, and SIMD vectorization
combined with a hill climbing search to produce the best code (float or integer) for a given
platform. Using the program generator, the authors demonstrate a speedup over a straightforward
single-precision implementation of up to a factor of 1.3 on Pentium 4 and 1.8 on Athlon 64. Use
of 4-way vectorization further improves the performance by another factor of up to 5.7 on
Pentium 4 and 3.0 on Athlon 64. For data type short integers, 8-way vectorization provides a
speed-up of up to 4.6 on Pentium 4a0d 5.0 on Athlon 64 over the best scalar code.

Katz and Kider (2008) described a shared memory cache efficient GPU implementation to solve
transitive closure and the all-pairs shortest-path problem on directed graphs for large datasets.
The proposed algorithmic design utilizes the resources available on the NVIDIA G80 GPU
architecture using the CUDA API. The authors’ solution generalizes to handle graph sizes that
are inherently larger than the DRAM memory available on the GPU. Experiments demonstrated

that the authors’ method is able to significantly increase processing large graphs making our
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method applicable for bioinformatics, internet node traffic, social networking, and routing

problems.

Handler and Zang (1980) developed a Lagrangian relaxation algorithm for the problem of
finding a shortest path between two nodes in a network, subject to a knapsack-type constraint.
For example, the authors may wish to find a minimum cost route subject to a total time constraint
in a multimode transportation network. Furthermore, the problem, which is shown to be at least
as hard as NP-complete problems, is generic to a class of problems that arise in the solution of
integer linear programs and discrete state/stage deterministic dynamic programs. One approach
to solving the problem is to utilize a kA shortest path algorithm, terminating with the first path
that satisfies the constraint. This approach is impractical when the terminal value of k is large.
Using Lagrangian relaxation we propose a method that is designed to reduce this value of k.
Computational results indicate orders of magnitude savings when the approach is applied to large

networks.

Ahuja et al., (2011) investigated emmentaﬁons of Dijkstra's shortest path algorithm.
The authors. proposed a new data structure, called the redistributive heap, for use in this
algorithm. On a network with n vertices, m edges, and nonnegative integer arc costs bounded by
C. a one-level form of redistributive heap gives a time bound for Dijkstra's algorithm of O(m +
nlogC). A two-level form of redistribu_tive heap gives a bound of O(m + nlogC/loglogC). A
combination of a redistributive heap and a previously known data structure called a Fibonacci

heap gives a bound of O(m+ nsqrt{log C}). The best previously known bounds are O(m + nlogn)
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using Fibonacci heaps alone and O(mloglogC) using the priority queue structure of Van Emde

Boas, Kaas, and Zijlstra.

Okada and Soper (2000) concentrated on a shortest path problem on a network in which a fuzzy
number, instead of a real number, is assigned to each arc length. Introducing an order relation
between fuzzy numbers based on “fuzzy min”, a non-dominated path or Pareto Optimal path
from the specified node to every other node is defined. An algorithm for solving the problem is
developed on the basis of the multiple labeling method for a multi-criteria shortest path. As a
result, a number of non-dominated paths can be obtained and is offered to a decision maker.
However, a number of non-dominated paths derived from large scale network may be too
numerous for him to choose a preferable path. Due to this situation, we propose a method to
reduce the number of paths according to a possibility level. The proposed algorithm is

numerically evaluated on large scale random networks.

According to Martins (1984), Multi-criteria shortest path problems have not been treated
intensively in the specialized Iitemiie their potential applications. In fact, a single
objective function may not be sufficient to characterize a practical problem completely. For
instance, in a road network several parameters (as time, cost, distance, etc.) can be assigned to
each arc. Clearly, the shortest path may be too expensive to be used. Nevertheless the decision-
maker must be able to choose some solution, possibly not the best for all the criteria.

The authors present two algorithms for this problem. One of them is an immediate generalization
of the multiple labeling scheme algorithm of Hansen for the bi-criteria case. Based on this

algorithm, it is proved that any pair of non-dominated paths can be connected by non-dominated
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paths. This result is the support of an algorithm that can be viewed as a variant of the simplex

method used in continuous linear multi-objective programming. A small example is presented

for both algorithms.

Beasley and Christofides (1989) examined an integer programming formulation of the resource
constrained shortest path problem. This is the problem of a traveler with a budget of various
resources who has to reach a given destination as quickly as possible within the resource
constraints imposed by his budget. A lagrangean relaxation of the integer programming
formulation of the problem into a minimum cost network flow problem (which in certain
circumstances reduces to an unconstrained shortest path problem) is developed which provides a
lower bound for use in a tree search procedure. Problem reduction tests based on both the
original problem and this lagrangean relaxation are given. Computational results are presented

for the solution of problems involving up to 500 vertices, 5000 arcs, and 10 resources.

Feillet et al., (2004) p_roposed a solution procedure for the Elementary Shortest Path Problem
with Resource Constraints (ESPPRm version of this problem in which the path does
not have to be elementary has been the backbone of a number of solution procedures based on
column generation for several important problems, such as vehicle routing and crew pairing. In
many cases relaxing the restriction of an elementary path resulted in optimal solutions in a
reasonable computation time. However, for a number of other problems, the elementary path
restriction has too much impact on the solution to be relaxed or might even be necessary. The
authors proposed an exact solution procedure for the ESPPRC, which extends the classical label

correcting algorithm originally developed for the relaxed (non-elementary) path version of this
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problem. The authors presented computational experiments of this algorithm for our specific
problem and embedded in a column generation scheme for the classical Vehicle Routing
Problem with Time Windows. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol. 44(3), 216—

229 2004.

Ioachim et al., (1998) presented an optimal dynamic programming algorithm, the first such
algorithm in the literature to solve the shortest path problem with time windows and additional
linear costs on the node service start times. To optimally solve this problem, the authors
proposed a new dynamic programming algorithm which takes into account the linear node costs.
This problem has numerous applications: Two examples are job-shop scheduling and aircraft
routing and scheduling. To underline the efficiency of the proposed method, we compare it with
an approach based on partial discretization of the time windows. It clearly outperformed the
discretization approach on test problems with wide time windows and many nodes with negative

costs. © 1998 John Wiley & Sons, Inc. Networks 31: 193-204, 1998.

According to Borgwardt and Kriegelm;ta mining algorithms are facing the challenge to
deal with an increasing number of complex objects. For graph data, a whole toolbox of data
mining algorithms becomes available by defining a kernel function on instances of graphs. Graph
kernels based on walks, sub trees and cycles in graphs have been proposed so far. As a general
problem, these kernels are either comput_ationally expensive or limited in their expressiveness.
The authors tried to overcome this problem by defining expressive graph kernels which are based
on paths. As the computation of all paths and longest paths in a graph is NP-hard, it was

proposed that propose graph kernels based on shortest paths. These kernels are computable in
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polynomial time, retain expressivity and are still positive definite. In experiments on
classification of graph models of proteins, our shortest-path kernels show significantly higher

classification accuracy than walk-based kernels.

Pettie and Ramachandran (2002) presented an undirected All-Pairs Shortest Paths (APSP)
algorithm which runs on a pointer machine in time O(mna(m,n)) while making O(mnlog a(m,
n)) comparisons and additions, where m and n are the number of edges and vertices, respectively,
and o(m, n) is Tarjan's inverse-Ackermann function. This improves upon all previous
comparison & addition-based APSP algorithms when the graph is sparse, i.e., when m = o(n log
n). At the heart of our APSP algorithm is a new single-source shortest paths algorithm which
runs in time O(ma(m, n) + n log log r) on a pointer machine, where r is the ratio of the
maximum-to-minimum edge length. So long as r <2no(1) this algorithm is faster than any
implementation of Dijkstra's classical algorithm in the comparison-addition model. For directed
graphs the authors gave an O(m + n log r)-time comparison & addition-based SSSP algorithm on

a pointer machine. Similar algorithms assuming integer weights or the RAM model were given

- — f
earlier.
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2.3 SUMMARY
In this chapter we looked at the relevant studies, literature and related works to this study. In the

next chapter we shall look at the theories and the related methodology of the proposed model.
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CHAPTER 3
METHODOLOGY
3.0 INTRODUCTION
This chapter will look at the methodology that will be used in this study. Procedure used in
collecting and analyzing data. Mathematical theories and instruments used will also be looked at

in this chapter.

= 3.1 MATHEMATICAL MODEL

The first step towards solving instances of such large sizes is to find a mathematical formulation
of the combinatorial problem such that every solution of the real problem corresponds to a
solution of the mathematical model, and vice versa. A graph consists of points and lines
connecting pairs of points. The graph associated with the problem is constructed as follows.
Each substation in the study is declared to be a point. We connect a pair of points by a line

segment if there is a direct link between the associated substations. Moreover, with each line

. segment we associated a length (weight) which corresponds to the distance it takes to travel

between the two points that the linfrtfc’)n”netfs.—ﬁvery roundtrip of the substation corresponds to
some subset of the lines.

—

3.1.1 GRAPH THEORY

Graph theory is simply the study of graphs. Graph has several definitions depending on the
researcher or writer. A graph is called regular if all its vertices have the same degree.
A graph is a combination of vertices or nodes and edges which connect in some fashion. These

graphs are either directed or undirected based on their orientation. If the edges of the graph are
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~ represented with ordered pairs of vertices, then the graph G is called directed or oriented,

- otherwise if the pairs are not ordered, it is called undirected or non-oriented graph. If two

vertices connected by an edge ek = ( vi, vj ) are called end vertices or ends of ek. In the directed
graph, the vertex vi is called the source, and v j the target vertex of edge ek. The elements of the
edge set E are distinct i.e., more than one edge can join the same vertices. Edges having the same
end vertices are called parallel edges.

If ek = (vi, vj), i.e., the end vertices are the same, then ek is called a self-loop. A graph G
containing parallel edges and or self-loops is a multi-graph. A graph having no parallel edges and
self-loops is called a simple graph. The number of vertices in G is called its order, written as |V |;
its number of edges is given as |[E|. A graph of order zero (0) is called an empty graph, and of
order one is simply called trivial graph. A graph is finite or infinite based on its order. Two
vertices vi and vj are neighbours or adjacent if they are the end vertices of the same edge ek = (vi
, vj). Two edges ei and e j are adjacent if they have an end vertex in common, say vi , i.e., ei =
(vi,vj)ande;, =(wk,vm).Let G=(V,E) and G = (V' ,E’) be two graphs. G’ = (V’, E) is a
sub-graph of G (G’ €G) if V' € Vand E! CE, ie., the graph G contains graph G' If G'SG
and V? spans all of G, 1.e., V' = Vthm;nning sub graph of G: Let G= (V, E) be a graph
withsets}_f’_j{,yl, v2,v3, ...} anosd =X Jde¥2, 3,.. ).

A walk in a graph G is a finite nonempty alternating sequence v0, v2,v3,...,... vk I, ek vk of
vertices and edges in G suchthatei =(vi, vi 1)forall I <i<k.

A walk is a trail if all its edges are distinct. A trail is closed if its end vertices are the same,
otherwise it is opened. A simple walk is a walk in which no edge is repeated. The length of a

walk is its number of edges in the walk. A walk is closed when the first and last vertices, v0 and

vn are the same. The degree or valency of the vertex ¥ given by d(¥) is the number of edges that
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E 1s called pendant. The edge incident with a pendant vertex is called a pendant edge. A path is a

have V as an endpoint. If d(¥) = 0, then V is called an isolated vertex while a vertex of degree 1

walk in which no vertex is repeated. Closed walks are also called circuits. A cycle of length n is
aclosed walk of length n,n 3, in which the vertices v0, v/ ,...vn 1 are all different. A graph
' that contains no cycles at all is called acyclic; a connected acyclic graph is called a tree acyclic
graphs are called forests. If a graph represents a road system, a common weight is the length of
{ the corresponding stretch of road. Weights also often represent costs or durations. The weight of
a path P 1s the sum of the weights of the edges in P. A cycle that passes through every vertex in a
graph is called a Hamilton cycle and a graph with such a cycle is called Hamiltonian. A
Hamilton path is a path that contains every vertex. A vertex V is called a cut-pointin Gif G- V
contains more components than G does; in particular if G is connected, then a cut-point is a
- vertex V such that (G — V') is disconnected. A bridge (br cut-edge) is an edge whose deletion
increases the number of components. A minimal collection of edges whose deletion
disconnects G is called a cut-set in G. A cut-set partitions the vertex-set V(G) into two nonempty
~ components, say A and B{_.,J such that the edges joining vertices in A to vertices in B are precisely

-

the edges of the cut-set. For example-;ﬂie’ﬁ”g.lrg 3.1 below shows the cut-point and cut-edge.

t u

!

Figure 3.1: A connected graph
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~ From Figure 3.1, removal of u or y disconnects the graph; also removal of # y disconnects the

f graph. Hence « and y are the cut-points and « y is the cut-edge.

Graph theory is applied in almost every day life from communication network, water supply

system, road network system etc.

3.1.2 NETWORKS

. A network is a specific type of graph, where associated with each arc or node is additional

| information, such as the cost or capacity of the arc or the demand at a node. Networks are

integral to a variety of systems that we rely upon each day. Our transportation system is made up

of a variety of networks including road, rail and airline networks. Our electrical system 1s a

- network of wires that ensures power reaches homes and businesses. Communications systems,
| including the Internet, are expanding beyond the typical hard wired lines to include wireless

. networks.

-

Each of these networks plays an impm in society. A transportation network provides a

means for goods and people to move from a starting location to a destination. The electrical
system continuously balances generation with fluctuating user demand. Communication

networks and the Internet provide a massive increase in the amount of easily obtainable

' information, and they also dramatically decrease the amount of time required to transfer

" information around the world. The analysis of networks is even helping to fight terrorism by

identifying terrorist networks so that we can determine where it is most effective to disrupt them.
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| The study of networks is actually centuries old. Graph theory dates back to Leonard Euler in

]

E 1736 (Biggs, Lloyd and Wilson, 1998), when he proved there was no feasible solution to the

-

' Konigsberg Bridge Problem. The development of random graph theory in the 1940s and 1950s
.

. generated great interest in the characteristics of graphs and networks (Watts et al, 2006). Most
:

[
4
]

recently, the advent of “network science” during the last decade has witnessed renewed interest
in the large-scale properties of graphs (National Research Council, 2005).

Erd6s and Rényi (1959) pioneered the exploration of random graphs models, which generated
| interest in graph and network theory. More recently, the study of network science has focused

attention on “small-world networks’ and “‘scale-free networks.”

Small-world networks (Watts et al., 1998) are networks that have high local clustering and have
' path lengths between arbitrarily chosen nodes that are still relatively short. Another area of
increasing importance is the use of Hastily Formed Networks (HFNs) in response to
. humanitarian aid and disaster relief operations, such as a Hurricane Katrina scenario

- (Denning, 2006). These types of networks require rapid coordination and information between a

variety of agencies.

3.1.3 SPANNING TREE

. A spanning tree of a graph is just a sub-graph that contains all the vertices and is a tree. Suppose
| you have a connected undirected graph (Connected: every node is reachable from every other
node, Undirected: edges do not have an associated direction) then a spanning tree of the graph is

a connected sub-graph in which there are no cycles. A graph may have many spanning trees, for

example;
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Figure 3.3 Four of the spanning trees of the graph
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- 3.1.4 MINIMUM SPANNING TREE
Suppose you have a connected undirected graph with a weight (or cost) associated with each
 edge, the cost of a spanning tree would be the sum of the costs of its edges. A minimum-cost
spanning tree is a spanning tree that has the lowest cost. The weight of a sub-graph is the sum of

the weights of it edges. A minimum /S,Ea/ngigg_tr_ge for a weighted graph is a spanning tree with

_—

minimum weight.
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Figure 3.4 A connected, undirected graph
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Figure 3.5 A minimum-cost spanning tree

A minimum spanning tree is a sub-graph of an undirected weighted graph G, such that:
. it is a tree (i.e., it is acyclic)
. it covers all the vertices V

o contains |V|- 1 edges

. the total cost associated with tree edges is the minimum among all possible spanning
trees
. not necessarily unique

- ‘-'-F-‘.
=

3.1.5 ALGORITHMS FOR SOLVING MST PROBLEM

To find a minimum spanning tree for a given input graph there are several algorithms available,

ni—

for example, the methods of Kruskal, Prim, Sollin or Boriivka. An algorithm is a systematic

logical procedure for solving a problem.

Prim’s algorithm for solving Minimum Spanning Tree problem will be considered. The methods
have the following optimal conditions: Cut Optimality Conditions and Path Optimality

Conditions.
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A spanning tree I is a minimum spanning tree if and only if it satisfies the following cut
.optimality conditions: For every tree edge (7, j)) € T, w; < wy holds for every edge ( £k, /)
contained in the cut formed by deleting edge (i, J ) from T . This is the fundament of the Prim’s
algorithm. Wij is the weight of the edge from i to j.

A spanning 7 tree is a minimum spanning tree if and only if it satisfies the following path
optimality conditions: For every non-tree edge ( k, /) of G, w;; < wy holds for every edge (i, j)

contained in the path 7' connecting nodes & and /.

3.1.5.1 PRIM’S ALGORITHM

Prim's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a
connected weighted graph. This means it finds a subset of the edges that forms a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized. If the

graph is not connected, then it will only find 2 minimum spanning tree for one of the connected

components.

Prim’s algorithm is one of the best almiﬂving minimum spanning tree problems. The
algorithm represents an n — node network as a square matrix with # rows and »n columns. Entry
(i, j) of the matrix gives the distance or edge d; or e;; from node i to node j, which is finite if 7 is

directly linked to j and infinite otherwise.

The algorithm is a greedy algorithm; it starts by selecting an arbitrary vertex as the root of the
tree. It then grows the tree by adding a vertex that is closest (has the shortest edge to) the current

tree, and adding the shortest edge from any vertex already in the tree to the new vertex. The
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algorithm terminates once all vertices have been added to the tree. The sum of all added edges is
the cost of the minimum spanning tree (MST). The serial computational complexity of the
algorithm is @(N * ). Prim's algorithm has the property that the edges in the set A always form a

single tree.

If for any undirected graph, G = (¥, E) where V is the set of vertices and E is the set of edges.
For each veV the cost[v] denotes the minimum weight among all edges connecting v to the
vertex in the tree 7, and the parent [v] denotes parent of v in 7. During the algorithm’s execution
vertices v that are not in 7 are organized in the minimum-priority queue Q, partition according to
cost[v]. Lines 1 to 3 set each cost[v] to infinity usually written as . The parent of each vertex is
set to NULL because the construction of the minimum spanning tree is yet to begin. Lines 4 to 6
choose an arbitrary vertex r from ¥ as the root of the tree (starting vertex). The minimum priority

queue is set to be all vertices from V. Since r is the starting vertex, cost[r] is set to zero.

During the execution of the while loop from lines 7 to 12, r is the first vertex to be extracted
from Q and processed. Line 8 extract’a'mf;om 3 based on key cost, thus moving « to the
vertex set of 7, Line 9 considers all vertices adjacent to . The while loop updates the cost and
the parent fields of each vertex v adjacent to u that is not in 7. If parent[v] #NULL then cost[v] <
o and cost[v] is the weight of the edge vto some vertex already in 7. Lines 13 and14 construct

the edge set of the minimum spanning tree and return this edge set.

3.1.5.2 PSEUDOCODE OF PRIM'S ALGORITHM

Given a connected weighted graph G = (¥, E) with a weight function w and a minimum
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spanning tree 7" can be derived from the code below.
1. for any v€V do

2. cost[v] «—

3. parent[v] «— NULL

4. r< arbitrary vertex of V'

5. Cost[r] < 0

6.0V

7. While 3 # { }

8. u « extract Min(Q)

9. for each v€adja(u) do

10. ifveQand w (u,v) <cost [v] then
11. parent[v] < u

12. cost[v] «— w(u,v)

13. T« {(v, parent [V]| v€ _— {r}}
14. Return T

____3.1.53 HOW THE ALGORITHM WORKS
Prim’s algorithm works from a starting point and builds up the spanning tree step by step,
connecting edges into the existing solution. The algorithm can be stated as follows:
Prim’s MST algorithm (from a network)
Step 0: Choose any element 7; and set S= {r} and 4 = { }

(r is the root of the spanning tree)
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Step 1: Find the lightest edge such that one endpoint is in @ and the other is in \@. Add thisedge
to “andit’s (other) endpoint to @.

Step 2: If \S = { } then stop and output the minimum spanning tree (S,4)

Otherwise go to step 1.

Prim’s MST algorithm (from a distance matrix)

Step 0: With the matrix representing the network, choose a starting vertex. Delete the row
corresponding to that vertex.

Step 1: Label with ‘1’ the column corresponding to the start vertex and ring the smallest
undeleted entry in that column.

Step 2: Delete the row corresponding to the ringed entry.

Step 3: Label (with the next number) the column corresponding to the deleted row.

Step 4: Ring the lowest undeleted entry in all labeled columns.

Step 5: Repeat the last three steps until all rows are deleted. The ringed entries represent the
edges in the minimum connector.

When there is a tied in the smallest values, it is broken arbitrary.

EXAMPLE1

Figure 3.6: Hypothetical network

For example, Figure 3.5 a hypothetical network can be put in distance matrix form and solveby

Prim’s algorithm as follows:
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3.1.5.5 SOLUTION BY MATRIX METHOD

Table 3.1 Node distance matrix 1

e 0 3 2 l 00 00

f 00 o 00 2 4 00

Choose a starting vertex say b, delete row b, and look for the smallest entry in column b.

Table 3.2 solution matrix 1

Lcdef

a
amo?’mmm
o PSR, v W o
EIELS 6 o o N

The edge ba is the smallest edge joining b to the other vertices. Put edge ba into the solution.

Delete row a and look for the smallest entry columns b and a.
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Table 3.3 solution matrix 2

b
# ™ ™ ™ ™
c 3 6 00 00 2 00
d el ok - T S 2

e 00 @ 2 I 00 - a Figure 3.6:1 partial
() o0

f 00

D —N
Cag—

L &)
(8 8

be is the smallest edge joining b and a to the other vertices. Put be into the solution and
delete row e. Look for smallest entry in columns b, a and e.

Table 3.4 solution matrix 3

A &1 3
- b
B g ¢\
813 6 o VRN N .
X 3
d |® 5 o oo 2
Baaie -t s 2 - ] o o a
¢

ST R B 2 4 o

Figure 3.6.2: Partial connection

ed is the smallest edge joining b, a, and e to the other vertices. Put the edge ed into the solution

and delete row d. Look for the smallest entry in columns b,a,eand d
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Table 3.5 solution matrix 4

o+t W

f

Cabls 6 00 00 2 00

—d 10 5 66 £9 1 2
f | o 00 00 @ 4 Figure3.6.3:Partial connection 1

df is the smallest edge joining b, a, e, and d to the other vertices. Put df into the solution and

delete row f. Look for the smallest entry in columns b, a, e, d and f.

Table 3.6 solution matrix 5

0 g— b

I

ec is the smallest edge joining b,a,e,d, and f to the other vertices. Put ec into the solution.

Figure 3.6.4: Partial connected network

Table 3.7 solution matrix 6

LIS
o
=
3
b
3

L p]
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Figure 3.6.5: Minimum spanning tree (MST)

Figure 3.6.5 is the minimum spanning tree for Figure 3.6.
The minimum length (weight or cost) of the network (figure 3.6) is 10 units, that is the total sum

of the edge values (2+3+2+1+2=10).

3.1.6 FLOYD - WARSHALL’S ALGORITHM

The Floyd — Warshall algorithm obtains a matrix of shortest computations. The algorithm is

based on inductive arguments df;dmgramming technique.

Letd%(i, j)represents the length of the shortest path from node I to node j subject to the
condition that this path uses the nodes 1,2,....... k — 1 as internal nodes clearly
d™+t1( Drepresents the actual shortest path distance from I to j. The algorithm first computes
d @) for all node pairs I and j. Usingd*@), it then computes d>(*/) for all pairs of nodes I and j.
It repeats the process until it obtains d™**("/) for all node pairs I and j when it terminates. Given
d*@D | the algorithm computes d*+*@N=min{gk(j, k), d*")}. The Floyd-Warshall algorithm

remains of interest because it handles negative weight edges correctly.
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Example

The matrix below represents the distance (in km) of direct roads between six towns.

Table 3.8 Distance Matrix 1

A B ¢ D E F
A - 12 3 0o 7 10
B 12 - 6 6 18 8
& 3 6 - 4 12 00
D co 6 4 - 9 o)
E ji 18 12 9 - 12
F 10 8 0o 0o 12 .

Use Floyd’s algorithm to find the shortest distances between all pairs of nodes

Note: The symbol oo means that there is no direct connection between these vertices. For

example

We obtain the table of the form

—

Table 3.9 Distance Matrix 2

Figure 3.7 Diagram- to Show connection of Points

N | O

(S |onT

S a|=|»

B

Solution

(1) From A to B: (the direct distance from A to B is 12)

41




- e p————

Al gp 5 g— o ] Since the values of the distances between A and C, A and

25 . E and F are all less than 12, we compute the following

I

A?.EIBB

distances for the detours;

A_lO JF 8 B =18 |
| We can see that min { 9, 25, 18} =9 is less than 12 the direct distance between A and B

and so we replace 12 by 9 in the table and likewise the distance between B and A in the

‘ table.

(1) From A to S. the direct connections between A and C is 3 and no other direct connection

between A and any other node is less than 3, so we retain the value 3 as the minimum

distance between A and C (C and A).

(iii)) Ato D:

Here we compute the following;

Now min {18, 7, 16, ®}= 7 so we replace o from A to D and D to A by 7.

e o

(iv) A to E: (the direct connection between A and E is 7) and here only 3, the direct distance

between A and C is less than 7, so we compute;

A_> 2 E=15, which is not less than 7 so we retain the 7 in the cell AE.

(v) A to F: (the direct connection between A and F is 10) but the distances between A and C,

A and D, and A and E are less than 10 so we compute the distances for the detours,
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A" D o F=cw

A

7 _E 2 p=g9

Min {oo, oo, 19 }=19 > 10, so we retain the value of 10 in the cell AF.

Now from A to the other nodes, the table is

Table 3.10 Distance Matrix 3

A B C D E F
A - 9 3 7 7 10
B 9 - 6 6 18 8
C 3 6 - 4 12 0o
D 7 6 4 - 9 oo
E 7 18 12 9 - 12
F 10 8 00 00 12 1
Now from the node B
(i) From B to A, now the values in the cells BC, BD and BE are all less than that of BA.
We then compute the distances of the detours.
B b L ASIZ
B D "\AR
B S p T 471
Now min {12, 13, 15} =12, which is not less than 9 so we retain the value of 9 in the
cell BA and AB
(ii) For the cells BC and BD each with value 6, no other value in the cells beginning with

B is less than 6, so we retain the value 6 in the cells BC and BD (CB and DB)
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(iii) Bi'E: The direct connection between B and E is 18, which is greater than all the
values in the cells beginning with B, so we compute the distance of the following
detours;

B2 Al Beip
B_®,D 2 F=18
BE D =15
B_8 ,F 12 F=20

Now min {16, 18, 15, 20} = 15 < 18, and so we replace the values of the cells BE and

EB with 15

(iv) B to F: (now the shortest distance between B and F is 8) but the values in the cells

BC and BD are all less that of BF. We thus compute the distances of the detour;

B ®* CoF =w

B-23D_o0,A =

Min {co, 00 } = oo which is not less than 8, so we retain the value in the cell BF and

a-"-'-'-
-

FB. . Y=\ —=

—Now from node B to the other nodes, we obtain the table;

Table 3.11 Distance Matrix 4

A B C D E F
A - 49 3 7 7 10
B 9 - 6 6 15 8
C 3 6 - 4 12 o0
D 7 6 4 - 9 o0
E 7 15 12 9 - 12
F 10 8 oo oo 12 -

Now from node ¢



(1)

(i1)

(111)

(iv)

The value in the cell CA =3 is less than all the other values in the cells beginning
with C, so we retain the value 3 in the cell CA and AC

From C_to B: the value in the cell CB = 6 but those in the cells CA and CD are
less than 6 so we compute the distances of the detours;

G2 A2 P12

C4, D% _B=10

Min {12, 10} = 10> 6, so we shall retain the values in cells CB and BC.

C to D: The value in the cell CD =4 and only the cell CA is less than 4, so we

evaluate the distance of the detour D_> A ' D =10> 4, so we retain 4 in the
cells cd and DC

From C ﬂ'E: The value in the cell CE =12, but those in the cells CA, CB, CD are
all less than 12 so we evaluate the distance of the detours.

AW T

CelsB o JE =14

C_2D > HE=I3

M'i_ﬁg{lﬂ, 14, 13}@0 we replace 12 by 10 in the cells CE and EC. C to

F: For C to F, we compute the distances of the following detours;

C SPA 10 E=13

c. B F=14

C_4__...D 0.0] .F=m

C 12 E 12 F= 24
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Min {13, 14, o, 24} = 13 < o0, so we replace the value in the cells CF and FC by

13

After node C, we have the following table;

Table 3.12 Distance Matrix 5

A B C D E F
A - 9 3 7 7 10
B 9 - 6 6 15 8
C 3 6 - 4 10 13
D 7 6 4 - 9 0o
E 7 15 10 9 - 12
F 10 8 13 00 12 -

From node D

(1)

(ii)

(iii)

(iv)

D to A: Let us consider the value in the cell DA = 7, here the values in the
cells DB and DC are all less than 7. We compute the values of the distance of

the detours
D.° B _ % AE1s

D4 ¢ % Mg

“Min {15, 7} =7 which is not less than 7 so we retain the values in the cells

DA and AD.

D to B: Here, we shall only compute the distance of the detour D_*, C_°, B

=10 > 6, we retain the value 6 in the cells DB and BD.
D to C: The value in the cell DC is less than all the other values in the
beginning with D so we retain it.

D to E: For DE, we compute the distances for the following detours;

D_",A__E=14
D 6 B 15 E=21
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D2, p=24
Min {14, 21, 24} =14 which is not less than 9, and so we retain the value 9 in

the cells DE and ED.

(v) D toF: For DF, we compute the distances of the following detours;
DL1,A 2 _F=17
D° B ,F=14

5= BV UL I T

| B LI S o)

Min {17, 14, 17, 21} =14 < oo, so we replace o, in the cells DF and FD by 14.

Here, we obtain the following table,

Table 3.13 Distance Matrix 6

A B G D E F
A - 9 3 7 7 J2===10
B 9 - 6 6 15 8
C 3 6 - 4 10 13
D 7 6 4 - 9 14
E 7 15 10 9 - 12
F 10 8 1 3. 14 12 -

— “_H.--"'-__
From node E

(1) E to A: The value in the cell EA = 7 is less than the values in all the cells beginning

with E, and so we retain it.

(ii) E to B: We compute the distances for the following detours;

E” A2 B=16
EX c. % B=16
E® D°f B=I5
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Min {16, 16, 15, 20} = 15 which is not less than 15 so we retain it.

(i)  Eto C: We compute the distances for the following detours;

ERA 0 =10
Ee2-D * C=13

Min {10, 13} =10 which is not less than 10 and so we retain it.

(1v) E to D: We compute the distance of the detour E_?, Al 7 » D = 14 which is not

less than 9 so we retain the value 9 in the cells ED and DE.

(v) E to D: We compute the distance for the following detours;

ERA D P =17
R 2 L F=23

Min {17, 23, 23} =17 which is not less than 12 and so we retain the value 12 in the

cells EF and FE.

For the node E, there were no changes so we shall retain the previous table.

= . ’F-H‘-‘-—_—_d_'-_—_ . L] Ll
Since the values in the tables are symmetric, after computing the value in EF we can

____stop. Hence the shortest distances between all pairs of nodes is as shown in the table

below:

Table 3.14 Distance Matrix 7

A B C D E F
A - 9 3 7 7 10
B 9 - 6 6 15 8
C 3 6 - 4 10 13
E 7 15 10 9 - 12
T T 3 13 14 12 -
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3.3 SUMMARY
[n this Chapter we treated the mathematical model and the theories used in solving the Minimum
Spanning Tree problem and the Shortest Path problem. In the next chapter we shall put forward

the data collection and the analysis of the data for the study.
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CHAPTER 4

DATA ANALYSIS AND RESULTS

4.0 INTRODUCTION

This chapter analyses the data used to determine the minimum spanning tree route for the
National Interconnected Transmission System, and the shortest path between the various
nodes in the network. The data analysis was done by using a developed MATLAB programme.
Prim’s algorithm was used to determine the minimum spanning tree, and Floyd Warshall’s

Algorithm was used to determine the shortest path route for our study.

4.1 DATA COLLECTION

The data used for the study were collected form the Ghana Grid Company Ltd (GRIDCo) and
the Centre for Remote Sensing and Geographic Information Services (CERSGIS). Data was
collected on all 161KV Substations across the country, totaling forty seven (47). A GPS device

was used to pick the geographic location of each substation. The data collected was analyzed

using the ArcGI_S‘;_;s;ftware to determine-the distance from one substation to the other. All
distance are in kilometers (km). The name and type of substation was provided was provided
by GFB;:LDPCO The data together with the distances calculated were put together to form a
distance node matrix in Table 4.1 (in Appendix II) in an Excel Spreadsheet. Where there is a

direct link between two substations a real value is assigned. The distance node matrix was used

to construct a network in Figure 4.1.
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Figure 4.1 Network of the National Interconnected Transmission System
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4.2 DATA ANALYSIS

4.2.1 Prim’s Algorithm

Prim’s algorithm was used for the analysis of the data to find minimum spanning tree. The data
in Table 4.1 was used as input into the MATLAB program (PrimsAlgorithm) for the analysis.
The MATLAB program is in appendix 1. The output from the code starting from was written in

a matrix form in an excel spreadsheet in Table 4.2 (in Appendix II), it is however summarized

in Table 4.3.

Table 4.3: Minimum Spanning Tree Table

Iteration Starting Node End Node Distance (km)
I Vol KGS 47
2 Win Mal 43
3 Kpo Ako 13
4 Tar Pre 21
5 ~Pre Bog 20
o

6 Mal Ach 10
TR Ach A3B 6
8 Cap Koj 55
9 Bog Dun 51
10 Koj N Tar 40
11 N Tar Tar 7
12 Taf Ako 48
13 N Obu Obu 3
14 Obu Kum 33
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Dun
Saw
Bol
Sun
Tec
Ken
Ess
Elu
Nka
Kon
Baw
Tam
Kum
KGS

Akw

_Kin |

Bui

Aya
Asa
Ate
Min

ZeB

Afl

Yen

Obu

Tec

Ken
Sun
Kum
Dom
Pre
Taf
Nka
Zeb
Bui
K2B
Ako
Taf
Tec
Kin
Jua
Aya
Kin
Sun
Bol
Bog
Ako

Tam

53

28
194
154
43
51
9]
46
73
56
52
35

97

21
52
57
83
110
48
89
55
35
33
125

95



40
41
42
43
44
45
46

Jua

Dom

K2B
Sal

A Min

A3B

Mim
Elu
Kon

Tam

Saw

Vol

70
24
36
101
51
88
20

The output generated was used to construct the minimum spanning tree in Figure 4.2.
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The total weight of the minimum spanning tree is 2542 km
(47+43+13+21+20+10+6+55+51+40+7+48+5+55+28+194+154+43+514+91+46+73+56+52+35

+97+8+21+52+57+83+110+48+89+55+35+33+125+95+70+24+36+101+51+88+20)

4.2.2 Flyod Warshall’s Algorithm

After finding the minimum spanning tree route for the National Interconnected Transmission
System, Floyd Warshall’s Algorithm is used to analysis the data on the minimum spanning
connection to find the shortest part distance between the substations. The output data from
Table 4.1 which was populated in Table 4.3 was used as input into the MATLAB program
(FloydWarshallAlgorithm) for the analysis. The MATLAB program is in appendix II. The input
data was written in an excel spreadsheet in a distance node matrix form. The output from the
code was written in excel spreadsheet in the same format as the input data in Table 4.4 (in

Appendix II).The table shows the shortest distances from one substation in the network to the

other in kilometers (km).

43 SUMMARY
In this chapter we analyzed data from the Center for Remote Sensing and Geographic
Information System and the Ghana Grid Company Ltd. The analysis was done using the Prim’s

Algorithm and the Floyd Warshall’s Algorithm. A Mathlab code was developed for both

algorithms. The Minimum Spanning Tree for the National Interconnected Transmission System

was found and the total weight was determined as 2542 km. The shortest path between the

substations was also determined. In the next chapter will present the summary, conclusion and

recommendations of the study.
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 SUMMARY

The study sought to find the Minimum Spanning Tree (MST) for the National Interconnected
Transmission System and the shortest path that connect the nodes between them. The first
objective was to find shortest route, Minimum Spanning Tree that connects the substations in
the National Interconnected Transmission System, covering the substations in the network,
affording minimum cost and thus connecting all substations under consideration. The second

objective was to find the shortest path that connects one substation to the other in the network.

A total of forty-seven (47) 161Kv substations across the country were used for the study. The
data used for the study was gathered from the Centre for Remote Sensing and Geographic

Information services (CERGIS) and the Ghana Grid Company Ltd (GRIDCo).

Prim’s Algorithm was used as the mathematical tool to solve the minimum spanning tree
= o =
problem. A Mathlab code for Prim’s Algorithm was developed to compute the minimum
spanning tree. The analysis showed that a total of two thousand five hundred and forty-two
kilometers (2542 km) distance long will be covered by connecting the substations used in the

study. Floyd Warshall’s Algorithm was used as the mathematical tool to solve the shortest path

problem. A Mathlab code for Floyd Warshall’s Algorithm was developed to compute the shortest

path, The shortest paths between the substations were computed.
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5.2 CONCLUSIONS

The study presented forty-seven (47) 161kv substations on the National Interconnected
Transmission System. Prim’s Algorithm was applied to the network to construct the minimum
spanning tree. The study shows that the minimum total distance connecting the substation on the
National Interconnected Transmission System is two thousand five hundred and forty-two
kilometers (2542 km). The study also used Floyd Warshall’s Algorithm to further determine the

shortest path between the substations on the minimum spanning tree.

5.3 RECOMMENDATIONS

In other to reduce cost in terms of materials used in constructing grid lines and increase
efficiency in the transmission of electric power in our energy sector, it is recommended that the

Ghana Grid Company Ltd (GRIDCo), who operates the transmission sector in our Country,

adopts the Prim’s Algorithm model problem in the construction of lines to connect their

substations.

It is also recommended that GRIDCW Floyd Warshall’s Algorithm model Problem to

determine the shortest path connecting their substations to enhance response to emergency

P

i

situation.

Finally the approach from the research can be applied to problems that applies to Prim’s and

Floyd Warshall’s Algorithms. v

-3
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