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ABSTRACT 

  

One of the greatest problems facing both the public and the private sector enterprises is how to 

locate facilities. In public service oriented siting problems, decision makers have to decide about 

the location of public services (offices, schools, hospitals, ambulance services, banks, etc.), while 

emphasizing on the accessibility of public services to people. In the case of most medical 

emergencies, the risk of lost of life increases with response time. Consequently, one reasonable 

objective is to minimize response time given a limited budget. 

 
Industrial firms must determine locations for fabrication and assembly plants as well as 

warehouses. Retail outlets must also locate stores. The cost of serving a retail establishment from a 

warehouse may depend on the time a driver must spend traveling from the warehouse to the retail 

store. In this case, the cost depends approximately linearly on the distance between the store and 

the warehouse. In all cases the right location is paramount.                                                           

     This piece of work attempts to use the p-median model (2-median) to find suitable location for 

setting up a chain of two computer services at Kwame Nkrumah University of Science and 

Technology (KNUST) campus. 

Different methods were used to locate the suitable sites, but the main one was the Lagrangian 

algorithm. The result obtained using the Lagrangian suggested that, the two facilities be located at 

the Republic Hall (node E) and the University Hall (node B). The optimal objective function value 

was 1719170 metres. This value gave the demand-weighted distance. It resulted in the average 

distance of 207 metres. (i.e. the average distance = the demand-weighted distance divided by the 

total demand; 1719170 m / 8310 ≅  207 m). It implies that, on average, each student would travel a 

distance of 207 metres from a hall / hostel to the nearby facility.  
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                                                          CHAPTER ONE 

1.1 Introduction 

When a rhetorical question beloved by both property-conscious tycoons and academic geographers 

was asked: “What are the three most important things in the success of a new supermarket (or gas 

station, or housing)?” Quite likely you would hear the answer: “Location, location, location” 

(Goldman, 2006). 

If you ask what to look for in buying a house, any realtor will tell you that there are three things 

that are important: location, location and location. The theory behind the answer is that the 

community one chooses to live and the location within that community are likely to affect ones 

quality of life at least as much as the amenities within ones house. For instance, if ones house is 

too close to a factory, noise, traffic, and pollution from the factory may degrade ones quality of 

life. If one lives near a community centre, one may be able to avoid involvement in car pools 

taking children to and from activities. If one lives within walking distance of the local basic 

school, ones children need not be bused to school (Daskin, 1952).  

In most location problems, we are interested in locating desirable facilities. In other words, value 

increases, the closer the facilities are to the people or goods being served. Ambulances, fire 

stations, schools, hospitals, post offices, warehouses, and production plants are all considered 

desirable facilities in this sense. Some facilities, however, are considered undesirable in the sense 

that most people want them located as far away as possible. Typically, such facilities are either 

noxious (i.e. posing a health or welfare hazard to people), or obnoxious (i.e. posing a threat to 
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people’s lifestyles). Hazardous waste sites, landfills, incinerators, nuclear missile silos, and prisons 

fall into this category (Erkut et al, 1989).  

Location problem is concerned with the locating of one or more facilities, in some space (i.e. at the 

node or on the edge of a network), so as   to optimize some specific criteria. Often these criteria are 

linked with distribution costs or providing optimal access for the customers of the facility in 

question. This does not necessarily follow however, when facilities produce some undesirable or 

obnoxious effect. Here, the risk to the local population far outweighs any benefits of close sitement 

of the facility. This therefore, causes the location formulation to change to that of minimizing risk 

or equivalently maximizing some distance function to the population centers (Amponsah, 2003). 

The problem of siting a single facility on a network, so as to maximize the minimum Euclidean 

distance along the arcs/edges of the network, from the nodes present (representing population 

centres or existing facilities) is a trivial case of the obnoxious location question. The problem 

becomes more difficult, when these distances do not have to lie on the arcs/edges of the network. 

This allows for the spread of any pollution that is emitted, across the plane in which the network 

lies. The underlying assumptions of this formulation, lies in the fact that the pollution decreases 

with distance uniformly about the facility from which it originates (Amponsah, 2003).  

In the next chapter, the sitement of facilities will be discussed. This will commence with the study 

of non-obnoxious (desirable) facility location, within three possible solution spaces namely, a 

discrete sets of points, the network and the plane. For each case, different objective functions will 

be proposed based on the minisum and minimax principles and their solution techniques discussed. 

In today’s modern society, the quality of life is often defined   by the number of facilities available 

to the populace. From dry-cleaners to garages, from fire-stations to football stadia, all provide a 
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service and so can be defined as facilities. In other words, a facility can be considered as a physical 

entity that provides a service. These facilities can be classified into three categories; desirable 

(non-obnoxious), semi-obnoxious or obnoxious (non-desirable). Most services are provided by 

desirable or non-obnoxious facilities.  

Non-obnoxious (desirable) facilities may be supermarkets, warehouses, shops, garages, banks, 

libraries, etc. As the customer needs access, of some sort, to the facility providing the service, it is 

beneficial if these facilities are sited close to the customers that they will be serving. This implies 

that the customer has better access to the facility. Sometimes, a facility may produce a negative or 

undesirable effect. This effect may be present even though a high degree of accessibility is 

required of the facility. For example, a stadium provides entertainment and so requires a large 

amount of access to enable supporters to attend a game. On the other hand, on match days, local 

non-football funs would have to contend with the noise and the traffic generated. This generation 

of noise is unpleasant for locals and therefore undesirable. The combination of the two makes this 

facility a semi-obnoxious. Another example is the waste disposal sites. Here, access is needed to 

deposit the waste produced by local population. Conversely, the disposal site may be offensive to 

look at, and also it emits offensive odour. These two contradicting points cause the disposal site to 

be defined as a semi-obnoxious facility. Other examples of semi-obnoxious facilities are 

ambulance and fire stations. A facility is defined as obnoxious facility if its undesirable effect far 

outweighs its accessibility. Some examples are nuclear power stations, military installations and 

pollution-producing industries. Although necessary to society, these facilities are undesirable and 

often dangerous to the surrounding inhabitants so lowering local house prices and quality of life 

(Amponsah, 2003).   
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1.2 Background Study 

Computer services at the KNUST Campus comprise the internet services, photocopying, typing, 

printing and repair services. These services are in short supply compare to the number of people 

(students) they serve. The total number of resident students of KNUST in 2008/2009 academic 

year is 8310.  

 

Each of the six halls of the university has an internet café which has an average of thirty (30) 

computers. The main Information and Communication Technology (I.C.T.) department also has 

two hundred and fifty (250) computers. In addition, few departments of the university have a 

limited number of computers for use by students.  

 

There is only one typing and printing facility at the Unity Hall. There are also two undeveloped 

repair facilities at the Independence Hall the University Hall. 

 
The above data showed that the facilities available at KNUST campus are woefully inadequate, 

and therefore there is the need to establish more. 

 

1.3 Statement of Problem 

One of the greatest problems facing both the public and the private sector enterprises is how to 

locate facilities. People site their facilities anywhere, anyhow without first considering how close 

that facility will be to people in the community.  

This work therefore seeks to find the optimal sites to locate a chain of two computer services at the 

Kwame Nkrumah University of Science and Technology (KNUST) Campus using the p-median 

model.  



 5 

1.4 Purpose of the Study 

The computer, and for that matter, the internet is an indispensable tool as far as research work is 

concerned. In addition, computers are needed for typing and printing of project works. Those who 

have computers also might need repair services sometimes. Unfortunately, these facilities are in 

short supply on our university campuses. Due to the ever-increasing population of students at 

KNUST Campus, there is the need to establish more combined services of typing/printing, repairs 

and internet services to enable students do their research with ease.  

The main aim of this work is to find the optimal sites to establish a chain of two computer services 

at KNUST Campus using the p-median model.  

 

1.5 Objectives 

The objectives of this study: 

1. To locate a chain of two computer services at suitable sites at KNUST Campus for 

combined services of typing/printing and repairs. 

2. To locate the facilities at suitable sites so that the average distance covered by students 

from the halls/hostel to the nearest of the p facilities be minimized. 

3. To recommend to computer service providers on the best locations for expansion of their 

enterprise.   

 

1.6 Methodology 

The location problem was modeled as 2-median problem. Below are the steps used to solve it: 

• Data on students population of the halls/hostel, and the inter-hall/hostel road distances were 

collected and used. 
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• Dijkstra’s algorithm was used to find the distance matrix, d(i, j) for all pairs shortest path. 

• Myopic algorithm was used to estimate the demand-weighted distance which was then used 

as the upper bound (UB) for the Lagrangian algorithm. 

• Lagrangian algorithm was used in optimal location to find the two sites for the computer 

services. 

• Materials were obtained from the KNUST library, Mathematics library and Internet. 

 

1.7 Thesis Organization 

Chapter one: Introduction 

Chapter two: Literature Review 

Chapter three: Network Location Models 

Chapter four: Data Collection and Analysis 

Chapter five: Conclusion and Recommendation. 
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CHAPTER TWO 

2.0 Literature Review 

2.1 Desirable Facilities 

The problem of siting p facilities ( p∈N) in some universe, so as to satisfy a given set of criteria 

has posed many questions over the last few decades: 

i. What is the universe to be considered?   

ii. What assumptions can be made to simplify the problem without distorting the  

                  solution set radically? 

iii. What objective(s) is/are to be optimized?  
 
These questions have resulted in the emergence of many different formulations to the fundamental 

location problems. As one would expect, the more accurately a model reflects ‘real life’ situations, 

the more complex the problem becomes. In this chapter, three different universes will be 

addressed. The whole essence of the siting problem is to locate several facilities (e.g. 

supermarkets, sports centres or industrial parks) within an environment so as to optimize their 

location. This optimization may vary depending on the particular objective function chosen. This 

function could be any one of the following: 

          i.      minimize average travel time or cost, 

          ii.     minimize average response time, 
 
          iii.    minimize maximum travel time or cost, and 
 
          iv.    maximize net income.                                                                                                       
 
The basic question presented here is that of minimizing the weighted distance between p facilities      

( p∈N) and the set of customers, so as to maximize their availability to users or minimize 

transportation costs from the source node ( population centre ) to the destination node (facility).  
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2.2 The Universe to be Considered 
 

The first universe to be considered is that of the entire plane, entitled the planar location problem.  

Here the set of points making up the entire plane is the set of feasible solutions. For this basic  

formulation, the planar model assumes direct distance metric e.g. Euclidean or rectilinear. 

Unfortunately, in such a problem, potential customers will normally travel along the arcs/edges of 

the network, road or rail. This prompts the formulation of the network location model, where the 

facilities may be positioned on the network. Distances are then reformulated to be the shortest path 

linking facilities and customers. Again this causes a problem, and what happens if the optimal 

location is not feasible, which may be highly probable in a densely populated area? This leads to a 

discrete formulation where the set of possible locations is a finite set of points.  

 
 
2.2.1 Planar Location Models 
 
A planar location model involves the location of p new facilities (p∈N) within a feasible plane, so 

as to minimize some cost or distance from each new facility to the other new facilities and any 

existing locations within the plane. 

 
Assumptions 
 
Before any formulation of the above can be established a set of assumptions must be made:  
 
     i.       Any point in the plane can be a member of the feasible solution. 
 
    ii.       Each facility can be approximated by a point, i.e., it has no area. 
    
    iii.      A subset of the earth’s surface can be approximated by a plane. 
   
The above assumptions immediately raise several questions about accuracy. Assumption (i) does 

not allow for the occurrence of infeasible area within the plane, such as property owned by other 
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organizations, natural barriers are inaccessible sites. In these cases the model assumes that a site 

close to the optimal may be chosen with no loss of satisfaction. Assumption (ii) states that the 

feasible plane is infinitely bigger than the area taken by a facility. This is obviously unrealistic and 

may affect the results if the feasible area is on a very local scale and the potential facilities require 

large site area. Assumption (iii) assumes that the feasible set is small enough so that the spherical 

curve of the sphere does not alter the shortest distance.    

 
2.2.2 Network Location Models 
 
In the planar model, the set of feasible location points is made up of the entire plane and a distance 

metric is used as a measure of the accessibility to and from each facility. This may be a road or rail 

system, or a set of flight or shipping routes. It may therefore be preferred for sitement of the 

facilities to occur on the links or nodes of this network, thus implying the replacement of the 

distance metric, with actual network distances. 

 
Assumptions  
 
To adopt the model, the set of assumptions made above must first be modified: 
 

i. Each facility can be approximated by a point i.e. it has no area. 
 

ii. Network distances between points are defined as shortest path distances which can be  
 
                   computed using Disjkstra’s algorithm or Floyd’s algorithm. 
 

iii. Any point in the network can be a member of the feasible solution. 
 
These assumptions are very similar to those of the planar model and result in very similar 

formulations to those presented previously. However, if an additional assumption is introduced, 

that is, assumption (iv), each facility is of similar type and so a customer will travel to only the 

closest facility, a subset of the minimax /minisum formulation is addressed. 
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2.2.3 Discrete Location Models 
 
Planar and network location models have several limitations, in that: 
 

i. Every point in the plane or network is a candidate solution. 
 

ii. Fixed costs for siting individual facilities at a particular point are ignored (assumed to  
 

            be independent of the location chosen and so does not affect the optimal solution). 
 
These limitations are confronted when the solution set is reduced to that of a finite number of 

candidate solutions. Then each candidate can be assigned an individual location cost, which can, in 

turn, be incorporated into the objective function. 

 
So far it has been assumed that the facilities to be sited give a particular service and are in some 

sense desirable. However, there are facilities which give services to the public but they are 

undesirable i.e., closeness to the public is not wanted. 

In the next section we shall put forward some location methods.                            

 
2.3.0 Some Location Methods 

Location refers to a place or a position where something can be found. There are many factors, 

both quantitative and qualitative, to consider in choosing a location. Some of these factors are 

more important than others, so people use weighting to make the decision process more objective. 

There are three main location methods. These include the factor rating method, the centre of 

gravity method and the location break-even analysis.   

 
2.3.1 The Factor Rating Method 
 
The factor rating method is popular because a wide variety of factors, from education to labour 

skills to recreation, can be objectively included. The factor rating method has six steps: 
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i. develop a list of relevant factors, 
 

ii. assign a weight to each factor to reflect its relative importance in the company’s  
 
                  objectives,                          
 

iii. develop a scale for each factor (e.g. 1 to 10 or 1 to 100), 
 

iv. assign a score to each location for each factor, using the scale in step (iii), 
 

v. multiply the score by the weights for each factor and total the score for each  
 
                  location, 
 
      vi        make a recommendation based on the maximum point score, considering the results of  
 
                 quantitative approaches as well. 
 
When a decision is sensitive to minor changes, further analysis of either the weighting or the points 

assigned may be appropriate. Alternatively, management may conclude that these intangible 

factors are not the proper criteria on which to base a location decision. Managers therefore place 

primary weight on the more quantitative aspects of the decision (Amponsah, 2006). 

 
 
2.3.2 The Centre of Gravity Method 
 
The centre of gravity method is a mathematical technique used for finding the location of a 

distribution centre that will minimize distribution costs. The method takes into account the 

location of facilities, the volume of people moved to and from those facilities, and 

transportation costs in finding the best location for a distribution centre. The first step in the 

centre of gravity method is to place the location on a coordinate system. The origin of the 

coordinate system in the skill used is arbitrary, just as long as the relative distances are 

correctly represented. This is done easily by placing a grid over an ordinary map of the location 

in question. The centre of gravity is determined by equations (1) and (2): 
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∑
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x W
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C      ………………………..  (1) 
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i
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y W

Wd
C     …………………………  (2) 

 
Where    Cx = x - coordinate of the centre of gravity 
 
              Cy = y - coordinate of the centre of gravity 
 
               ixd  = x - coordinate of location i  
                                                                       
               iyd  = y - coordinate of location i 
          
               iW  = volume of people moved to and from location i 
 
 
2.3.3 The Location Break-Even Analysis 
 
The location break-even analysis is the use of cost-volume analysis to make an economic 

comparison of location alternatives. By identifying fixed and variable costs and graphing them for 

each location. Location break-even analysis can be done mathematically or graphically. Both 

methods can help us determine the lowest cost. The graphical approach has the advantage of 

providing the range of volume over which each location is preferable. There are three steps in 

location break-even analysis. These are: 

 
i. determine the fixed and variable costs for each location, 

 
ii. plot the cost for each location, with cost on the vertical axis of the graph and  

 
                     production volume on the horizontal axis, 
 
        iii.        select the location that has the lowest total cost for the expected production volume. 
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2.4 The Uncapacitated Facility Location Problem 

 
The uncapacitated facility location problem, UFL problem, is used to model many applications. 

Some applications are: bank account allocation, clustering analysis, lock-box location, location of 

offshore drilling platforms, economic lot sizing, machine scheduling and inventory management, 

portfolio management and the design of communication networks. 

For example, the bank account location problem arises from the fact that the clearing time for a 

cheque depends on a city i where it is cashed and the city j where the paying bank is located. A 

company that pays bills by cheque to clients in several locations finds it useful to open accounts in 

several strategically located banks. It pays the bill to the client in city i from a bank in city j that 

maximizes the clearing time. 

 

The UFL problem consists of: 

       i.     a set J = { 1, 2, 3, …, n } of potential sites for locating facilities, 

       ii.    a set I = { 1, 2, 3, …, m } of clients whose demands need to be served by the facilities, 
     
       iii     a profit ijc  for each facility  Jj∈  and client Ii∈ . The profit is made by satisfying the  

 
    demand of client i from a facility j, 

 
       iv.   a fixed nonnegative cost jf  for each facility Jj∈  to be used in setting up the facility j.    
 
The uncapacitated facility location problem is to select a given number S of the J facilities )( JS ⊆     
 
And to assign each client to exactly one facility such that the difference between the profits from S  
 
and the fixed costs is maximized.  

 
The integer linear programming (ILP) formulation is given by 
  
                      Maximized     j

Jj
jij

Ii Jj
ij xfycZ ∑∑∑

∈∈ ∈

−=             ……………………    (1) 
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                   Subject to :       1=∑
∈Jj

ijy                  Ii∈∀              ……………………   (2) 

 
                                           jij xy ≤                JjIi ∈∀∈∀ ,     …………………    (3)  
 
                                            }1,0{∈jx                 Jj∈∀           ……………………....    (4) 
 
                                           }1,0{∈ijy                JjIi ∈∀∈∀ ,    ……………………      (5) 
 
Represent each potential site Jj∈  by jx  and a facility is opened at site Jj∈  if 1=jx  

otherwise, 0=jx . Represent the satisfaction of demand of client Ii∈  from facility Jj∈  by ijy .  

Demand of client i is served by the facility at site j if 1=ijy  otherwise, 0=ijy .                                                                                                                                                                                                                                  
 
Equation (3) may be relaxed to obtain j

Ii
ij mxy ≤∑

∈

        Jj∈∀  ……………   (6). 

 
This is the result of summing the m constraints jij xy ≤ . In such case the optimization problem  
 
is called weak integer programming ( WIP ). 
                                                                           
When linear programming relaxation method is used to solve the ILP, the problem is called strong 
 
linear programming relaxation (SLPR). Also, when linear programming relaxation method is used 

to solve the WIP, the problem is known as weak linear programming relaxation (WLPR). In such 

case }1,0{∈jx  is replaced by 10 ≤≤ jx  and }1,0{∈ijy  replaced by 0≥ijy . 

 
SLPR is formulated as  
 
 
           (SLPR)   Max   j

Jj
jijij

Ii Jj
xfycZ ∑∑∑

∈∈ ∈

−=         ……………………….   (7)       

 
                          Subject to 1=∑

∈Jj
ijy                 Ii∈∀    ……………………….    (8)           

 
                                              jij xy ≤                JjIi ∈∀∈∀ ,   ……………….    (9) 
 
                                               1≤jx                   Jj∈∀    ……………………..    (10) 
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                                                0≥jx                Jj∈∀    ……………………..     (11) 
 
                                                0≥ijy .             JjIi ∈∀∈∀ ,    ……………...     (12) 
 
The dual formulation to the SLPR is obtained by using arguments for the simplex of LP method.  
 
The coefficients of the objective function of the dual are obtained from equations (8), (9) and (10).  
 
They are m (from I) and n (from J). Introducing new variables iu  and jt  we have the objective  
 
function; 
 
                 Min  ∑∑

∈∈

+=
Jj

j
Ii

i tuW  

 
The RHS of the corresponding equations (8) and (9) are jf  and ijc . We thus have the constraints 
 
                j

Ii
ijj fwt −≥−∑

∈

                                     Jj∈∀        

 
                ijiji cwu ≥+                                             JjIi ∈∀∈∀ ,  
 
                iu    free                                                    Ii∈∀        
 
               0≥ijw                                                       JjIi ∈∀∈∀ ,  
 
                 0≥jt                                                            
 
The dual of SLPR is, therefore, given as; 
 
          (Dual SLPR)    Min  ∑∑

∈∈

+=
Jj

j
Ii

i tuW                    …………………………….  (13) 

 
          Subject to   j

Ii
ijj fwt −≥−∑

∈

                                  Jj∈∀       ………………….  (14) 

 
                              ijiji cwu ≥+                                         JjIi ∈∀∈∀ ,   …………….   (15) 
 
                             iu  free                                                    Ii∈∀               …………….   (16) 
 
                             0≥ijw                                                    JjIi ∈∀∈∀ ,   ……………    (17) 
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                              0≥jt                                                     Jj∈∀           ………………    (18) 
 
Instead of solving the relaxed integer programming problem we reduce the dual problem to  
 
condensed form and solve by heuristic methods. Suppose all the variables iu  have been given  
 
fixed values then from equation (15) and (17) ijiji cwu ≥+  and 0≥ijw . 
 
It implies +−= )( iijij ucw                                                      JjIi ∈∀∈∀ ,   ……………    (19), 

 
Where, for any expression a, +a = max (a, 0). 
 
Since the iu ’s have been fixed and we are minimizing, we must assign the jt  minimum values  
 
such that from equation (14) and (18)                                                                                                             
 
        j

Ii
ijj fwt −≥−∑

∈

      ( Jj∈∀ )    ………………  (20a) and 0≥jt    ( Jj∈∀ ) are satisfied. 

         
This implies that +

∈

−≥ ∑ )( j
Ii

ijj fwt             Jj∈∀    ……………………….     (20b). 

 
Substituting for  ijw  we get 
 
               ++

∈

−−= ∑ ))(( ji
Ii

ijj fuct                Jj∈∀ . 

 
We thus have the first condensed form; 
 
            (CD1) }))(({min

,...,1

++

∈ ∈∈

−−+= ∑ ∑∑ ji
Ii Ii

ij
Ii

iuu
fucuW

m

   ……………       (21)       

  
Suppose a qu  in equation (21) is increased by a small numberε >0, then the increased effect in the  
 
∑
∈Ii

iu  in the first term is cancelled by the effect of ∑
∈Ii

iu  in the bracket and the objective is not   

 
changed. But the increase of ε  in qu  decreases the second term which is equal to jt  by the same  
 
amount. Under such circumstances there will always exist an optimal solution to the dual SLPR  
 
with 0≤jt           Jj∈∀               ……………………….                (22) 
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we use this information to change iu  until jt  is at zero. 
 
Equation (21) is reformulated by splitting the two terms and adding the constraint }{max ijJji cu

∈
≤  

we have;  
 
                         (CD2)  min W =  ∑

∈Ii
iu                ………………………….           (23) 

                        Subject to    0)( ≤−− +

∈
∑ ji

Ii
ij fuc            Jj∈∀    ………………….        (24) 

 
                                             }{max ijJji cu

∈
≤                Ii∈∀   …………………..     (25) 

 
 
 
2.5 Greedy Heuristic 
 
We extract heuristic function from the relaxed linear programming and compute for the optimal  
 
solution directly and not through solving for the decision variables. The heuristic simultaneously  
 
find a candidate solution }1,0{∈jx , }1,0{∈ijy  to the UFLP problem instance. 
 
Start with an empty set S of opened facilities and add to S a new facility Jj∈ \ S at each step so  
 
that there is maximum improvement in the objective value when a set of  S facilities have been  
 
opened is given by ∑∑

∈∈

−=
Sj

j
Ii

i fSuSZ )()( . 

 
Current opened facilities are in the set S, where JS ⊆  and )(Sui  is the maximum profit obtained 

from serving client i using facilities in S, Ii∈ . 

 
ji

Ii
ijj fSucSzjSzSp −−=−∪= +

∈
∑ ))(()(}){()(  ,   Jj∈ \ S , where )(Sp j  is the change in  

 
objective value when new facility is opened at j that could be added to S. 
 
 For each computation step, put }{max)( ijSji cSu

∈
= with 0)( =φiu  (Cornuejols et al, 1990). 
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Example: It is proposed that facilities be opened at a maximum of six (6) potential sites to serve  
 
clients at four (4) locations. The cost of setting up the facilities on the different sites are                    
 
f = [3, 2, 2, 2, 3, 3]. The gain in serving the demand of client i by an opened facility j is given by  
 

][ ijCC = . 
                       
 
 

                  =C     



















442032
036305
660686
606866

 

                                                                      
 
Iteration 1:  S is currently an empty set.  
 
It implies 0S = φ ,           z ( 0S ) = 0,            u ( 0S ) = [ 4321 ,,, uuuu ] = [0, 0, 0, 0] 
 
Addition of a facility to 0S , we have; 
 

j
Ii

ijji
Ii

ijj fcfSucSp −=−−= +

∈

+

∈
∑∑ )())(()( 00  ,    Jj∈ \ 0S  

 
 

)( 01 Sp  )( 02 Sp  )( 03 Sp  )( 04 Sp  )( 05 Sp  )( 06 Sp  

  
19-3 =16 

 
17-2 =15 

 
17-2 =15 

 
14-2 =12 

 
13-3 =10 

 
16-3 =13 

 
 

∑
∈

=
Jj

jpSuw ))(( 0  = 0 + 81 = 81, since z ( 0S ) = 0  (sum of iu  is zero).       

 
1S  = { 1 }, since )( 01 Sp  = 16  > 0 is the maximum among the lot.  

 
Iteration 2:   1S  = { 1 },          z( 1S ) = 16,          u( 1S ) =  [ 4321 ,,, uuuu ] = [ 6, 6, 5, 2 ] 
 
                      Addition of another facility to 1S  = { 1 } 
 
                      ji

Ii
ijj fSucSp −−= +

∈
∑ ))(()( 11 ,     Jj∈ \ 1S , j = 1 is left out.             
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2p ( 1S ) 
 

3p ( 1S ) 
 

4p ( 1S ) 
 

5p ( 1S ) 
 

6p ( 1S ) 
 
3- 2 = 1 

 
2- 2 = 0 

 
1- 2 = -1 

 
2- 3 = -1 

 
2- 3 = -1 

 
 

2p ( 1S ), implies second column for each row (i) and corresponding iu . +

∈

−= ∑ )( i
Ii

ijj ucg          

066112 =−=− uc ,  268222 =−=− uc ,  550332 −=−=− uc ,  123442 =−=− uc  
 
Neglect the negative values and add non-negative values.                                                                    
 
It implies  0 + 2 + 1 = 3, 12322 =−=− fg  
 

3p ( 1S ), implies third column.  +

∈

−= ∑ )(3 i
Ii

ij ucg  ⇒  268113 =−=− uc , 066223 =−=− uc  

 
253333 −=−=− uc , 220443 −=−=− uc , now 3g = 2, ⇒   3g - 3f = 2 – 2 = 0. 

 
w(u( 1S )) = 19 + 1 = 20, because  ∑

∈Ii
iu  = 19 and 2p ( 1S ) = 1. 

 
2S  = {1, 2} since 2p ( 1S ) = 1 > 0 is maximum. 

 
 
Iteration 3:  2S  = {1, 2},          z( 2S ) = 16 + 1 = 17,              u( 2S ) = [6, 8, 5, 3] 
 
Addition of another facility to 2S  = {1, 2} 
 

ji
Ii

ijj fSucSp −−= +

∈
∑ ))(()( 22 ,     Jj∈ \ 2S ,    j = 1, 2 are left out.   

 
 

 
3p ( 2S ) 

 
4p ( 2S ) 

 
5p ( 2S ) 

 
6p ( 2S ) 

 
2 - 2 = 0 

 
1-2 = -1 

 
1 – 3 = - 2 

 
1 – 3 = - 2 

 
 

3p ( 2S ), implies third column.  +

∈

−= ∑ )(3 i
Ii

ij ucg  ⇒  268113 =−=− uc , 286223 −=−=− uc  
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253333 −=−=− uc , 330443 −=−=− uc , now 3g = 2, ⇒   =− 33 fg 2 – 2 = 0. 
 
w(u( 2S )) = 22 + 0 = 22, because  ∑

∈Ii
iu  = 22 and 2p ( 2S ) = 0. 

 
Stop since 0)( 2 ≤Sp j , for j = 3, 4, 5, 6. That is, 2\ SJj∈∀  

The solution is S = {1, 2} with objective z(S) = 17. The best upper bound is given by the dual  

greedy value w(u) = w(u( 1S )) = 20 (Cornuejols et al, 1990). 

 

2.6 Network-Based Algorithms 

2.6.1 Shortest Path Problems  

Shortest path problems are the most basic and the most commonly encountered problems in the 

study of transportation and communication networks. There are many types of shortest-path 

problems. For instance, we may be interested in determining the shortest path (i.e. economical path 

or fastest path or minimum-fuel-consumption path) from one specific node in the network to 

another specific node. We may also need to find the shortest path from a specific node to all other 

nodes. The shortest paths between all pairs of nodes in a network are required in some problems. 

Sometimes, one wishes to find the shortest path from one given node to another given node that 

passes certain specified intermediate nodes. 

There are instances where the actual shortest path is not required, but only the shortest distance. In 

the next section, we shall look at the two most important shortest-path problems:  

 
i. how to determine distance (a shortest path) from a specific node s  to another specific  
 
            node t, 

 
ii. how to determine distances (a path) from every node to every other node in the 

network. 
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2.6.2 Dijkstra’s Algorithm 

The Dijkstra’s algorithm finds the shortest path from a source s to all other nodes in the network 

with nonnegative lengths. It maintains a distance label d(i) with each node i, which is an upper 

bound on the shortest path length from the source node to any other node j. At any intermediate 

step, the algorithm divides the nodes of the network under consideration into two groups: those 

which it designates as permanently labeled (or permanent), and those which it designates as 

temporarily labeled (or temporal). The distance label to any permanent node represents the shortest 

distance from the source node to that node. The fundamental idea of the algorithm is to find out 

from source node s and permanently labeled nodes in the order of their distances from the node s. 

Initially, node s is assigned a permanent label of zero (0) and each other node j a temporary label 

equal to infinity.  

At each iteration, the label of a node i is its shortest distance from the source node along a path 

whose internal nodes (i.e. nodes other than s or the node i itself) are all permanently labeled. The 

algorithm selects a node i with the minimum temporary label (breaking ties arbitrarily), makes it 

permanent and reaches out from that node (i.e. it scans all the edges coming out from the node i to 

update the distances label of adjacent nodes). The algorithm terminates when it has designated all 

nodes permanent. 

 
2.6.3 All-Pair Shortest Path Problem 

The shortest path between two nodes might not be a direct edge between them, but instead involve 

a detour through other nodes. The all-pairs shortest path problem requires that we determine 

shortest path distances between every pair of nodes in a network. 
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2.6.4 Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm obtains a matrix of shortest path distance within }{0 3n  

computations. The algorithm is based on inductive arguments developed by an application of a 

dynamic programming technique. 

Let  ),( jid k  represent the length of the shortest path from node i to node j subject to the condition 

that this path uses the nodes 1, 2, …, k-1 as internal nodes. Clearly, ),(1 jid k+  represent the actual 

shortest path distance from the node i  to j. The algorithm first computes ),(1 jid  for all node pairs    

i and j. Using  ),(1 jid , it then computes ),(2 jid  for all node pairs i and j. It repeats this process 

until it obtains ),(1 jid k+  for all node pairs i and j, then it terminates. Given ),( jid k , the algorithm 

computes ),(1 jid k+  using  ),( jid k  = min{ ),(),,( jkdkid kk }. The Floyd-Warshall algorithm 

remains of interest because it handles negative weight edges correctly.  

 
 
2.7 Exact Verses Heuristic Method 

Here, a brief discussion would be made about some exact and some heuristic search methods 

commonly used in Operational Research (OR)/Management Science (MS). 

Real-world problems are difficult to solve for the following reasons: 
 

i. The size of the search space: The number of possible solutions in the search space is so                      
 
           large as to forbid as exhaustive search for the best answer. For instance, a ten-city                    
 
           Traveling Salesman’s Problem (TSP) has about 181,000 possible solutions, a twenty- 
 
           city TSP has about 1610  possible solutions and a fifty-city TSP has about 6210  possible  
 
           solutions. 
 
ii. Modeling the problem: Whenever a problem is solved, we realize that we are, in reality,  
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             finding the solution to a model of the problem. Most models could represent a  
 
             specification of a real-world problem; otherwise they would be as complex and  
 
             unwieldy as the natural setting itself. The process of problem solving consists of two  
 
             separate general steps:  (a) creating the model of the problem, and (b) using that model  
 
             to generate a solution. The ‘solution’ is only a solution in terms of the model. If the  
 
             model has a high degree of accuracy, we can have confidence that the solution would  
 
             be meaningful. In contrast, if the model has too many unfulfilled assumptions and  
 
             rough approximations, the solution may be meaningless. In this case to get any  
 
             solution, we have to introduce simplifications that make the problem tractable. 
 
iii. Change over time: real-world problems often do change over time. Some may change  
 
            before modeling, or while the solution is being derived, or after the execution of the  
 
            solution. We need to be sure that the model reflects the current knowledge about the  
               
            problem. 

 
iv. Almost all real-world problems pose constraints and if we violate the constraints we  
 
            cannot implement our solution. There are two types of constraints: namely hard  
 
            constraints (these are impossible to violate, as the solution becomes redundant) and soft  
 
            constraints (desirable but could be violated). After getting the right constraints for a  
 
            problem, we are then left with the problem of searching for the best assignment (i.e. the  
 
            solution that is feasible and minimizes the evaluation function for the soft constraints. 
 
           Suppose we have found a feasible solution which does not do well with regards to the  
 
           soft constraints, we apply some variation operators to this solution with regards to the  
 
           soft constraints, but in so doing, we generate a solution that violates at least one hard  
 
           constraints. We must choose to discard the solution for it is infeasible, or we might see  
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          if we can repair it to generate infeasible solution that still handles the soft constraints as  
 
          well. Either way, it is typically a difficult job. 
 

 
 
2.8 Exact Methods 

  
There are many classic algorithms that are designed to search spaces for an optimum solution. The  
 
classic methods of optimization fall into two disjoint classes: 
 

i. Algorithms that only evaluate complete solutions.  
 
ii. Algorithms that require the evaluation of partially constructed or approximate  

 
            solutions. Whenever an algorithm treats complete solutions, we can stop it at any time  
 
            and will always have at least one potential answer that we can try. In contrast, if we  
 
            interrupt an algorithm that works with partial solutions, we might not be able to use  
 
            any of the results at all. We can often decompose the original problem into a set of  
 
            smaller and  simpler problems. The idea is that in solving each of these simpler  
 
            problems, we can eventually combine the partial solutions to get answer for the  
 
            original problem. This is the concept used in dynamic programming. 
 

In the next sections we will look at some of the exact methods like exhaustive search, integer 

programming (cutting plane, branch-and bound) and dynamic programming.  

 

2.9 Exhaustive Search   

Exhaustive search checks each and every solution in the search space until the best solution has 

been found. That means if we do not know the value that corresponds to the evaluated worth of the 

best solution, there is no way to be sure that we have found the best solution using the exhaustive 

search unless we examine every solution. Note that the size of the search space of real-world 
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problems of even modest size can be too large to deal with. But exhaustive algorithms are simple; 

the only requirement is to generate every possible solution to the problem systematically.  

 

2.10 Integer Programming-Based Techniques 

Problems in which the decision variables are discrete, where the solution is a set or sequence of 

integers or other discrete objects are known as combinatorial problems. Examples are the 

assignment problem, 0-1 knapsack problem, the set covering problem and the vehicle routing 

problem. Combinatorial problems have close links with linear programming (LP) and most of the 

early attempts to solve them used developments of LP methods.  

Integer programming deals with the solution of mathematical programming problems in which 

some or all the variables can assume non-negative integer values only. An integer program is 

called mixed or pure depending on whether some or all the variables are restricted to integer 

values. Integer programming is quite similar to LP except for the restriction that variables take 

only integer values. One might therefore suppose that such an integer program could be solved by 

simply ignoring the integral requirement, solving the LP and rounding of any non-integer solution 

component to the nearest integer. The LP that results from ignoring the integer constraint is called 

the linear programming relaxation (continuous) of the integer program. The solution of the LP 

provides a lower bound on the optional objective value for the integer problem. Several algorithms 

have been developed for the integer program, but none of these methods is uniformly efficient 

from the computational perspective, particularly as the size of the problem increases. 

Many integer programming problems that arise in practical settings have the special property that,  
 
some or all of their variables are restricted to take on only values 0 and 1. Such variables are called  
 
0-1 variables; they often arise naturally in the formation of problems that involve yes-or no 
decisions.    
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2.11 Cutting Plane Algorithm 

One of the methods used in solving integer programming problems is the cutting plane method. 

This method, which is primarily developed for integer linear problems, starts with the continuous 

optimum. By systematically adding special “secondary” constraints, which essentially represent 

necessary conditions for integrality, the continuous solution space is gradually reduced until its 

associated continuous optimum extreme point satisfies the integer conditions. 

This method cuts (eliminates) certain parts of the solution space that do not contain feasible integer 

solutions of the original problem.  

The idea of the cutting plane algorithm is to change the convex set of the solution space so that the 

appropriate extreme point becomes all integers. Such changes in the boundaries of the solution 

space should result still in a convex set. If a cutting plane algorithm fails to solve a given instance, 

we are left with several options. One option is to use the solution cost of the final LP relaxation, 

which is a (typically good) lower bound on the optimal value, to assess the quality of a known 

feasible solution found by any heuristic method. Another option is to feed the final (typically 

strong) linear relaxation into a classical Branch-and-Bound algorithm for integer problems, which 

is described below (Amponsah, 2003).   

 

2.12 Branch-and-Bound 

The Branch-and-Bound method solves the integer problem by considering its continuous version. 

This method applies directly to both the pure and the mixed problems. In general, the idea of the 

method is first to solve problem as a continuous model (linear program). Suppose that rx  is an 

integer constrained variable whose optimum continuous value *
rx  is fractional, it can be shown that 

the range [ *
rx ] < rx  < [ *

rx ] + 1 cannot include any feasible integer solution. Consequently, a 
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feasible integer value of rx  must satisfy one of the following conditions: rx ≤ [ *
rx ] or                  

rx  ≥  [ *
rx ] + 1. These two conditions when applied to the continuous model results in two 

mutually exclusive LP problems. In this case it is said that the original problem is branched into 

two sub-problems. Actually the branching process deletes parts of the continuous space that do not 

include integer points by enforcing necessary conditions for integrality. Each sub-problem may be 

solved as linear program (using the same objective function of the original problem). If its 

optimum is feasible with respect to the integer problem, its solution is recorded as the best one so 

far available.  

In this case it will be unnecessary to further “branch” this sub-problem since it cannot yield a 

better solution. Otherwise, the sub-problem must be partitioned into sub-problems by again 

imposing the integer conditions on one of its integer variables that currently has a fractional 

optimal value. Naturally, when a better integer feasible solution is found for the sub-problem, it 

should replace the one at hand. This process of branches continues, where applicable, until each 

sub-problem terminates; either as an integer solution or there is evidence that it cannot yield a 

better solution. In this case the feasible solution at hand, if any, is the optimum. The efficiency of 

the computation can be enhanced by introducing the concept of bounding. This concept indicates 

that if the continuous optimum solution of the sub-problem yields a worse objective value than the 

one associated with the best available integer solution, it does not pay to explore the sub-problem 

any further. In this case the sub-problem is said to be fathomed and may henceforth be deleted. 

The importance of acquiring a good bound at the early stages of the calculations cannot be 

overemphasized (Aidoo, 2007). 
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2.13 Dynamic Programming 
 
Dynamic programming works on the principle of finding an overall solution by operating on an 

intermediate point that lies between where we are now and where we want to go. The procedure is 

recursive in that each next intermediate point is a function of the point already visited. 

A prototypical problem that is suitable for dynamic programming has the following properties: 
 

i. The problem can be decomposed into a sequence of decisions made at various stages. 
 
ii. Each stage has a number of possible states. 

 
iii. A decision takes one from a state at one stage to some state at the next stage. 

 
iv. The best sequence of decision also known as policy at any stage is independent of the  

 
            decisions made at prior stages. 
 
v. There is a well-defined cost for traversing from state to state across stages. Moreover,  
 
            there is a recursive relationship for choosing the best decision.  

 
One drawback of dynamic programming, however, is that it can be computationally intensive. The 

method can however be extended to handle a variety of optimization problems. Dynamic 

programming algorithms tend to be somewhat complicated to understand. This is because, in 

practice, the construction of a dynamic program depends on the problem. It is a sort of “artistic” 

intellectual activity depending, in part, on the specific structure of the sequential decision problem.   

 
 
2.14 Heuristics  
 
Heuristics is derived from the Greek word “heuriskein” which means to find or discover. A 

heuristic is a technique which seeks (near optimal) solutions at a reasonable computational cost 

without being able to guarantee either feasibility, or even in many  cases to state how close to 

optimality a particular feasible solution is. A naïve approach to solving an instance of a 
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combinatorial problem is simply to list all feasible solutions of a given problem, evaluate their 

objective functions and pick the best. This approach of complete enumeration is likely to be 

grossly inefficient. It is possible, in principle, to solve any problem in this way but, in practice, it is 

not because of the large number of possible solutions to any problem of a reasonable size. 

 
In the early days of Operational Research, the emphasis was mostly on finding the optimal solution 

to a problem, or rather, to a model of a problem which occurred in the real world.  

Various exact algorithms were devised which would find the optimal solution to a problem much 

more efficiently than a complete enumeration. One of the famous methods is the Simplex 

Algorithm for LP problems. Such exact algorithms may not be able to find optimal solutions to 

NP-hard problems in a reasonable amount of computing time.  

When approaching complex real life problems, four commonly applied methodologies exist. 

However, this list is not exhaustive as combinations do always exist but are usually difficult to 

explicitly define: 

i. an exact method to the exact (true) problem;  

ii. a heuristic method to the exact problem; 

iii. an exact method to the (approximate) modified problem; 

iv. a heuristic method to the approximation problem. 

These rules are put in priority ordering, however, the degree of modification of the problem is a 

crucial point when dealing with practical problems. The idea is to keep the characteristics of the 

problem as close as possible to the true problem and try to implement (i) and (ii) (Aidoo, 2007). 
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2.15 Need for Heuristic 

Heuristics are used only when exact methods, which guarantee optimal solutions, are intractable 

due to (a) either the excessive computational effort, (b) or the risk of being trapped at a local 

optimum. For such reasons, heuristics become the only way to a company to find reasonably 

acceptable solutions. 

The reasons for accepting and promoting heuristic include: 

i. They can be the way forward to producing concrete solutions to large combinatorial 

problems. 

ii. Heuristics can be supported by a graphical interface to help the user in assessing the results 

more easily. 

iii. Management and less specialized users find them reasonably easy to understand and 

therefore are able to comment and interact with the system. 

iv. These are not difficult to w rite, validate and implement.  

v. Management can introduce some unquantifiable measures indirectly to see their effect as 

solutions can be generated reasonably fast.  

vi. These methods are suitable for producing several solutions, and not only a single one, from 

which the user feels more relaxed to choose one or two solutions for further investigation. 

vii. The design of heuristics can be considered as an art with a proper insight of a problem. 
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CHAPTER THREE 

3.0 Network Location Models  

3.1 Some Models 

1. Set Covering Model: this model finds a minimum set of facilities from among a finite set of 

candidate facilities so that every demand node is covered by at least one facility. For 

instance, if we wish to locate ambulances so that the maximum response time is under four 

minutes, then our objective might be to minimize the number of ambulances needed so that 

all demand nodes are within four minutes (the service standard). Demands are said to be 

covered if the nearest ambulance is located not more than four minutes away.  

2. Maximum Covering Model: this model maximizes the number of demands that can be 

covered within a specified service standard using a given number of vehicles. It must be 

noted that, in the covering model, the covering distance/time between a demand and the 

nearest facility is specified. 

3. P-Center Problem: this model minimizes the maximum response time (the time between a 

demand site and the nearest facility/ambulance), using a given number p, of vehicles. The 

p-center problem is also known as minimax problem, because we minimize the maximum 

response time/distance between a demand and the nearest facility to the demand. 

4. P-Median Problem: this model minimizes the average response time/distance between a 

demand site and the nearest ambulance, using a given number p, of vehicles. (Hakimi, 

1964; Hakimi, 1965).  

 

The p-median problem is the problem of locating p “facilities” relative to a set of “customers” such 

that the sum of the shortest demand weighted distance between “customers” and “facilities” is 

minimized.  
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The model considered in this piece of work is the p-median. This is because the objective of this 

work is to minimize the average distance/time that students would travel from the halls/hostel to 

the nearest of the p facilities.  

 

3.2 The Median Problem 

The p-median problem is the problem of locating p facilities (medians) on a network so as to 

minimize the sum of all the distances from each demand point to its nearest facility.  

 

This problem may be formulated using the following notation: 

Inputs  

ih  = demand at node i 

ijd  = distance between demand node i  and candidate site j 

P = number of facilities to be located 

 

Decision variables 

jX  =  { 

ijY  =  { 

 With this notation, the P- median problem may be formulated as follows:    

   Minimize            ijij
i j

i Ydh∑∑              …………………………..       (1)  

   1, if we locate at candidate site j 

   0, if not 

   0, if not 

   1, if demands at node i are served by a facility at node j 
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  Subject to             ∑
j

ijY  = 1        i∀     …………………………..       (2) 

                               ∑
j

jX  = P               …………………………..         (3) 

                               ijY  - jX  ≤  0     ji,∀      ………………………        (4) 

                              jX  = 0, 1          j∀         ………………………          (5)                                                                                                                    

                               ijY  = 0, 1           ji,∀     ……………………….          (6) 

The objective function (1) minimizes the total demand-weighted distance between each demand 

node and the nearest facility. Constraint (2) requires that, each demand node i be assigned to 

exactly one facility j. Constraint (3) states that exactly P facilities are to be located. Constraints (4) 

link the location variables, jX  and the allocation variables, ijY . They state that demands at node i 

can only be assigned to a facility at location j ( ijY  = 1) if a facility is located at node j ( jX = 1). 

Constraints (5) and (6) are the standard integrality conditions. 

The p-median formulation given above assumes that facilities are located on the nodes of the 

network. For p-median problem, at least one optimal solution consists of locating p facilities on the 

network’s nodes (Hamiki, 1965).  

 

To prove the above assumption, we consider a solution in which at least one facility is located at 

point P on link (i, j), a distance of α  units from node i (0 < α  < ijd ). Let iH  represent total 

demand that enters link (i, j) through node i, and jH  represent total demand which enters link (i, j) 

through node j. Assume that iH  ≥  jH . By moving the facility from P to node i (without altering 

any of the demand allocations), we change the objective function by ( jH - iH ) α . Since iH ≥ jH , 

this quantity is non positive. Thus, making this change in the location of the facility will not 
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degrade the solution. This is sufficient to prove that at least one optimal solution consists of 

locating only on the nodes of the network. In what follows, we argue that such a change is likely to 

result in improvement in the objective function. If  iH  ≥  jH , the quantity ( jH - iH ) α  will be 

negative this will improve the objective function. However, this quantity does not account for 

improvements in the objective function that may be obtained by reallocating demands after the 

facility is moved. In particular, some demands may now be closer to node i  than they were to 

whatever node to which they had previously been allocated. Also, some of the demands that were 

originally allocated to the facility located between nodes i and j and that entered the facility via 

node j may now be closer to some other facility. Reallocating these demands can further reduce the 

objective function. 

 

 3.3 The 1-Median Problem on a Tree 

If we focus on locating a single median on a tree, we can find a very efficient algorithm for solving 

the problem optimally. It must be noted that if a node has at least half of the total demand   

(∑
i

ih = H), then locating at that node is the optimal location. To prove this, let us consider any 

solution in which the facility is located at a point on the network (either a node or anywhere on a 

link) other than the node at which at least half of the total demand occurs. Let the node with half of 

the total demand be node A, with demand Ah . Now consider moving the facility from its current 

(supposedly optimal) position a distance δ  toward node A. But since we are moving closer to node 

A, we will be getting closer to at least half of the total demand, H. The objective function will, 

therefore, decrease by at least δ (2 Ah - H) ≥  0. If Ah > H / 2, such a move will strictly decrease the 

objective function. Thus, we have shown that at least one optimal solution consists of locating the 

facility at the node which has at least half of the total demand. This property is independent of 
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whether or not the underlying network is a tree or not. That is, if one node has at least half of the 

total demand, it is optimal to locate at that node (Daskin, 1952).  

 

Suppose that half or more of the demand does not exist at any single node, as shown in the Fig 3.1 

below. Consider locating at some point X halfway between B and C. At such a location 15 

demands ( Ah + Bh ) are to the left of the facility and 33 demands ( Ch + Dh + Eh ) are to the right of 

the facility. Moving the facility δ  distance units towards node C would reduce the objective 

function (the demand-weighted total distance) by 18δ  units [(33-15) δ  =18δ ]. Again consider 

moving the facility from node C towards either node E or node D. Moving the facility a distance 

δ  from node C towards node D on the link CD, would move the facility further from 36 demands 

and closer to only 12 demands. Thus, the objective function would increase by 24δ . Such a move 

would not be optimal. Similarly, moving the facility δ  from C towards E on link CE would also 

increase the objective function by 20δ . 

 

                                   

                                                          

                                                      

                    Figure 3.1: A tree network.                          

Using the qualitative argument outlined above, we can show that an optimal solution to the           

1-median problem on a tree may be found by “folding” the demand at a tip node onto the node that 

is incident on the tip node and deleting the tip node ( this means that we add the demand at the tip 

node to that of the node that is incident on the tip node and then remove the tip node and the link 

connecting it to the node on which it is incident from the tree). This process is repeated until a 

B 

A 

C 

E 

D 

Ah =10 

8 

Bh =5 

7 
Ch =7 

Eh =14 
10 

5 

Dh =12 
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node of the new tree contains at least half of the total demand of the tree. A tip node is any node of 

the tree that is incident on only one other node. Thus nodes A, D and E are tip nodes in Figure 3.1. 

If the tip node A is folded onto node B, and the tip node D followed by node E folded onto node C, 

the corresponding networks, as shown in Figures 3.2 and 3.3. 

 

 

As shown in Figure 3.4, the revised demand at node C is over half of the total demand (H = 48). 

Thus, the optimal location for the 1-median on the tree is node C.  
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Dĥ =12 

Eĥ =14
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Bĥ =15 Cĥ =19 
Eĥ =14

 
B C 

E 

Cĥ =7 

Figure 3.2: Effect of folding tip node A onto node B. 

Figure 3.3: Effect of folding tip node D onto node C. 

7 

Bĥ =15 Cĥ =33 
B C 

Figure 3.4: Effect of folding tip node E onto node C. 
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3.4 Algorithms for the 1-Median Problem on a Tree (Goldman, 1971) 

Step 1:      Set ii hh =ˆ  for all nodes i. 

Step 2:     Select any tip node i. If ∑ =≥
j

ji Hhh 2/2/ˆ , then locate at node i and go to             

                the next step. If not, add iĥ  to the value of  kĥ , where k is the unique node that    

                is incident on node i; delete node i  and the points on the link between i and k and 

                repeat step 2.   

Step 3:     Compute the objective function. 

 

3.5 Heuristic Algorithms for the P-Median Problem   

The heuristic algorithms for the solution of the p-median problem are a myopic algorithm, an 

exchange algorithm and a neighborhood search algorithm. These algorithms fall into two broad 

classes of algorithms: construction algorithms and improvement algorithms (Golden et al, 1980).  

 

The myopic algorithm is a construction algorithm in which we start to build good solution from 

scratch. Both the exchange and the neighborhood search algorithms are improvement algorithms. 

If we were to locate only a single facility on a network, we could find the optimal location by 

enumerating all possible locations and choosing the best (i.e. by total enumeration). For the fact 

that at least one optimal solution to any P-median problem consists of locating only on the demand 

nodes, we could evaluate the 1-median objective function, ∑=
j

ijij dhZ , that would result if we 

locate at demand node j, for each demand node. We would then choose the location that results in 

the smallest value of jZ . If we only want to locate a single facility, it is clear that this approach 

would give an optimal solution. 
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Now suppose that we are given the location of p-1 facilities. Let 1−PX  denote the set of locations 

of these p-1 facilities. Also, let d (i, 1−PX ) be the shortest distance between demand node i and the 

closest node in the set 1−PX . Similarly, we let ),( 1−∪ PXjid  be the shortest distance between 

demand node i and the closest node in the set 1−PX  augmented by candidate location j. the best 

place to locate a single new facility, given that the first p-1 facilities are located at the sites given 

in the set 1−PX , is at the location j that minimizes  ),( 1−∪= ∑ P
i

ij XjidhZ . This approach leads 

to the myopic algorithm for constructing a solution to the p-median problem.  

 

3.6 Myopic Algorithm for the P-Median Problem 

Step 1:  Initialize k = 0 (k will count the number of facilities we have located so far) and φ=kX ,       

             the empty set ( kX  will give the location of k facilities that we have located at each stage 

             of the algorithm). 

Step 2:  Increment k, the counter on the number of facilities located. 

Step 3:  Compute ),( 1∑ −∪=
i

ki
k
j XjidhZ  for each j which is not in the set 1−kX . ( k

jZ  gives the 

            value of the p-median objective function if we locate the kth  facility at node j, given that 

             the first k-1 facilities are at the locations given in the set  1−kX  and node j is not in that set). 

 Step 4:  Find the node j*(k) that minimizes k
jZ , that is j*(k) = argminj ( k

jZ ). [j*(k) gives the best  

             location for the kth  facility, given the location of the first k-1 facilities). Add node j*(k) to 

             the set 1−kX  to obtain the set kX ; that is, set kX = 1−kX  ∪  j*(k). 

Step 5:  If k = P stop; the set pX  is the solution to the myopic algorithm. If k < P  go to step 2. 
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The solution obtained using the myopic algorithm will not necessarily be optimal but this 

algorithm is appealing for a number of reasons: 

• It is very simple to understand and to implement. 

• In practice, many decisions are made this way. We are often given the location of some 

number of facilities which cannot be moved. We are then asked to find the location of a 

few (often only one or two) new facilities (Daskin, 1952). 

 

If we are only required to locate one additional facility and the existing ones cannot be relocated, 

this approach will clearly be optimal. 

To illustrate the approach, we consider the network of figure 3.5. Numbers in boxes next to the 

nodes are demands, ih . 

 

 
By using either the Floyd’s algorithm or the Dijkstra’s algorithm, we obtained shortest paths 

matrix (distance matrix) d(i, j ) for the above network.   
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Figure 3.5: Sample network for p-median problem. 
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                                Table 3.1: Distance matrix, d(i, j). 
 
 

From          A        B        C        D        E 

A 

B 

C 

D 

E 

    0         8         8        6         2 

    8         0         2      10         6 

    8         2         0      12         8 

    6       10       12        0         4 

    2         6        8         4         0 

 

Next we find demand times distance [ ih .d(i, j)]. Here, we multiply A row of d(i, j) by Ah , B row of 

d(i, j) by Bh , and so on. By summing the entries in each column, the values of 1
jZ  are obtained. 

The smallest value of 1
jZ  gives the solution to 1-median problem. 

                                   Table 3.2: First Myopic Median, [hi . d(i, j)]. 

                                  

Node i    A       B       C       D       E 

    A 

    B 

    C 

    D 

    E 

   0      24      24      18       6 

   8       0         2      10       6 

 16       4         0      24      16 

 18     30       36        0      12 

   8     24       32      16        0   

Total  50     82       94      68       40 

                                   

To
    

   

d (i, j) = 

Node j    
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The smallest 1
jZ  value corresponds to j = E, with a value of 40. Thus, the optimal total demand 

weighted distance if we locate only one median for the network is 40, resulting in an average 

distance of  40/13 or 3.077. The total demand is 13.  

To locate a second median, we compute )},();,(min{. jidEidhi  for each node/candidate location 

pair (i, j). The column totals correspond to 2
jZ .   

                                        

                        Table 3.3: Second Myopic Median, [hi . min{d(i. j) ; d(i, E)}]. 

                                       

Node i     A        B        C        D         E  

A  

B 

C 

D 

E 

    0         6         6         6         6 

    6         0         2         6         6 
 
  16         4         0       20       16 
  
  12       12       12         0       12 
 
    0         0         0         0         0 

Total   34       22       20       32       40 

 

 

It is best to add a facility at C. The total demand-weighted distance is now 20 resulting in an 

average distance of 30 / 13 or 1.538.  

To locate a third facility, we compute )},();,();,(min{. jidCidEidhi  for each node / candidate 

location pair (i, j). The column totals correspond to 3
jZ . 

Node j    
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The third facility must, therefore, be located at D. The total demand-weighted distance is 8 

resulting in an average distance of 8 / 13 or 0.615. 

 

                     Table 3.4: Third Myopic Median, [hi . min{d(i, E) ; d(i, C) ; d(i, j)}]. 

 

           

       

 

 

 

 

 

 

The table 3.5 shows the results for the first three myopic medians for the network of figure 3.1 . 

 

         Table 3.5: Results for the First Three Myopic Medians 

 

 

 

 

 

 

The results for the first three median is given on the network diagram below. 

Node i     A        B        C        D        E 

A 

B 

C 

D 

E 

    0         6         6        6         6 

    2         0         2        2         2 

    0         0         0        0         0 

  12       12       12        0       12 

    0         0         0        0         0 

Total   14       18       20        8       20 

Median number Location Total demand-weighted distance Average distance 

          1 

          2 

          3 

     E 
 
    C 
 
    D 

                    40 
 
                    20 
 
                      8 

        3.077 
 
        1.538 
 
        0.615 

Node j    
   



 43 

 

 

 

 

 

 

                         Figure 3.6: Network diagram for result. 

 

3.7.0 Improvement Algorithm 

3.7.1 Neighborhood Search Algorithm 

Given the locations of some facilities (whether the locations are optimal or not), each demand node 

should be assigned to the nearest facility, since the facilities are uncapacitated, and the demand-

weighted distance minimized. This creates sets of nodes such that all nodes in the same set are 

assigned to the same facility. Nodes within a set are referred to as being in the neighborhood of the 

facility to which they are assigned. Figure 3.7 displays the neighborhood associated with the three 

myopic medians of the original network.  

    

 

 

 

 

                                                                                                                    

                           Figure 3.7: Neighborhoods associated with myopic 3-median. 
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Within each neighborhood, it is expected that the median would be located optimally. That is, the 

facility serving each neighborhood would be located at the optimal 1-median site for the nodes 

within the neighborhood. This leads to the neighborhood search algorithm. 

The neighborhood search algorithm can begin with any set of P facilities sites. For instance, we 

could start with the P sites identified by the myopic algorithm. For each facility site, the algorithm 

identifies the set of demand nodes that constitute the neighborhood around the facility site. Within 

each neighborhood the optimal 1-median is found. If any site changes, the algorithm reallocates 

demands to the nearest facility and forms new neighborhoods. If any of the neighborhoods 

changes, the algorithm again finds the 1-median within each neighborhood, and so on. 

Consider the Fig.3.7 above, which displays the neighborhoods associated with the 3-myopic 

median. If, for example, the facility at node E is moved to node A, the total demand-weighted 

distance would increase from 8 to 10. Since the objective function is being minimized, this 

movement would worsen the solution. Similarly, if the facility at node C is moved to node B, the 

total demand-weighted distance would increase from 8 to 10. It means that the solution obtained 

earlier using the myopic algorithm is optimal.  

 

Figure 3.8 is the flowchart of neighborhood search algorithm [Maranzana (1964) was the first to 

propose such an algorithm]. 
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3.7.2 Exchange Algorithm 

In evaluating the impact of any relocation decision using the neighborhood search algorithm, only 

the effects on those nodes in the neighborhood are considered. The potential benefit to nodes 

outside of the neighborhood is not considered in deciding whether or not relocation should be 

made. This is a limitation on the part of the neighborhood search algorithm, hence the need for 

exchange algorithm as an alternative improvement algorithm. Figure 3.9 shows the flowchart of 

the exchange algorithm. 

Input: Any set of P facility sites 

Find: Neighborhoods for each site 

Find: Optimal 1-median in each 
           neighborhood 

        Did       
any facility 
 site change?          

Find: Neighborhoods for each 
           site 

        Did                         
any       
neighborhood 
    change?          

STOP 
            

No 

No 

Yes 

Yes 

Figure 3.8: Flowchart of neighborhood search algorithm (Maranzana, 1964).  
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Consider the figure 3.6, if the facility at node D should be moved to node A, and the demand at 

node D allocated to the facility at node E, then the objective function value becomes                  

3(4) + 1(2) = 14 > 8 (myopic solution). In the same way, if either of the facilities at nodes C or E 

should be moved to another node, the objective function value would be more than 8. Thus the 

solution found under the myopic algorithm is optimal.  

 

 

Input: Any set of P facility locations 

Select: 1st facility site to try removing 

 Identify: Best replacement node for the            
               facility site being considered 
               for removal 

 

          Does 
   exchange 
reduce average 
   distance?  

Exchange: Current site  
                 and                
          replacement site 

         Have 
   all existing 
sites been con- 
   sidered for 
       removal? 

  Select: Next facility site to remove 

  STOP     Yes 

  Yes 

  No 

  No 

  Figure 3.9: Flowchart of the exchange algorithm. 
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3.8 An Optimization-Based Lagrangian Algorithm for the P-Median Problem 

Many heuristic algorithms have been used successfully in solving applied p-median problems. 

However, the problem with these algorithms and any heuristic approaches is that we do not know 

how good the solution is. In some cases, the solution may be optimal or very close to optimal. In 

other cases, the solution may be quite far from optimal. This calls for an algorithm which can give 

us a clue as to whether the solution is optimal or close to optimal. Here, we consider an 

optimization-based Lagrangian algorithm for the p-median problem. Lagrangian relaxation is an 

approach to solving difficult problems such as integer programming problems.                             

 
The Lagrangian relaxation is base on the premise that removing constraints from a problem makes 

the problem easier to solve. The relaxation removes a constraint but introduces a penalty for 

violating the removed constraint.  

 
The Lagrangian relaxation approach under the p-median problem involves the following steps:  

1. Relax one or more constraint(s) by multiplying through by Lagrange multiplier(s) and 

bring the constraint(s) into the objective function. 

2. Solve the resulting relaxed problem to find the optimal values of the original decision 

variables (in the relaxed problem). 

3. Use the resulting decision variables from the solution to the relaxed problem found in step 

(2) to find a feasible solution to the original problem. Update the lower bound (LB) on the 

best feasible solution known for the problem. 

4. Use the solution obtained in step (2) to compute a lower bound on the best value of the 

objective function. 
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5. Examine the solution obtained in step (2) and determine which of the relaxed constraints 

are violated. Use, for example, the subgradient optimization method to modify the 

Lagrange multipliers in such a way that the violated constraints are less likely to be 

violated on the subsequent iteration.  

 

3.9 Termination of the Lagrangian Algorithm 

The Lagrangian algorithm is terminated when one/more of the following conditions is/are true: 

1. When a number of specified iterations is done. 

2. The lower bound equals the upper bound (i.e. Ln = UB), or Ln is close enough to UB. 

3.  nα  becomes very small. When nα  is very small, the changes are not likely to help 

solve the problem (Daskin, 1952). 

4. When there is no violation of the relaxed constraints (i.e., Q =∑ ∑ −
i j

n
ijY 2}1{ = 0). 

(Refer to Table 4.8 in page 64 and Table B2 in page 76). 

 

3.10 Lagrangian Formulations 

We begin by restating the formulation of the original p-median problem. 

   Minimize           ijij
i j

i Ydh∑∑              …………………………..       (1)  

  Subject to             ∑
j

ijY  = 1        i∀     …………………………..       (2) 

                               ∑
j

jX  = P               …………………………..        (3) 

                                ijY  - jX  ≤  0     ji,∀     ……………………...         (4) 

                                jX  = 0, 1         j∀        ………………………          (5)                                                                                                                    



 49 

                                 ijY  = 0, 1          ji,∀        ……………………           (6)  

To solve the above p-median problem using Lagrangian relaxation, either constraint (2) or (4) can 

be relaxed. Now, if constraint (2) is relaxed, we have 

       
YX

MINMAX
,

{
λ

     ∑ ∑∑∑ −+
i j

ijiijij
i j

i YYdh )1(λ } or 

       
YX

MINMAX
,

{
λ

     ∑∑∑ +−
i

iiji
i j

iji Ydh λλ )( }       …………………..       (1a) 

      SUBJECT TO:      ∑
j

jX  = P                         ……………………..         (3) 

                              ijY  - jX  ≤  0     ji,∀         ……………………...        (4) 

                             jX  = 0, 1           j∀             ……………………..         (5)                                                                                                                    

                              ijY  = 0, 1            ji,∀         ……………………. .        (6) 

For fixed values of the Lagrange multipliers, iλ (estimated demand-weighted distance), we want to 

minimize the objective function. With the values of iλ  fixed, the second terms of the objective 

function is a constant. To minimize the objective function, we set Yij = 1 if its coefficient 

iiji dh λ− < 0, and Yij = 0 otherwise. But setting Yij = 1 means already Xj = 1 by constraint (4), and 

from constraint (3), we can set Xj = 1 for p number of j values. Thus, to minimize the objective 

function for fixed values of the Lagrange multipliers, we begin by computing the value of setting 

each value of the jX  values to 1. This value is given by ∑=
i

jV ,0min(  iiji dh λ− ) for each 

candidate location j. We then find p smallest values of Vj  and set the corresponding values of 

jX =1 and all other values of jX = 0. We then set   
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                            Yij = {     

If we relax constraint (4), we get 

       
YX

MINMAX
,

{
λ

     )(∑∑∑∑ −+
i

jij
ij

ijijij
i j

i XYYdh λ } or 

       
YX

MINMAX
,

{
λ

    ∑ ∑∑∑ −+
j i

jijijij
i j

iji XYdh )()( λλ     ……………   (1b)    

 
 SUBJECT TO:   ∑

j
ijY  = 1        i∀     …………………………..       (2) 

                            ∑
j

jX  = P               …………………………..        (3) 

                            jX  = 0, 1         j∀        ………………………          (5)                                                                                                                    

                                  ijY  ≥  0              ji,∀        ……………………           (6) 
       
                                  ijλ  ≥  0              ji,∀      ………………………         (7) 

Again, for fixed values of the Lagrange multipliers, ijλ , we want to minimize the objective 

function. In this case, the problem breaks into two separate subproblems; one in the allocation 

variables, ijY , and the other in the location variables, jX . Below are these subproblems:  

          
 Problem in the allocation variables Yij  for  fixed values of ijλ  

           Minimize      ijij
i j

iji Ydh )( λ+∑∑               ………………….      (1c) 

           Subject to     ∑
j

ijY  = 1        i∀     …………………………..       (2) 

                                ijY  ≥  0              ji,∀        ……………………           (6) 
 
 

1 if Xj = 1 and iiji dh λ− < 0 

0 if not 
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Problem in the Location Variables Xj   for fixed values of ijλ  

            Maximize    ∑ ∑
j i

jij X)( λ             …………………………          (1d) 

      Subject to     ∑
j

jX  = P               …………………………..          (3) 

                                 jX  = 0, 1         j∀        ………………………            (5)    

It is worth noting that the problem in Xj for fixed values of ijλ  becomes a maximization problem 

because the objective function (1b) is being minimized.   

To solve the problem in Yij, we identify the facility location ji
* = argminj{hidij+ ijλ } for each 

demand location i. That is, ji
* is the facility location that minimizes hidij+ ijλ  for demand node i. 

Set Yik = 1 if k = ji
* and Yik = 0 for all other facility locations k. 

To solve for the optimal values of the location variables Xj, for fixed values of  ijλ , we find the P 

largest values of ∑
i

ijλ . We then set the corresponding Xj values to 1 and all other Xj values to 0. 

In either relaxation, we find a primal feasible solution related to the Lagrangian solution by 

ignoring the allocation variables, Yij, and siting the facilities at those sites for which Xj =1. We 

then let S = { j\Xj = 1}; that is, S is the set of facility locations. For each demand node i, we then 

find }{minargˆ
ijSji dj ∈= ; that is, iĵ  is the open facility that is closest to node i. We then set ikŶ = 1 

if    k = iĵ  and ikŶ = 0 for all other locations k as before. We evaluate the P- median objective 

function, ijij
i j

i Ydh ˆ∑∑ . This value is an upper bound on the solution. The best (smallest) value 

over all iterations of the Lagrangian relaxation procedure is used as the upper bound. 
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The Lagrange multipliers are revised using a standard subgradient optimization procedure. When 

constraint (2) is relaxed, a step size, tn, at the nth iteration of the Lagrangian procedure is computed 

as follows: 

                     
∑ ∑ −

−
=

i j

n
ij

nn
n

Y
LUBt 2)1(

)(α          …………………….   (8) 

Where, nt = the stepsize at the nth iteration of the Lagrangian procedure 

           nα = a constant on the nth iteration, with 1α  generally set to 2 

           UB = the best (smallest) upper bound on the P-median objective function 

          nL  = the objective function of the Lagrangian function on the nth iteration 

          n
ijY = the optimal value of the allocation variable, Yij on the nth iteration. 

The Lagrange multipliers are updated using the equation below: 

                    )}1(,0max{1 −−= ∑+

j

n
ij

nn
i

n
i Ytλλ    …………………….     (9) 

When the constraint (4) is relaxed, equations (8) and (9) are modified as follows: 

                   
∑∑ −

−
=

i j

n
j

n
ij

nn
n

XY
LUBt 2)(

)(α         …………………………….     (10) 

                  )}(,0max{1 n
j

n
ij

nn
i

n
i XYt −+=+ λλ      ……………………..     (11) 

Where all notations is as defined above and, 
 

n
jX = the optimal value of the location variable, Xj, on the nth iteration. 

It is worth noting that the Lagrange multipliers are initialized, and one way is to initialize them to 

constant value. 
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CHAPTER FOUR 

 
4.1 Data Collection and Analysis 

The six halls of residence of KNUST and a hostel are considered in this piece of work. Students’ 

population in the various halls / hostel was collected from the hall / hostel officials. Table 4.1 

shows the students population in the halls / hostel. 

                           

                    Table 4.1: Students population in the halls/hostel. 

Name of Hall / Hostel Node i     Number of Students 

    GUSS             Hostel 

    University       Hall 

    Independence  Hall 

    Unity               Hall 

    Republic          Hall 

    Queens            Hall 

    Africa              Hall 

    A 

    B 

    C 

    D 

    E 

    F 

    G 

                        935 

                      1190 

                      1176 

                      1925   

                      1208 

                      1164 

                        712 

          Total = 8310 

 

 

The set of distances of roads linking the halls / hostel was collected from the Geomatic Department 

of the Kwame Nkrumah University of Science and Technology. This has been presented in the 

Table 4.2 below. 
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                                      Table 4.2: Inter-halls/hostel distances. 

Edges (i, j) Distance [ d(i, j), in metres ] 

   (A, B) 

   (B, C) 

   (B, F) 

   (C, D) 

   (C, E) 

   (D, E) 

   (D, G) 

    (E, F) 

    (F, G) 

                     306 

                   1050 

                     950 

                     340 

                     210 

                     380 

                     400 

                     100 

                     375 

 

The above data has been developed into a network of Figure 4.1 below. Numbers in boxes next to 

the nodes are the number of students in the halls / hostel. These numbers represent the demand 

(hi). 

         



                                                                                                                                                    

                                                                                                                                                          

                      

 

 

 

 

 

                                   Figure 4.1: Network of the data. 
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By using the Dijkstra’s algorithm, the shortest path matrix or distance matrix, d(i, j) for the above 

network was obtained as shown in Table 4.3. 

                 Table 4.3: Shortest path distance matrix, d(i, j).                      

From      A         B          C            D           E            F           G 

A 

B 

C 

D 

E 

F 

G 

      0       306      1356      1636      1356      1256      1631 

  306           0      1050      1390      1050        950      1325  

1356     1050            0        340        210        310        685 

1636     1390        340            0        380        480        400 

1356     1050        210        380            0        100        475 

1256       950         310        480       100            0        375 

1631     1325         685        400       475        375             0 

 

Table 4.4 shows the shortest path distance matrix together with the demands at the various nodes. 

               Table 4.4: Demand (hi) and shortest path distance matrix d(i, j). 

                                       To 

   hi From      A         B           C           D           E            F            G 

  935 

1190 

1176 

1925 

1208 

1164 

A 

B 

C 

D 

E 

F 

      0       306      1356      1636      1356      1256      1631 

  306           0      1050      1390      1050        950      1325  

1356     1050            0        340        210        310        685 

1636     1390        340            0        380        480        400 

1356     1050        210        380            0        100        475 

1256       950         310        480       100            0        375 

To 

d(i, j)  = 
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4.2 Solution Using the Myopic Algorithm 

We begin by using the myopic algorithm to find the first two myopic medians. Here, we multiply 

the demand at node i by the distance between node i and node j, (hi .dij). That is, we multiply the 

row A through by the demand at node A, hA (i.e. hA . d(A, j)), the row B by the demand at node B, 

hB (i.e. hB . d(B, j)), and so on. The result is shown in Table 4.5. Sums of entries in each column 

are found, and the smallest total gives the solution to 1- median problem. This corresponds to the 

node where the first facility would be located. From the Table 4.5 below, the first facility would be 

located at node E. 

  

                Table 4.5: First Myopic Median, [hi . d(i, j)] 

 

Node i         A             B              C               D               E                F                G 

A 

B 

            0     286110    1267860    1529660    1267860    1174360    1524985 

  364140               0    1249500    1654100    1249500    1130500    1576750 

  712 G 1631     1325         685        400       475        375             0 

Node j 
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C 

D 

E 

F 

G 

1594656   1234800                0      399840      246960      364560      805560 

3149300   2675750      654500                0      731500      924000      770000 

1638048   1268400      253680      459040                0      120800      573800 

1461984   1105800      360840      558720      116400                0      436500 

1161272     943400      487720      284800      338200      267000                0 

Total 9369400   7514260    4274100    4886160    3950420    3981220    5687595 

    

For the second median, we compute [hi . min{d(i, j) ; d(i, E)}]. The column with the least sum 

gives the solution to the 2 – median problem. It means that the second facility would be located at 

node B, as shown in the Table 4.6 below. 

Table 4.6: Second Myopic Median, [hi . min{d(i, j) : d(i, E)}] 

 

Node i         A             B              C               D               E                F                G 

A 

B 

C 

D 

E 

F 

G 

            0     286110    1267860    1267860    1267860    1174360    1267860 

  364140               0    1249500    1249500    1249500    1130500    1249500 

  246960     246960                0      246960      246960      246960      246960 

  731500     731500      654500                0      731500      731500      731500 

            0               0                0                0                0                0                0 

  116400     116400      116400      116400      116400                0      116400      

  338200     338200      338200      284800      338200      267000                0 

Total 1797200   1719170    3626460    3165520    3950420    3550320    3612220 

 

Node j 
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From the two myopic median tables above, the facilities should be located at nodes B and E 

representing the University hall and the Republic hall respectively. 

    

4.3.0 The Lagrangian Algorithm 

At this point, we use the Lagrangian algorithm to solve the problem. We begin by formulating the 

p-median problem as: 

 

 

Minimize 

              0YAA +   286110YAB + 1267860YAC + 1529660YAD + 1267860YAE + 1174360YAF + 1524985YAG  

+   364140YBA +            0YBB + 1249500YBC + 1654100YBD + 1249500YBE + 1130500YBF + 1576750YBG  

+ 1594656YCA + 1234800YCB +            0YCC +   399840YCD +   246960YCE +   364560YCF +    805560YCG  

+ 3149300YDA + 2675750YDB +  654500YDC +            0YDD +    731500YDE +   924000YDF +   770000YDG  

+ 1638048YEA + 1268400YEB +   253680YEC +   459040YED +             0YEE +    120800YEF +   573800YEG  

+ 1461984YFA + 1105800YFB +    360840YFC +   558720YFD +    116400YFE +             0YFF +   436500YFG  

+ 1161272YGA +  943400YGB +    487720YGC +   284800YGD +   338200YGE +   267000YGF +            0YGG  

                                                                                                                                                (4.1a) 

Subject to: 

                          YAA + YAB + YAC + YAD + YAE + YAF + YAG = 1 

                          YBA + YBB + YBC + YBD + YBE + YBF + YBG = 1 

                          YCA + YCB + YCC + YCD + YCE + YCF + YCG = 1 

                          YDA + YDB + YDC + YDD + YDE + YDF + YDG = 1 

                          YEA + YEB + YEC + YED + YEE + YEF + YEG = 1 

                          YFA + YFB + YFC + YFD + YFE + YFF + YFG = 1 
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                          YGA + YGB + YGC + YGD + YGE + YGF + YGG = 1    ……………….  (4.2) 
                           

                          XA + XB + XC + XD + XE + XF + XG = 2               ……………….  (4.3) 
  

                          YAA ,  YAB ,  YAC ,  YAD ,  YAE ,  YAF ,  YAG  ≤   XA 

                          YBA ,  YBB ,  YBC ,  YBD ,  YBE ,  YBF ,  YBG   ≤   XB 

                          YCA ,  YCB ,  YCC ,  YCD ,  YCE ,  YCF ,  YCG   ≤   XC 

                          YDA ,  YDB ,  YDC ,  YDD ,  YDE ,  YDF ,  YDG  ≤  XD 

                          YEA ,  YEB ,  YEC ,  YED ,  YEE ,  YEF ,  YEG   ≤   XE 

                          YFA ,  YFB ,  YFC ,  YFD ,  YFE ,  YFF ,  YFG   ≤   XF 

                          YGA ,  YGB ,  YGC ,  YGD ,  YGE ,  YGF ,  YGG  ≤  XG        …………… (4.4) 

 

                            XA ,  XB ,  XC ,  XD ,  XE ,  XF ,  XG ∈  {0, 1}            …………….    (4.5) 

 

                    YAA, YAB, YAC, YAD, YAE, YAF, YAG, YBA, YBB, YBC, YBD, YBE, YBF, YBG , 

                    YCA, YCB, YCC, YCD, YCE, YCF, YCG , YDA, YDB, YDC, YDD, YDE, YDF, YDG , 

                     YEA, YEB, YEC, YED, YEE, YEF, YEG, YFA, YFB, YFC, YFD, YFE, YFF, YFG , 

                     YGA, YGB, YGC, YGD, YGE, YGF, YGG  = {0, 1}               ……………..   (4.6) 

We want to relax the constraint (4.2). This process is in two steps; we first multiply the constraints 

through by the Lagrange multipliers, λi, and then bring them into the objective function. The end 

result, as shown below, is the Lagrangian objective function.  

 

YX
MINMAX

,λ
 

    ( 0 - λA)YAA +  (286110 - λA)YAB + (1267860 - λA)YAC + (1529660 - λA)YAD + (1267860 - λA)YAE + (1174360 - λA)YAF + (1524985 - λA)YAG  

+ (364140 – λB)YBA + (0 – λB)YBB + (1249500 – λB)YBC + (1654100 – λB)YBD + (1249500 – λB)YBE + (1130500 – λB)YBF + (1576750 – λB)YBG  
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+ (1594656 – λC)YCA + (1234800 – λC)YCB + ( 0 – λC)YCC + (399840 – λC)YCD + ( 246960 – λC)YCE + (364560 – λC)YCF + ( 805560 – 

λC)YCG  

+ (3149300 – λD)YDA + (2675750 – λD)YDB + (654500 – λD)YDC + ( 0 – λD)YDD + (731500 – λD)YDE + (924000 – λD)YDF + (770000 – 

λD)YDG  

+ (1638048 – λE)YEA + (1268400 – λE)YEB + (253680 – λE)YEC +  (459040 – λE)YED + ( 0 – λE)YEE + (120800 – λE)YEF + (573800 – λE)YEG  

+ (1461984 – λF)YFA + (1105800 – λF)YFB +  (360840 – λF)YFC + (558720 – λF)YFD + (116400 – λF)YFE + (0 – λF)YFF + (436500 – λF)YFG  

+ (1161272 – λG)YGA + (943400 – λG)YGB + (487720 – λG)YGC + (284800 – λG)YGD + (338200 – λG)YGE + (267000 – λG)YGF + (0 – λG)YGG  

+  λA + λB + λC + λD + λE + λF + λG                                                                                               (4.1b) 

 

SUBJECT TO: 

                      Constraints (4.3), (4.4), (4.5) and (4.6). 

4.3.1 Algorithm 

Steps: 

1. Use the myopic algorithm to determine the upper bounds (UB). 

2. Input iλ , 2=α , ih , ijd  and UB  for i,j = A, B, C, D, E, F, G. 

3. For each j, compute  Uij = { 

4. Calculate ∑=
i

ijj UV . 

5. Pick the two least values of Vj. 

6. For such j values, assign 1
1
=jX , 1

2
=jX  and Yij = 1 for Uij < 0.  

7. Calculate sum of square violation, Q = ∑ ∑ −
i j

n
ijY 2}1{ . 

8. Calculate ∑∑∑ +−=
i

n
iij

n
i

i j
iji

n YdhL λλ )(  

9. If the sum of square violation, Q = 0 then stop. 

  0,  if  hidij > λi 

  hidij – λi ,    if    hidij < λi 
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10. Otherwise test, if 01 ≤− −nn LL  then use 1

2
1 −= nn αα , if not use 1−= nn αα . 

11. Calculate 
∑ ∑ −

−
=

i j

n
ij

nn
n

Y
LUBt 2)1(

)(α  

12. Compute )}1(,0max{1 −−= ∑+

j

n
ij

nn
i

n
i Ytλλ  

13. Return to step 2. 

 

4.4 Lagrangian Solution 

Each of the iterations is in four steps. 

First Iteration 

Step 1: 

The first step is to compute ∑=
i

ijj UV . But Uij = min {0, hidij – λi}. 

That is, Uij = { 

We also let  λi = 500 000, for i = A, B, C, D, E, F and G. 
The computation was done in table 4.7 below. The column totals gave the Vj values, for j = A, B, 

C, D, E, F and G. 

 
            Table 4.7: Values of ∑=

i
ijj UV . 

  UA UB UC UD UE UF UG 

A -500000 -213890 0 0              0             0 0 

  hidij – λi ,    if    hidij < λi 

  0,  if  hidij > λi 
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B 

C 

D 

E 

F 

G 

-135860 

0 

0 

0 

0 

0 

-500000 

0 

0 

0 

0 

0 

0 

-500000 

0 

-246320 

-139160 

-  12280 

0 

-100160 

-500000 

-  40960 

0 

-215200 

            0 

-  253040 

            0 

-  500000 

-  383600 

-  161800 

            0 

-  135440 

            0 

-  379200 

-  500000 

-  233000 

0 

0 

0 

0 

-  63500 

-500000 

Vj -635860 -713890 -897760 -856320 -1298440* -1247640* -563500 

 

If the demand at node i is allocated to a facility at node j, then Yij = 1. The Vj values above suggest 

that, if a facility is located at node A, then YAA = YBA = 1. This means that, demands at nodes A 

and B would be allocated to the facility at node A, if the facility is at A. Similarly, if the facility is 

at B, then YBA = YBB = 1. Also, if the facility is at C, then YCC = YEC = YFC = YGC = 1. Then 

again, if the facility is at D, then we have, YCD = YDD = YED = YGD = 1. If the facility is at E, then 

YCE = YEE = YFE = YGE = 1. Also if the facility is at F, then YCF = YEF = YFF = YGF = 1. Finally, 

if the facility is sited at G, then YFG = YGG = 1.  

Since we want to locate only p = 2 facilities, we choose nodes E and F (the two nodes with 

smallest Vj values). Thus we set XE = XF = 1, and the rest Xj = 0. It also means that YCE = YCF = 

YEE = YEF = YFE = YFF = YGE = YGF = 1, and the rest of Yij = 0.   

 

Step 2: 

In this step we find the first Lagrangian objective function value, L1. 

           L1 =  ∑∑∑ +−
i

iiji
i j

iji Ydh λλ )(  

               = 7(500000) + (- 1298440 - 1247640) = 3500000 – 2546080 = 953920 
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Next, we find the sum of the squared violation of constraint (3.2), which is 01 =−∑
j

ijY . 

          ∑ ∑ −
i j ijY 21 }1{ = (0 - 1)2 + (0 - 1)2 + (2 - 1)2 + (0 - 1)2 + (2 - 1)2 + (2 - 1)2 + (2 - 1)2 

                                     = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7.  

Step 3: 

Here we find the stepsize, tn, by using the formula 
∑ ∑ −

−
=

i j

n
ij

nn
n

Y
LUBt 2)1(

)(α  (Daskin, 1952).              

UB = 1719170m (i.e. myopic optimal value), Ln = L1 = 953920 (i.e. first Lagrangian optimal 

value),  ∑ ∑ −
i j ijY 21 }1{ = 7 (sum of square violation of constraint 4.2), α n = α 1 = 2, (Daskin, 

1952). It must be noted that, α n is halved if .01 ≤−+ ii LL  

Therefore we have, 

               
∑ ∑ −

−
=

i j
ijY

LUBt 21

11
1

)1(
)(α  = 

7
)9539201719170(2 −  = 218642.86 ≅  218643. 

Step 4: 

The last step for the first iteration is to update the Lagrange multipliers, λi, by using the formula of 

Daskin, (1952); 1+n
iλ  = max {0, n

iλ  – tn ( 1−∑ j
n

ijY ) }. And we have, 

               2
iλ  = max {0, 1

iλ  – tn ( 11 −∑ j ijY )} 

                2
Aλ  = max {0, 500000 – 218643 (- 1)} = 718643 

               2
Bλ  = max {0, 500000 – 218643 (- 1)} = 718643 

               2
Cλ  = max {0, 500000 – 218643 (1)}   = 281357 

               2
Dλ  = max {0, 500000 – 218643 (- 1)} = 718643 

               2
Eλ  = max {0, 500000 – 218643 (1)}   = 281357              
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               2
Fλ  = max {0, 500000 – 218643 (1)}   = 281357 

               2
Gλ  = max {0, 500000 – 218643 (1)}   = 281357 

 

The results obtained from the various iterations of the Lagrangian algorithm are summarized in the 

Table 4.8 below. 

 

 Let Q = ∑ ∑ −
i j

n
ijY 2}1{ (i.e. sum of square violation of constraints 4.2).  

The Vj values with asterisks in each column, are the two minimum values chosen. 

                  

                               Table 4.8: Computational Results of the Various Iterations. 

Variable 1st 2nd 3rd 4th 5th 

VA 

VB 

VC 

VD 

VE 

VF 

VG 

-635860 

-713890 

-897760 

-856320 

-1298440* 

-1247640* 

-563500 

-1073146* 

-1151176* 

-373177 

-718643 

-480711 

-4456271 

-281357 

-69178 

-772814 

-1050418 

-1175758* 

-1356916* 

-1129792 

-642400 

-963414* 

-1041444* 

-647473 

-824732 

-821633 

-755184 

-373770 

-881266 

-959296* 

-811769 

-907080 

-1025026* 

-891143 

-496692 

Ln 953920 1057035 1316226 1575412 1719170 

Q 7 7 6 7 0 

tn 218643 189181 134315 41074 _ 

α n 2 2 2 2 _ 
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1+n
Aλ  

1+n
Bλ  

1+n
Cλ  

1+n
Dλ  

1+n
Eλ  

1+n
Fλ  

1+n
Gλ  

718643 

718643 

281357 

718643 

281357 

281357 

281357 

529462 

529462 

470538 

907824 

470538 

470538 

470538 

663777 

663777 

336223 

773509 

336223 

470538 

336223 

622703 

622703 

377297 

814583 

377297 

511612 

377297 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

 

 

4.5 Discussion 

The total student population of the various halls / hostel is the demand allocated to the two 

facilities. The overall total demand is 8310 as given in Table 4.1. From the first myopic median, as 

it could be seen in Table 4.5, the column with the least sum corresponds to node E, with a value of 

3950420 metres. Thus, the optimal total demand – weighted distance if only one facility were to be 

located is 3950420 metres, resulting in an average distance of 3950420 m / 8310 ≅  475 metres. 

This result suggests that, if only one facility were to be located, then it should be located at node E. 

The average distance that each student would travel from any of the halls / hostel to the facility at 

node E is approximately equals to 475 metres. 

For the second median, the facility is to be located at node B, as it could be seen in Table 4.6. The 

total demand – weighted distance is 1719170 metres, resulting in an average distance of            

1719170 m / 8310 ≅  207 metres. This result also means that, if the two facilities are located at 
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nodes B and E, then the average distance that each student would travel from any of the halls / 

hostel to the nearby facility is approximately equals to 207 metres.  

The result obtained from the myopic algorithm, therefore, suggested that the two facilities must be 

located at nodes B and E, representing the University Hall and the Republic Hall respectively. 

Improvement algorithms (i.e. the neighborhood search and exchange algorithms) were also used. 

They all confirmed the result under the myopic algorithm. 

It must be noted here that, the myopic algorithm also served as the stepping stone algorithm for the 

Lagrangian algorithm. It provided the upper bound (UB) value for the Lagrangian algorithm     

(UB = 1719170 metres).  

To begin the iterations of the Lagrangian algorithm, two important choices were made;                            

1. The initial values of Lagrange multipliers, λi, ( i = A, B, C, D, E, F, G) were chosen to be   

500000, (i.e. λA = λB = … = λG = 500000). 

2. The constant, 1α  = 2 (Daskin, 1952).  

  

In Table 4.8, there has been a tremendous incremental jump of the values of nL  from iteration to 

iteration. For example, 12 LL − = 103115, 23 LL −  = 259191, and so on. As a result, the values of 

nα  have been kept constant throughout the iterations. As it could also be seen in Table 4.8, the 

relaxed constraints (4.2) have been violated in the first four iterations. This means that, some of the 

demand nodes were not assigned to any facility, while others were assigned to both facilities. In 

the fifth and the last iteration, the violation was zero (0). This also means that, all the demand 

nodes were assigned to exactly one facility. The Lagrangian objective function value for the fifth 

iteration, 5L  = 1719170 metres. This value is also equal to the UB (i.e. myopic optimal value). The 

Lagrangian algorithm has, therefore, confirmed the result to be 1719170 metres. The optimal 
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solution is therefore, XB and XE.  Thus, the two facilities should be located at the Republic Hall 

(node E) and the University Hall (node B).  

 

 

 

                                                 

 

 

 

 

 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The main objective of the study was to use the p-median model, (p = 2) to determine suitable 

locations at the KNUST Campus to establish a chain of two computer services. For the above 

objective to be realized, the sites must be located such that, the average distance travel by a student 

from a hall/hostel to the nearer of the two facilities be minimized (i.e. the average time taken is 

minimized). 

 
Different methods were used to locate the suitable sites, but the main one was the Lagrangian 

algorithm. The result obtained using the Lagrangian suggested that, the two facilities be located at 

the Republic Hall (node E) and the University Hall (node B). The maximum of the lower bounds 

obtained was 1719170 metres. This value gave the demand-weighted distance. It resulted in the 
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average distance of 207 metres. (i.e. the average distance = the demand-weighted distance divided 

by the total demand; 1719170 m / 8310 ≅  207 m). It implies that, on average, each student would 

travel a distance of 207 metres from a hall / hostel to the nearby facility.  

 
The myopic algorithm, which served as the stepping stone algorithm, also gave the same result. 

The value, 1719170 metres was the minimum of the column sums of the second myopic median. 

This was the value for the objective function, ijiji Ydh∑ . Thus, the myopic algorithm is a good 

approximation of the Lagrangian algorithm. Also, the neighborhood search and the exchange 

algorithms confirmed the result as found in the appendix. 

 
The two facilities must, therefore, be located at the Republic Hall and the University Hall.          

5.2 Recommendation 

In view of the result obtained in this study, the following recommendations are made: 

1 Corporate bodies as well as the individuals, who want to invest in combined computer 

services of typing, printing and/or repairs at KNUST Campus, are advised to establish them 

at the Republic Hall and the University Hall.  

2 Facilities located at these halls would save the students much time and energy in traveling 

to them. And hence, patronage of the facilities at these halls would be higher, and as a 

result, investors would have value for their investment.  
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Appendix A 
 

 

The objective function value under the myopic algorithm is 1719170m. 

1. The Neighborhood Search Solution   

Within neighborhood I, it is obvious that the facility would be located at node B. However, within 

neighborhood II, the first myopic median needs to be calculated.  
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               Figure A1: Network showing neighborhoods associated with myopic 2-median. 

 

Table 1 below, shows the distance-matrix of neighborhood II, and Table 2 also shows the first 

myopic median of the neighborhood. 

                                       Table A1: Distance Matrix of Nodes in Neighborhood II.  

From    C         D          E             F             G 

C 

D 

E 

F 

G 

     0        340        210        310        685 

 340            0        380        480        400 

 210        380            0        100        475 

 310        480       100            0         375 

 685        400       475         375           0 

          

                      Table A2: First Myopic Median of Neighborhood II. 

Node i             C               D                E              F                G 

C 

D 

E 

F 

                0      399840      246960      364560      805560 

      654500                0      731500      924000      770000 

      253680      459040                0      120800      573800 

      360840      558720      116400                0      436500 

1176 

I 
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G       487720      284800      338200      267000                0 

Total     1756740    1702400    1433060    1676360    2585860 

   

 

From the table, the facility would be located at node E. This shows that the neighborhood search 

algorithm confirmed the previous result. Thus, the facilities should be located at nodes B and E. 

 

 
 
 
 
2. Exchange Solution 
 
Now, if the facility at node E is moved to node C and the facility at node B is maintained, then, for 

the objective function value we have 

                 935(306) + 1208(210) + 1164(310) + 1925(340) + 712(685) 

              = 286110 + 253680 + 360840 + 654500 + 487720 = 2042850 > 1719170. 

Also, if the facility at node E is moved to node D and the facility at node B is maintained, then we 

have  

                 935(306) + 1176(340) + 1208(380) + 1164(480) + 712(400) 

              = 286110 + 399840 + 459040 + 558720 + 284800 = 1988510 > 1719170. 

Similarly, if the facility at node E is moved to node F and the facility at node B is maintained, then 

we have  

                 935(306) + 1208(100) + 1176(310) + 1925(480) + 712(375) 

             = 286110 + 120800 + 364560 + 924000 + 267000 =1962470 > 1719170. 
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At a glance, it could be seen that, if the facility is moved from node E to node G, the objective 

function value would be greater than 1719170. Similarly, if the facility at node E is maintained and 

that at node B is move to any other node, the objective function value would still be greater than 

1719170. Thus, the solution is optimal if the facilities are located at nodes B and E. These 

represent the University hall and Republic hall respectively.    

 

 
 
 
 
 
 
 
 

Appendix B 
 

Upper bound (UB) less than or greater than the one used from the myopic algorithm (1719170). 

                    Table B1: Using the UB = 1519170. 

Variable 1st 2nd 3rd 4th 

VA 

VB 

VC 

VD 

VE 

VF 

VG 

-435860 

-513890 

-585480 

-515360 

-898440* 

-847640* 

-400000 

-701712* 

-779742* 

-280468 

-532926 

-437862 

-413422 

-267074 

-511112 

-589142 

-472602 

-705800* 

-747936* 

-699322 

-362374 

-537688 

-615718 

-472602 

-692512* 

-734648* 

-686034 

-349086 

    nL  1053928 1185620 1499238 1539102 

Q 7 7 3 _ 
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tn 132926 95300 13288 _ 

α n 2 2 2 _ 
1+n

Aλ  
1+n

Bλ  

1+n
Cλ  

1+n
Dλ  

1+n
Eλ  

1+n
Fλ  

1+n
Gλ  

532926 

532926 

267074 

532926 

267074 

267074 

267074 

437626 

437626 

362374 

628226 

362374 

362374 

362374 

450914 

450914 

362374 

628226 

362374 

362374 

349086 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

 

 

 

Table B2: Using the UB = 1819170. 

Variable 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

VA 

VB 

VC 

VD 

VE 

VF 

VG 

-635860 

-713890 

-897760 

-856320 

-1298440* 

-1247640* 

-563500 

-1130288* 

-1208318* 

-345500 

-747214 

-394998 

-384772 

-252786 

-883074* 

-961099* 

-514659 

-715200 

-804012 

-753212 

-376393 

-801088 

-879118 

-647738 

-814732 

-967984* 

-917184* 

-417386 

-859650* 

-937680* 

-589176 

-797186 

-850860 

-800060 

-388105 

-817810 

-895840* 

-672840 

-848199 

-934524* 

-883724 

-409021 

-817810 

-895840 

-789541 

-964900* 

-1034522* 

-883724 

-470519 

-817810 

-895840 

-731191 

-906550* 

-976172* 

-883724 

-405873 

-839952 

-917982* 

-649653 

-875227 

-942959* 

-861582 

-397950 

nL  953920 914180 1532220 1614204 1672761 1702469 1650110 1708460 1719170 

Q 7 _ 7 7 7 1 _ 5 0 

tn 247214 123607 40993 29281 20916 116701 58351 11071 _ 

α n 2 1 1 1 1 1 0.5 0.5 _ 
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1+n
Aλ  

1+n
Bλ  

1+n
Cλ  

1+n
Dλ  
 

1+n
Eλ  
 

1+n
Fλ  
 

1+n
Gλ  

747214 

747214 

252786 

747214 

252786 

252786 

252786 

623607 

623607 

376393 

623607 

376393 

376393 

376393 

582614 

582614 

417386 

664600 

417386 

417386 

417386 

611895 

611895 

388105 

693881 

388105 

388105 

388105 

590975 

590975 

409021 

714797 

409021 

409021 

409021 

590975 

590975 

409021 

831498 

409021 

409021 

409021 

590975 

590975 

409021 

773148 

409021 

409021 

409021 

602046 

602046 

397950 

762077 

409021 

409021 

397950 

_ 

_ 

_ 

_ 

_ 

_ 

_ 
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