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CHAPTER 1 

INTRODUCTION 

 

1.1BACKGROUND OF STUDY 

 

Water is a basic necessity of life which exists as liquid under ambient conditions and can 

coexist in solid and gaseous states. It is a precious resource that is essential for sustaining 

plant and animal life. Water supply for human needs should be available to all people in good 

quality and adequate quantity for today and future use thereby making it a prerequisite for 

human health and wellbeing (UN, 2010). Also, a required quantity and quality of water must 

be preserved for the sustenance of crucial functions of the ecosystem. 

 

Water covers 70.9% of the earth‟s surface and most of them is in the ocean. Freshwater 

accounts for only 2.5% of the Earth‟s water, and most of it is frozen in glaciers and icecaps. 

The remaining unfrozen fresh water is mainly found as groundwater, with only a small 

fraction present above ground or in the air (Green Facts, 2009). 

 

The two main water resources are surface water and groundwater or subsurface water. Some 

surface waters include lakes, rivers, streams and ponds and are naturally replenished by 

precipitation. Surface water is highly susceptible to pollution mainly due to human activities. 

Groundwater is located in pore space of soil and rocks. Groundwater also comes from 

precipitation. Groundwater is accessed through wells and boreholes.  
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Freshwater is a renewable resource from the long term geologic perspective local supplies 

may be inadequate in the short term (Montgomery, 1997). Water is renewed through the 

hydrologic cycle. Water demand outpaces supply in many parts of the world due to 

population growth, urbanisation, increased standards of living, pollution and growing 

competition for water (Green Facts, 2009; Hoekstra, 2006). Therefore the abstraction of 

water is greater than replenishment. Water use has been growing at more than twice the rate 

of the population increase during this century. By 2025, as much as two thirds of the World‟s 

population could be living in countries subject to water stress a majority of them in 

developing countries (SIWI, 2001). The distribution of water is not also equally distributed in 

time and space. Therefore it is expedient to know if people (population) all over the world 

have access to safe drinking water and water for personal hygiene. 

In the year 2000 world leaders at the United Nations (UN) Summit concluded with the 

adoption of global action plan to achieve the eight anti-poverty goals, known as the 

Millennium Development Goals (MDGs), by 2015. One of the MDG targets is to reduce by 

half the proportion of people without sustainable access to safe drinking water and basic 

sanitation.  

The uses of water include agricultural, domestic (include drinking, cooking, bathing, laundry, 

other sanitation use), and recreational purposes. Also water is vital in the generation of 

electricity, fighting fire as fire hydrants, industrial processes, and religious sacraments. These 

are just a few to mention.  
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     1.11 WATER SHORTAGES IN GHANA 

Water is one of the most vital natural resources for all life on earth. The availability and 

quality of water always have played an important part in determining not only where 

people can live but also their quality of life. Even though there always has been plenty of 

fresh water on earth, water has not always been available when and where it is needed, 

nor is it always of suitable quality for all uses. 

 

Water must be considered as a finite resource that has limits and boundaries to its 

availability and suitability for use. The balance between supply and demand for water is a 

delicate one. The availability of usable water has and will continue to dictate where and 

to what extent development will occur. Water must be in sufficient supply for an area to 

develop, and an area cannot continue to develop if water demand for outstrips available 

supply.  

 

Ghana is well endowed with water resources. The Volta river system basin, consisting of 

the Oti, Daka, Pru, Sene and Afram rivers as well as the white and black Volta rivers 

covers 70% of the country area. Another 22% of Ghana is covered by the south western 

river system watershed comprising the Bia, Tano, Ankobra and Pra rivers.  

 

The coastal river system watershed comprising the Bia, Tano, Ankobra and Pra rivers. 

The coastal river system watershed, comprising the Ochi-Nawuka, Ochi Amissah, 

Ayensu, Densu and Tordzie River, covers the remaining 8% of the country. 
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Furthermore, ground water is available in Mesozoic and Cenozoic sedimentary rocks and 

in sedimentary formation underlying the Volta basin. Despite having plentiful supplies, 

Ghana suffers regular water shortages due to poor distribution of rainfall and 

management of resources. 

 

In recent years, the problem has been compounded by rapid and unregulated 

deforestation and urbanization, with resulting pressure on supplies in towns and cities.  

 

In Ghana, statistics show that about 40% of the population is deprived of their right to 

portable water. In the northern part of the country, the scarcity of water results in guinea 

worm disease becoming an epidemic.  

 

In the rural areas, the inability of the people to get access to portable water makes them 

depend on streams and rivers which they filter to make it safe for drinking. Settles in the 

urban areas as well go through the trauma of water scarcity, even though they do not 

fetch from water bodies, but depend on the Ghana Water Company Limited for their 

daily supply of water.  

 

Water rationing has been introduced in many parts of the country in response to the 

shortage. Now large plastic yellow containers have become a feature of daily life. In 

many areas, people dedicate much of their time and energy to searching for water or 

hauling it home.  
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The truth is that there is water scarcity in most parts of the urban areas in Ghana. Despite 

considerable strides made in the delivery of safe drinking water, Ghana still grapples with 

frequent widespread shortage, especially in urban centers. This is as a result of obsolete 

equipment, low maintenance culture and limited finance for water infrastructure through 

national budget. 

 

1.12 PROFILE OF TAMALE ISLAMIC SENIOR HIGH SCHOOL 

The school was founded and established by the Islamic Development Bank in February 1995 

with the following aims: 

1. To recruit and maintain qualified Teachers to prepare students in the Sciences to 

pursue   carrier programmers in the applied Sciences at the Tertiary Institutions. 

2. To train and bring up students morally and spiritually particularly in Islam. 

 

The school was first headed by Mr. T.A.Mahama with a student population of 76. 

The school obtained a boarding status in October, 2006 and currently has a student 

population of about 1,188. 847 are male students while 341 are male .The total number of 

students in the boarding house is 960. 

There are two  storey building dormitories currently on campus, one each for boys and girls, 

along block of seven rooms and twelve round huts both occupied by male students. 



7 
 

There are also nine staff Bungalows,3 semi-detached and 3 detached buildings on campus 

occupied my senior staff members such as the Headmaster,  Two Assistant Headmasters, 

Senior House master and Mistress and four house masters. 

One of the major problems in the school is inadequate water supply.This is because the main 

source of water to the school is supplied from the Ghana water company. There are very few 

dams and boreholes in the metropolis which are inadequate to the citizenry and 

unfortunately, the school has none. 

 

1.2 PROBLEM STATEMENT 

Islamic Senior High school in Tamale has had its own share of problems in relation to water 

shortages. The problem of water supply in the school is peculiar. This is because there is no 

borehole in the school and most of the times water flows through the taps once or twice 

within a month. 

This problem is compounded in the dry season. As a result of this, students in the school 

have been trekking long distances each day in search of water outside the school boundary to 

undertake their chores. There are times that the senior housemaster would even call some 

students during classes hours to search for water for the school kitchen. 

This unpleasant development is having a toll on academic excellence of the school as 

punctuality to class is always affected especially in the morning. 
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1.3 OBJECTIVES OF THE STUDY 

The objectives of the study are 

1. To model the location of borehole at Tamale Islamic Senior High School (TISSEC) 

as an Absolute 1-centre problem. 

2. Identify the optimal water borehole location at TISSEC using the Absolute 1-centre 

algorithm. 

 

1.4 METHODOLOGY 

This thesis focuses on locating a water borehole at TISSEC. The absolute 1-centre model is 

used to obtain an optimal site where the borehole can be located. The lane map out strategy is 

used to find the distances between all structures at TISSEC.  

 

1.5 JUSTIFICATION OF THE STUDY 

This thesis seeks to model the location of water borehole in TISSEC and to find the optimal 

location for the placement of a water borehole. This can be used by the school administration 

to alleviate the problem of acute water shortage which is been experienced by the school. 
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1.6 ORGANISATION OF THE STUDY 

The study consists of five chapters with chapter 1 being the introduction, chapter 2 consists 

of literature review. In chapter 3 the method used is discussed. Chapter 4 deals with data 

collection, analysis of data and results whilst the chapter 5 deals with conclusions and 

recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 FACILITY LOCATION- AN OVERVIEW 

Facility location problems have occupied an important place in operations research since the 

early 1960's. They investigate where to physically locate a set of facilities so as to optimize a 

given function subject to a set of constraints. 

Facility location models are used in a wide variety of applications. Examples include locating 

warehouses within a supply chain to minimize the average travel time to the markets, 

locating hazardous material sites to minimize exposure to the public, locating railroad 

stations to minimize the variability of delivery schedules, locating automatic teller machines 

to best serve the bank's customers, and locating a coastal search and rescue station to 

minimize the maximum response time to maritime accidents (Hale and Molberg, 2003). 

 

Facility location problem dates back to the 17
th
 century when Pierre Fermat (1643), Evansta 

Torecilli, and Battista Cavalieri (1647) simultaneously introduced the concept, although this 

theory is widely contested by location analysis experts. Late in the 18
th

 century, Pierre 

Varignon presented the “Varignon Frame” which was an analog solution to the planar 

minisum location problem. However, facility locaton started garnering more interest when 

Weber (1909) introduced the planar Euclidean single facility minisum problem.  

 

Facility location has a well-developed theroretical background (Baumol and Wolfe, 1959; 

Brandeau and Chiu, 1989).  Generally, research in this area has been focused on optimizing 
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methodology (Brown and Gilbson, 1972; Erlenkotter, 1975; Rosenthal, White and Young, 

1978; Wesolowsky, 1977).  The field has seen a rapid growth in past decades, mainly due to 

the evolution of location theory and the advent of computer technology (Church, 1999) 

Extensive effort has been devoted to solving location problems employing a wide range of 

objective criterion and methodology used in the decision analysis.  Geoffrion (1978), for 

instance, includes decomposition, mixed integer linear programming, simulation and 

heuristics that may be used in analyzing location problems.  He notes that a suitable 

methodology for supporting managerial decisions should be computationally efficient, lead 

to an optimal solution, and be capable of further testing.  Other researchers stress the 

importance of multiple criteria that must be included in the decision analysis (Erlenkotter, 

1975). 

 

Baumol and Wolfe (1958) have solved the location problem for minimum total delivery cost 

with nonlinear programming.  Others have incorporated stochastic functions to account for 

demand and/or supply (Rosenthal, White and Young, 1978; Wesolowsky, 1977).  Other 

approaches that have been employed include dynamic programming (Geoffrion, 1978; Saaty, 

1996; Tansel, Francis and Lowe, 1989), multivariate statistics using multidimensional scaling 

(Asami and Walters, 1989) and heusistic and search procedures (Kuehn and Hamburger, 

1963). 

Randhawa and West, (1995) proposed a solution approach to facility location selection 

problems while integrating analytical and multi-criteria decision-making models.  Houshyar 

and White (1997) developed a mathematical model and heuristics approach that assigns N 

machines to N equal-sized locations on a given site such that the total adjacent flow between 
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the machines is maximized.  The proposed mode based on 0-1 integer programming 

formulation which may produce an optimal, but infeasible solution, followed by the heuristic 

which begins with the 0-1 integer solution and generates a feasible solution. 

 

Chu (2002) presented a fuzzy TOPISI (technique for order preference by similarity to ideal 

solution) method-based approach for the plant location selection problems.  The ratings and 

weight assigned by decision makers are first normalized rating of each alternative location 

for each criterion is then developed.  A closeness coefficient is proposed to determine the 

ranking order of the alternatives. 

 

Klose and Drexl (2005) reviewed in details the contributions to the current state-of-the-art 

related to continuous location models, network location models, mixed-integer programming 

models and their applications to location selection decision.  Yong (2006) proposed s new 

fuzzy TOPSIS method which deals with the selection of plant location decision-making 

problems in linguistic environment, where the ratings of various alternative locations under 

different criteria and their weights are assessed in linguistic terms represented by fuzzy 

numbers. 

 

Farahani and Asgari, (2007) presented a TOPSIS methodology to find the supportive centers 

with the minimum number and maximum quality of locations in military logistic system.  

Önüt and Soner, (2008) employed a fuzzy TOPSIS based methodology to solve the solid 

waste transshipment site selection problem, where the criteria weights are estimated using 

analytic hierarchy process (AHP).  Amiri et al. 2009 applied TOPSIS method along with 
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heuristics based on fuzzy goal programming to select location.  The facility location selection 

problem is solved in three stages, i.e. (a) finding the last number distribution centers, (b) 

locating them in the best possible, and (c) finding the minimum cost of locating the facilities. 

 

For a single facility problem with three existing facilities, Juel and Love (1986) proved that it 

is possible to determine which existing facility is the optimal location by means of simple 

geometrical construction. 

 

For the multifacility location problem with no constraints on the location of the new 

facilities, Juel and Love (1980) derived some sufficient conditions for the coincidence of 

facilities that are valid in a general symmetric metric.  These results were later extended by 

Lefebvre et al. (1991) to be applicable to some location problems having certain locational 

constraints. (Examples of other works on this subject are Francis and Cabot (1972), Calamai 

and Caralambus (1980), Calamai and Conn (1980) and (1982), Dax (1986 b), Overton 

(1983), Lefebvre et al. (1990), and Plastria (1992).) 

 

Location models can be classified into three broad categories (Daskin, 1995): p-median 

models, p-center models and covering models.  Other taxonomies of location models are 

discrete versus continuous demand, discrete versus continuous facility location, media versus 

center, location and routing problems, single versus multiple objectives, stochastic versus 

deterministic problems, (Drezner, 1995) 
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2.1 P – CENTER PROBLEM 

 

The p-center problem (Hakimi, 1964, 1965) is the problem of minimizing the maximum 

distance that demand is from its closet facility given that there are pre-determined numbers of 

facilities. Hakimi‟s work established important results in location theory and sparked 

theoretical interest among researchers. The vertex p-center problem restricts the set of 

candidate facility sites to the nodes of the network. The absolute p -center problem permits 

the facilities to be anywhere along the arcs. Both versions are examined in weighted and un-

weighted situations.  The absolute center problem can be approximated by the vertex center 

problem by adding nodes to the network. 

 

The objective of the p-center problem is to locate p new facilities, called centers, on a 

network G in order to minimize the maximum weighted distance between a node and its 

nearest facility. 

 

The methods developed for solving this problem are quite different from those for the p-

median problem, even though the two problems are related. The first approach developed 

was by Hakimi (1964) who proposed an enumerative approach for p=1 to specifically locate 

a local center on each link, and thereby to determine the overall optimal location. A more 

effective method was suggested by Christofides (1975), who showed that one needs to 

consider only a subset of the links for an optimal location. However, this approach is unable 
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to solve general p-center problems. Erkut et al. (1992) presented a polynomial time, binary 

search algorithm to solve the distance-constrained p-center problem.  

More methods have been proposed and tested to solve the p-center problem, such as the exact 

algorithms due to Christofides and Viola (1971), Granfinkel et al. (1977), and various 

heuristics proposed by Singer (1968). 

 

Garfinkel et al. (1977) examined the fundamental properties of the P-centre problem in order 

to locate a given number of emergency facilities along a road network. He modelled the P-

centre problem using integer programming and the problem was successfully solved by using 

a binary search technique and a combination of exact tests and heuristics. 

ReVelle and Hogan (1989) formulated a P-centre to locate facilities so as to minimize the 

maximum distance within which the EMS is available with (alpha) reliability. System 

congestion is considered and a derived server busy probability is used to constrain the service 

reliability that must be satisfied for all demands. 

 

 Hochbaun and Pathria (1998) considered the emergency facility location problem that must 

minimize the maximum distance on the network across all time periods using the Stochastic 

P-centre models. The cost and distance between locations vary in each discrete time periods. 

The authors used k underlying networks to represent different periods and provided a 

polynomial-time, 3-approximation algorithm to obtain a solution for each problem. 

 

Talwar (2002) utilized a P-centre model to locate and dispatch three emergency rescue 

helicopters to serve the growing EMS demands due to accidents occurring during adventure 
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holidays such as skiing, hiking and climbing the north and south Alpine mountain ranges. 

One of the model‟s aims is to minimize the maximum (worst) response time and the author 

used effective heuristics to solve the problem. 

 

Drezner (1984) presented heuristic and optimal algorithms for the p-center problem in the 

plane. The heuristic method yielded results for problems with up to n = 2000 and p = 10 

whereas the optimal method solved problems with up to n = 30, p = 5 or n = 40, p = 4. 

Watson-Gandy [1984] suggested an algorithm that can optimally solve problems with up to 

about 50 demand points and 3 centers in reasonable time.  

The p-center problem on networks has been solved by Minieka (1970) and by Toregas et al. 

(1971). A finite method, which is rather inefficient for large problems was suggested. An 

improvement based on the use of relaxations was offered by Handler and Mirchandani 

(1979).  

 

Hwang et al. (1993) describe a slab-dividing approach, which is expected to efficiently solve 

the Euclidean p-center problem. Suzuki and Drezner (1996) propose heuristic procedures and 

upper bounds on the optimal solution where the demand points are distributed on a square. 

One of the methods they use employs the Voronoi heuristic. The same method has been 

recently used by Wei et al. [2006]; the authors explore the complexity of solving the 

continuous space p-center problem in location planning.  

 

Agarwal and Sharir (1998) discuss efficient approximate algorithms for geometric 

optimization, which includes the Euclidean p-center in d dimensions. Hale and Moberg 
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(2004) give a broad review on location problems, which includes the Euclidean p-center 

problem.  

 

Another version of the p-center problem according to  Mladenovic  et al (2003) deals with 

the minimax p center problem where the Euclidean distances are  and where U 

= { , } is a set of m users and V = { } a set of n potential locations 

for facilities in the plane. In these works, Tabu search and Variable Neighborhood Search 

methods as well as an optimal method are used, and the efficiency of these methods for small 

and large problems is evaluated. It should be noted that this Euclidean problem is equivalent 

to the p-center problem on networks where the possible location of the facilities are on the 

vertices and where the minimum distances between the demand and potential supply points 

are given. This discrete problem is also known to be NP-hard according to Kami et al (1971).  

Recent works on these two versions of the discrete problem include algorithms given by 

Caruso et al. (2003) and by Ilhan et al. (2002). The latter authors describe an efficient exact 

method for this p-center problem. Their algorithm finds the solution by updating, at each 

step, an upper or lower bound on the optimal solution. A tight lower bound to the optimal 

value is found in an initial phase of the algorithm, which consists of solving linear 

programming sub-problems. 

 

2.2 P – MEDIAN 

The p-median Problem (p-M) is to locate p new facilities, called medians, on the network 

G in order to minimize the sum of the weighted distances from each node to its nearest new 

facility (Francis et al., 1992).  
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If p 2, then this problem can be viewed as a location-allocation problem (LAP). This is 

because the location of the new facilities will determine the allocation of their service in 

order to best satisfy the nodal demands.  

 

Hakimi (1964) proved that in networks, a set of optimal locations will always coincide with 

the vertices.  He also proposed an enumerative-graph theoretical approach for the problem. 

 Revelle and Swain (1970) proposed other procedures to solve this problem after 

reformulating it as an integer programming (IP) problem. Jarvinen et al. (1972) also used this 

IP formulation and proposed a branch-and-bound algorithm for this problem. Due to the NP-

hardness of the problem, several heuristic procedures have been developed, such as those of 

Maranzana (1964) and Teitz and Bart (1968). Beasly (1993) has also developed Lagrangian 

heuristics for this p-median location problem, based on Lagrangian relaxation and 

subgradient optimization concepts. 

 

 There are several variants and extensions of the p-median problem. One type of variant, 

studied by Pesamosca (1991), considers the interaction weights between the new facilities as 

well as the connection scheme as a tree. This case was treated as a problem Euclidean 

distance multifacility location problem(EMFLP) on a tree and its optimality conditions were 

then obtained using the optimality conditions of p problems of the type Euclidean single 

facility location problem(ESFL). Accordingly, for solving the problem Euclidean distance 

multifacility location problem, a fixed point algorithm was developed to iteratively solve 

single facility location problem(ESFL) using the Weiszfeld algorithm if differentiability is 

met, and otherwise, the algorithm switches over to Miehle‟s algorithm.  
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Another type of variant involves placing the capacity restrictions on the facilities to be 

located. When the capacity is finite, the resulting problem is called a capacitated problem; 

otherwise the problem is uncapacitated.  

 

Cavalier and Sherali (1986) presented exact algorithms to solve the p-median problem on a 

chain graph and the 2-median problem on a tree graph, where the demand density functions 

are assumed to be piecewise uniform. For the uncapacitated p-median problem, Chiu (1987) 

addressed the 1- median problem on a general network as well as on a tree network. Dynamic 

location considerations on networks are addressed by Sherali (1991). 

Recently, Francis et al. (1993) developed a median-row-column aggregation algorithm to 

solve large-scale rectilinear distance p-median problems. On the other hand, Sherali and 

Nordai (1988) gave certain localization results and algorithms for solving the capacitated     

p-median problem on a chain graph and the 2- median problem on a tree graph.  

 

Another variant involves the treatment of a continuous demand over the network, which 

arises in some situations such as the location of public service facilities or in probabilistic 

distributions of demand. Among the contributions on this variant are Minieka (1978), 

Handler and Mirchandani (1979), Chiu (1987) and Derardo et al. (1982). Sherali and Rizzo 

(1991) solved an unbalanced, capacitated p-median problem on a chain graph with a 

continuum of link demands. For solving this problem, they considered two unbalanced cases, 

the deficit and over-capacitated cases, provided a first-order characterization of optimality for 

these two problems and developed an enumerative algorithm based on a partitioning of the 
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dual space. There are still further variants that include capacity restrictions on links, 

probabilistic travel times on links, and maximum distance constraints.  

 

It is worthwhile to note that the p-median model has been extended and expanded in a 

number of ways. These include models such as the Hierarchical Median (Narula and 

Ogbu,1979), the Stochastic Median (Mirchandani and Odoni,1977), the Temporal 

Median(Swain,1976), the Transportation Median (Neebe,1978), the Zonal Constrained 

Median (Church,1990) and Berman, Einav, and Handler (1991) and the Location and 

Scheduling Median Problems (Bloxham and Church,1991)). Further, it is easy to show that a 

number of location models are equivalent to one or more forms of the p median model 

(Hillsman, 1984), Church and ReVelle (1976), Church and Weaver (1986). 

 

Since its formulation the P-median model has been enhanced and applied to a wide range of 

emergency facility location problems. Carbone (1974) formulated a deterministic P-median 

model with the objective of minimizing the distance traveled by a number of users to fixed 

public facilities such as medical or day-care centers. Recognizing the number of users at each 

demand node is uncertain, the author further extended the deterministic P-median model to a 

chance constrained model. The model seeks to maximize a threshold and meanwhile ensure 

the probability that the total travel distance below the threshold is smaller than a specified 

level α. 

  

Calvo and Marks (1973) constructed a P-median model to locate multi-level health care 

facilities including central hospitals, community hospitals and local reception centers. The 
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model seeks to minimize distance and user costs, and maximize demand and utilization. 

Later, the hierarchical P-median model was improved by Tien et al. (1983) and Mirchandani 

(1987) by introducing new features and allowing various allocation schemes to overcome the 

deficient organization problem across hierarchies. 

 

 Paluzzi (2004) discussed and tested a P-median based heuristic location model for placing 

emergency service facilities for the city of Carbondale. The goal of this model is to determine 

the optimal location for placing a new fire station by minimizing the total aggregate distance 

from the demand sites to the fire station. The results were compared with the results from 

other approaches and the comparison validated the usefulness and effectiveness of the P-

median based location model. 

 

One major application of the P-median models is to dispatch EMS units such as ambulances 

during emergencies. Carson and Batta (1990) proposed a P-median model to find the 

dynamic ambulance positioning strategy for campus emergency service. The model uses 

scenarios to represent the demand conditions at different times. The ambulances are relocated 

in different scenarios in order to minimize the average response time to the service calls.  

Berlin et al. (1976) investigated two P-median problems to locate hospitals and ambulances. 

The first problem has a major attention to patient needs and seeks to minimize the average 

distance from the hospitals to the demand points and the average ambulance response time 

from ambulance bases to demand points. In the second problem, a new objective is added in 

order to improve the performance of the system by minimizing the average distance from 

ambulance bases to hospitals.  



22 
 

Mandell (1998) developed a P-median model and used priority dispatching to optimally 

locate emergency units for a tiered EMS system that consists of advanced life-support (ALS) 

units and basic life-support (BLS) units. The model can also be used to examine other system 

parameters including the balance between ALS and BLS units, and different dispatch rules. 

 

Uncertainties have also been considered in many P-median models. Mirchandani (1980) 

examined a P-median problem to locate fire-fighting emergency units with consideration of 

stochastic travel characteristics and demand patterns. The author took into account the 

situations that a facility may not be available to serve a demand and used a Markov process 

to create a system in which the states were specified according to demand distribution, 

service and travel time, and server availability. 

 

Serra and Marianov (1999) implemented a P-median model and introduced the concept of 

regret and minmax objectives when locating fire station for emergency services in Barcelona. 

The authors explicitly addressed in their model the issue of locating facilities when there are 

uncertainties in demand, travel time or distance. In addition, the model uses scenarios to 

incorporate the variation of uncertainties and seeks to give a compromise solution by 

minimizing the maximum regret over the scenarios. 

 

P-median models have also been extended to solve emergency service location problems in a 

queuing theory context. An example is the stochastic queue median (SQM) model due to 

Berman et al. (1985). The SQM model seeks to optimally dispatch mobile servers such as 
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emergency response units to demand points and locate the facilities so as to minimize 

average cost of response. 

 

2.3 COVERING PROBLEMS 

Unlike the p-median problem which seeks to minimize the total travel distance, covering 

models are based on the concept of acceptable proximity. The objective of covering models 

is to provide “coverage” to demand points. A demand point is considered as covered only if a 

facility is available to service the demand point within a distance limit. Covering models can 

be classified according to several criteria. One of such criteria is the type of objective, which 

allows us to distinguish between two types of formulations.  

 

The first type belongs to the Location Set Covering Problem (LSCP). The Location Set 

Covering Problem (LSCP) seeks to locate the minimum number of facilities that will cover 

all demands within a specified maximum distance (Toregas, et al. 1971). The problem is 

applied to emergency services location where a given amount of the population must be 

within a predefined maximum distance from a facility. The limit on maximum distance (or 

response time) is adopted to ensure that demands (emergency calls) are answered in timely 

fashion. 

 

 The second type can be classified as the Maximal Covering Location Problem (MCLP), 

which maximizes covered customer demand, given a limited number of facilities. The MCLP 

was first introduced in Church and ReVelle (1974). 
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Church and Meadows (1979) provided a pseudo-Hakimi property for the MCLP. This 

property states that for any network, there exists a finite set of points that will contain at least 

one of the optimal solutions to the MCLP. Daskin and Stern (1981), Hogan and ReVelle 

(1986), and Batta and Mannur (1990) developed the MCLP that contains a secondary 

"backup" coverage objective. Berman and Krass (2002) showed that the MCLP with a step 

coverage function is equivalent to the uncapacitated facility location problem ( Cornue‟jols et 

al., 1990). They developed two IP formulations for the problem and showed an interesting 

result that the LP relaxations of both formulations provide the same value of the upper 

bound. 

 

 In a recent paper, Berman et al. (2003) investigated the MCLP with a coverage decay 

function whose value decreases from full coverage at the lowest pre-specified radius to no 

coverage at the highest pre-specified radius. 

 Daskin (1983) provided a probabilistic formulation of the problem in which the probability 

of an arbitrary server being busy is specified exogenously. The objective, then, is to locate 

facilities so as to maximize the expected number of demand that a facility can cover. Daskin's 

formulation is sometimes referred to as the Maximal Expected Covering Location Problem. 

Application of the set covering model includes airline crew scheduling (Desrocher et al., 

1991). According to Daskin et al.(1990) it can also be applied to tool selection in flexible 

manufacturing systems. 

 

Covering models are the most widespread location models for formulating the emergency 

facility location problems.  
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LSCP is an earlier statement of the emergency facility location problem by Toregas et al. 

(1971) and it aims to locate the least number of facilities that are required to cover all 

demand points. Since all the demand points need to be covered in LSCP, regardless of their 

population, remoteness, and demand quantity, the resources required for facilities could be 

excessive. Recognizing this problem, Church and ReVelle (1974) and White and Case (1974) 

developed the MCLP model that does not require full coverage to all demand points. Instead, 

the model seeks the maximal coverage with a given number of facilities. The MCLP, and 

different variants of it, have been extensively used to solve various emergency service 

location problems. A notable example is the work of Eaton et al. (1985) that used MCLP to 

plan the emergency medical service in Austin, Texas. The solution gives a reduced average 

emergency response time even with increased calls for service.  

 

Schilling et al. (1979) generalized the MCLP model to locate emergency fire-fighting servers 

and depots in the city of Baltimore. In their model, known as FLEET (Facility Location and 

Equipment Emplacement Technique), two different types of servers need to be located 

simultaneously. A demand point is regarded as “covered” only if both servers are located 

within a specified distance. 

 

The preceding models do not consider the system congestion and unavailability of the 

facilities. Many covering models have also been developed to address the possible 

congestion condition by providing redundant or back-up coverage. Daskin and Stern (1981) 

formulated a hierarchical objective LSCP for emergency medical service in order to find the 

minimum number of vehicles that are required to cover all demand areas while 



26 
 

simultaneously maximizing the multiple coverage. Bianchi and Church (1988) proposed an 

EMS facility model in which they restricted the number of facilities but allowed more than 

one server at each facility site. Benedict (1983), Eaton et al. (1986), and Hogan and ReVelle 

(1986) developed MCLP models for emergency service that has a secondary “backup-

coverage” objective. The models ensure that a second (backup) facility could be available to 

service a demand area in case that the first facility is unavailable to provide services. The 

backup coverage models have been popularly called as Backup Coverage Problem 1              

(BACOP1). Since the models of BACOP1 require each demand point to have first coverage 

which is not necessary for many location problems, Hogan and ReVelle (1986) further 

formulated the BACOP2 model which is able to respectively maximize the population that 

achieve first and second coverage. 

 

Research on emergency service covering models has also been extended to incorporate the 

stochastic and probabilistic characteristics of emergency situations so as to capture the 

complexity and uncertainty of these problems. Examples of these stochastic models can be 

found in recent papers by Goldberg and Paz (1991), ReVelle et al. (1996), and Beraldi and 

Ruszczynski (2002).  

 

There are several approaches to model stochastic emergency service covering problems. The 

first approach is to use chance constrained models (Chapman and White, 1974). Daskin 

(1983) used an estimated parameter (q) to represent the probability that at least one server is 

free to serve the requests from any demand point. He formulated the Maximum Expected 

Covering Location Problem (MEXCLP) to place P facilities on a network with the goal to 
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maximize the expected value of population coverage. ReVelle and Hogan (1986) later 

enhanced the MEXCLP and proposed the Probabilistic Location Set Covering Problem 

(PLSCP). In the PLSCP, an average server busy fraction (qi) and a service reliability factor 

(α) are defined for the demand points. Then the locations of facilities are determined such 

that the probability of service being available within a specified distance is maximized. The 

MEXCLP and PLSCP later were further modified to tackle other EMS location problems by 

ReVelle and Hogan (1989) as(MALP)  , Bianchi and Church (1988) as(MOFLEET)  ,  

Batta et al. (1989) as (AMEXCLP) , Goldberg et al. (1990), and Repede and Bernardo(1994) 

as (TIMEXCLP). 

 

Another approach to modeling stochastic EMS covering problems is to use scenario planning 

to represent possible values for parameters that may vary over the planning horizon in 

different emergency situations. A compromise decision is made to optimize the 

expected/worst-case performance or expected/worse-case regret across all scenarios. For 

example, Schilling (1982) extended the MCLP by incorporating scenarios to maximize the 

covered demands over all possible scenarios. Individual scenarios are respectively used to 

identify a range of good location decisions. A compromise decision is made to the final 

location configuration that is common to all scenarios in the horizon. 

 

One important thrust and cornerstone in location theory is the development and application 

of the queuing approach in solving EMS location problems. The most well known queuing 

models for emergency service location problems are the hypercube and approximated 

hypercube by Larson (1974, 1975), which consider the congestions of the system by 
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calculating the steady-state busy fractions of servers on a network. The hypercube model can 

be used to evaluate a wide variety of output performance such as vehicle utilization, average 

travel time, inter-district service performance, etc. Particularly important in the hypercube 

models is the incorporation of state-dependent interactions among facilities (mobile servers) 

that preclude applications of traditional location models. Larson (1979) and Brandeau and 

Larson (1986) later further extended and applied the hypercube models with locate-allocate 

heuristics for optimizing many realistic EMS systems. For example, these extended models 

have been successfully used to optimize the ambulance deployment problems in Boston and 

the EMS systems in New York. Based on the hypercube queuing model, Jarvis (1977) 

developed a descriptive model for operation characteristics of an EMS system with a given 

configuration of resources and a location model for determining the placement of ambulances 

to minimize average response time or other geographically based variables. Marianov and 

ReVelle (1996) created a realistic location model for emergency systems based on results 

from queuing theory. In their model, the travel times or distances along arcs of the network 

are considered as random variables. The goal is to place limited numbers of emergency 

vehicles, such as ambulances, in a way as to maximize the calls for service. Queueing models 

formulating other various theoretical and practical problems have also been reported by 

Berman and Larson (1985), Batta (1989), and Burwell et al. (1993). 
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CHAPTER 3 

METHODOLOGY 

3.1 INTRODUCTION 

 Facility location represents the process of identifying the best location for a service, 

commodity or production facility. 

Facility location models can be classified into three broad categories. These are p-median, p- 

centre and set covering models. 

3.2 SET COVERING MODEL 

The set covering problem is to find a minimum cost set of facilities from among a finite set 

of candidate facilities so that every demand node is covered by at least one facility. This may 

be formulated mathematically, using the following notation 

Inputs: 

 

 

 

Decision variables 

 

With this notation, we can formulate the set covering model as follows: 

  Minimize: 
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Subject to: 

 

 

The objective function (3.1) minimizes the total cost of the facilities that are selected. 

Constraints (3.2) stipulate that each demand node i must be covered by at least one facility. 

The left hand side of (3.2) gives the number of located facilities that can cover demand node 

i. 

These constraints may be rewritten in terms of the set  as follows: 

 

Where  is the set of candidate locations j that can cover demand node i. The two forms of 

the constraint are equivalent. Constraints   are the integrality constraints. If all of the 

facility costs are identical (e.g. for all candidate sites j), or if we simply want to 

minimize the number of selected facilities, the objective function may be simplified to 

become 

Minimize: 
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3.3 P – MEDIAN MODEL 

The p – median problem is to find the location of p facilities on a network so that the total 

cost is minimized. The cost of serving demands at node i is given by the product of the 

demand at node i and the distance between demand node i and the nearest facility to node i. 

This problem may be formulated using the following notation: 

 

Let 

 

 

 

 

 

With this notation, the P –median problem can be formulated as follows: 

Minimize 

 

Subject to: 
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The objective function  minimizes the total demand –weighted distance between each 

demand node and the nearest facility. Constraint requires each demand node  to be 

assigned to exactly on facility j. 

Constraint  states that exactly  facilities are to be located. Constraint  link the 

location variables  and the allocation variables They state that demands at node  

can only be assigned to a facility at location j  facility is located at node j 

 

Constraints  and  are the standard integrality conditions. 

 

3.4 P- CENTRE MODEL 

The objective of the P –centre model is to find locations of p facilities so that all demands are 

covered and the maximum distance between a demand node and the nearest facility 

(coverage distance) is minimized. It can be said that we have relaxed the average distance.  

In the P- centre model, each demand point has a weight. These weights may have different 

interpretations such as time per unit distance, cost per unit distance or loss per unit distance. 

So the problem would be seeking a centre to minimize a maximum time, cost or loss. The p-

centre model is also known as a minimax problem. 
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3.4.1 Unweighted P-Centre Problem 

Let 

 

 

 

 

 

 

The model is formulated as: 

Minimize    W ………………………………………….. (3.12) 

Subject to 

 

 

 

 

 

 

The objective function (3.12) minimizes the maximum distance between a demand node and 

the closest facility to the node. 

Constraints   state that all of the demand at node i must be assigned to a facility at 

some node j for all nodes i. 

Constraint   stipulates that P facilities are located. 
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Constraint  state that demands at node i cannot be assigned to a facility at node j unless 

a facility is located at node j. 

Constraint  state that the maximum distance between a demand node and the nearest 

facility to the node (W) must be greater than the distance between any demand node i and the 

facility j to which it is assigned. Constraint  and  are the integrality and 

nonnegativity constraints, respectively. 

 

3.4.2 P-Centre Model with Demand weighted distance 

Let 

 

 

 

 

 

 

The model is formulated as: 

Minimize    W ………………………………………….. (3.19) 

Subject to 
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3.4.3 The Absolute -1- Centre Problem 

The general absolute -1-centre problem is 

 

                                  

                         Subject to  

The above formulation implies finding the vertex and the local centres. 

A point x is either a node of G or a point on an edge of G. G is a complete or weighted 

undirected graph with vertices having demands which indicates population. 

The vertex centre is defined to be the minimum of all row maximums obtained from the 

matrix of all pairs shortest paths.  

The local centre of an edge  is a point on  which 

minimizes the upper envelope. 

To find the absolute centre , 

(a) Evaluate all vertices and find the vertex centre value  

(b) Evaluate all edges to find the local centre with the minimum value 
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(c) Compare the two values, that is, the minimum vertex centre value and the minimum 

edge value. The lowest of the two is the solution   

 

      Example: 

Figure 3.1 below shows the network system for five cities A, B, C, D, and E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure3.1:Network system for five cities A,B,C,D,E 
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Step (a) - Finding the vertex centre 

To find the vertex centre, we compute the matrix of shortest paths costs for all pairs of 

nodes using the Floyd‟s algorithm and then choose a node such that the maximum entry 

in its row in the matrix is the smallest among the maximum entries of all rows. 

By using the Floyd Warshall algorithm, we obtain a matrix of the shortest paths of the 

network of figure 1. The algorithm then computes the distance, d (p, q), for all node pairs p 

and q as shown in table 3.1. 

 A B C D E ROW 

MAX 

A  14 10 22 27 27 

B 14  23 17 13 23 

C 10 23  12 28 28 

D 22 17 12  16 22 

E 27 13 28 16  28 

 

Table 3.1: Matrix of all pairs shortest paths of figure 1 

From table 1, the minimum maximum entry on all the rows occurs at D with m(D)=22.D is 

therefore  the vertex centre. 

Step (b) – Finding the local centre 

The local centre for each edge can be found as shown below. Consider an edge (p ,q) with a 

point x on it as shown in figure 2 below   

 

                       Figure 3.2 An edge (p,q) with a point x on it 

p x q 
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An edge is a distance  between two vertices p and q and denoted by c(p,q). 

A shortest path is the total distance between two vertices which is not direct but passing 

through other vertices.This is denoted by d(p,q) described as the minimum path cost. That is 

 

Assuming we want to move from x to (  being any node or vertex on G), we find the 

minimum path cost by moving to  through p or q as shown in figure 3.3 below 

 

 

 

 

 

 

 

                                   Figure 3.3: Movement from x to  through either p or q 

From the diagram above, 

d (p, x)= x 

d (x, q) = c(p, q) – x 

d (p, x) + d (x, q) = c(p, q) 

Also movement from x to   can be done in two directions that is, through p or q giving 

rise to the equations below. 

 

p q 

vi 

x 

d(p, vi) d(q, vi) 
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is the distance from x to   through p and is the distance from x to  through q. 

 x moves along the edge (p ,q), there will be a point when the two distances or  costs 

will be equal. At this point,  and the kink point can be found. 

Solving for the point of equal costs, we have 

 

 

 

 

where x can be denoted by  being the point of maximum cost. As  assumes all the 

nodes on the network, a number of equations will be generated under equations 

and These equations will be sketched on the same axes in the range 

 obtained from solving for the kink point for each pair of equations. 

 An upper envelope is then obtained by tracing all paths of lines beyond which there are 

no higher points for the x value in the given range on the graph. The local centre 

 is the point that minimizes the upper envelope.  

Using figure 3.1 above, we evaluate all edges on the given network as follows to 

demonstrate how the absolute centre can be found on a given network. 

(a) Location on edge (C, D) 

Consider   

Let  and  
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When , 

 and  

 

For kink point,  

        

When  

 

 

For kink point,   

 

The range therefore is  

The equations to be sketched are 

 

 

 

The other two equations are rejected because they fall outside the range of x. 

When  

 

 

For kink point,   

 

Equations to be sketched are  

 

 

When  
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For kink point, 

 

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are 

 

 

The eight equations above are then sketched on the same axes as shown below. From this 

graph, the minimum cost or distance can be found using the upper envelop. 
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Table 3.2 below shows all the eight equations generated using the two equations  
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on all the edges in figure 3.1. The kink point obtained for solving for the path of equal 

distance as well as the local centre obtained after the construction of the upper envelope is 

shown.  

 

Edge C(p,q) Lines   ) 

(C,A) 12  
 

 19.5m 

      

      

      

      

(B,C) 23  
 

3m 20m 

      

      

      

      

(A,C) 10  
 

0m 27m 

      

      

      

      

(A,B) 14  
 

10.5m 20.5m 

      

      

      

      

(B,D) 17  
 

7.5m 21.5m 

      

      

      

      

(B,E) 13  
 

0m 23m 

      

      

      

Table 3.2: Equations, kink points and local centres of all edges in figure 3.1 
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Invariance of local center with respect to the choice of any vertex as the origin  

Upon thorough research it has been established and verified that any of the end nodes of an 

edge can be chosen as the origin since the graph obtained is a reflection of the graph when 

the other node is set as the origin. The axis of reflection may pass through any of the nodes. 

The edge (C, D) of figure 1 shall therefore be used to illustrate this fact. 

 

(a)  Location on edge (D, C) 

Consider   

Let  and  

When , 

 and  

 

For kink point,  

        

When  

 

 

For kink point,   

 

The range therefore is  

The equations to be sketched are 
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The other two equations are rejected because they fall outside the range of x. 

When  

 

 

For kink point,   

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are 
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Construction of the Upper Envelope 

After sketching all the equations resulting from the location on an edge on the same axes as 

shown in the diagram above, there is the need to construct an „upper envelope‟ which gives 
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the minimum cost/distance of a shortest path from x to a farthest node on a given edge. To 

construct the upper envelope, we trace all paths of lines beyond which there are no higher 

points for the same x value in the given range. These paths are indicated by thick lines as 

shown in the diagram above. The diagrams below show the graphs of the remaining edges in 

the example above with their corresponding minimum costs. 
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CHAPTER 4 

DATA ANALYSIS 

4.1 Data  

In this chapter, a sector map of TISSEC showing the exact locations of the structures in the 

school and the distances between them is provided. The researcher measured the distances 

with a surveyors‟ tape with the aid of teachers and students of Tamale Islamic Senior high 

School. 

4.2Locations considered 

School administration (A) 

Boy‟s dormitory (B) 

Fourth year classrooms(C) 

P.T.A dormitory (D) 

Round houses (E) 

Girl‟s dormitory (F) 

Seniors dormitory (G) 

Headmasters house (H) 

Assistant headmaster‟s (Academic) house (I) 

Assistant headmaster‟s (Administration) house (J) 

 

Table 4.1 below shows the direct distances in metres between the locations 

considered. The first column shows the number, column 2 shows the edge and the 

third column is the edge distance in metres. As stated in chapter 3, an edge is the 

distance between two vertices p and q. A, B, C,etc refer to the various nodes. 
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NUMBER EDGES CONSIDERED DISTANCE(METRES) 

1 (A,B) 353 

2 (A,C) 58 

3 (A,D) 75 

4 (E,A) 110 

5 (F,A) 184 

6 (G,A) 247 

7 (B,D) 313 

8 (B,F) 435 

9 (CD) 120 

10 (G,E) 185 

11 (E,F) 74 

12 (E,J) 264 

13 (F,J) 338 

14 (H,G) 20 

15 (H,I) 14 

16 (I,J) 45 

 

Table 4.1: Edge and Distance Table 
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The data above was then developed into a network as shown below. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 4.1 Network for structures in Tamale Islamic School Senior High School 

The letters A, B, C etc in figure 4.1 above represent the various structures on Tamale 

Islamic Senior High School. The network shows how the structures are linked up. 
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The matrix of the shortest paths using the Floyd- Warshall algorithm for the network is 

obtained as shown below. 

 A B C D E F G H I J ROW 

MAX 

A  353 58 75 110 184 247 267 281 326 353 

B 353  411 313 463 435 600 620 634 679 679 

C 58 411  120 168 242 305 325 339 384 411 

D 75 313 120  185 259 322 342 356 401 401 

E 110 463 168 185  74 185 205 219 264 463 

F 184 435 242 259 74  259 279 293 338 435 

G 247 600 305 322 185 259  20 34 79 600 

H 267 620 325 342 205 279 20  14 59 620 

I 281 634 339 356 219 293 34 14  45 634 

J 326 679 384 401 264 338 79 59 45  679 

 

Table 4.2: Matrix of all pairs shortest paths for the network in figure7 

 4.3 Locating the Vertex Centre  

The node or vertex center is then chosen as a node such that the maximum entry in its row in 

the matrix is the smallest among the maximum entries of all rows. From Table 4.2 above the 

rows with the minimum maximum entry occur at node A with a maximum distance of 353 

metres thus the vertex centre for the network above is node A with m(A)  = 353. 

Since step 1 of the two step algorithm for finding the absolute 1-centre is a time consuming 

one, the researcher demonstrated how the local centres were calculated by finding the local 

centre on edge (C,A) only. The remaining are put in table form without their calculations in 

appendix A. 
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Location on edge (C, A) 

Consider   

When , 

 and  

 

For kink point,  

        

When  

 

 

For kink point,   

 

The range therefore is  

The equations to be sketched are 

 

 

 

The other two equations are rejected because they fall outside the range. 

When  

 

 

For kink point,  

 

Equations to be sketched are  
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When  

 

 

For kink point, 

 

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are 

 

 

When  

 

 

For kink point,  
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Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are 

 

 

When  
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For kink point, 

 

 

Equations to be sketched are  

 

 

When  

 

 

For kink point, 

 

 

Equations to be sketched are 

 

 

 

The graph of all the equations obtained is shown below 
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 The local centres for the remaining edges are shown in the table below. 

 

NO. EDGES   Maximum 

distance  

1 (A,B) 25m from node A 340m 

2 (A,C) At node A 353m 

3 (A,D) 32m from node A 357.5m 

4 (E,A) At node A 353m 

5 (F,A) At node A 353m 

6 (G,A) At node A 353m 

7 (B,D) At node D 401m 

8 (B,F) 386m from node B 384m 

9 (CD) 24m from node C 404.5 

10 (G,E) At node E 463m 

11 (E,F) At node F 435m 

12 (E,J) At node E 463m 

13 (F,J) At node F 435m 

14 (H,G) At node G 600m 

15 (H,I) At node H 620m 

16 (I,J) At node I 634m 

 

                      Table 4.3: Local centres obtained for all edges in figure 4.1 

   

Conclusion 

From the table above, the smallest   corresponds to the point ,on the edge (A,B) 

which is 25m from A and 228m from node B .Since this value is minimum compared to the 

vertex centre, it is taken as the absolute centre. Thus, the absolute centre is  
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This means that the maximum distance from the point x
*
 =  (absolute center) to the 

farthest node on the network is 340 metres.Also, the water borehole facility should be located 

in the  neighbourhood of 25m from node A(school administration). 
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CHAPTER 5 

Conclusions and Recommendations 

5.0 Conclusions 

Islamic Senior High School in Tamale has had its own share of problems in relation to water 

shortages. This is because the school has no borehole and water flows through the taps once 

or twice within a month. 

An optimal location on Tamale Islamic Senior High School is found using the absolute- 1-

centre method for the establishment of a water borehole facility. The distances in metres 

between the structures on the school compound were measured and the absolute 1 – centre 

algorithm used to find the strategic position for its placement. 

The solution to the absolute 1-centre problem was obtained by locating the vertex centre to 

be node A(school administration) with distance 353metres. The local centre was also found 

to be 25m from A and 228m from node B with a distance of 340metres.Since the local centre 

had a least value compared to the vertex centre, it is taken as the absolute centre of the 

network. This means that the facility must be located in the neighbourhood of 25m from node 

A(school administration). 

In finding the local centre for any edge, one of the ends of that edge must be taken as the 

origin. This project has proved experimentally that any of the end nodes of an edge can be 

chosen as the origin since the graph obtained is a reflection of the other graph when the other 

node is set as the origin. The axis of reflection may pass through any of the nodes. 
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5.1 Recommendations 

I recommend that Tamale Islamic Senior High School should use the findings of this research 

to establish a water borehole facility to reduce the problem of water shortages and the stress 

that both students and teachers face during the dry season. 

I also recommend that expert advise on the site so selected be considered as to whether the 

site has enough water for future use by the citizenry. 

I also want to recommend further research on the p-centre model by students. 
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Appendix A 

The tables below shows the various lines for all the edges under consideration in chapter 

4,their corresponding kink points, and their local centres  
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Table 4.3: Lines, kink points and local centres obtained on edge (C,A)  
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Table 4.4: Lines , kink points and local centres obtained on edge (A,B)  
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Lines   ) 

  32m 357.5m 

    

    

    

    

    

    

    

    

 

Table 4.5: Lines , kink points and local centres obtained on edge (A,D)  
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Table 4.6: Lines , kink points and local centres obtained on edge (E,A)  
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Table 4.7: Lines , kink points and local centres obtained on edge (F,A)  
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Lines   ) 

  247m 353m 

    

    

    

    

    

    

    

    

 

Table 4.8: Lines , kink points and local centres obtained on edge (G,A)  
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Table 4.9: Lines , kink points and local centres obtained on edge (B,D)  
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Table 4.10: Lines , kink points and local centres obtained on edge (B,F)  
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Lines   ) 

  24m 404.5m 

    

    

    

    

    

    

    

    

 

Table 4.11: Lines, kink points and local centres obtained on edge (C,D)  
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Table 4.12: Lines, kink points and local centres obtained on edge (G,E)  
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Table 4.13: Lines, kink points and local centres obtained on edge (E,F)  
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Lines   ) 
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Table 4.14: Lines , kink points and local centres obtained on edge (J,E)  
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Table 4.15: Lines, kink points and local centres obtained on edge (F,J)  
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Table 4.16: Lines, kink points and local centres obtained on edge (G,H)  
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Lines   ) 

  0m 620m 

    

    

    

    

    

    

    

    

 

Table 4.17: Lines, kink points and local centres obtained on edge (H,I)  
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Table 4.18: Lines, kink points and local centres obtained on edge (I,J)  

 

 

 

 

 

 

 

 



78 
 

Appendix B 

Graphs of remaining edges in chapter 4 
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XBF = 391   and  m(Xl) =384 
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XEF = 74   and  m(Xl) = 435
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XJE = 264   and  m(Xl) = 463
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XFJ = 355   and  m(Xl) = 435 
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XGE = 185   and  m(Xl) = 463 
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XHI = 0   and  m(Xl) = 620 
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XIJ = 0  and  m(Xl) = 634 
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