
 

 

MINIMISATION OF TEST APPLICATION TIME IN THE SCAN 

TECHNIQUE 

BY 

KWASI ADU-BOAHEN OPARE 

BSC. ELECTRICAL/ELECTRONIC ENGINEERING (HONS.) 

A THESIS SUBMITTED TO THE DEPARTMENT OF 

TELECOMMUNICATION 

ENGINEERING, 

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY 

IN PARTIAL FUL LMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF 

MASTER OF SCIENCE 

FACULTY OF ELECTRICAL AND COMPUTER ENGINEERING 

COLLEGE OF ENGINEERING 

JANUARY, 2010 

 

 



 

ii 

 

DECLARATION 

I hereby declare that this submission is my own work towards the MSc and that, to the 

best of my knowledge, it contains no material previously published by another person 

nor material which has been accepted for the award of any other degree of the 

University, except where due acknowledgement has been made in the text. 

 

............................................ ................................. ........................... 

Student Name & ID Signature Date 

Certi ed by: 

............................................ ................................. ........................... 

Supervisor(s) Name Signature Date 

Certi ed by: 

............................................ ................................. ........................... 

Head of Dept. Name Signature Date 

 

 

 

 

 



 

iii 

ABSTRACT 

The focus of this study is on how test application time in the scan technique can be 

minimized. A novel method of how this can be achieved, called the Vector Match 

Approach, is presented. It takes advantage of matching patterns in test vectors, by 

rearranging them such that those with matching patterns are closer to each other. Flow 

charts describing the logic of the algorithm and an example, illustrating how it works 

are also shown. In addition, the circuit architecture for the Vector Match Approach is 

presented. It incorporates a scan register and a multiple-input signature register 

(MISR) together with the circuit under test.  



 

iv 

TABLE OF CONTENTS 

Declaration ii 

Abstract iii 

Table of Contents iv 

List of Tables vi 

List of Figures viii 

Acknowledgement x 

1 Introduction 1 

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.3 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2 Literature Review 4 

2.1 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.2 Abstraction Levels in Digital Circuits . . . . . . . . . . . . . . . . 5 

2.3 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.3.1 Stuck-at Fault Model . . . . . . . . . . . . . . . . . . . . . 6 

2.3.2 Stuck-open and Stuck-on Fault Models . . . . . . . . . . . 7 

TABLE OF CONTENTS 

2.3.3 Bridge Fault Model ............................................................................................................... 9 

2.3.4 Delay Fault Model .............................................................................................................. 10 

2.4 Testing of Faults in Digital Circuits ...................................................................................... 10 

2.4.1 Testing of Faults: Combinational versus Sequential Circuits  ............................................ 11 

2.4.2 How the Automated Test Equipment (ATE) works ........................................................... 11 

2.5 Design for Testability (DFT) ................................................................................................. 12 

2.5.1 Built-in Self-test (BIST) ..................................................................................................... 12 

2.5.1.1 Linear Feedback Shift Register (LFSR) .......................................................................... 13 

2.5.1.2 Multiple-input Signature Register (MISR) ...................................................................... 14 

2.5.2 Scan Design ........................................................................................................................ 15 

2.5.2.1 Multiplexed-input scan ip- ops ........................................................................................ 16 

2.5.2.2 Level-sensitive scan design.............................................................................................. 16 

2.5.2.3 Test Application using Scan ............................................................................................ 17 



 

v 

2.5.2.4 Bene ts of the Scan Technique ......................................................................................... 17 

2.5.2.5 Costs Associated with the Scan Technique ..................................................................... 18 

2.6 Existing Approaches to Reducing Test Application Time in theScan Technique ................. 19 

2.6.1 Multiple Scan Chains .......................................................................................................... 20 

2.6.2 Re-ordering of scan chains.................................................................................................. 20 

2.6.3 Abramovici’s Approach ...................................................................................................... 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

TABLE OF CONTENTS 

3 Architecture Modi cation and Algorithm Development 21 

3.1 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

3.2 Terms and Variables Used in the Vector Match Algorithm . . . . 24 

3.3 The Sum of Skips, PS and its Signi cance . . . . . . . . . . . . 26 

3.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

3.4.1 The Compare Function . . . . . . . . . . . . . . . . . . . . 27 

3.4.2 The Main Procedure . . . . . . . . . . . . . . . . . . . . . 27 

3.4.3 The Initialising Pivot Procedure . . . . . . . . . . . . . . . 29 

3.4.4 The Pivot Cycle Procedure . . . . . . . . . . . . . . . . . . 29 

3.5 The Test Application Process . . . . . . . . . . . . . . . . . . . . 31 

4 Sample Implementation and Testing 33 

4.1 Results Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

4.2 The Vector Match Approach versus other Approaches . . . . . . . 47 

5 Conclusion and Recommendations 49 

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

References 51 

 

 

 

 

 

 

 

 

 



 

vii 

LIST OF TABLES 

4.1 Test Vectors for the Stuck-at Faults . . . . . . . . . . . . . . . . . 33 

4.2 Vector Pairs for the Stuck-open Faults . . . . . . . . . . . . . . . 35 

4.3 Test Vectors for all Targeted Faults, Matrix A . . . . . . . . . . . 35 

4.4 Matrix A(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

4.5 Starting pivot row shifted up by 1 . . . . . . . . . . . . . . . . . . 36 

4.6 Starting pivot row shifted up by 2 . . . . . . . . . . . . . . . . . . 37 

4.7 The second pivot vector . . . . . . . . . . . . . . . . . . . . . . . 37 

4.8 A match found after shifting two rows up . . . . . . . . . . . . . . 38 

4.9 Comparing initialising and dependent vectors . . . . . . . . . . . 38 

4.10 T4 as pivot vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

4.11 Comparison with T4 . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4.12 T5 as pivot vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4.13 Comparison with T5 . . . . . . . . . . . . . . . . . . . . . . . . . 41 

4.14 T6 as pivot vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

4.15 Comparison with T6 . . . . . . . . . . . . . . . . . . . . . . . . . 42 

4.16 Comparing vectors T7 and T8 . . . . . . . . . . . . . . . . . . . . 42 

4.17 Comparing vectors T8 and T9 . . . . . . . . . . . . . . . . . . . . 43 

4.18 T9 as pivot vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

 

 



 

viii 

LIST OF TABLES 

4.19 A match found at T11 without shifting . . . . . . . . . . . . . . . 44 

4.20 T11 as pivot vector . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

4.21 The resultant matrix A˜
(1) . . . . . . . . . . . . . . . . . . . . . . 46 

4.22 Selecting T2 as prospective starting pivot vector for Matrix A . . . 46 

4.23 The PS values of the various resultant matrices, A˜
(p) . . . . . . 47 

  



 

ix 

LIST OF FIGURES 

2.1 Levels of Abstraction in Digital Circuits . . . . . . . . . . . . . . 5 

2.2 A stuck-at-1 fault on line w . . . . . . . . . . . . . . . . . . . . . 7 

2.3 Two-input CMOS Gates . . . . . . . . . . . . . . . . . . . . . . . 9 

2.4 Bridge fault model . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.5 A Generalised BIST Architecture . . . . . . . . . . . . . . . . . . 13 

2.6 A 4-Bit Linear Feedback Shift Register (LFSR) . . . . . . . . . . 13 

2.7 A 4-Bit Single-input Compressor Circuit (SIC) . . . . . . . . . . 14 

2.8 A Multiple-output 4-Bit MISR . . . . . . . . . . . . . . . . . . . . 14 

2.9 A Serial-output 4-Bit MISR . . . . . . . . . . . . . . . . . . . . . 15 

2.10 A General Model of a Sequential Circuit (Jha and Gupta,  

2.11 The scan method based on multiplexed input ip- ops . . . . . . 

2.12 A Level Sensitive scan element for a double-latch design (Eichel- 

16 

 berger and Williams, 1977)( 1977 IEEE) . . . . . . . . . . . . . 17 

3.1 Architecture for the Vector Match Algorithm . . . . . . . . . . . . 23 

3.2 The owchart of the Main Procedure . . . . . . . . . . . . . . . . 28 

3.3 The Initialising Pivot Procedure . . . . . . . . . . . . . . . . . . . 30 

3.4 The Pivot Cycle Procedure . . . . . . . . . . . . . . . . . . . . . . 31 

4.1 Example Circuits to Illustrate How the Algorithm Works . . . . . 34 

 

 

 



 

x 

ACKNOWLEDGEMENT 

My sincere appreciation goes to my supervisor, Dr K. O. Boateng, for his guidance, 

comments, contributions and constructive criticisms, throughout the period of this 

study. I also express my gratitude to the other members of the Faculty of Electrical 

and Computer Engineering. 

Special appreciation goes to my parents, Professor and Mrs J. A. Opare for their love 

and support throughout my years of education, my wife, Mrs Dina Opare, for her 

continuing support, and to the Lord God Almighty who has been my 

constant source of inspiration throughout the period of this study. 

Finally I would like to express my sincere appreciation to all others who in diverse ways 

assisted me in the completion of this thesis. 



 

1 

CHAPTER 1 

INTRODUCTION 

Digital circuits have become indispensable in modern times. They can be found in 

many computerised and digital systems used in critical, as well as non-critical 

applications. The critical systems are needed in such elds as Medicine and 

Communication. In less critical applications, digital circuits are found in devices such 

as the mobile phone and the digital camera. They are also found in some domestic 

appliances, including the washing machine and the television. Considering the varied 

applications in which they are employed, it is essential that digital circuits conform 

exactly to desired requirements. 

To ensure that digital devices perform as required, designs of digital circuits are tested 

to verify that they correctly implement given speci cations. Multiple manufactured 

copies of a design are also tested after fabrication. This is to ensure 

that the manufacturing process has not introduced aws [1]. In some cases, devices 

being used on the eld are also tested to ensure that they still conform to functional 

requirements after a period of usage. The basis of all testing techniques is to apply 

prede ned sets of inputs, called tests, to a circuit and compare the outputs observed 

with the patterns that a correctly functioning circuit is supposed to produce [1]. In test 

application therefore, circuit lines and pins should be accessible for the test vectors to 

be applied. In combinational circuits, accessing circuit lines and pins is not di cult. 

Accessing them on sequential circuits on the other hand is very di cult. This is however 

overcome by making changes to the given circuit design to help decrease its overall di 

culty of testing. This process is termed Design for Testability (DFT) [2]. 

1.1. PROBLEM STATEMENT 

One DFT method used for sequential circuits is the Scan Technique. In this method, 

ip- ops (or latches) within the circuit are designed and connected in a manner that 

enables the circuit to operate in two modes; normal and test modes [3, 4]. With such 

an arrangement, tests can be applied to inaccessible lines in sequential circuits by 



 

2 

shifting them into the ip- ops. In normal mode, the logic behaviour of the system is 

identical to that of the original circuit design without the scan device. The response to 

the applied tests is then captured in the ip- ops. In test mode, the values captured in the 

ip- ops are observed. Simultaneously, the next test values are applied by shifting 

(scanning) them into 

the ip- ops. 

1.1 Problem Statement 

The use of scan techniques in circuits is useful in test application. This is because; scan 

increases the controllability and observability of sequential circuits. In other words, 

otherwise inaccessible lines in sequential circuits become accessible when scan 

techniques are introduced. According to [2], when the rst batch of chips ( rst silicon) 

for a new design is fabricated, the use of scan helps in locating design errors and 

weaknesses during debugging. In operational systems, the use of scan also helps in 

locating failing components, thereby reducing the time required to repair the system. 

One of the low sides of the scan technique is that, during test application, every bit in 

the test vectors is scanned in one clock cycle at a time. According to [2], for a 

sequential circuit with m state inputs, if n vectors are needed to test for certain faults, 

the number of clock cycles taken to scan them in is shown in Equation 1.1.1 In addition, 

it takes the number of clock cycles shown in Equation 1.2 to scan out the last response. 

1.2. OBJECTIVES 

Putting all together, the total number of clock cycles required to apply n test vectors to 

a circuit with m state inputs is shown in Equation 1.3. 

Cin = n(m + 1) (1.1) 

Cout = m − 1 (1.2) 

Cclk = n(m + 1) + m − 1 (1.3) 

                                                      
1 The term in brackets contains the value 1, to take care of the additional clock cycle needed to apply 

the scanned-in vector. 



 

3 

It can be deduced from the equation that, as the number of test vectors (n) and/or bits 

(m) in them increases, the number of clock cycles needed to scan in all of 

the bits also increases, thereby, increasing test application time correspondingly. 

It is the desire of every manufacturer, that the time spent in producing a nished product 

is reduced. In the case of the integrated circuit (IC) manufacturing industry, circuits 

produced must be tested before they are sent out, adding to the production time of 

circuits. Therefore, reducing the test application time of circuits reduces the production 

time which translates into shorter time to market. 

1.2 Objectives 

1. To review the architecture of the Scan Design for Testability (DFT) Technique 

used in CMOS circuits. 

2. To develop an algorithm to reduce test application time in scan-based cir- 

cuits. 

1.3 Scope of Work 

In this work, a modi cation of the scan architecture by incorporating a MultipleInput 

Signature Register (MISR) has been proposed. Based on the modi ed 

architecture, an algorithm has been developed to exploit pattern repetition in test stimuli 

in order to reduce test application time. 

Chapter 2 

Literature Review 

2.1 Faults 

According to the Chambers 21st Century Dictionary, a fault can be de ned as a aw or 

defect in an object or structure. In digital circuits, a fault can bring about errors which 



 

4 

can lead to system failure. In other words, when a fault is present in a digital circuit, it 

can lead to errors which will prevent that circuit from doing what it is supposed to do. 

Faults in digital circuits come about as a result of physical defects. Some of these 

physical defects are located in the semiconductor wafer. Wafer defects are found in 

clusters which are randomly distributed over the whole wafer. Every part of the wafer 

has an equal probability of having a defect cluster. Furthermore, any part of a di usion, 

polysilicon, or metal line may also have an open fault. Open faults can also occur 

between contacts of any two layers. Bridging is another type of fault that may also 

occur in the wafer. It occurs between any two electrical nodes, whether they belong to 

one layer or di erent layers. Bridging among multiple nodes is also equally likely. 

Defects can also be brought about by misalignment, dust and other particles, pinholes 

in dielectrics, mask scratches and thickness 

variations [5]. 

Faults that occur in circuits can be classi ed as either permanent or non-permanent, 

according to the way they manifest themselves in time [2]. Functional design errors, 

manufacturing defects, broken components or parts of components and breaks and 

shorts caused by design faults or solder splashes are examples of permanent faults [2]. 

Non-permanent faults can either be transient or intermittent. 

2.2. ABSTRACTION LEVELS IN DIGITAL CIRCUITS 

Environmental conditions such as humidity, temperature, pressure, vibration and 

electromagnetic interference cause transient faults. Intermittent faults on the other 

hand are caused by non-environmental conditions such as loose connections or ageing 

components. 

2.2 Abstraction Levels in Digital Circuits 

Dealing with faults at the chip level is complex in most cases. This is because 

numerous defects exist at that level [1]. Moreover, such faults are di cult to analyse. 

To deal with the complexities involved, actual defects that have the capability of 



 

5 

occurring in chips are modelled with fault models at higher levels of abstraction. By 

so doing, the need to derive tests for every possible fault is eliminated. The reason is 

that, many defects that occur at the chip level manifest themselves as a single fault at 

higher levels. Moreover, modelling faults at higher levels of abstraction enables the 

fault model to be technologically independent 

[2]. 

Traditionally, various levels of abstraction at which modelling is done are, 

behavioural, functional, structural, switch-level and geometrical [2]. These levels of 

abstraction are the various levels at which an electronic circuit can be described. 

(See Figure 2.1). 

 

Figure 2.1: Levels of Abstraction in Digital Circuits 

At the behavioural level, a digital system is described using a hardware descriptive 

language, such as Verilog or VHDL. It is at this level that the ow of data and 

control signals in the system is described. 



2.3. FAULT MODELS 

6 

A digital system can also be described at the register-transfer level (RTL). This method 

of description is referred to as the functional description. The description at this level 

may contain registers, adders, multipliers, multiplexers, decoders and other modules. 

The structural level description of a digital system is given at the logic level. At this 

level, logic gates, such as AND, OR, NOT, NAND, NOR, XOR and their 

interconnections are used in the description. 

The transistor-level details of a circuit are seen in the switch-level description of that 

circuit. At this level, the various transistors that make up the nMOS and pMOS 

networks in the CMOS technology implementation of a circuit can be seen. 

Finally, the geometric description of a circuit depicts the layout of that circuit. This 

description enables one to determine device geometries. Line widths, interline and 

inter-component distances can also be determined from this description. 

2.3 Fault Models 

The process of modelling defects at higher levels of abstraction in the design hierarchy 

is referred to as fault modelling [6, 7]. In testing CMOS circuits, they can be modelled 

at either the gate or switch level. The level a circuit is modelled depends on the kind 

of fault being tested. For example, in modelling the stuck-at fault (SAF), a circuit is 

modelled at the structural or gate level. Stuck-on and stuck-open fault levels are 

however modelled at switch level. 

2.3.1 Stuck-at Fault Model 

In this model, a fault manifests itself as an interconnection or line (input or output of 

a gate) being permanently stuck at logic 0 or 1. A line, w, stuck-at-0 (SA0) is denoted, 

w/0. It is denoted w/1 if the value is stuck-at-1 (SA1) [1]. Consider the circuit in Figure 

2.2. Line w is assumed to have a stuck-at 1 fault. It can be realised that, applying a test 



2.3. FAULT MODELS 

7 

vector (abc) = (001) to the inputs of the circuit results in logic 0 on line w instead of 

logic 1. This error is propagated right through to the output Z. At the output, a logic 

value 1 is detected instead of 0. From this illustration, it can be seen that stuck-at faults, 

being logical faults 

have the capability of changing the intended logical function of a digital circuit. 

 

Figure 2.2: A stuck-at-1 fault on line w 

According to [8], the stuck-at fault model is an abstract model. In other words, it does 

not model a physical defect. This, however, does not mean that faults caused by 

physical defects cannot be detected. On the contrary, a physical defect may manifest 

itself as an error in the logic of a circuit. In that case, such an error will be detected at 

the gate level. By staying away from physical details the stuck-at fault model remains 

e ective with changing technologies and design 

styles [8]. 

2.3.2 Stuck-open and Stuck-on Fault Models 

Stuck-open and stuck-on faults, denoted, SOpF and SOnF respectively, a ect the 

condition of transistors in a circuit. A stuck-open fault refers to a transistor that 

has become permanently non-conducting. A stuck-on fault on the other hand refers to 

a transistor that has become permanently conducting. Consider the circuit in Figure 

2.3(a). It shows a CMOS implementation of the NOR gate. 

The pull-down network is made up of nMOS transistors Q1 and Q2 connected in 

parallel. The pull-up network is also made up of pMOS transistors Q3 and Q4 connected 

in series. Now, supposing a defect, d exists which causes an open that prevents Q1 



2.3. FAULT MODELS 

8 

from conducting. In such a condition, Q1 is said to have a stuck-open fault (SOpF). Let 

the set of input vectors in the following sequence 

(w1,w2) = (0,0),(0,1),(1,0),(1,1) be applied. When (0,0) is applied, Q3 and Q4 conduct, 

whilst the output F becomes logic 1. When the vector (0,1) is applied next, F becomes 

logic 0 because Q2 conducts. Upon the application of 

(1,0), the SOpF in Q1 causes the path from F to V ss to be non-conducting. The output 

F, therefore retains the previous logic value, which is 0 in this case. Finally, applying 

vector (1,1) causes Q2 to conduct thereby bringing output F to logic 0. Now, with the 

scenario described above, there can be a false conclusion that no fault exists even 

though Q1 is stuck-open. To be able to detect the SOpF, a two-pattern test, consisting 

of an initialisation vector and a test vector are employed. The initialisation vector sets 

the output of the circuit to a logic value which is the complement of the logic value 

expected in a fault-free circuit. In our example in Figure 2.3(a), the vector (1,0) caused 

F to be logic 0. The initialisation vector is therefore supposed to cause F to be logic 1. 

Vector (0,0) is capable of achieving the expected results. The vectors are applied to 

the circuit in the following sequence; (0,0),(1,0). In the presence of SOpF at Q1, the 

output F becomes logic 1 when such a sequence is applied. The fault is therefore 

detected. 

Figure 2.3(b) shows a two-input NAND gate with an assumed defect d resulting in an 

SOnF in transistor Q4. To test for the fault, let the vector (1,1) be applied. If the fault 

exists, transistors Q1, Q2 and Q4 conduct. An intermediate voltage therefore results at 

the output. Depending on the resistances of the nMOS and pMOS transistors, the exact 

voltage may map unto either logic 0 or 1. The SOnF is detected if the voltage maps 

unto logic 1 at the output, otherwise the fault is not detected. Again, let us assume that 

an SOnF exists in the transistor Q2 this time around. Let us apply vector (1,0) to test 

for this fault. If the fault exists, 



2.3. FAULT MODELS 

9 

 

Figure 2.3: Two-input CMOS Gates 

transistors Q1, Q2 and Q4 conduct, resulting in an intermediate voltage at the output. 

This is similar to the previous scenario, however, this time around the intermediate 

voltage must map unto logic 0 at the output for the fault to be 

detected. There is therefore a contradiction in the requirements for the detection of 

SOnFs in Q2 and Q4. This shows that logic monitoring, that is, monitoring the logic 

value at the output of the gate is not adequate for detecting all SOnFs in it [2]. Current 

monitoring is a solution to this inadequacy. In this method, the current drawn by the 

circuit is measured to ensure the detection of all SOnFs in 

the circuit. [9, 10, 11, 12]. 

2.3.3 Bridge Fault Model 

Bridge fault models deal with faults that come about as a result of defects caused by 

shorts. There are several ways in which bridge faults can be modelled. One of them is 

the Wired-Logic model. In this model, it is assumed that bridges cause wired-AND 

and wired-OR. In other words, the bridge fault between the two lines causes the lines 

to either result in an AND or an OR function respectively. 

In Figure 2.4, the points connected with the dotted lines may be modelled as either an 

AND or an OR. This model, however, is only applicable in non- 



 

10 

2.4. TESTING OF FAULTS IN DIGITAL CIRCUITS 

 

Figure 2.4: Bridge fault model 

CMOS technology [13]. Another bridge fault model which can be used in CMOS 

technology as well, is the Voting model. In this model, a con ict between the nMOS 

and pMOS networks is assumed. The reason for this assumption is that, the fault occurs 

between a node which has logic 1 and another with logic 0. The model therefore tries 

to nd the correct operating point by examining the transistor con gurations of both the 

nMOS and pMOS networks [14]. 

2.3.4 Delay Fault Model 

Delay faults occur when the time taken for a signal to propagate falls outside the 

bounds required for normal operation. It is possible for such a condition to occur in a 

circuit which is structurally correct. These faults are modelled as either gate 

delay faults (GDF) or path delay faults (PDF). A GDF manifests as a slow 0 to 1 or 1 

to 0 transition at a gate [15]. The PDFs on the other hand manifest when the 

propagation of a 0 to 1 or 1 to 0 transition from a primary input to a primary 

output is slow [16]. 

2.4 Testing of Faults in Digital Circuits 

Fabricated copies of a circuit or at least samples of them are tested to nd out whether 

there are some faults present. This is done by applying test signals to 



 

11 

2.4. TESTING OF FAULTS IN DIGITAL CIRCUITS 

the inputs of a fabricated copy, also called, circuit under test (CUT).The results are 

then captured at the outputs and analysed. 

According to [2] Due to its continued popularity for test development, a wide range of 

fault simulators use the single SAF model . This is because; the model is able to detect 

many other faults apart from stuck-at faults. This is also supported by [8]. However, 

in many cases, a combination of fault models is used. 

2.4.1 Testing of Faults: Combinational versus Sequential Circuits 

Testing of combinational circuits is easy. The reason is that, all the inputs and outputs 

can be accessed. It is therefore easy to apply test vectors to them and to observe the 

response at the output. The response can then be compared to the truth table of the 

circuit to determine if there are errors. 

In sequential circuits however, apart from inputs and outputs that may be accessed 

directly, there is the existence of memory elements. These elements can cause the 

circuit to be in several states. Therefore, the response observed at the output depends 

not only on the tests applied, but on the state of the circuit as well. It would have been 

easier if the response could be compared with the functionality speci ed in the state 

table. However, it is very di cult to know the state in which the circuit is, since the 

state variables are not observable externally. This problem associated with sequential 

circuits is solved by designing them such that they can be easily tested. This is 

achieved by using Design for Testability Techniques. 

2.4.2 How the Automated Test Equipment (ATE) works 

An automated (or automatic) test equipment (ATE) basically consists of a tester and a 

handler. The tester performs the actual testing on the device under test (DUT) itself. 

The handler on the other hand transfers the DUT to the test site and positions it 

properly for testing to be done. It also takes it o the test site 



2.5. DESIGN FOR TESTABILITY (DFT) 

12 

after testing is done. 

The tester is usually controlled by the test program, written in a high level 

programming language. The test program consists of several blocks of test, directed 

towards a certain parameter of the DUT. It controls the DUT xtures during the testing 

process. It also determines the electrical excitation the tester needs to apply and the 

correct time to apply them. 

During the testing process, the ATE sends the test vectors to the DUT in the form of 

electrical excitation. The response is then compared to the expected response. The 

expected response is usually within a range of lower and upper limits. A DUT with a 

response outside this range is deemed to have failed the 

test [1]. 

2.5 Design for Testability (DFT) 

Design for Testability or Design for Test (DFT) refers to techniques of making changes 

to a given circuit design to help decrease its overall di culty of testing. The changes 

made may involve some addition of features to the circuit or the modi cation of it. 

Built-in Self Test (BIST) and Scan Techniques are two of the widely used Design for 

Testability Methods. 

2.5.1 Built-in Self-test (BIST) 

Built-in self-test (BIST) is a technique that makes a circuit capable of testing itself. A 

generalised BIST architecture is shown in Figure 2.5. It is made up of a pattern 

generator and a response compressor. The pattern generator generates test vectors, 

(xn−1,..., x2, x1, x0) and applies them to the circuit under 



2.5. DESIGN FOR TESTABILITY (DFT) 

13 

test (CUT). The response from the CUT, (pn−1,..., p2, p1, p0) is then compressed into a 

single pattern by the response compressor. This compressed pattern is referred to as 

the signature. The signature of the CUT is compared with that of 

a fault-free circuit to determine whether a fault exists or not. 

 

Figure 2.5: A Generalised BIST Architecture 

2.5.1.1 Linear Feedback Shift Register (LFSR) 

A linear feedback shift register (LFSR) is made up of a shift register with added linear 

feedback. It is often used as the pattern generator in the BIST architecture in Figure 

2.5. An n-stage LFSR is capable of generating a sequence of 2n − 1 pseudorandom 

patterns, containing the vectors needed to be applied to the CUT. Figure 2.6 shows an 

example of an LFSR implemented with a 4-bit shift register. In this example, the 

feedback is connected to the rst stage by means of an XOR gate. The binary sequence, 

(x3, x2, x1, x0) form the PRBS. 

 

Figure 2.6: A 4-Bit Linear Feedback Shift Register (LFSR) 



2.5. DESIGN FOR TESTABILITY (DFT) 

14 

 

Figure 2.7: A 4-Bit Single-input Compressor Circuit (SIC) 

2.5.1.2 Multiple-input Signature Register (MISR) 

The LSFR can be used to implement single-input compressor circuits (SIC). This can 

be achieved by connecting the output of the CUT through line p, in addition to the 

feedback signals as shown in Figure 2.7. The sequence, (x3, x2, x1, x0) form the 

signature. This idea is extended to implement a multiple-input signature register 

(MISR), by combining the response from the CUT with the feedback of the LFSR, 

through XOR gates. Figure 2.8 shows an example of a 4-Bit MISR with four outputs. 

The output from the CUT is represented by the binary sequence, 

(p3, p2, p1, p0), whilst that of the signature is represented by (x3, x2, x1, x0). Figure 2.9 

also shows the same circuit with serial output. The MISR is used as 

the response compressor of the BIST architecture in 2.5. 

 

Figure 2.8: A Multiple-output 4-Bit MISR 



2.5. DESIGN FOR TESTABILITY (DFT) 

15 

 

Figure 2.9: A Serial-output 4-Bit MISR 

2.5.2 Scan Design 

A diagram of a general model of a sequential circuit is given in Figure 2.10. It consists 

of a block of combinational circuits and a set of ip- ops. The circuit has x1,x2, ...xn as 

the primary inputs and z1,z2, ...zn as the primary outputs. The state input and output 

variables are y1,y2, ...yk and Y1,Y2, ...Yk respectively. 

The inputs and outputs of ip- op FFl are Yl and yl respectively. 

 

Figure 2.10: A General Model of a Sequential Circuit (Jha and Gupta,  

In a normal circuit, accessing the state inputs and outputs are di cult. Scan elements 

are therefore introduced to allow for easy accessibility. This can be realised with 

multiplexed-input scan ip- ops or level-sensitive scan design. 



2.5. DESIGN FOR TESTABILITY (DFT) 

16 

2.5.2.1 Multiplexed-input scan ip- ops 

One approach to the implementation of the scan technique is by connecting a two-way 

multiplexer to the input of each ip- op and connecting them as a shift register through 

a serial path, as shown in Figure 2.11(a). With this approach, a value that forms part 

of a test vector and a value at the state output can be multiplexed to the input of the 

combinational network, through the ip- ops, as 

shown in Figures 2.11(b) and (c). 

 

 Figure 2.11: The scan method based on multiplexed input ip- ops 

2.5.2.2 Level-sensitive scan design 

The latches used in the level-sensitive scan design are generally con gured in pairs as 

shown in Figure 2.12. 

D and C are the normal data input and clock lines respectively. Lines DS, A and B also 

form the shift part of the latch. DS is used for shifting in data, whilst A and B form the 

two phase non-overlapping shift clocks. Line Q is the data output. In the normal mode, 

clock A is held low whilst non-overlapping clocks C and B are used. In that mode, the 

value on line D is input to the ip- op. In the test mode, non-overlapping clocks A and 

B are used, and data is scanned in through DS whilst clock C is kept low. 



2.5. DESIGN FOR TESTABILITY (DFT) 

17 

 

Figure 2.12: A Level Sensitive scan element for a double-latch design (Eichelberger 
and Williams, 1977)(  1977 IEEE) 

2.5.2.3 Test Application using Scan 

In the scan methodology, the circuit operates either in the normal or test mode. During 

the normal mode, the inputs to the ip- ops are driven by the next state variables, Y1,Y2, 

...Yk. In other words, it functionally operates as the circuit was designed to operate. 

When being used in test application, the circuit is made to operate in the test mode. In 

that mode, test vectors, forming the present state variables are scanned into the ip- ops 

through the scan-in pin, as shown in Figure 2.11(b). The circuit is then switched to 

normal operation and the results captured into the ip- ops, also shown in Figure 

2.11(c). The circuit is then switched back into test mode for the results captured in the 

ip- ops to be scanned out through the scan-out pin. 

2.5.2.4 Bene ts of the Scan Technique 

One main bene t of adding scan circuitry in designs is that, they make sequential 

circuits easily testable. Scan increases the controllability and observability of circuits. 

As a result, acceptable fault coverage is achieved. 

Aside test generation and application, scan techniques can be used to nd out design 

errors and weaknesses when debugging the rst batch of chips fabricated for a new 

design. This rst batch of chips is called rst silicon. 



2.5. DESIGN FOR TESTABILITY (DFT) 

18 

In an operational environment, the use of scan helps in locating failing components. 

As a result, the time required to repair such devices is reduced. This bene t of scan 

ensures system availability. 

2.5.2.5 Costs Associated with the Scan Technique 

The scan technique solves the problem of controllability and observability di culties. 

It therefore makes sequential circuits easily testable. This however, comes with a few 

penalties. These penalties include area overhead, performance penalty, the need for 

extra pins and an increase in test application time. 

Area Overhead 

The use of scan requires additional logic and routing. This increases the area layout of 

the circuit, thereby increasing the manufacturing cost of the circuit. This increase in 

layout area is referred to as the area overhead. The manufacturing costs associated 

with area overhead come about in two main ways. The rst one is that, as the layout 

area increases, fewer copies of a chip can be manufactured on a wafer of 

semiconductor. The other one is that, as the area increases, there is a decrease in yield, 

as such the percentage of manufactured copies that work 

decreases. 

Performance Penalty 

The additional circuitry needed to implement scan increases delay. The decrease in 

speed during normal operation is referred to as the performance penalty. It is signi cant 

for high speed circuits. 



 

19 

2.6. EXISTING APPROACHES TO REDUCING TEST APPLICATION TIME IN 
THE SCAN TECHNIQUE 

The Need for Extra Pins 

Introducing scan circuitry comes with it the need to introduce extra pins for signals. 

The scan-in and scan-out signals are examples of those that require extra pins. Too 

many extra pins is not desirable. 

Increase in Test Application Time 

The introduction of scan DFT techniques increases test application time. The reason is 

that several clock cycles are required to apply all the test vectors by scan. Consider a 

set of n test vector. Assuming that these test vectors are needed to test a sequential 

circuit with m state inputs, it will take n(m+1) clock cycles to scan in all the tests and 

apply them. It will take additional m-1 clock cycles to scan out. The total number of 

clock cycles required to apply n test vectors to the circuit is therefore n(m + 1) + m − 

1, as seen in Equation 1.3. It can be deduced from the equation that, as the number of 

test vectors (n) and/or bits (m) in them increases, the number of clock cycles needed to 

scan in all of the bits also increases, thereby, increasing test application time 

correspondingly. 

2.6 Existing Approaches to Reducing Test Application Time in the Scan Technique 

Increase in test application time is a major cost associated with scan. Several techniques 

have been developed to deal with this problem. Examples of these techniques include 

the use of multiple scan chains [17, 18], re-ordering of scan chains [2] to obtain an 

optimal arrangement and Abramovici’s Approach [19]. 

2.6. EXISTING APPROACHES TO REDUCING TEST APPLICATION TIME IN 
THE SCAN TECHNIQUE 



 

20 

2.6.1 Multiple Scan Chains 

The use of multiple scan chains helps in reducing test application time. In this 

approach, the design of a scan-based circuit is done with multiple chains of ipops 

(latches), instead of a single chain. This enables portions of a test vector to be scanned 

into the ip- ops simultaneously, thus, reducing the time needed to 

scan-in that test vector. 

2.6.2 Re-ordering of scan chains 

This approach enhances the use of multiple scan chains. It seeks to obtain an optimal 

arrangement of scan registers which can reduce test application for a particular circuit. 

Although this is computationally complex [20], it has been shown to be possible [21]. 

However, it must be noted that having an optimal order of registers depends on four 

main issues [2], namely, test application scheme, shift policy, the characteristics of the 

design and the number of test vectors required for each kernel. 

2.6.3 Abramovici’s Approach 

This technique takes advantage of the fact that a group of faults may have the state 

input parts of their test vectors being similar. If such faults can be detected by only 

observing the primary outputs, then they can be tested by rst scanning in the desired 

state input values. The scan ip- ops are then put on hold for their contents to be held. 

Next, the primary input parts of each vector are applied and the response observed at 

the primary output. This process is repeated for the 

other sets of test vectors. 

Chapter 3 

Architecture Modi cation and 

Algorithm Development 



 

21 

One of the problems associated with the scan technique is the increase in test 

application time. This comes about because every bit in the test vectors is scanned in 

one clock cycle at a time. Many approaches to solving this problem have been 

proposed. This study presents a novel approach, called the Vector Match Approach, to 

solving the problem with minimal overhead. The new approach takes advantage of the 

possibility of having matching patterns in some vectors. If a vector, B, has a pattern 

that matches another pattern in a previously scanned in vector, A, then it may be 

possible to scan in only the un-matching part of, B. This helps cut down the number of 

clock cycles needed to scan in all the vectors. To illustrate this, consider the vectors A 

and B; 

  

0 

  

  

 

  

  

 1  

  

  

  

A=   

  

 

  

  

  

  

  

  

  

  

1 

  

1 

  

 0 

 

 

  

  

  

  

  

  

B=   

 0 

 

 

  

  

  

  

  

  

  

  

1 

If the vectors A and B are the state-input portions of some test vectors, it will take 8 

clock cycles for A to be scanned in. It will take another 8 clock cycles for vector B also 

to be scanned in. In all, it will take 16 clock cycles for both to be 

3.1. THE ARCHITECTURE 

scanned in. In this example, the 3rd to the 8th elements of vector A match the rst six 

elements of B. Therefore, in the proposed solution, if B is to be scanned in after A only 



 

22 

the last two elements of B need to be scanned in. It therefore takes 10 clock cycles for 

vectors A and B to be scanned in. See Equation 1.1. 

From Equation 1.1, the total number of clock cycles required to apply n test vectors, 

each having m elements, to a circuit in the scan technique is; Cin = n(m + 1). It can be 

deduced from the equation that, as the number of test 

vectors (n) and/or bits (m) in them increases, the number of clock cycles also 

increases, thereby, increasing test application time correspondingly. If the number of 

clock cycles needed to scan in a vector can be reduced from m to m˜ , the total number 

of clock cycles can be reduced correspondingly to Cin = n(m˜ + 1). That is what the 

Vector Match approach seeks to achieve. 

An algorithm based on the Vector Match approach for minimising test application time 

in the scan technique, is proposed. This algorithm works by pre-processing the vectors 

to allow those with matching patterns to follow consecutively. The rearranged set of 

vectors can then be scanned in. The test vectors are represented as an m x n matrix. 

3.1 The Architecture 

In the scan architecture, the ip- ops are arranged such that test vectors are scanned into 

them during the test mode. During normal mode, the scanned in vectors, together with 

those from the primary inputs are applied to the circuit under test (CUT). The response 

is then captured in the ip- ops. In this process, the ip- ops that hold the scanned in 

vectors are the same ones that capture the response. Therefore, the scanned in vectors 

are cleared by the response from the CUT. This attribute of the scan architecture does 

not allow the re-use of patterns in a test vector that is already scanned in. As a result, 

the whole of the next test 

3.1. THE ARCHITECTURE 

vector must be scanned in during the test mode. Moreover, any reduction in scan in 

time requires the same reduction in scan out time. This also makes it di cult to develop 

algorithms for minimising test application time. 



 

23 

A new architecture, shown in Figure 3.1, is therefore being proposed. It consists of the 

circuit under test (CUT) with scan circuitry connected to its input. Its output is also 

connected with a multiple-input signature register (MISR) that has a serial output. The 

MISR is used to compress the response from the CUT. The signature is then scanned 

out at the end of the testing process through the serial output. It can be observed from 

the gure that only the MISR found 

in the traditional BIST architecture is incorporated. The pseudorandom binary 

sequence generator (PRBSG) is not used. Therefore, instead of pseudorandom patterns, 

deterministic vectors, (in the case of this study, the test vectors from the rearranged 

matrix, A˜
(p), de ned in Section 3.2), are scanned into the CUT. 

The addition of the MISR in the proposed architecture enables the separation of the 

response vectors from the scanned in vectors. Whilst a response vector is captured by 

the MISR, the scanned in vector stays in the scan ip- ops to be reused. This arrangement 

makes the development of algorithms for minimising test application time easier. This 

is demonstrated in the development of the Vector Match Algorithm. 

 

Figure 3.1: Architecture for the Vector Match Algorithm 

3.2. TERMS AND VARIABLES USED IN THE VECTOR MATCH 
ALGORITHM 

3.2 Terms and Variables Used in the Vector Match Algorithm 

The algorithm depends on some terms and variables. These terms and variables are de 

ned below. 

Terms 

Initialization vector: The test pattern used to set the output of a logic gate to the 

complement of the logic value expected when SOpF or a delay fault 



 

24 

 is being tested. It is usually the rst pattern in a test pair. 

Dependent vector2: The test pattern that follows an initialization vector in a test pair. It 

is actually the essential pattern in the test pair for testing an SOpF or a delay 

fault. 

Independent vector1: For a particular fault, this vector is a complete test on 

its own and so does not need an initialization vector. 

Pivot vector1: A vector that serves as the basis of comparison for other vectors. Starting 

Pivot Vector1: The rst test vector to be used as a pivot vector. 

Pivot Cycle1: This marks the beginning of usage of a pivot vector till when a 

new one is selected. 

Row Shift1, r: This is the number of elements of the pivot vector shifted before 

a matching pattern is found. 

Skip1, S: This signi es the number of elements in a vector that matched a pattern in the 

pivot vector. It sends a signal to the ATE, regarding the number of bits to ignore 

in a particular vector, when it is being scanned in. 

It is calculated thus; s = m − r. 

3.2. TERMS AND VARIABLES USED IN THE VECTOR MATCH 

ALGORITHM 

Sum of Skips, PS: See Section 3.3. 

Variables 

A: Original (Given) Matrix 

A(p): Matrix with the vector at position p as the (prospective) starting pivot 

vector 

                                                      
2 These terms were coined for the purposes of the algorithm. 



 

25 

A˜
(p): The resultant matrix, or the optimum arrangement for minimising test application 

time when the vector at position p is used as the starting pivot 

vector k: The variable used to mark the position of the current pivot 

vector 

x: This variable shows the relative position of a vector to the position of a pivot vector. 

That vector may be the one being compared with the pivot vector 

or the one that matches it. 

y: This variable represents the number of dependent vectors directly following an 

initialising vector. It is also the same as the number of initialising vectors directly 

following a pivot vector which is initialising, including the pivot 

vector itself. 

Other De nitions 

LetA ≡ [T], anmxnmatrix made up of binary elements[tij]such that; 

[T] ≡ [Tj], where1 ≤ j ≤ nandTj is a column vector at thejth column 

Tk ≡ [tik], where1 ≤ i ≤ m, forj = k 

The test vectors are the column vectors within the matrix, ie [Tj]. 

Let , wherer = number of rows (elements) thatTk has been shifted up. 

3.3. THE SUM OF SKIPS, PS AND ITS SIGNIFICANCE 

In other words, 

whereTk ≡ [tik], and1 + r ≤ i ≤ m, forj = k 

Therefore, the full vector with no shift will be; 

 

Also, 

Let whereTk ≡ [tik], and1 ≤ i ≤ m − r, forj = k 



 

26 

3.3 The Sum of Skips, PS and its Signi cance 

The Sum of Skips is de ned as; 

,where Sj is the skip, S, of the vector at the jth position of A˜
(p). 

A resultant matrix, A˜
(p), having the highest sum of skips signi es that the pivot vectors 

perform fewer comparisons before nding a match. As a result, there are more patterns 

that match. This therefore translates into savings in clock cycles when the test vectors 

are being scanned in. The reason is that the ATE bypasses (skips) more vectors during 

the scanning in process.3 Therefore, the higher the sum of skips, PS, the more savings 

in clock cycles are achieved. 

3.4 The Algorithm 

The algorithm is made up of the Initialising Pivot procedure (Section 3.4.3) and the 

Pivot Cycle procedure (Section 3.4.4). It also has the Compare function, described in 

Section 3.4.1. All these modules are used in the Main procedure 

described in Section 3.4.2. 

                                                      
3 The skip value of a vector signi es the number of elements of that vector the ATE must bypass. 



3.4. THE ALGORITHM 

27 

In the algorithm, the following are assumed; 

• All initialising and dependent vectors are tagged as such. 

• The vectors are arranged such that all dependent vectors are immediately 

preceded by their initialising vectors. 

3.4.1 The Compare Function 

The Compare function takes two arguments  and , and returns true if 

a match exists. Otherwise, a false is returned. A match exists if, 

for all , where1 + r ≤ i ≤ m, and for all 

, where1 ≤ i ≤ m − r, 

tik = tik+x or tik+x is a don’t-care. 

3.4.2 The Main Procedure 

The Main Procedure, as the name suggests, is the main algorithm that the Vector Match 

Approach is based on. Its owchart is shown in Figure 3.2.The following steps describe 

the ow of the algorithm. 

1. START Main Procedure. 

2. Set p = 1, where p is the position of a prospective starting pivot vector, Tp. The 

number of rows and columns are also m and n respectively. 

3. Is p ≤ n? If NO, select the resultant matrix, A˜
(p) having the highest PS. 

Where two or more exist, select A˜
(p) with the lowest p. The selected A˜

(p) is the 

optimum matrix for reducing test application time for the test vectors in matrix 

A, the original matrix. Go to step 10. 

 



3.4. THE ALGORITHM 

28 

 3The two arguments are  and  when the Compare function is called in 

an 

Initialising Pivot procedure 

4. Is Tp a dependent vector? If YES PS is not valid, so increment p and go to step 

3. 

5. Select vector Tp. Associate skip, S = 0 with Tp and set pivotFound = 1. Initialise 

variables as shown; k = p, r = 0, x = 0 and y = 0. 

6. Is Tp an initialising vector? If YES set the variable initExist = 1 and perform the 

Initialising Pivot Procedure. 

7. If k > 1, rotate vectors from position 1 to k +y, y +1 times. Set k = 1+y. 

Increment x and set y = 0. 

8. Is k < n? If YES perform the Pivot Cycle Procedure and repeat step 

8. 

9. Compute PS and associate result with the resultant matrix, A˜
(p). Increment p 

and go to step 3. 

10. END Main Procedure. 

 



3.4. THE ALGORITHM 

29 

 Figure 3.2: The owchart of the Main Procedure 

3.4.3 The Initialising Pivot Procedure 

The Initialising Pivot procedure is found in the Main procedure and the Pivot Cycle 

procedure. It is called when the selected starting pivot vector is an initialising vector, 

and also, when the result of the Compare function executed using 

the two arguments  and  in the Pivot Cycle Procedure returns true and 

 is found to be an initialising vector. When a vector is tested and found to be 

initialising, the variable initExist is set to 1. The owchart is shown in Figure 

3.3. The following steps are executed. 

1. START Initialising Pivot Procedure. 

2. Increment y and set r = 0. 

3. Is r < m? (In other words, if shifting has been done, are there still some elements 

in the initialising pivot vector?). If NO set r = 0 and go to step 

6. 

4. Perform the Compare function with  and  as the arguments. 

5. Does a match exist? If NO set pivotFound = 0, increment r and go to step 

3. 

6. Set pivotFound = 1. Compute skip, S, and associate with Tk+x+y. 

7. Is Tk+x+y an initialising vector? If YES go to step 2. 

8. Set initExist = 0. 

9. END Initialising Pivot Procedure. 

3.4.4 The Pivot Cycle Procedure 

The Pivot Cycle procedure is found in the Main procedure. It is called when a non-

initialising pivot vector is found. Its owchart is shown in Figure 3.4. The following 

steps are performed in the procedure. 



3.4. THE ALGORITHM 

30 

 

Figure 3.3: The Initialising Pivot Procedure 

1. START Pivot Cycle Procedure. 

2. Set r = 0 and y = 0. 

3. Is r < m? If NO set x = 1 and r = 0. Then go to step 8. 

4. Is k+x > n? (In other words, has the position of the vector being compared with 

the pivot vector exceeded the number of test vectors (n)?). If YES set x=1, 

increment r and go to step 3. 

5. Is Tk+x (the vector being compared with the pivot vector) a dependent vector? 

If YES set pivotFound = 0, increment x and go to step 4. 

6. Perform the Compare function with  and  as the arguments. 

7. Did the execution of the Compare function in step 6 return true? If NO set 

pivotFound = 0, increment x and go to step 4. 

8. Set pivotFound = 1. Compute skip, S and associate it with Tk+x. 



3.4. THE ALGORITHM 

31 

9. Is Tk+x an initialising vector? If NO go to step 11. 



 

32 

3.5. THE TEST APPLICATION PROCESS 

10. Set initExist = 1 and perform the Initialising Pivot Procedure. 

11. Rotate vectors from k+1 to k+x+y, y+1 times (if x > 1). Set k = k+y+1, x = 1 

and y = 0. 

12. END Pivot Cycle Procedure. 

 

Figure 3.4: The Pivot Cycle Procedure 

3.5 The Test Application Process 

When a test vector is about to be scanned in, the Automated Test Equipment (ATE) 

reads its skip value to determine the number of rows that must be skipped. 



 

33 

3.5. THE TEST APPLICATION PROCESS 

A skip value of s, tells the ATE to skip the elements of the rst s rows of the vector and 

scan in the rest. Simultaneously, the binary data within the scan register is shifted up 

s times to accommodate the incoming binary data. The new test vector within the scan 

register is then applied to the CUT for the MISR to capture the response. After all the 

test vectors have been applied, the compressed response (signature) is scanned out of 

the MISR and compared with the signature of a 

fault-free circuit.  



 

34 

Chapter 4 

Sample Implementation and Testing 

Consider the circuit in Figure 4.1(a). Let the following stuck-at faults, a/0, b/0, c/0, e/1 

and F/1 be targeted. In addition, let the stuck-open faults (SOpFs) at Q3, Q4, Q7 and Q8 

be also targeted. Using standard automatic test pattern generation (ATPG) algorithms, 

the test vectors in Table 4.1 can be obtained for the stuck-at faults. The test pairs in 

Table 4.2 can also be used to test for Stuck Open faults at Q3 and Q4 in Figure 4.1(b) 

and Q7 and Q8 in Figure 4.1(c) respectively. Putting all the vectors together, the matrix 

in Table 4.3 is one arrangement that can be used to test for the targeted faults. It is 

therefore our given matrix, A. The vectors labelled i and d are the initializing and 

dependent 

vectors respectively. 

In this example, the number of rows (representing the number of elements in a test 

vector), m is 6. The number of columns (representing the number of test vectors), n is 

12. 

Table 4.1: Test Vectors for the Stuck-at Faults 

Faults a/0 b/0 c/o e/1 F/1 

Test Vectors 

0 

0 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

1 

1 

0 

1 

0 

1 

0 

0 

 0 0 1 1 0 

 1 1 0 1 0 



 

35 

 

Figure 4.1: Example Circuits to Illustrate How the Algorithm Works 

Executing the Main Procedure 

The Main Procedure starts with the rst vector in the given matrix, A as a prospective 

starting pivot vector. Therefore, p = 1. The variable k = p so k = 1. The variables x, y 

and r are also initialised as x = 0, y = 0 and r = 6. Since the vector T1 is not a dependent 

vector, it is a valid starting pivot vector. A skip, S = 0 is therefore assigned to it, as 

shown in Table 4.4. The vector T1 is 

also not an initialising vector so the Initialising Pivot procedure is not executed. 

Moreover, the condition x > 1 is not true at this stage; therefore, no rotation is done. 

The variable k remains unchanged since y = 0. Variable x is incremented. At this stage, 

k < 12 (i.e. the number of vectors in the matrix) and vector Tk is Table 4.2: Vector 

Pairs for the Stuck-open Faults 



 

36 

Faults SOpF Q3 SOpF Q4 SOpF Q7 SOpF Q8 

Vector Pairs 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

 1 0 1 0 1 1 0 1 

 0 0 0 0 1 0 0 0 

Table 4.3: Test Vectors for all Targeted Faults, Matrix A 

Labels  i d/i d    i d  i d 

Skips             

Vectors 

0 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 

1 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 

1 0 0 0 1 0 0 1 0 1 0 0 

a (starting) pivot vector so the Pivot Cycle procedure is initiated. 

Executing the Pivot Cycle Procedure with T1 as the Pivot Vector 

In the Pivot Cycle procedure, the variables r and y remain (or are initialised as) r = 0 

and y = 0. The condition r < 6 is therefore true. The position of the vector Tk+x is less 

than the number of vectors (i.e. the condition k +x > n is false) and 

Tk+x (T2) is not a dependent vector so the Compare function is executed with  and 

 as arguments, where r = 0. There is no match so pivotFound = 0 and x is 

incremented to 2. The execution of the Compare function, with T1and T3 as arguments 

also returns false. The process of incrementing x and executing the Compare function 

continues, ignoring all dependent vectors. When x is incremented and Tk+x is found to 

be a dependent vector, it is not used as an argument. The vectors, T3, T4, T9 and T12 are 

therefore not used when encountered. In such cases, pivotFound = 0 and x is 

incremented. After T12, Table 4.4: Matrix A(1) 

Labels  i d/i d    i d  i d 

Skips 0            



 

37 

Vectors 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

 0 0 1 0 1 1 0 1 1 0 1 0 

 1 0 0 0 1 0 0 1 0 1 0 0 

there is no other vector to be compared so the condition k + x > n is true. T1 is therefore 

shifted up by one row, thereby incrementing r to 1, as shown on Table 4.5. The variable 

x is also set to 1. The Compare function is executed with the arguments  and

, where the latter argument takes values from T2 to T12. This also does not produce a 

match so r is incremented to 2 and x is reset to 1. With r = 2 and T6 as the second 

argument, the Compare function returns true when x = 5 (see Table 4.6). The 

pivotFound variable is set to 1 and a skip, S = 4 (see Section 3.2) is assigned to T6. 

Since T6 is not an initialising vector, the Initialising Pivot procedure is not executed. 

Vectors T2 up to T6 are rotated once. This brings the vector T6 to position 2, as shown 

in Table 4.7. Variable k is updated to k = 2. Variables x and y are also reset to x = 1 

and y = 0. The Pivot Cycle procedure ends. 

Table 4.5: Starting pivot row shifted up by 1 

Labels  i d/i d    i d  i d 

Skips 0            

Vectors 

1 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 

0 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

1 0 1 0 1 1 0 1 1 0 1 0 

 0 0 0 1 0 0 1 0 1 0 0 

Table 4.6: Starting pivot row shifted up by 2 

Labels  i d/i d    i d  i d 

Skips 0            

Vectors 

1 1 1 0 1 1 0 1 1 0 0 0 

0 0 0 0 1 0 1 1 0 0 1 0 

0 1 0 0 0 0 0 0 0 0 1 0 

1 0 0 1 1 1 0 1 0 1 0 1 

 0 1 0 1 1 0 1 1 0 1 0 

 0 0 0 1 0 0 1 0 1 0 0 



 

38 

Table 4.7: The second pivot vector 

Labels   i d/i d   i d  i d 

Skips 0 4         4  

Vectors 

0 

1 

1 

0 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

0 

0 

1 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

 0 1 0 1 0 1 1 1 1 0 1 0 

 1 0 0 0 0 1 0 1 0 1 0 0 

Back to the Main Procedure 

Since k < n, the Pivot Cycle procedure is executed again with T2 as the pivot 

vector. 

Executing the Pivot Cycle Procedure with T2 as the Pivot Vector 

With  and  as arguments for the Compare function, no match is found when r 

= 0 and r = 1. A match is however found at T11 when r = 2 and x = 9 (see Table 4.8). 

A skip, S = 4 is assigned to T11 and pivotFound is set to 1. Since T11 is an initialising 

vector, initExist is set to 1 and the Initialising Pivot procedure is initiated. 

Table 4.8: A match found after shifting two rows up 

Labels   i d/i d   i d  i d 

Skips 0 4         4  

Vectors 

0 0 1 1 0 1 0 1 1 0 0 0 

1 1 0 0 0 1 1 1 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 0 

0 0 0 0 1 1 0 1 0 1 0 1 

0  0 1 0 1 0 1 1 0 1 0 

1  0 0 0 1 0 1 0 1 0 0 

Executing the Initialising Pivot Procedure 

Since initExist = 1, the Initialising Pivot procedure starts by incrementing y 

to 1 and setting r to 0. Since r < m, the Compare function is executed with 

 and  and  where T12 is the dependent vector of 



 

39 

T11) as arguments. No match is found so pivotFound = 0. Variable r is also incremented 

to 1, by shifting up the pivot vector by 1. The Compare function is executed again. 

This also does not produce a match. A match is however found when r = 5 (Table 4.9) 

so pivotFound is set to 1. The dependent vector, T12, is 

assigned a skip, S = 1. Since it is not an initialising vector, the Initialising Pivot 

procedure ends with initExist = 0. 

Table 4.9: Comparing initialising and dependent vectors 

Labels   i d/i d   i d  i d 

Skips 0 4         4 1 

Vectors 

0 0 1 1 0 1 0 1 1 0 0 0 

1 1 0 0 0 1 1 1 0 0  0 

1 1 1 0 0 0 0 0 0 0  0 

0 0 0 0 1 1 0 1 0 1  1 

0  0 1 0 1 0 1 1 0  0 

1  0 0 0 1 0 1 0 1  0 

Back to the Pivot Cycle Procedure 

Vectors T3 to T12 are rotated y + 1 (i.e. 2) times. This brings T11 to the third position, 

followed by T12 in the fourth position, as shown in Table 4.10. Variable k is updated 

to 4 whilst x and y are reset to x = 1 and y = 0. The Pivot Cycle 

procedure ends. 

Table 4.10: T4 as pivot vector 

Labels   i d i d/i d   i d  

Skips 0 4 4 1         

Vectors 

0 1 0 0 1 1 0 1 0 1 1 0 

1 0 1 0 0 0 0 1 1 1 0 0 

1 0 1 0 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 1 1 0 1 0 1 

0 1 1 0 0 1 0 1 0 1 1 0 

1 0 0 0 0 0 0 1 0 1 0 1 

Back to the Main Procedure 

Since k < n, the Pivot Cycle procedure is executed again with T4 as the pivot 



 

40 

vector. 

Executing the Pivot Cycle Procedure with T4 as the Pivot Vector 

Ignoring all dependent vectors, for example T7, the Compare function with and

 as arguments returns true at T9 when r = 2 and x = 5 (see Table 4.11). The 

pivotFound variable is set to 1 and a skip, S = 4 is assigned to T9. Vectors T5 up to T9 

are rotated once, bringing T9 to the fth position, as shown in Table 

4.12. Variable k is updated as k = 5 whilst x and y are reset to x = 1 and y = 0. 

The Pivot Cycle procedure ends. 

Table 4.11: Comparison with T4 

Labels   i d i d/i d   i d  

Skips 0 4 4 1     4    

Vectors 

0 1 0 0 1 1 0 1 0 1 1 0 

1 1 1 1 0 0 0 1 1 1 0 0 

1 0 1 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 0 1 0 1 

0 1 1  0 1 0 1 0 1 1 0 

1 0 0  0 0 0 1 0 1 0 1 

Table 4.12: T5 as pivot vector 

Labels   i d  i d/i d  i d  

Skips 0 4 4 1 4        

Vectors 

0 1 0 0 0 1 1 0 1 1 1 0 

1 1 1 0 1 0 0 0 1 1 0 0 

1 0 1 0 0 1 0 0 0 0 0 0 

0 1 0 1 0 0 0 1 1 1 0 1 

0 1 1 0 0 0 1 0 1 1 1 0 

1 0 0 0 0 0 0 0 1 1 0 1 

Back to the Main Procedure 

Since k < n, the Pivot Cycle procedure is executed again with T5 as the pivot 

vector. 

Executing the Pivot Cycle Procedure with T5 as the Pivot Vector 



 

41 

Ignoring all dependent vectors, the Compare function with  and  as 

arguments returns true at T12 when r = 3 and x = 7. The pivotFound variable is set to 1 

and a skip, S = 3 is assigned to T12 (see Table 4.13). Since it is not an initialising vector, 

initExist = 0 and the Initialising Pivot procedure is not executed. Vectors T6 to T12 are 

rotated once, bringing T12 to the sixth position (Table 4.14). Variable k is updated as k 

= 6 whilst x and y are reset to x = 1 and y = 0. The Pivot Cycle procedure ends. 

Table 4.13: Comparison with T5 

Labels   i d  i d/i d  i d  

Skips 0 4 4 1 4       3 

Vectors 

0 1 0 0 0 1 1 0 1 1 1 0 

1 1 1 0 0 0 0 0 1 1 0 0 

1 0 1 0 0 1 0 0 0 0 0 0 

0 1 0 1  0 0 1 1 1 0 1 

0 1 1 0  0 1 0 1 1 1 0 

1 0 0 0  0 0 0 1 1 0 1 

Table 4.14: T6 as pivot vector 

Labels   i d   i d/i d  i d 

Skips 0 4 4 1 4 3       

Vectors 

0 1 0 0 0 0 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 0 1 1 1 0 

0 1 1 0 0 0 0 1 0 1 1 1 

1 0 0 0 0 1 0 0 0 1 1 0 

Back to the Main Procedure 

Variable k < n, so the Pivot Cycle procedure is executed again with the T6 as 

the pivot vector. 

Executing the Pivot Cycle Procedure with T6 as the Pivot Vector 

Ignoring all dependent vectors, the Compare function with  and  as 

arguments returns true at T7 when r = 3 and x = 1. The pivotFound variable is set to 1 

and a skip, S = 3 is assigned to T7 (see Table 4.15). Since it is an 



 

42 

initialising vector, initExist = 1 and the Initialising Pivot procedure is executed. 



 

43 

Table 4.15: Comparison with T6 

 

Skips 0 4 4 1 4 3 3      

Vectors 

0 1 0 0 0 1 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 1 1 0 0 0 0 0 

0 1 0 1 0  0 0 1 1 1 0 

0 1 1 0 0  0 1 0 1 1 1 

1 0 0 0 0  0 0 0 1 1 0 

Executing the Initialising Pivot Procedure 

The Initialising Pivot procedure starts by incrementing y to 1 and setting r to 

0. Since r < m, the Compare function is executed with  and  (i.e 

 and  where T8 is the dependent vector of T7) as arguments. A match is found 

when r = 2. The dependent vector, T8, is therefore assigned a skip, S = 4 (see Table 

4.16). It is also found to be an initialising vector so y is incremented to 2 and r set to 

0. The Compare function is executed again with  and  as arguments. A match 

is found when r = 1. The dependent vector, T9, is assigned a skip, S = 5 (see Table 

4.17). Since vector T9 is not an initialising vector, the Initialising Pivot procedure ends. 

Table 4.16: Comparing vectors T7 and T8 

Labels   i d   i d/i d  i d 

Skips 0 4 4 1 4 3 3 4     

Vectors 

0 1 0 0 0 0 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 1 0 0 1 1 1 0 

0 1 1 0 0 0  1 0 1 1 1 

1 0 0 0 0 1  0 0 1 1 0 

Table 4.17: Comparing vectors T8 and T9 

 

        

        



 

44 

Skips 0 4 4 1 4 3 3 4 5    

Vectors 

0 1 0 0 0 0 1 0 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 1 1 1 1 0 

0 1 1 0 0 0 0 0 0 1 1 1 

1 0 0 0 0 1 0  0 1 1 0 

Back to the Pivot Cycle Procedure 

Since the condition x > 1 is not true, no rotation is done. T9 becomes the new pivot 

vector and k is updated to 9 (i.e. k = k+y+1). The Pivot Cycle procedure ends with x = 

1 and y = 0. 

Back to the Main Procedure 

Variable k < n, so the Pivot Cycle procedure is executed again with T9 as the 

pivot vector. 

Executing the Pivot Cycle Procedure with T9 as the Pivot Vector 

With  and  as arguments for the Compare function, no match is found for r = 

0 up to r = 5 (i.e. shifting up the pivot vector 5 times), ignoring dependent vectors. 

Shifting up the pivot vector again by 1 exhausts all of its elements and r = 6 (see Table 

4.18). Since the condition r < m is false, x and r are set to 1 and 0, respectively. The 

pivotFound variable is also set to 1 and a skip, S = 0, is assigned to Tk+x (T10). 

Furthermore, since x = 1, the condition x > 1 is not true, so no rotation is done. Variable 

k is updated to k = 10 (k = k + y + 1). Variables x and y are reset to x = 1 and y = 0, if 

not already so. The Pivot 

Cycle procedure ends. 



 

45 

Table 4.18: T9 as pivot vector 

 

Skips 0 4 4 1 4 3 3 4  0   

Vectors 

0 1 0 0 0 0 1 1  1 1 1 

1 1 1 0 1 0 0 0  1 1 0 

1 0 1 0 0 0 1 0  0 0 0 

0 1 0 1 0 1 0 0  1 1 0 

0 1 1 0 0 0 0 1  1 1 1 

1 0 0 0 0 1 0 0  1 1 0 

Back to the Main Procedure 

Variable k < n so the Pivot Cycle procedure is executed again with T10 as the 

pivot vector. 

Executing the Pivot Cycle Procedure with T10 as the Pivot Vector 

The Compare function with  and  as arguments returns true at T11 when r = 0 

(no shifting is done) and x = 1. T11 is therefore assigned a skip, S = 6 (see Table 4.19). 

Since T11 is an initialising vector, initExist = 1 and the Initialising Pivot procedure is 

executed. 

Table 4.19: A match found at T11 without shifting 

Labels   i d   i d/i d  i d 

Skips 0 4 4 1 4 3 3 4 5 0 6  

Vectors 

0 1 0 0 0 0 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 0 1 1 1 0 

0 1 1 0 0 0 0 1 0 1 1 1 

1 0 0 0 0 1 0 0 0 1 1 0 

        



 

46 

Executing the Initialising Pivot Procedure 

Since initExist = 1, y is incremented to 1 and r is set to 0. With  and 

 as arguments to the Compare function, a match is found when r = 5. The 

dependent vector, T12, is therefore assigned a skip, S = 1 (see Table 4.20). T12 is 

not an initialising vector so the Initialising Pivot procedure ends. 

Table 4.20: T11 as pivot vector 

Labels   i d   i d/i d  i d 

Skips 0 4 4 1 4 3 3 4 5 0 6 1 

Vectors 

0 1 0 0 0 0 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1  0 

1 0 1 0 0 0 1 0 0 0  0 

0 1 0 1 0 1 0 0 1 1  0 

0 1 1 0 0 0 0 1 0 1  1 

1 0 0 0 0 1 0 0 0 1  0 

Back to the Pivot Cycle Procedure 

Since the condition x > 1 is not true, no rotation is done. Variable k is updated to k = 

12 (k = k+y+1). The Pivot Cycle procedure ends with x = 1 and y = 0. 

Back to the Main Procedure 

Since k = 12 the condition, k < n is false. The sum of all the skip values, PS, is therefore 

computed and assigned to the resultant matrix, A˜
(1), in Table 4.21. 

The Main Procedure continues by incrementing p to 2. In other words, T2, of 

matrix A is selected as the next prospective starting pivot vector, with an assigned skip, 

S = 0, as shown in Table 4.22. Since T2 is not a dependent vector it is a valid starting 

pivot vector. The execution of the Main procedure therefore continues till PS of A˜
(2) is 

computed and assigned to it. The same goes for all the other prospective starting pivot 

vectors of matrix A, from T3 to T12. Note however, 

4.1. RESULTS OBTAINED 



 

47 

Table 4.21: The resultant matrix A˜
(1) 

Labels   i d   i d/i d  i d 

Skips 0 4 4 1 4 3 3 4 5 0 6 1 

Vectors 

0 1 0 0 0 0 1 1 0 1 1 1 

1 1 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 0 1 1 1 0 

0 1 1 0 0 0 0 1 0 1 1 1 

1 0 0 0 0 1 0 0 0 1 1 0 

The sum of skips PS = 35 for matrix A˜
(1). 

that vectors T3, T4, T9 and T12 are dependent vectors and so they are not valid 

starting pivot vectors. Their sums of skips, PS are therefore not valid. 

Table 4.22: Selecting T2 as prospective starting pivot vector for Matrix A 

Labels  i d/i d    i d  i d 

Skips  0           

Vectors 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

 0 0 1 0 1 1 0 1 1 0 1 0 

 1 0 0 0 1 0 0 1 0 1 0 0 

4.1 Results Obtained 

When the Vector Match Algorithm is applied on the example matrix, A, a summary of 

the results obtained is shown in Table 4.23. The resultant matrices, A˜
(1) and A˜

(5), have 

the highest PS of 35. 

Since A˜
(1) has the least p, it is chosen as the optimum arrangement for minimising test 

application time. From Equations 1.1, 1.2 and 1.3, the pure scan technique without the 

Vector Match method takes 84 clock cycles to scan in all the vectors and additional 5 

clock cycles to complete the scanning out process. In all, it takes 

4.2. THE VECTOR MATCH APPROACH VERSUS OTHER APPROACHES 

Table 4.23: The PS values of the various resultant matrices, A˜
(p) 

A˜(p) PS 

A˜(1) 35 



 

48 

A˜(2) 34 

A˜(3) n/a 

A˜(4) n/a 

A˜(5) 35 

A˜(6) 27 

A˜(7) 29 

A˜(8) 29 

A˜(9) n/a 

A˜(10) 30 

A˜(11) 32 

A˜(12) n/a 

a total of 89 clock cycles to complete the testing process. With the new method, it 

takes 49 (84 −PS) clock cycles to scan in the test vectors and additional 5 clock cycles 

to scan out the test signature. This brings the whole testing process to 54 clock cycles. 

The new approach therefore gives better results compared to the pure scan technique. 

4.2 The Vector Match Approach versus other Approaches 

The Vector Match Approach can be used to enhance the e ectiveness of other 

existing approaches used in reducing test application time in the scan technique. In the 

case of using multiple scan chains, the Vector Match Approach may be applied to each 

of the scan chains simultaneously. By so doing, reduction obtained for each of the scan 

chains will contribute to the overall reduction in test application time. Similarly, this 

new approach may also be applied in the situation where scan chains are ordered. It 

may also be possible to combine this new approach and that of Abramovici. In the case 

of the latter, instead of scanning in 

4.2. THE VECTOR MATCH APPROACH VERSUS OTHER APPROACHES 

the whole of the state inputs, it may be possible for the Vector Match Approach to be 

applied to make it more e cient.  



 

49 

Chapter 5 

Conclusion and Recommendations 

The use of digital circuits has become pervasive in modern times. They can be found 

in many devices, ranging from common household appliances to critical systems such 

as those used in medicine and space exploration. It is therefore imperative that they 

perform their speci ed functions correctly. This is ensured by applying tests to them at 

the design stage. Manufactured copies of the circuit are also tested to isolate those that 

developed aws introduced by the manufacturing process. One method used for testing 

digital circuits is the Scan Technique. 

5.1 Conclusion 

In this work, the architecture of scan-based circuits and the modes of operation of the 

scan technique were studied. After reviewing the scan architecture, it was realised that 

it does not allow the re-use of patterns in already scanned-in test vectors. This is 

because the same ip- ops that hold the scanned-in vectors are the ones that capture the 

response during the test application process. As a result, an already scanned-in vector 

is cleared by the response. Consequently, every bit in all the test vectors must be 

scanned in. This makes test application time very long. To solve this problem, a new 

architecture was proposed. 

The new architecture consists of the circuit under test (CUT) with scan circuitry 

connected to its input. The output is also connected to a multiple-input signature 

register (MISR) having a serial output. The MISR is used for capturing and 

compressing the response at the output of the circuit under test during the test 

application process. The use of additional circuitry (MISR) for capturing the 

5.2. RECOMMENDATIONS 

response allows the scanned-in vector to be held in the ip- ops. As a result, repeating 

patterns in that vector can be re-used, at the cost of an incurred modest addition to 



 

50 

hardware overhead. An algorithm, called the Vector Match Algorithm (VMA), was 

developed to take advantage of repetitive patterns in test vectors by re-using them. By 

so doing, it avoids a complete scan-in of whole vectors. Time savings is achieved as a 

result. 

The Algorithm works by rearranging test vectors to achieve the optimum arrangement 

for reducing test application time. In the rearrangement process, patterns in test vectors 

are compared with that of a vector Tk, called the pivot vector. If a vector Tj, is found 

to have the longest matching pattern, it is made to follow Tk directly. The vector Tj, 

now becomes the new pivot vector for the process to continue. The rearrangement 

process also appends skip values to the test vectors. The purpose of these skip values 

is to send signals to the automated test equipment, concerning the number of bits to 

ignore in a particular vector when it is being scanned in. 

5.2 Recommendations 

The Vector Match Approach may be used together with some of the already existing 

approaches. Therefore, I recommend research work exploring the possibility of 

reducing clock cycles further by combining the proposed approach with others. 

Although this work provided a new perspective to minimising test application time in 

the scan technique, further work must be done to ascertain its usefulness as an 

alternative test application method. A suggestion is therefore being made, that a 

program based on the Vector Match Algorithm be written and run on test vectors of 

some benchmark circuits for a more rigorous evaluation. Layouts of benchmark 

circuits, based on the new scan architecture, should also be developed 

for fabrication. 

References 

[1] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design. 

McGraw-Hill, 2005. 



 

51 

[2] N. Jha and S. Gupta, Testing of Digital Systems. Cambridge University Press, 

2003. 

[3] M. Williams and J. Angell, Enhancing testability of large-scale integrated circuits 

via test points and additional logic, in IEEE Trans. on Computers, 1973. 

[4] E. B. Eichelberger and T. W. Williams, A logic design structure for design for 

testability, in Proc. Design Automation Conference, 1977. 

[5] R. Rajsuman, Iddq testing for cmos vlsi, Proceedings of the IEEE, vol. 88, April 

2000. 

[6] J. P. Hayes, Fault modeling, in IEEE Design & Test of Computers, vol. 2, 1985. 

[7] J. Abraham and W. Fuchs, Fault and error models for vlsi, in Proceedings of the 

IEEE, 1986. 

[8] J. H. Patel, Stuck-at fault: A fault model for the next millennium, in Proceedings 

of the Proceedings International Test Conference, 1998. 

[9] Y. Malaiya and S. Su, A new fault model and testing technique for cmos devices, 

in Proc. Int. Test Conference, 1982. 

[10] S. Reddy, M. Reddy, and V. Agrawal, Robust tests for stuck-open faults in cmos 

combinational circuits, in Proc. Int. Symposium Fault-Tolerant Computing, 1984. 

References 

[11] Y. Malaiya, Testing stuck-on faults in cmos integrated circuits, in Proc. Int. 

Conference on Computer-Aided Design, 1984. 

[12] J. M. Soden, R. K. Treece, M. R. Taylor, and C. F. Hawkins, Cmos ic stuckopen 

fault electrical e ects and design consideration, in International Test Conference, 

1989. 

[13] M. Abramovici and P. R. Menon, A practical approach to fault simulation and 

test generation for bridging faults, in IEEE Transactions on Computers, 1985. 



 

52 

[14] J. M. Acken and S. D. Millman, Accurate modelling and simulation of bridging 

faults, in Proceedings of the Custom Integrated Circuits Conference, 1991. 

[15] E. Hsieh, R. Rasmussen, L. Vidunas, and W. Davis, Delay test generation, in 

Proc. Design Automation Conference, 1977. 

[16] J. Lesser and J. Shedletsky, An experimental delay test generator for lsi logic, in 

IEEE Transactions on Computers, 1980. 

[17] S. Narayanan and M. A. Breuer, Asynchronous multiple scan chains, in 

Proceedings of VLSI Test Symposium, 1995. 

[18] S. Narayanan, R. Gupta, and M. A. Breuer, Optimal con guring of multiple scan 

chains, in IEEE Trans. on Computers, 1993. 

[19] M. Abramovici, K. B. Rajan, and D. T. Miller, Freeze: A new approach for testing 

sequential circuits, in Proceedings of the Design Automation Con- 

ference, 1992. 

[20] S. Narayanan, C. Njinda, and M. A. Breuer, Optimal sequencing of scan registers, 

in Proceedings of International Test Conference, 1992. 

References 

[21] S. Narayanan, Scan Chaining and Test Scheduling in an Integrated Scan Design 

System. PhD thesis, University of Southern California, Los Angeles, 

CA., 1994. 


