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Background. Helicobacter pylori coinfection in human immunodeficiency virus (HIV) patients has been asso-
ciated with higher CD4+ cell counts and lower HIV-1 viral loads, with the underlying mechanisms being unknown.
The objective of this study was to investigate the impact ofH. pylori infection on markers of T-cell activation in HIV-
positive and HIV-negative individuals.

Methods. In a cross-sectional, observational study, HIV patients (n = 457) and HIV-negative blood donors
(n = 79) presenting to an HIV clinic in Ghana were enrolled. Data on clinical and sociodemographic parameters,
CD4+/CD8+ T-cell counts, and HIV-1 viral load were recorded. Helicobacter pylori status was tested using a
stool antigen test. Cell surface and intracellular markers related to T-cell immune activation and turnover were quan-
tified by flow cytometry and compared according to HIV and H. pylori status.

Results. Helicobacter pylori infection was associated with decreased markers of CD4+ T-cell activation (HLA-
DR+CD38+CD4+; 22.55% vs 32.70%; P = .002), cell proliferation (Ki67; 15.10% vs 26.80%; P = .016), and immune
exhaustion (PD-1; 32.45% vs 40.00%; P = .005) in 243 antiretroviral therapy (ART)–naive patients, but not in 214
patients on ART. In HIV-negative individuals, H. pylori infection was associated with decreased frequencies of ac-
tivated CD4+ and CD8+ T cells (6.31% vs 10.40%; P = .014 and 18.70% vs 34.85%, P = .006, respectively).

Conclusions. Our findings suggest that H. pylori coinfection effectuates a systemic immune modulatory effect with
decreased T-cell activation in HIV-positive, ART-naive patients but also in HIV-negative individuals. This finding might,
in part, explain the observed association of H. pylori infection with favorable parameters of HIV disease progression.

Clinical Trials Registration. Clinicaltrials.gov NCT01897909.
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Human immunodeficiency virus (HIV) infection caus-
es depletion of CD4+ T cells. Ongoing HIV viral

replication results in progressive depletion of CD4+ T
cells, expansion of CD8+ T cells, and, correspondingly,
a low CD4+/CD8+ cell ratio [1, 2]. Antiretroviral ther-
apy (ART) has led to a clear decline in morbidity and
mortality among HIV-infected patients, mainly
through its sustained suppression of HIV replication.
However, treatment-mediated immune reconstitution
is often incomplete, even after years of viral suppression
[3]. Inflammation and T-cell activation remain elevated
and CD4+ T-cell counts often fail to achieve normal
levels [4]. Persistent immune activation is a hallmark
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of HIV infection, resulting in exhaustion of the regenerative
capacities of the immune system and consecutively in
immunodeficiency and AIDS [5]. Furthermore, numerous
non-HIV–related complications such as cardiovascular diseas-
es, osteoporosis, neurocognitive decline, and non-AIDS associ-
ated cancer can be considered direct or indirect consequences of
a chronic inflammatory status [6]. Several factors contribute to
the chronic, generalized immune activation observed in HIV-
infected individuals. In addition to HIV itself, HIV-mediated
breakdown of the gut mucosal barrier and subsequent chronic
exposure to intestinal microbial products such as lipopolysac-
charide, exposure to other pathogens such as cytomegalovirus,
or pyroptosis-induced cell death with subsequent release of
proinflammatory cytokines might contribute to immune activa-
tion and HIV pathology [7, 8].

Helicobacter pylori is a gram-negative bacterium with a high
prevalence of up to 85% in sub-Saharan Africa, the region that
is also most affected by the HIV epidemic [9].Helicobacter pylori
is usually acquired during childhood and persistently colonizes
the human stomach or duodenum [9]. The infection may con-
tribute to the development of chronic gastritis, which can lead
to peptic ulcer disease, gastric adenocarcinoma, and mucosa-
associated lymphoid tissue lymphoma [10].

There is evidence that chronic H. pylori infection modulates
the systemic immune response. Protective effects of H. pylori
against the development of allergic asthma, inflammatory
bowel diseases, and tuberculosis infection have been demonstrat-
ed [11–14]. It was shown that H. pylori infection is associated
with enhanced interferon-gamma (IFN- γ) responses to tubercu-
losis [15].On the other hand,H. pylori has been linked to a num-
ber of extraintestinal pathologies, including cardiovascular
diseases, chronic urticaria, rosacea, Sjögren syndrome, and idio-
pathic thrombocytic purpura, in addition to pathologic changes
of the gastric mucosa [16].Furthermore,H. pylori–induced hypo-
chlorydria leads to changes in the gastric microbiota composi-
tion, potentially resulting in an altered intestinal colonization
and possible associations with pathogens such as Shigella or
Vibrio cholerae [17, 18].

Potential regulatory properties on systemic immune response,
especially on the activation of peripheral T lymphocytes, could be
of particular interest for HIV pathology, since antiinflammatory
drugs have been shown to be associated with a more favorable
course of HIV disease [19, 20]. However, only a few studies
with smaller sample sizes have investigated markers of activated
peripheral regulatory T cells (Tregs) in H. pylori–positive per-
sons, and those studies found inconsistent conclusions [21–23].
Furthermore, no data on associations between H. pylori and the
systemic immune response and chronic inflammation in people
living with HIV have been published to date. Hence, in the pre-
sent study, we investigated the association between H. pylori in-
fection and markers of immune activation (HLA-DR+CD38+),

cell proliferation (Ki67), immune senescence (CD57), and im-
mune exhaustion (PD-1) on T-cell subsets in a large HIV cohort
and in HIV-negative controls in Ghana, West Africa.

METHODS

Study Design and Study Population
In this cross-sectional observational study, consecutive HIV-
infected patients presenting to the HIV outpatient clinic and
HIV-negative blood donors serving as controls were recruited
between November 2011 and November 2012 at the Komfo
Anokye Teaching Hospital, a tertiary referral hospital in Kumasi,
Ghana. The appropriate ethics committees in Ghana and Germa-
ny approved the study. Written informed consent was obtained
from all participants before enrollment in the study.

Data Collection and Laboratory Methods
Trained study personnel collected demographic and clinical data
using a standardized questionnaire. Blood samples were collected
in EDTA tubes for analysis of CD4+/CD8+ T-cell counts, using a
FACSCalibur flow cytometer (Becton Dickinson, Mountain
View, California). Peripheral blood mononuclear cells (PBMCs)
were isolated by centrifugation of heparinized venous blood on a
Ficoll/Hypaque (Biocoll Seperating Solution, Biochrom AG,
Berlin, Germany) density gradient. Cells were washed in phos-
phate-buffered saline and resuspended in Roswell Park Memorial
Institute 1640 medium (both Gibco Invitrogen, Carlsbad, Cali-
fornia) supplemented with heat-inactivated fetal calf serum
(Biochrom AG, Berlin, Germany). PBMCs were cryopreserved
and shipped to Germany on liquid nitrogen. EDTA plasma and
native stool samples were freshly frozen and stored at−80°C until
being transported to Germany on dry ice.

Stool was tested for H. pylori using the RidaScreen FemtoLab
H. pylori stool antigen test (R-Biopharm AG, Darmstadt,
Germany). HIV-1 viral load was measured using the RealTime
HIV-1 polymerase chain reaction system (Abbott Diagnostics,
Wiesbaden, Germany). The same tests, except viral load analysis,
were applied to cases and controls.

Cell surface markers for immune activation and immune ex-
haustion/function were stained using a fluorochrome-conjugated
mouse anti-humanmonoclonal antibody combination in a single
panel: anti-CD3-APC-H7, anti-CD4-V500, anti-CD8-PerCP,
anti-HLA-DR-FITC, anti-CCR7-Alexa-Flour-647 (CD197) (BD
Biosciences, Heidelberg, Germany) and anti-CD38-PE-Cy7,
anti-PD-1-V421, anti-CD57-PE, anti-CD45RA-Alexa-Flour-
700 (Biolegend, Fell, Germany). In a second panel, cell surface
markers of immune regulation and cell proliferation/cell turn-
over were stained using anti-CD3-PerCP, anti-CD4-Pacific
Blue, anti-CD8-Alexa-Flour-700, and anti-CD25-PE-Cy7 (BD
Biosciences, Heidelberg, Germany). The stained cells were fixated
and permeabilized (FoxP3 staining buffer set, eBioscience,
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Frankfurt a. M., Germany) for intracellular staining using anti-
FOX-P3-PE (Biolegend, Fell, Germany) and anti-Ki-67-Alexa-
Flour-647 (BD Biosciences, Heidelberg, Germany). Flow cyto-
metric data were acquired using the LSRII flow cytometer (BD
Biosciences, Heidelberg, Germany), and acquisition was set to
500 000 cells/sample for panel 1 and 1 000 000 cells/sample for
panel 2. Compensation was conducted with antibody capture
beads (BD CompBeads Set Anti-Mouse Ig, κ, BD Biosciences,
Heidelberg, Germany), stained separately with the individual
fluorochrome-conjugated monoclonal antibodies used in all sam-
ples. Flow cytometry measurements were performed in runs of 20
samples, each including samples of HIV-positive individuals and
HIV-negative controls. Cutoffs for CD38 and HLA-DR expres-
sion were defined in an HIV-negative sample on the naive
(CCR7+CD45RA+) T-cell population, typically expressing
CD38, but only negligible amounts of HLA-DR, and uniformly
applied to all samples of 1 run (Figure 1). A fluorescent minus
one control experiment was done to confirm the gating strategy.
Flow cytometry measurements were analyzed using FlowJo ver-
sion 9.6.2 (Tree Star, San Carlos, California). The operator was
blinded to participants’ clinical and laboratory data. All samples
of HIV-positive individuals and HIV-negative controls were
processed according to the same protocols.

Statistical Analyses
Continuous variables were expressed as mean ± standard devia-
tion or median (interquartile range [IQR]) and compared using
the unpaired Student t test or the Wilcoxon rank sum test. Pro-
portions were compared using either the χ2 test or Fisher exact test
as appropriate. A multivariable linear regression model was used
to assess the association between the continuous outcome vari-
ables HLA-DR+CD38+ as activation marker of CD4+/CD8+ T
cells and other laboratory, clinical, and demographic parameters.
After assessing the Pearson correlation between the frequency of
HLA-DR+CD38+CD4+ and HLA-DR+CD38+CD8+ T cells and
age, gender, time since HIV diagnosis, use of co-trimoxazole or
rifampicin in the last 6 months, and H. pylori status, only param-
eters with a P value ≤.1 were included in a linear multivariate re-
gression model. The parameters CD4+ and CD8+ T-cell count
and HIV-1 viral load, being directly linked to T-cell activation,
were excluded. However, the linear multivariate regression
model was alternatively calculated including those parameters.
All P values were 2-sided, and P values <.05 were considered stat-
istically significant. Statistical analyses were conducted with R
2.15.0 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Cohort Characteristics
A total of 1095 HIV-positive patients and 107 HIV-negative
blood donors were recruited for the original cohort study,

which sought to access the sociodemographic and clinical deter-
minants of H. pylori coinfection among HIV-infected and non-
infected individuals. Flow cytometry data were available for 457
(41.7%) HIV-positive and 79 (73.8%) HIV-negative partici-
pants. Compared with the original cohort, HIV-positive and
negative patients with available flow cytometry data were not
different from those without flow cytometry data in terms of
gender, age, CD4+ cell count, or viral load.

Among patients with available flow cytometry data, HIV-
positive individuals were older (40.4 vs 33.4 years; P < .001),
had a lower CD4+/CD8+ ratio (0.42 vs 2.18; P < .001), and a
lower prevalence of H. pylori infection (56.2% vs 87.3%; P < .001)
compared with HIV-negative individuals. Markers of immune ac-
tivation, senescence, exhaustion, and cell turnover on T-cell subsets
differed significantly between HIV-positive and HIV-negative in-
dividuals (Table 1). Within the group of HIV-positive participants,
approximately half of the participants (46.8%) were receiving ART;
53.2% were ART naive. Patients on ART were more likely to be
female (81.3% vs 70.0%; P = .005), had a higher mean body
mass index (24.3 vs 22.3; P < .001), a higher median CD4+
T-cell count (483 [IQR, 301–671] vs 269 [IQR, 105–448] cells/µL;
P < .001), and were more frequently coinfected with H. pylori
(62.2% vs 51.0%; P = .017) compared with ART-naive patients.

Markers of Immune Activation According to H. pylori Status
No differences in demographics were observed within the sub-
groups when compared according to H. pylori status (Table 2).
Within the group of HIV-positive, ART-naive participants,
those with H. pylori coinfection had significantly higher median
CD4+ T-cell counts (312 [IQR, 135–484] vs 224 [IQR, 79–426]
cells/µL; P = .024) and lower median HIV-1 viral loads (4.82 vs
5.18 log10 copies/mL; P = .004). Frequencies of HLA-DR+CD38-
+CD4+ (22.55% vs 32.70%; P = .002), Ki67+CD4+ (15.1% vs
26.8%; P = .016), PD-1+CD4+ (32.45% vs 40.0%; P = .005), as
well as Ki67+CD8+ (10.3% vs 16.6%; P = .031) and PD-1+CD8+
(36.15% vs 41.50%; P = .012) T cells were lower in individuals with
vs without H. pylori coinfection (Table 3; Figure 2).

In the subgroup of HIV-positive participants on ART,
H. pylori infection was associated with higher CD4+/CD8+ ra-
tios (0.59 vs 0.43; P = .010) and a trend toward lower frequencies
of CD25+FoxP3+CD4+ T cells (1.83% vs 2.44%; P = .059). No
differences regarding markers for immune activation, exhaus-
tion, or proliferation could be detected between H. pylori–
positive vs H. pylori–negative individuals (Table 3). Interestingly,
frequencies of CD4+ and CD8+ T cells expressing the activation
markers HLA-DR+CD38+ were lower in HIV-negative blood
donors with H. pylori compared with those without H. pylori in-
fection (median 6.31 vs 10.40; P = .014 and 18.70 vs 34.85;
P = .006, respectively) (Figure 2, Supplementary Figure 1). They
also had a trend toward higher CD4+/CD8+ ratios (2.22 [IQR,
1.79–3.05] vs 1.77 [IQR, 1.01–2.38]; P = .087; Table 3).
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Independent Predictors of Immune Activation
In the multivariate linear regression analysis, a negative H. py-
lori status was identified as an independent risk factor for CD4+
T-cell activation in HIV-positive, ART-naive participants

(P = .008). In HIV patients receiving ART, female gender and
months since diagnosis of HIV infection, but not H. pylori in-
fection, were associated with immune activation. Negative
H. pylori status was identified as the only independent risk factor

Figure 1. Gating strategy for HLA-DR and CD38 expression on peripheral CD4+ and CD8+ T cells of human immunodeficiency virus (HIV)–negative (panels
A and B) and HIV-positive (panels C and D) individuals. Cutoffs for CD38 and HLA-DR expression were defined in an HIV-negative sample on the respective
naive (CCR7+CD45RA+) T-cell population (panel B), typically expressing CD38 and only negligible amounts of HLA-DR, and uniformly applied to all samples
of 1 run (panels C and D).
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for increased CD4+ (P = .001) and CD8+ (P < .001) T-cell acti-
vation in HIV-negative individuals (Table 4). Also, after adjust-
ment for CD4+ T-cell count and HIV-1 viral load, H. pylori
infection was independently associated with decreased CD4+
T-cell activation in ART-naive HIV-infected individuals and
with CD4+ and CD8+ T-cell activation in HIV-negative indi-
viduals (Supplementary Table 1).

DISCUSSION

Data from epidemiologic studies suggest that the prevalence
of H. pylori infection is clearly lower in HIV-positive com-
pared with HIV-negative individuals and that it further
declines with the progression of immunodeficiency in
HIV-infected patients. Helicobacter pylori coinfection is also

associated with higher CD4+ T-cell counts and lower HIV-1
viral loads [24].

Several mechanisms have been proposed to explain this asso-
ciation. First, H. pylori infection itself could exert an effect on
the progression of, or the susceptibility to, HIV infection. Re-
cently, the importance of gastrointestinal microbiota as a deter-
minant for the systemic immune response has been recognized,
and a number of extraintestinal, immune-related implications
of H. pylori infection have been reported [16, 17, 25]. Other ex-
planations include the more frequent use of antibiotics in HIV
patients, in particular those with more advanced HIV disease,
leading to inadvertent eradication of H. pylori. Results from
our original cohort study could, however, not explain differenc-
es in H. pylori prevalence by more frequent use of antibiotics or
socioeconomic status in HIV-positive patients.

Table 1. Immunological Parameters According to Human Immunodeficiency Virus Status

Variable, Median (Interquartile Range) HIV Positive, n = 457 HIV Negative, n = 79

CD4+ T-cell count/μL 380 (184–567) 957 (769–1134)**

CD8+ T-cell count/μL 854 (610–1335) 420 (309–617)**
CD4+/CD8+ T-cell ratio 0.42 (0.21–0.69) 2.18 (1.69–2.96)**

HLA-DR+CD38+CD4+ (%) 17.90 (10.10–31.90) 6.69 (4.96–9.43)**

Ki67+CD4+ (%) 11.90 (6.98–26.25) 4.77 (3.80–5.75)**
PD-1+CD4+ (%) 34.10 (23.40–48.50) 31.00 (20.15–35.95)*

CD57+CD4+ (%) 16.30 (9.47–27.70) 12.80 (8.46–24.95)

CD25+Foxp3+CD4+ (%) 2.53 (1.50–4.43) 1.59 (1.03–2.26)**
HLA-DR+CD38+CD8+ (%) 40.60 (27.30–54.50) 19.20 (15.50–28.05)**

Ki67+CD8+ (%) 10.03 (6.04–17.48) 4.70 (3.55–5.88)**

PD-1+CD8+ (%) 30.40 (18.70–43.60) 15.30 (9.54–20.60)**
CD57+CD8+ (%) 50.20 (39.60–61.00) 61.10 (42.65–72.10)**

Abbreviation: HIV, human immunodeficiency virus.

*P < .01; **P < .001.

Table 2. Cohort Characteristics According to Helicobacter pylori Status

Characteristic

HIV Positive, Antiretroviral
Therapy Naive

HIV Positive on Antiretroviral
Therapy HIV Negative

H. pylori
Positive,
n = 124

H. pylori
Negative,
n = 119

H. pylori
Positive,
n = 133

H. pylori
Negative,
n = 81

H. pylori
Positive,
n = 69

H. pylori
Negative,
n = 10

Female gender, n (%) 86 (69.36) 84 (70.59) 108 (81.20) 66 (81.48) 43 (64.18) 8 (80.0)

Age (y), mean ± SD 39.46 ± 9.58 41 ± 9.68 41 ± 8.50 40 ± 8.59 33 ± 13.32 33 ± 13.88
Bodymass index (kg/m²), mean ± SD 22.38 ± 4.01 22.2 5 ± 4.88 24.59 ± 5.52 23.80 ± 4.61 24.55 ± 5.22 24.77 ± 6.13

Anti-tuberculosis treatment, n (%) 7 (5.65) 11 (9.24) 1 (0.75) 1 (1.24) NA NA

Co-trimoxazole, n (%) 27 (21.77) 39 (32.77) 33 (24.81) 19 (23.46) NA NA
Other antibiotics, n (%) 0 0 0 0 NA NA

Months since diagnosis, median
(interquartile range)

0.0 (0.0–2.8) 0.0 (0.0–3.0) 55.0 (26.5–
83.5)

51.0 (27.25–
75.5)

NA NA

No significant differences were detected between H. pylori–positive vs H. pylori–negative individuals within each subgroup.

Abbreviations: HIV, human immunodeficiency virus; NA, not applicable; SD, standard deviation.
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There is no evidence that CD4+ T cells are needed for the main-
tenance ofH. pylori infection or that the depletion of CD4+ T cells
could lead to the loss ofH. pylori infection. Rather, T-cell respons-
es against H. pylori have been shown to be associated with gastric
inflammation and protection against H. pylori infection [26]. The
fact that the observed differences between individuals with vs
without H. pylori infection were also observed in HIV-negative
participants is another argument against this hypothesis.

It is known that the main target cells for HIV are activated
CD4+ T lymphocytes, of which the majority is located in the
lymphoid tissue of the gastrointestinal mucosa [7].Helicobacter
pylori might prevent the activation of CD4+ T cells for main-
taining its own persistence in the gastric and duodenal mucosa
via several mechanisms, thereby reducing the number of target
cells susceptible for HIV infection and possibly slowing down
the vicious circle of immune activation and HIV replication
[27, 28].

The immune response toH. pylori infection is predominantly
T-cell mediated, with Th1 and Th17 cells being major effectors
[29]. Helicobacter pylori has evolved multiple mechanisms to
evade adaptive immunity by interfering with antigen presenta-
tion and modulation of T-cell responses [30]. It has been shown
that the H. pylori vacuolating toxin (VacA) directly inhibits
T-cell activation by interfering with the maturation of dendritic
cells and antigen presentation and by inhibiting activation-
induced proliferation of T and B lymphocytes [30–33].Apparent-
ly, H. pylori is able to induce Treg responses, while inhibiting
Th17 responses [30, 34].Treg cells are increased in the gastric mu-
cosa ofH. pylori–infected patients and attenuate the inflammatory
response, among other mechanisms, by secreting the antiinflam-
matory cytokines transforming growth factor-β1 and interleukin-
10 and thus facilitate the colonization of the stomach [21].

To date, it is not clear if those mechanisms are also relevant for
the systemic immune response and thus could, in part, explain
the decreased peripheral T-cell activation observed in this
study. However, one study investigated the effect of H. pylori
eradication on the cytokine profile of patients with chronic im-
mune thrombocytopenia (cITP). Six months after eradication,
those patients who achieved cITP remission showed a significant
reduction in the concentrations of predominantly proinflamma-
tory Th1- and Th17-associated cytokines and an increase in
Treg- and Th2-associated cytokines [35]. Furthermore, it has re-
cently been noted that H. pylori infection might trigger large in-
testinal microbiota changes, with possible implications for
microbial translocation and immune activation [17, 25].

Helicobacter pylori infection, by modulating mucosal and
systemic immunity, might influence susceptibility or the clinical
course of other infections. Only 1 study has investigated the re-
lationship between H. pylori seroprevalence and malaria inci-
dence in Ugandan children; no evidence for a protective effect
against malaria was found [36]. In contrast, a protective effect ofTa
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H. pylori against tuberculosis infection associated with enhanced
IFN-γ responses has been reported in human tuberculosis case-

contact cohorts and in monkeys that underwent a tuberculosis
challenge [37].

Figure 2. Boxplot scatter dot plot showing the proportion of activated CD4+ T cells (HLA-DR+CD38+CD4+) within the 3 subgroups of human immuno-
deficiency virus (HIV)–positive, antiretroviral therapy (ART)–naive patients, HIV-positive participants on ART and HIV-negative blood donors compared ac-
cording to their Helicobacter pylori status. Intragroup comparisons were conducted using the Wilcoxon rank sum test, with *P < .05; **P < .01.

Table 4. Univariate and Multivariate Analysis of Factors Associated With Increased Immune Activation

Variable

HIV Positive, Antiretroviral
Therapy Naive, n = 243

HIV Positive on ART,
n = 214

HIV Negative,
n = 79

Univariate Multivariate Univariate Multivariate Univariate Multivariate

r P Value β-Coef P Value r P Value β-Coef P Value r P Value β-Coef P Value

Factors associated with increased HLA-DR+CD38+CD4+
Female gender −0.031 .636 0.072 .292 −0.050 .663

Age, y 0.038 .552 −0.150 .029 0.104 .184 0.037 .747

Anti-tuberculosis treatment 0.065 .315 0.070 .305 NA NA
Co-trimoxazole 0.009 .885 −0.074 .281 NA NA

Months since diagnosis −0.137 .037 −0.134 .057 −0.290 <.001 -0.088 <.001 NA NA

Helicobacter pylori positive −0.175 .006 −5.559 .008 0.044 .518 −0.359 .001 −4.923 .001
Factors associated with increased HLA-DR+CD38+CD8+

Female gender −0.074 .252 0.121 .078 4.997 .049 −0.138 .230

Age, y 0.040 .534 −0.089 .193 −0.155 .179
Anti-tuberculosis treatment 0.101 .115 0.094 .170 NA NA

Co-trimoxazole 0.096 .134 0.063 .361 NA NA

Months since diagnosis −0.102 .120 −0.212 .002 −0.098 .002 NA NA
Helicobacter pylori positive −0.075 .242 0.060 .382 −0.422 <.001 −14.098 <.001

The bold values represent P < .05.

Abbreviations: ART, antiretroviral therapy; β-Coef, multivariate linear regression coefficient (slope of regression line showing increase of outcome variable for every 1-
unit increase in each predictor); HIV, human immunodeficiency virus; NA, not applicable; r, Pearson correlation coefficient.
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This is the first study to systematically investigate the associ-
ation between H. pylori infection and systemic immune activa-
tion in HIV-positive and HIV-negative individuals. Using
multivariate regression analysis, H. pylori infection was associ-
ated with decreased markers of immune activation in CD4+ T
cells and with decreased markers of immune exhaustion and
cell turnover in CD4+ and CD8+ T cells in ART-naive HIV pa-
tients. Interestingly, H. pylori infection was also associated with
decreased frequencies of activated CD4+ and CD8+ T cells in
HIV-negative blood donors. This finding is remarkable consid-
ering the relatively small sample size of the HIV-negative con-
trol group and suggests that the observed correlation ofH. pylori
infection with decreased immune activation is not specific for
HIV-infected individuals and that the observed association in
HIV-infected participants is unlikely to be explained by con-
founders in the HIV-positive group. Furthermore, a higher
level of T-cell activation in H. pylori–negative, HIV-
uninfected individuals might potentially support the hypothesis
thatH. pylori infection decreases the susceptibility to HIV infec-
tion. Indeed, immune activation has been described as a risk
factor for the acquisition of HIV infection in the CAPRISA
004 vaccination trial [38, 39]. In another trial, an association
of CD8+ T-cell activation with increased risk of HIV infection
was reported [40]. The authors noted that identifying causes for
elevated innate immune activation could enable targeted pre-
vention measures.

The failure to detect differences in the subgroup of HIV-
infected individuals receiving ART might be explained by the
markedly decreased baseline immune activation in those
patients, together with the heterogeneity regarding duration
and kind of ART. However, those patients with H. pylori infec-
tion had significantly higher CD4+/CD8+ ratios as an indicator
for decreased immune activation compared with individuals
without H. pylori coinfection.

There are limitations of our study to be mentioned. Most im-
portantly, the causality of the observed associations cannot be
established with the cross-sectional study design used. Longitu-
dinal studies would be needed to explore the hypotheses that the
risk of HIV acquisition is decreased in H. pylori–positive vs H.
pylori–negative individuals and that H. pylori acquisition, re-
spectively eradication, is associated with alterations in immune
activation. The HIV-negative control group was smaller than
the HIV-positive group, with a higher median age and most
likely a lower risk for coinfections, making the intergroup com-
parison of immune activation problematic. However, the main
focus of this study was the intragroup analysis of immune pa-
rameters according toH. pylori status. Overall, our findings sup-
port the hypothesis that H. pylori coinfection effectuates a
systemic immune modulatory effect with decreased T-cell acti-
vation in HIV-positive, ART-naive patients and also in HIV-
negative individuals. This might, in part, explain the observed

association of H. pylori infection with favorable parameters of
HIV disease progression and other extraintestinal effects.

The mechanisms of possibly beneficial immunomodulatory
effects of H. pylori infection, which need to be characterized,
might potentially represent a new therapeutic approach. At
the same time, the high global burden of H. pylori infection
warrants the development of vaccine or eradication strategies,
emphasizing the definition of respective target groups.
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