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Abstract

An accurate prediction of the production rate of fluids from a reservoir to the

surface is essential for efficient artificial lift application in an oil field. In an oil

production field, a group of wells can be put under gas lift operation. For each

well, there will be an optimum point of gas injection and oil production rate where

the incremental oil production rate relative to an incremental gas injection rate

should be equal for all wells in the field. The optimum point for a given group of

wells was found by Jamal (2001) using the application of Lagrange Multipliers.

An approach that depends on the functional relationship between oil production

and gas injection rates. Two types of functions, quadratic and rational functions

were used to fit the gas injection against oil production data. This thesis used

spline based functions to fit the gas injection verses oil production data. Gas-

in, oil-out data fit with spline based function produced better results than both

the rational function and quadratic function with regard to both data fit and

resultant total optimum oil rate. The two methods used in this thesis were able

to increase the total oil production. However the total optimum oil production

rate for data fitting with the spline based function is found to be higher than the

total optimum oil production rate for data fitting with rational function. The

optimal value of the spline based function was found to be twice that of the

rational function.
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Chapter 1

Introduction

This chapter gives a brief introduction on the concept of gas-lift technique and

gas allocation into gas injection wells. It also discusses the problem statement

and the objective of the study. And finally describes the organization of this

thesis.

1.1 Background of the study

Most oil producing wells flow naturally without artificial stimulation when they

are first drilled. But as the wells mature the energy level falls and this affects the

production rate to fall to a level that is economically no longer profitable. In order

to increase production flow rate, artificial processes are applied to either increase

the production level or to facilitate the flow of the hydrocarbons. These processes

are classified as secondary recovery method or artificial lift. The artificial lift

supplements the natural drive effects on pressure maintenance and displacement

by employing water injection/water flooding, natural gas injection, rod pumps

also called Donkey pumps or Downhole pumps.

Gas lift technique is one of the widely used artificial lift methods in the oil field.
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This drive mechanism is identified by the presence of a gas cap over an oil zone

in an oil reservoir. The energy to produce the fluid comes from the expansion of

the gas in the gas cap and the expansion of the gas liberated from the liquid as

the pressure declines.

According to Ayatollahia et al. (2004), gas lift technique involves an injection

of a compressed high pressure gas into an injection well in order to lighten the

column fluids to allow the reservoir pressure to force the fluid to the surface.

Gas lift can be controlled for a single well to optimize production, and to reduce

slugging effects where the gas droplets collect to form large bubbles that can upset

production. In a field where a multiple of wells are put under gas lift operation,

gas is injected to each of the wells and the total oil production rate from the field

would equal to the sum of the individual oil rates. When limited gas is available,

the gas is allocated to each well in order to maximize the oil production rate from

the field. In this case, the lift gas is optimized over the wells to use available gas

in the most efficient way. For each well, there would then be an optimum point

of gas injection and oil production rate where the incremental oil production

rate relative to an incremental gas injection rate should be equal for all wells in

the field. This thesis is an extension on the previous research work by Jamal

(2001) and other researchers who applied the Lagrange Multipliers technique to

find the optimum point of gas injection seeking to maximize oil production. The

research work seeks to improve these previous works by developing a model using

the proposed constraint cubic spline algorithm by Kruger (n.d.) for accurate and

quality prediction and then applies the Lagrange’s multiplier to carry out the

optimization for oil production.
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1.2 Statement Of Problem

An ideal allocation of limited available gas to a multiple gas injection wells in a

petroleum production field has been in a core consideration for years when trying

to maximize oil production.

In view of this many optimization techniques have been applied by different re-

searchers. But irrespective of the optimization method, there should be a good

approximation method that best estimates a function that relates gas injection

to oil production for the formulation of the constrained optimization problem.

This is because, the inability to identify an appropriate function have serious

repercussion on the optimum point found.

Lagrange is one of the most useful methods for optimizing models of that nature

but its efficiency and effectiveness depends on an initial curve fitting method. In

literature most researchers have used the rational and the quadratic functions

which are global interpolation methods that is construction single equation that

fits all the data points. These methods result in smooth curves however they

are prone to severe oscillation and overshoot at intermediate points. Although,

the methods seem to give good functions for the Lagrange to produce a good

optimization result, the error of these methods tend to increase drastically as the

order n becomes large. Often, a higher degree polynomial introduces unnecessary

oscillations or wiggles. Hence, the polynomial and the rational interpolation in

this case have not been accurate.

This work seeks to identify a curve fitting that can give the best fit for the opti-

mization, find a suitable approximation method that will best lead the Lagrange

to find the appropriate optimum value.

This research aims at finding an appropriate approximation method that develops
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a suitable function for the formulation of the constrained optimization problem.

1.3 Research Objectives

The objective of this work is to improve on exiting literature to find an optimum

amount of gas to maximize oil production from an oil field on a day-to-day basis.

The investigation of developed constrained cubic spline technique will be carried

out through application to the Oil-field data which was used by Jamal (2001).

1.3.1 Specific Objectives

The objectives of this study are specifically stated as follows:

• to identify a mathematical model that can best fit real well data.

• to perform the Gas-lift performance curve with the modified cubic spline

and compare with an existing one.

• to develop a model from the best fit and carry out an optimization of oil

production with the Lagrange’s multiplier.

1.4 Outline of the study

This work has been organized into five chapters. Chapter 1 covers the concept

of gas lift system and gas allocation, statement of problem on the identification

of appropriate approximation function on gas injection and allocation of limited

available gas to multiple wells, objectives of the study and the thesis organization.

Chapter 2 covers a review of related literature on the study. Chapter 3 deals with

the methodology adopted for the study, it comprises the rational function model

and cubic spline interpolation for the curve fitting of gas injection and oil output
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rates of five gas lifted wells and the optimization procedure to find the optimum

gas for injection using Lagrange multiplier. Chapter 4 presents data analysis and

discussions of the results and Chapter 5 which is the last chapter is devoted for

conclusion and recommendations of the study.
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Chapter 2

Review of Literature

2.1 Introduction

In this chapter, some basic concepts and notations that relate to the concept of gas

lift optimization will be discussed. There will also be a review of some literature in

the area of gas lift optimization and rate allocation as well as approximations and

interpolations theories. Major theories, arguments, methodologies, approaches

and controversies in the existing literature on the subject of this study will be

discussed in this chapter.

2.2 Overview of Approximation and Interpola-

tion Theory

Curve fitting is the process of finding a smooth and continuous curve to pass

through or closer to a set of data points. According to Won et al. (2005), curve

fitting is the process of finding a curve that could best indicate the trend of a

given set of data. The curve does not have to go through the data points.
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According to Singiresu (2002), curve fitting of a set of data points can be done

using two approaches. The first approach called Collocation, that is where the

curve is made to pass through every data point. The approach is used either

when the data is known to be accurate or the data are known to be generated

by evaluating a complicated function at a discrete set of points (Singiresu, 2002).

Polynomial, trigonometric or exponential function is used to approximate a set

of data point. In some cases, piecewise curve fitting is used where a specified

function is made through sub-groups of data points.

The second approach is where the curve is made to represent the general trend

of the data. According to Singiresu (2002), this approach is useful when there

are more data points than the number of unknown coefficients or when the data

appear to have a significant error or noise. As posited by Kruger (n.d.), inter-

polation is used to estimate the value of a function between known data points

without knowing the actual function. According to Henrici. (1982), as cited in

Kruger (n.d.), interpolation methods can be divided into two main categories and

these are:

Global interpolation. These methods rely on constructing single equation that

fits all the data points. This equation is usually a high degree polynomial equa-

tion. Although these methods result in smooth curves, they are usually not well

suited for engineering applications, as they are prone to severe oscillation and

overshoot at intermediate points.

Piecewise interpolation. These methods rely on constructing a polynomial of low

degree between each pair of known data points. If a first degree polynomial is

used, it is called linear interpolation. For second and third degree polynomials,

it is called quadratic and cubic splines respectively. The higher the degree of

the spline, the smoother the curve. Splines of degree m, will have continuous
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derivatives up to degree m-1 at the data points.

Interpolation of a set of data points can be done using polynomial, spline func-

tions or Fourier series. However, polynomial interpolation is commonly used and

many numerical methods are based on polynomial approximations.

For a given set of N+1 data points (x0, y0), (x1, y1), ..., (xN , yN), the interest is to

find the N th order polynomial function that can match them.

PN = a0 + a1x+ a2x
2 + ...+ aNx

N (2.1)

The coefficients can be obtained by solving a set of algebraic equations.

a0 + a1x0 + a2x
2
0 + ...+ aNx

N
0 = y0

a0 + a1x1 + a2x
2
1 + ...+ aNx

N
1 = y1

a0 + aNx+a2x
2
N + ...+ aNx

N
N = yN

But, as the number of data points increases, so as that of the unknown variables

and equations. Consequently it may not be so easy to solve.

However, there are a number of alternative forms of expressing an interpolating

polynomial beyond the familiar format. Among them are Lagrange, Newton’s

forward and backward difference, Hermite interpolations.

According to Singiresu (2002), the errors of a single polynomial tend to increase

drastically as its order n becomes large. Singiresu (2002) said the higher order

polynomial often introduces unnecessary oscillations and wiggles. Because of this

polynomial interpolation will not be accurate. Therefore the answer to using
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information from more data points and at the same time keeping the function

true to the data behaviour is in spline interpolation. The most common spline

interpolations used are linear, quadratic, and cubic splines.

To obtain a smoother curve, cubic splines are frequently recommended. They

are generally well behaved and continuous up to the second order derivative at

the data points. Even though cubic splines are less prone to oscillation or over-

shooting than global polynomial equations, they do not prevent it. Thus, the

use of cubic splines is limited to applications where oscillation and overshoot are

acceptable or desirable (Kruger, n.d.).

2.2.1 Linear Spline

According to Singiresu (2002), linear or first order spline represents a straight

line between the data points (knots). Let n+1 data points be available as

[xi, f(xi)], i=0,1,2,....,n. The author explained that considering two neighbouring

data points [xi−1, f(xi−1)] and [xi, f(xi)], the equation of the line joining the two

points is defined as fi = f(xi−1) + f(xi)−f(xi−1)
xi−xi−1

(x − xi−1); i=1,2,...,n, where the

function fi(x) represents a set of n piecewise linear equations (splines) using the

n+1 data points and f(xi)−f(xi−1)
xi−xi−1

is the slope between xi−1 and xi.

According to Addendum (n.d.), linear spline interpolation is no different from

linear polynomial interpolation. He said linear splines still use data only from

the two consecutive data points. Also at the interior points of the data, the slope

changes abruptly. This means that the first derivative is not continuous at these

points. So this is improved by using quadratic splines.
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2.2.2 Quadratic Splines

In quadratic splines, a second order polynomial approximates the data between

two consecutive data points or knots. Singiresu (2002) explained the quadratic

spline that given xi, f(xi), i = 0, 1, 2, ..., n to denote n+1 data points, the equation

of the quadratic spline between the data points xi−1, f(xi−1) and xi, f(xi) can be

expressed as fi(x) = ai + bix + cix
2; i = 1, 2, ..., n where ai, bi and ci are the

unknown coefficients. If there are n intervals, there would be 3n coefficients to

be evaluated. To find the 3n unknowns, 3n equations need to be set up and

then simultaneously solved. According to Singiresu (2002), these 3n equations

are found by the following conditions.

1. The function value at the interior knot xi must be equal to f(xi) whether

it is computed using f(xi) or f(xi+1): That is

fi(x = xi) = ai + bixi + cix
2
i = f(xi); i = 1, 2, ..., n, (2.2)

and

fi+1(x = xi) = ai+1 + bi+1xi + ci+1x
2
i = f(xi); i = 1, 2, ..., n− 1, (2.3)

Equations 2.2 and 2.3 give (2n− 2) conditions.

2. The first and last functions, f1(x) and fn(x) must pass through the end

points x0 and xn respectively:

f1(x = x0) = a1 + b1x0 + c1x
2
0 = f(x0), (2.4)
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and

fn(x = xn) = an + bnxn + cnx
2
n = f(xn). (2.5)

3. The first derivatives or slopes of two quadratic splines are continuous at the

interior points. For example, the derivative of equation 2.2 gives the slope

as

f
′

i (x) = bi + 2xici; i = 1, 2, ..., n, (2.6)

and hence, the continuity of slope leads to

f
′

i (x = xi) = f
′

i+1(x = xi); (2.7)

that is,

bi + 2cixi = bi+1 + 2ci+1xi; i = 1, 2, ..., n− 1. (2.8)

Equation 2.8 yields (n− 1) conditions.

4. So far, the total number of equations is (3n − 1) equations. In order to

evaluate all 3n constants, one more equation is needed. There are several

possible conditions that can be used. For instance, the second derivative

can be assumed to be zero at the final point (xn). That is;

f
′′

n (x = xn) = 2cn = 0, orcn = 0

.

2.2.3 Cubic Splines

According to Won et al. (2005) the piecewise-quadratic curve is not smooth

enough to please the eyes, since the second-order derivatives of quadratic poly-

11



nomials for adjacent subintervals can not be made to conform with each other.

However, cubic splines have proven to be a good compromise between accuracy

and complexity. Consequently, the concept of cubic splines is developed as fol-

lowed. A cubic spline through a set of data points is a curve obtained by joining

each point to the next with a cubic polynomial, where adjoining cubic spline must

a have matching first and second derivative at their common point. The equation

of the cubic spline in the ith interval, [xi−1, xi] is defined as

fi(x) = ai + bix+ cix
2 + dix

3; i = 1, 2, ..., n. (2.9)

where the 4n coefficients ai, bi, ci and di for i = 1, 2, .., n.

According to Hoffman (2001) these 4n coefficients ai, bi, ci and di can be evaluated

using the following conditions:

1. The function values, f(xi) = f (i = 2, 3.....n), must be the same in the two

splines on either side of xi at all of the n−1 interior points. This constraint

yields 2(n− 1) conditions.

2. The slope or first order derivative of the two splines on either side of point

xi; must be equal at all of the n− 1 interior points.

f
′

i (xi) = f
′

i+1(xi)

. This constraint yields (n− 1) conditions.

3. The second derivative of the two splines on either side of point xi must

be equal at all of the n - 1 interior points. This constraint yields (n − 1)

conditions.

4. The first and last spline must pass through the first (i.e., x1) and last (i.e.,

12



Xn+1) points. That is, f1(X1) = f1 and fn(xn+l) = fn+1. This yields 2

conditions.

5. Two more equations are needed to obtain the polynomial uniquely. There

are various types of conditions that can be prescribed to obtain the two

equations;

• We shall consider the case of a natural spline, in which we set the two

conditions as f
′′
(x0) = 0, f

′′
(xn) = 0.

the curvature [i.e. the second derivative] must be specified at the first x1

and last xn+l points. That is, f
′′

l (x1) = f
′′
1 and f

′′
(xn+1) = f

′′

n−l. This

constraint yields 2 conditions.

2.3 Injection

There are two main groups of wells; these are injection and production wells.

The former is drilled to inject gas or water into the reservoir to boost the flow of

hydrocarbons unto the surface whiles the latter is for production of oil and gas.

Injection is done to maintain overall hydrostatic reservoir pressure and force the

fluid toward the production wells.

2.4 Artificial Lift

According to Havard (2006), production well can be free flowing or lifted. A

well that has enough down hole pressure to reach a suitable well-head production

pressure and maintain an acceptable well-flow is known as a free flowing oil well.

The one whose formation pressure is too low is termed as lifted or artificial lift.

The artificial lift is put into two groups which are pumps and gas lift.

13



Pumps

The pumps comprises those that use pumps and this is:

Rod Pumps

Sucker Rod Pumps are commonly used in land based operations. These are also

called Donkey pumps or Beam pumps. A motor drives a reciprocating beam,

connected to a polished rod passing into the tubing via a stuffing box. The

sucker rod continues down to the oil level and is connected to a plunger with a

valve (Havard, 2006).

2.4.1 Types of Gas Lift Operation

A well can be placed on continuous or intermittent lift. In a continuous flow

gas lift, the flowing bottom hole pressure remains constant for a particular set of

conditions. A continuous injection of volume of high pressure gas into a rising

stream of well fluids in such a way that useful work is done in lifting the well fluids.

Continuous lift is suitable for wells with high productivity index and reasonably

high bottom hole pressure relative to the well depth. It is a very flexible form of

artificial lift.

According to Ibrahim (2007), Tools (n.d.) wrote that continuous gas flow is a very

flexible form of artificial lift and can be used to produce liquid rates in excess

of 75000 barrels per day in larger tubing or casing flow application down to 50

barrels per day or less in smaller tubing sizes.

Figure 2.1 shows a typical continuous flow gas lift installation.
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Figure 2.1: Continuous Gas lift Flow.

In intermittent gas lift operation, the flowing bottom hole pressure differs

with a particular period of a production cycle. In this method, gas is injected to

the well in periodic intervals coinciding with fluid fill-in rate from the producing

formation into the well bore. Intermittent lift is designed to produce the oil

at the actual rate that the fluid enters the well bore from the reservoir. The

system enables the fluids to build up in the production tubing at the bottom

of the well. High pressure injection gas is quickly injected into the production

tubing underneath the fluids which has built up and this rapidly propels it to the

surface. Then the gas injection ceases until the build up of a new fluid and the
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cycle continues. Figure 2.2 shows the principles of the intermittent gas lift cycle.

Lift type is used on wells with relatively low fluid volumes.

Figure 2.2: Intermittent Flow Gas Lift Installation.
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Figure 2.3: A Typical Gas Lift System.

Drive mechanisms

According to Dake (2002), the basic types of drive mechanisms are:
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2.4.2 Water drive

A majority of petroleum reservoirs are surrounded by aquifers on the portion of

their boundaries. The driving force for this recovery mechanism is the movement

of water into the pore spaces to replace the oil that has been produced. This create

a vast quantity of water which provides a great store of energy and that aids the

production of oil and gas. This mechanism is classified into two depending on

the geometry of the reservoir namely bottom water drive and edge water drive.

The mechanism is illustrated as ’Water Drive’ in the figure 2.4

Figure 2.4: A Typical Water Drive.

Schlumberger (2000) in work said that the water drive is one of the most

efficient of the primary drive mechanisms, capable of yielding up to 50% of the

original oil in place. This kind of mechanism is often supplemented by the injec-

tion of high pressure treated salt water into the reservoir to maintain the pressure

and ’sweep’ the oil toward the well bore.
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2.4.3 Solution gas drive

This drive mechanism is characterized with the presence of gas dissolved in oil.

Here the bubble point of gas expands as the gas escapes from the oil. This expels

the oil from porous media driving it through the reservoir toward the well and

assists in lifting it to the surface. Figure 2.5 illustrates a solution gas drive.

Figure 2.5: A Typical Solution Gas Drive.

According to Schlumberger (2000), it is generally considered as the least ef-

fective type of drive, yielding only 15% to 25% of the oil originally contained in

the reservoir.

2.4.4 Compaction drive

This drive mechanism might occur during depletion when rock grains are sub-

jected to stress beyond elasticity limit. It leads to a re-compaction of partially

deformed or even destroyed rock grains that might result in gradual or abrupt

reduction of the reservoir pore volume, posited by Stanghelle (2009).
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2.4.5 Gas-cap drive

This is identified by the formation of gas over the oil layer in an oil reservoir.

Since gas lighter than oil, it rises to the top of the reservoir and forms a gas cap

over the oil.

When the gas in the gas-cap expands, the energy to produce the fluids also

increases. The expansion of the gas liberated from the liquid as the pressure

declines drives the oil toward the wellbore.

High gas compressibility and the extended gas cap size ensure a long lasting

and efficient field performance. Up to 35% of the original oil in place can be

recovered under a gas-cap drive as stated in Stanghelle (2009). The effectiveness

of the recovery also depends on the on the geometry of the reservoir. Extremely

thin oil may result in very small recovery factor. Very steep dip angle allows

a good drainage of oil at the bottom of the structure. About 60% oil can be

recovered. A typical gas cap drive is shown in the figure 2.6.

Figure 2.6: A Typical Gas Cap Drive.

The reservoir geometry is an important factor on the efficiency of the gas cap

drive. The efficiency of the drive also depends on the relative size of the gas-cap
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compared to the volume of the oil, the viscosity and the vertical permeability.

2.4.6 History of Gas Lift

The first use of gas lift was to remove water from mines in Chemnitz, Hungary

in the mid 18th century by (Shaw, 1939). But according to Cloud (1937), gas lift

was first used in the oil industry in 1864 for wells in Pennsylvania. This was called

a ’well blower’ which was a system that consisted of an air-filled pipe connected

to the tubing that blew compressed air into the bottom of the well to reduce oil

density and increase well production rates. In Texas around 1900 gas lift with air

was first used in large-scale oilfield applications, and in 1920 natural gas replaced

air as the lifting gas of choice because it had a lower risk of explosion.

At first, gas was injected essentially uncontrolled into the bottom of the well and

gas lift application was limited to shallow wells because of low injection pressures

attainable (Gabor, 2005). In the mid 1930 the invention of a spring-operated

differential gas lift valve and the development of a stepwise unloading process

consisting of multiple well injection points allowed gas lift to be used for wells of

even greater depths. The valve opened if there was enough pressure difference

between casing and tubing, and allowed a more controlled gas injection. These

valves were fixed in place on the tubing. Some other valves were developed that

could be mechanically opened from the surface but all these had reliability prob-

lems and if they failed the entire tubing and valve had to be replaced presented

by Brown (1980).

According to King (1944), the first pressure-operated gas lift valve which uses a

pressurized bellows instead of a mechanical spring to control gas injection was

presented in 1944. Later there was an invention of wire line retrievable valves

which allows the valve to be replaced in the event of malfunction without replac-
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ing the entire tubing.

2.4.7 Gas Lift Optimization, Rate Allocation and Well

selection

Many researchers have conducted various studies on gas lift optimization system.

A description of a non-linear optimization problem with constraints associated

with the optimal distribution of the lift gas was given by Sharma et al. (2012).

A non-linear objective function was developed using a simple dynamic model of

the oil field where the decision variables represent the lift gas flow rate set points

of each oil well of the field. The lift gas optimization problem was solved using

the ’fmincon’ solver found in MATLAB. As an alternative and for verification,

hill climbing method was used in solving the optimization problem. Using these

two methods, it was shown that after the optimization, the total oil production

is increased by about 4%. For multiple oil wells sharing lift gas from a common

source, a cascade control strategy along with a non-linear steady state optimizer

behaves as a self-optimizing control structure when the total supply of lift gas

is assumed to be the only input disturbance present in the process. Simulation

results showed that repeated optimization performed after the first time opti-

mization under the presence of the input disturbance has no effect in the total

oil production.

Hatton & Potter (2011) used SAS/OR optimization techniques to provide quick

results using a scalable (from 1 to n well) solution. Background on artificial

injection to orient the reader, theory on the mathematical formulation of the op-

timization, and the SAS code with results was described.

A study of the implementation of improving traditional method by using portfolio

selection theory that generates several combination of gas lift injection rate was
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done by Piyawat (2010). Piyawat (2010) introduced a new approach for well se-

lection, portfolio theory method, and reviewed what the portfolio theory method

is, how it can be applied and how the oil field operation in Thailand can gain

more value through the use of portfolio theory method.

Schlumberger-Doll Research engaged in a study to streamlining the complexity

and speed of the optimization process. The approach focused on reducing the

number of mathematical steps, and new optimization algorithms (Schlumberger,

n.d.)

Lo and Holden applied linear programming to find which wells is to be opened,

partially opened or closed. They assumed that each well could produce any oil

rate between zero and the maximal oil rate, and that the water cut and gas-oil

ratio were the same for all rates (i.e. no gas or water coning)as indicated in

Jamal (2001). The method used is able to handle multiple constraints on oil,

water, liquid, and gas production for groups of wells (or all) Bieker et al. (2006).

Allah (2007) discussed the use of a Multi-phase Flow Meter to optimize gas lift

field operations. This in particular compares analysis methods individual well’s

performance using multi flow meter versus Standard Nodal Analysis. It also

tackles GUPCO’s field experience of gas lift offshore operations. Sugiarso (1995)

conducted a study on gas lift optimization for limited gas supply using gas lift

optimization allocation and nodal analysis software. Accurate measurement of

field and well test data and close monitoring of the gas lift system resulted in a

total oil gain of 1250 barrels per day.

Use of programmable logic controllers was reported by Knott (1991) in offshore

oil field for controlling production from gas lifted wells, with well data being

transmitted through radio link between the controllers and the on-board control

room. An optimum production flow rate was maintained for each well by con-
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trolling the operation of the well-head choke valves and valves on the lift gas

lines Knott (1991). Stewart et al. (1989) decreased orifice sizes of the gas lift

valves and redesigned the gas lift headers to remove the problems of slugging

and hydrate formation. The compressor suction pressure had to be lowered due

to increasing water cuts. Computer-based distributed control systems were used

for determining optimum gas injection rate for each well. Back-pressure on gas

lift wells was minimized by replacing flow line chokes with elbow spool pieces

effecting an increase of 3000 barrels per day of oil production.

Well evaluation software was used by Stinson (1988) for analysing the design of

a gas lift system. Effects of tubing size, gas injection pressure, separator pressure

and gas injection volume on production rates and compressor horsepower require-

ments for gas lift wells were studied using this software. Laing (1986) described

production optimization from gas lift wells by conducting special training for op-

erators, analysing flowing pressure and temperature surveys, replacing defective

gas lift valves, measuring correctly injection gas flow rate to each well, twinning

surface flow line and improving gas lift design techniques. Injection points were

bracketed for future or uncertain conditions. Leonard (1984) described a closed-

loop gas lift system where software was used to generate well performance curves

for optimization calculations. The top valves were changed to spring-loaded valves

in order to avoid the effects of excessive temperature differentials caused by the

permafrost during unloading.

A strategy for gas lift allocation and production well selection based on the in-

cremental gas oil ratio and formation gas oil ratio concepts was implemented by

Stoisits et al. (1994) in order to increase the oil production from a compression

capacity limited field. The total oil production from the field increased by approx-

imately 10,000 barrels per day as a result of the optimization strategy. Coltharp
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& Khokhar (1984) described a computer based control system to monitor and

control the operation of the gas lifted wells. The control system maximized the

oil production by automatically controlling the gas injection rates within specified

limits and also by maintaining constant supply of available gas to high producing

wells following the shut down of any compressor.

An economic approach to oil production and gas allocation in continuous gas lift

was discussed by Clegg (1982) The optimal gas injection rate, defined as the rate

resulting in the highest present value profit after tax, would be less than the rates

achieving maximum oil production and maximum current operating cash income.

The study indicated that the maximum oil flow is usually not the best economic

point of operation. Everitt (1994) showed that gas-lift optimization efforts in a

large mature field could reduce the gas lift requirements by 50%. Everitt (1994)

significantly reduced the compression costs and markedly improved the field’s

financial performance. The lift gas requirements were minimized by elimination

of heading problems by installing a smaller orifice at the point of injection. Ad-

junta & Majek (1994) reported uses of high-performance personal computer and

intelligent remote terminal unit for optimizing the remote control of gas injection

and surveillance of offshore gas lifted wells. The steady-state production curve of

a well was generated with the use of a solar-powered well-head monitor. A com-

puter program fitted this curve with a third degree polynomial to determine the

optimal gas injection rate which was used as the set point in the control system

network. The flow/no-flow condition of the well was determined by installing a

nozzle on the well discharge side.

Systems analysis techniques were applied by Amondin & Jackson (1996) for opti-

mizing gas lift allocation in a group of gas lifted wells. An optimization software

was used to determine the optimal gas allocation rates from the analysis of well
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performance curves modelled with a polynomial function. The optimization al-

gorithm also handled the choke settings in surrounding naturally flowing wells. ?

applied non-linear optimization algorithms to a field model that was composed

of a reservoir model, a well model with gas lift, a choke model and a separator

model. The combination of the production parameters such as tubing diameter,

separator pressure, gas injection depth and volume of gas injection was looked for

optimizing the net present value of the model. The genetic algorithm optimiza-

tion techniques were found to be both stable and efficient to address these sorts

of optimization problems. Programmable logic controller was used by Lematayer

& Miret (1991) to increase the gas-lift efficiency with an increase in oil produc-

tion and a decrease in gas injection. Tubing head temperature was used as the

production rate indicator, which was maximized by adjusting the gas injection

rate.

Application of a genetic algorithm was described by Mantecon (1983) to the prob-

lem of assigning optimum gas injection rates to a group of wells given an available

total gas supply for the field. The productivity of the field increased by approxi-

mately 20% with respect to the approach based on individual well optimization.

Mantecon (1983) presented a multi-stage optimization program giving emphasis

on individual well optimization, improving gas lift design technique, converting to

other artificial lift methods, improving system diagnostics, field personnel train-

ing and enhancing engineering communication. Significant improvements were

found in individual well profitability, optimizing injection gas usage, well moni-

toring and data acquisition. Cooksey & Pool (1995) discussed the application of

automated control system in optimizing continuous flow gas lift operations. The

controllers could be used with centralized master station direction or as stand-

alone products. Local controllers when they were not continuously dependent on
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the central master station performed better in optimizing the operations of gas

lifted wells.

An artificial lift allocation program, based on a personal computer was used by

A. Woodyard (1989) to improve the productivity of gas lifted wells. The wells

were identified for shut-in or reallocation based on their injection gas-oil ratios.

The program provided comparison between a correlation-based well gradient and

the latest survey of pressure at depth. Changes in wellhead pressures during

reallocation of injected gas were not considered by the program. Kanu (1992)

proposed gas lift production optimization with data gathering, systems analysis,

gas allocation, gas lift valve placement and evaluation and implementation. Well

performance was reviewed by plotting tubing and casing pressures before imple-

menting allocation calculations. The author also recommended that one team

should be responsible for both analysis and implementation of gas lift optimiza-

tion. Walsh (1994) emphasized gas lift valve quality, a workshop for setting and

testing valves, well modelling and optimization, consistent design methodology

and training of operations personnel for successful gas lift production optimiza-

tion. Methods for accurately measuring the gas injection rates and guidelines for

well re-testing were also presented. El-M. & Price (1995) developed a gas lift

allocation model simulating the combined performance of the reservoir, produc-

tion wells, flow lines and gas lift system. A multi phase fluid flow simulator was

used to generate a system performance curve for each well taking into account

any changes in reservoir pressure, well productivity index, water cut and gas lift

entry points. Bottom hole pressure surveys and pipeline profiles were checked for

making appropriate choices of multi phase flow correlations. The performance

curves were fitted with a polynomial function and optimal allocation of available

gas to each well was determined considering equal gradients in tubing or the slope
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of gas-in, oil-out curves of all producing wells.

The importance of performance analysis of gas lift valve was demonstrated by

Laing (1986) in maximizing production from gas lifted wells. When used in

conjunction with downhole pressure and temperature surveys, the performance

analysis of gas lift valve helped identify leaking valves, correct mandrel spacing,

predict the consequences of increasing surface injection pressure and develop flexi-

ble design procedures for optimizing production. Blann & Williams (n.d.) defined

the most economical gas injection pressure for a gas lift installation as one, which

resulted in the lowest compression horsepower per barrel of fluid lifted. The

other advantages associated with it were higher production rates, lower injection

gas volumes, smaller sizes of gas distribution lines and less downhole equipment.

Major factors such as bubble point pressure and solution gas oil ratio of the

produced fluid, well productivity, water-cut, wellhead back pressure, injected gas

properties, well design facilities and type of gas lift equipment were considered

to determine the most economical gas injection pressure. Redden et al. (1974)

calculated optimum distribution of available lift gas to a group of gas lifted wells

based on each well’s contribution to the profit of the system. The optimum gas

injection rate was the rate at which the expense for an added increment of gas

injection was equal to the increment of revenue returned. In case of total system

gas requirements exceeding total gas available, the gas injection rate was reduced

according to a priority ranking of the wells in such a manner that minimized the

loss of revenue.

Systems analysis techniques were applied by Brown et al. (1982) in order to op-

timize production rate and gas consumption of a continuous flow gas lift system.

Effects of well capability, tubing size, flow line size, separator and gas injection

pressures were analyzed for optimizing production from a group of wells placed
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on continuous gas lift. Increase in flow line size was recommended over lowering

of separator pressure to obtain higher production rate. Also pressure loss in the

flow line was considered in determining optimum gas injection rate. Kanu (1992)

showed that the application of systems analysis techniques to gas lift design im-

proved production from gas lifted wells by at least 50%. The analysis led to

changes in casing and wellhead pressures, gas oil ratios and gas lift valve settings.

With the high cost of gas compression, the improvement in gas-lift well perfor-

mance brought about by system analysis also marked an automatic improvement

in economics. Simmons (1972) defined gas lift optimization as the process of

determining gas injection rates for a group of oil wells that would result in the

highest present value operating cash income over the life of the wells. Accurate

measurements of optimum gas injection rates were very much dependent on the

use of reliable multiphase flow correlations and the analysis of the effects of vari-

ous parameters such as tubing size, separator pressure or gas lift system pressure.

Computer programs were used for both unlimited and limited gas supply. Errors

in well and cost data, inaccuracies in rate measurements and multiphase flow cor-

relations, well heading and mechanical problems all made it extremely difficult

to achieve the profits predicted by optimization programs.

Two methods were presented by Kleyweg & Dalziel (1983) to find optimal distri-

bution of the available lift-gas for a group of wells on a platform. In one method

they applied a linear programming technique to the polynomials representing the

well performance curves. They also used a step-by-step method, where the well

performance curves were scanned to find the curve with the maximum slope af-

ter all the wells had been kicked off with enough gas. The gas lift rate to the

corresponding well was then increased by one step and so on until all the avail-

able gas was distributed. Total oil rate for both methods were almost the same
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although gas allocations to individual wells varied. They suggested that step-by-

step method was more appropriate to be incorporated in an automatic gas lift

optimization system with computer control of gas lift chokes. A simulation and

optimization method based on a mathematical technique called sequential linear

programming was developed by Handley-S. et al. (2000) to determine the optimal

lift-gas allocation to networks of gas-lifted wells. The lift-gas in this case is the

associated gas produced from a group of wells in an oil field. It was shown that

apart from its use as lift-gas, the associated gas can also be used optimally for

other purposes such as for compression, for re-injection into reservoirs and for

sale.

Gas lift optimization is crucial to sustain production as oil fields mature. Several

gas lift optimization tools such as nodal analysis, gas lift optimisation allocation

model, gas lift surveillance databases and gas lift monitoring system were used

by Chia & Hussain (1999) in gas lift optimization efforts like production system

pressure reduction, well mix optimisation, gas lift training and four-point tests.

The challenges faced by them during the gas lift implementation and optimization

were dual completion gas lift operation, retrieval of tight dummy valves, emulsions

and sand production. A pressure-balance based multi phase flow network solving

technique, coupled with sequential quadratic programming was used by Dutta-

R. & Kattapuram (1997) to solve network based gas-lift allocation optimization

problems. The primary constraint in gas-lift networks was the availability of injec-

tion gas. The other constraints included compressor operation limits, production

ceiling contracts, water handling facilities and allowable operating pressures. The

overall field production improved reasonably while considerable savings could be

made in terms of time and analysis by solving the field wide allocation prob-

lem simultaneously. Buitrago et al. (1996) used a global optimization technique
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for determining the optimum gas injection rate for a group of wells in order to

maximize the total oil production rate for a given total amount of gas without

restriction in the well response and the number of wells in the system.

Optimization of a continuous flow gas-lift system was carried out by Zheng-G. &

Ramstad (1988) by maximizing the daily cash income from the productions of the

gas lifted wells subject to various system constraints such as limited total liquid

production rate, limited total gas production rate, limited individual well liquid

production rates and limited lift-gas supply. Sensitivity analysis of the optimum

results with respect to changes in system parameters were also presented in the

work. Lo (n.d.) also considered multiple production constraints such as field rates

of gas, water and liquid to find optimal allocation of continuous lift gas to wells

for maximizing the total oil rate from the field. The optimum marginal gas oil

ratio, at which a well had to operate depended on its water oil ratio and was

different for each well. Edwards et al. (1990) established a gas-lift optimization

and production allocation model for manifolded sub sea wells. A multi-phase

simulator was used to generate well performance curves, which were installed in

the data base of the model. Optimal gas allocation from limited gas to each well

was found using the model by maximizing total oil rate from the field. The anal-

ysis was subject to the constrained optimum that the gradients of gas-in, oil-out

curves of all producing wells were equal.

A personal computer based gas lift workstation was presented by A. H. Woodyard

(1988) in order to perform gradient computations, historical survey matches, find

the proper injection depth for current well conditions and determine the corre-

sponding optimum injection rate for each well. The workstation contained an

artificial lift allocation program based on a database and analytical programs.

Using the program response curves were generated for each well between their
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gas injection and oil output rates and the optimal gas allocation to each well

was found according to the principal of equal slope. Kanu (1992) presented the

formulation of an economic slope based on the concept that the profit from in-

cremental recovery of oil should be equal to the cost of additional gas injected to

effect that production. This economic slope was used to allocate a total amount

of gas at the optimal economic point for a group of wells.
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Chapter 3

Methodology

Theoretical background and review of related literature in the second chapter

provides more understanding of this chapter. This thesis provides new methodol-

ogy to optimize rate allocation in gas-lift system and helps related organizations

to make decision about selecting the best performance group of gas lift well and

amount of gas to be injected in each gas injection well to ensure maximum oil

production. The methodology is based on Rational function with Least squares

and Cubic Spline interpolations for curve fitting and Lagrange’s Multiplier for the

optimization. This chapter emphasizes the use of LaGrange’s Multipliers to find

equal point for gas allocation considering limited gas available. In addition, the

effects of the type of function used to fit the curve are demonstrated. In order to

test for the effectiveness of the method, the value of the square of the correlation

coefficient, R2 is found to indicate the goodness of the data fit. The following

algorithm outlines the steps involve in the calculation.

1. Tabulation of Gas-In Oil-Out Data for each well.

2. Curve fit well data with trial functions using least Square Method of fitting

and the cubic spline method.
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3. Calculation of LaGrange Multiplier and Optimum Gas injection rates

4. Calculation of Optimum Oil production rates

The weighted average squared correlation coefficient is calculated to find

the contributions made by types of interpolation used to fit the curve.

3.1 Curve fitting of Data

The data, gas injection (α) and oil production (σ) from each individual well are

fit by two approximation methods: (1) Least Square Rational Function and (2)

Cubic Spline interpolations:

3.1.1 Curve Fitting of Data using Rational Function Method

The gas injection and oil production rates are fit by using Rational function

for each well. The oil production rate (σ) measured in STB/D is considered as

dependent variable where the gas injection rate (α) measured in MSCF/D is the

independent variable. Coefficients of the function a, b and c are determined by

the least square method. The rational function is defined as

σ =
a+ cα

1 + bα
. (3.1)

With the least square coefficients (a, b, and c) and the oil output rates for the

function for the fit are calculated for each well. The oil production rates from

the data calculated from the rational function fits are plotted against the gas

injection rates.

Using the gas injection and oil out put in well one the least square derivation

for rational function is presented as below: Since the rational function is non-

linear, an iterative procedure is used to determine the coefficients of the function.
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This is illustrated below:

Step one: The function to be minimized to determine the least square coeffi-

cients, is defined as follows:

SMIN =
5∑
i=1

(
σi −

(a+ cαi)

(1 + bαi)

)2

=
5∑
i=1

(σi + bαiσi − a− cαi)2

(1 + bαi)2

(3.2)

Step two: The squared denominator at the right hand side of Equation 3.2 is

initially set to unity. So the Equation 3.2 reduces to:

SMIN =
5∑
i=1

(σi + bαiσi − a− cαi)2 (3.3)

The necessary conditions for minimizing SMIN are obtained from Equation

3.3 as follows:

∂SMIN

∂a
= 2

5∑
i=1

(σi + bαiσi − a− cαi)(−1) = 0 (3.4)

∂SMIN

∂b
= 2

5∑
i=1

(σi + bαiσi − a− cαi)(α1σ1) = 0 (3.5)

and

∂SMIN

∂c
= 2

5∑
i=1

(σi + bαiσi − a− cαi)(−α1) = 0 (3.6)

Rearrangement of these conditions leads to the following equations:

5a− b
5∑
i=1

αiσi + c
5∑
i=1

αi =
5∑
i=1

σi (3.7)
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a
5∑
i=1

α1 − b
5∑
i=1

α2
iσi + c

5∑
i=1

α2
i =

5∑
i=1

αiσi (3.8)

and

a
5∑
i=1

α1σi − b
5∑
i=1

α2
iσ

2
i + c

5∑
i=1

α2
iσi =

5∑
i=1

αiσ
2
i (3.9)

The above three equations are solved simultaneously to obtain the values of

the least square coefficients as follows:

a =
Da

D
(3.10)

b =
Db

D
(3.11)

and

c =
Dc

D
(3.12)

where the determinants (D) are defined as follows:

Da =

∣∣∣∣∣∣∣∣∣∣

∑5
i=1 σi −

∑5
i=1 αiσi

∑5
i=1 αi∑5

i=1 αiσi −
∑5

i=1 α
2
iσi

∑5
i=1 α

2
i∑5

i=1 αiσ
2
i −

∑5
i=1 α

2
iσ

2
i

∑5
i=1 α

2
iσi

∣∣∣∣∣∣∣∣∣∣

Db =

∣∣∣∣∣∣∣∣∣∣
5 −

∑5
i=1 σi

∑5
i=1 αi∑5

i=1 αi −
∑5

i=1 αiσi
∑5

i=1 α
2
i∑5

i=1 αiσi −
∑5

i=1 αiσ
2
i

∑5
i=1 α

2
iσi

∣∣∣∣∣∣∣∣∣∣
and

Dc =

∣∣∣∣∣∣∣∣∣∣
5 −

∑5
i=1 αiσi

∑5
i=1 σi∑5

i=1 αi −
∑5

i=1 α
2
iσi

∑5
i=1 αiσi∑5

i=1 αiσi −
∑5

i=1 α
2
iσ

2
i

∑5
i=1 αiσ

2
i

∣∣∣∣∣∣∣∣∣∣
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Calculating the summation terms from the data in well one that is in Table (A.1),

the result is presented in the table below

Table 3.1: Summation terms for well one∑5
i=1 αi 2526.75∑5
i=1 α

2
i 2365778.063∑5

i=1 αiσ
2
i 2602341880∑5

i=1 α
2
iσ

2
i 3.08322E4-12∑5

i=1 α
2
iσi 722696955.2∑5

i=1 αiσi 740627.25∑5
i=1 σi 1122

After a number of iterations the least square coefficients a,b and c finally

obtained as follows: a = 66.37952624 b = 0.006947628 and c= 2.34116541. In

the nutshell the least square coefficients in the five wells by the rational function

fit are tabulated as below

Table 3.2: Rational function fit between gas injection and oil output rates in all
wells

Parameter Well one Well two Well three Well four Well five

a 66.3795262 13.70669684 18.73088482 41.46434637 78.8900435
b 0.006947628 0.035507572 0.033123421 0.020440884 0.009741759
c 2.34116541 6.535830025 5.61731063 5.183795835 3.596152748

The sum of the squares of the errors between the data and the function is

calculated for wells as follows:

S =
5∑
i=1

(σi −
a+ cαi
1 + bαi

)2

The sum of the squares of the errors between the data and the mean oil output

rate is calculated for the wells is also defined as:

SB =
5∑
i=1

(σi −
∑5

i=1 σi
5

)2
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Hence, the square of the correlation coefficient for the wells is calculated as:

R2 = 1− S

SB
(3.13)

The result is tabulated in Table 4.6 The weighted average value of R2 is calculated

in order to find the effects of the rational function data fit on total output from

the five wells, this is defined as:

R2 =

∑5
i=1 σiR

2
i∑5

i=1 σi
(3.14)

where R2 is the weighted average value of the square of correlation coefficient,

the numerator is the sum of the products of optimum oil output rate and square

of correlation coefficient of each well and the denominator is the total optimum

rate of oil output. The product term in the numerator takes account of the

contributions made by each well to the total production. The results are shown

in Table 4.7

3.1.2 Cubic Spline Interpolation

The cubic spline is considered as an alternative to the least square rational func-

tion for fitting well data. According to Kruger (n.d.), the cubic spline interpo-

lation is a useful technique to interpolate between known data points where a

third degree polynomial is constructed between each point. Due to its stable

and smooth characteristics, it fits the data very well and represents true well

behaviour. So the cubic spline is an appropriate choice to model the well gas in-

jection and oil output data. In his definition of cubic spline Kruger (n.d.) posited

that having a collection of known data points (α0, σ0), (α1, σ1), ... (αi−1, σi−1),

(αi, σi), (αi+1, σi+1), ... (αn, σn), to interpolate between these data points using
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cubic splines, a third degree polynomial is constructed between each point. The

equation to the left of point (αi, σi) is indicated as fi with a σ value of fi(αi)

at point αi. Similarly, the equation to the right of point (αi, σi) is indicated

as fi+1 with a σ value of fi+1(αi) at point αi. Kruger (n.d.)further said that

even though cubic splines are well behaved for many applications, it sometimes

does not prevent overshoot at intermediate points, hence his Kruger (n.d.)’s pro-

posed Constrained Cubic Splines is applied in this work. The principle behind

the proposed constrained cubic spline is to prevent overshooting by sacrificing

smoothness. This is achieved by eliminating the requirement for equal second

order derivatives at every point and replacing it with specified first order deriva-

tives. Thus, Kruger (n.d.) proposed Constrained Cubic Spline is as follows:

f ′(αi) =
2

αi+1−αi

σi+1−σi + αi−αi−1

σi−σi−1

=0 if slope changes sign at point. The slope at the end points are defined as:

f ′1(α0) =
3(σ1 − σ0)
2(α1 − α0)

− f ′(α1)

2

f ′n(αn) =
3(σn − σn−1)
2(αn − αn−1)

− f ′(αn−1)

2

Because the slope at each point is known, each spline function,can be calculated

based on the two adjacent points on each side. This is summarized in the equa-

tions below.

f ′′i (αi−1) = −2[f ′i(αi) + 2f ′i(αi−1)]

(αi − αi−1)
+

6(σi − σi−1)
(αi − αi−1)2

f ′′i (αi−1) =
2[2f ′i(αi) + f ′i(αi−1)]

(αi − αi−1)
− 6(σi − σi−1)

(αi − αi−1)2
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di =
(f ′′i (αi)− f ′′i (αi−1)

6(αi − αi−1)

ci =
αi(f

′′
i (αi−1)− αi−1f ′′i (αi)

2(αi − αi−1)

bi =
(σi − σi−1)− ci(α2

i − α2
i−1)− di(α3

i − α3
i−1)

(αi − αi−1)

ai = σi−1 − biαi−1 − ciα2
i−1 − diα3

i−1

Hence, a third degree polynomial constructed between each point is generally

defined as

fi(α) = ai + biα + ciα
2 + diα

3 (3.15)

Where the actual parameters (ai, bi, ci and di) for each of the cubic spline equa-

tions are found directly without solving a system of equations and this permits

analytical integration of the data. The implementation of C.J.C. Kruger’s pro-

posed Constrained Cubic Spline for the actual parameters ai, bi, ci and di for

each of the cubic spline equations for the various wells is presented in the table

below
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Table 3.3: Cubic Spline fit between gas injection and oil output rates in all wells

Parameter Well one Well two Well three Well four Well five

a1
14547
226

6685
297

1428
59

8185
178

17877
223

b1
1241
825

1795
1441

429
266

1406
839

2309
1259

c1
40

261093
2

20721
12

43067
19

105418
25

180208

d1
−11

376953
−1

62163
−5

94209
−11

329570
−25

540624

a2
10683
76

21287
163

16207
151

11832
79

14403
95

b2
522
911

402
1627

767
2325

385
894

578
781

c2
−331
353507

−15
29108

−23
34732

−31
44937

−27
46529

d2
1

1648448
1

2502508
1

2805837
1

3570510
−1

1259637

a3
44729
258

18647
121

3483
25

20247
100

21688
87

b3
787
2313

307
4500

121
1462

194
1985

338
1585

c3
−38
97145

−5
80068

−15
151546

−13
1663579

−17
113908

d3
1

5375471
1

55683357
1

24322566
1

48530397
1

43380272

a4
32753
153

10009
61

23623
156

20161
92

23483
80

b4
1271
9175

162
4877

20
677

141
3002

436
4847

c4
−17

248896
−3

117358
−2

84247
−9

299188
−26

460565

d4
1

56660441
1

129093750
1

132688988
1

134634607
1

73336120

Using the coefficients in Table 3.3 obtained from the C.J.C Kruger’s proposed

Constrained Cubic Spline interpolation, oil output rates for the fit are calculated

for each well from Equation (3.14). The data points and the oil output rates

calculated from the cubic spline functions are tabulated in Tables 4.1 through 4.5

3.1.3 Lagrange Multiplier with Rational Function

To find the optimum point of gas injection rate and oil output rate for each well

after fitting the gas in and oil out data, the Lagrange optimization is carried
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out. The optimum oil rate in each well is expressed as a rational function of its

optimum gas injection rate as follows

σi =
ai + ciαi
1 + biαi

(3.16)

where i = 1,2,3,4,5 is the ith well, σi are the optimum oil output rates and αi

are the optimum gas injection rate for wells 1,2,3,4 and 5. Whiles the respective

least square coefficients ai, bi and ci are also determined. The optimization is

subject to a linear equality constraint regarding the availability of limited gas for

injection. The total amount of gas available is N measured in MSCF/D. Hence

the following defines the constraint equation:

α1 + α2 + α3 + ...+ αn = N. (3.17)

where n is the number of wells. And a constraint function defined as

∅ = α1 + α2 + α3 + ...+ αn −N = 0 (3.18)

The LaGrange Multiplier relating the partial derivative of the oil rate in each

well to the partial derivative of the constraint function is as follows:

∂σi
∂αi

= λ
∂∅
∂αi

(3.19)

, where i represents the well number and (λ) is the LaGrange Multiplier.

Carrying out the partial derivatives for each well in equation 3.19 yields the

following algebraic set of non-linear equations:

λb2iα
2
i + 2λbiαi + λ− ci + aibi = 0 (3.20)
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where αi is the expression of gas injection rates of the ith, well. This set of

non-linear equation is solved using Broyden’s method of solving algebraic set of

equations. The method is able to find better optimal point.

The total optimum gas injection rate is

n∑
i=1

αi = α1 + α2 + α3 + ...+ αn (3.21)

which is equal to the total available gas for injection.

Using the least square coefficients and the optimum gas injection rate for the

wells the optimum oil output rate of the wells are calculated from the following

equation

σi =
ai + ciαi
1 + biαi

. (3.22)

Hence the total optimum oil output rates of the wells is calculated from

n∑
i=1

σi = σ1 + σ2 + σ3 + ...+ σn (3.23)

Thus the optimum gas injection and oil production rates of all wells for rational

function data fit and the value of the LaGrange Multiplier are tabulated in Table

4.13. As well as the total optimum oil output rate.

3.1.4 Lagrange Multiplier Cubic Spline Function

After fitting the gas injection and oil output rates of the wells with Cubic Spline

functions, the optimum rates of gas injection and oil output in each of the wells

are determined using the LaGrange Multiplier method. The optimum oil rate in

each well is expressed as a cubic spline function of its optimum gas injection rate

as follows:
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Cubic Spline Functions for Well one

σ1 = a1 + b1α1 + c1α
2
1 + d1α

3
1 (3.24)

σ1 = a2 + b2α1 + c2α
2
1 + d2α

3
1 (3.25)

σ1 = a3 + b3α1 + c3α
2
1 + d3α

3
1 (3.26)

σ1 = a4 + b4α1 + c4α
2
1 + d4α

3
1 (3.27)

Cubic Spline Functions for Well two

σ2 = a1 + b1α1 + c1α
2
2 + d1α

3
2 (3.28)

σ2 = a2 + b2α2 + c2α
2
2 + d2α

3
2 (3.29)

σ2 = a3 + b3α2 + c3α
2
2 + d3α

3
2 (3.30)

σ2 = a3 + b3α2 + c3α
2
2 + d3α

3
2 (3.31)

σ2 = a4 + b4α2 + c4α
2
2 + d4α

3
2 (3.32)

Cubic Spline Functions for Well three

σ3 = a1 + b1α3 + c1α
2
3 + d1α

3
3 (3.33)

σ3 = a2 + b2α3 + c2α
2
3 + d2α

3
3 (3.34)

σ3 = a3 + b3α3 + c3α
2
3 + d3α

3
3 (3.35)

σ3 = a4 + b4α3 + c4α
2
3 + d4α

3
3 (3.36)

Cubic Spline Functions for Well four

σ4 = a1 + b1α4 + c1α
2
4 + d1α

3
4 (3.37)
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σ4 = a2 + b2α4 + c2α
2
4 + d2α

3
4 (3.38)

σ4 = a3 + b3α4 + c3α
2
4 + d3α

3
4 (3.39)

σ4 = a4 + b4α4 + c4α
2
4 + d4α

3
4 (3.40)

Cubic Spline Functions for Well five

σ5 = a1 + b1α5 + c1α
2
5 + d1α

3
5 (3.41)

σ5 = a2 + b2α5 + c2α
2
5 + d2α

3
5 (3.42)

σ5 = a3 + b3α5 + c3α
2
5 + d3α

3
5 (3.43)

σ5 = a4 + b4α5 + c4α
2
5 + d4α

3
5 (3.44)

σ5 = a5 + b5α5 + c5α
2
5 + d5α

3
5 (3.45)

where σ1, σ2, σ3, σ4, and σ5 are the optimum oil output rates and α1, α2, α3, α4, andα5

are the optimum gas injection rates for wells one, two, three, four and five re-

spectively. The respective coefficients (the actual parameters) a1 through a4, b1

through b4, c1 though c4 and d1 through d4 for each of the cubic spline equations

for each well was determined by cubic spline interpolation method from the well

data. Since each well contains five (5) data points, there was four (4) segments

that is four piecewise cubic polynomials for each well, hence there was (4 × 4)

sixteen (16) coefficients to be determined by the cubic spline method for each

of the wells. and the were simplified to the following algebraic set of nonlinear

equations.

σ1 =
4∑
j=1

aj +
4∑
j=1

bjα1 +
4∑
j=1

cjα
2
1 +

4∑
j=1

djα
3
1 (3.46)

σ2 =
4∑
j=1

aj +
4∑
j=1

bjα2 +
4∑
j=1

cjα
2
2 +

4∑
j=1

djα
3
2 (3.47)
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σ3 =
4∑
j=1

aj +
4∑
j=1

bjα3 +
4∑
j=1

cjα
2
3 +

4∑
j=1

djα
3
3 (3.48)

σ4 =
4∑
j=1

aj +
4∑
j=1

bjα4 +
4∑
j=1

cjα
2
4 +

4∑
j=1

djα
3
4 (3.49)

σ5 =
4∑
j=1

aj +
4∑
j=1

bjα5 +
4∑
j=1

cjα
2
5 +

4∑
j=1

djα
3
5 (3.50)

The analysis is subject to a constraint regarding the availability of limited gas

for injection. The total amount of gas available for injection is N MSCF/D. So

the constraint equation is defined as follows:

α1 + α2 + α3 + α4 + α5 = N (3.51)

and a constraint function is defined as

∅ = α1 + α2 + α3 + α4 + α5 −N = 0 (3.52)

The LaGrange Multiplier relating the partial derivative of the oil rate in each

well to the partial derivative of the constraint function are defined as follow:

∂σ1
∂α1

= λ
∂∅
∂α1

∂σ2
∂α2

= λ
∂∅
∂α2

∂σ3
∂α3

= λ
∂∅
∂α3

∂σ4
∂α4

= λ
∂∅
∂α4
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and

∂σ5
∂α5

= λ
∂∅
∂α5

where λ is the Lagrange Multiplier. After carrying out the partial derivatives for

the wells in the equations above, the following non-linear equations are yielded:

3
4∑
j=1

djα
2
1 + 2

4∑
j=1

cjα1 +
4∑
j=1

bj − λ = 0 (3.53)

3
4∑
j=1

djα
2
2 + 2

4∑
j=1

cjα2 +
4∑
j=1

bj − λ = 0 (3.54)

3
4∑
j=1

djα
2
3 + 2

4∑
j=1

cjα3 +
4∑
j=1

bj − λ = 0 (3.55)

3
4∑
j=1

djα
2
4 + 2

4∑
j=1

cjα4 +
4∑
j=1

bj − λ = 0 (3.56)

3
4∑
j=1

djα
2
5 + 2

4∑
j=1

cjα5 +
4∑
j=1

bj − λ = 0 (3.57)

After the substitution of the of the cubic spline coefficients stated in table 3.3,

an algebraic set of n nonlinear equations in 5 unknowns are formed which can be

written in the general form as

fi(α1, α2, ..., α5) = 0 (3.58)

for i = 1,2,...5. As usual, subscripts denote vector components. To calculate for

the Lagrange’s multiplier and the optimum gas injection rates of the wells, the

Broyden’s iterative method for solving algebraic set of nonlinear equations. The

optimum rates of gas injection and oil output are presented in Table 3.14.
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Chapter 4

Analysis and Results

4.1 Introduction

Wells are grouped into production and injection wells. The production wells are

for production of oil and gas while injection wells are drilled to inject gas or

water into the reservouir. The purpose of injection is to maintain overall and

hydrostatic reservoir pressure and force the oil toward the production wells.

The efficient allocation of the injected gas into a group of continuous flow gas lifted

wells immensely enhances production of oil and gas. Obtaining the optimum

gas injection rate is important because excessive gas injection rate reduces oil

production rate and increases operation cost. To obtain the optimum gas injection

and oil production rate, all wells had been modelled properly.

This chapter presents the analysis of the study, the experimental findings and

results in optimization process have been discussed.

48



4.2 Analysis and Results

For a gas lifted oil field where multiple oil wells share the lift gas supplied by the

common source, proper allocation and distribution of the available gas is an im-

portant issue for maximizing the total oil produced from the oil production wells.

For the field with n number of gas lifted oil wells, the objective is to distribute the

available gas ensuring optimal production of oil. The amount of lift gas available

is assumed to be limited. Thus, optimization for the oil field for this case is the

task of finding out the optimal set points of the five wells. This paper describes

a non-linear optimization problem with constraints associated with the optimal

distribution of the limited lift gas. A non-linear objective function is developed

using Lagrange model of the oil field where the decision variables represent the

lift gas flow rate set points of each oil well of the field. The lift gas optimization

problem is solved using the LaGrange multiplier.

The production system with gas lift is subject to one or more constraints. Avail-

ability of injection gas is a very important factor. For limited supply of injection

gas it is very important to allocate gas to the wells according to their productivity

so that maximum benefit can be obtained from the available gas. In case of gas

shortage the wells with low productivity may even be required to be shut down so

that gas supply to higher productive wells can remain uninterrupted. Apart from

limited gas supply there may be other constraints such as water cut, formation

and producing gas oil ratios etc.

4.2.1 Results of Curve Fitting

In order to find the optimum gas allocation it is very important to obtain per-

formance curve, which is the plot of well gas injection rate versus the liquid pro-
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duction rate for a given surface gas injection pressure and shows the producing

systems response to continuous flow gas lifting. For field operations, determining

these response curves from well tests is much preferred. Proper choice of multi-

phase flow pressure drop programs and fluid property correlations is required to

obtain accurate well performance curve. Also systems analysis should be carried

out to analyze various components such as well capability, tubing size, flow-line

size and separator pressure etc. to accurately predict well performance.

In this work, well data are fit with rational function by least square method and

cubic spline interpolation method. The data points and the oil output rates cal-

culated from the rational functions are tabulated in 4.1 through 4.5. The oil

production rates from data and calculated oil output rate from the rational func-

tion fits and cubic spline interpolation model are plotted against gas injection

rates in figures 4.1 through 4.5.

As depicted by the calculated values in tables 4.1 through 4.5 and the perfor-

mance curves in the figures 4.1 through 4.5, the cubic spline interpolation model

is the best alternative to the rational function for fitting the well data since they

are flexible to handle and do represent the true well behaviour and fits the data

very well this is shown in Tables 4.1 through 4.5.

Table 4.1: Oil output rates from data and the two interpolation methods for well
one.

α, Gas Injection rate σ, Oil output rate σ, rational σ, cubic spline
(MSCF/D) (STB/D) (STB/D) (STB/D)

1.75 67 69.62998011 67
115 195 186.5579756 195
385 257 263.3390997 257
735 286 292.660964 286
1290 317 309.8119404 317
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Table 4.2: Oil output rates from data and the two interpolation methods for well
two.

α, Gas Injection rate σ, Oil output rate σ, rational σ, cubic spline
(MSCF/D) (STB/D) (STB/D) (STB/D)

2 25 25.00278081 25
155 158 157.8739039 158
380 172 172.3137542 172
650 177 176.993773 177
1100 180 179.8157803 180

Table 4.3: Oil output rates from data and the two interpolation methods for well
three.

α, Gas Injection rate σ, Oil output rate σ, rational σ, cubic spline
(MSCF/D) (STB/D) (STB/D) (STB/D)

1.75 27 26.99631064 27
95 133 133.2076266 133
290 156 155.3633103 156
575 162 162.0617496 162
1050 165 165.3710036 165

Table 4.4: Oil output rates from data and the two interpolation methods for well
four.

α, Gas Injection rate σ, Oil output rate σ, rational σ, cubic spline
(MSCF/D) (STB/D) (STB/D) (STB/D)

1.8 49 48.99256641 49
20 192 192.1627265 192
350 228 227.5843113 228
780 241 241.0795404 241
1350 246 246.1808397 246
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Table 4.5: Oil output rates from data and the two interpolation methods for well
five.

α, Gas Injection rate σ, Oil output rate σ, rational σ, cubic spline
(MSCF/D) (STB/D) (STB/D) (STB/D)

1 82 81.69038817 82
95 216 218.4013186 216
320 303 298.6520641 303
750 335 334.2039381 335
1380 346 337.775674 346

Due to the goodness of fit from the cubic spline model it is insignificant to

calculate the weighted average squared correlation coefficient, R2. However, in

order to see the goodness of data fit of the rational function the value of R2,

the square of the correlation coefficient is calculated and the resulted is shown

in table 4.6. The weighted average value of R2 is also calculated from equation

3.14.

Table 4.6: Square of the correlation coefficient for Rational function.

Parameter Well one Well two Well three Well four Well five

S 214.4054118 0.148325274 0.589952874 0.238361978 34.71676169
SB 39071.2 17513.2 13533.2 27058.8 48425.2
R2 0.99451244 0.999991531 0.999956407 0.999991191 0.999283085

Table 4.7: Effects of data fit on calculated total oil output.

Function R2, Average R2 Total oil output (STB/D)
Rational 0.998479948 1039.802114

Figures 4.1 through 4.5 show a the comparison of results from the two ap-

proximation methods (The Rational function and the Cubic Spline). Though it

can be seen that the results in some of the figures are virtually identical there is a

significant difference in the results shown in tables 4.1 through 4.5. Besides, some

of the figures show a noticeable differences between the two methods. In figure
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Figure 4.1: Plot of Oil Output versus Gas Injection for Well One.

4.1, the Rational function undergoes an abrupt change from the second point to

the last point of the interpolation. This introduces oscillation.

Alternatively, the cubic spline shows a much superior and more acceptable fit as

the curve passes through all the data points.

Figure 4.2: Plot of Oil Output versus Gas Injection for Well Two.
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Figure 4.3: Plot of Oil Output versus Gas Injection for Well Three.

Figure 4.4: Plot of Oil Output versus Gas Injection for Well Four.
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Figure 4.5: Plot of Oil Output versus Gas Injection for Well Five.
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In order to check the validity of the mathematical model, the continuous gas

lift well in tables A.1 through table A.5 were compared with the results obtained

by the interpolation methods in tables 4.1 through 4.5 and the figures 4.1 through

4.5. As shown in these tables and figures, it is noticed that though the rational

function does not give wrong predictions of oil output, that of the cubic spline

is far better, it match sa the well data. Hence, the productions will take place

according to the cubic spline function since it represents real data of the wells.

4.2.2 Results of the Optimization

The production optimization of continuous flow gas lifted wells is carried out

using the LaGrange Multiplier method subject to limited gas supply. Well data

are generated by using a well performance software program as stated by Jamal

(2001) and fit with cubic spline and rational functions by the least square method.

The optimum operating conditions are based on the concept that for each well in-

cremental oil production due to an unit increase in gas injection should be equal.

So the optimum operating points are nothing but equal slope points.

The optimum gas injection and oil production rates of all wells for rational func-

tion data fit and the value of the LaGrange Multiplier are tabulated in Table

4.8.
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Table 4.8: Optimum gas injection and oil output rates for rational function data
fit.

Lambda λ 0.202070231
Well Optimum gas injection rates Optimum oil output rates

(MSCF/D) (STB/D)
One α1 295.091 σ1 248.2594091
Two α2 125.9270512 σ2 152.9316134

Three α3 119.9383631 σ3 139.2507759
Four α4 177.7020761 σ4 207.8055049
Five α5 281.34129 σ5 291.5548112

Total 1000 Total 1039.802114

The optimum gas injection and oil production rates of all wells for cubic spline

function data fit and the value of the LaGrange Multiplier are tabulated in Table

4.9

Table 4.9: Optimum gas injection and oil output rates for cubic spline function
data fit.

Lambda λ -5.6569
Well Optimum gas injection rates Optimum oil output rates

(MSCF/D) (STB/D)
One α1 296.3784 σ1 502.1615
Two α2 382.2095 σ2 132.1152

Three α3 -192.4427 σ3 386.3273
Four α4 272.3827 σ4 516.4365
Five α5 241.4726 σ5 560.4919

Total 1000 Total 2097.5324

4.2.3 Lost Production

Curve fitting of well data with the cubic spline function gives accurate predictions

since it gives the same results as the well data. The other model, the rational

function though does not give poor fit, its results have some variations with the
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real well data. So productions do not represent optimum operating conditions

for the rational model. This creates some differences between the cubic spline

optimum oil outputs and the actual oil outputs at the rational function optimum

gas injection rates. These differences which are defined as lost productions, are

presented in Table 4.10

Table 4.10: Lost productions due to wrong predictions.

Well Rational Actual Cubic Spline optimum Lost production
optimum gas rates outputs oil rates (STB/D) (STB/D)

(MSCF/D) (STB/D)
One 295.091 248.2594091 502.1615 253.9021
Two 125.9270512 152.9316134 132.1152 -20.8164

Three 119.9383631 139.2507759 386.3273 247.0765
Four 177.7020761 207.8055049 516.4365 308.6310
Five 281.34129 291.5548112 560.4919 268.9371
Total 1000 1039.802114 2097.5324 1057.7303

58



Chapter 5

Conclusions and

Recommendations

For optimal distribution of the available lift gas among a group of five oil wells

on continuous gas lift in order to maximize the total oil production, two different

non-linear optimization problems with a linear constraint were formulated using

cubic spline function and rational function for least Squares models. The opti-

mization problems were then solved using LaGrange multiplier method subject

to the constraint of limited gas supply.

Well data were fitted with cubic spline interpolation method and rational func-

tion for least squares method and optimum gas injection and oil output rates

were determined for both functions. The two methods used by the researcher

were able to increase the total oil production. Total optimum oil production rate

for data fitting with cubic spline function is found to be 1057.7303 higher than

the total optimum oil production rate for data fitting with rational function. The

optimal value of the spline based function was found to be twice that of the ra-

tional function.

By visual inspection, examining the figures in chapter 4, the overall performance
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of the cubic spline seems most proper. As close as all of the curves do follow the

data quite well. The rational function is less predictable although the rational

function seems to have a good fit to some of the production data. Hence, from

visual inspection the cubic spline function had the best match.

Though the rational function gave results closer to real data of the well, these pro-

ductions do not represent optimum operating conditions for the rational model.

Rather the productions will take place according to the cubic spline since it rep-

resents real data of the wells. So there were differences between the cubic spline

optimum oil outputs and the actual oil outputs at the rational optimum gas in-

jection rates. These differences are shown in Table 4.10.

The cubic spline algorithm was the most suitable for adaptation and is to have

good potential and has therefore proven to be a fast algorithm suitable for the

purpose of the thesis.

Data or curve fitting plays a major role in production optimization of continu-

ous flow gas lift wells. Some basic powerful advantages for using the proposed

constrained cubic spline are: It is a relatively smooth curve; It never overshoots

intermediate values; Interpolated values can be calculated directly without solv-

ing a system of equations. But problem with spline functions is that the function

is forced to fit the data exactly. In general, it can be assumed that the data

include error this can still fit the this data with error.

B-Splines which also belong to the same family as the cubic Splines and have

the same smoothness conditions as the are therefore recommended for further

studies. As they are not forced through the data points exactly which simply

have to come close to the data point.

This study considers only one equality constraint regarding the availability of

limited lift gas. For future studies it is suggested that more constraints are added
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to the optimization by taking into consideration changes in choke position, tubing

size.
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Appendix A

Tables

Table A.1: Gas injection and Oil output rate in well one
α, Gas injection rate (MSCF/D) σ, Oil output rate (STB/D)

1.75 67
115 195
385 257
735 286
1290 317

Table A.2: Gas injection and Oil output rate in well two
α, Gas injection rate (MSCF/D) σ, Oil output rate (STB/D)

2 25
155 158
380 172
650 177
1100 180
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Table A.3: Gas injection and Oil output rate in well three
α, Gas injection rate (MSCF/D) σ, Oil output rate (STB/D)

1.75 27
95 133
290 156
575 162
1050 165

Table A.4: Gas injection and Oil output rate in well four
α, Gas injection rate (MSCF/D) σ, Oil output rate (STB/D)

1.8 49
120 192
350 228
780 241
1350 246

Table A.5: Gas injection and Oil output rate in well five
α, Gas injection rate (MSCF/D) σ, Oil output rate (STB/D)

1 82
95 216
320 303
750 335
1380 346
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Appendix B

Constrained Cubic spline

Interpolation

f unc t i on s o l u t i o n S e t = gSp l ine11 02 2013 ( )

c l c , c l e a r

s o l u t i o n S e t = [ ] ;

%dataSet = [ 1 . 7 5 67 ; 115 195 ; 385 257 ; 735 286 ; 1290 3 1 7 ] ;

%dataSet = [ 2 25 ; 155 158 ; 380 172 ; 650 177 ; 1100 1 8 0 ] ;

%dataSet = [ 1 . 7 5 27 ; 95 133 ; 290 156 ; 575 162 ; 1050 1 6 5 ] ;

%dataSet = [ 1 . 8 49 ; 120 192 ; 350 228 ; 780 241 ; 1350 2 4 6 ] ;

dataSet = [ 1 82 ; 95 216 ; 320 303 ; 750 335 ; 1380 3 4 6 ] ;

\alpha = dataSet ( : , 1 ) ;

\ sigma = dataSet ( : , 2 ) ;

n = length ( \alpha ) ;

%% s e c t i o n f o r the f i r s t d e r i v a t i v e

f o r i = 2 : n−1
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f f d ( i ) = 2/(( \alpha ( i +1) − \alpha ( i ) ) / (\ sigma ( i +1)− \ sigma ( i ) )

+( \alpha ( i ) − \alpha ( i −1))/(\ sigma ( i ) − \ sigma ( i −1)) ) ;

end

f f d (1 ) = 3∗(\ sigma (2) − \ sigma ( 1 ) ) / ( 2∗ ( \alpha (2 ) − \alpha ( 1 ) ) )

− f f d ( 2 ) / 2 ;

f f d (n) = 3∗(\ sigma (n) − \ sigma (n−1))/(2∗( \alpha (n) −

\alpha (n−1))) − f f d (n−1)/2;

f o r i = 2 : n % counter f o r the number o f segment

%% s e c t i o n f o r the second d e r i v a t i v e

f sd back = −2∗( f f d ( i ) + 2∗ f f d ( i −1))/(\ alpha ( i )−\alpha ( i −1))

+6∗(\ sigma ( i ) − \ sigma ( i −1))/( \alpha ( i )−\alpha ( i −1))ˆ2;

f s d c u r r e n t = 2∗(2∗ f f d ( i ) + f f d ( i −1))/( \alpha ( i )−\alpha ( i −1))

−6∗(\ sigma ( i ) − \ sigma ( i −1))/( \alpha ( i ) − \alpha ( i −1))ˆ2;

d( i −1)=( f s d c u r r e n t − f sd back )/ (6∗ ( \alpha ( i )−\alpha ( i −1)) ) ;

c ( i −1) = ( \alpha ( i )∗ f sd back − \alpha ( i −1)∗ f s d c u r r e n t )/

(2∗ ( \alpha ( i ) −\alpha ( i −1)) ) ;

b ( i −1) = ((\ sigma ( i ) − \ sigma ( i −1)) − c ( i −1)∗( \alpha ( i )ˆ2 −

\alpha ( i −1)ˆ2) − d( i −1)∗( \alpha ( i )ˆ3 − \alpha ( i −1)ˆ3))/

( \alpha ( i ) − \alpha ( i −1)) ;

a ( i −1) = \ sigma ( i −1) − b( i −1)∗ \alpha ( i −1) − c ( i −1)∗

\alpha ( i −1)ˆ2 − d( i −1)∗ \alpha ( i −1)ˆ3;

end

format ra t

s o l u t i o n S e t = [ [ 1 : n−1] ’ a ’ b ’ c ’ d ’ ] ;

f p r i n t f ( ’\n %f %f %f %f %f \n ’ , s o lu t i onSe t ’ ) ;
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Appendix C

Broyden’s Method

f unc t i on [ \alpha , f \alpha , \alpha \alpha ] =

newtons2 ( f , \alpha0 , TolX ,Ma \ a lpha I t e r , va ra rg in )

%newtons .m to s o l v e a s e t o f non l i n ea r eqs

% f1 ( \alpha )=0 , f 2 ( \alpha )=0 , . .

%input : f = 1ˆ st−order vec to r f tn equ iva l en t to

%a s e t o f equat ions

% \alpha0 = the i n i t i a l guess o f the s o l u t i o n

% TolX = the upper l i m i t o f | \ alpha ( k)−\alpha ( k − 1 ) |

% Ma \ a l p h a I t e r = the ma \alphaimum # of i t e r a t i o n

%output : \alpha = the po int which the

%algor i thm has reached

% f \alpha = f ( \alpha ( l a s t ) )

% \alpha \alpha = the h i s t o r y o f \alpha

h = 1e−4; TolFun = eps ; EPS = 1e−6;

f \alpha = f e v a l ( f , \alpha0 , vara rg in { : } ) ;

Nf = length ( f \alpha ) ; N \alpha = length ( \alpha0 ) ;
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i f Nf ˜= N \alpha , e r r o r ( ’ Incompat ib le dimensions

o f f and \alpha0 ! ’ ) ; end

i f narg in < 4 , Ma \ a l p h a I t e r = 100 ; end

i f narg in < 3 , TolX = EPS; end

\alpha \alpha ( 1 , : ) = \alpha0 ( : ) . ’ ;

%I n i t i a l i z e the s o l u t i o n as the i n i t i a l row vec to r

%f \alpha0 = norm( f \alpha ) ; %(1)

f o r k = 1 : Ma \ a l p h a I t e r

d \alpha = −jacob ( f , \alpha \alpha (k , : ) ,

h , vara rg in { :} )\ f \alpha (:) ;%− [ dfd \alpha ] −1∗ f \alpha

%f o r l = 1 : 3 %damping to avoid d ive rgence %(2)

%d \alpha = d \alpha /2 ; %(3)

\alpha \alpha ( k + 1 , :)=\ alpha \alpha (k , : )+ d\alpha . ’ ;

f \alpha = f e v a l ( f , \alpha \alpha ( k + 1 , : ) ,

\ vararg in { : } ) ; f \alphan = norm( f \alpha ) ;

% i f f \alphan < f \alpha0 , break ; end %(4)

%end %(5)

i f

f \alphan < TolFun | | norm(d \alpha ) < TolX , break ;

end

%f \alpha0 = f \alphan ; %(6)

end

\alpha = \alpha \alpha ( k + 1 , : ) ;

i f k == Ma \ a lpha I t e r , f p r i n t f ( ’ The best in

%d i t e r a t i o n s \n ’ ,Ma \ a l p h a I t e r ) ,

end
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f unc t i on g = jacob ( f , \alpha , h , vara rg in )

%Jacobian o f f ( \alpha )

i f narg in < 3 , h = 1e−4; end

h2 = 2∗h ; N = length ( \alpha ) ; \alpha =

\alpha ( : ) . ’ ; I = eye (N) ;

f o r n = 1 :N

g ( : , n ) = ( f e v a l ( f , \alpha + I (n , : ) ∗ h , vara rg in { :} ) . . .

− f e v a l ( f , \alpha − I (n , : ) ∗ h , vara rg in { :} ) ) ’ / h2 ;

end
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