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Abstract: Malaria is a major public health challenge in Ghana and adversely affects the productivity
and economy of the country. Although malaria is climate driven, there are limited studies
linking climate variability and disease transmission across the various agro-ecological zones
in Ghana. We used the VECTRI (vector-borne disease community model of the International
Centre for Theoretical Physics, Trieste) model with a new surface hydrology scheme to investigate
the spatio-temporal variability in malaria transmission patterns over the four agro-ecological
zones in Ghana. The model is driven using temperature and rainfall datasets obtained from
the GMet (Ghana Meteorological Agency) synoptic stations between 1981 and 2010. In addition,
the potential of the VECTRI model to simulate seasonal pattern of local scale malaria incidence
is assessed. The model results reveal that the simulated malaria transmission follows rainfall
peaks with a two-month time lag. Furthermore, malaria transmission ranges from eight to
twelve months, with minimum transmission occurring between February and April. The results
further reveal that the intra- and inter-agro-ecological variability in terms of intensity and duration
of malaria transmission are predominantly controlled by rainfall. The VECTRI simulated EIR
(Entomological Inoculation Rate) tends to agree with values obtained from field surveys across
the country. Furthermore, despite being a regional model, VECTRI demonstrates useful skill
in reproducing monthly variations in reported malaria cases from Emena hospital (a peri urban
town located within Kumasi metropolis). Although further refinements in this surface hydrology
scheme may improve VECTRI performance, VECTRI still possesses the potential to provide useful
information for malaria control in the tropics.
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1. Introduction

Malaria is hyperendemic and poses a significant public health challenge in Ghana. Despite recent
scaled up malaria treatment and control intervention strategies, malaria still remains the leading
cause of morbidity and mortality among the entire population. For example, between 2000 and 2011,
malaria alone accounted for an average of about 40% of all out-patient attendance (OPD) in public
health facilities [1–3]. Similarly, in 2011, the Ghana Health Service (GHS) [3] report indicated that
suspected malaria cases accounted for about 40.2% outpatient morbidity, 35.2% hospital admissions
and 18.1% of all recorded death at public hospitals. Most importantly, actual malaria cases are likely to
be higher than the reported cases since private health facilities and home treatment (self medication)
of the disease using both orthodox and traditional medicine are not taken into account.

In addition to health implications, malaria also presents substantial economic and developmental
challenges in Ghana. Asante and Asenso-Okyere [4] found a negative association between malaria
cases and gross domestic product (GDP). In a related model study, Sicuri et al. [5] estimated annual
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total cost of malaria treatment and prevention for children under five years to be US$37.8 million
in 2009. In addition, they estimated the expenditure for treating a single malaria episode to range
between US$2.89 and US$123 depending on disease severity. Furthermore, a large fraction of Ghana’s
health budget goes to treatment and prevention of malaria. For instance, the estimated budget for
National Malaria Control Programme (NMCP) strategic plan for effective malaria prevention and
treatment between 2008 and 2015 was US$880 million [6]. In addition, the disease is adversely affecting
sustainability of the National Health Insurance Scheme (NHIS) due to high reported cases at the various
hospitals across the country [7].

On the household level, Akazili et al. [8] found the cost of treatment of malaria to be about 34%
and 1% of the household’s income for the poor and the wealthy, respectively, in the Kassena-Nankana
district of northern Ghana. More recently, Sicuri et al. [5] estimated that about 55% of the total cost of
malaria treatment in 2009, which ranged between US$ 7.99 and US$ 229.24 per malaria episode, were
borne by the patient. These clearly show that successful implementation of an effective malaria control
program will have a huge socio-economic and public health impact on the country.

Similar to sub-Saharan African countries, Anopheles gambiae sensu lato complex and Anopheles
funestus are the main malaria vectors in Ghana [9–14]. The distribution of these vectors is heterogeneous
and somehow follows climate and ecological conditions [9]. An. gambiae s.s., An. arabiensis and
An. melas are the three species within the Anopheles gambiae sensu lato complex found in Ghana [10,11].
The An. gambiae s.s. vector predominates the complex and distributed throughout the country [12].
However, the other two vectors have limited distribution within the country. An. arabiensis
predominates in the savanna region while An. melas are confined along the coast [11,12]. Regarding
An. funestus, Dadzie et al. [14] found An. funestus sensu stricto as the only malaria transmission vector
in the sub group found in the country. Although An. funestus sensu stricto are found all over the country,
they are the predominant and important vectors in the savanna ecological zone [14].

Three out of four main species of human malaria parasites are present in Ghana.
Plasmodium falciparum, the most severe and life threatening, is predominant in the country, accounting
for about 80% to 90% of all malaria infections. This is followed by Plasmodium malariae, which is
responsible for between 20% and 36% of malaria cases while Plasmodium ovale is less prevalent,
accounting for less than a percent (about 0.15%) of all malaria parasitemia [4,15]. Moreover, mixed
infections of Plasmodium falciparum and Plasmodium malariae are also common. For instance, in
Accra, Klinkenberg et al. [16] detected a single case of mixed infection of Plasmodium falciparum and
Plasmodium malariae for a three-month study period among children between 6 and 60 months of age.
However, 258 out of the 261 infections detected were due to Plasmodium falciparum with two cases
of Plasmodium malariae. Similarly, in the Kassena-Nankana District located within the savanna zone,
Koram et al. [17] identified 963, 63 and 36 cases of Plasmodium falciparum, Plasmodium malariae and
mixed infections of the two, respectively. In addition, Dinko et al. [18] found all the three species in the
Ahafo Ano South District of the Ashanti region, which is within the forest ecological zone.

Heterogeneities in malaria transmission dynamics across the four agro-ecological zones in Ghana
have been reported. These differences in malaria incidence are due to a combination of factors
such as vector and parasite distribution [12,19], climate drivers [20,21], environment and land use
change [22,23], socioeconomic factors [24] and human host behavior. For instance, within the coastal,
forest and transition zones with bimodal rainfall regime, malaria transmission tends to be perennial
and intense but with slightly higher cases during the wet season [20,21,25]. In the savanna zone
with unimodal rainfall and a long dry season, malaria transmission, although intense, shows more
pronounced seasonality relative to the other zones. For example, Appawu et al. [10] observed
transmission peaks between June and October in the Kassena-Nankana District in northern Ghana.
Similarly, in the same district, Baird et al. [26] found malaria incidence density of five, which increased
to seven infections/person/year in the dry and wet seasons, respectively, among children under two
years. Despite this, non-climatic factors such as urban agriculture, open drains and irrigation, among
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others, introduce local hot spot transmission within the various ecological zones, which modify local
disease dynamics.

Rainfall, temperature, wind speed and relative humidity are the key climate drivers that influence
the spatio-temporal malaria transmission. Areas like Ghana, where mean temperatures are within the
range that supports malaria transmission, variations in rainfall play a key role in understanding disease
dynamics. Consequently, most studies attempt to associate malaria incidence with rainfall. However,
contrasting results have been observed. For instance, the Atonsu (urban), Emena (peri-urban) and
Akropong (rural) towns within the Ashanti region of Ghana, Tay et al. [27] observed weak but variable
relationships between rainfall and hospital morbidity data at various time lags. Klutse et al. [28]
found a poor correlation between rainfall and malaria at Winneba (coastal) and Ejura (transition) zones.
Interestingly, a strong but negative correlation was observed for these two locations with a two-month
lag time between malaria and rainfall. In the forest zone, Danuor et al. [29] observed a strong negative
correlation between rainfall and malaria incidence. Similarly, in the forest zone, Krefis et al. [30],
using a regression model, found about two-month time lag between rainfall and malaria incidence.
This nonlinearity between rainfall and malaria intensity has been observed elsewhere [31,32].

Due to this strong nonlinear relationship between malaria incidence and rainfall, a model
that incorporates surface hydrology (e.g., the International Centre for Theoretical Physics,
Trieste (VECTRI) Tompkins and Ermert [33]) is likely to perform better in predicting malaria incidence
relative to models that use rainfall as proxy for aquatic habitats. For instance, rainfall in addition to
local scale hydrological conditions control mosquito developmental habitat dynamics and, to some
extent, its productivity [34,35]. More importantly, in Ghana, studies linking climate fluctuations and
malaria transmission across the various agro-ecological zones are limited. The few available studies
are based on a single or at most two ecological zones and over a short time period [27–29]. Thus,
it becomes clearly difficult to understand malaria transmission dynamics over the entire country.

The aim of this paper is to investigate the spatio-temporal variability in malaria transmission
patterns over the four agro-ecological zones using the VECTRI model [33] driven by rainfall and
temperature datasets obtained from the 22 synoptic stations operated by the Ghana Meteorological
Agency (hereafter GMet) between 1981 and 2010. Although the potential of using VECTRI to give
advance warning about malaria incidence has been explored [36], this model has never been evaluated
on a local scale. Consequently, the potential of the model to predict local scale seasonal variability in
malaria transmission is assessed using monthly recorded malaria cases from Emena hospital (a peri
urban town located within Kumasi metropolis). Results evaluation demonstrates the ability of the
VECTRI model to provide malaria early warning information over Ghana, and the model also possesses
the potential to predict malaria seasonality at a local scale.

2. Method and Data

2.1. Study Area and Data

In this study, daily rainfall and maximum and minimum temperatures were obtained from
GMet (Accra, Ghana). The 22 GMet synoptic stations data over the country for a 30-year period
(1981–2010) were considered. The name and location of these stations across the four agro-ecological
zones are shown in Figure 1. These data were used as inputs to drive the VECTRI model to simulate
climate-driven malaria transmission dynamics over the country. In addition, daily observations of
the same variables were obtained from GMet operated agro-meteorological station (Agromet) located
at Kwame Nkrumah University of Science and Technology (KNUST) campus in Kumasi (Figure 1)
to drive the model to evaluate VECTRI performance on a local scale. The Agromet station is located
about 4 km from the Emena hospital.
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Figure 1. Map showing the 22 Ghana Meteorological Agency (GMet) synoptic stations grouped into
the four agro-ecological zones. The Emena hospital and Agromet station are also shown.

Rainfall is highly variable in Ghana in terms of its onset and cessation times across different zones
but exhibits less variability within the zones. These spatio-temporal variability in rainfall is mainly
controlled by the north- and southward movements of the Inter-Tropical Discontinuity (ITD) [37–39],
usually referred to as West African Monsoon system (WAM).
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2.2. Malaria Morbidity Data

Annual malaria morbidity data between 1995 and 2010 were compiled from the Ghana Health
Service annual Facts and Figures bulletin obtained from the Ghana Ministry of Health Ghana Ministry
of Health [40]. These morbidity data come from only public health facilities that may not be accurate
representation of the disease within the population. In addition, monthly records of confirmed malaria
cases data were obtained from Emena (a peri urban town located within Kumasi metropolis) hospital
from January 2010 to July 2013. The location of the Emena hospital is shown in Figure 1. These two
datasets are used to evaluate the VECTRI model at national and local scales, respectively.

2.3. VECTRI Model

Tompkins et al. [33] developed VECTRI, a grid-point distributed open source dynamical model
that simulates malaria transmission dynamics running with a daily integration timestep. The model
uses a flexible spatial resolution that ranges from a single location to a regional scale (10–100 km)
depending on the resolution of the driving climate data. The VECTRI model explicitly resolves
important temperature-dependent stages such as egg-larvae-pupa, gonotrophic and sporogonic cycles.
The growth stages within these cycles are presented in arrays of bins, and the process continues to
advance once temperatures are within the range for growth. Complete description of the model is
available in Tompkins and Ermert [33].

One novel aspect of the VECTRI model is that it incorporates the human population, which
influences vector–host interaction dynamics in estimating biting rates. Consequently, the model explicitly
reproduces the reduction of Entomological Inoculation Rate (EIR) with increasing population density [41].
As a result, the model is able to differentiate heterogeneities in transmission intensity between rural,
peri-urban and urban areas.

VECTRI includes a simple surface hydrology scheme that estimates at each time step the fractional
water coverage area in each grid cell (Equation (1)). Fractional water coverage area is a sum of both
temporary and permanent developmental habitats; however, at present, spatial parametrization of
permanent water bodies is not available, but is incorporated as a user defined parameter that can be
tuned with knowledge of the area hydrology. Importantly, this scheme also indirectly controls habitat
productivity and adult density as larvae are killed once the habitat dries out. Furthermore, although
simple, the surface hydrology scheme is able to account for the negative effect of high intensity rainfall
on habitat productivity through flushing away of larvae [42].

dwpond
dt = Kw

(
P(wmax − wpond)− wpond(E + I)

)
, (1)

dwpond
dt = 2

phre f

( wre f
wpond

)p/2(
[Pwpond + Q(wmax − wpond)]

(
1 − wpond

wmax

)
− wpond(E + f Imax)

)
, (2)

where wpond is the daily net aggregated fractional water coverage in a grid cell, wmax is the maximum
fractional coverage of temporary ponds, p is the pond geometry power factor, hre f is the aggregated
reference pond water depth, wre f is the reference fractional coverage, P is the precipitation rate, E and I,
which were set to a fixed constant, are evaporation rate and infiltration rate, respectively, and Kw is a
linear constant, Imax is the maximum infiltration rate from ponds, Q is the runoff calculated from SCS
formula [43] and f is the proportion of maximum pond area factor.

Recently, Asare et al. [35] developed a simplified but comprehensive prognostic surface hydrology
scheme based on power-law geometrical relation that accounts for direct rainfall, pond overflow,
evaporation and nonlinearities of infiltration and surface run-off terms to predict surface water
area of small spatial scale mosquito developmental habitats. The scheme was further generalised
to simulate, instead of individual ponds, the temporal evolution of fractional water coverage of
all breeding sites within each grid-cell (Equation (2)). The scheme showed good performance in
predicting both evolution dynamics of individual breeding habitats under different hydrological
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conditions as well as aggregated fractional coverage of all the ponds when validated against in situ
pond measurements in Ghana. Asare et al. [44] implemented this scheme in the VECTRI model (which
is available from VECTRI Version V1.3.0 onwards) and its performance was assessed using the 10 m
resolution HYDREMATS (Hydrology, Entomology, and Malaria Transmission Simulator) model, and
Bomblies et al. [45] simulations from Banizoumbou village in Niger. The newly introduced scheme
(Equation (2)) demonstrated superior performance relative to the default scheme (Equation (1)) in
simulating seasonal and interseasonal variability in both pond water fraction and mosquito density
when compared to HYDREMATS simulations.

In this study, the VECTRI model is driven by daily rainfall and temperature measurements from
various GMet stations as input data. We integrated the model using the default parameters specified
(see Table 1 in [33]), except for the new parameters used for the revised surface hydrology scheme
(Equation (2)). The default parameter settings for the revised surface hydrology are summarized in
Table 1, and these same parameters were used for all simulations. Although all the cities where the
Gmet stations are located have varied population density, VECTRI was simulated with the same
population size of 500 inhabitants per km2. For the local scale (Emena) simulation, we used a
population of 150 inhabitants per km2. The purpose of the study is to assess how climate accounts for
malaria patterns across the various agro-ecological zones if all other considerations are equal.

Table 1. VECTRI (vector-borne disease community model of the International Centre for Theoretical
Physics, Trieste) revised surface hydrology scheme (Equation (2)) default constants.

Symbol Value Units

wmax 0.1
wre f 0.005
hre f 250 mm

p 1.5
Imax 250 mm

E 5 mm
CN 90

CN is the curve number.

3. Results and Discussion

3.1. Rainfall and Temperature Variability

The temperature observations from various synoptic stations range from 22 ◦C to 34 ◦C, which
are within the range that supports malaria transmission (Figure 2b). The high temperatures occur
mostly between February and May, while low temperatures generally occur between June and October
across all the various zones. The mean daily rain rates at the stations vary between 0 and 17 mm·day−1

(see Figure 2a). In the coastal agro-ecological zone, the major and minor rainfall peaks occurred in June
and October, respectively. Similar peaks in major and minor seasons were observed over the forest
agro-ecological zone with the exception of Abetifi, where the minor season peaked in September. In the
transitional zone, the peaks occurred in June and September for Suyani and Kete-Krachi, respectively.
However, early peaks in the major season occurred in April for Wenchi, but the minor season peak was
in September. Over the savanna zone with a unimodal rainfall regime, rainfall peaked in September
for Bole, Tamale and Yendi. However, rainfall onset was one month earlier at Navrongo and Wa.
These variations in rainfall control spatial malaria patterns.
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Figure 2. The monthly daily average (a) rainfall and (b) temperature between 1981 and 2010 for
the various GMet synoptic weather station. Different colors are used to represent different zones
(black—coastal; blue—forest; green—transition; red—north).

3.2. Model Results

Figure 3 shows VECTRI (using the V1.3.0 hydrology scheme) simulated water fraction and EIR.
The results clearly show that malaria transmission generally follows rainfall patterns. The timing of
peaks in the simulated EIR follows peaks in rainfall but with a lag time of approximately two months
(see Figures 2b and 3b). A similar lag between rainfall and EIR have been observed in the country [21].
In the savanna zone with unimodal rainfall, the model simulated a single peak in malaria transmission,
while the remaining zones with bimodal rainfall regimes simulated malaria intensity that exhibit two
peaks. In the VECTRI model, malaria transmission is sustained if simulated EIR ≥ 0.01 [33]. Based on
this, length of transmission is between 10 and 12 months for the coastal zone, all year transmission in
the forest and transition zones and between 8 and 10 months in the savanna zone. To some extent,
these results are within the range reported from field observations [46]. However, it is likely that
transmission within these zones may be different from the model results due to some effects not
accounted for in the VECTRI model. One such difference is permanent water bodies that can sustain
transmission during the dry season.

The VECTRI simulated transmission intensity (Figure 3b) also agrees with observation studies.
Appawu et al. [10] found the highest transmission between June and October for Kassena Nankana
district with Navrongo as its capital. In the same district, Kasasa et al. [13] observed mosquito bites
in September and Koram et al. [47] found lowest and highest transmission in May and November,
respectively. The model showed a similar pattern, but the range was between July and November
for Navrongo. In Accra, using hospital data, Donovan et al. [21] identified peaks in malaria either
in July or August, which is consistent with EIR peak in August followed by July simulated by the
model for Accra. In Kintampo in the transition zone, Dery et al. [20] found the peak month to be
September followed by November. This is to some extent in agreement with VECTRI simulated EIR
for the three stations located in this zone, which all peaked in November. This level of agreement
between VECTRI predicted peak month and that from field observation studies point to the fact that
VECTRI can provide valuable early warning information for malaria control.
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Figure 3. The monthly daily average vector-borne disease community model of the International
Centre for Theoretical Physics, Trieste (VECTRI) simulated (a) water fraction and (b) Entomological
Inoculation Rate (EIR) over the 30-year climatology (1981 to 2010) for various GMet synoptic weather
stations. The whites spaces indicate months where EIR was less than 0.01 (no malaria transmission).

In addition to predicting the malaria peak months across the four agro-ecological zones,
the VECTRI model was able to predict EIR values that tend to agree with observation based studies
(Figure 3b). For instance, in Accra in the coastal zone, Klinkenberg et al. [22] found EIR values
of 6.6 and 19.2 infective bites/person/year (ib/p/y) (which translates to 0.018 and 0.052 infective
bites/person/night (ib/p/n), respectively, for areas located near to and far from agricultural sites.
These were consistent with model values for Accra ranging between 0.014 and 0.173 with average
of 0.062 ib/p/n. Similarly, the model predicted EIR values (see Figure 3b) are in good agreement
with the range (0.1 and 0.7 ib/p/n) estimated by Dadzie et al. [14] from mosquitoes captured by
human landing method at some locations within the country. In addition, the mean annual EIR
value of 0.02 ib/p/n reported by Robert et al. [41] for urban city centers across sub-Saharan Africa
is within the range of simulated EIR values. However, in Navrongo, monthly VECTRI predicted
EIR values (0 to 0.587 ib/p/n) were lower but comparable to the range observed by Kasasa et al. [13]
(0 to 1.06 ib/p/n). Furthermore, at Kintampo in the transition zone, Owusu-Agyei et al. [25] measured
EIR that varies between 0.18 and 0.55 ib/p/n, which is within the range (0.023–0.702) of values from
VECTRI for simulations for the three stations in this zone. These slight differences between the VECTRI
simulated and reported EIR values from field studies may be due to the fact that the VECTRI results
are based on 30-year climatology simulations, while the field studies range from a year to about
five years. Despite this, VECTRI demonstrates its ability to simulate malaria patterns across the
different agro-ecological zones in Ghana.

Another feature of this study is the ability of the VECTRI model to combine both rainfall and
temperature effects in determining malaria transmission dynamics. While maximum rainfall and
simulated water fraction were recorded at Axim (Figures 2b and 3a), the maximum simulated EIR
(Figure 3b) occurred at Kete-Krachi. A combination of factors may have resulted in this observation.
Firstly, the high rainfall at Axim is likely to increase overflow from the ponds, which, in effect,
will reduce the productivity of the mosquito developmental habitats [42,48]. Secondly, the low
temperatures recorded at Axim (mean = 26.76 ◦C; range between 25.02 and 28.10 ◦C) relative to
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Kete-Krachi (mean = 28.08 ◦C; range between 26.17 and 30.76 ◦C) may have contributed as the
optimum temperature for malaria transmission ranges between 28 and 32 ◦C [49,50]. This confirms
that the VECTRI model is able to account for the non-linear relationship between rainfall and level of
malaria incidence.

It should be emphasized that the VECTRI model was also able to account for the significant impact
of temperature in malaria transmission dynamics. For instance, despite Abetifi (601 m elevation) and
Oda (132 m elevation) stations being located about 128 km apart and having almost similar rainfall
patterns (Figure 4a), the VECTRI simulated EIR shows consistently lower values at Abetifi relative to
Oda (Figure 4c). This observation is significantly due to the lower temperatures recorded at Abetifi
(mean = 24.68 ◦C; range between 22.78 and 26.50 ◦C) as a result of its higher altitude relative to Oda
(mean = 27.05 ◦C; range between 25.51 and 28.51 ◦C) (Figure 4b). This result clearly shows the model’s
ability to resolve the important temperature-dependent development rate for both the vector and the
parasite. In addition, the model simulated mean lower EIR value of 0.063 ib/p/n (range between
0.012 and 0.137) for Abetifi is close to the value of 0.041 ib/p/n reported by Owusu et al. [51] in
Kwahu-Mpraeso about 10 km from Abetifi. This clearly shows that malaria is still prevalent in the
high altitude areas in Ghana although transmission levels are low. Areas such as Abetifi are likely
to experience malaria epidemics during years with anomalously warm temperature as rainfall is not
limiting transmission and stands to gain a lot from advance prediction of malaria incidence that the
VECTRI model is capable of providing.

Figure 4. Comparison of observed rainfall, temperature and VECTRI simulated EIR for Abetifi and
Oda stations.

3.3. VECTRI Simulated EIR and Annual Malaria Cases

Figure 5 shows anomalies in rainfall and simulated EIR for some selected stations in each of the
zones. Generally, EIR closely follows the trend in rainfall across all the zones but exhibits interannual
variability. This is due to the fact that the mean temperature over the whole country is above the
threshold of 16 ◦C that supports malaria transmission. It is notable that the VECTRI simulations reveal
a slight upward trend from 2003 (Figure 5), which can be attributed to rainfall increase. However,
care must be taken in the interpretation of these results as critical non climatic factors were not
accounted for and the model was integrated with the same population density. There is a possibility
that the actual transmission patterns may differ from what is presented in Figure 5. For instance,
for Yendi (Figure 5d), low EIR was predicted due to the unimodal rainfall regime with a prolonged dry
season. However, actual EIR is likely to be higher if there is presence of permanent water bodies in
the area, which could serve as potential breeding grounds during the dry season to sustain malaria
transmission. Despite this, the simulated EIRs are within the range reported from field based studies,
which point to the critical importance of rainfall in controlling spatial and temporal distribution of
malaria in the country. This study serves as a baseline for future studies looking at the role of both
climatic and non-climatic factors in controlling malaria transmission intensity in Ghana.
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Figure 5. Anomalies of rainfall and simulated EIR for some selected synoptic stations in each of the
agro-ecological zones.

The average annual malaria cases from various public health facilities and average VECTRI
simulated EIR over the 22 synoptic stations between 1995 and 2010 are compared (Figure 6). Despite the
disparities in trend between EIR simulations and reported malaria cases for the first seven years
(up to 2001), there is a relatively good similarity between the two time series afterwards. The correlation
of determination value of R2 = 0.53 was observed between EIR and observed cases. It is important to
note that this comparison was based on malaria case data from only public hospitals against VECTRI
simulations from only 22 synoptic weather stations, and, therefore, interpretation should be done
cautiously. It can be seen also from Figure 6 that there is an increase in both malaria cases and
simulated EIR towards the end of the study period despite increase in intervention programs in
recent times. It is worth mentioning that Ghana introduced the NHIS in 2003, which may have led to
an increase in the number of people attending public health facilities for treatment, thereby increasing
the number of reported malaria cases during the last periods of the study. However, this effect was
not accounted for in the model, but the simulated EIR was also high during this period. This shows
that there is the need to evaluate the potential of ongoing malaria control interventions in the country.
The possibility of using VECTRI to address this challenge is the focus of future work.



Climate 2017, 5, 20 11 of 15

Figure 6. Comparison of average VECTRI simulated EIR and annual malaria morbidity from public
health facilities.

3.4. Local Scale Malaria Transmission

The output from a single station VECTRI run is compared to the Emena monthly recorded
confirmed malaria cases (Figure 7). Reported cases from the hospital indicates transmission that is
slightly stable and exhibits relatively small intraannual variability. On average, there is time lag of
about two months between the peaks of rainfall (June) and malaria incidence (August).
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The VECTRI using the new surface hydrology scheme reproduces a realistic trend in the reported
cases with correlation of determination (R2 = 0.54). Interestingly, this correlation value is higher than
the best (R2 = 0.32) obtained using rainfall directly. This value was obtained at a two-month time
lag. A similar relatively small correlation (R2 = 0.29 at a two-month lag time) between rainfall and
monthly malaria cases was observed by Tay et al. [27] at this same study location. In addition, the
simulated EIR (see Figure 7) tends to agree with the range 7.8 and 15 infective bites/person/month
(ib/p/m) for the same study location (Emena) published by Wihibeturo [52] from field based studies.
This further confirms the potential of the VECTRI model to simulate local scale malaria transmission
dynamics despite being a regional model [44]. Nevertheless, VECTRI performance could be improved
by including non-climatic factors.

4. Conclusions

In this study, we explored the potential of a regional scale dynamical model VECTRI to simulate
climate driven spatio-temporal malaria transmission dynamics over the four agro-ecological zones in
Ghana. The simulated results reveal intra- and inter-agro-ecological variability in terms of intensity and
duration of malaria transmission that are predominantly controlled by rainfall. However, temperature
was found to suppress transmission only at Abetifi, a town located on the Kwahu plateau. The
correlation between annual model predicted malaria incidence (EIR) and national recorded malaria
cases from public health facilities was more than 0.5. On a local scale evaluation, the correlation
between monthly predicted and hospital recorded malaria cases was greater than 0.5. Interestingly,
this correlation was higher than the best obtained between rainfall and malaria cases. This indicates
that the VECTRI model has superior predictive ability relative to using rainfall directly.

These results demonstrate useful application of the VECTRI model to simulate malaria
transmission dynamics at both national and local scales. Consequently, the VECTRI model possesses
the potential to provide malaria early warning information for Ghana and should be considered
by the NMCP. In addition, the model was able to discriminate between areas of low and high
malaria transmission due to difference in temperature regimes and could therefore be a useful tool
to study the disease patterns under future climate change. Nevertheless, improved VECTRI model
performance could likely be achieved by including parametrization for permanent water bodies,
topography, soil characteristics, habitat water temperature, immunity level of the population and
mosquito infection status.
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