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ABSTRACT  

Advances in research into alternative starch sources for industrial production of 

alcoholic beverages, sorghum, cassava and maize are now being used as cheaper 

alternatives to imported barley in the brewery industry. In brewing, though involves 

several unit operations, the fermentation step is regarded as the heart of the entire 

production where a near optimal environment is desired for microorganisms to grow 

and produce ethanol. However, the use of fermenters is usually hampered by 

suboptimal conditions in terms of yield and productivity, along with the low tolerance 

of strains to process stresses such as substrate and product toxicity. Attempts to improve 

the industrial efficacy of fermenters have been in the areas of genetic engineering to 

improve strain tolerance, but usually involves detailed and unfeasible mechanistic 

studies. Statistical design of experiments which has also been used often results in local 

optima due to the relatively small dimensional space covered by the experiments. 

Mathematical techniques have recorded great successes but proposed solutions 

however did not consider all degrees of freedom of the problem simultaneously 

(Inhibiton kinetics, temperature and pH). This thesis presents the modeling of substrate 

and/or product inhibtion in three different fermentation substrates: sorghum, maize and 

cassava extracts. At a 99% confidence interval, the pattern of these inhibtions can be 

described as being a linear or an exponential decrease in ethanol concentration in the 

case of sorghum, linear and sudden growth stop in the case of maize, linear substrate 

exponential product, and exponential substrate exponential product in the case of 

cassava. Optimal control was applied to minimize the effects of such inhibtion in 

sorghum extracts. Calculus of variation was introduced as a valuable tool to derive and 

solve the necessary conditions for optimality (optimal temperature and pH profiles). A 

Simulink model, developed and used for control validation shows an increase in ethanol 

yield by14.18%, cell growth by 71.96% and a decrease in the residual substrate by 

84.77%. Since the model was developed using industrial scale fermentation data, the 

results obtained in the simulations can satisfactorily represent a real operation unit. 

From the comparative results presented in the simulations, it is concluded that the 

proposed strategy can be used in practice to improve the performance of industrial scale 

alcoholic fermentation.  
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CHAPTER ONE INTRODUCTION  

1.1 Background of the Study  

Concerns about large emissions from chemicals, lengthy chemical processes with high 

energy input, shortage of fossil fuels, increasing crude oil price and accelerated global 

warming have led to growing worldwide interests and significant  

transformation in biotechnology, not only in biological areas involving genomics, cell 

and protein engineering, but also in the engineering field of bioprocess manufacturing, 

such as large-scale fermentation and downstream optimization for the production value 

added products (Titchener-Hooker et al., 2008). In a generalized view of bioprocess 

manufacturing, though involves several unit operations the bioreactor is the crux, 

regarded as the heart of the entire production, where a near optimal environment is 

desired for microorganisms to grow, multiply and produce the desired product (Alford, 

2006). However, the use of bioreactors at large-scale level is usually hampered by sub-

optimal conditions in terms of yield and productivity, along with the low tolerance of 

strains to process stresses, such as substrate and product toxicity, and other fermentation 

inhibitors (Fischer et al., 2008; Parcunev et al., 2012; Naydenova et al., 2013).  

In several attempts to improve the industrial efficacy of bioreactors, a variety of 

approaches have been proposed. Metabolic engineering and synthetic biology have 

been used to determine the optimal pathway configurations through the use of gene 

combinatorial methods to construct and consequently evaluate several metabolic 

pathways, combining genes from different sources to make the strain resistant to 

environmental stresses during fermentation. However, with the field of bioprocess 

engineering shifting from method development to application development (Palsson 

and Papin, 2009), these approaches involving detailed mechanistic studies of metabolic 

pathways becomes problematic, inherently involving inverse problem that cannot be 
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understood with certainty (Brenner, 2010). The implementation of microbial 

production on an industrial scale should focus towards process engineering strategies, 

which can ultimately enable control and optimization at the bioprocess level 

(Thilakavathi et al., 2007). But still at this level, the identification of optimal operation 

parameters in fermentation processes have been done empirically through statistical 

design of experiments to scale up bioreactor facilities and determine the optimal 

operating conditions (Alford, 2006). However, these empirical methods required 

construction of expensive prototype systems, time-consuming studies and most often 

lead to local optima due to the relatively small dimensional space covered by 

experiments (Alford, 2006; Yu et al.,2013).  

  

Alternatively, design and optimization of bioreactors can be enhanced via validated 

mathematical models developed from mechanistic studies that lead to a more in depth 

understanding of the very complex transport phenomena, microbial biochemical 

kinetics, and stoichiometric relationships associated with the process (Yu et al., 2013).  

Furthermore, literature have shown that many university process control and modelling 

courses focus on theoretical aspects of continuous “ steady-state” types of processes 

and in contrast to this, a large percentage of today’s industrial bioprocesses are batch 

non-steady state processes (Alford, 2006). There appears to be a need for more focus 

in dealing with process transients and other nonlinear control dynamics of batch 

processing.  

Considering a case study in alcoholic fermentation in brewing, barley grain has been 

the most common grain used in these factories since unlike other grains it provides 

additional advantages such as characteristic colour of beer, malty sweet flavor and 

dextrins to give the beer body, protein to form a good head, and perhaps most important, 
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the natural sugars needed for fermentation (Willaert, 2007). In the development of 

industrial tools for such fermentation many mathematical models were developed to 

describe the dynamics of ethanol fermentation from malted barley derived wort extract. 

These included the growth kinetic model of Engasser et al., (1981), the beer flavor 

model of Gee and Ramirez (1988), fusel alcohol model (Garcia et al., 1994), a neural 

network model for ethyl caproate (Garcia et al., 1995), a kinetic model of temperature 

effect on cell growth (Ramirez and  Maciejowski, 2007), etc. Today with advances in 

research alternative starch sources, ranging from rice to sorghum, to wheat to cassava 

to corn are now being used for alcoholic fermentation. As a result some of the industrial 

simulators and control policies based on models calibrated with malted barley might 

no longer be reliable for process decisions. Therefore, a systematic process dynamic 

modeling and control is extremely necessary to investigate and control the kinetics of 

the alcoholic fermentation in different starch sources.  

  

1.2 Statement of the Problem  

In several studies regarding the dynamics of bioreactors, instability, in the form of 

oscillations have been observed and reported in both aerobic and anaerobic cultures of  

Saccharomyces cerevisiae (Chen and McDonald, 1990a, b; Beuse et al., 1998; Fengwu, 

2007). Biomass, glucose, ethanol, dissolved oxygen, pH, and some intracellular storage 

materials have shown sustainable oscillations, being more complicated in ethanol 

fermentation systems, due to ethanol inhibition and the lag response of yeast cells to 

this inhibition (Fengwu, 2007). This inhibition increase in residual sugar at the end of 

the fermentation, which decreases raw material consumption and correspondingly, 

decreases the ethanol yield if no economically acceptable attenuation strategies are 

developed (Fengwu, 2007). During the modeling of alcohol fermentation if inhibition 
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is considered, it is often conventional to predefine the inhibition pattern and this 

practice increases uncertainties in the model since ethanol inhibition pattern varies 

depending on the type of microorganism, and on the type and strength of fermentation 

wort (Russell, 2003).    

  

1.3 Objectives  

1.3.1 Main Objective  

The main objective of this study is to investigate the dynamics of ethanol fermentation 

in three different fermentation works and maximize ethanol yield through the 

application of mathematical modeling and optimal control.  

1.3.2 Specific Objectives  

a) To formulate systems of differential equations that describe the dynamics of cell 

growth, substrate utilization, ethanol formation.  

b) To develop a Matlab code that simultaneously simulates the model equations 

and estimate parameters with respect to experimental data.  

c) To determine the mathematical pattern of substrate and/or product inhibition on 

cell growth during ethanol fermentation.  

d) To formulate and solve an optimal control problem that determines the optimum 

temperature and pH profiles to maximize ethanol yield.  

1.4 Justification of the Study  

The fermentation of sugars by Saccharomyces cerevisiae and S. carlsbergensis is a 

process in which the formation of product is associated with cell growth. The yeast cells 

are subjected to stresses inherent to the process, that are caused by environmental 

conditions and physico-chemical factors such as high temperature, salinity, pH and high 
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concentrations of ethanol and sugar. Several papers have been published analyzing 

various aspects of the modeling and optimal control fermentation processes. Atala et 

al. (2001) presented a methodology for obtaining the optimum process temperature for 

the maintenance of cell viability, reducing glycerol production and increasing 

efficiency. An analysis of how to minimize the time of fermentation required in 

obtaining the desired product specifications is found in Cacik et al. (2001). Also, Wang 

et al. (2001) reported that an absorption chiller was used to estimate the kinetic 

parameters of the ethanol fermentation model. Furthermore, an on-off control strategy 

based on the solution of the initial value equations, defined by phase, is presented in 

Santos et al. (2006). However, proposed solutions did not consider all the degrees of 

freedom of the problem. In order to maximize ethanol yield, all the main aspects 

(ethanol inhibition kinetics, temperature and pH) should be considered simultaneously. 

There is therefore the need to model ethanol inhibtion kinetics in different fermentation 

worts and control such inhibitions through the application of optimal control.  

1.5 Significance of the Study  

Many researchers, factory type breweries and bioethanol plants in Ghana and the world 

at large are involved in research regarding the utilization of various local starch sources 

for ethanol fermentation (Mishra, et al., 2011). In this effect, efficient and optimal 

fermenter performance is extremely important in maintaining beer production 

specifications and also to promote commercial bioethanol production from these 

sources, while meeting Ghana’s energy targets (GREA, 2011). Modeling the dynamics 

of ethanol fermentation will reveal possible underlying mechanisms involved in the 

inhibition of cell growth by high ethanol concentrations which will permit the 

development of more reliable process controllers and simulators for ethanol 

fermentation in brewing (Carrillo-Ureta, 2002; Alford, 2006).  
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1.6 Scope and Limitations of the Study  

Starting with biomass harvesting, there are a number of steps to follow until the final 

product, ethanol, is obtained and of these processes. This study focuses on alcoholic 

fermentation of glucose to ethanol. The scope of the modelling will be unstructured and 

unsegregated dynamic first principle models, where kinetic and dynamic models will 

be developed to describe the fermentation process. From inoculation until the time 

when fermentation is terminated, many generations of the yeast cells produce the 

ethanol and it is conceivable that genetic mutations are introduced over several 

generations that can alter the metabolism of the cells. The kinetic and dynamic models 

assume that number of cells with such mutations is very small to have any material 

effect on the behaviour of the bulk of the bioreactor. Likewise, the modeling approach 

utilized in this study ignores the effects of microgravity (Anderson, 2004) and various 

mechanical and environmental factors on cell behaviour and gene expression.  Bubble 

dynamics play an important role in gas transport and cell viability during fermentation. 

However, effects of bubbles that are produced as a result of CO2 and O2 sparging are 

not considered in the modeling (Meier et al., 1999; Ma et al., 2006). Finally, coupling 

reactions, in which cells require co-substrates or co-factors recycled by another 

companion reactions is ignored as well.  

  

1.7 Conceptual Framework  

Figure 1.0 presents an impact logic diagram which shows the relationship between the 

problem, intervention, implementation and outcome.  



 

7  

  

Figure 1.0: Impact logic representation of the study showing the problems, 

intervention, implementation and outcomes of the study.  

  

1.8 Organization of the Study  

The research work is organized into six chapters. Chapter one provides an introductory 

background, rational for the mathematical approach utilized in the study and finally the 

scope and limitations to the study. Chapter two reviews related literature on modeling 

simulation and dynamic optimization of ethanol fermentation. Chapter three describes 

the detailed methodology utilized for the model development and validation. This 

considers the dynamic modeling, underlying model assumptions and approximations 

finite difference simulation, parameter estimation and model statistical validity. 

Chapter four presents the results for the model fitting and the model parameters with 

experimental data for the different substrates considered. Chapter five focuses on 

optimal control problem formulation and application of calculus of variation to 

determine necessary conditions for optimality. Chapter six presents a summary of the 

findings, conclusions of the study, recommendations made and some considerations for 

future research.  

CHAPTER TWO REVIEW OF PREVIOUS WORK ON MODELING AND 

OPTIMAL CONTROL OF FERMENTATION  
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2.1 Principles and Techniques in Industrial Fermentation  

2.1.1 General Aspects of Fermentation Processes  

The term “fermentation”, as originally defined by Pasteur means “life without air”, 

anaerobe redox reactions in organisms describing the appearance of the action of yeast 

on extracts of fruit or malted grain (Stanbury et al., 1995).  Fermentation has come to 

have different meanings to biochemists and bioprocess engineers. Its biochemical 

meaning relates to the generation of energy by the catabolism of organic compounds, 

whereas, its meaning in industrial bioprocessing tends to be much broader, relating to 

techniques for large-scale production of microbial products (Carrillo-Ureta, 2002).  

  

2.1.2 Submerged Versus Solid State Fermentation  

Fermentation has been widely used for the production of a wide variety of valueadded 

products. Over the years, fermentation techniques have gained immense importance 

due to their economic and environmental advantages over conventional chemical 

processes (Subramaniyam and Vimala 2012). Microbial fermentation techniques are 

classified under two categories: Submerged Fermentation, involving cultivation of 

microbes on solid substrate and Solid State Fermentation, in which microbes grow in a 

liquid medium (Renge et al., 2012). Submerged fermentation is technically easier than  

SSF and  is a well-developed system for industrial scale production of microbial 

metabolites (Vidyalakshmi et al., 2009). On the other hand, even though SmF offers 

numerous advantages over SSF including its high amenability to process regulation, 

easy scale-up, feasible biomass determination, satisfactory reproduciblility and 

relatively easy product purification, its industrial application faces numerous 

challenges inluding low volumetric productivity, relatively lower concentration of 

products, complex fermenter design and higher effluent generation (Subramaniyam and 
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Vimala, 2012).  Researchers therefore seek means of optimizing productivity in SmF 

for economic production of biobased products and other specialty chemicals.  

2.1.3 General Overview of Industrial Fermentation Process  

Although the central unit operation in bioprocess manufacturing is the fermentation 

step, the upstream and downstream processes also play vital roles in obtaining and 

maintaining the quality of and specifications of the final product (Alford, 2006; Ji, 

2012). Before the fermentation is started the medium must be formulated and sterilized, 

the fermenter sterilized, and a starter culture, inoculum made available in sufficient 

amounts and in the right physiological state to ensure cell viability (Alford, 2006). At 

the Downstream processes the product is purified and further processed and the 

effluents produced by the process have to be treated or reused depending on the 

management system in place (Zhi-Long, 2008). Figure 2.1 illustrates the component 

parts of a generalized fermentation process.  

 
  

Figure 2.1: Process flow diagram for bioprocess manufacturing  
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2.2 Selection, Scale-Up, Operation and Control of Fermenters  

2.2.1 Fermenter Design and Operation Modes  

Literature has shown significant effects of fermenter design on the efficiency of a 

fermentation process and the proper selection and design of the bioreactor have been 

shown to determine the optimal commercial bioprocess and the corresponding capital 

investment (Williams, 2002; Qiangshan et al., 2006). The design and mode of operation 

of a fermenter mainly depends on the type of cell in the culture, the optimal operating 

condition required for target product formation and scale of production (Williams, 

2002). Based on, this we can have four basic fermenter configurations: (a) a batch 

process is where all the culture medium is directly available to the cell and no medium 

is added or withdrawn during the culture; (b) a fed-batch process is characterized by an 

addition of culture medium during the culture thanks to a predefined or a controlled 

flow rate (Modak, 1986); (c)  a continuous culture mode is where fresh culture medium 

is added while the culture is continuously withdrawn; (d) Perfusion mode is where 

culture medium is added and withdrawn whereas the cells are maintained in the 

bioreactor (Williams, 2002). Most of the ethanol produced today is done by the batch 

operation since the investment costs in batch fermentation is low, does not require much 

control and can easily be adapted to many research (Mishra et al., 2012).  

  

2.2.2 Considerations in Fermenter Design  

In bioprocess manufacturing, the fermenter provides the following facilities such as 

contamination-free environment, specific temperature maintenance, maintenance of 

agitation and aeration, pH control, monitoring Dissolved Oxygen (DO), ports for 

nutrient and reagent feeding, ports for inoculation (Williams, 2002; Alford, 2006). To 

maintain these requirements an optimal fermenter design with appropriate controls is 
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required to suppress the influence of external disturbances, ensure stability and 

optimize the performance of the process.  

  

2.2.2.1 Economic Aspects in Fermenter Design  

In bioprocess manufacturing as with conventional chemical processing, the main 

objective is to convert raw materials into the desired product in the most economical 

way. In meeting this objective, the fermenter, which is the center to bioprocessing must 

be designed to minimize process cost while maintaining key production requirements 

which include; safety, product specification, environmental requirements and other 

operational constraints (Vidyalakshmi et al., 2009). This requires appropriate screening 

and selection of appropriate microbes to achieve objectives such as high yield and 

productivity, microbe Generally Regarded as Safe, and if applicable extracellular 

product producing microbe in order to minimize the cost of downstream processing 

since level of purification applied varies considerably depending on whether the 

product is intracellular or extracellular (Zhi-Long, 2008).  

  

2.2.2.2 Biological Aspects in Fermenter Design  

Due to the complexity in biological systems, the designing of a bioreactor also has to 

take into considerations the unique aspects of biological processes. In contrast to 

isolated enzymes or conventional chemical catalysts, microorganisms adapt the 

structure and activity of their products to the process conditions (Doran, 1995). 

Literature has shown that both the substrates and the products may inhibit bioreactions. 

For this reason the concentrations of substrates and products in the reaction mixture are 

frequently maintained at optimal levels required for cell growth. Certain substances 

acting as either inhibitors, effectors or precursors, influence the rate and the mechanism 



 

12  

of the reactions, some of which cause mutations of the microorganisms under sub-

optimal biological conditions (Fischer et al., 2008). Microorganisms are frequently 

sensitive to strong shear stress and to thermal and chemical influences. The downstream 

recovery processes should be designed considering the effects such as growth on the 

walls, flocculation, or autolysis of microorganisms which can occur during the reaction.  

  

2.2.3 Types of Fermenters Used in Alcoholic Fermentation  

Few of the bioreactor types that can be used for ethanol fermentation include: 

membrane bioreactors, stirred-tank, packed-bed, fluidized-bed and vacuum 

bioreactors. Many of the industrial bioprocesses are operated in batch mode and the 

stirred tank has been highly applicable due to its amenability of batch operation  

(William, 2002; Alford, 2006). However, though significant developments have taken place 

in the recent years in reactor design, the bioprocess industry, still prefers stirred tanks 

because in case of contamination or any other substandard product formation the loss is 

minimal (Williams, 2002). In recent years, Fluidized bed bioreactors (FBB) have received 

increased attention due to the advantages it provides including the segregation of the 

culture media into solid, liquid and gaseous phases in comparison to conventional 

mechanically stirred reactors, FBBs provide a much lower attrition of solid particles with 

relatively higher volumetric productivity (Qiangshan et al., 2006). In comparison to packed 

bed reactors, FBBs can be operated with smaller size particles without the drawbacks of 

clogging, high liquid pressure drop, channeling and bed compaction hence facilitating 

higher mass transfer rates and better mixing (Qiangshan et al., 2006). Packed bed or fixed 

bed bioreactors are commonly used with attached biofilms especially in wastewater 

engineering.  
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2.2.4 Process Scale-up and Scale-down in Alcohol Fermentation  

Engineers trained in bioprocessing are normally involved in pilot-scale operations. 

Even though changing the size of the equipment and processes seems relatively trivial, 

loss or variation of performance often occurs. For the optimum design of a product-

scale fermentation system (prototype), the data on a small scale (model) must be 

translated to the large-scale with similarity between the model and the prototype. The 

scale-up of submerged fermentation process seems to be much easier than those for 

aerobic processes such as penicillin fermentation, which have attracted the attention of 

many scholars, established scale-up theories and technologies, and founded modern 

biochemical engineering (Wang et al., 2012). However, when we examine today’s 

ethanol fermentation industry, its engineering design and plant operation are far behind 

other fermentations industries such as organic acids, amino acids, enzyme production 

antibiotics, and needless to say, modern recombinant pharmaceuticals (Fengwu, 2007). 

This coupled with research being geared towards developing new feedstock for ethanol 

production suggest need for more research into both reactor geometry and plant design 

for optimized ethanol fermentation.  

  

2.2.5 Key Factors of Control in Submerged Fermentation  

Due to the high requirements in terms of precision and sophistication in microbial cell 

cultivation, a process controller forms an integral part of a high-quality bioreactor, in 

maintaining operating conditions within required ranges. Regarding the use of 

controllers in bioreactions engineering, three possible configurations of sensors can be 

envisaged: In-line in which the directly measured value controls the process, e.g. 

antifoam probe, on-line sensors in which the measured value must be entered into the 

control system e.g. ion specific sensors, mass spectrophotometer and off-line sensors 
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which do not form integral part of fermenter and the measured value is stored into a 

database for future processing (Alford, 2006).   

In ethanol fermentation, the main process parameters of interest to the process control 

engineer are the mineral content of water, temperature of fermentation, pitch rate of 

yeast, amount of aeration, length of fermentation, culture pH and carbon dioxide. The 

optimization of temperature is important in the control of fermentation duration and 

flavor-active compounds like esters and higher alcohols (Saerens et al., 2008). High 

levels of gases such as CO2 and O2 have been shown to result in higher pressure with 

similar effects to that of an increased temperature and as yeast prefers aerobic 

conditions. The addition of additional oxygen would cause changes in the fermentation 

process by affecting the amount of unsaturated fatty acids present in the fermentation 

broth (Verbelen et al., 2009).  Results have shown the importance of the pitching rate 

on yeast physiology and activity and consistency during fermentation with increasing 

rate thus resulting in decreased fermentation time required and increased concentration 

of higher alcohols (Verbelen et al., 2009).  

  

2.3 Biochemical and Microbial Aspects of Submerged Fermentation  

2.3.1 Microorganisms and Fermentation Conditions in Brewing  

Fermentation principle consists of exploiting the metabolic reactions that take place in 

the cell of a microorganism for the production of valuable products (Olivier, 2001). 

During ethanol fermentation in brewing, the three most common yeast strains usually 

used include: (a) Ale yeasts, top-fermenting, which can ferment at higher temperatures 

and tend to produce more esters, (b) Lager yeasts which are bottom fermenting, 

withstand lower temperatures and produce a more crisp taste, and (c) the Wild yeasts 

which produce a lot of unusual compounds and contribute to a “horse sweat” flavour 
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that is more acidic and an acquired taste. In order to activate the metabolic pathways of 

interest within the cell, specific environmental conditions (temperature, pH, nutrient 

concentration) are applied to enable the yeast cell grow and produce the required 

ethanol. However, due to the dynamic nature of the culture medium, yeast cells often 

suffer from various stresses resulting from both  the environmental conditions, and from 

both product and or substrate imbibition. Figure 2.2 illustrates some stresses that yeast 

cells could experience in ethanol fermentations.  

  
Figure 2.2: Environmental stresses exerted on S. cerevisiae during ethanol 

fermentation (Ingledew, 1999)  

  

2.3.2 Biochemical Pathways in Yeast Fermentation  

There are three pathways yeast (usually S. cerevisiae) can obtain energy through the 

oxidation of glucose. All three pathways start with the initial stage of glycolysis, the 

conversion of glucose into fructose-1, 6-bisphosphate. These pathways are: (a) 

alcoholic fermentation in which the pyruvate resulting from glycolysis is 

decarboxylated to acetaldehyde (ethanal) which is reduced to ethanol. This pathway 

yields only two more molecules of Adenosine Triphosphate (ATP) per molecule of 

glucose over the two resulting from glycolysis. This is the major pathway in ethanol 

fermentation, (b) Glyceropyruvic fermentation is important at the beginning of the 

alcoholic fermentation of grape when the concentration of alcohol dehydrogenase 
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(required to convert ethanal to ethanol) is low and (c) Aerobic respiration which occurs 

in the presence of oxygen. In the production of alcoholic beverages, the amount of 

oxygen is carefully controlled during the wine-making process and the latter pathway 

is forbidden. (Nelson and Cox, 2001). Figure 2.3 shows a simplified glycolytic scheme 

(Embden–Meyerhof–Parnas) in S. cerevisiae. The pathway is shown in Fig. 2.3.  

  

Figure 2.3: Simplified glycolytic scheme (Embden–Meyerhof–Parnas) in S. 

cerevisiae Abbreviations: HK: hexokinase, PGI: phosphoglucoisomerase, PFK: 

phosphofructokinase, FBPA: fructose bisphosphate aldolase, TPI:  

triose phosphate isomerase, GAPDH: glyceraldehydes-3-phosphate 

dehydrogenase, PGK: phosphoglycerate kinase, PGM: phosphoglyceromutase, 

ENO: enolase, PYK: pyruvate kinase, PDC: pyruvate decarboxylase, ADH: 

alcohol dehydrogenase (Fengwu, 2007).  

  

2.4 Industrial Applications of Alcoholic Fermentation  

2.4.1 Production of Alcoholic Beverages and Bakeries  

The production of alcoholic beverages by submerged fermentation vary widely 

depending primarily on these starchy material, fermentation conditions and on the type 

of micro-organism used for fermentation (Saerens et al., 2008; Verbelen et al, 2009).   
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Over the years various materials have been used ranging from grapes to berries, corn, 

rice, wheat, honey, potatoes, barley, hops, cactus juice, cassava roots, and other plant 

materials resulting various forms of beer, wine and distilled liquors which may be given 

specific names depending on the source of the feedstarch. Besides the production of 

ethyl alcohol used in alcoholic beverages, one other major application of fermentation 

in the food industry has been to harness the potential of yeast to produce carbon dioxide 

in improving bulkiness and texture of the dough during baking.  

  

2.4.3 Production of Biofuels  

Submerged fermentation of sugars from biowastes and agro residues is the most 

conventional way to produce bioethanol. Many laboratories and researchers in Ghana 

are involved in the design and construction of bioreactor systems for bioethanol 

production. Studies on biofuels potential in Ghana have been widely reported from 

three main types of biomass raw materials which are starchy materials like rice husk, 

cassava; sugar materials like sorghum juice (Osei et al., 2013; Kemausuor et al., 2014), 

and finally lignocellulosic materials such as bagasse, straw and wood biomass.   

The main motivation for this subject has been to develop an alternative renewable 

transportation liquid from lignocellulosic resources which forms part of the goal of  

Ghana obtaining 10% of its energy from renewable sources by 2020 (Ghana Renewable 

Energy Act, 2011). However, energy efficiency, economic viability and environmental 

impact of these processes have not been fully investigated.   Empirical methods have 

been traditionally used to scale-up bioreactor facilities in developing countries, but 

these have required construction of expensive prototype systems and time-consuming 

studies (Yu et al., 2013). Alternatively, design and optimization of submerged 

http://science.jrank.org/pages/3099/Grapes.html
http://science.jrank.org/pages/3099/Grapes.html
http://science.jrank.org/pages/5875/Rice.html
http://science.jrank.org/pages/5875/Rice.html
http://science.jrank.org/pages/7378/Wheat.html
http://science.jrank.org/pages/7378/Wheat.html
http://science.jrank.org/pages/751/Barley.html
http://science.jrank.org/pages/1107/Cactus.html
http://science.jrank.org/pages/1107/Cactus.html
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fermenters for bioethanol production can be enhanced via validated mathematical 

models.  

2.5 Kinetic and Dynamic Modelling of Fermentation Processes  

2.5.1 The Benefits of Modelling in Industrial Fermentation  

The increasing study of realistic and practically useful mathematical models in 

bioprocess manufacturing, whether for the production of enzymes, alcoholic beverages, 

biofuels or other products of human and industrial importance, is a reflection of their 

use in helping to understand the dynamic processes involved and in making practical 

predictions. A mathematical model describing the dynamics of fermentation is a 

reliable tool in situations where experiments are very expensive and time consuming 

(Alford, 2006; Yu et al., 2013). In addition to the context of cost and time reduction, a 

fermentation process model developed in the early research and development stage can 

go beyond the laboratory to benefit the routine manufacturing, guarantee the quality, 

supply information about the values of experimentally inaccessible parameters and  

help reveal possible underlying mechanisms involved in the process. This is illustrated 

by modelling recently attracting attention from industry  

(Velayudhan and Menon, 2007), with the Quality by Design (QbD) and Process 

Analytical Technology (PAT) being driving force behind this transition (Ji, 2012). 

These concepts and technologies aim to utilize mathematical modelling methods to 

enhance the understanding of complicated biochemical process, with the long term 

benefits for companies to develop and design processes more quickly and facilitate 

batch release (Mandenius and Brundin, 2008).  

Several fermentation companies have applied modelling to processes and gained 

benefits arising from their utilization (Chhatre et al., 2011; Ji, 2012). For instance, 

Novozyme, found modelling very helpful to identify the optimal feeding profile in a 
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fed-batch filamentous fungal fermentation for enzyme production system (Titica et al., 

2004). Ramirez and Maciejowski (2007) used mathematical modelling to develop a 

new tool to solve a wide range of optimal beer fermentation problems.  

2.5.2 General Characteristics of Dynamic Models  

Different kinds of models for biochemical processes are distinguishable according to 

their possible biological interpretation and before modeling the kinetics and dynamics 

of biosystems.  It is important to understand some of the characteristics dynamic models 

present. A dynamic model can be linear, satisfying the superposition principle or 

nonlinear, represented by nonlinear differential equations (Constantinides and 

Mostoufi, 1999). The parameters of a model are lumped when the model is 

homogeneous with time being the unique independent variable but when some state 

varies within the system, the model becomes heterogeneous with distributed 

parameters. Many models are continuous; their independent variables are considered to 

be defined for any real values of time (Beers, 2007). However, measured data are 

usually obtained through discrete sampling which implies measurements at discrete 

time intervals. Unlike deterministic models which are based on the underlying 

mechanism of action of the system, stochastic models on the other hand present 

randomness which is usually introduced as the measurement noise (Lübbert and 

Jørgensen, 2001; Box et al., 2002). A dynamic model can be structured or unstructured 

depending on whether it describes intracellular characteristics including the metabolic 

processes of the cell or considers the cell like an entity without internal structure (Shuler 

and Kargi, 1992; Zeng and Bi, 2006).  
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2.5.3 Modeling Methods in Bioprocess Engineering  

Developing a model to describe a bioprocess is not an easy task, usually involve time 

consuming mathematical and computational analysis due to the nonlinearity of 

biosystems. However, an ideal process model for a bioprocess should be able to 

represent the characteristics of the process in a quantitative way and predict the 

system’s behavior accurately and precisely through the application of computational 

analysis and optimization algorithms (Datta and Sabiani, 2007). Even though such an 

ideal process model may not always exist the idea is to strive as much as possible to 

arrive at a model which is closest to ideality and could represent the system as 

accurately as possible.  

2.5.3.1 Traditional Modeling Procedure  

The first part in modeling the dynamics of a bioprocess is to determine the type of 

model to describe the kinetics of the process reactions and proposing a model structure 

according to the developer’s knowledge of the system and the objectives to achieve it. 

This is usually done based on theories, and detailed understanding of the mechanism of 

the process; and an example of such a model is the Michaelis-Menten model describing 

the kinetics of enzyme catalyzed reaction (Michaelis and Menten, 1913). When the 

process mechanism is unknown or too complicated to form a mathematical relationship, 

a common practice in engineering it to build an empirical process model using 

relatively simple mathematical equation which can then fit the data. For instance, the 

Monod’s growth equation. The third approach to describe reaction kinetics is to use a 

hybrid model, combining the mechanistic knowledge with correlations of an empirical 

nature for aspects that are not yet fully understood (Galvanauskas et al., 2004). When 

an appropriate formulation or choice of kinetic model has been made, the continuity 

equations of mass and/or energy involving substrate inputs, accumulation and dilution 
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terms as well as kinetics described by activation, inhibition and saturation coefficients 

are then applied to the system to develop systems of differential equations describing 

the dynamics of the system. No matter which type of model is used, experimental data 

must be used to fit and regress model parameters with subsequent evaluation and 

validation of results by statistical tests. Although the modeling process might seem 

quite simple and straightforward, differences between initial proposed structure and 

real experimental data may require model modifications and fine-tuning which further 

complicates the modelling activities and requires the model developer to have good 

mathematical background. Another drawback of this conventional modelling procedure 

is that the model does not interact readily with experiments. The experimental data may 

not be sufficient in number or quality for modelling, requiring the concern of 

experimental design in order to obtain effective information and achieve maximum 

process understanding with minimum experimental number.   

2.5.3.2 Innovative artificial neural network modeling  

In recent years, there has been significant interest in the use of artificial neural networks 

with hybrid process models for bioprocess modeling, and this approach has shown to 

be less time consuming, simple for engineers and solves the problems of proposing an 

initial model followed by subsequent modification as observed in traditional modeling. 

This approach has been well-studied and successfully applied in the modeling and 

optimization of fermentation processes including ethanol fermentation (Komives and 

Parker 2003; Alford, 2006). The structure of the neural network based process model 

may be considered generic, in the sense that no a priori understanding or information 

about the system is required (Massimo et al., 1991;  

Montague and Morris, 1994). A neural network model consists of highly interconnected 

layers of simple ‘neuron-like’ nodes, which act as non-linear processing elements within 
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the network and one very interesting property of using neural networks is that given the 

appropriate network topology, they are capable of learning and characterizing non-linear 

functional relationships through experimental data.  Literature shows the use of   artificial 

neural network to predict the pH, temperature, substrate, biomass, carbon dioxide (CO2) 

and alcohol (ethanol) evolution during batch fermentation of sorghum (Kouame et al., 

2015). Assidjo et al. (2009) combined the neural network to differential equations in the 

simulation of an ethanol fermentation process using malt, with a predictive error of less 

than 0.030. The use of neural network to estimate the effect of temperature on an industrial 

ethanol fermentation process was presented by Mantovanelli et al. (2007).  

2.5.4 Kinetic Models for Cell Growth Kinetics  

As seen in section 2.5.3, modeling the dynamics of bioprocesses require a kinetic model 

describing the variation of  the substrate and/or product concentration with the cell 

growth and which can also express the influences of other process variables such as 

pH, pO2, pCO2 and temperature. Generally, in ethanol fermentation the specific growth 

rate µ is the key variable (Moser, 2004) as it is time dependent and also dependent on 

wide range of physical, biological and chemical parameters including the concentration 

of cells, substrate and product, and temperature, pH and different inhibitors. These 

assumptions were studied in detail by Bastin and Dochain (1990) who also proposed a 

generalized approach to bioprocess modeling and conforming to several models that 

exist in literature describing the dependence of the specific growth rate on different 

process parameters represented mathematically as equation (1):  

𝜇 = 𝑓(𝑆, 𝑋, 𝑝𝐻, 𝐶, 𝐼, … , 𝑡)                                           (1)  

2.5.4.1 Growth Limitation through Substrate Concentration  

Bellgardt (1991, 2000) studied various kinetic models showing the dependence of specific 

growth rate on substrate limitation as presented in Table 2.1 below  
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Table 2.1: kinetic models with growth limitation through substrate concentration  

Model Equations  Constants  Authors  Comments  

  

𝜇𝑚𝑎𝑥 is the  

maximum specific  

growth rate (1/h) 

and 𝐾𝑠 is the  

saturation constant  

(g/L)  

Monod equation 

(1942, 1949)  

Empirically derived 

from Michaelis- 

Menten equation  

  

  Moser equation 

(1988)  

Analogy with a Hill 

kinetic (n>0)  

𝜇(𝑆) 

𝜇𝑚𝑎𝑥𝑆 

 =   

𝐾𝑠 + 𝐾𝐷 + 𝑆 

𝐾𝐷is the diffusion 

constant  

Powell equation 

(1958)  

Influence of cell 

permeability,  

substrate diffusion  

and cell dimensions 

through  

𝐾𝐷parameter  

  

2.5.4.2 Growth Limitation through Substrate and Cell Concentration  

The kinetic models with growth limitation through substrate concentration 𝜇 = 

𝜇(𝑋, 𝑆) form (Bellgardt, 1991; Bellgardt, 2000) are presented in Table 2.2 below  

Table 2.2: Kinetic models with growth limitation through substrate and cell 

concentration  

Model Equations  Constants  Authors  Comments  

𝜇(𝑋) = 𝜇𝑚𝑎𝑥(1 − 𝐾𝑥𝑋)  𝐾𝑥is the kinetic 

constant  

Verhulst (1845)  It is known as 

growth logistic 

model  

  

𝐾𝑥is the kinetic 

constant  

Contois (Contois  

– Fujimoto) 

equation (1959):  

If S = constant, the 

only dependence 

remains µ = f(X).  

  

𝑆0 is the initial 

substrate  

concentration  

𝑌 is the 

substrate/cell yield  

Meyrath (1973)  It is based on 

Monod kinetics.  

2.5.4.3 Growth kinetics with substrate inhibition  

Just like the Monod kinetic model derived empirically by comparing experimental with 

the nature of Michaelis-Menten equation most of the kinetic models describing 

substrate and/or product inhibition were derived from the inhibition theory of 

𝜇 ( 𝑆 ) = 
𝜇 𝑚𝑎𝑥 𝑆 

𝐾 𝑠 + 𝑆 

𝜇 ( 𝑆 ) = 
𝜇 𝑚𝑎𝑥 𝑆 𝑛 

𝐾 𝑠 + 𝑆 𝑛 

𝜇 ( 𝑆 ) = 
𝜇 𝑚𝑎𝑥 𝑆 

𝐾 𝑋 𝑋 + 𝑆 
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enzymatic reactions and are consequently not generally valid requiring application with 

experimental data (Bellgardt, 1991, 2000)  

Table 2.3: Kinetic models with substrate inhibtions  

Model Equations  Constants  Authors  Comments  

  

  Aiba model 

(1965)  

  

1 

 
𝜇 = 𝜇𝑚𝑎𝑥 𝐾𝑠 + 𝐾𝑆𝑖  

1 + 𝑆 

𝐾𝑖 is the 

inhibition 

constant  

Andrews 

model (1968)  

Substrate 

inhibition in a 

chemostat  

  

2.5.4.4 Growth Kinetics with Product Inhibition  

Hinshelwood (1946) studied product inhibition influences upon the specific growth rate 

and linear decrease, exponential decrease, growth sudden stop, and linear/exponential 

decrease in comparison with a threshold value of product were detected. This requires 

more research into the mechanism of substrate and or product inhibition applies in 

ethanol fermentation so as to guarantee the accuracy of the model.  

Table 2.4: Models showing growth kinetics with product inhibition  

Model Equations  Constants  Authors  

𝜇(𝑃) = 𝜇𝑚𝑎𝑥𝐾1(𝑃 − 𝐾2)  k1, k2= constants (>0)  Holzberg model (1967)  

𝜇(𝑃) = 𝜇𝑚𝑎𝑥𝑒−𝐾1𝑃  𝑘1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  Aiba (1982)  

𝑃 

 𝜇(𝑃) = 𝜇 (1 

− )  

𝑃𝑚𝑎𝑥= maximum product 

concentration  

Ghose and Tyagi model 

(1979)  

  

2.5.4.5 Unstructured Kinetic Models for Product Formation  

In this section, a combination of the kinetics of product formation and the cell growth 

is considered and based on the Gaden classification, four categories of kinetic models 

can be defined (Schugerl, 1991). Type 0, involves only a little substrate with cells 

functioning only as enzyme carriers, a typical example is the transformation of steroids 

𝜇 = 𝜇 𝑚𝑎𝑥 
𝑆 

𝐾 𝑠 + 𝑆 
𝑒 
− 𝑆 
𝐾 𝑖 , 𝑆 
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and synthesis of vitamin E by Saccharomyces cerevisiae. Type 1: where product 

formation is directly linked to cell growth, case of ethanol fermentation and situations 

in biological wastewater treatment. Type 2: with no direct connection between growth 

and product formation, case of penicillin and streptomycin synthesis. Type 3: Involves 

pathways that have a partial association with growth and thus indirect link to energy, 

e.g.  citric acid and amino acid production.  

2.5.5 Reaction Schemes in Biochemical Process Modeling  

The reaction scheme of a biochemical process is a macroscopic description of the set 

of biological and chemical reactions which represent the main mass transfer within the 

fermenter. A formalism close to that used in chemistry is adopted. In such a scheme a 

set of substrates Si is converted to a set of products Pi following three possibilities 

models (Bastin and Dochain, 1990):  

a) The reaction is a pure chemical reaction and no biomass is involved. The reaction 

is therefore a pure chemical reaction:  

                  𝑆1 + 𝑆2 + ⋯ +𝑆𝑛 → 𝑃1 + ⋯ + 𝑃𝑚  

b) The reaction is catalyzed by a biomass X. The biomass acts only as a catalyzer and 

the reaction is not associated with the growth of the microorganism:  

  
c) The reaction is associated with growth of microorganism. Therefore biomass  

is also a product:         

  

2.6 Parameter Estimation in Bioprocess Modeling  

One very efficient method in studying and predicting the behavior of industrial 

bioprocesses is the use of mathematical models to quantitatively describe the dynamics 
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of cell growth and product formation (Hamilton, 2011). The central idea of bioprocess 

modeling, to help reveal possible underlying mechanisms involved in a biological 

processes by the analysis of mathematical models  is often hampered by the fact that 

parameters like rate constant are not known (Peifer and Timmer, 2007).   

  

Numerical simulations of the system often involve estimating parameter values and 

evaluating the sensitivity of the system to small changes in parameters (Wang, 2012).  

The challenging problems related to parameter estimation in Ordinary Differential 

Equations are numerous. The existence of noise in measurements and nonlinearity of 

bioprocess dynamics makes it more challenging in estimating model parameters which 

complicates the adoption of most optimization techniques. Several approaches for 

estimating parameters in ordinary differential equations have either a small 

convergence region or suffer from an immense computational cost and if the parameters 

of a model are unknown, the results from simulation studies can be misleading (Peifer 

and Timmer, 2007). There is therefore need for appropriate choice and validation of 

parameter estimation method used in bioprocess modeling.  

  

2.6.1 Parameter Estimation Methods  

Due to the nonlinearity of ODEs used in describing the dynamics of bioprocess, all 

methods regarding parameter estimation show an interplay between simulating the 

system’s trajectory and optimization (Peifer and Timmer, 2007; Wang, 2012). The 

simulation of trajectory is usually done by convenient numerical methods for ODE; 

whereas the optimization differs drastically and can be broadly classified into global, 

clustering methods (Rinnooy-Kan and Timmer, 1987), evolutionary computation 

(Holland , 1992) and simulated annealing and Cross-Entropy method and local 

optimization methods, sequential quadratic programming (SQP), Newton methods, 
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quasi-Newton methods and so on. Global optimization (GO) methods can be roughly 

classified as deterministic (Horst and Tuy, 1990; Grossmann, 1996) or stochastic (Ali 

et al., 1997; Torn and Viitanen, 1999). One weakness of stochastic GO methods is the 

lack of strong theoretical guarantees of convergence to the global optima, since 

stochastic techniques for global optimization ultimately rely on probabilistic 

arguments. Deterministic GO methods are, on the other hand, generally able to achieve 

a level of assurance that the global optimum will be located. In the case of parameter 

identification in ODEs, the problem of convergence to local minima is predominant if 

the so-called initial value approach is considered.  

2.7 Theory of Optimal Control in Submerged Fermentation  

Optimal control is a subject where it is desired to determine the inputs to a dynamical 

system that optimize (i.e., minimize or maximize) a specified performance index while 

satisfying any constraints on the motion of the system (Bryson, 1996). Optimal control 

is an extension of the calculus of variations and most fruitful applications of the 

calculus of variations have been to theoretical physics, in connection with Hamilton’s 

principle. Early applications of optimal control in resources economics appeared in the 

late 1920s and early 1930s by Ross, Evans, Hottelling and Ramsey, with further 

applications published occasionally thereafter (Sussmann and Willems, 1997). The 

application of optimal control in the development of suitable procedures for the 

optimization of fermentation processes is very important, since obtaining the global 

optimum may be very difficult (Alford, 2006). In regards to this, optimal temperature 

profiles have been determined to maximize beer flavor (Ramirez and Maciejowski, 

2007), maximize ethanol formation from sugarcane molasses (Marcus and Normey-

Rico, 2011), minimize acetyl acetate production, (Carrillo-Ureta et al., 1999), and 

maintain cell viability and reduce glycerol production (Atala et al. 2001).  
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2.7.1 Performance Criterions of an Optimal Control Problem  

The general objective of an optimal control problem is to determine the control signals 

that will cause a controlled system to satisfy the physical constraints and, at the same 

time, minimize (or maximize) some performance criterion”, which can take various 

forms including Lagrange form, Mayer form and Bolza form. The controlled system is 

characterized by: State variables describing its internal behavior, called the phase space 

e.g., coordinates, velocities, concentrations, flowrates, etc. and Control variables 

describing the controller positions, called the control space e.g., force, voltage, 

temperature, etc. (Luus, 1990).   

A function used for quantitative evaluation of a system’s performance can depend on 

both the control and state variables and on the initial and/or terminal times too (if not 

fixed). The three general forms of the performance criterion are presented in equations 

(2.1), (2.2) and (2.3):  

Lagrange form:                                                    (2.11) 

Mayer form∶ 𝐽(𝑢) = ф[x(𝑡0), 𝑡0, x(𝑡𝑓), 𝑡𝑓; p ]                                                        (2.12)  

Bolza form:              (2.13)  

The Lagrange, Mayer and Bolza functional forms are equivalent (Chachuat, 2007; 

Zabczyk, 2008).  

2.7.2 Solution Methods for Optimal Control  

Generally the approaches used in solving optimal control problems can be divided into 

two broad categories; the indirect methods and direct methods. The major methods that 

fall into each of these two broad categories are described in the following sections.  



 

29  

2.7.2.1 Indirect Methods of Solving Optimal Control Problems  

In an indirect method, calculus of variations is applied to determine the first-order 

optimality conditions and unlike ordinary calculus (where the objective is to determine 

points that optimize a function), the calculus of variations is the subject of determining 

functions that optimize a function of a function, referred to as functional optimization 

(Athans and Falb, 2006; Leitman, 1981).   

2.7.2.2 Direct Methods for Solving Optimal Control Problems  

Direct methods are fundamentally different from indirect methods. In a direct method, 

the state and/or control of the original optimal control problem are approximated in 

some appropriate manner. In the case where only the control is approximated, the 

method is called a control parameterization method (Goh and Teo, 1988). When both 

the state and control are approximated the method is called a state and control 

parameterization method. In either a control parameterization method or a state and 

control parameterization method, the optimal control problem is transcribed to a 

nonlinear optimization problem or nonlinear programming problem (Betts, 1998; Gill 

et al., 1981). The three most common direct methods are the shooting method, the 

multiple-shooting method, and collocation methods.  

2.7.3 Numerical Methods in Optimal Control  

Due to the nonlinearity often observed in the HBVP extremal trajectories (i.e., solutions 

of the HBVP) are determined numerically. At the heart of a well-founded method for 

solving optimal control problems are the following three fundamental components: The 

three most common indirect methods are the shooting method, the multiple-shooting 

method, and collocation methods. Methods for solving differential equations and 

integrating functions are required for all numerical methods in optimal control. In an 
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indirect method, the numerical solution of differential equations is combined with the 

numerical solution of systems of nonlinear equations while in a direct method the 

numerical solution of differential equations is combined with nonlinear optimization 

(Logsdon and Biegler, 1989; Biegler et al., 2002).  

2.8 Perspective and Motivation  

From the detailed background in this area of study, it is observed that the current 

information regarding mathematical modeling and fermentation processes is not 

adequate to conveniently establish the mathematical structure and mechanism of 

substrate and/or product inhibtion in the alcoholic fermentation of maize, sorghum and 

cassava extracts. There is therefore a need for more research and development in the 

area of mathematical modeling to determine the nature of process stresses in the three 

substrates followed by the application of optimal control to minimize the effect of such 

inhibtions.  

  

CHAPTER THREE MATHEMATICAL MODELING, AND PARAMETER 

ESTIMATION  

  

3.1 Introduction and Chapter Overview  

The obstacles which include the complexity of the biological systems, the limited 

understanding of the biological processes, and the resulting lack of adequate process 

models hinder the adaptation of traditional process engineering approaches to 

bioprocessing. The evolution of micro-organisms is very complex and does not obey 

some clear physical laws which make modelling of biological processes complex 

because it is not based on validated laws like in other fields (mechanics, electronics, 

etc.). Nevertheless, like all physical systems, biosystems respect some laws like mass 
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conservation and energy conservation. In this section, all these aspects were considered 

in the model development in order to ensure that the mass balance approach would 

guarantee robustness of the model to describe the fermentation process. The model 

parameters were estimated using experimental data and a Matlab code which was 

written for parameter estimation in each of the scenarios considered. The capability of 

the mathematical model to describe the ethanol fermentation process was tested 

statistically using the F– tests using STATA software at a confidence interval of 99%.  

  

3.2 Experimental Methods and Data Collection  

This study involved a batch process where all the culture medium was directly available 

to the cell and no medium was added or withdrawn from the culture. The fermentation 

was carried out in industrial scale dual purpose fermenters and a series of peripheral 

devices were used to control and monitor the fermentation process.  

Three different fermentation worts were used- cassava, maize and sorghum and the 

environmental and state variables were measured at regular time intervals. Sorghum 

was top fermented with S. cerevisiae for a duration of 64 h, using an initial cell and 

substrate concentration of 0.1 million cells/ 0.1ml and 16.8g/100g respectively, with 

data taken every 4 h. Cassava and maize were bottom fermented separately, using S. 

carlsbergensis for a duration of 120 h and data collected every 12 h. The fermenters 

were inoculated with cell and substrate concentration of 0.16 million cells/0.1ml and  

15.28g/100g respectively in the case of maize and 0.16 million cells/0.1ml and 

12.79g/100g respectively in the case of cassava. The environmental variables that were 

controlled are pH and temperature. pH was measured with a pH probe and temperature 

monitored by a thermocouple. Besides these environmental  
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considerations, the substrate (glucose), cell and product concentrations were the main 

variables of interest.  

3.3 Model Development and Validation Methodology  

In developing the systems of differential equations for the batch fermenters, a Monod 

type model that accounts for product and/or substrate inhibition was used to 

approximate the kinetics of cell growth, substrate utilization and product formation in 

the fermentation process. The continuity equation of mass was applied to the fermenters 

to develop a system of differential equations that will be used to monitor the dynamics 

of substrate utilization, biomass formation and product formation during ethanol 

fermentation. All the system of linear ordinary differential equations obtained was 

simulated numerically using the 4-5th order Runge-Kutta method and all parameters in 

the model was estimated using experimental model fitting techniques. The formulation 

of mathematical fermentation process models, from the standpoint of system analysis, 

was usually realized in three stages:  

a) Qualitative analysis of the structure of a system, usually based on the knowledge 

of metabolic pathways and biogenesis of the desired product,  

b) Formulation of the model in a general mathematical form.  This stage is 

sometimes called the structure synthesis of the process functional operator;  

c) Identification and determination of numerical values of model constants and/or 

parameters which are based on experimental or other operating data from a real 

process.  

Figure 3.1 presents the different stages that were used for the model development  
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Figure 3.1: procedure used for model development and validation  



 

35  

3.4 Kinetic Modeling  

3.4.1 Modeling of Growth Kinetics and Product Inhibition  

The Monod’s growth model is found to be the most simple and fundamental model to 

explain microbial growth andwas chosen to describe the growth kinetics of ethanol 

fermentation in this study.   

Similar type of equation which describes the specific rate of product formation was 

used to describe the kinetics of product formation as shown in equation (3.1). Starting 

from the Monod Equation for cell growth and  product formation, three inhibition 

patterns were considered in modeling product inhibition; linear, sudden growth stop 

and exponential as shown in Table 3.1.   

  

(3.1)  

  
  

Table 3.1: Mathematical expressions used in modeling product Inhibiton  

Product Inhibition Factor  Mathematical Expression  

Linear  (1 − 𝐾2𝑃)  

Sudden Growth Stop  

  

Exponential  𝑒−𝐾1𝑃  

  

To introduce the effect of product inhibition on the Monod equation, the respective 

inhibition factor results in the following kinetic models: (a) Linear product Inhibiton 

(equation 3.1.1 known as the Hinshelwood-Dagley model), (b) Sudden growth stop 

product inhibtion (equation 3.1.2 which was first proposed by Ghose and Tyagi, 
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(1979)), and (c) exponential product inhibtion (equation 3.1.3  known as the Aiba and 

Shoda model (1989)).  

  

  

  

(3.1.3)  

  

  

3.4.2 Modeling Substrate Inhibition  

The substrate Inhibiton was modelled taking into consideration the presence of product 

inhibtion, and the patterns that were considered are shown in Table 3.2 below. To 

introduce the effect of substrate inhibition on kinetics of cell growth and product 

formation resulted in four different inhibtion patterns: (a) Linear Substrate-Linear 

Product (equation 3.1.4), (b) Linear Substrate-Exponential Product (equation 3.1.5),  

(c) Exponential substrate-linear product (equation 3.1.6) and (d) Exponential  

𝝁 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒙 𝑷 ) 
𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
  

(3.1.1)   

𝒒 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒑 𝑷 ) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
  

𝝁 ( 𝑺 , 𝑷 ) = ( 𝟏 − 
𝑷 

𝑷 𝒎𝒂𝒙 
) 
𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
    

(3.1.2)   

𝒒 ( 𝑺 , 𝑷 ) = ( 𝟏 − 
𝑷 

𝑷 𝒑𝒎𝒂𝒙 
) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
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Substrate-Exponential Product (equation 3.1.7) as shown in the following section.  

Table 3.2: Mathematical expressions for the substrate and product inhibition factors  

Inhibition Factor  Mathematical Expression  

Linear substrate  (1 − 𝐾2𝑆)  

Exponential Substrate  𝑒−𝐾1𝑆  

  

  

  

 

  

  

  

 

𝝁 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒙 𝑷 ) ( 𝟏 − 𝑲 𝒊𝒔𝒙 𝑺 ) 
𝝁 𝒎𝒂𝒙 𝑺 
𝑲 𝒔𝒙 + 𝑺 

                                    (3.1.4)     

𝒒 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒑 𝑷 ) ( 𝟏 − 𝑲 𝒊𝒔𝒙 𝑺 ) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 

𝜇 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒔𝒙 𝑺 ) 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒙 𝑷 ) 
𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
  

                                      (3.1.5)   

𝑞 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒔𝒑 𝑺 ) 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒑 𝑷 ) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
  

𝝁 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝑲 𝒊𝒙 𝑷 ) 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒔𝒙 𝑺 ) 
𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒎 + 𝑺 
  

                                        (3.1.6)   

𝒒 ( 𝑺 , 𝑷 ) = ( 𝟏 − 𝒑𝑷 ) 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒔𝒑 𝑺 ) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒎 + 𝑺 

𝝁 ( 𝑺 , 𝑷 ) = 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒙 𝑷 ) 
𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒙 + 𝑺 
𝒆𝒙𝒑 ( − 𝑲 𝒊𝒔𝒙 𝑺 )   

                                             (3.1.7)   

𝒒 ( 𝑺 , 𝑷 ) = 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒑 𝑷 ) 
𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒑 + 𝑺 
𝒆𝒙𝒑 ( − 𝑲 𝒊𝒔𝒑 𝑺 )   
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3.5 Dynamic Balances and Governing Differential Equations  

The dynamic equations for each of the process variables were developed by applying the 

continuity law of mass to the batch fermenter and presented as follows;  

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑀𝑎𝑠𝑠  𝑅𝑎𝑡𝑒 𝑜𝑓  𝑅𝑎𝑡𝑒 𝑜𝑓   
( ) = ( ) − ( ) + ( ) − ( ) 
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝑂𝑢𝑡𝑝𝑢𝑡  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑝𝑡𝑖𝑜𝑛 

(3.1.8)  

Since the study involved a batch configuration the continuity equation can be simplified 

to:  

  

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

 ( ) = ( ) − ( ) 

 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑝𝑡𝑖𝑜𝑛 

(3.1.8a)  

It was considered in modeling the substrate dynamics that when substrate is consumed the 

rate of substrate consumption depends on  

  

(3.1.8b)  

This implies the rate of substrate utilization 𝐾𝜑 is given by  

  

where,  

  

  

𝐺𝑠𝑋 = 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑔𝑟𝑜𝑤𝑡ℎ                                           (3.1.9𝑐)  

𝑀𝑠𝑋 = 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦                  (3.1.9𝑑)  
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By applying the principle of conservation of mass and using the specific rates of 

biomass, substrate and product formation, batch kinetics and mathematical correlations,  

the approximate representation (description) of the  fermentation process was done 

using systems of first order ordinary differential equations presented by equation (3.2). 

It consists of the system of mass balances for each of the state variables that were 

considered in the experiment, where S represents substrate concentration, P product 

concentration and X biomass.   

𝒅𝑿 

 = 𝝁𝑿  
𝒅𝒕 

𝒅𝑷 

 = 𝒒𝑿                                                                        (𝟑. 𝟐) 𝒅𝒕 

𝒅𝑺 𝟏 𝒅𝑿 𝟏 𝒅𝑷 

𝒅𝒕 = − 𝒀𝒙 𝒅𝒕 − 𝒀𝒑 𝒅𝒕 − 𝑮𝒔𝑿 − 𝑴𝒔𝑿  

  

3.5.1 Systems Dynamics with Product Inhibition  

Using the batch kinetic models developed above and substituting 𝜇 and 𝑞 in equation 

(3.2) with each of their product inhibition expressions, the approximate representation 

of the fermentation process was described by equation (3.2.1) (Linear product 

inhibition), equation (3.2.2) (sudden growth stop product inhibition and equation 

(3.2.3) for exponential product inhibition, presented in the following section.  

𝒅𝑿 𝝁𝒎𝒂𝒙 

 = (𝟏 − 𝑲𝒊𝒙𝑷) 𝑲𝒔𝒙 
𝒅𝒕 

𝒅𝑷 𝒒 

𝒅𝒕 = (𝟏 − 𝑲𝒊𝒑𝑷) 𝑲𝒔𝒑 𝑿                               (𝟑. 

𝟐. 𝟏)  

− 𝑮𝒔𝑿 − 𝑴𝒔𝑿  

𝑺 

+ 𝑺 
𝑿   

𝒎𝒂𝒙 𝑺 

+ 𝑺 

𝒅𝑺 

𝒅𝒕 
= − 

𝟏 

𝒀 𝒙 

𝒅𝑿 

𝒅𝒕 
− 

𝟏 

𝒀 𝒑 

𝒅𝑷 

𝒅𝒕 
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𝒅𝑷 𝑷 𝒒𝒎𝒂𝒙𝑺 

 = (𝟏 − ) 𝑿                               (𝟑. 𝟐. 𝟐) 𝒅𝒕 

𝑷𝒑𝒎𝒂𝒙 𝑲𝒔𝒑 + 𝑺 

𝒅𝑺 𝟏 𝒅𝑿 𝟏 𝒅𝑷 

𝒅𝒕 = − 𝒀𝒙 𝒅𝒕 − 𝒀𝒑 𝒅𝒕 − 𝑮𝒔𝑿 − 𝑴𝒔𝑿  

  

  

  

3.5.2 Systems Dynamics with Substrate and Product Inhibition  

Using the batch kinetic models developed above and substituting 𝜇 and 𝑞 in equation 

(3.2) with each of their kinetic expressions that take into consideration substrate and 

product inhibition, the approximate representation of the fermentation process was 

described by (a) equation (3.2.4) (Linear Substrate-Linear Product inhibtion, (b) 

equation 3.2.5 (Linear Substrate Exponential Product inhibition) (c) equation 3.2.6  

(Exponential substrate linear product inhibition and (d) equation 3.2.7 (Exponential 

Substrate Exponential Product inhibtion as presented in the following section.  
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𝒅𝑷 

= (𝟏 − 𝑲 

  

𝒅𝑷 

𝒅𝒕 = (𝟏 − 𝑲𝒊𝒔𝒑𝑺)𝒆𝒙𝒑(−𝑲𝒊𝒑𝑷) 

𝒅𝑿 𝝁 

𝒅𝒕 = (𝟏 − 𝑲𝒊𝒙𝑷)𝒆𝒙𝒑(−𝑲𝒊𝒔𝒙𝑺) 𝑲 

𝒅𝑷 

𝒅𝒕 = (𝟏 − 𝑲𝒊𝒙𝑷)𝒆𝒙𝒑(−𝑲𝒊𝒔𝒙𝑺) 

𝒅𝑺 𝟏 𝒅𝑿 𝟏 𝒅𝑷 

𝒅𝒕 = − 𝒀𝒙 𝒅𝒕 − 𝒀𝒑 𝒅𝒕 − 𝑮𝒔𝑿 − 𝑴 𝑿  

𝒅𝑿 
𝒅𝒕 = ( 𝟏 − 𝑲 𝒊𝒙 𝑷 ) ( 𝟏 − 𝑲 𝒊𝒔𝒙 𝑺 ) 

𝝁 𝒎𝒂𝒙 𝑺 
𝑲 𝒔𝒙 + 𝑺 𝑿   

𝒅𝒕 
𝒊 𝒑 𝑷 ) ( 𝟏 − 𝑲 𝒊𝒔𝒑 𝑺 ) 

𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒑 + 𝑺 
𝑿                       ( 𝟑 . 𝟐 . 𝟒 )   

𝒅𝑺 

𝒅𝒕 
= − 

𝟏 

𝒀 𝒙 

𝒅𝑿 

𝒅𝒕 
− 

𝟏 

𝒀 𝒑 

𝒅𝑷 

𝒅𝒕 
− 𝑮 𝒔 𝑿 − 𝑴 𝒔 𝑿   

𝒅𝑿 
𝒅𝒕 
= 
  ( 𝟏 − 𝑲 𝒊𝒔𝒙 𝑺 ) 𝒆𝒙𝒑 ( − 𝑲 𝒊𝒙 𝑷 ) 

𝝁 𝒎𝒂𝒙 𝑺 
𝑲 𝒔𝒙 + 𝑺 

𝑿   

𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒑 + 𝑺 
𝑿               ( 𝟑 . 𝟐 . 𝟓 )   

𝒅𝑺 

𝒅𝒕 
= − 

𝟏 

𝒀 𝒙 

𝒅𝑿 

𝒅𝒕 
− 

𝟏 

𝒀 𝒑 

𝒅𝑷 

𝒅𝒕 
− 𝑮 𝒔 𝑿 − 𝑴 𝒔 𝑿   

𝒎𝒂𝒙 𝑺 

𝒔𝒙 + 𝑺 𝑿   

𝝁 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒑 + 𝑺 
𝑿                 ( 𝟑 . 𝟐 . 𝟔 )   

𝒔 
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𝒅𝑿 𝒒𝒎𝒂𝒙𝑺 

𝒅𝒕 = 𝒆𝒙𝒑(−𝑲𝒊𝒑𝑷) 𝑲𝒔𝒑 + 

𝑺𝒆𝒙𝒑(−𝑲𝒊𝒔𝒑𝑺)𝑿       (𝟑.𝟐. 𝟕)  

  

  

3.6 Parameter Estimation and Model Statistical Validity  

The identification of model parameters for the different systems of equations was 

determined with Matlab and the ode45 solver used to simulate the differential 

equations. This was done by minimizing the overall sum of squared error (equation 

(11)) between the model simulation and experimental data points of the process 

variables (biomass, substrate and product).  

𝜺 = 𝐦𝐢𝐧 ∑(𝑿(𝒌𝟏, 𝒌𝟐, … , 𝒌𝒏) − 𝑿𝒆)𝟐 + (𝑺(𝒌𝟏, 𝒌𝟐, … , 𝒌𝒏) − 𝑺𝒆)𝟐 

+ (𝑷(𝒌𝟏, 𝒌𝟐, … , 𝒌𝒏) − 𝑷𝒆)𝟐              (𝟏𝟏)  

For that purpose, the Matlab routine “fmincon” was applied. Here, 𝑘𝑖, 𝑖 = 1 ÷ 𝑛 was 

vector of model parameters to be determined as output of minimization procedure. A 

Matlab code was written which imports the experimental data from Microsoft Excel, 

simulates the differential equations, calculates and minimizes the total error, displays 

the parameter values and plots the model and experimental values. Once the model 

parameters were estimated, the capability of the mathematical model to describe the 

ethanol fermentation process was tested statistically using the F–tests and this was done 
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using STATA software at a confidence interval of 99% to determine the confidence 

level for the developed mathematical model.  
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CHAPTER FOUR RESULTS AND DISCUSSIONS: MODEL SIMULATION 

AND PARAMETER ESTIMATION  

4.1 Overview of Chapter  

This chapter presents the results from the kinetic modeling, parameter estimation and 

dynamic simulation for the three substrates considered for the fermentation (sorghum, 

maize and cassava). The results for model statistical validity using F-test variance 

comparison test for the model and experimental data are also presented. Simulations 

showing the variation of substrate and product concentration in the fermenter as the 

cells grow are also presented for the three different substrates used. Finally, 3D profiles 

revealing more in-depth mechanism of the fermentation process are presented. The 

chapter is divided into four main sections: the first presents the results for sorghum 

extracts, second for maize extracts, the third for cassava extracts and a conclusion on 

the results.  

  

4.2 Alcohol Fermentation with Sorghum Extracts  

Figures 4.21 to 4.24 presents the fitting of the models with respect to the experimental 

data. The results led to the following conclusions: First alcoholic fermentation of 

sorghum extracts using Saccharomyces cerevisiae shows the existence of product 

inhibition, and the patterns of inhibition could be described as linear or exponential 

(models which showed lowest error). This is justified by the observation that the errors 

for the models showing product inhibition were all lower that than that of the Monod 

in which case was used as the control. The results confirmed previous observations by 

Chen and McDonald (1990a, b) Beuse et al. (1998, 1999) and Fengwu (2007) that 

ethanol, whether produced by yeast cells during fermentation or externally added into 
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a fermentation system, can trigger inhibitions once its concentration approaches 

inhibitory levels. Also important in fermentation kinetics is the product yield, growth 

and maintenance coefficients. The linear model showed a relatively high product yield 

coefficient with a relatively low growth and maintenance coefficient compared to the 

exponential model. This suggest that even though both models showed similar accuracy 

in describing the fermentation dynamics, designing a control policy with the Linear 

model will result in more substrate being accumulated into extracellular product and 

lesser amount for cell growth and maintenance hence higher productivity and yield. 

Tables 4.22 and 4.23 present the model statistical validity using two sample F-test for 

variance and the results show that at 99% confidence interval, the states’ prediction of 

the linear and exponential models showed no significant difference with the 

experimental data.  

 

Figure 4.21: Experimental results and model fitting of no inhibition 

(Monodmodel)  



 

 

  

 

Figure 4.22: Experimental results and model fitting, case of linear inhibition model 

 



 

 

Figure4.23: Experimental results and model fitting of Sudden Growth Stop 

inhibition  
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Figure 4.24: Experimental results and model fitting of Exponential inhibition model 

Table 4.21 presents the parameters for the four different models used to describe the 

dynamics of fermentation and  

Table 4.21: Model Parameters for beer fermentation using Sorghum Extracts  

   Inhibition   

No Inhibition  Linear  SGS  Exponential  

 

𝜇𝑚𝑎𝑥  0.3887  0.9557  0.6582  2.2628  

𝑞𝑝𝑚𝑎𝑥  17.4649  2.2101  4.7227  9.0145  

𝑃𝑥𝑚𝑎𝑥      7.9885    

𝑃𝑝𝑚𝑎𝑥      9.8916    

𝐾𝑖𝑥    0.1294    0.4210  

𝐾𝑖𝑝    0.1004    0.1030  

𝐾𝑠𝑥  249.9922  125.433  81.8551  179.2911  

𝐾𝑠𝑝  199.9980  29.213  74.8407  199.8710  

𝑌𝑥  0.1001  0.1086  0.1368  1.0000  

𝑌𝑝  0.6085  1.8895  1.2710  0.5936  



 

 

𝐺𝑠  0.0010  0.0502  0.0345  0.0010  

𝑀𝑠  0.0100  0.0564  0.0423  0.0100  

Model Error  5.4262  0.3407  0.4054  0.3270  
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Table 4.22: Model Statistical Validity with kinetics of linear inhibition, two sample 

F-test for variance (Biomass)  

  Biomass  Product  Substrate  

  Experiment 

al (Xobs)  

Model  

(Xpre 

d)  

Experiment 

al (Pobs)  

Model  

(Ppre 

d)  

Experiment 

al (Sobs)  

Model  

(Spre 

d)  

Mean  0.508  0.533  4.903  4.893  9.126  9.107  

Standard 

Error  

0.059  0.055  0.610  0.605  1.114  1.105  

Standard 

Deviation  

0.244  0.228  2.514  2.495  4.595  4.558  

Observatio 

ns  

17  17  17  17  17  17  

Confidence 

Interval  

0.990  0.990  0.990  

F  0.8664  0.9842  0.9840  

Pr(F < f) 

Two-tailed  

0.7778  0.9750  0.9747  

  

Table 4.23: Model Statistical Validity with kinetics of Exponential inhibition, two sample 

F-test for variance  

  Biomass  Product  Substrate  

  Experime 

ntal  

(Xobs)  

Model 

(Xpred)  

Experiment 

al (Pobs)  

Model  

(Ppre 

d)  

Experiment 

al (Sobs)  

Model  

(Spre 

d)  

Mean  0.508  0.549  4.903  4.903  9.126  9.105  

Standard 

Error  

0.059  0.050  0.610  0.610  1.114  1.1061  

Standard 

Deviation  

0.244  0.207  2.514  2.514  4.595  4.561  

Observation 

s  

17  17  17  17  17  17  

Confidence 

Interval  

0.990  0.990  0.990  

F  0.7209  0.9994  0.9850  

  

   

  

  

Also important in a fermentation process is how the substrate and product vary in the 

fermenter as the cells grow. The linear and exponential inhibition models were both 
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used to simulate this variation. Both showed a decrease in substrate concentration and 

an increase in product concentration with cell growth. However, with the linear model 

the process reached a steady state within the time used for the simulation (seen in figure 

4.25 by the curve at the edges of the plots) which was not observed in the exponential 

model. This confirmed the earlier assertions with the yield coefficients that using the 

linear model in a control policy will result in high productivity. 3D profiles using the 

proximal interpolant method implemented using the Matlab curve fitting tool also 

revealed interesting findings regarding the fermentation process. This was to observe 

the formation of product as cells grow and consume substrate.   

 

Figure 4.25: Simulation of substrate and Product variation as a function of biomass 

during fermentation using Linear Inhibition kinetics.  
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Figure4.26: Simulation of substrate and product as a function of biomass during 

fermentation using Exponential Inhibition kinetics.  

  

Figure 4.27 presents product variation with cell growth and substrate consumption 

using the linear model and figure 4.28 using the exponential model. It can be found that 

with the linear model, as ethanol accumulated in the fermenter up to a certain 

concentration, non-linearities, described as instabilities were observed in the product 

profile. This can be attributed to the higher product yield coefficient of the linear model 

compared to the exponential model which resulted in ethanol accumulating faster in the 

fermenter and rapidly reaching inhibitory levels, resulting in transient instabilities in 

the fermenter showed by the non-linearity (Ingledew, 1999; Fengwu, 2007). This high 

ethanol concentration is inhibitory to the yeast cell by disrupting the integrity of the 

cell membrane (Russell, 2003; Sutton, 2011)  



 

52  

 

Figure 4.27 3D proximal interpolant simulation of product variation as a function 

of substrate and biomass using linear Inhibition Kinetic Model  

 
Figure 4.28: 3D proximal interpolant simulation of product variation as a function 

of substrate and biomass using Exponential Inhibition Kinetic Model.  

  

  

  

4.3 Alcohol Fermentation with Maize Extracts  

Alcohol fermentation with maize extracts also showed the existence ethanol inhibition 

but in this case the patterns of inhibition could be described as linear decrease on the 

inhibitory ethanol concentration or sudden growth ceasure at inhibitory concentration. 



 

53  

Table 4.31 presents the parameters for the four different models used to describe the 

dynamics of fermentation and Figures 4.31 to 4.34 presents the fitting of the models 

with respect to the experimental data. Even though the linear and sudden growth stop 

models described the dynamics of ethanol inhibition, the sudden growth stop model 

showed a very high maximal rate of ethanol accumulation compared to the exponential 

model. This suggests that designing a control policy with this model will result in high 

process productivity. Tables 4.32 and 4.33 present the model statistical validity using 

two sample F-test for variance and the results show that at a 99% confidence interval, 

the states’ prediction of the linear and exponential models  

showed  no  significant  difference  with  the  experimental  data.  

 

Figure 4.31: Experimental results and model fitting of no inhibition (Monodmodel).  
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Figure4.32: Experimental results and model fitting of linear inhibition model. 

 

Figure 4.33: Experimental results and model fitting of Sudden Growth Stop inhibition 

model.  
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Figure 4.34: Experimental results and model fitting of Exponential Inhibition Model. 

Table 4.31: Model Parameters for beer fermentation using Maize Extracts  

  Inhibition  

No Inhibition  Linear  SGS  Exponential  

 

𝜇𝑚𝑎𝑥  0.0100  0.0567  0.0630  2.9922  

𝑞𝑝𝑚𝑎𝑥  10.4778  0.7784  0.9338  8.2438  

𝑃𝑥𝑚𝑎𝑥      6.7249    

𝑃𝑝𝑚𝑎𝑥      7.3560    

𝐾𝑖𝑥    0.1459    0.7179  

𝐾𝑖𝑝    0.1375    0.2631  

𝐾𝑠𝑥  250.000  1.2621  1.9085  231.9805  

𝐾𝑠𝑝  200.00  7.1081  11.7803  199.9890  

𝑌𝑥  0.1000  0.1084  0.1108  1.0000  

𝑌𝑝  0.5370  1.2548  1.3938  0.6210  

𝐺𝑠  0.0010  0.0018  0.0051  0.0010  

𝑀𝑠  0.010  0.0108  0.0141  0.0100  

Model Error  27.9231  2.0381  2.0941  11.340  

  

Another important finding that was observed was with the variation of substrate and 

product concentration in the in the fermenter as the cells grow. The linear and sudden 
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growth stop models inhibition models were both used to simulate this variation and 

both showed a decrease in substrate concentration and an increase in product 

concentration with cell growth. What was intriguing is the curve-like behavior that was 

observed at the end of the profiles as shown in Figures 4.35 and 4.36. There are two 

theories to explain this behavior: ethanol inhibition and stationary/decline phases in 

batch growth kinetics. In the case of ethanol inhibition, accumulated ethanol to 

inhibitory levels leading to disruption of the cell membrane and the corresponding non-

linearity in the substrate consumption and product formation profiles (Chen and 

McDonald, 1990a,b; Beuse et al., 1998, 1999; Fengwu, 2007; Sutton, 2011). The more 

intense curvature observed with the sudden growth model is due to its relatively high 

maximal rate of product formation, hence rapidly accumulated ethanol to inhibitory 

concentration. Regarding the stationary and decline phase theory in batch growth 

kinetics, the curve-like behavior observed in the linear model can be attributed to the 

fact the cells grow and get to the stationary and decline phases, and no longer consume 

substrate and produce ethanol as in the exponential phase, resulting in the observed 

non-linearity. These theories are further confirmed in Figures 4.37 and 4.38 which 

respectively simulated cell growth and product formation throughout the duration of 

the fermentation. It can be observed that cells in the fermenter start declining after a 

certain time of fermentation which confirms the attainment of ethanol inhibition and 

disruption of cell membrane leading to cell death. The nonlinear patterns observed at 

the start of the fermentation can be attributed to high sugar concentrations encountered 

immediately after hydrolysis which exert osmotic stress on yeast leading to non-

linearity in their pattern of growth and product formation (Russell, 2003; Sutton, 2011).  



 

57  

 
Figure 4.35: Simulation of substrate and Product variation as a function of biomass 

during fermentation of maize extracts using Linear Inhibition kinetic model.  

 
Figure 4.36: Simulation of substrate and Product as a function biomass during 

fermentation, using Sudden Growth Stop Inhibition kinetic.  
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Figure 4.37 3D proximal interpolant simulation of product dynamics during fermentation 

using linear inhibition kinetic Model. -  

 

Figure 4.38: 3D proximal interpolant simulation of biomass variation during fermentation 

using Sudden Growth Stop inhibition kinetic Model.  
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4.4 Alcohol Fermentation with Cassava Extracts  

4.4.1 Product Inhibition  

The fermentation of cassava extracts also showed the existence of product inhibition, 

described as linear or exponential decrease in product concentration (models which 

showed lowest error).  However, unlike maize (minimum model error of 2.0381) and 

sorghum (minimum model error of 0.3270), cassava fermentation had a minimum 

model error of 4.8107. This was suggested to be due to the presence of substrate 

inhibtion as explained by the presence of hydrogen cyanide in the cassava which is 

toxic to the growth of microorganisms. This resulted in low model fit since the 

modeling of substrate toxicity was not yet considered and hence the model did not 

represent the reality in the fermenter, substrate and product inhibition. Figures 4.41 to  

4.44 presents the fitting of the models with respect to the experimental data.  

 

Figure 4.41: Experimental results and model fitting, case of no inhibition (Monod-Model).  
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Figure 4.42: Experimental results and model fitting, case of linear inhibition model  

 

Figure 4.43: Experimental results and model fitting, case of Sudden Growth Stop 

inhibition model.  
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Figure 4.4 4: Experimental results and model fitting, case of Exponential inhibition 

model  

Table 4.41 presents the parameters for the four different models used to describe the dynamics 

of fermentation in the case where only product inhibtion was considered 

  

Table 4.41: Model Parameters for beer fermentation using Cassava Extracts, case 

of product inhibition  

   Inhibition   

No Inhibition  Linear  SGS  Exponential  

 

𝜇𝑚𝑎𝑥  0.0100  0.3326  2.9996  4.9991  

𝑞𝑝𝑚𝑎𝑥  8.4851  51.3560  5.8755  2.6067  

𝑃𝑥𝑚𝑎𝑥      6.8884    

𝑃𝑝𝑚𝑎𝑥      6.7637    

𝐾𝑖𝑥    0.1466    0.8290  

𝐾𝑖𝑝    0.1013    0.6347  

𝐾𝑠𝑥  249.9991  13.5297  231.0673  52.4603  

𝐾𝑠𝑝  199.9997  249.9655  199.9957  25.2593  

𝑌𝑥  0.1002  19.9983  1.0000  0.4297  

𝑌𝑝  0.5464  0.7589  1.1878  6.9998  

𝐺𝑠  0.0010  0.0010  0.0010  0.0010  

𝑀𝑠  0.0100  0.0100  0.0100  0.0100  

Model Error  94.0344  4.8107  7.8655  5.5755  
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4.4.2 Substrate and Product Inhibition  

Table 4.42 presents the parameters for the four different models used to describe the 

dynamics of fermentation and Figures 4.45 to 4.48 present the fitting of the models with 

respect to the experimental data. The results led to the following findings: first, there 

exist both substrate and product inhibition in the alcoholic fermentation of cassava 

extracts, with the LS-EP and ES-EP models, describing the inhibition dynamics with 

relatively high accuracy (having lower model errors); secondly, the results confirmed 

my previous observations that modeling only product inhibition did not describe with 

high accuracy the alcoholic fermentation of cassava extracts suggesting the presence of 

substrate inhibition. The dynamics described by conventional Monod equation (case of 

no inhibition showed a very high error confirming the presence of inhibitions. Also 

important in fermentation kinetics is the specific rate of ethanol accumulation in the 

medium. The parameter estimation results indicated high maximal rate of product 

formation, 183.4561 ℎ−1  with the ES-EP model compared to 7.1381ℎ−1 for LS-EP 

model. This suggests that even though both models showed similar accuracy in 

describing the fermentation dynamics, to design a control policy with the ES-EP model 

will result in a high process productivity in terms of ethanol accumulation. It highlights 

that the product inhibition had a higher effect on the fermentation process than substrate 

inhibition, as shown by the product inhibition coefficients being very high compared to 

those for substrate inhibition. This is explained by the fact that most of the cyanide in 

the cassava which could have resulted in substrate toxicity was removed during 

upstream process which resulted in smaller amounts left in the fermentation wort.    

    

Table 4.42: Model Parameters for beer fermentation using Cassava Extracts, case 

of substrate and product inhibition  

     Inhibition   
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Monod  

(No  

Inhibition)  

Linear  

S   

Linear P  

Linear S  

Exponential 

P  

Exponential 

S Linear P  

Exponential 

S  

Exponential 

P  

 

𝜇𝑚𝑎𝑥  0.0100      0.0100     3.0000      2.4342      2.9996    

𝑞𝑝𝑚𝑎𝑥  8.4851    14.5352      7.1381     7.1395    183.4561     

𝐾𝑖𝑠𝑥    0.3131       0.0001      0.0001      0.0001      

𝐾𝑖𝑠𝑝    0.0010  0.0021  0.0010  0.2002  

𝐾𝑖𝑥    0.9539  0.5411  0.1264  0.5453  

𝐾𝑖𝑝    0.1475       0.8968      0.1450      1.2437      

𝐾𝑠𝑥  249.9991    1.0090    67.607    249.9969    66.2282     

𝐾𝑠𝑝  199.9997      198.8989     9.5495      199.9999      11.9572      

𝑌𝑥  0.1002      2.9782       3.0000      3.0000      2.9999      

𝑌𝑝  0.5464  0.6497       0.6131      0.6389      0.6131  

𝐺𝑠  0.0010      0.0017       0.0001      0.0011      0.0001      

𝑀𝑠  0.0100  0.0017       0.0001      0.0011      0.0001      

Model 

Error  

94.0344  7.3934  2.8012  7.5115  2.7975  

  

The high product inhibition is in accordance to the work of Ingledew (1999) who 

showed substrate and product to be among the environmental stresses to S. cerevisiae 

during alcoholic fermentation Table 4.43 and 4.44 presents the model statistical validity 

using two sample F-test for variance and the results show that at a 99% confidence 

interval, the states’ prediction of the LS-EP and the ES-EP models showed no 

significant difference with the experimental data.  
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Figure 4.45: Experimental results and model fitting (LS-EP model).  

 
Figure 4.47: Experimental results and model fitting (ES-LP).  
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Figure 4.46: Experimental results and model fitting (LS-LP model).  

 

Figure 4.48: Experimental results and model fitting (ES-EP model).  

  

3D profiles using the proximal interpolant method, implemented using the Matlab curve 

fitting tool showed interesting findings. Figure 4.49 shows the dynamics of product 

interpolated with substrate and time.  It can be found that early in the fermentation 
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process there exist steps in the product profile which decreases in intensity as substrate 

concentration decreases in the reactor. This observed behavior can be attributed to high 

sugar concentrations encountered immediately after hydrolysis which exert osmotic 

stress on yeast cells resulting in transient instabilities in the bioreactor (Russell, 2003; 

Fengwu, 2007; Sutton, 2011). This behavior decreases in magnitude as the  sugar 

concentration decreases up to a point where the systems achieves a stable steady state 

and the rate of product formation becomes constant. Figure 4.5 shows product, against 

biomass and substrate.  

 

Figure 4.49: product dynamics as against substrate utilization and time ES-EP Inhibition 

Model.  
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Figure 4.5: Dynamics of product formation as against substrate utilization and cell 

growth (ES-EP Inhibition Model)  

  

4.5 Conclusion  

A mathematical approach to study the kinetics of substrate and product Inhibition during 

alcoholic fermentation with three different substrates has been presented. Substrates 

considered were sorghum, maize and cassava and the results show that there exist both 

ethanol inhibition in the alcoholic fermentation of sorghum and maize extracts while 

cassava extracts show both ethanol and substrate inhibition. At a 99% confidence interval 

the pattern of theses inhibitions can be described as a linear or an exponential decrease on 

ethanol concentration in the case of sorghum, linear and sudden growth stop in the case of 

maize, linear substrate exponential product, and exponential substrate exponential product 

in the case of cassava.  

CHAPTER FIVE OPTIMAL CONTROL PROBLEM FORMULATION AND 

SOLUTION TECHNIQUE  
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5.1 Introduction and Overview  

The transfer of laboratory scale experiments to production scale fermentation is becoming 

more time consuming, involving expensive prototype systems and complex experimental 

design to determine the optimal industrial scale operating conditions (Alford, 2006). This 

makes it very important to propose a systematic approach to effectively tackle these 

difficulties and achieve optimized design efficiently with minimal cost and time. Under 

this scope, several optimization strategies can be delineated, depending on the defined 

purposes. The process engineer point of view aims at optimizing the fermentation process 

by exploiting the maximum capabilities of an already selected microorganism and by 

manipulating environmental and operational variables, therefore using potentially similar 

tools, but with a different perspective when compared with optimization strategies that 

envisage the design of improved strains (Koutinas, 2012). This chapter includes the 

description of a batch alcohol fermentation process that has been optimized using a 

technique based on the application of mathematical modeling and optimal control. 

Calculus of variation is introduced as a valuable tool to derive and solve the necessary 

conditions for optimality and the obtained results show the optimal temperature and pH 

profiles for the fermentation of sorghum extracts. A Simulink model of the fermentation 

process shows that using the proposed control strategy increases ethanol yield by 14.18%, 

cell growth by 71.96% decreases the residual substrate by 84.77%  

5.2 Objectives of the Optimal Control Strategy  

The objective of the optimal control, which is to operate the fermenter in order to obtain 

maximum ethanol in the most economical way, is divided into two stages:  

a) First Stage Control: Determine the temperature and pH trajectories that maximizes 

cell growth and ethanol production.  
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b) Second Stage Control: Design a Fermenter model using Simulink to confirm the 

optimal temperature and pH profiles  

5.3 Control Assumptions and Approximations  

a) The maintenance and growth coefficient are temperature independent and hence will 

not be considered in the model  

b) Product formation and substrate utilization are directly linked to the cell specific 

growth rate  

c) Since the objective is to find a balance between two major controls, temperature and 

pH on the effect of the controls will be modelled only on the maximum specific 

growth rate.  

5.4 Modeling Temperature and pH dependence  

The temperature dependency of the cellular activity was modelled using the Arrheniuslike 

equation, equations (5.4a) and (5.4b).  

  

  

Typical values for these parameters were taken from the literature (Shuler and Kargi,  

2002).  

A typical term, equation (5.41) that accounts for pH dependence was also introduced into 

the specific growth rate expression. Although this simple model cannot possibly explain 

pH dependence, literature shows that it gives an adequate fit for many microorganisms 

(Nielsen and Villadsen, 1994). The additional term is in the form:  
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The values of k1 and k2 that were used for the numerical simulations were chosen to be in 

their typical ranges from literature (Nielsen and Villadsen, 1994; Shuler & Kargi, 2002).  

  

5.5 Modeling the Effect of Controls on State Equations  

In order to minimize the effect of substrate and/or product inhibtion during fermentation 

and correspondingly maximizes ethanol yield, the dynamic models that were developed 

in Chapter Three will now be used to control the process optimally. To introduce the effect 

of temperature and pH into equations, equation (5.51) (dynamics with linear product 

inhibtion), equation (5.52) (dynamics with sudden growth stop product inhibition, 

equation (5.53) dynamics with exponential product inhibition, equation (5.54) (dynamics 

with linear substrate exponential product inhibition), equation (5.55) (dynamics with 

exponential substrate exponential product inhibition were derived  

  

    

  

𝑬𝒈 
𝒅𝑷 𝒒𝒎𝒂𝒙(𝟏 − 𝑲𝒊𝒑𝑷)𝒌𝒈𝒆𝒙𝒑(−𝑹𝑻) 𝑺 

 = ( 𝟏 + −𝒑𝑯 )𝑲𝒔𝒑 + 𝑺𝑿                                                                                                    (𝟓.𝟓𝟏)  

𝒅𝒕 𝟏𝟎𝒌𝟏 + 𝟏𝟎𝒌𝟐 
−𝒑𝑯 

𝑬𝒈 

𝒅𝑺 𝒅𝒕 (−𝟏+𝑿𝑺𝒌𝒈𝒆𝒙𝒑(−𝑹𝑻)) (𝝁𝒎𝒂𝒙(𝟏−𝑲𝒊𝒙𝑷) + 𝒒𝒎𝒂𝒙(𝟏−𝑲𝒊𝒑𝑷)) − 𝑿(𝑮𝒔 + 𝑴𝒔)  

 = 𝒌𝟏 +𝟏𝟎−𝒑𝑯 𝒀𝒙(𝑲𝒔𝒙+𝑺) 𝒀𝒑(𝑲𝒔𝒑+𝑺) 
 𝟏𝟎−𝒑𝑯 𝒌𝟐 
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 𝑷 𝑬𝒈 

𝒅𝑷  𝒒𝒎𝒂𝒙 (𝟏 − 𝑷𝒑𝒎𝒂𝒙)𝒌𝒈𝒆𝒙𝒑(− 𝑹𝑻)  𝑺 𝑿                                                                             (𝟓. 𝟓𝟐)  

𝒅𝒕 = 𝟏 + 𝒌 𝟏𝟎−𝒑𝑯 𝑲𝒔𝒑 + 𝑺 
 𝟏 + 

 ( 𝟏𝟎−𝒑𝑯 𝒌𝟐 ) 

𝑬𝒈 
𝒅𝑺 −𝑿𝒌𝒈𝒆𝒙𝒑(−𝑹𝑻) 𝑷 𝝁𝒎𝒂𝒙𝑺 𝑷 𝒒𝒎𝒂𝒙𝑺 
𝒅𝒕 = (𝟏+ 𝒌𝟏 +𝟏𝟎−𝒑𝑯)((𝟏−𝑷𝒙𝒎𝒂𝒙)𝒀𝒙(𝑲𝒔𝒙 +𝑺)+(𝟏−𝑷𝒑𝒎𝒂𝒙)𝒀𝒑(𝑲𝒔𝒑 +𝑺))−𝑿(𝑮𝒔 +𝑴𝒔)  

 𝟏𝟎−𝒑𝑯 𝒌𝟐 

  

  

𝑬𝒈 
𝒅𝑷 𝒒𝒎𝒂𝒙𝒆𝒙𝒑(−𝑲𝒊𝒑𝑷)𝒌𝒈𝒆𝒙𝒑(−𝑹𝑻) 𝑺 

 = ( 𝟏 + −𝒑𝑯 )𝑲𝒔𝒑 + 𝑺 𝑿                                                                                                    (𝟓.𝟓𝟑)  

𝒅𝒕 𝟏𝟎𝒌𝟏 + 𝟏𝟎𝒌𝟐 
−𝒑𝑯 

𝑬𝒈 

𝒅𝑺 −𝑿𝒌𝒈𝒆𝒙𝒑(− 𝑹𝑻) 𝝁𝒎𝒂𝒙𝒆𝒙𝒑(−𝑲𝒊𝒙𝑷)𝑺 𝒒𝒎𝒂𝒙𝒆𝒙𝒑(−𝑲𝒊𝒑𝑷)𝑺 

𝒅𝒕 = (𝟏 + 𝒌 𝟏𝟎−𝒑𝑯)( 𝒀𝒙(𝑲𝒔𝒙 + 𝑺) + 𝒀𝒑(𝑲𝒔𝒑 + 𝑺) ) − 𝑿(𝑮𝒔 + 𝑴𝒔)  
 𝟏 + 
 𝟏𝟎−𝒑𝑯 𝒌𝟐 
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5.6 Optimal Control Problem Formulation  

An optimal control problem is posed formally as follows: Determine the state 

(equivalently, the trajectory or path) 𝑿(𝑡) ∈ ℝ𝑛, the control (𝑡) ∈ ℝ𝑚 , the vector of static 

parameters 𝐩 ∈ ℝ𝑞, the initial time 𝑡0 ∈ ℝ and terminal time, 𝑡𝑓 ∈ ℝ (where t 𝑡 ∈ 

[𝑡0  𝑡𝑓] is the independent variable) that optimizes the performance index  

  

                      (5.61)  

( 𝟓 . 𝟓𝟓 )   
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Subject to the dynamic constraints (i.e., the differential equation constraints)  

𝐱̇ (𝒕) = 𝐟[𝐱̇(𝒕), 𝐮(𝒕),𝒕; 𝐩]                              (5.62)  

The path constraints                  𝐂𝒎𝒊𝒏 ≤ 𝐂[𝐱̇(𝒕), 𝐮(𝒕), 𝒕; 𝐩] ≤ 𝐂𝒎𝒂𝒙                       (5.63)  

And boundary conditions       ∅𝒎𝒊𝒏 ≤ [𝐱̇(𝒕𝟎), 𝒕𝟎, 𝐱̇(𝒕𝒇), 𝒕𝒇; 𝐩 ] ≤ ∅𝒎𝒂𝒙                 (5.64)  

The state, control, and static parameter can each be written in component form as  

                               (5.65)  

The differential equation, eq. (5.62) describes the dynamics of the system while the 

performance index (eq. 5.61) is a measure of the “quality” of the trajectory. When it is 

desired to minimize the performance index, a lower value of 𝐽 is “better”; conversely, 

when it is desired to maximize the performance index, a higher value of 𝐽is “better.”  

  

5.7 Optimal Control Using the Linear Product Inhibtion Model  

For the purpose of maximizing ethanol yield, the linear product inhibtion model was used 

to formulate the control problem that determines the optimal temperature and pH profiles. 

The model was modified to take into consideration the death rate and product formation 

rate as follows; Starting from the Monod equation for cell growth and product formation, 

equation (5.71) the linear product inhibtion factor (equation 5.72) was introduced on the 

specific rate of product formation, resulting in equation 5.73.  

  
(5.71)  

𝒒𝒑(𝑺) 

= 

𝒒 𝒎𝒂𝒙 𝑺 

𝑲 𝒔𝒑 + 𝑺 
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𝒇 = (𝟏 − 𝑲𝒊𝒑𝑷)                                               (𝟓. 𝟕𝟐)  

  

  
(5.73)  

  
  

  

The dynamic equations describing the cell growth, product formation and substrate 

utilization were developed by applying the principle of conservation of mass, resulting in 

the systems of first order ordinary differential equations presented in equation (5.74).  

  

𝒅𝑿 

𝒅𝒕 = 𝝁𝑿 − 𝒌𝒅𝑿  

𝒅𝑷 

𝒅𝒕 = 𝒒𝑿 + 𝑴𝒑𝑿                                                      (𝟓. 𝟕𝟒)  

𝒅𝑺 𝟏 𝒅𝑿 𝟏 𝒅𝑷 

𝒅𝒕 = − 𝒀𝒙 𝒅𝒕 − 𝒀𝒑 𝒅𝒕 − 𝑮𝒔𝑿 − 𝑴𝒔𝑿  

  

The expressions for 𝝁 and 𝒒 from equation (5.73), equation (5.74) becomes  

  

𝒅𝑿  = 𝝁𝒎𝒂𝒙𝑺 𝑿 − 𝒌 𝑿  
𝒅𝒕 𝑲𝒔𝒙+𝑺 𝒅 

𝒅𝑷 𝒒𝒎𝒂𝒙𝑺 

 = (𝟏 − 𝑲𝒊𝒑𝑷)  𝑿 + 𝑴𝒑𝑿                  (𝟓. 𝟕𝟓)  

𝒅𝒕 𝑲𝒔𝒑 + 𝑺 

𝒅𝑺 𝟏 𝒅𝑿 𝟏 𝒅𝑷 

𝒅𝒕 = − 𝒀𝒙 𝒅𝒕 − 𝒀𝒑 𝒅𝒕 − 𝑮𝒔𝑿 − 𝑴𝒔𝑿  
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The optimal control problem to be maximized is then formulated with equation (5.75) as follows;  

  

  

  

  
s.t.  

  

X                                                                 (5.76)  

  

Together with this, the reduced state and control signals (𝑥𝑖𝑎𝑛𝑑 𝑢𝑖) are defined:  

  

Replacing these variables into equation (5.76)  
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s.t.  

                                                     (5.77) 

  

𝒖𝟐𝒎𝒊𝒏 ≤ 𝒖𝟐(𝒕) ≤ 𝒖𝟐𝒎𝒂𝒙  

If the state, control, and static parameter can each be written in component form as  

  

  

  

where,  

  

  

  

  

Then optimal control problem can be simply written as equation (5.78):  
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Subject to                        

(5.78)  

  

This is referred to as the Lagrangean form of an optimal control problem  

  

5.8 Solution Technique by Calculus of Variations  

In an indirect method, calculus of variations is applied to determine the first-order 

optimality conditions first-order necessary conditions for an optimal trajectory is obtained, 

derived using the augmented Hamiltonian,𝐻 defined as  

𝑯(𝒙, 𝝀, 𝒖, 𝒕; 𝒑) = 𝓛 + 𝝀𝑻𝐟                   (𝟓. 𝟖𝟏)  

Where 𝜆(𝑡) ∈ ℝ𝑛 is the costate or adjoint. In the case of a single phase optimal control problem 

with no static parameters, the first-order optimality conditions of the  

continuous-time problem are given as follows:  

  

                                        (5.83)  

  

where, 𝑈 is the feasible control set  

  

The systems of differential equations presented in equation (5.82) is referred to as the  

Hamiltonian system, derived from the differentiation of a Hamiltonian (Athans and Falb, 

2006; Leitman, 1981). Furthermore, the optimal control profile to the system is determined 

from the application of the Pontryagin’s Minimum Principle (PMP) resulting in equation 

(5.84) and this is the classical method of determining the control (Pontryagin, 1962). The 
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Hamiltonian system, together with the boundary, transversality, is referred to as a 

Hamiltonian boundary-value problem (HBVP) (Athans and Falb, 2006; Ascher et al., 

1996) and the solution to such a system is called an extremal.  

Now applying calculus of variations to equation (5.77), the Hamiltonian becomes  

  

   

(5.84)  

  

5.8.1 State Equations  

This is obtained by applying equation (5.82) to the equation (5.81)  

,  

  

becomes  

  

  

                             (5.85)  

  

  

5.8.2 Costate Equations  

This is obtained by differentiating the Hamiltonian with respect to the states,  

𝜕𝐻 𝑇 

𝜆  = − [ ]  

𝜕x 
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𝒅𝝀𝟏 𝒑𝟏𝒙𝟑𝒖𝟏(𝟏 + 𝒖𝟐) 𝒑𝟐𝒙𝟑(𝒑𝟏𝟎𝒙𝟐 − 𝟏) 

 = 𝝀𝟏 (𝒑𝟔𝒖𝟏 − ) −𝝀𝟐 (𝒑𝟗 − ) 

+𝝀𝟑 (𝒑𝟕 + 𝒑𝟖 + 
𝒅𝒕 𝒑𝟑 + 𝒙𝟑 𝒑𝟒 + 𝒙𝟑 

𝒅𝝀𝟐 𝒑𝟐𝒑𝟏𝟎𝝀𝟐𝒙𝟏𝒙𝟑 

𝒅𝒕 

= 𝒑𝟒+𝒙𝟑 − 𝟐𝑨𝒙𝟐                                                                                   

𝒅𝝀𝟑 𝒑𝟏𝒙𝟏𝒖𝟏(𝟏 + 𝒖𝟐) 𝒑𝟏𝒙𝟏𝒙𝟑𝒖𝟏(𝟏 + 𝒖𝟐) 𝒑𝟐𝒙𝟏(𝒑𝟏𝟎𝒙𝟐 

𝒅𝒕 = −𝝀𝟏 ( 𝒑𝟑 + 𝒙𝟑 − 𝒑𝟑 + 𝒙𝟑𝟐 )+𝝀𝟐 ( 𝒑𝟒 + 𝒙 

𝒑𝟐𝒙𝟏𝒙𝟑(𝒑𝟏𝟎𝒙𝟐 − 𝟏) 

 
 − 𝒑𝟒 + 𝒙𝟑𝟐 )  

 𝒑𝟏𝒙𝟏(𝒑𝟑 + 𝒙𝟑) 𝒑𝟏𝒙𝟏𝒙𝟑 

           +𝝀𝟑 ( − )  

 𝒑𝟓 𝒑𝟓 

5.8.3 Optimal Control Equations  

These are obtained by apply the Pontryagin’s Minimum Principle, equation (14) to 

equation (12).The Hamiltonian gradient can be represented by differentiating the 

Hamiltonian with respect to the controls as follows:  

𝒅𝑯 = 𝟐𝑩𝒖𝟏 − 𝝀𝟏 (𝒑𝟔𝒙𝟏 − 

𝒑𝟏𝒙𝟏𝒑𝒙𝟑𝟑+(𝒙𝟏𝟑+𝒖𝟐))  
𝒅𝒖𝟏 

𝒅𝑯 𝒑𝟏𝒖𝟏𝝀𝟏𝒙𝟏𝒙𝟑 

𝒅 𝒖𝟐 = 𝟐𝑪𝒖𝟐 + 𝒑𝟑 + 𝒙𝟑                                      (𝟓. 𝟖𝟕)  

  

The necessary optimality conditions for a local maximizer is that this gradient should be equal 

to zero, so that:  

  

  

  

𝒑 𝟏 𝒙 𝟑 ( 𝒑 𝟑 + 𝒙 𝟑 ) 

𝒑 𝟓 
)   

− 𝟏 ) 

𝟑 

( 𝟓 . 𝟖𝟔 )   
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The expressions for temperature and pH can then be written as follows  

  
  

Applying the Pontryagin’s Minimum Principle (PMP) of   

  

The optimal control Trajectory becomes  

  

 
5.8.4 Numerical Simulations and Control Validation  

The states, costate and optimal control equations are referred to as the Hamiltonian Boundary 

Value Problem (HBVP) with boundary conditions  

  

A collocation method based on the Labatto IIIA formula was used to simulate the HBVP and 

a Matlab code was written to implement this algorithm using the Matlab routine  

‘bvp4c’. The collocation polynomial provides a continuous solution that is fourth order 

accurate uniformly in [a b]. Mesh selection and error control are based on the residual of 

the continuous solution. In validating the controls, the alcohol fermentation model 

described in section III was implemented in the SIMULINK environment.  This 

implemented model includes the objective function to be maximized.  
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5.8.5 Results and Discussion  

Figure 5.84 presents the fitting for the model taking into consideration the death rate while 

and Table 5.81 the parameter values. Figure 5.81 and 5.82 presents the optimal 

temperature and pH profiles optimizes the fermentation process. Simulation using the 

Simulink model, figure 5.83 shows that the optimal temperature and pH profiles obtained 

an increment in cell growth of 71.96%, product formation by 14.18% and substrate 

utilization by 84.77% compared to using the conventional temperature and pH values used 

by the industry. This improvement in process performance observed can the explained by 

the fact that due to the dynamic nature of the culture medium, yeast cells often suffer from 

various stresses resulting from both  the environmental conditions, and from both product 

and or substrate imbibition as the fermentation proceeds. Optimal profiles (and not 

constant values) of temperature and pH are important in the control these stresses, and 

ensure that the culture medium conditions stays constant, hence maximizing yield 

(Saerens et al., 2008).  The increase in substrate utilization didn’t balance up with product 

formation because some of the substrate was utilized for cell growth and maintenance 

Table 5.82 presents the values of the final states and cost functional for both the Optimal 

and the conventional operation conditions. Figures 5.85 to 5.87 compares the optimal and 

conventional operating strategies, clearly depicting increase in process performance.  

Table 5.81: Estimated Parameters for dynamic model used in optimal control, equation 

3 

      

Value  2.2004  0.4358  0.0721  0.6857  0.3353  246.2663  3.0634  

Model Error  0.8940   
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Figure 5.83: Optimal temperature profile obtained from numerical simulation of the 

necessary optimality conditions  
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Figure 5.82: optimal pH profile obtained from numerical simulation of the necessary 

optimality conditions 

 

Figure 5.83: Simulink Model designed for the alcoholic fermentation of sorghum extracts.  

  

Table 5.82: Obtainable concentrations for both the optimal and conventional operating 

conditions  

Final State  Optimal  Conventional  

Biomass (Mcells/0.1ml)  0.3219  0.1872  

Product (g/100g)  7.748  6.785  

Substrate (g/100g)  5.872  10.85  

Performance Index  5.593e+05  5.455e+05  
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Figure 5.84: Experimental results and model fitting  
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Figure 5.85: Dynamics of cell growth with optimal and conventional controls  

 
Figure 5.86: Dynamics of product formation with optimal and conventional controls  

 

Figure 5.87: Dynamics of substrate utilization with optimal and conventional controls  

  

5.9 Conclusion  

This chapter presented the modeling of a batch alcoholic fermentation process using 

sorghum extracts, followed by the application of optimal control to determine the 
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optimal temperature and pH profiles that maximizes yield. Since the model was 

developed using industrial scale fermentation data, the results obtained in the 

simulations can satisfactorily represent a real operation unit. From the comparative 

results presented in the simulations it is concluded that the proposed strategy can be 

used in practice to improve the performance of industrial scale alcoholic fermentation 

using sorghum.  

    

CHAPTER SIX  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

[  

6.1 Conclusions  

The overall objective of this research was achieved by the successful investigation of 

the dynamics of ethanol fermentation in three different fermentation worts and 

maximizing ethanol yield through the application of mathematical modeling and 

optimal control. This will greatly help in the development of various automatic tools 

such as: simulators able to reproduce system behavior and, software sensors which 

allow to obtain an estimation of an unmeasured signal or controllers to maintain optimal 

conditions. All these tools rely on a representation of the considered system, a 

mathematical model (Carrillo-Ureta, 2002). Substrate and product inhibtion kinetics 

during alcoholic fermentation has been modelled using three different substrates. 

Substrates considered were sorghum, maize and cassava and the results show that there 

exist both ethanol inhibition in the alcoholic fermentation of sorghum and maize 

extracts while cassava extracts show both ethanol and substrate inhibtion. At a 99% 

confidence interval the pattern of theses inhibtions can be described as being a linear 

or an exponential decrease on ethanol concentration in the case of sorghum, linear and 
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sudden growth stop in the case of maize, linear substrate exponential product, and 

exponential substrate exponential product in the case of cassava.  

  

Optimal control has been applied to minimize the effects of such inhibtions in the case 

sorghum extracts, using the linear product inhibtion model and Calculus of variation 

has been introduced as a valuable tool to derive and solve the necessary conditions for 

optimality and the obtained results show the optimal temperature and pH profiles for 

the fermentation of sorghum extracts. A Simulink model has been developed to describe 

the fermentation process and correspondingly validate the controls. The performance 

of ethanol fermentation using sorghum extracts has been optimized using the proposed 

control strategy and ethanol yield increased by 14.18%, cell growth by 71.96% and 

residual sugar concentration decreased by 84.77%. Since the model was developed 

using industrial scale fermentation data, the results obtained in the simulations can 

satisfactorily represent a real operation unit. From the comparative results presented in 

the simulations it is concluded that the proposed strategy can be used in practice to 

improve the performance of industrial scale alcoholic fermentation.  

6.2 Recommendations 6.2.1 Optimal Control and Dynamic Stability Using the Other 

Inhibtion Models  

Various inhibtion patterns were modeled in this study and the application of optimal 

control to maximize ethanol yield was based on the linear product inhibition model 

using sorghum extracts. The other inhibtion patterns (sudden growth stop, exponential, 

LS-EP and ES-EP) and substrates (cassava and maize) should also be used to determine 

the optimality conditions, followed by dynamic stability to determine which of the 

models will be more reliable in process control, in the various substrates.  
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6.2.2 Model Based Control of CO2   during Alcohol Fermentation  

One of the primary and well-known challenges of ethanol fermentation process is CO2 

management and pH control. CO2 affects the bubble dynamics which play an important 

role in gas transport and cell viability during fermentation (Meier et al., 1999; Wang et 

al., 2001; Ma et al., 2006). Therefore optimum CO2 levels are highly important and this 

optimum since CO2 level depends on cell growth which in turn depends on the type of 

substrate used, and optimal control should also be applied to maintain CO2 production 

and evolution rates at optimal levels throughout the fermentation.   

6.2.3 Modeling the Effect of Temperature and pH on Cell Growth  

The temperature dependency of the cellular activity was modeled using the Arrhenius-

like equation, the Arrhenius constants used were values from previous research. In 

addition, the simple model used to model pH dependence on cell growth was not 

specific for the yeasts strains used for the fermentation but was rather used because 

literature shows it gives an adequate fit for many microorganisms (Nielsen & Villadsen, 

1994). However, the model constants used in the models need to be estimated with data 

from temperature and pH measurements, using the various substrates considered, since 

the growth  dynamics of the yeast strains varied with substrates and so will their 

temperature and pH dependence vary.  

6.2.4 Development of and Optimal Simulator for Alcohol fermentation   

Profit maximization by operating the most efficient process is the primary goal of all 

industrial fermentation operations. To help create efficient operations companies use 

process simulation, involving the application of a range of software tools to analyze the 

predict patterns in fermentation. These simulators are based on mathematical model 

and were recommend to develop a GUI (Graphical User Interface) which will use  the 
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Matlab codes to develop a computer simulator for ethanol fermentation that is easily 

adaptable for any yeast strain and fermentation substrate.  
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Appendix 1a sample of code used for Product inhibtion  

format short; clear all %clear all variables global y0 time 

Xobs Pobs Sobs param Xpred Ppred Spred data 

=xlsread('Sorghum.xlsx');  

%initial conditions 

y0=[0.1 0.7 16.8];  

%initial guess  

 P1=0.4; P2=0.2; P3=90; P4=100; P5=0.1; P6=6; P7=0.09; P8=1;P9=0.3;P10=0.2; 

param(1)=P1; param(2)=P2; param(3)=P3; param(4)=P4; param(5)=P5; 

param(6)=P6;param(7)=P7;param(8)=P8;param(9)=P9;param(10)=P10;  

%param=100*rand(1,10);  

%Measured data 

time=data(:,1); Xobs=data(:,2);  

Pobs=data(:,3);  

Sobs=data(:,4);  

  

  

lb=[0.01,0.1,0.01,0.3,0.1,0.1,0.001,0.01,0.1,0.1]; 

ub=[5,250,250,200,1,7,1,0.5,10,10]; 

options=optimoptions('fmincon','MaxFunEval',3000);  

[xval, fval] = fmincon(@LinInhKin,param,[],[],[],[],lb,ub,[],options); 

disp('Estimated parameters param:'); disp(xval) disp('Smallest value 

of the error E:'); disp(fval)  

  

figure 

hold on  
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%predicted  values for state variables plot(time, 

Xpred,'LineWidth',3.5) ; plot(time, 

Ppred,'LineWidth',3.5); plot(time, 

Spred,'LineWidth',3.5);  

  

%Experimental/observed values for state variables 

plot(time, Xobs, 'r*','MarkerSize',7); plot(time, Pobs, 

'ro','MarkerSize',7); plot(time, Sobs, 'rx','MarkerSize',7); 

xlabel('Time (Hours)') ylabel('State variables (%w/w)')  

function E = LinInhKin(param)  

%This funtion called LinInhKin (Linear Inhibition kinetics) calculates the  

%error between experimental data and model prodicttion. It takes initial  

%guess of model parameters and outputs the sum of the squared error  

  

  

global y0 time Xobs Pobs Sobs Xpred Ppred Spred  

  

%Numerical integration of the Model using the Runge-Kutta 4-5th order t0=0; 

tf=ceil(max(time)); tspan=[t0 tf]; %we want y at every t  

[t,x]=ode45(@ff,tspan,y0); %param(1) is y(0)  

  

%This section presents the dynamic model for ethanol fermenation in the %case of 

Linear inhibition  

  

    function dx = ff(t,x) %function that computes the dydt         dx(1)=param(1)*(1-

param(9)*x(2))*x(1)*x(3)/(param(3)+x(3)); %biomass         dx(2)= param(2)*(1-

param(10)*x(2))*x(1)*x(3)/(param(4)+x(3)); %product         dx(3)= -

1/param(5)*dx(1)-1/param(6)*dx(2)-x(1)*(param(7)+param(8));  

%substrate  

        dx=dx';  
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    end  

  

  

%Calculation the model predicted values for Biomass (Xpred), Product(Ppred)  

%and substrate(Spred)  

Xpred = interp1(t,x(:,1),time);  

Ppred = interp1(t,x(:,2),time);  

Spred = interp1(t,x(:,3),time);  

  

  

%Computes the sum of squared error between the model prediction and the  

%observed or experimental data 

E = 0;  

for i = 1:length(time)  

E = E + (Xpred(i)-Xobs(i))^2+(Ppred(i)-Pobs(i))^2+ (Spred(i)-Sobs(i))^2; 

end display(E) end  

Appendix 1b Substrate and Product Inhibtion (Case of ES-EP)  

aclear all %clear all variables  

global y0 time Xobs Pobs Sobs param Xpred Ppred Spred data 

=xlsread('Cassava.xlsx');  

%initial conditions y0=[0.16 

1.7 12.79];  

%initial guess  

P1=0.05; P2=10; P3=90; P4=91; P5=0.5; P6=0.1; P7=0.9; 

P8=3;P9=0.3;P10=0.2; P11=0.05; P12=0.1; param(1)=P1; param(2)=P2; 

param(3)=P3; param(4)=P4; param(5)=P5; param(6)=P6;  

param(7)=P7;param(8)=P8;param(9)=P9;param(10)=P10;param(11)=P11;param(12)= 

P12;  
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%Measured data time=data(:,1); Xobs=data(:,2);  

Pobs=data(:,3);  

Sobs=data(:,4);  

  

  

lb=[0.01,0.1,0.01,0.3,0.1,0.1,0.0001,0.0001,0.1,0.1,0.0001,0.001]; 

ub=[3,250,250,200,3,5,1,0.5,5,2,1,1];  

[xval, fval] = fmincon(@ExpSExpPInhKin,param,[],[],[],[],lb,ub); disp('Estimated 

parameters param:'); disp(xval) disp('Smallest value of the error E:'); disp(fval)  

  

figure hold on  

%predicted  values for state variables plot(time, 

Xpred,'LineWidth',3.5) ; plot(time, Ppred,'LineWidth',3.5); 

plot(time, Spred,'LineWidth',3.5);  

  

%Experimental/observed values for state variables plot(time, Xobs, 

'r*','MarkerSize',7); plot(time, Pobs, 'ro','MarkerSize',7); plot(time, 

Sobs, 'rx','MarkerSize',7); xlabel('Time (Hours)') ylabel('State 

variables (%w/w)')  
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function E = ExpSExpPInhKin(param)  

%This funtion called LinInhKin (Linear Inhibition kinetics) calculates the  

%error between experimental data and model prodicttion. It takes initial  

%guess of model parameters and outputs the sum of the squared error  

  

  

global y0 time Xobs Pobs Sobs Xpred Ppred Spred  

  

%Numerical integration of the Model using the Runge-Kutta 4-5th order t0=0; 

tf=ceil(max(time)); tspan=[t0 tf]; %we want y at every t  

[t,x]=ode45(@ff,tspan,y0); %param(1) is y(0)  

  

%This section presents the dynamic model for ethanol fermenation in the %case of 

Linear inhibition  

  

    function dx = ff(t,x) %function that computes the dydt         

dx(1)=param(1)*exp(-

param(9)*x(2))*exp(param(11)*x(3))*x(1)*x(3)/(param(3)+x(3)); 

%biomass         dx(2)= param(2)*exp(-

param(10)*x(2))*exp(param(12)*x(3))*x(1)*x(3)/(param(4)+x(3)); 

%product  

        dx(3)= -1/param(5)*dx(1)-1/param(6)*dx(2)-x(1)*(param(7)+param(8));  

%substrate  

        dx=dx';     end  

  

  

%Calculation the model predicted values for Biomass (Xpred), Product(Ppred)  

%and substrate(Spred)  

Xpred = interp1(t,x(:,1),time);  

Ppred = interp1(t,x(:,2),time);  

Spred = interp1(t,x(:,3),time);  
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%Computes the sum of squared error between the model prediction and the  

%observed or experimental data 

E = 0;  

for i = 1:length(time)  

E = E + (Xpred(i)-Xobs(i))^2+(Ppred(i)-Pobs(i))^2+ (Spred(i)-Sobs(i))^2; 

end display(E) end  

  

Appendix 2. Matlab code for Optimality Conditions (Calculus of Variations)  

clear all clc  

  

%State Equations  

syms x1 x2 x3 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 kg Eg kd k2 mp R u1 u2;  

Dx1=p1*u1*x1*x3/(p3+x3)*(1+u2)-kd*u1*x1;  

Dx2=p2*(1-p10*x2)*x1*x3/(p4+x3)+ mp*x1;  

Dx3=(-x1*x3)*(p1/p5*(p3+x3))-x1*(p7+p8);  

  

%Cost Function inside intergral syms g A B C  

  

g=A*x2^2+B*u1^2+C*u2^2;  

  

%Hamiltonian syms w1 w2 w3  

H= g + w1*Dx1 + w2*Dx2 + w3*Dx3;  

  

%Costate Equations  
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Dw1 = -diff(H,x1);  

Dw2 = -diff(H,x2);  

Dw3 = -diff(H,x3);  

  

% solve for control u du1 = 

diff(H,u1); du2 = diff(H,u2); 

sol_u=solve(du1,du2,'u1','u2');  

  

  

% % Substitute u to state equations  

% Dx1 = subs(Dx1, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

% Dw1 = subs(Dw1, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

% Dx2 = subs(Dx2, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

% Dw2 = subs(Dw2, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

% Dx3 = subs(Dx3, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

% Dw3 = subs(Dw3, [u1,u2], [sol_u.u1(1),sol_u.u2(1)]);  

%  

% %Simplification of equations  

% Dx1=simplify(Dx1);  

% Dx2=simplify(Dx2);  

% Dx3=simplify(Dx3);  

% Dw1=simplify(Dw1);  

% Dw2=simplify(Dw2);  

% Dw3=simplify(Dw3);  

  

Appendix 3: Matlab Code to Simulate the Hamiltonian Boundary Value Problem  

clear all clc  
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global  p1 p2 p3 p4 p5 p6 p7 p8 p9 p10  A B C k1 k2 mp kd kg Eg R;  
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format long  

% Model Parameter Values p1=0.9557; p2=2.2101; p3=129.433;  

p4=29.213; p5=2; p6=0.8895; p7=0.502; p8=0.564;  p9=0.1294; 

p10=0.01004;  

A=100; B=10; C=10; mp=0.01;kd=0.001; k1=10^(-5.4); k2=10^(-4.5); 

R=8.314; kg=5000; Eg=5100; options = bvpset('RelTol',10^(-

6),'Nmax',5000,'Stats','off');  

  

solinit = bvpinit(linspace(0,2),[0.7 1 0.05 0.1 10 1]); sol = 

bvp4c(@HBVP2,@HBVPbc,solinit,options);  

% % subplot(4,1,1)  

% % plot(sol.x,sol.y(1 ,:),'LineWidth',2)  

% % subplot(4,1,2)  

% % plot(sol.x,sol.y(2 ,:),'LineWidth',2)  

% % subplot(4,1,3)  

% % plot(sol.x,sol.y(3 ,:),'LineWidth',2)  

  

  

  

x1=sol.y(1,:); x2=sol.y(2,:); 

x3=sol.y(3,:); 

w1=sol.y(4,:); 

w2=sol.y(5,:); 

w3=sol.y(6,:); hold on  

%subplot(2,1,1) temp1=(2*w1.*x1.*(C*p3 + C*x3).*(kd*p3 + kd*x3 - p1*x3))./(- 

p1^2*w1.^2.*x1.^2.*x3.^2 + 4*B*C*p3^2 + 8*B*C*p3*x3 + 4*B*C*x3.^2); 

temp2=-(p1*w1.^2.*x1.^2.*x3.*(kd*p3 + kd*x3 - p1*x3))./(-  
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p1^2*w1.^2.*x1.^2.*x3.^2 + 4*B*C*p3^2 + 8*B*C*p3*x3 + 4*B*C*x3.^2);  

  

 %pH=log((k2*temp2 - k2 + (-k2*(- k2*temp2.^2 + 2*k2*temp2 + 4*k1 - 

k2)).^(1/2))/(2*k1*k2))/log(10);  

 %pH=log(-(k2 - k2*temp2 + (-k2*(- k2*temp2.^2 + 2*k2*temp2 + 4*k1 

k2)).^(1/2))/(2*k1*k2))/log(10);  

  

  

  

pH=log((k2 + k2*temp2 + (k2*(k2*temp2.^2 + 2*k2*temp2 - 4*k1 + 

k2)).^(1/2))/(2*k1*k2))/log(10);  

%pH=log((k2*temp2 + (k2^2*temp2.^2 - 4*k1*k2).^(1/2))./(2*k1*k2))./log(10);  

 %pH=log((temp2 + (temp2.^2 ).^(1/2)));  

% pH=log((temp2 - 1)/k1)/log(10); 

T=1/R*log(kg./temp1); u1 = 

min(23.5,max(19,10.5*T)); u2 = 

min(14.5,max(0,1*pH));  

%plot(sol.x,temp1,'LineWidth',2)  

%plot(sol.x,temp2,'LineWidth',2)  

hold on  

plot(sol.x,u2,'LineWidth',4)  

% subplot(2,1,2)  

%  

% plot(sol.x,u2,'LineWidth',2)  
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Appendix 4: Simulink S-function used to Design Fermenter  

function [sys,x0,str,ts,simStateCompliance] = SorghumFermenter(t,x,u,flag)  

%SFUNTMPL General MATLAB S-Function Template  

%   With MATLAB S-functions, you can define you own ordinary differential  

%   equations (ODEs), discrete system equations, and/or just about  

%   any type of algorithm to be used within a Simulink block diagram.  

%  

%   The general form of an MATLAB S-function syntax is:  
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%       [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] =  
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SFUNC(T,X,U,FLAG,P1,...,Pn)  

%  

%   What is returned by SFUNC at a given point in time, T, depends on the 

%   value of the FLAG, the current state vector, X, and the current %   input 

vector, U.  

%  

%   FLAG   RESULT             DESCRIPTION  

%   -----  ------             --------------------------------------------  

%   0      [SIZES,X0,STR,TS]  Initialization, return system sizes in SYS,  

%                             initial state in X0, state ordering strings %                             

in STR, and sample times in TS.  

%   1      DX                 Return continuous state derivatives in SYS.  

%   2      DS                 Update discrete states SYS = X(n+1) 

%   3      Y                  Return outputs in SYS.  

%   4      TNEXT              Return next time hit for variable step sample %                             

time in SYS.  

%   5                         Reserved for future (root finding).  

%   9      []                 Termination, perform any cleanup SYS=[].  

%  

%  

%   The state vectors, X and X0 consists of continuous states followed %   

by discrete states.  

%  

%   Optional parameters, P1,...,Pn can be provided to the S-function and %   

used during any FLAG operation.  

%  

%   When SFUNC is called with FLAG = 0, the following information %   

should be returned:  

%  

%      SYS(1) = Number of continuous states.  

%      SYS(2) = Number of discrete states.  
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%      SYS(3) = Number of outputs.  

%      SYS(4) = Number of inputs.  

%               Any of the first four elements in SYS can be specified  
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%               as -1 indicating that they are dynamically sized. The  
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%               actual length for all other flags will be equal to the %               



 

114  

 

 

length of the input, U.  
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%      SYS(5) = Reserved for root finding. Must be zero.  
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%      SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function  
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%               has direct feedthrough if U is used during the FLAG=3  
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%               call. Setting this to 0 is akin to making a promise that  
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%               U will not be used during FLAG=3. If you break the promise %               
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then unpredictable results will occur.  
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%      SYS(7) = Number of sample times. This is the number of rows in TS.  
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%  
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%  



 

124  

 

 

%      X0     = Initial state conditions or [] if no states.  
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%  
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%      STR    = State ordering strings which is generally specified as [].  



 

127  

 

 

%  
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%      TS     = An m-by-2 matrix containing the sample time  
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%               (period, offset) information. Where m = number of sample %               
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times. The ordering of the sample times must be:  
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%  
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%               TS = [0      0,      : Continuous sample time.  
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%                     0      1,      : Continuous, but fixed in minor step %                                      
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sample time.  
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%                     PERIOD OFFSET, : Discrete sample time where %                                      
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PERIOD > 0 & OFFSET < PERIOD.  
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%                     -2     0];     : Variable step discrete sample time %                                      
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where FLAG=4 is used to get time of %                                      
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next hit.  
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%  



 

141  

 

 

%               There can be more than one sample time providing  
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%               they are ordered such that they are monotonically  
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%               increasing. Only the needed sample times should be  
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%               specified in TS. When specifying more than one  
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%               sample time, you must check for sample hits explicitly by %               
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seeing if  
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%                  abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)  
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%               is within a specified tolerance, generally 1e-8. This %               
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tolerance is dependent upon your model's sampling times %               



 

150  

 

 

and simulation time.  
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%  
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%               You can also specify that the sample time of the S-function  
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%               is inherited from the driving block. For functions which  
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%               change during minor steps, this is done by  
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%               specifying SYS(7) = 1 and TS = [-1 0]. For functions which  
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%               are held during minor steps, this is done by specifying %               



 

157  

 

 

SYS(7) = 1 and TS = [-1 1].  
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%  
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%      SIMSTATECOMPLIANCE = Specifices how to handle this block when saving 
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and  
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%                           restoring the complete simulation state of the  
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%                           model. The allowed values are: 'DefaultSimState',  
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%                           'HasNoSimState' or 'DisallowSimState'. If this value  
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%                           is not speficified, then the block's compliance with %                           



 

165  

 

 

simState feature is set to 'UknownSimState'.  
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%  



 

171  

 

 

% The following outlines the general structure of an S-function.  
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%  

switch flag,  

  

  %%%%%%%%%%%%%%%%%%  

  % Initialization %  

  %%%%%%%%%%%%%%%%%%  
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  case 0,  
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    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;  
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  %%%%%%%%%%%%%%%  
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  % Derivatives %  
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  %%%%%%%%%%%%%%%   



 

179  

 

 

case 1,     
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sys=mdlDerivatives(t,x,u);  
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  %%%%%%%%%%%  



 

183  

 

 

  % Outputs %  



 

184  

 

 

  %%%%%%%%%%%  



 

185  

 

 

  case 3,     
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sys=mdlOutputs(t,x,u);  



 

187  
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  %%%%%%%%%%%%%%%%%%%%%%%  



 

189  

 

 

  % Unhandled Flags %  



 

190  

 

 

  %%%%%%%%%%%%%%%%%%%%%%%   



 

191  

 

 

case { 2, 4, 9 },    sys = [];  



 

192  
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  %%%%%%%%%%%%%%%%%%%%  



 

194  

 

 

  % Unexpected flags %  



 

195  

 

 

  %%%%%%%%%%%%%%%%%%%%   
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otherwise  
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    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));  
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end  

  

% end sfuntmpl  
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%  

%==========================================================

= 
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==================  

% mdlInitializeSizes  

% Return the sizes, initial conditions, and sample times for the S-function.  

%=========================================================== 

==================  

%  

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes  

  

%  

% call simsizes for a sizes structure, fill it in and convert it to a % 

sizes array.  

%  

% Note that in this example, the values are hard coded.  This is not a % 

recommended practice as the characteristics of the block are typically 

% defined by the S-function parameters.  

%  

sizes = simsizes;  

  

sizes.NumContStates  = 3; sizes.NumDiscStates  = 0; 

sizes.NumOutputs     = 3; sizes.NumInputs      = 2; 

sizes.DirFeedthrough = 0; sizes.NumSampleTimes = 1;   % at least 

one sample time is needed  

  

sys = simsizes(sizes);  
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%  

% initialize the initial conditions  

%  

x0  = [0.1,0.7,16.8]';  

  

%  

% str is always an empty matrix  

%  

str = [];  

  

%  

% initialize the array of sample times  

%  

ts  = [0 0];  

  

% Specify the block simStateCompliance. The allowed values are:  

%    'UnknownSimState', < The default setting; warn and assume DefaultSimState  

%    'DefaultSimState', < Same sim state as a built-in block  

%    'HasNoSimState',   < No sim state  

%    'DisallowSimState' < Error out when saving or restoring the model sim state 

simStateCompliance = 'UnknownSimState';  

  

% end mdlInitializeSizes  
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%  

%=========================================================== 

==================  

% mdlDerivatives  

% Return the derivatives for the continuous states.  

%=========================================================== 

==================  

%  

function sys=mdlDerivatives(t,x,u)  

  

X=x(1);  

P=x(2);  

S=x(3); T=u(1); 

pH=u(2);  
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% Modeling effects of controls on parameters  

Eg=0.001; kg=7000; k1=10^(-5.4); k2=10^(-4.5);yp=1.8895;  

R=8.314; kd0=10^33; Umax0=0.5557; kip=0.1004; mp=0.8900; yx=0.1086; 

ms=0.0564; Gs=0.00502; ksx=125.433; ksp=29.213 ; Ed=50000; qmax=2.2101; 

kix=0.1294;  

  

Umax=Umax0*exp(-Eg/R*T)/(1 + k1/10^(-pH)+ 10^(-pH)/k2);  

  

%kd=kd0*exp(-Ed/R*T);  

%Umax=exp(108.31-31934.09/(T+273.15));  

%Factor Equations fp=(1-kip*P); 

%product inhibition factor fx=(1-kix*P);  

U=Umax*S/(ksx+S); %specific growth rate q=qmax*S/(ksp+S); 

%specific rate of produt formation  

  

  

  

% Differential Equations  

  

sys(1)=U*fx*X ; sys(2)=q*fp*X; sys(3)=-

U*X/yx -q*fp*X/yp-X*(ms+Gs);  
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% end mdlDerivatives  
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%  

  

%=========================================================== 

==================  

% mdlOutputs  

% Return the block outputs.  

%=========================================================== 

==================  

%  

function sys=mdlOutputs(t,x,u)  

  

sys = x;  

  

  

% end mdlOutputs  

  

Appendix 5: Tables for Model Statistical Validity for Cassava and Maize  

Extracts  

Appendix 5a: Table 5.1: Model Statistical Validity with kinetics Exponential  

Substrate and Exponential Product Inhibition, two sample F-test for variance (Cassava 

Extracts)  

  Biomass  Product  Substrate  

  Experimental 

(Xobs)  

Model 

(Xpred)  

Experiment 

al (Pobs)  

Model 

(Ppred)  

Experiment 

al (Sobs)  

Model 

(Spred)  

Mean  2.093  2.113  5.881  5.886  5.275  5.280  

Standard 

Error  

0.245  0.228  0.403  0.397  0.722  0.727  

Standard 

Deviation  

0.979  0.913  1.613  1.588  2.889  2.909  

Observations  16  16  16  16  16  16  

Confidence 

Interval  

0.990  0.990  0.990  

f  0.8695  0.9682  1.0143  
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Pr(F < f)  0.7900  0.9509  0.9785  

Two-tailed     

  

Appendix 5b Table 5.2: Model Statistical Validity with kinetics Linear Substrate and 

Exponential Product Inhibition, two sample F-test for variance (Cassava Extracts)  

  Biomass  Product  Substrate  

  Experimental 

(Xobs)  

Model 

(Xpred)  

Experimental 

(Pobs)  

Model 

(Ppred)  

Experimen 

tal (Sobs)  

Model 

(Spred)  

Mean  2.093  2.112  5.881  5.886  5.275  5.280  

Standard 

Error  

0.245  0.228  0.403  0.397  0.722  0.727  

Standard 

Deviation  

0.979  0.914  1.613  1.588  2.889  2.910  

Observatio 

ns  

16  16  16  16  16  16  

Confidence 

Interval  

0.990  0.990  0.990  

f  0.8719  0.9682  1.0144  

Pr(F < f) 

Two-tailed  

0.7941  0.9508  0.9783  

  

Appendix 5c Table 5.3: Model Statistical Validity with kinetics of linear inhibition, 

two sample F-test for variance (maize extracts)  

  Biomass  Product  Substrate  

  Experiment 

al (Xobs)  

Model  

(Xpre 

d)  

Experiment 

al (Pobs)  

Model  

(Ppre 

d)  

Experiment 

al (Sobs)  

Model  

(Spre 

d)  

Mean  0.673  0.670  5.580  5.592  5.644  5.641  

Standard 

Error  

0.054  0.052  0.566  0.556  1.023  1.017  

Standard 

Deviation  

0.218  0.206  2.263  2.223  4.091  4.069  

Observatio 

ns  

16  16  16  16  16  16  

Confidence 

Interval  

0.990  0.990  0.990  

f  0.9002  0.9647  0.9890  
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Pr(F < f) 

Two-tailed  

0.8414  0.9455  0.9832  

  

Appendix 5d Table 5.4: Model Statistical Validity with kinetics of Sudden Growth 

Stop inhibition, two sample F-test for variance (maize extracts)  

  Biomass  Product  Substrate  

  Experimental 

(Xobs)  

Model 

(Xpred)  

Experimental 

(Pobs)  

Model 

(Ppred)  

Experimental 

(Sobs)  

Model 

(Spred)  

Mean  0.673  0.684  5.579  5.592  5.644  5.641  

Standard 

Error  

0.054  0.052  0.566  0.555  1.023  1.016  

Standard 

Deviation  

0.218  0.209  2.263  2.221  4.091  4.066  

Observations  16  16  16  16  16  16  

Confidence 

Interval  

0.990  0.990  0.990  

f  0.9194  0.9630  0.9878  

Pr(F < f) 

Two-tailed  

0.8728  0.9427  0.9814  

  

  


