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Abstract 

A separating set for a group G with respect to the group CG is a set of 

simultaneously diagonalisable linear operators {T1,...,Tr} of C that distinguish the 

invariant subspaces of CG with their eigenspaces. In this thesis, we study the 

character table of the irreducible representation of the unitary group G and 

construct the modified character table which consists of the eigenvalues that the 

class sum of each conjugacy class of G assigns to an irreducible representation of 

G. The separating set for G is then obtained by extracting the class sums which is 

associated to each irreducible character distinct pair of eigenvalues.  
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Chapter 1 

Introduction 

1.1 Overview 

A separating set for a group G with respect to the group algebra CG is a set of 

simultaneously diagonalisable linear operators  that distinguish the 

invariant subspaces of CG with their eigenspaces. This chapter takes us to the 

background of the thesis, and we state the problem with its justification. The 

objectives are stated implicitly. Limitations of the study ends the chapter. 

1.2 Background of study 

In [?], Steinberg establishes that naturally, groups arise as sets of symmetries (of 

an object), which are closed under composition and under taking inverses.The 

collection of unitary groups U(n) is a set of distance – preserving transformations, 

which include the translations.The action of a group is the first step to take to find 

a representation of a group. The action takes us to a vector space V over some 

ground field for which the vector space structure is preserved. The complex field 

is the basic field to take a representation. A group homomorphism from G to GL(V 

) “is the same as” a representation of G on V . Classifying, all representations of an 

infinite arbitrary group up to an isomorphism is an enormous task, so in this 

thesis, we concentrate on finite groups, where very good general theorems exist. 

In the x − y plane, if we take a reflection across any of the axes in the plane, it is 

the same as the reflection in the other axis, geometrically. That is, any two 

reflections in the x−y plane have the same type of effect on the plane. Similarly, 

except for the choice of the pairs getting moved, two permutations of a set that 
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are so identical that the transposition(fixing everything else whiles swapping two 

elements) look the same. 

Therefore, all transpositions have the same type of effect on elements of 

the set. The same except for the point of view’ concept is what is known as 

conjugacy. 

For a group G, two elements h and g are called conjugate when 

g = xhx−1 

for some x ∈ G. 

It is a symmetric relationship, since h = ygy−1 where y = x−1. For 

xgx−1 = h 

In a group G, if g ∈ G, its conjugacy class is the set of elements conjugate to it: 

Cg = {xgx−1,x ∈ G} 

And if G is abelian, each element is its own conjugacy class. 

Given two square matrices A and B, then to determine if A and B represent 

the same linear transformation requires probing into some invariant properties 

of these matrices. The obvious thing to consider is the size. Suppose without loss 

of generality that A and B are of the same size, then we know that A and B will be 

a representation of the same linear transformation if they are similar matrices, 

i.e. there exists an invertible matrix P such that B = PAP −1. In terms of group 

actions, this will mean A and B are conjugates and hence are in the same orbit. 
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The group in question will be the general linear group GLn(C). This action is said 

to be linear if we consider GLn(C) as a vector space of dimension n2 

. Using the invariant, characteristic polynomial (or eigenvalues), we observe that 

     

 1 0 1 1 

the matrices  and  possess identical characteristic polyno- 

     
0 1 0 1 

mial but represent different linear transformations and hence this invariant alone 

will not be sufficient in arriving at a solution. However, considering both the 

eigenvalues and and geometric multiplicities of the eigenvalues, a solution can be 

obtained and hence these two invariants give a separating set. 

Let G be a group and V be the group algebra CG. Let  be a 

collection af simultaneously diagonalizable linear transformations of V whose 

eigenspaces are direct sums of the G−invariant subspaces of V. For each G− 

invariant subspace Vi, let mi = (λi1,...,λin) be the n− tuple of eigenvalues where 

1 ≤ j ≤ n, and λij is the eigenvalue of Tj associated to Vi. If mi =6 

mk whenever Vi 6= Vk, then the set  is said to be a 

separating set for V. 

Given a representation V of a finite group G, it is shown in [?] that the separating 

sets for G reduce the complexity of computing the isotypic projections. 

The representation of the unitary groups are in matrix form. Its 

eigenvalues are then determined using the characteristic polynomial to put them 

in 

classes. 

The representation of a group is by its characters. Essential information 

of a group is carried by its characters which is a function from the group to a field 
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of complex numbers, i.e. χ : G → C. → ⊗. In performing calculations, characters in 

representations are the fundamental tools employed. The subgroup of unitary 

matrices are hardly known. 

In this thesis, the concentration would be on irreducible representation, 

which contains no proper invariant subspaces. As we already know, every 

complex representation of a finite abelian group is completely reducible, and 

every irreducible representation is 1 – dimensional. An analogous proposition for 

every finite group is that a representation is completely reducible if it 

decomposes as direct sum of irreducible sub – representations. The characters of 

the representations are used to determine its reducibility. 

The cardinality of a set is the number of elements in the set with the set 

of natural numbers starting from 1 as its domain. The cardinality of a set is 

denoted as |A|.The number of elements in the conjugacy class of unitary group is 

determined by the cardinality of the class. 

There have been several studies such as Derksen and Kemper[?], 

Dixon[?] and Dufresne[?] on separating sets over the past years with researches 

employing different approaches. In this thesis, representation theory is employed 

to examine the separating set of the unitary group U2(Fq2). The eigenvalues that a 

class sum associates to the irreducible characters are used to obtain the 

separating set based on the class sums which can actually distinguish each of the 

irreducible characters. 

The group ) is sometimes stated as G in the work. The character 

values of the conjugacy classes with similar forms are the same. Finally, we see 

the methods used in separating the class representatives by using the modified 

character table. 
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1.3 Problem Statement 

Given a representation V of a finite group G, one would like to compute the 

isotypic projection i.e. projections of h ∈ V onto the G-invariant subspaces of V . 

Direct computations require large amount of time depending on the size of the 

group and with the help of separating sets the complexity is reduced. 

1.4 Justification of The Research 

The computational complexity of computing the isotypic projections is reduced 

when using separating sets. It is therefore more efficient to use minimal 

separating 

sets. 

1.5 Objectives 

The goal is to research methods for finding minimal separating sets for the unitary 

group U2(Fq2) This research examines the unitary group U2(Fq2) with the 

following specific objectives: 

1. To determine the cardinality of each conjugacy class. 

2. To construct the character table of U2(Fq2). 

3. To find the minimal separating sets for U2(Fq2). 

1.6 Limitation of The Research 

The direct sum and direct product were conducted in one-dimensional space. The 

more than one dimensional space calculations have not been tried yet. One of the 

chief difficulties in this task is the determination of the conjugacy classes, as in 

the unitary group we cannot exploit the Jordan form or rational canonical form of 

a matrix. 
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1.7 Organisation of The Study 

The study comprises five chapters. Chapter one introduces the thesis. It consists 

of the background to the study, Problem statement, Objective of the study, 

Justification of the study, Limitation of the study and Organisation of the study. 

Chapter two reviews the related literature.Chapter three consists of the definition 

and theorems that are related to irreducible and character of groups. Chapter four 

takes us to the replenish include representations and character table that 

calculates the minimal separating sets. Chapter five is the conclusion and 

recommendation of the study.  
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Chapter 2 

Literature Review 
In this study, we seek to employ representation theory to examine the 

separating sets of the unitary groups. An efficient way to approach this study is 

by first probing the irreducible representations of the unitary group as they serve 

as the building block of the representations of the group. 

In 1963, Moshinsky [?] established the bases of all irreducible 

representations of the unitary group U2j+1 to be the set of polynomials in the 

components of (2j+1)- dimensional vectors and the solution of certain invariant 

partial differential equations. Moshinsky [?] observed that these polynomials, for 

the unitary group U2j+1 and the solid spherical harmonic (polynomials in the 

components of 3-dimensional vectors), for the rotation group R3 have the same 

role. Moshinsky [?] employed these polynomials in defining and determining the 

reduced Wigner coefficients for the unitary groups. Moshinsky [?] then applied a 

factorization method to the results and obtained the Wigner coefficients of the 

Unitary group U2j+1. He also, showed in his paper [?] how to eliminate the 

ambiguity in the explicit expression for the Wigner coefficients by using operators 

that characterize completely the rows of representations of unitary groups for a 

particular chain of subgroups. 

Itzykson et al [?] in their 1966 paper, Unitary Groups: Representations and 

Decompositions, reviewed basic definitions and the constructions of irreducible 

representations using the tensor method and pointed out the link to the 

infinitesimal approach. In their paper, Itzykson and Nauenberg focused on the 

detailed procedure employed to obtain Clebsch-Gordan series and on the 
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problem of finding the (SUm, SUn) content of an irreducible representation of SUmn 

or SUm+n. 

Later in 1970, Dixon [?] presented some efficient ways of computing 

irreducible representation and the characters of finite groups. In his paper [?], 

Dixon [?] described an efficient way of decomposing a reducible unitary 

representation into irreducible components. However, given a single faithful 

unitary representation of a group, one can efficiently construct a complete set of 

irreducible unitary representations of the group and also, efficient method for 

computing the precise values of a character from approximated values. 

In the reduction of a unitary representation, the theory on which his 

method was based is stated as if G is a finite subgroup of order g in U(d), then G is 

irreducible unless for at least one element of Ers of the standard basis for M(d) the 

matrix 

 

is not scalar. where U(d) denotes the group of all d × 

d matrices. 

Where E(X) = XE for all X ∈ G and when E is not scalar the eigenspaces of E reduce 

G. E may be computed by an iteration process using only a set of generators for G. 

Theorem 2.0.1. Let S be a finite set consisting of h elements of U(d) and suppose 

that the unit matrix I ∈ S. We define a linear mapping σ : M(d) → M(d) by 

 

Then for each A0 ∈ M(d) we can define a sequence An in M(d) by putting 

An = σn = σn(A0) for n = 1,2,... Then A(n) is always convergent in M(d) and its limit, 

say A, has the property AU = UA for all U ∈ S. 
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Proof 

The norm ||.|| on M(d) defined by ||B||2= trace B∗B. 

 ||σ(B)|| = ||B|| implies that UB = BU for all U ∈ S. (2.1) 

The properties of the norm show that for any B ∈ M(d), 

(2.2) 

(2.3) 

U are unitary. The equality sign in equation 2.2 holds when all the matrices 

U∗BU (for U ∈ S) lie on the same ray through 0 in M(d). 

Now, I ∈ S. 

So, ||σ(B)|| = ||b|| 

⇒ ∃λU ≥ 0 such that 

U ∗ BU = λUB ∀ U ∈ S 

{λu : λu ∈ R} B = 

||U ∗ BU||, So, 

||B|| = ||λUB|| = λU||B|| 

Hence, either B = 0 

Or else λU = 1 ∀U ∈ S. 

⇒ UB = BU ∀U ∈ S hence equation 2.1 is proved. 

Let Bn = An − A for n = 0,1,2,.... 
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σ(A) = A ⇒ (||Bn||) is monotonically decreasing. 

By the definition of A, lim||Bnk|| = 0 so the sequence (An) converges to A. 

Definition 2.0.2. Let Ers(r,s=1,...,d) be the standard basis for M(d); that is,Ers is the 

matrix whose r,sth entry is 1 and whose other entries are all 0. 

Let Hrs(r,s = 1,...,d) for M(d) by 

Hrs = Err if r = s, 

= Ers + Esr r > s, 

= i(Ers − Esr) r < s 

Theorem 2.0.3. Suppose S is a reducible set of matrices ( S generates a reducible 

subgroup of U(d)). 

Then for at least one Hrs the limit limσn(Hrs) = H, say, is not scalar and we can reduce 

S into a number of not necessarily irreducible components as follows. Since H is 

hermittian, there exists an orthonormal basis v1,...,vd of the underlying d− 

dimensional unitary space such that this basis is made up of listing successively 

orthonormal bases for eigenspaces for H for the different eigenvalues. Then, if C is 

the unitary matrix whose columns are v1,...,vd, 

   

U1 

   

   

  U2  

   

   

  .  

 C ∗ UC =  for all U ∈ S 

  .  

   

   

  .  
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Uk 

The (r,s)th entry of the matrix on the right-hand side is  and this is 0 when vr 

and vs are eigenvectors for different eigenvalues of H. 

Proof 

S is completely reducible because S ⊂ U(d). 

=⇒ ∃ a non-scalar B ∈ M(d) such that UB = BU ∀ U ∈ S. 

So δ(B) = 

B. 

Hrs forms a basis for M(d) 

∃ Brs ∈ e such that B = Pβrs,Hr,s, 

=⇒ B = lim σn(B) = Pβrslimσn(Hrs) because σ is linear. 

Since B is not scalar, at least one limσn(Hrs) is not scalar. 

Suppose H = limσn(Hrs) is not scalar. 

HU = UH∀ U ∈ S by theorem 2.0.1 

=⇒ for any eigenvalue αi of H the corresponding eigenspace is mapped into itself 

by multiplication by any U ∈ S. 

If Hv = αiv, 

Then, 

H(Uv) = U(Hv) = αi(Uv). 

= 0 whenever vr and vs are eigenvectors for H for different eigenval- 

ues. 

In 1991, Katriel [?], established a theorem regarding the explicit form of 

the eigenvalues of the class sums of the symmetric group Sn. Katriel [?] then 

employed the theorem to show that the center of CSn is generated by polynomials 

in the set of elements consisting of the generators of the center of the CSn−k 

augmented by single-cycle class sums ((2))n,((3))n,...,((k + 1))n. He also used the 
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theorem in establishing that the irreducible representations of Sn with up to k 

rows are fully given by the class sums ((2))n,((3))n,...,((k))n. Further investigations 

by Katriel [?] showed that the k class sums ((2))n,((3))n,...,((k +1))n is sufficient for 

specifying the irreducible representations of Sn for all n > k. Katriel in his work 

was able to show that the class sum of transpositions sufficiently yields 

separating sets for Sn for n < 5 and in addition showed that the first four class sums 

are enough as long as n < 41. 

The role of Gelfrand-Graev characters and their degenerate counterparts 

in the representation theory of finite Lie groups enabled Thiem and Vinroot [?], 

to restate the character theory of the finite unitary groups in the language of 

symmetric functions via a characteristic map. This transformation motivated a 

combinatorial approach to the study of degenerate Gelfand-Graev characters of 

the finite unitary group. In their paper, Theim and Vinroot, were able to derive 

the formula for the character values of the Gelfand-Graev character of Un(Fq2) by 

using a remarkable formula for the character values of the Gelfand-Graev 

character of GLn
(Fq2). 

In 2003, Derksen et al [?] documented interesting results on separating 

sets using invariant theory in their book Computational Invariant Theory[?]. 

Dersken and Kemper were able to show that the existence of finite separating 

sets; invariants of degree at most the order of the group G form a separating set. 

In 2004, Melissa Banister [?] also approached the study of separating sets 

by means of representation theory. Melissa [?] probed into the representation 

theory of alternating and dihedral groups and by employing class sums, she 

carefully examined how the irreducible representations of such groups can be 

distinguished. 
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Emilie Dufresne [?] later approached the study of separating sets 

geometrically. In 2009, Dufresne in her paper [?], showed that the only groups 

capable of having polynomial separating algebras are those generated by 

reflections. Dufresne also showed that a group may have complete intersection 

separating algebras only if the group is generated by bireflections. 

These are definitions, propositions and theorems with their corollaries 

stated without proof. 

Theorem 2.0.4. Let G be a finite group. If there exists a geometric separating 

algebra which is a polynomial ring, then the action of G on V is venerated by 

reflections. 

Corollary 2.0.5. Let G be a finite group. If the characteristic of K does not divide the 

order of G, then there exists a geometric separating algebra which is a polynomial 

ring if and only if the action of G on V is generated by reflections. 

Theorem 2.0.6. Let G be a finite group. If there exists a graded geometry 

separating algebra which is a complete intersection, then the action of G on V is 

generated by bireflections. 

Definition 2.0.7. A subset E of K[V ]G, is a geometric separating set if, for 

 
all u and v in V , the two following equivalent statements hold: 

• if there exists f in K[V ]G such that f(u) 6= f(v), then there exists h in E such that 

h(u) 6= h(v); 

• f(u) = f(v), for all f in K[V ]G if and only if h(u) = h(v) for all h in E. 
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Definition 2.0.8. The separating scheme SG is the unique reduced scheme having 

the same underlying topological space as the product V ×V//G V, that is, SG := (V ×V//G 

V )red. 

Theorem 2.0.9. Let A ⊂ K[V ]G be a subalgebra, then the following statements 

are equivalent: 

1. A is a geometric separating algebra; 

2. if W = Spec(A), then the natural morphism SG → (V ×W V )red is an 

isomorphism; 

3. if δ denotes the map δ : K[V ] −→ K[V ] ⊗KKV sending an element of f of K[V ] 

to f ⊗1−1⊗f, then, the ideals (δ(A)) and (δ(K[V ]G)) have the same radical in 

the ring K[V ] ⊗KK[V ],i.e, 

pδ(A) = pδ(K[V ]G); 

Theorem 2.0.10. If G is reductive, then a subalgebra A ⊂ K[V ]G is a geometric 

algebra if and only if the morphism of schemes θ : V//G −→= W = Spec(A) 

corresponding to the inclusion A ⊂ K[V ]G) is a radical morphism. 

Proposition 2.0.11. If G is a finite group, then the separating scheme is a union of 

|G| linear subspaces, each of dimension n. There is a natural correspondence 

between these linear spaces and the elements of G. Moreover, if Hσ and Hτ denote the 

subspaces corresponding to the elements σ and τ of G respectively, then the 

dimension of the intersection Hσ ∩ Hτ is equal to the dimension of the subspace fixed 

by τ−1 in V. 

Proposition 2.0.12. Let A ⊂ K[V ]G be a graded subalgebra. If the map of schemes 

θ : V//G −→ W = Spec(A) is injective, then the extension A ⊂ K[V ]G 
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is integral. 

Corollary 2.0.13. If the action of G on V is reductive, and if A ⊂ K[V ]G is a graded 

geometric separating algebra, then the extension A ⊂ K[V ]G is integral. 

In 2013, Emilie [?] in her paper [?] examined Nagata’s famous 

counterexample to Hilbert’s fourteenth problem which shows that the ring of 

invariants of an algebraic group action on an affine algebraic variety is not always 

finitely generated. Emilie [?] agreed to the assertion that invariant rings are 

always quasi-affine and that finite separating sets always exist. In her paper, [?], 

Emilie [?] established new techniques for obtaining a quasi-affine variety on 

which the ring of regular functions is equal to a given invariant ring. She also gave 

a new basis for identifying separating algebras. This new technique and basis 

were applied to some known examples and in a new construction. 

Although rings of invariants are not always finitely generated, there 

always exists a finite separating set. 

Theorem 2.0.14. Let Ga act on V as above. The following 6 homogeneous 

polynomials are invariants and form a separating set E in K[V ]GA : 

f1 = x, f2 = 2x3t − s2, f3 = 3x6u − 3x3ts + s3, f4 = xv − 

s, f5 = s2v + 2x3tv − 3x5u, f6 = −18x3tsu + 9x6u2 + 

8x3t3 + 6s3u − 3t2s2. 

Lemma 2.0.15. . 

Proposition 2.0.16. We have K[V ]Ga ⊂ K ⊕ (x,s)K[V ]. 

Lemma 2.0.17. Define a K−algebra map 
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φ : K[x,s,t,u,v] −→ K[x,v,t,u], f(x,s,t,u,v) 7→ 

φ(f)(x,v,t,u) := f(x,xv,t,u,v), 

and a derivation ∆0 on K[x,v,t,u] : 

. 

It follows that 

(a) δ0 ◦ φ = φ ◦ D, in particular, φ maps ker D to ker ∆0; 

(b) ker δ0 = K[h1,h2,h3,h4], where 

h1 = x, h2 = 2xt − v2, h3 = 3x3u − 3xvt + v3, h4 = 

8xt3 + 9x4u2 − 18x2tuv − 3t2v2 + 6xuv3 = (h32 + 

h23)/x2. 

Proof. (a) For f = f(x,s,t,u,v) ∈ K[x,s,t,u,v], we have 

. 

(b) Since ∆ is a triangular monomial derivation of a four dimensional polynomial 

ring, its kernel is generated by at most four elements. Alternatively, one can use 

van den Essen’s algorithm. The derivation ∆0 can be extended to K[x,v,t,u]x and as 

∆ ,. The Slice theorem yields 

  (2.4) 

Consider the additional invariant . We 

claim ker∆0 = K[h1,h2,h3,h4] = R. Equation 2.4 implies R ⊆ ∆0 ⊆ Rx. 
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Next we look at the ideal of relations modulo x between the generators of R, 

I := {P ∈ K[X1,X2,X3,X4]|P(h1,h2,h3,h4) ∈ (x)K[x,v,t,u]} 

= {P ∈ K[X1,X2,X3,X4]|P(0,−v2,v3,−3t2v2) = 0} = (X1,X32 + 

X23)K[X1,X2,X3,X4]. 

 

Campbell [?] in his masters thesis “Irreducible characters of 2 × 2 unitary 

matrix groups over finite fields”, constructed the character table for the irreducible 

representations for the group of unitary 2 × 2 matrices over finite field. He also, 

showed the similarities existing between this table and the method for 

constructing the character table for the general linear group. 

Chapter 3 

Methodology 

3.1 Introduction 

In this chapter, we establish the setting, basic terminologies as well as the tools 

and machineries necessary for thorough understanding of the main text. 

3.2 Basic Definitions and Theorems 

Definition 3.2.1. A nonempty set G, with binary operation * is a group P if the 

following conditions are satisfied 

I. a * b ∈ G for a,b ∈ G(Closure) 

II.(a ∗ b) ∗ c = a ∗ (b ∗ c) for a,b,c ∈ G(Associativity) III. (a ∗ e) = a 

for a,e ∈ G ,where e is the identity element in G 

IV. (a ∗ a−1) = e for a,a−1 ∈ G where a−1 is the inverse element of G. 
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Definition 3.2.2. Let (G,∗) and (H,◦) be groups. A homomorphism is a map 

φ : G −→ H 

such that φ(x ∗ y) = φ(x) ◦ φ(y) for all x, y ∈ G. 

In other words, a homomorphism is a map which preserves the algebraic structure 

between two groups. This map conveys information about one of the group from 

known structural properties of the other group. 

Definition 3.2.3. The homomorphism φ is said to be an isomorphism if φ is 

bijective. In this case, G is said to be isomorphic to H which is written as G ∼= H. If 

φ is an isomorphism such that H = G then we say that φ is an automorphism. 

Quaternion group 

Proposition 3.2.4. Let G be any group. Define, for any g ∈ G, the maps 

ϕ : G −→ G defined by ϕ(h) = 

ghg−1, 

is an automorphism. 

Proof. Consider the map 

ψ : G −→ Gdefined by,ψ(k) = g−1kg. 

Then, 

(ϕ ◦ ψ)(k) = ϕ(ψ(k)) = ϕ(g−1kg) 
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= g(g−1kg)g−1, 

= gg−1kgg−1, = 

k. 

This implies that ϕ ◦ ψ = id and hence ϕ−1 = ψ. 

Similarly, ψ ◦ ϕ = id. 

Thus, ϕ is bijective. Also, 

ϕ(hk) = ghkg−1 = ghg−1gkg−1, 

= ϕ(h)ϕ(k). 

This implies ϕ is a homomorphism. Hence ϕ is an isomorphism from G to G. 

Therefore, ϕ is an automorphism.  

Definition 3.2.5. Let  be the group of units of the quadratic field extension 

Fq2 of the finite field Fq. The map 

, defined by 

N(x) = xx, 

is a hormomorphism 

Proof. 

Indeed,N(xy) = xyxy, 

 

Thus, the map N is a group homomorphism(the homomorphism N is called the 

norm map).  
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Proposition 3.2.6. Using the subgroup  of the multiplicative 

group . The map 

, defined by 

, 

is a homomorphism 

Proof. For any  we have, 

. 

Hence, the map Q is a homomorphism.  

Definition 3.2.7. Let φ be the homomorphism defined in Definition 3.2.2. The kernel 

of φ denoted ker(φ) is a subgroup of the group (G,∗) such that ker(φ) = {x ∈ G|φ(x) = 

e ∈ H where e is the identity element}. 

Proposition 3.2.8. 1. The kernel of the norm map in Proposition 3.2.5 is 

 given by the subgroup  , where, L=[∞]. The group 

  is a cyclic group of order q2 − 1. Suppose η is the generator of  

then ηq2−1 = η(q−1)(q+1) = 1. This implies ηq−1 is a generator of ker(N) as xx = 1 

⇔ xq+1 = 1. This shows that the order of ker(N), |L| = q + 1. 

2. The kernel of the map Q in Proposition 3.2.6 is given by ker(Q) = {x ∈ 

. Since the multiplicative group  is of order q − 1, we 

have, |ker(Q)| = q − 1. 

Definition 3.2.9. Let V be a finite dimensional vector space. The general linear 

group GL(V ) is the group of all invertible linear maps from V to V . 
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Remark 3.2.10. Let n > 0 be an integer and suppose V is of dimension n. Then for a 

given basis of V , the general linear group GL(V ) is isomorphic to the group of all 

invertible n × n matrices GLn(C), that is, GL(V ) ∼= GLn(C). 

Definition 3.2.11. ‘ Let X be a set and G be a group. The group G is said to act on X 

if there exists a mapping 

ρ : G × X −→ X 

called an action defined by 

ρ(g,x) = gx ∀g ∈ G ∀x ∈ X 

such that 

1. 1x = x∀x ∈ X, 

2. (gh)x = g(hx)for g,h ∈ Gand ∀x ∈ X. 

X is referred to as a G-set. 

Proposition 3.2.12. 1. Let G be a group and X be a nonempty set. The map defined 

by gx = x∀g ∈ G and ∀x ∈ X is an action of G on X known as 

the trivial action. 

2. Let G be a multiplicative group. The multiplication in G defines an action 

l : G × G −→ G 

(g,h) 7→ gh. 

By the associative property and identity element of the group G, this map 

clearly defines an action of G on itself. 

3. Let G be a group. The map 
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G × G −→ G 

(g,h) 7→ ghg−1 

is an action of G on itself known as conjugation. 

Theorem 3.2.13 (Cayley’s theorem). Every finite group G is isomorphic to a 

subgroup of the symmetric group SG . 

Definition 3.2.14. Let G be a group which acts on the set X and let x ∈ X. 

The subset 

Gx = {gx : g ∈ G} ⊆ X 

of X is said to be the orbit of x ∈ X. 

The subgroup 

Gx = {g ∈ G : gx = x} ⊆ G 

of G is known as the stabilizer of x. 

The stabilizer subgroup of x is also known as the isotropy subgroup of x. 

Remark 3.2.15. 1. The orbits for a group action are equivalent classes for the 

relation x ∼ y if y = gx for some g ∈ G. 

2. The orbits partition the G-set X, i.e. S = Sx∈X O(x) is a union of disjoint 

orbits. 

3. The orbits of an element x and of gx are equal. 

4. If X consists of just one orbit, we say that G acts transitively on X. That is, 

every element of X is carried to every other element by some element of the 

group G. 
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Theorem 3.2.16 (The orbit-stabilizer theorem). Let X be a G-set, x ∈ X. Let 

Gx be the stabilizer of x and Gx be the orbit of x. Then the map 

 ψ : G/Gx −→ Gx defined by 

ψ(gGx) = gx, 

is an isomorphism of G- sets. In particular, |G| = |Gx||Gx|. 

(By a homomorphism of G-sets X,Y we mean a map 

ψ : X −→ Y such that, ψ(gx) = 

gψ(x) ∀g ∈ Gand x ∈ X.) 

Proof. 1. ψ is well defined. 

For all g,h ∈ G, 

gGx = hGx ⇒ h−1g ∈ Gx ⇒ h−1gx = x ⇒ gx = hx. 

2. ψ is a homomorphism of G-sets. 

For all g,h ∈ G, 

ψ(g(hGx)) = ψ(ghGx) = ghx = g(hx) = gψ(hGx). 

3. ψ is surjective. 

∀y = gx ∈ Gx, y = gx = ψ(gGx). 

4. ψ is injective. 

For all g,h ∈ G, 
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ψ(gGx) = ψ(hGx) ⇒ gGx = hGx. 

Since ψ is homormorphic and on G−sets and also bijective, ψ is isomor- 

phic.  

Proposition 3.2.17. Let M be a G-set. For each x ∈ G, define Mx = {m ∈ M|xm = m}. 

Then 

 number of orbits in M. 

Proof. Mx considers the set of all points m in M that are stable under the action of 

x ∈ G. Hence, if we are looking at the number of all x’s that fixes the points m in M 

then we are looking at the sum 

X x 

|M | 
x∈G 

but this, in terms of the stabilizer subgroup is 

X 

|Gm|. 
m∈M 

Hence, 

X x X 
 |M | = |Gm|. 
 x∈G m∈M 

Suppose m,n ∈ M are in the same orbit. Then by the orbit-stabilizer theorem, we 

have 
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Thus, 

X 
|Gn| = |Gm||Gm|. 

n∈Gm 

But by the orbit-stabilizer theorem |Gm||Gm| is equal to |G| and hence 

X 
|Gn| = |G|. 

n∈Gm 

Suppose there are k distinct orbits that partition the set M then the sum Pm∈M |Gm| 

is 

 k k 

 X XX X 
 |Gm| = |Gn| = |G| = k|G|. 
 m∈M i=1 n∈Gm i=1 
Substituting we have, 

 

Therefore |G1| 
P

x∈G |Mx| is the number of orbits in M.  

Definition 3.2.18. Let a group G act on itself by conjugation. If x ∈ G then the 

set 

O(x) = {y ∈ G | y = gxg−1 for some g ∈ G} 

is called the conjugacy class of x and the set 

CG(x) = {g ∈ G|gxg−1 = x} 

is said to be the centralizer of x in G. The centralizer CG(x) of x in G is also stabilizer 

Gx of x. 
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Proposition 3.2.19. The quaternion group Q has 5 conjucacy classes. 

Proof. Q = {±1,±I,±J,±K} together with the operation, multiplication determined by 

I2 = J2 = K2 = −1, IJ = K, 

JK = I, KI = J. 

Thus, JI = KI2 = −K = −IJ. 

Similarly, KJ = −JK, IK = −KI. 1 is the unit element and −I, −J, −K are 

the inverses of I, J, K respectively. 

Let X ∈ Q be any arbitrary element. Then, 

X1 = 1X and, 

X(−1) = (−1)X 

This implies that C1 = {1} and C2 = {−1} are conjugacy classes of Q. 

Also, 

JI(−J) = −JIJ = IJJ = −I, KJ(−K) = −KJK = JKK 

= −J. 

Similarly, 

IJ(−I) = −IJI = JII = −J, 

KJ(−K) = −KJK = JKK = −J, 

IK(−I) = −K, JK(−J) = −K. 

Thus, the other conjugacy classes of Q are 

C3 = {I,−I}, 
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C4 = {J,−J}, C5 = 

{K,−K}. 

Therefore, there are 5 conjugacy classes of Q.  

Proposition 3.2.20. Let G ⊂ S4 be the set of all permutations with sign +1. 

Then G is a subgroup of S4 with 4 conjugacy classes. 

Proof. 

C1 = {(1)}, 

C2 = {(12),(13),(14),(23),(24),(34)}, 

C3 = {(123),(124),(132),(142),(234),(243),(134),(143)}, 

C4 = {(12)(34),(13)(24),(14)(23)}, C5 

= {(1234),(1243),(1324),(1423),(1342),(1432)}. 

The sign of a permutation is +1 if the permutation can be written as a 

product of even transpositions and −1 if it can be written as a product of odd 

transpositions. 

From this definition, we observe that all elements in C2 have the sign −1 and those 

in C4 have the sign +1. The identity element (1) is of sign +1. Let us now obtain the 

sign for elements in the class C3,C5. 

Let (abc) be an arbitrary element in C3. We have, 

(abc) = (ac)(ab), 

which implies every 3- cycle can be written as a product of 2 transpositions. Since 

the number 2 is even the sign of all 3 -cycles is +1. 

Take an arbitrary element (abcd) ∈ C5, we have, 
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(abcd) = (ad)(ac)(ab), 

which implies that every 4-cycle can be written as a product of 3 transpositions. 

Since the number 3 is odd the sign of all 4 - cycles is −1. 

Now we can clearly list the elements in G. 

G = {(1),(123),(124),(132),(142),(234),(243),(134),(143),(12)(34),(13)(24),(14)(23)}. 

Thus |G| = 12. 

Let f,g ∈ S4. If sgn(f) = sgn(g) = 1, then sgn(fg) = sgn(f)sgn(g) = 1. 

Also, sgn(e) = 1. Hence G is a subgroup of S4. 

As |G| = 12 and there are 4 ways to express 12 as a sum of squares 

12 = 12 · 12, 

12 = 8 · 1 + 22, 

12 = 4 · 12 + 2 · 22, 12 

= 3 · 12 + 32. 

The first case is ruled out as G is not abelian. So the number k of conjugacy classes 

is an element of {4,8,9}. 

In S4 all elements of a given cycle structure are conjugate. It suffices to only 

determine how the class C3,C4 ⊂ S4 of (12)(34) and (123) decompose into 

conjugacy classes . 

By direct computations we observe that, 

(123) ◦ (12)(34) ◦ (132) = 

(14)(23), (124) ◦ (12)(34) ◦ 

(142) = (13)(24). 
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This shows that C4 does not decompose in G. 

Also, 

(124) ◦ (123) ◦ (142) = 

(243), (142) ◦ (123) ◦ (124) = 

(134) 

So the conjugacy class of (123) in G contains at least 3 elements. However, all  

must contain the same number of elements as there is an element of S4 

conjugation by which maps one to any other (this uses the fact that conjugating 

elements in G by elements in S4 produces another element in G). Thus they have 

cardinality 4 or 8, but k is at least 4 and hence it must be 4. Therefore, k = 4.  

Definition 3.2.21. Let G be a group. The center of G is the subgroup 

Z(G) = {x ∈ G|x = gxg−1 ∀g ∈ G} 

consisting of all elements commuting with every element of G. 

Definition 3.2.22. Let G be a finite group and let n be the number of conjugacy 

classes of order greater than 1. The class equation of G is 

, 

where xi is a class representative of each conjugacy class of order greater than 1. 

3.3 Cardinality 

Let A and B be sets. 

Definition 3.3.1. If there is a bijection f : A → B between A and B, then 
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|A| = |B|. Example 

If A = {x,y,z},B = {α,β,γ}, then |A| = |Y | because {(x,α),(y,β),(c,γ)} is a bijection 

between the sets A and B. The cardinality of each of A and B is 3. 

Definition 3.3.2. The product rule 

If the P1,P2,...,Pn are sets, then,|P1 × P2 × . ... × Pn| = |P1|.|P2|...|Pn| 

Definition 3.3.3. The sum rule 

If A1,A2,A3,...An are disjoint sets, then: 

|A1 ∪ A2 ∪ ... ∪ An| = |A1| + |A2| + ... + |An| 

3.4 Lie group 

Definition 3.4.1. A lie group is a nonempty subset G which satisfies the following 

conditions: 

a. G is a group. 

b. G is a smooth manifold. This means that G is a differentiable manifold. 

c. In particular, the group operation of multiplication, 

µ : (gh) −→ gh and the inverse map 

i : G −→ G 

i : g −→ g−1are differentible maps(smooth) 

Definition 3.4.2. A Lie Algebra over a field k = R or C is a vector space g together 

with a bilinear map 

g × g −→ g, 

(X,Y ) 7→ [X,Y ], 
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known as the Lie bracket such that 

1. [X,Y ] = −[Y,X] (anti-commutativity), 

2. [[X,Y ],Z] + [[Y,Z],X] + [[Z,X],Y ] = 0 (Jacobi identity). 

Definition 3.4.3. A Compact Lie group is a Lie group which is compact 

topological manifold. A Lie group which is connected as a topological manifold is 

said to be a connected Lie group. 

Remark 3.4.4. A unitary group G = U(n) is a compact, connected Lie group. 

Chapter 4 

Review of Separating Sets 

4.1 Representation of finite groups 

4.1.1 Introduction 

In Mathematics, the word “representation” basically means “structure-preserving 

function”. Thus in group theory and ring theory, one would at least say a 

representation is a homomorphism. Roughly speaking, a representation of a 

group G is simply a representation of G by matrices or linear transformations. Let 

V be a finite-dimensional complex vector space. 

Definition 4.1.2. A representation of a group G in a vector space V is a 

homomorphism 

ϕ : G −→ GL(V ), 

or 

ϕ : G −→ GLn(C). 
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Definition 4.1.3. The degree or dimension of a representation is the dimension of 

the vector space V . 

Definition 4.1.4. Let G be a finite group. The homomorphism 

ϕ : G −→ GL(V ), 

defined by 

ϕ(g) = 1∀g ∈ G, 

is said to be a trivial representation. 

Definition 4.1.5. Let G = Sn and GL(V ) = C. Let 

sgn : G −→ C defined by, 

 

1 

sgn(σ) = 

1 

if σ is even 

, 

ifσ is odd 

be the sign of a cycle in Sn. The homomorphism 

ϕ : G −→ C, 

σ 7→ sgn(σ), 

is a representation of Sn of degree 1. This representation ϕ is referred to as the sign 

representation. 

Proposition 4.1.6. Let V = R2 be a vector space over R and G = hgi be the cyclic 

group generated by g and of order r. The homomorphism 

 ϕ : G −→ GL(V ) defined by 
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1 0 

ϕ(gr) =  , 

 r 1 

is a representation of the cyclic group G. 

Let G = Sn and V be a finite dimensional complex vector space. Define a 

homomorphism 

ϕ : G −→ GL(V ) on the standard basis elements by 

ϕσ(ei) = eσ(i) where σ ∈ G and ei ∈ V. 

Permuting the rows of the identity matrix with respect to σ we obtain a matrix 

representation for ϕσ ∀σ ∈ Sn. 

In particular, for n = 3 we have 

 

1 

 

ϕ(1) = 0 

 

 

0 

0 

1 

0 

 

0 

 

 

0 , 

 

 

1 

 

0 

 

ϕ(12) = 1 

 

 

0 

1 

0 

0 

 

0 

 

 

0 , 

 

 

1 

 

0 

 

ϕ(123) = 1 

 

 

0 

0 

0 

1 

 

1 

 

 

0 , 

 

 

0 

 

1 

 

ϕ(23) = 0 

 

 

0 

0 

0 

1 

 

0 

 

 

1 , 

 

 

0 

 

0 

 

ϕ(13) = 0 

 

 

1 

0 

1 

0 

 

1 

 

 

0 , 

 

 

0 

 

0 

 

ϕ(132) = 0 

 

 

1 

1 

0 

0 

 

0 

 

 

1 . 

 

 

0 

Definition 4.1.7. Let G be a finite group. Let V be a vector space with basis of VG. 

Left multiplication by g ∈ G permutes the basis and extends to an invertible linear 

transformation of V . This gives a representation known as the regular 

representation of G and is of degree |G|. 
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Definition 4.1.8. A permutation matrix is a matrix for which every row or column 

has exactly one non-zero entry 1. 

A permutation representation is a representation for which every element of a group 

acts by a permutation matrix. 

An example of a permutation representation is the regular representation. 

Definition 4.1.9. Let 

ϕ : G −→ GL(V ) 

be a representation. A subspace W of a vector space V is said to be stable under 

G or G-invariant if ∀g ∈ G and w ∈ W there exists a homomorphism 

ϕ|W : G −→ GL(W) defined by ϕ|W 

(g)(w) = ϕg(w) 

such that ϕg(w) ∈ W. 

The homomorphism ϕ|W is said to be a subrepresentation of G. 

Definition 4.1.10. Two representations 

 ϕ : G −→ GL(V ) and ψ : G −→ GL(W), 

are said to be equivalent if there exist an invertible linear transformation 

T : V −→ W such that TϕgT −1 

= ψg ∀g ∈ G. 

This is denoted by ϕ ∼ ψ. 

Definition 4.1.11 (Irreducible). Let 
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ϕ : G −→ GL(V ) 

be a representation. ϕ is said to be an irreducible representation if the only G-

invariant subspaces of V are 0 and V . 

Every degree one representation of a group is irreducible since there are no 

proper non-zero subspaces. The converse however is not always true. That is, not 

every irreducible representation has degree one. For example when a matrix is 

not diagonalizable, the corresponding representation is a direct sum of 

irreducible representations, not all of which are of degree 1. 

Definition 4.1.12. Let G be a group. A vector space V is said to be completely 

reducible if it is a direct sum of G-invariant subspaces of V . That is where 

Vi is a non-zero G-invariant subspace of V for each i. A representation 

ϕ : G −→ GL(V ) 

is completely reducible if V is completely reducible and the restriction ϕ|Vi is 

irreducible. 

Definition 4.1.13. Let V be an inner product space. A representation 

ρ : G −→ GL(V ) 

is said to be a unitary representation, if ∀g ∈ G, v,w,∈ V 

hρ(g)(v),ρ(g)(w)i = hv,wi. 

Definition 4.1.14. Given an inner product space V and a subspace W of V , there 

exists a direct sum decomposition V = W ⊕ W ⊥. Definition 4.1.15. Let V be a 

complex vector space. The map, 
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h•,•i : V × V −→ C, 

such that 

 
1. hv,wi = hw,vi. 

2. hλu + v,wi = λhu,wi + hv,wi for λ ∈ C, u,v,w ∈ V. 

3. hv,vi ≥ 0. 

4. hv,vi = 0 ↔ v = 0. 

is said to be a Hermitian inner product on V . Definition 4.1.16. 

Let 

ρ : G −→ GL(V ) 

be a representation of G. The map, 

(•,•) : V × V −→ C defined by 

(v,w) = Xhρ(g)(v),ρ(g)(w)i g∈G 

is a Hermitian inner product and ∀g ∈ G, v,w ∈ G we have 

(ρ(g)(v),ρ(g)(w)) = (v,w) 

that is ρ(g) is unitary with respect to (•,•). 

Lemma 4.1.17. A G-invariant subspace W ⊂ V has an G-invariant complement 

U ⊂ V . 

Proof. Let U be the orthogonal complement of W, 
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U = W ⊥ = {u ∈ V |hu,wi = 0∀w ∈ W}. 

This is a subspace since for λ ∈ C, u,v ∈ U and w ∈ W we have, 

hλu + v,wi = λhu,wi + hv,wi = 0, 

if v ∈ U ∩ W ⇒ hv,vi = 0 ⇒ v = 0. 

Using the property: x⊥⊥ = x, we obtain 

(U + W)⊥ = U⊥ ∩ W ⊥ = W ⊥⊥ ∩ W ⊥ = W ∩ W ⊥ = {0} ⇒ U + W = V. 

Finally, if g ∈ G, u ∈ U, w ∈ W and ρ is a unitary representation of G then, 

hρ(g)(u),wi = hρ(g−1)ρ(g)(u),ρ(g−1)(w)i since ρ is unitary ⇒ 

hρ(g)(u),wi = 0 since ρ(g−1)(w) ∈ W. 

Therefore U is invariant.  

Let us now show that every complex representation can be decomposed 

into a direct sum of irreducible subrepresentation. 

Theorem 4.1.18 (Masche). Let V be a representation of a finite group G. Suppose 

W is a G-invariant subspace of V . Then there exists a G-invariant subspace U of V 

such that V = W ⊕ U. 

Proof. Let W ⊥ be a complement of W in V such that V = W ⊕ W ⊥. Let α : V −→ W 

be the projection of V onto W along W ⊥ be defined such that if v = w + w⊥ then α(v) 

= w. 

Let α, the average of α over G be defined as 
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and ϕa representation of G. 

For simplicity, we set ϕ(g)α(ϕ(g−1)(v)) to gα(g−1v). To complete the proof, we 

prove that α is a linear transformation and to do so, we prove the following claim. 

Claim 4.1.19. 1. α : V −→ W. 

2. α(w) = w ∀w ∈ W. 

3. If h ∈ G then hα(v) = α(hv)∀v ∈ V 

Proof of Claim4.1.19. 1. ∀v ∈ V we have, α(g−1v) ∈ W and hence gα(g−1v) ∈ gW ⊂ W ∀v 

since W is G-invariant. 

2. 

, 

Thus, 1, and 2 implies α projects V onto W. 

3. 
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, 

) where k = hg, 

 
= hv by 2. 

 Thus, α is a linear transformation.  

Finally, we prove the claim 

Claim 4.1.20. kerα is G- invariant. 

Proof of Claim 4.1.20. Let v ∈ kerα, then α(hv) = hα(v) = 0 and hence hv ∈ 

kerα.  

Now, V = Im(α)⊕kerα. But Im(α) = W and set kerα = U. Therefore, 

V = W ⊕ U is a G-subspace decomposition.  

Let HomG(V,W) denote the set of all homomorphisms from V to W 

Lemma 4.1.21 (Schur). Let ϕ and ψ be irreducible representations of G and 

T ∈ HomG(V,W). Then T is either invertible or T = 0, consequently, 

1. if ϕ ∼ ψ, then HomG(ϕ,ψ) = 0 

2. If ϕ = ψ, then T = λI with λ ∈ C. 
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Proof. See [?]  

4.2 Character Theory 

In this section, we review an important tool in the study of representation theory, 

the “character” of a representation. Informally, the character of a group is a 

function of the group which associates to each element, the trace of the 

corresponding matrix representation. In general, the character of a group 

encodes salient information about the representation in a more condensed form, 

but is a more specific case, the characters of irreducible representations tend to 

convey much salient informations and properties of a group and we can therefore 

use it to study the group’s structure. According to Ayekple [?],When it comes to 

the classification of finite simple groups, character theory plays a major role. 

Definition 4.2.1. Let V be a finite-dimensional vector space over a field say 

K = C and let 

ϕ : G −→ GL(V ), 

be a representation of a group G on V . The character of ϕ is the function 

χϕ : G −→ C defined by 

χϕ(g) = Tr(ϕ(g)), 

where Tr is the trace of a linear map. 

Definition 4.2.2. Let ϕ : G −→ GL(V ) be a representation. 

1. The character χϕ is said to be irreducible if ϕ is irreducible. 

2. The character χϕ is linear if the dimension of ϕ is one. 
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Remark 4.2.3. 1. If ϕ : G −→ GLn(C) is a representation defined by ϕg = 

(ϕij(g)) then 

. 

2. If G is finite and k is of characteristic 0 then the kernel of the character χϕ is 

the normal subgroup, 

kerχϕ = {g ∈ G|χϕ(g) = χϕ(1)}, 

which is simply, the kernel of the representation ϕ. 

Proposition 4.2.4. Let 

ϕ : G −→ GL(V ), 

be a representation. Then 

χϕ(1) = degϕ. 

Proof. By definition, χϕ(g) = Tr(ϕ(g)) and hence for g = 1 we have, 

χϕ(1) = Tr(ϕ(1)) = Tr(I) = dimV = degϕ. 

 

Lets us now examine one of the properties of a character of a 

representation. One of the main properties is that the character depends on the 

equivalent classes of the representation. 

Proposition 4.2.5. If ϕ and τ are equivalent representations, then 

χϕ = χτ. 
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Proof. Suppose ϕ,τ : G −→ GLn(C) are equivalent representations. Then there exist 

an invertible matrix T ∈ GLn(C) such that 

ϕg = TτgT −1 ∀g ∈ G, 

⇒ χϕ(g) = Tr(TτgT −1), 

= Tr(T −1Tτg), by the properties of a trace = 

Tr(τg) = χτ(g). 

 

The next property shows that the character is invariant on conjugacy 

classes. 

Proposition 4.2.6. Let ϕ be a representation of a group G. Then ∀g, h ∈ G 

χϕ(g) = χϕ(hgh−1). 

Proof. 

χϕ(hgh−1) = Tr(ϕ(hgh−1)), 

= Tr(ϕ(h)ϕ(g)ϕ(h−1)), 

 = Tr(ϕ(h−1)ϕ(h)ϕ(g)), by the properties of a trace 

= Tr(ϕ(g)), = 

χϕ(g). 

 

Proposition 4.2.7. Let ϕ : G −→ GL(V ) be a representation of the finite group 

G. Then 
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χϕ(g−1) = χϕ(g) ∀g ∈ G. 

Proof. For any g,∈,G, the order of g is finite and hence its representation has a finite 

number of eigenvalues. 

Suppose ϕ is an n-dimensional representation of the finite group G. Let λ1,...,λn ∈ 

C, |λi| = 1∀i be the eigenvalues of the matrix associated to ϕ(g). Suppose, 

 

λ1 
  

 0 

ϕ(g) =  

 ... 

 

 

 

0 

0 

λ2 

... 

... 

... 

... 

... 

0 

 

0 

... 

 

. 
 0 
  

 

λn 

Then 

. 

Now, the eigenvalues of the matrix associated to ϕ(g−1) are  and 

hence, 

 

λ−1 1 

 

 

−1  0 

ϕ(g ) =  

 ... 

 

 

 

0 

0 

λ−2 1 

... 

... 

... 

... 

... 

0 

 

0 

... 

 

. 
 0 
  

 

λ−n1 

Thus, 
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, 

 

= χϕ(g). 

 

Definition 4.2.8 (Group algebra). Let G be a group. Define CG = {f|f : G −→ C}. Then 

CG is an inner product space with + and × given by 

(f1 + f2)(g) = f1(g) + f2(g), (cf)(g) = 

cf(g), 

and with inner product defined by 

. 

CG is called the group algebra of G. 

Theorem 4.2.9 (Schur orthogonality relations). Let ϕ : G −→ Un(C) and ρ : 

G −→ Um(C) be inequivalent irreducible unitary representations. Then 

1. 

and j = l, 

2.. 

Proof. See [?].  

Definition 4.2.10 (Class function). A class function is a function f : G −→ C for which 

f is constant on conjugacy classes of G or equivalently, f(g) = f(hgh−1)∀g, h ∈ G. 
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From Proposition 4.2.6, one can clearly deduce that a character of a 

representation is a class function. The space of class functions is the center of the 

group algebra CG and is denoted by Z(CG). 

Proposition 4.2.11. Let M be a G-set. Let  for 

each x ∈ G. Then the character π of the permutation representation on CM is given 

by π(x) = |Mx|. 

Proof. We start by defining a vector space for the permutation representation, 

followed by a linear map and a basis for the vector space. 

Let V = CM be a vector space and let the linear map 

ρ(x) : V −→ V, 

be a permutation representation on V. 

Let 

δm : M −→ C defined 

by 

 

1 

δm(n) = 

0 

if m = n 

. 

otherwise 

We claim that the set {δm}m∈M is the basis for V. 

Given f ∈ V is f = Pm∈M λmδm for some λm ∈ C we have for every n ∈ M, 

f(n) = X λmδm(n) = λn. 
m∈M 

This implies that for every f ∈ V we can write, 

f = X f(m)δm, 
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m∈M 

which is a linear combination of the δm and thus {δm} spans V. 

Next, we show that the set {δm} is linearly independent. 

Suppose that 

X 

λmδm = 0, m∈M 

is the zero function, then acting it on n gives, 

X 
λmδm(n) = 0, m∈M 

=⇒ λn = 0. 

This shows that the {δm} is a linearly independent set. 

Therefore {δm} is a basis for V. 

Now, we act the permutation representation ρ(x) on the basis vectors, since 

acting a linear map on the basis vectors gives the entries anm of its matrix 

representation. 

 ρ(x)(δm) = X anmδn where anm ∈ C. 
n∈M 

Let ρ(x)(δm) = δm(x−1  ) which is a function in V and since every function in 

V can be written as a linear combination of the basis we have, 

δm(x−1  ) = . 

By comparison we have, 

. 
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The character π is defined by 

, 

but 

. 

We can restrict M to Mx since . 

Therefore 

. 

 
Theorem 4.2.12 (First orthogonality relation). Let ϕ and ψ be irreducible 

representations of G. Then 

. 

Thus, the irreducible characters of a group G form an orthonormal set of class 

functions. 

Proof. Suppose ϕ and ψ are unitary representations. 

, 
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By the Schur’s orthogonality theorem  and hence 

. 

If ϕ ∼ ψ, then we may assume ϕ = ψ. Under such circumstances, the Schur’s 

orthogonality relation tell us 

 

This implies that 

. 

 
0 

Theorem 4.2.13 (Second orthogonality relation). Let C, C be conjugacy classes of 

G. Let g ∈ C and h ∈ C0 and s be the number of inequivalent representations of G. 

Then 

 . 

Proof. Let C be a conjugacy class of G. Define the function 

δC : G −→ C by, 

 

1 

δC = 

0 

g ∈ C, 

. 

g 

otherwise 

Let 

. 

Then 
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, 

By definition of δC, we have that δC(h) = 1 whenever h ∈ G and in this case we must 

have, 

, 

and δC(h) = 0 whenever h 6∈ C and this implies 

. 

Therefore 

 . 

 

Corollary 4.2.14. The number of inequivalent irreducible representations of a 

finite group G is equal to the number of conjugacy classes of G. 

For a proof to the corollary, kindly refer to [?]. 

Let us now build some notations which are salient for the understanding 

of the remaining theorems and proofs. 
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If V is a vector space and ϕ is a representation of a finite group G. Then for m ∈ Z 

with m > 0, we set 

 

Let {ϕi,...,ϕs} be a complete set of irreducible unitary representation of G. Set, up 

to equivalence, di = degϕi. 

Definition 4.2.15. Let ϕ : G −→ GL(V ) be a representation of a group G. If 

 then the integer, mi is said to be the multiplicity of ϕi in ϕ. If 

mi > 0 then ϕi is said to be an irreducible constituent of ϕ. 

Remark 4.2.16. If  then 

deg . 

Lemma 4.2.17. Let ϕ,φ and τ be representation of a group G. Then χϕ = χφ + χτ. 

Proof. Suppose that φ : G −→ GLn(C) and τ : G −→ GLn(C) are irreducible 

representations of G. Then ϕ : G −→ GLm+n(C) is of the form 

 

φg 

ϕ(g) =  

 

0 

 

0 

χϕ(g) = Tr(ϕ(g)) = Tr(φ(g)) + Tr(τ(g)), 

 

τg 

= χφ(g) + χτ(g), 

Thus,χϕ = χφ + χτ  

The above lemma implies that every character is an integral linear 

combination of irreducible characters. 
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Theorem 4.2.18. Let ϕ1,...,ϕs be a complete set of representations of the 

equivalence classes of irreducible representations of G and let  then 

mi = hχϕi,χφi. Therefore there exists a unique decomposition of ϕ into irreducible 

constituents and ϕ is determined up to equivalence by its character. 

Proof. By Lemma 4.2.17, 

 
Thus, 

 

= mi for i = 1,2,...,s 

by the orthogonality relation. The other statements are generated from 

Proposition 4.2.5.  

Corollary 4.2.19. A representation τ is irreducible if and only if hχτ,χτi = 1. 

Proof. Suppose . Then 

s 

hχτ,χτi = Xm2i , 
i=1 

by the orthonormality of the irreducible characters. Since mi ≥ 0 is a positive 

integer, hχτ,χτi = 1 if and only if there exist a j such that mj = 1 and mi = 0 for i 6= j. 

This is only possible if τ is irreducible.  

Let G = S3 act on the set X = 1,2,3. Let σ,α ∈ S3 such that 

σ(1) = 2, σ(2) = 1, and σ(3) = 3, α(1) = 

1, α(2) = 3, and α(3) = 2. 

Let ϕ : S3 −→ GL(V ) be a 2-dimensional representation of S3 is given by 
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, 

Theorem 4.2.20. The 2-dimensional representation φ of S3 is irreducible. 

Proof. The character of this representation is given by, 

χϕ(e) = 2, χϕ(σ) = χϕ(α) = χϕ(σ ◦ α ◦ 

σ) = 0, χϕ(σ ◦ α) = χϕ(α ◦ σ), 

Thus, computing the inner product gives 

, 

Thus, ϕ is an irreducible representation.  

Let f : C2 −→ C2 be given by multiplication by the matrix 

 . 

Then, 
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 , 

and 

 , 

Define the map 

ϕ : Z3 −→ GL2(C) by, ϕ(n) = 

an. 

For all x,y ∈ Z3 we have, 

ϕ(x + y) = ax+y, 

= axay, 

= ϕ(x)ϕ(y). 

Therefore ϕ is a representation. 
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Computing the characters yields, 

, 

Next, we compute the inner product. 

, 

Since hχϕ,χϕi 6= 1, we conclude that ϕ is not irreducible. 

Theorem 4.2.21. Recall the quaternion group is the set Q = {±1,±I,±J,±K} together 

with the operation, multiplication determined by 

I2 = J2 = K2 = −1, IJ = K, 

JK = I, KI = J. 

Thus, JI = KI2 = −K = −IJ. 

Similarly, KJ = −JK, IK = −KI. 1 is the unit element and −I, −J, −K are 

the inverses of I, J, K respectively. 

Consider the Pauli matrices: 
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   i 0 0

 i 0 

 Iˆ=  , Jˆ=  , Kˆ =  

     

 0 −i i 0 1 

The map 

ϕ : Q −→ GL2(C) defined by, 

 

−1 . 
 

0 

± 1 7→ ±id, 

± X 7→ ±Xˆ where X = I,J,K 

is an irreducible representation of Q. 

Proof. To show that ϕ is a representation, we show that it is a homomorphism. 

   

0 −1 

 ϕ(IJ) = ϕ(K) =  , 

   

1 0 

 i 0 0 i 

 ϕ(I)ϕ(J) =  , 

   

 0 −i i 0 

   

 0 −1 

 =  = ϕ(IJ), 

   

 −1 0 

   

 0 1 

 ϕ(−IJ) = ϕ(−K) =  , 

   

 −1 0 

   

 −i 0 0 i 

 ϕ(−I)ϕ(J) =  , 
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 0 i i 0 

   

0 1 =  = ϕ(−IJ), 

   

 −1 0 

 i 0 

 ϕ(JK) = ϕ(I)  , 

   

0 −i 

 

0 

ϕ(J)ϕ(K) =  

 

i 

 i 0 −1 

 , 

  

0 1 0 

 

i 

=  

 

0 

 = ϕ(JK), 

   

0 −i 

  

0 i 

ϕ(KI) = ϕ(J)  , 

  

 i 0 

 

0 

ϕ(K)ϕ(I) =  

 

1 

   

−1 i 0 

  , 

   

0 0 −i 

 

0 

=  

 

i 

 

i 

 = ϕ(KI). 

 

0 

Continuing for the other elements, we observe that ϕ is a homomorphism. 

Therefore ϕ is a representation. 

Computing the character χϕ of the Pauli representation of Q gives 

χϕ(±1) = ±2, and χϕ(±X) = 0, where X = I,J,K. 
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Next, we compute the inner product 

 

Thus, ϕ is an irreducible representation.  

Character Table 

A character table, roughly, is a two dimensional table whose rows correspond to 

irreducible representations and whose columns corresponds to the classes of 

group elements. 

Definition 4.2.22. Let G be a finite group with s conjugacy classes and s irreducible 

characters. The character table of G is an array with s rows labeled by the s 

inequivalent irreducible characters of G and s columns labeled by the s conjugacy 

classes of G. The entries in a row are values of the character on the representatives 

of the respective conjugacy classes of G. 

Remark 4.2.23. It is customary to label the first row by the trivial character and 

the first column by the conjugacy classes of the identity. The entries in the first 

column encode informations about the degree of the irreducible characters. Each 

conjugacy class, say the jth conjugacy class Cj, is indicated by a representative cj ∈ 

Cj and hence each (i,j)th entry has values χi(cj). 

Theorem 4.2.24. Given a finite group G with conjugacy classes C1,C2,...Cd and 

irreducible characters χ1,χ2,...,χd. If Γ ∈ Md(C) is the character table, Table 4.1: The 

character table. 

 c1 c2 ... cs 

χ1 χ1(c1) χ1(c2) ... χ1(cs) 

χ2 χ2(c1) χ2(c2) ... χ2(cs) 

... ... ... ... ... 

χs χs(c1) χs(c2) ... χs(cs) 
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Γij = χi(xj),xj ∈ Cj, then 

. 

Proof. We have that Γ = [Γij] where Γij = χi(xj),xj ∈ Cj. 

Let Γ0 be a matrix defined by 

 
Γ0 = [|Ci|Γji], 

 
where Γij are the elements of the conjugate transpose Γ† of Γ. 

Post multiply Γ by Γ0 

, 

The entries of this matrix looks like: 

, 

but by the orthonormality of irreducible characters we have 

 

 

if i = j 

. 

 0 if i 6= j 

This implies that hχi,χji = δij and hence 

(ΓΓ0)ij = |G|δij. 
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The product (ΓΓ0)ij can be written as 

, 

dividing through by |Ci| we have, 

. 

Substituting the expression for (ΓΓ0)ij into the above equation we have, 

. 

This shows that the product  is a diagonal d × d matrix and hence the 

determinant will be the product of its main diagonal entries i.e. 

. 

From the properties of determinant of matrices we have, 

, 

 (Γ) by properties of 

conjugate transpose, 

= |det(Γ)|2. 

Therefore, 

. 
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Taking the square root of both sides gives; 

. 

 

Let G = {f ∈ S4|sgn(g) = +1}. From Proposition 3.2.20, we know that there 

are 4 conjugacy classes of G and thus, by Corollary 4.2.14, there are 4 irreducible 

characters of G. 

The conjugacy classes of G are; 

C1 = {(1)}, 

C2 = {(12)(34),(13)(24),(14)(23)}, 

C3 = {(123),(134),(142),(243)}, C4 = 

{(132),(143),(124),(234)}. 

Theorem 4.2.25. Let χ1,χ2,χ3,χ4 be the characters of the irreducible representations 

of G where χ1 is the character of the 1-dimensional trivial representation which 

takes every element of the group and assigns a 1. 

 Table 4.2: Character Table of G 

• C1 C2 C3 C4 

χ1 1 1 1 1 

χ2 1 1   
χ3 1 1   
χ4 3 -1 0 0 

Proof. The entries in the first row are just the character of the 1-dimensional 

trivial irreducible representation of G. All entries are 1 because the trace of 1 is 

1. 

Now, suppose the degree of the remaining irreducible representations are d2,d3,d4 

then 
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, 

. 

Therefore, we seek non-negative integer values of d2,d3,d4 such that the above 

equation is satisfied. We observe that the only non-negative integer values that 

satisfy the above equation are 

d2 = 1,d3 = 1, and d4 = 3. 

Since the character of the identity always gives the degree of the irreducible 

representations, we have the proof for the entries in the first column. 

For the 1-dimensional irreducible representations, we have a simple way of 

computing their character without actually knowing the representation itself. 

This can be done be examining the properties the elements in the conjugacy 

classes 

carry. 

Consider the conjugacy class C2, we have that ∀f ∈ C2 f ◦ f = e = (1). 

Taking the character χ of both sides we have 

χ(f ◦ f) = χ(e), 

=⇒ χ(f)χ(f) = χ(e), 

=⇒ χ2(f) = 1, 

Next, suppose that f,g,h ∈ C2 are distinct elements. Then f ◦ g = h and hence 

χ(f ◦ g) = χ(h), =⇒ 

χ(f)χ(g) = χ(h), 
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But all elements in the same conjugacy class have the same character and hence 

χ(f) = χ(g) = χ(h). Thus 

χ(f)χ(f) = χ(f), =⇒ 

χ2(f) = χ(f), 

but we already have χ2(f) = 1, hence by substitution, we have χ(f) = 1 f ∈ C2. 

Thus the other 1-dimensional characters of the elements in the conjugacy class 

C2 are given as 

χ1(C2) = χ2(C2) = χ3(C2) = 1. 

Now, let us consider the conjugacy classes C3 and C4. These two classes share some 

properties: ∀f ∈ C3 and ∀g ∈ C4 we have f ◦ f = g. 

This implies that 

χ2(f) = χ(g). 

Let the character χ(f) = χ2(C2) = a and χ2(C3) = χ(g) = b. Then we have that a2 = b. 

To obtain the values of a and b we use the orthogonality of irreducible characters. 

As at this stage the only character that has a complete row is the trivial character 

χ1 thus we have, 

 

 

=⇒ a + b = −1. 

Substituting a2 = b into the above equation we obtain a quadratic equation 

 a2 + a + 1 = 0 (4.1) 
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Applying the quadratic formula to Equation (4.1) we arrive at 

. 

We see that a is a complex number and its conjugate. We then convert a to the 

polar form reiφ of complex numbers to obtain 

 

Thus we have, . 

This shows that there are two possibilities for the 1-dimensional irreducible 

character χ(C3) and χ(C4). 

, 

or 

 

Thus these are the two 1-dimensional characters of the conjugacy classes C3 and 

C4. 

 

 

Finally, for the last row we use the orthonormality conditions. 

Suppose χ4(C2) = a,χ4(C3) = b,χ4(C4) = c. 

Then 

, 
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Simplifying gives 

 3 + 3a + 4b + 4c = 0. (4.2) 

We also have, 

, 

Simplifying yields 

 . (4.3) 

, 

which yields 

 . (4.4) 

Orthonormality gives, 

. 

Simplifying gives us   

 
3a2 + 4b2 + 4c2 = 3. (4.5) 

Equating Equation (4.3) and Equation (4.4) we have, 
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, 

simplifying we have, 

, 

grouping like terms yields, 

. 

Using one of the properties of complex numbers that is a complex number minus 

its complex conjugate is 2 times the imaginary part of the complex number we 

obtain 

 , 

 =⇒ b = −c by cancellation. 

Next, we substitute b = −c into Equation (4.2) 

3 + 3a − 4c + 4c = 0, 3 

+ 3a = 0,⇐⇒ a = −1. 

Finally, we substitute a = −1 and b = −c into Equation (4.5) 

3 + 4c2 + 4c2 = 3, 

=⇒ 8c2 = 0, c 

= 0. 

Thus b = c = 0 and a = −1 and hence the proof of the result of the last row.  
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Recall, the quaternion group Q is a group of order |Q| = 8. From 

Proposition 3.2.19, we know that there are 5 conjugacy classes of Q and thus, by 

Corollary 4.2.14, there are 5 irreducible characters of Q. 

Proposition 4.2.26. Let χ1,χ2,χ3,χ4,χ5 be the characters of the irreducible 

representations of G where χ1 is the character of the 1-dimensional trivial 

representation. 

Then the character table of G is shown below: 

Table 4.3: The character table of the quaternion group Q. 

 1 −1 I J K 

χ1 1 1 1 1 1 

χ2 1 1 1 -

1 

-

1 

χ3 1 1 -

1 

1 -

1 

χ4 1 1 -

1 

-

1 

1 

χ5 2 -2 0 0 0 

Proof. The first row is verified by the definition of the character of the trivial 

representation. 

Let di for i = 1,2,3,4,5 be the degree of the 5 irreducible representations of Q. 

Then |Q| = 8 = P5i=1 d2i 

For the trivial representation, d1 = 1 thus 

8 = 1 + Xd2i , 
i=2 

=⇒ 7 = Xd2i . 
i=2 

This implies, d2 = 1, d3 = 1, d4 = 1 and d5 = 2. 

All the d0s take 1 except the last d that takes the remaining number, and for this 
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, 2 us remaining so d5 = 2. 

This verifies the entries in the first column. 

The entries in the last row are obtained from the characters of the 2-dimensional 

irreducible representation in Proposition 4.2.21. Suppose ϕ is a 1-dimensional 

representation, then ϕ(I) = ϕ(−I). If χ is any of the irreducible characters of Q 

besides the irreducible character, then since χ is a class function,χ(I) = χ(−I). 

By the properties of elements in Q and of representations of a group, we have, 

ϕ(I) = ϕ(−I), 

= ϕ(−1)ϕ(I), ⇔ 

ϕ(−1) = 1, 

and 

ϕ(I2) = ϕ(−1) = 1, ⇒ 

ϕ(I)ϕ(I) = 1, 

Thus ϕ(I) ∈ {−1,1}. Similarly, for J and K we have, ϕ(J),ϕ(K) ∈ {−1,1}. Since the only 

complete row at this stage is the row corresponding to χ1, we can apply the 

orthogonality relation. 

Let a = χ(I), b = χ(J) = b and χ(K). Then 

, 

⇒ a + b + c = −1. 

Thus, from the fact that ϕ(I2) = 1, we have, a,b,c ∈ {−1,1}. 
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For the rows to be independent, we permute the possible values of a,b and c as 

follows: 

a = 1, b = −1 c = −1, a = 

−1 b = 1 c = −1, a = −1 b 

= −1 c = 1. 

These account for the remaining entries in the table.  

4.3 Young Tableaux 

The convenient way of determining the dimensionalities of higher dimensional 

irreducible representations of unitary groups and their basis functions is the use 

of Young tableau. 

A “box” is used as a basic unit of Young tableau as shown below that denotes a 

basis state: 

 

The box represents any state, if an entry is voided. 

A designated box by a number denotes one of the basis states in some 

reference order. Illustratively, for U(2), we have 

 U1 = 1 U2 = 2 
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Direct product construction is the utility of Young tableaux. There are 

two types of states, for the two-fold direct products of U(2), that is symmetric and 

antisymmetric. 

The Young tableau for a generic two-particle symmetric state is: 

 

and the two-particle antisymmetric state is: 

 
In the framework of Young tableaux, the two-fold direct product is 

written as : 

  ×  =  +  

The three-fold direct product illustrates the conventions used in the 

construction of Young tableaux and their labelling [?]. 

The generic tableaux are: 

  ×  ×  =  +  

We say that the tableau is a tableau on the diagram λ, or that λ is the shape 

of the tableau. A standard tableau is a tableau in which the entries are the 

numbers 1 to n each occurring once. 

Rules to construct irreducible representations of the group N × N 

The group SU(N) is the group of N × N complex unitary matrices (UU† = 1) with 

unit determinant (det(U) = 1). 

+ 
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• The complex multiplet ψi(i = 1,...,N) which belong to the fundamental 

representation of SU(N) (ie the lower dimension non trivial 

representation,) ψi −→ Uijψj is represented by a box: 

ψ1 ≡  ≡ N 

• A Young tableau is a diagram of left-justified rows of boxes where any row 

is not longer than the row on top of it, e.g. 

 

• Any column cannot contain more than N boxes. 

• Any column with exactly N boxes can be crossed out since it correspond 

to the trivial representation (the singlet), 

 
 

N≡ 1, 

 

• The complex conjugate of a given irreducible representation is represented 

by a tableaux obtained by switching any column of k boxes with a column 

of ( N − k) boxes, e.g. 

   
 

 N − 1−→  N − 1 

   

N 

 
  

  

. . . 
≡ . . . 

. . . 
. . . 

. . . 
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• From the previous rule: the complex conjugate multiplet ψ¯
i(i = 1,...,N) (ψi 

−→ ψ¯
jUji† = Uij∗ ψ¯

j) is represented by a column of N − 1 boxes: 

 

  ψi 

≡ N − 1≡ N. 

 

• Any irreducible representation of SU(N) can be constructed starting from 

the fundamental irreducible representation. The direct product of 

irreducible representations with the following rules: 

- Write the two tableaux which correspond to the direct product of 

irreducible representations and label successive rows of the second tableau 

with indices a,b,c,..., 

- Attach the boxes from the second to the first tableau, one at a time 

following the order a,b,c,..., in all the possible ways. The resulting diagrams 

should be valid Young tableaux i.e., with no two or more a in the same 

column (neither b or c or ...). 

- Two generated tableaux with the same shape but labels distributed 

differently have to be kept. If two tableaux are identical only one has to be 

kept. 

- Counting the labels from the first row from right to left, then the second 

row (from right to left) and so on, at any given box position there should be 

no more b than a, more c than b and so on. 

• The adjoint representations is the irreducible representations with 

dimension equal to the dimension of the group (i.e. N2−1) and can be 

. . . 
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constructed by a direct product of the fundamental representation and its 

complex con- 

jugate: 

 

    2 

1 ⊗  = N −  N ⊗ N ≡ N − 1⊕ N = (N − 1) ⊕ 1 

 

From the conjugation rule above it is clear that the adjoint representation 

 
is self conjugate N2 − 1 = N2 − 1 

Chapter 5 

Main Results: Separating sets for the unitary 

group U2(Fq2) 

5.1 Introduction 

Let Fq2 be a quadratic field extension of the finite field Fq. Let G = {U ∈ GL2(Fq2)|UT 

U = I} be the group of unitary 2× 2 matrices over the field Fq2. In this Chapter, we 

probe into the character table of the unitary group U2(Fq2) = G defined over the 

finite field Fq2 by first examining the conjugacy classes and the irreducible 

representations of G, the character table is then constructed for the separation. 

5.2 Hermitian form 

Given a field K, we can obtain a quadratic extension field (a field extension of 

degree 2) by constructing the quotient field K[x]/hf(x)i where hf(x)i is the ideal 

generated by the irreducible polynomial of degree 2. A typical example of such 

. . . 
. . . 

. . . 
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field extensions is the field of complex numbers C over R which is normally seen 

as C ∼= R/hx2 + 1i. One can also think of C as the adjoining of R by the square root 

of -1, i and this is usually written as R(i) = {a + bi|a,b ∈ R}. 

When we talk of an automorphism α on the extension field L over K, written as 

L/K, we are simply referring to an isomorphism α from L to L which fixes K. We 

also note that there are only two distinct automorphisms on any quadratic 

extension field: 

• the trivial automorphism - an automorphism which fixes every element of 

the quadratic extension field, 

• the order 2 automorphism - an automorphism α such that α2 = 1 where 1 

represent the identity map. 

For the quadratic extension C we have, besides the trivial automorphism fixing all 

of C, an order 2 automorphism 

α : C −→ C, defined by 

 
a + bi 7→ a − bi = a + bi. 

The complex conjugation. 

Thus in a more general setting, we denote this order 2 automorphism by α(a) = 

a∀a ∈ K. 

The field Fq2 is a quadratic field extension of Fq where q = pk for p a prime and k a 

positive integer which is obtained by adjoining to Fq a square root of any 

generator of . 

The non-trivial order 2 automorphism on Fq2 is given by 
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α : Fq2 −→ Fq2 x 

7→ xq. 

Definition 5.2.1. Let V be an n-dimensional vector space defined over the quadratic 

field extension L . Then the map H : V × V −→ L is said to be a Hermitian form if for 

all u,v,w ∈ V and a ∈ L 1. H(u + v,w) = H(u,w) + H(v,w). 

2. H(u,v + w) = H(u,v) + H(u,w). 

3. H(au,v) = aH(u,v) = H(u,av). 

 
4. H(u,v) = H(v,u). 

Remark 5.2.2. We say that a Hermitian form H is non-degenerate if ∀v ∈ V 

∃w ∈ V such that H(v,w) 6= 0. 

A vector space V over L/K endowed with a non-degenerate Hermitian form H is 

said to be a unitary space over L/K. 

Definition 5.2.3. Given a unitary vector space V and an invertible linear 

transformation τ. If τ is an isometry of the Hermitian form H such that 

H(τu,τv) = H(u,v)∀u,v ∈ V, 

then τ is said to be a unitary transformation. 

The group U(V ) = {τ ∈ GL(V )|H(τu,τv) = H(u,v)∀u,v ∈ V } of unitary 

transformations is a unitary group. 

Remark 5.2.4. 1. Given a basis for the unitary vector space V , the group 

 
Un(L) = {U ∈ GLn(L)|U = (UT )−1} of n×n unitary matrices is isomorphic to U(V 

). 
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2. Given a basis in V , a matrix representation M of a linear transformation τ ∈ 

GL(V ), and the matrix representation H of the Hermitian form H 

 
then τ ∈ U(V ) if and only if MT HM = H. 

  

 1 0 

We shall restrict our focus to two Hermitian forms given by I =   

  

 0 1 

  

0 1 and 

J =  . 

 1

 0 

 a

 

b 

We note that for any A =  U2(L), we have 

 c

 

d 

, 

This shows that using the form J, A is unitary if and only if 

ad + bc = 1, ac + ac = 

bd + bd = 0. 
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Similarly for the form I, A is unitary if and only if 

aa + bb = 1 = cc + dd, ab 

+ cd = 0. 

5.3 Conjugacy classes of G 

The conjugacy classes of any group partition the group and hence we begin this 

section with a brief analysis of the order of the group G. 

Proposition 5.3.1. Let G = {U ∈ GL2(Fq2)|UT U = I} be the group of unitary 

2 × 2 matrices over the field Fq2 using the Hermitian form I. Then |G| = (q − 1)q(q + 

1)2. 

Proof. To prove this proposition, we first prove the claim 

Claim 5.3.2. Let U ∈ GL2(Fq2). Then U ∈ G if and only if U is of the form 

  where |D| = DD = 1 and aa + bb = 1,for a, b ∈ Fq2 

proof of claim 5.3.2. ”⇐” 
T 

By definition of G we show that U U = I where I is the identity matrix of 

GL2(Fq2). 
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 , 

T 
⇒ U U = I and hence U ∈ G. 

“⇐” 

Suppose 

 a b U =  

∈ GL2(F2q). 

 

 c d 

Let D = det(U) = ad − bc. U ∈ G implies that 

 
Thus, 

 . 

 
By equality of matrices and simplification we have that d = aD, c = −bD. 

Substituting into the expression for D above we have, 

D = aaD + bbD =⇒ aa + bb = 1. 

Also, 
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, 

 
⇒ DD = 1. 

Thus, 

 where |D| = 1 and aa + bb = 1. 

 

To complete the proof of proposition 5.3.1, we consider different cases 

for which aa + bb = 1 holds. 

Case 1 : a = 0. 

aa + bb = 1 =⇒ |b| = 1 and hence , the ker- 

nel of the norm map. Since |L| = q + 1 we have, (q + 1) choices for b. Also, |D| = 1 

=⇒ D ∈ L and hence there are (q + 1) choices for D. Since a = 0 

implies the matrix only depends on b and D and thus there are a total of (q+1)2 

possibilities for U. 

Case 2 : b = 0. 

By a similar argument as in case 1, we obtain (q + 1) possibilities for U. 

Case 3: a 6= 0 and b 6= 0. b 6= 0 and aa + bb = 1 implies aa = 1.6 a 6= 0 

implies aa ∈ Fq\{0,1} and thus there are only q − 2 possibilities for aa and this 

 
also determines bb. This gives (q + 1) choices for a and also for b. In this case, the 

matrix U depends on the three variables a,b and D. Since D has (q + 1) possibilities 

we have that there are (q − 2)(q + 1)3 for the matrix U. 

Thus, putting all the 3 cases together we have 
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|G| = (q + 1) + (q + 1) + (q − 2)(q + 1)3 = (q − 1)q(q + 1)2. 

 

Now we analyze the conjugacy class representatives of the unitary group 

G = U2(Fq2) using the Hermitian form J and show the total number of elements in 

each conjugacy class. 

Let 

 x 0 x y x 0 x y 

ax =  , bx,y =  : y 6= 0, cx,y =  : y =6 x, dx,y =  : y 6= 0, 

 0 x 0 x o y y x 

be elements of the unitary group G. The elements ax,bx,y,cx,y and dx,y are 

representatives of the conjugacy classes of the unitary group G. 

Proposition 5.3.3. The conjugacy class corresponding to ax has q + 1 class 

representatives. 

 x 0 

Proof. ax =  G and by definition, we have xx = 1 which implies 

  
 0 x 

x ∈ L, the kernel of the norm map in Proposition 3.2.8. As the order of L is q + 1, 

we have that there are q + 1 possible choices for x and hence for ax. 

Computing the center of ax, we observe that for any 

 a b 

A =   

 c d 

in G, if we set D = ad − bc, we have 
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 , 

This shows that ax commutes with every other element in G and hence it is in the 

center Z(G) of G. However, the center Z(G) consist of all elements in G whose 

conjugacy class has exactly one element and thus, we have a total of 1(q + 1) = q 

+ 1 class representatives.  

Proposition 5.3.4. The conjugacy class corresponding to bx,y,y 6= 0 has (q − 1)(q + 

1)2 elements. 

. This implies Proof. bx,y ∈ G is unitary if and only if

that 

 
xy + xy = 0. 

The last equality implies  and this shows that the homomorphism Q 

defined in Proposition 3.2.6 maps  where x ∈ L. Proposition 3.2.8 shows 

that there are precisely q − 1 of such  for which this holds. There are q + 1 

choices for x ∈ L and thus, there are (q − 1)(q + 1) possible 

choices for bx,y. 

Computing the centralizer of bx,y, we have for any arbitrary 

 a

 

b 

 G where D = ad − bc 6= 0, 

x x =1 ⇒ x ∈ G, 
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 c

 

d 

, 

By equality of matrices we have, 

Dx − acy = Dx, ⇒ acy = 0. 

−c2y = 0, y 6= 0 ⇒ c = 0, 

a2y = Dy, ⇒ D = a2, Dx 

= x, ⇒ D = 1. 

Now, D = a2 implies that ad − bc = a2 and hence d = a as c = 0. 

   

Thereforeis the centralizer of 

bx,y,y 6= 0. 

The order of this subgroup is dependent on the number of choices available for 

both a and b. 

The element b has q choices as b can take the value 0 whiles a is such that aa = 1 

shows that a ∈ L and hence it has q + 1 choices. 

Thus |CG(bx,y)| = q(q + 1). The size of the conjugacy class of each bx,y is the index of 

CG(bx,y) in G, that is 

. 

 x y x z 

Further computations show that  if and only if the image of 
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 0 x 0 x 
y and z coincide in L under the map Q, in other words y and z lie in the same 

coset  

The cardinality of this set being q − 1, shows there are q − 1 repetitions in the 

counting of the number of choices of bx,y. Thus the number reduces to q + 1. 

Therefore, there are a total of (q + 1) · (q − 1)(q + 1) = (q − 1)(q + 1)2 elements 

in this class.  

Proposition 5.3.5. The conjugacy class corresponding to cx,y,y 6= x is of order 

. 

Proof. cx,y ∈ G is unitary implies  

Since y 6= x and xy = 1, we have, xx 6= 1 and also x 6= 0. Thus counting the number 

of choices for x gives (q − 2)(q + 1) and that of y is obtained from x by 

using xy = 1. 

  

0 1 

For P =  we observe that 

  
1 0 

  

 0 1 x 0 0 1 y 0 

Pcx,yP −1 =  =  . 

 1 0 0 y 1 0 0 x 

 x 0 y 0 

This implies that  and hence there arechoices for 

  
 0 y 0 x 

cx,y. 

 a b 

Let g =  G, and D = ad − bc then gcx,yg−1 = cx,y implies 
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 c d 

, 

Hence 

adx − cby = Dx 

−cbx + ady = Dy 

−adx + aby = 0 cdx − 

cdy = 0 

This implies that ad = D 6= 0 and hence a 6= 0 6= d, also cd = 0, ab = 0 and cb = 0 

⇒ c = 0, b = 0. This computations show that the centralizer of cx,y is given by 

 

and is of order (q−1)(q+1) since there are q2 −1 for a and d is determined from ad 

= D. Thus, 

. 

Hence there are  elements in this class.  

Proposition 5.3.6. The conjugacy class corresponding to dx,y,y 6= 0 is of order 

. 

Proof. dx,y ∈ G is unitary if and only if which implies 

xx + yy = 1, (5.1) xy + yx = 0. (5.2) 
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Equation 5.1 + Equation 5.2 ⇒ (x + y)(x + y) = 1 ⇒ x + y ∈ L and Equation 5.1 - 

Equation 5.2 ⇒ (x − y)(x − y) = 1 ⇒ x − y ∈ L. To count x 

and y we consider two cases: 

case 1 : x = 0. 

If x = 0 then yy = 1 ⇒ y ∈ L and hence there are q + 1 choices for y. case 2 

: x 6= 0 6= y. 

Let u,v ∈ L and set  and  such that x ± y ∈ L. 

If x 6= 0 and y 6= 0 then we have u 6= ±v and hence there are q + 1 choices for v 

and q + 1 − 2 = q − 1 choices for u. Thus, there are (q − 1)(q + 1) choices in this 

case. 

Therefore putting all the two cases together gives (q+1)+(q−1)(q+1) = q(q+1) 

choices for dx,y. 

To avoid double counting, we divide by 2 as computing 

, 

shows 

that 

Thus, there are  choices for dx,y. 

 a

 

b 

Suppose that g =  G then solving gdx,yg−1 = dx,y for a,b,c and d 

 c

 

d 

yields a = d and b = c. 

This shows that the centralizer of dx,y is given by 
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 . 

We have that aa + bb = 1 and ab + ab = 0. 

To compute the order of CG(dx,y), we consider 3 cases for counting a and b. 

case 1 : a = 0. 

 
If a = 0 we have bb = 1 ⇒ b ∈ G and hence there are q + 1 choices for b. case 2 : 

b = 0. 

With a similar argument as in case 1 we obtain q + 1 choices for a. 

case 3 : a 6= 0 6= b. 

If a 6= 0 and b 6= 0 then a±b ∈ L and by a previous argument we have (q−1)(q+1) 

choices. 

Thus, there are 2(q + 1) + (q − 1)(q + 1) = (q + 1)2 choices in all. 

 

Therefore, there are (  elements in the conjugacy 

class corresponding to dx,y.  

The table below shows the number of elements in each conjugacy class. 

Table 5.1: Conjugacy Class Representative of G. 

Representatives No. elements No. classes Total 

elements 

ax 1 q + 1 q + 1 

bx,y (q − 1)(q + 1) (q + 1) (q − 1)(q + 1)2 

cx,y q(q + 1)   

dx,y (q − 1)q   
We observe from Table 5.1 that the total number of conjugacy classes is 

(q + 1)2. This implies there are (q + 1)2 irreducible representations of the group 

G. 
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5.4 Irreducible characters of U2(Fq2) 

In this section we give a brief account of the irreducible characters of the group 

G = U2(Fq2) and to do so we will need some of the major subgroups of G. We 

start with the Borel subgroup B of G which is defined as 

. 

Counting the number of elements in B requires counting the choices available for 

the elements a,b,d of Fq2. Using the properties of the unitary group G established 

in the previous section and with a careful examination we observe that |B| = (q − 

1)q(q + 1). 

Now, we consider the permutation representation of G which has dimension q+1. 

This representation contains the trivial representation. 

Let V be the q-dimensional representation obtained from the permutation 

representation of G. The character χV of V is such that 

χV (ax) = q, χV (bx,y) = 0, χV (cx,y) = 1, χV (dx,y) = −1. 

Computing the inner product 

, 

we have hχV ,χV i = 1 which implies that V is an irreducible representation. 

 Let  be a 1-dimensional character on . 

We can define a 1-dimensional representation of G as 

Uη(A) = η(det(A)). 
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For any A ∈ G, det(A) = 1 and hence giving rise to q + 1 forms of such 1- 

dimensional representation, Uη. 

The values of the characters on the representative of the conjugacy classes listed 

above are given as 

χUη(ax) = η(x)2, χUη(bx,y) = η(x)2, χUη(cx,y) = η(x)η(y), χUη(dx,y) = η(x2 − y2). 

Also, we have a q-dimensional representation Vη of G given by the tensor product 

of V and Uη 

Vη = V ⊗ Uη. 

The character χVη of Vη takes the following values on the conjugacy classes 

 ax bx,y cx,y dx,y 

χVη qη(x)2 0 η(x)η(y) −η(x2 − y2) 

Counting the number of irreducible characters there are of this type, we observe 

that there are q + 1 as χUη has a total of q + 1 candidates. 

To obtain the other irreducible characters we consider other representations that 

can be obtained from inducing from larger subgroups of G. 

Thus we define our next subgroup of G as 

 

Let η and β be two 1-dimensional characters on . Let φ 

: D −→ C∗ defined by 

 

a 

φ  

 

0 

 

b 

 = η(a)β(d) 

 

d 

be a 1-dimensional representation on D. By lifting this representation to B, we are 

able to then construct a (q + 1)-dimensional representation Wη,ζ which is induced 
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from B to G. This induced representation Wη,β has the character χWη,β which takes 

the following values on the conjugacy classes. 

 ax,y bx,y cx,y dx,y 

χWη,ζ (q + 1)η(x)ζ(x) η(x)ζ(x) η(x)ζ(y) + η(y)ζ(x) 0 

Suppose α is the generator of and ζ be a (q +1)th root of unity. Then careful 

examination shows that Wη,ζ is irreducible if and only if ζ(α) 6= ηα(η). Counting 

the number of irreducible characters of this type shows that there are 

irreducible characters. Thus, we have obtained 

 

irreducible characters and hence there are still (  irre- 

ducible characters to be found. 

Let  be a subgroup of G. The order of this group is (q+1)2 

and hence [G : H] = (q − 1)q 

Another way to obtain a new character is by considering the induced 

representation from the subgroup H to G. 

Given two distinct 1-dimensional characters η,ζ on the subgroup L, we obtain a 

1-dimensional representation φ : H −→ C∗ defined by 

 x y 

φ   = η(x + y)ζ(x − y) 

 y x 

If we induce the 1-dimensional representation φ to G we obtain a q(q − 

1)dimensional representation Indφ whose character takes the following values 

on the conjugacy classes of G: 

• ax bx,y cx,y dx,y 

χIndφ (q − 1)qη(x)ζ(x) 0 0 η(x + y)ζ(x − y) + η(x − y)ζ(x + y) 

Computing the inner product we obtain hχIndφ,χIndφi = q −1. This implies that Indφ 

is not irreducible. 
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To obtain an irreducible representation we first compute the tensor product of V 

and Wη,ζ. The character of this representation V ⊗Wη,ζ take the following values 

on the conjugacy classes: 

 ax bx,y cx,y dx,y 

χV ⊗Wη,ζ q(q + 1)η(x)ζ(x) 0 η(x)β(y) + η(y)ζ(x) 0 

Now, let us consider the character Xη,ζ given by 

Xη,ζ = χV ⊗Wη,ζ − χWη,ζ − χIndφ. 

This character is of dimension q − 1 and take the following values on each of the 

conjugacy classes : 

 ax bx,y cx,y dx,y 

Xη,ζ (q − 1)η(x)ζ(x) -η(x)ζ(x) 0 η(x + y)ζ(x − y) + η(x − y)ζ(x + y) 

We observe that Xη,ζ is irreducible as hXη,ζ,Xη,ζi = 1. 

Counting the number of such characters gives . Summing 

all the number of irreducible characters we get 

 

which is the same as the number of conjugacy classes. 

5.5 Separating sets 

Proposition 5.5.1. Let W be an isotypic subspace of the vector space V , and let χ 

be the character of the irreducible subspace corresponding to W. Define 

 

Then the isotypic projection of h ∈ V onto W is given by y0h. 
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Remark 5.5.2. The computational complexity of these projections can be 

reduced if we consider a separating set for the group G with respect to the vector 

space V . 

Definition 5.5.3. Let G be a group and V be the group algebra CG. Let be a 

collection of simultaneously diagonalizable linear transformations of V whose 

eigenspaces are direct sums of the G-invariant subspaces of V . For each Ginvariant 

subspace Vi, let mi = (λi1,...,λin) be the n-tuple of eigenvalues where 

1 ≤ j ≤ n, and λij is the eigenvalue of Tj associated to Vi. If mi =6 mk whenever Vi 6= Vk, 

then the set  is said to be a separating set for V . 

Given a separating set  for a vector space V , the computation of 

the isotypic projections of each h ∈ G can be obtained as follows : 

1. project h onto the eigenspaces of T1. 

2. project the result from 1 onto each of the eigenspaces of T2. 

3. project the result from 2 onto each of the eigenspaces of T3. 

4. continue the projection in this manner till the eigenspaces of Tn. 

After projecting onto the eigenspaces of Tn, each eigenspace projection becomes 

a different isotypic projection of h[?]. 

5.6 Modified character table 

In this section, we examine one of the ways of constructing a separating set of a 

finite group G. This method, the class sum method, uses eigenvalues that a class 

sum associates to the irreducible characters to obtain the separating set based on 

the class sums which can actually distinguish each of the irreducible characters. 



 

92 

Definition 5.6.1. Let G be a finite group with a conjugacy class C. The class sum C 

of C is the sum of all elements of the conjugacy class C. That is, 

 

 
Remark 5.6.2. The class sum C is an element of the center Z(CG) of the group 

algebra CG. 

Since, the separating sets are obtained by examining the eigenvalues a 

class sum assigns to the irreducible characters, let us probe into how this 

eigenvalues are obtained. 

 
Suppose W is a n-dimensional irreducible representation and let λW (C) be the 

 
eigenvalue C assigns to W. Knowing that the trace of a linear transformation is the 

sum of its eigenvalues, we have 

 
Tr(C) = nλW (C). 

Also, 

) for any g ∈ C. 

 
By comparing the two expressions for Tr(C) we obtain a formula for computing 

the eigenvalue λW (C). 

Proposition 5.6.3. Let W be an irreducible representation of G with corresponding 

character χ. Then the class sum of the conjugacy class C will assign the eigenvalue 

 for any g ∈ C, 

to W. 
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Definition 5.6.4. Given a character table of a group G with s conjugacy classes 

C1,...,Cs, the modified character table of G is an array whose (i,j)th entries are 

obtained by scaling the (i,j)th entry of the character table of  where i,j ∈ 

{1,2,...,s}. This table encodes informations about the eigenvalues that each class sum 

assigns to each irreducible representation. 

Definition 5.6.5. The semi-modified character table of a group G is an array whose 

elements are obtained by dividing the ith row of the character table of G by χi for 1 

≤ i ≤ s. 

Recall from Theorem 4.2.25, the character table of the subgroup G of S4. 

 (1) (12)(34) (123) (132) 

χ1 1 1 1 1 

χ2 1 1   
χ3 1 1   
χ4 3 -1 0 0 

Recall that the conjugacy classes C1, C2, C3 and C4 are of sizes, 1,3,4,and 

4 respectively and the degrees of the 4 irreducible representations are 1,1,1, and 

3. 

Thus, to obtain the modified character table of G we scale each (i,j)th entry by 

 with i,j ∈ {1,2,3,4}. 

Direct computations yields: The class sum corresponding to the conjugacy classes 

 (1) (12)(34) (123) (132) 

χ1 1 3 4 4 

χ2 1 3 2πi 

4e 3 

4πi 

4e 3 

χ3 1 3   
χ4 1 -1 0 0 

Table 5.2: Modified character table of G ⊂ S4. 

C1, C2, C3 and C4 is given by 

C1 = (1), 



 

94 

C2 = (12)(34) + (13)(24) + (14)(23), C3 = 

(123) + (134) + (243), 

C4 = (132) + (143) + (124) + (234). 

From Table 5.2 we observe that, the set of all class sums {C1,C2,C3,C4} form a 

separating set of size 4 as it assigns distinct 4-tuple of eigenvalues to each of the 

irreducible representations of G. 

However to reduce the computations required for the eigenspace projection, it is 

more efficient to consider separating sets of minimal sizes. 

 
Upon examining the 3 non-trivial class sums C2,C3,C4, we note that the class sum 

C3 or C4 assign distinct eigenvalues to all 4 irreducible representations and hence 

{C3} or {C4} form a separating set of size 1. 

Also, 

 
{C2,C3,C4},{C2,C3},{C3,C4},{C2,C4} 

are separating sets of sizes 3,2,2 and 2 respectively. 

Proposition 5.6.6. Recall the character table of the quaternion group Q from 

Proposition 4.2.26 Using Definition 5.6.4, we construct the modified character 

 1 −1 I J K 

χ1 1 1 1 1 1 

χ2 1 1 1 -

1 

-

1 

χ3 1 1 -

1 

1 -

1 

χ4 1 1 -

1 

-

1 

1 

χ5 2 -2 0 0 0 

table below: 

 1 −1 I J K 

χ1 1 1 2 2 2 

χ2 1 1 2 -

2 

-

2 
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χ3 1 1 -

2 

2 -

2 

χ4 1 1 -

2 

-

2 

2 

χ5 1 -1 0 0 0 

Table 5.3: The modified character table of the quaternion group Q. 

A meticulous examination of Table 5.3, shows that pairwise 

combinations of the class sums, −I +I,−J +J and −K+K assign distinct pairs of 

eigenvalues to each irreducible representations of Q. 

In particular, the set {−J + J,−K + K} assigns to χ1 the pair {2,2}; to χ2 the pair 

{−2,−2}; to χ3 the pair {2,−2}; to χ4 the pair {−2,2} and to χ5 the pair 

{0,0}. 

Therefore, the set {−J +J,−K +K},{−I +I,−J +J} and {−I +I,−K +K} 

are separating sets of size 2. 

These give the minimal separating sets as there are no separating sets of size 1. 

This is because, none of the individual class sums independently distinguish all 

the 4 irreducible representations with it’s eigenvalues. 

Nevertheless, there are separating sets of sizes 3,4 and 5. 

Proposition 5.6.7. Let W be an isotypic subspace of CG, and let χ be the character 

of the irreducible submodule corresponding to W. Define 

 

The isotypic projection of f onto W is then given by zf. 

Definition 5.6.8. A separating set G with respect to V is a set of simultaneously 

diagonalizable linear operators {T1,...Ts} of CG that distinguish the isotypic 

subspaces of V with their eigenspaces. Each isotypic subspace will equal exactly one 

intersection of eigenspaces E1 ∩ ... ∩ Es, where Ei is an eigenspace of Ti. This means 
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that if Wi and Wj are distinct isotypic subspaces of V then some Tk assigns a different 

eigenvalue to each of them. 

Proposition 5.6.9. Let W be irreducible module of G with corresponding character 

χ. Then the class sum of K will assign the eigenvalue 

 

to W where g is any element of K. 

5.6.10 Separating Sets for Direct Products of Groups 

Let G and H be two finite groups and let {χ1,...,χs} and ψ,...,ψt be the complete set of 

irreducible characters of G and H, respectively. Then a complete set of irreducible 

characters of G × H is given by 

{χiψj}1≤i≤s,,1≤j≤t 

and if g ∈ G and h ∈ H we have χiψj(g,h) = χi(g)ψi(h). 

5.6.11 Separating Sets for the Dihedral Group 

Theorem 5.6.12. {Cr} form a separating set of minimal size for the dihedral group 

D2n. 

Proof. Case 1:n is odd. Then the character table of D2n is as follows: 

 1  s 

χ1 1 1 1 

χ2 
1 1 

-

1 

ψj 2  0 
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We can construct the semi-modified character table easily: 

 1  s 

χ1 1 1 1 

χ2 
1 1 

-

1 

ψj 2  0 

 
   

Now we can see that class sum corresponding to s serves to distinguish χ1 and χ2 

from each other and from all the ψj. Now we show that the class sum 

corresponding to r will distinguish all of the ψj from one another. Suppose Cr 

assigns the same eigenvalue to ψx and ψy. Then this implies that 

. 

 

Theorem 5.6.13. For any number q relatively prime to n,{Crq,Cs} will form a 

separating set for the dihedral group D2n. 

Proof. First we will show that all the ψj are distinguished from one another by 

these class sums. From the proof of theorem 5.6.12, we know that it suffices to 

show that if 1 , then  implies j = k. If the 

former is true, then there are two cases to consider. 

Case 1: for some m ∈ Z. Then (j − k)q = mn and since 

n and q are relatively prime we have that n|(j − k). However, since n and q are 

relatively prime we have that n|(j−k). However,  and thus their 

difference is bounded above by . 

Case 2:  Then we have that (j + k)m = mn and thus, 

since gcd(n,q) = 1,n|(j +k). But 1 so this is impossible. 
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Thus Crq assigns a different eigenvalue to each irrep ψj, regardless of whether n is 

even or odd. In the case where n is odd, we still have χ1 and χ2 distinguished from 

each other and from all the ψj as before, so the parity of q is irrelevant. In the case 

where n is even, it can be seen from the table that we must have q odd; otherwise, 

we will not distinguish χ1 from χ3 or χ2 from χ4 with the two class sums. This is 

already known to be true because n is even and gcd(q,n) = 1. Thus {Crq,Cs} suffices 

as a separating set for the dihedral group when gcd(n,q) = 1.  

5.7 Separating sets of the unitary group U2(Fq2) 

In this section,we construct the character table of U2(Fq2) from the irreducible 

characters which we briefly discussed in section 5.4 but carefully derived in [?], 

and later construct the modified character table in order to obtain the separating 

sets of the unitary group U2(Fq2). 

Let Cax,Cbx,y,Ccx,y,Cdx,y be the class sum corresponding to the conjugacy 

classes of ax,bx,y,cx,y and dx,y respectively. The character table of U2(Fq2) is given as 

 ax bx,y cx,y dx,y 

χUη η(x)2 η(x)2 η(x)η(y) η(x2 − y2) 

χVη qη(x)2 0 η(x)η(y) −η(x2 − y2) 

χWη,ζ (q + 1)η(x)ζ(x) η(x)ζ(x) η(x)ζ(y) + η(y)ζ(x) 0 

Xη,ζ (q − 1)η(x)ζ(x) −η(x)ζ(x) 0 −[η(m)ζ(n) + η(n)ζ(m)] 

Table 5.4: Character table of G 

The dimension of each of the irreducible representations of G are 1,q,q +1,q −1 

and m = x + y and n = x − y. Using this dimensions and the character table, Table 

5.4 we construct the semi-modified character table for G: 

 ax bx,y cx,y dx,y 

χUη∗ η(x)2 η(x)2 η(x)η(y) η(x2 − y2) 

χVη∗ η(x)2 0 
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 η(x)ζ(x) 
  

0 

 η(x)ζ(x) 
 

0 
 

Table 5.5: Semi-modified character table of G. 

 bx,y cx,y dx,y 

χUη∗ η(x)2 η(x)η(y) η(x2 − y2) 

χVη∗ 0 
  

χWη,ζ∗   
0 

Xη,ζ∗ 
 

0 
 

Table 5.6: Separating Set Table 

From Table 5.5, we observe that the class sum corresponding to bx,y,cx,y or 

dx,y assigns distinct eigenvalues to all four irreducible representations and hence 

distinguishes each of the irreducible characters. This, by definition of a separating 

set serves as a separating set of size 1. Further investigation, shows that the class 

sums Cbx,y,Ccx,y, and Cdx,y, altogether and in a pairwise combination, assign distinct 

list of eigenvalues to each irreducible character of G. Thus, the sets {Cbx,y,Ccx,y}, 

{Ccx,y,Cdx,y}, {Cbx,y,Cdx,y} and {Cbx,y,Ccx,y,Cdx,y} are separating sets of size 2,2,2 and 3 

respectively. 

Proposition 5.7.1. The sets {Cbx,y}, {Ccx,y} and {Cdx,y} are minimal separating sets for 

the unitary group U2(Fq2).  
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Chapter 6 

Conclusion 

6.1 Introduction 

In this, we conclude on the overview of [?] and the objectives of the thesis. 

6.2 Review 

In the review work of [?] of separating sets in chapter 4, separating sets of several 

different groups, including products, the dihedral group and the alternating 

group were examined. 

In the aforementioned chapter, separating sets of minimal size for the 

dihedral group that correspond to minimal sets of generators for the group was 

see. It was also shown that the structure of CAn is closely connected to that of CSn 

and various methods for achieving a decomposition with the use of separating 

sets were examined. 

In [?], conjecture 5.1 seems likely to hold for all n, but remains a challenge 

to verify. The separating set given by the aforementioned conjecture is suspected 

to be of minimal size. 

6.3 Summary 

The cardinality of the group U2(Fq2) was determined as (q − 1)q(q + 1)2 in [?] . 

For each conjugate class their cardinality is given as A¯(q + 1),bxy have element 

A¯(q − 1)(q + 1)2,elements cxy is of order  and that dxy has an order of 

. 

The character table was constructed with each conjugacy class. 



 

101 

Our build up to character theory in chapter 3 enabled us to efficiently 

examine the separating sets of the quaternion group Q and the subgroup G ⊂ S4 in 

chapter 4. The knowledge gathered was employed in probing into the irreducible 

characters presented in [?] and thus by constructing the semi-modified character 

table we were able to extract the separating sets for the unitary group U2(Fq2). Our 

investigations lead to the conclusion that, the minimal separating sets of the 

group U2(Fq2) are the individual class sums corresponding to the conjugacy 

classes of the representatives bx,y,cx,y and dx,y. 

6.4 Furtherwork 

In attempt to prove the aforementioned conjecture would intriguing and 

challenging future direction of research [?] 

It would be interesting to look at other groups which have a minimal set 

of generators which have a minimal set of generators for which the corresponding 

class shows form separation sets. Further studies can be conducted into 

irreducible characters in 2-dimensional and the separation of U2 groups. The 

young tableaux of the representation can be looked at. 
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