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Abstract

A separating set for a group G with respect to the group CG is a set of
simultaneously diagonalisable linear operators {T4,..., Tr} of C that distinguish the
invariant subspaces of CG with their eigenspaces. In this thesis, we study the
character table of the irreducible representation of the unitary group G and
construct the modified character table which consists of the eigenvalues that the
class sum of each conjugacy class of G assigns to an irreducible representation of
G. The separating set for G is then obtained by extracting the class sums which is

associated to each irreducible character distinct pair of eigenvalues.
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Chapter 1

Introduction

1.1 Overview

A separating set for a group G with respect to the group algebra CG is a set of
simultaneously diagonalisable linear operators {T:}1 of CG that distinguish the
invariant subspaces of CG with their eigenspaces. This chapter takes us to the
background of the thesis, and we state the problem with its justification. The

objectives are stated implicitly. Limitations of the study ends the chapter.

1.2  Background of study

In [?], Steinberg establishes that naturally, groups arise as sets of symmetries (of
an object), which are closed under composition and under taking inverses.The
collection of unitary groups U(n) is a set of distance - preserving transformations,
which include the translations.The action of a group is the first step to take to find
a representation of a group. The action takes us to a vector space V over some
ground field for which the vector space structure is preserved. The complex field
is the basic field to take a representation. A group homomorphism from G to GL(V
) “is the same as” a representation of G on V. Classifying, all representations of an
infinite arbitrary group up to an isomorphism is an enormous task, so in this
thesis, we concentrate on finite groups, where very good general theorems exist.
In the x - y plane, if we take a reflection across any of the axes in the plane, it is
the same as the reflection in the other axis, geometrically. That is, any two
reflections in the x-y plane have the same type of effect on the plane. Similarly,

except for the choice of the pairs getting moved, two permutations of a set that



are so identical that the transposition(fixing everything else whiles swapping two

elements) look the same.

Therefore, all transpositions have the same type of effect on elements of
the set. The same except for the point of view’ concept is what is known as

conjugacy.

For a group G, two elements h and g are called conjugate when

g = xhx1

for some x € G.

It is a symmetric relationship, since h = ygy-1 where y = x~1. For

xgx1=h

In a group G, if g € G, its conjugacy class is the set of elements conjugate to it:

Cg = {xgx"Lx € G}

And if G is abelian, each element is its own conjugacy class.

Given two square matrices A and B, then to determine if A and B represent
the same linear transformation requires probing into some invariant properties
of these matrices. The obvious thing to consider is the size. Suppose without loss
of generality that A and B are of the same size, then we know that A and B will be
a representation of the same linear transformation if they are similar matrices,
i.e. there exists an invertible matrix P such that B = PAP -1 In terms of group

actions, this will mean 4 and B are conjugates and hence are in the same orbit.



The group in question will be the general linear group GL»(C). This action is said

to be linear if we consider GLn(C) as a vector space of dimension n2

. Using the invariant, characteristic polynomial (or eigenvalues), we observe that

10 11
the matrices and possess identical characteristic polyno-
0 10 1

mial but represent different linear transformations and hence this invariant alone
will not be sufficient in arriving at a solution. However, considering both the
eigenvalues and and geometric multiplicities of the eigenvalues, a solution can be

obtained and hence these two invariants give a separating set.

Let G be a group and V be the group algebra CG. Let {Zi}i-1be a
collection af simultaneously diagonalizable linear transformations of V whose
eigenspaces are direct sums of the G-invariant subspaces of V. For each G-
invariant subspace Vj, let mi= (Ai,..,Ain) be the n- tuple of eigenvalues where

1 <j<n, and Ajis the eigenvalue of Tjassociated to Vi If mi=6
mk whenever V; 6= Vi then the set 1T} is said to be a

separating set for V.

Given a representation V of a finite group G, it is shown in [?] that the separating

sets for G reduce the complexity of computing the isotypic projections.

The representation of the unitary groups are in matrix form. Its
eigenvalues are then determined using the characteristic polynomial to put them
in

classes.

The representation of a group is by its characters. Essential information

of a group is carried by its characters which is a function from the group to a field



of complex numbers, i.e. y : G = C. = . In performing calculations, characters in
representations are the fundamental tools employed. The subgroup of unitary
matrices are hardly known.

In this thesis, the concentration would be on irreducible representation,
which contains no proper invariant subspaces. As we already know, every
complex representation of a finite abelian group is completely reducible, and
every irreducible representation is 1 - dimensional. An analogous proposition for
every finite group is that a representation is completely reducible if it
decomposes as direct sum of irreducible sub - representations. The characters of

the representations are used to determine its reducibility.

The cardinality of a set is the number of elements in the set with the set
of natural numbers starting from 1 as its domain. The cardinality of a set is
denoted as |4|.The number of elements in the conjugacy class of unitary group is
determined by the cardinality of the class.

There have been several studies such as Derksen and Kemper[?],
Dixon[?] and Dufresne[?] on separating sets over the past years with researches
employing different approaches. In this thesis, representation theory is employed
to examine the separating set of the unitary group Uz(Fg?). The eigenvalues that a
class sum associates to the irreducible characters are used to obtain the
separating set based on the class sums which can actually distinguish each of the
irreducible characters.

2
UZ(F@) is sometimes stated as G in the work. The character

The group
values of the conjugacy classes with similar forms are the same. Finally, we see
the methods used in separating the class representatives by using the modified

character table.



1.3 Problem Statement

Given a representation V of a finite group G, one would like to compute the
isotypic projection i.e. projections of h € V onto the G-invariant subspaces of V.

Direct computations require large amount of time depending on the size of the

group and with the help of separating sets the complexity is reduced.

1.4 Justification of The Research

The computational complexity of computing the isotypic projections is reduced
when using separating sets. It is therefore more efficient to use minimal

separating

sets.

1.5 Objectives

The goalis to research methods for finding minimal separating sets for the unitary
group Uz(Fq2) This research examines the unitary group Uz(Fq:) with the

following specific objectives:

1. To determine the cardinality of each conjugacy class.

2. To construct the character table of Uz(Fq2).

3. To find the minimal separating sets for Uz(Fg).

1.6 Limitation of The Research

The direct sum and direct product were conducted in one-dimensional space. The
more than one dimensional space calculations have not been tried yet. One of the
chief difficulties in this task is the determination of the conjugacy classes, as in
the unitary group we cannot exploit the Jordan form or rational canonical form of

a matrix.



1.7 Organisation of The Study

The study comprises five chapters. Chapter one introduces the thesis. It consists
of the background to the study, Problem statement, Objective of the study,
Justification of the study, Limitation of the study and Organisation of the study.

Chapter two reviews the related literature.Chapter three consists of the definition
and theorems that are related to irreducible and character of groups. Chapter four
takes us to the replenish include representations and character table that
calculates the minimal separating sets. Chapter five is the conclusion and

recommendation of the study.



Chapter 2

Literature Review

In this study, we seek to employ representation theory to examine the
separating sets of the unitary groups. An efficient way to approach this study is
by first probing the irreducible representations of the unitary group as they serve

as the building block of the representations of the group.

In 1963, Moshinsky [?] established the bases of all irreducible
representations of the unitary group Uzj+1 to be the set of polynomials in the
components of (2j+1)- dimensional vectors and the solution of certain invariant
partial differential equations. Moshinsky [?] observed that these polynomials, for
the unitary group Uzj+1 and the solid spherical harmonic (polynomials in the
components of 3-dimensional vectors), for the rotation group R3 have the same
role. Moshinsky [?] employed these polynomials in defining and determining the
reduced Wigner coefficients for the unitary groups. Moshinsky [?] then applied a
factorization method to the results and obtained the Wigner coefficients of the
Unitary group Uzj+1. He also, showed in his paper [?] how to eliminate the
ambiguity in the explicit expression for the Wigner coefficients by using operators
that characterize completely the rows of representations of unitary groups for a

particular chain of subgroups.

Itzykson et al [?] in their 1966 paper, Unitary Groups: Representations and
Decompositions, reviewed basic definitions and the constructions of irreducible
representations using the tensor method and pointed out the link to the
infinitesimal approach. In their paper, Itzykson and Nauenberg focused on the

detailed procedure employed to obtain Clebsch-Gordan series and on the



problem of finding the (SUm, SUn) content of an irreducible representation of SUmn

or SUm+n.

Later in 1970, Dixon [?] presented some efficient ways of computing
irreducible representation and the characters of finite groups. In his paper [?],
Dixon [?] described an efficient way of decomposing a reducible unitary
representation into irreducible components. However, given a single faithful
unitary representation of a group, one can efficiently construct a complete set of
irreducible unitary representations of the group and also, efficient method for

computing the precise values of a character from approximated values.

In the reduction of a unitary representation, the theory on which his
method was based is stated as if G is a finite subgroup of order g in U(d), then G is
irreducible unless for at least one element of Ersof the standard basis for M(d) the

matrix

1 _
R Z XX
9 xec
is not scalar. where U(d) denotes the group of all d x
d matrices.
Where E(X) = XE for all X € G and when E is not scalar the eigenspaces of E reduce

G. E may be computed by an iteration process using only a set of generators for G.

Theorem 2.0.1. Let S be a finite set consisting of h elements of U(d) and suppose

that the unit matrix I € S. We define a linear mapping o : M(d) - M(d) by

o(B) =7 ) U'BU
UeS

Then for each Ao € M(d) we can define a sequence Anin M(d) by putting

An=0"= 0"(Ao) for n = 1,2,... Then A(n) is always convergent in M(d) and its limit,
say A, has the property AU = UA for all U € S.



Proof

The norm ||.|| on M(d) defined by ||B||?= trace B*B.

[le(B)|| = ||B|| implies that UB = BU for all U € S. (2.1)

The properties of the norm show that for any B € M(d),

lo(B)|| = |[p 'Y UBU|| < h 1> _||[UxBU| 2.2)
UeS Ues
=h Y |IBIl = 1B| (2.3)
ves

U are unitary. The equality sign in equation 2.2 holds when all the matrices
U*BU (for U € S) lie on the same ray through 0 in M(d).

Now, [ € S.

So, [la(B)|| = ||bl|

= JAy = 0 such that

UxBU=ABYUES

{Au:AuE R}B:

||U = BU|, So,

|1BI| = [|AuB|| = Aul|BI|

Hence, either B=0
OrelseAu=1VUES.
= UB = BU VU € S hence equation 2.1 is proved.

Let Bn=An-Aforn=0,1,2,..

10



0(A) =A = (||Bn]||) is monotonically decreasing.
By the definition of 4, lim||Bnk|| = 0 so the sequence (4n) converges to A.

Definition 2.0.2. Let Ers(r,s=1,...,d) be the standard basis for M(d); that is,Ersis the
matrix whose r,sth entry is 1 and whose other entries are all 0.

Let Hrs(r,s = 1,...,d) for M(d) by

rs = Erriff':S,
=Ers+ Esrr >,

= i(Ers— Esr) r<s

Theorem 2.0.3. Suppose S is a reducible set of matrices ( S generates a reducible
subgroup of U(d)).

Then for at least one Hrsthe limit limo"(Hrs) = H, say, is not scalar and we can reduce
S into a number of not necessarily irreducible components as follows. Since H is
hermittian, there exists an orthonormal basis vi,.,va of the underlying d-
dimensional unitary space such that this basis is made up of listing successively
orthonormal bases for eigenspaces for H for the different eigenvalues. Then, if C is

the unitary matrix whose columns are va,...,vd,

U1
U2
.
? ?
C * UC= foralerS
.

11



=

Uk

=l

The (r,s)th entry of the matrix on the right-hand side isV»U%s and this is 0 when vr

and vsare eigenvectors for different eigenvalues of H.

Proof
S is completely reducible because S c U(d).

== 3 anon-scalar B € M(d) such that UB=BUY U € S.
So 6(B) =

B.

Hrsforms a basis for M(d)

3 Bs€Ee such that B = Pﬁrs,Hr,s,

== B =1im 0"(B) = Pﬁrslima”(Hrs) because o is linear.

Since B is not scalar, at least one limo"(Hyrs) is not scalar.
Suppose H = limo"(Hrs) is not scalar.
HU = UHY U € S by theorem 2.0.1
== for any eigenvalue aiof H the corresponding eigenspace is mapped into itself
by multiplication by any U € S.
If Hv = awv,
Then,
H(Uv) = U(Hv) = ai(Uv).
— v;Uvs= 0 whenever vrand vsare eigenvectors for H for different eigenval-
ues.

In 1991, Katriel [?], established a theorem regarding the explicit form of
the eigenvalues of the class sums of the symmetric group S». Katriel [?] then
employed the theorem to show that the center of CSnis generated by polynomials
in the set of elements consisting of the generators of the center of the CSn-«

augmented by single-cycle class sums ((2))s,((3))n...((k + 1))». He also used the

12



theorem in establishing that the irreducible representations of S, with up to k
rows are fully given by the class sums ((2))s,((3))n....((k))n. Further investigations
by Katriel [?] showed that the k class sums ((2))n,((3))n,...,((k +1))nis sufficient for
specifying the irreducible representations of S» for all n > k. Katriel in his work
was able to show that the class sum of transpositions sufficiently yields
separating sets for S»for n <5 and in addition showed that the first four class sums

are enough as long as n < 41.

The role of Gelfrand-Graev characters and their degenerate counterparts

in the representation theory of finite Lie groups enabled Thiem and Vinroot [?],
to restate the character theory of the finite unitary groups in the language of
symmetric functions via a characteristic map. This transformation motivated a
combinatorial approach to the study of degenerate Gelfand-Graev characters of
the finite unitary group. In their paper, Theim and Vinroot, were able to derive
the formula for the character values of the Gelfand-Graev character of Un(Fqz) by

using a remarkable formula for the character values of the Gelfand-Graev

character of GLn(qu).

In 2003, Derksen et al [?] documented interesting results on separating
sets using invariant theory in their book Computational Invariant Theory[?].
Dersken and Kemper were able to show that the existence of finite separating

sets; invariants of degree at most the order of the group G form a separating set.

In 2004, Melissa Banister [?] also approached the study of separating sets
by means of representation theory. Melissa [?] probed into the representation
theory of alternating and dihedral groups and by employing class sums, she
carefully examined how the irreducible representations of such groups can be

distinguished.

13



Emilie Dufresne [?] later approached the study of separating sets
geometrically. In 2009, Dufresne in her paper [?], showed that the only groups
capable of having polynomial separating algebras are those generated by
reflections. Dufresne also showed that a group may have complete intersection

separating algebras only if the group is generated by bireflections.

These are definitions, propositions and theorems with their corollaries

stated without proof.

Theorem 2.0.4. Let G be a finite group. If there exists a geometric separating
algebra which is a polynomial ring, then the action of G on V is venerated by

reflections.

Corollary 2.0.5. Let G be a finite group. If the characteristic of K does not divide the
order of G, then there exists a geometric separating algebra which is a polynomial

ring if and only if the action of G on V is generated by reflections.

Theorem 2.0.6. Let G be a finite group. If there exists a graded geometry
separating algebra which is a complete intersection, then the action of G on V is

generated by bireflections.

Definition 2.0.7. A subset E of K[V ], is a geometric separating set if, for

all u and v in V, the two following equivalent statements hold:

e Ifthere exists fin K[V |¢such that f(u) 6= f(v), then there exists h in E such that

h(u) 6= h(v);

e flu) =f(v), forall fin K[V ]|¢if and only if h(u) = h(v) for all h in E.

14



Definition 2.0.8. The separating scheme Sc is the unique reduced scheme having
the same underlying topological space as the product V xv/cV, that is, S¢:= (V xv//c

%4 ) red.

Theorem 2.0.9. Let A c K[V |¢ be a subalgebra, then the following statements

are equivalent:

1. Ais a geometric separating algebra;

2. if W= Spec(A), then the natural morphism S¢— (V xwV )redis an

isomorphism;
3. if 8 denotes the map 6 : K[V ] == K[V | ®«KV sending an element of f of K[V ]

to f ®1-1QYf, then, the ideals (6(A)) and (6(K[V ]¢)) have the same radical in

the ring K[V ] Q«K[V ] i.e,

p6(A) = po(K[V Ja);

Theorem 2.0.10. If G is reductive, then a subalgebra A c K[V ¢ is a geometric
algebra if and only if the morphism of schemes 0 : V//G ——= W = Spec(A)

corresponding to the inclusion A c K[V ]¢) is a radical morphism.

Proposition 2.0.11. If G is a finite group, then the separating scheme is a union of
|G| linear subspaces, each of dimension n. There is a natural correspondence
between these linear spaces and the elements of G. Moreover, if Hsand Hrdenote the
subspaces corresponding to the elements o and t of G respectively, then the
dimension of the intersection Hs N Hzis equal to the dimension of the subspace fixed

by tlin V.

Proposition 2.0.12. Let A c K[V ]¢ be a graded subalgebra. If the map of schemes
0:V//G-— W = Spec(A) is injective, then the extension A c K[V ]¢

15



is integral.

Corollary 2.0.13. If the action of G on V is reductive, and if A € K[V |¢is a graded

geometric separating algebra, then the extension A c K[V |¢is integral.

In 2013, Emilie [?] in her paper [?] examined Nagata’s famous
counterexample to Hilbert’s fourteenth problem which shows that the ring of
invariants of an algebraic group action on an affine algebraic variety is not always
finitely generated. Emilie [?] agreed to the assertion that invariant rings are
always quasi-affine and that finite separating sets always exist. In her paper, [?],
Emilie [?] established new techniques for obtaining a quasi-affine variety on
which the ring of regular functions is equal to a given invariant ring. She also gave
a new basis for identifying separating algebras. This new technique and basis

were applied to some known examples and in a new construction.

Although rings of invariants are not always finitely generated, there
always exists a finite separating set.

Theorem 2.0.14. Let Ga act on V as above. The following 6 homogeneous

polynomials are invariants and form a separating set E in K[V ]¢4:

fi=x, fa=2x3t - 52 f3=3x%u — 3x3ts + s3, fa=xv -
S, fs = s2v + 2x3tv - 3x5u, fo= —18x3tsu + 9xbu? +

8x3t3 + 6s3u — 3t2s2.

Lemma 2.0.15. K[L/]Gn C K[fl.- f?.' f:ia f41 %]
Proposition 2.0.16. We have K[V ]%c K @ (x,5)K[V].

Lemma 2.0.17. Define a K-algebra map

16



@ :K[xstuv] —— K[xvtu], flxstuv) 7-

e(Hxvtu) = fxxvtuyv),

and a derivation A%on K[x,v,t,u] :

It follows that
(a) 6° = @ =¢ ° D, in particular, ¢ maps ker D to ker AS;

(b) ker 8°= K[h1,hz,h3,ha], where

hi1=x, hz=2xt - v2 h3= 3x3u — 3xvt + v3, ha =
8xt3 + 9x*u? - 18x2tuv - 3t2v2 + 6xuv3 = (h32 +

h23) /xa.

Proof. (a) For f = f(x,s,t,u,v) € K[xs,t,u,v], we have

"o _ (29 0 0 S\ ,
(Ao ¢)(f) = (2? EW = e +fa)f(.1,,.1z,,t,u,t)
of

= z3¢( f)-i— @(gf)+.w6’c9( o

)
= ¢(s"5 f a—f+ a—{+f0—£)—(¢oD)(f)'

)+ 1022

(b) Since A is a triangular monomial derivation of a four dimensional polynomial
ring, its kernel is generated by at most four elements. Alternatively, one can use

van den Essen’s algorithm. The derivation A% can be extended to K[x,v,t,u]xand as

A'GE) = 1 . The Slice theorem yields

1 1
(kerA"), =y — i(K[’r v, t,u, ;D = K[hy, ho, hs, ;}m 2.4)

Consider the additional invariants = h3 + h3/2* € Kz, v, t, ul, We

claim kerA°® = K[h1,h2,h3,h4] = R. Equation 2.4 implies R € A°C Rx.

17



Next we look at the ideal of relations modulo x between the generators of R,

I := {P € K[X1,X2,X3,X4]| P(h1,h2,h3,h4) € (x)K[xv,t,u]}
= {P € K[X1,X2,X3,X4]|P(0,-v%v3-3t2v2) = 0} = (X1,X32 +

X23)K[X1,X2,X3,X4].
O

Campbell [?] in his masters thesis “Irreducible characters of 2 x 2 unitary
matrix groups over finite fields”, constructed the character table for the irreducible
representations for the group of unitary 2 x 2 matrices over finite field. He also,
showed the similarities existing between this table and the method for

constructing the character table for the general linear group.

Chapter 3

Methodology

3.1 Introduction

In this chapter, we establish the setting, basic terminologies as well as the tools

and machineries necessary for thorough understanding of the main text.

3.2 Basic Definitions and Theorems

Definition 3.2.1. A nonempty set G, with binary operation * is a group P if the
following conditions are satisfied

L a*be€GqGforab € G(Closure)

I.(a * b) * c=a * (b * c) for a,b,c € G(Associativity) IIl. (a *x e) = a

for a,e € G,where e is the identity element in G

IV. (a * a™1) = e for a,a 1 € G where a-1is the inverse element of G.

18



Definition 3.2.2. Let (G,*) and (H, ° ) be groups. A homomorphism is a map

@:G-—-H

such that p(x *y) = p(x) ° @) forallx, y € G.
In other words, a homomorphism is a map which preserves the algebraic structure
between two groups. This map conveys information about one of the group from

known structural properties of the other group.

Definition 3.2.3. The homomorphism ¢ is said to be an isomorphism if ¢ is
bijective. In this case, G is said to be isomorphic to H which is written as G ~ = H. If

@ is an isomorphism such that H = G then we say that ¢ is an automorphism.
Quaternion group

Proposition 3.2.4. Let G be any group. Define, for any g € G, the maps

¢ : G —— G defined by ¢(h) =

ghg™,

is an automorphism.

Proof. Consider the map

Y : G -— Gdefined by, (k) = g-1kg.

Then,

(P = YI(K) = P(Y(K) = d(g~'kg)
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=9(97'kg)g™},
= gg-1kgg-1, =

k.

This implies that ¢ ° 1 =id and hence ¢-1=1.
Similarly, ¥ - ¢ =id.

Thus, ¢ is bijective. Also,

¢(hk) = ghkg=t= ghg-1gkg=1,

= p(M)p(k).

This implies ¢ is a homomorphism. Hence ¢ is an isomorphism from G to G.

Therefore, ¢ is an automorphism. O

*

a* be the group of units of the quadratic field extension
Fqz0f the finite field Fq. The map

Definition 3.2.5. Let” = I

N Foer o defined by

N(x) = xx,

is a hormomorphism

Proof.

Indeed,N(xy) = xyxy,
= TYTY = TTYY,

= AY(I)‘NY(U)

Thus, the map N is a group homomorphism(the homomorphism N is called the

norm map). [
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L={z €FylaT

Proposition 3.2.6. Using the subgroup =1} of the multiplicative

group Foe The map

Q:Fp — E, defined by

T
Qlr) = —
o) 22
is a homomorphism
Proof For any” ¥ € ¥z we have,
1y _ry
Qzy) = = === = Q@)Qy)
Ty
Hence, the map @ is a homomorphism. O]

Definition 3.2.7. Let ¢ be the homomorphism defined in Definition 3.2.2. The kernel

of ¢ denoted ker(¢) is a subgroup of the group (G,*) such that ker(¢) = {x € G|p(x) =

e € H where e is the identity element}.

Proposition 3.2.8. 1. The kernel of the norm map in Proposition 3.2.5 is

given by the subgroup © = {o € Faler =1} ypere L=[oo]. The group

2isa cyclic group of order g2 - 1. Suppose 1 is the generator of o

then niz-1 = nla-Va+1) = 1, This implies ni-1is a generator of kKer(N) as xx = 1

& xa+*1= 1. This shows that the order of ker(N), |L| =q + 1.

2. The kernel of the map Q in Proposition 3.2.6 is given by ker(Q) = {x €

F

Fl2 = 1Y = 7 since the multiplicative group ¢ is of order q - 1, we

have, |ker(Q)| =q - 1.

Definition 3.2.9. Let V be a finite dimensional vector space. The general linear

group GL(V) is the group of all invertible linear maps from Vto V.
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Remark 3.2.10. Let n > 0 be an integer and suppose V is of dimension n. Then for a

given basis of V, the general linear group GL(V') is isomorphic to the group of all

invertible n x n matrices GLn(C), that is, GL(V) ™= GLn(C).

Definition 3.2.11. “Let X be a set and G be a group. The group G is said to act on X

if there exists a mapping

p:GxX-——->X

called an action defined by

plgx)=gxVgeEGVx€EX

such that

1. 1x=xVx€eX

2. (gh)x =g(hx)for g,h € Gand Vx € X.

X is referred to as a G-set.

Proposition 3.2.12. 1. Let G be a group and X be a nonempty set. The map defined
by gx = xVg € G and Vx € X is an action of G on X known as

the trivial action.

2. Let G be a multiplicative group. The multiplication in G defines an action

[:GxG-—>G

(g,h) 7> gh.

By the associative property and identity element of the group G, this map

clearly defines an action of G on itself.

3. Let G be a group. The map
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GxG-—G

(9,h) 7- ghg

is an action of G on itself known as conjugation.

Theorem 3.2.13 (Cayley’s theorem). Every finite group G is isomorphic to a

subgroup of the symmetric group Sc.

Definition 3.2.14. Let G be a group which acts on the set X and let x € X.

The subset
Gx={gx:g€GIEX

of X is said to be the orbit of x € X.

The subgroup
Gx={gE€G:gx=Xx}S G
of G is known as the stabilizer of x.

The stabilizer subgroup of x is also known as the isotropy subgroup of x.

Remark 3.2.15. 1. The orbits for a group action are equivalent classes for the

relation x ~ y if y = gx for some g € G.

2. The orbits partition the G-set X, i.e. S = SxexO(X) is a union of disjoint

orbits.
3. The orbits of an element x and of gx are equal.

4. If X consists of just one orbit, we say that G acts transitively on X. That is,
every element of X is carried to every other element by some element of the

group G.
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Theorem 3.2.16 (The orbit-stabilizer theorem). Let X be a G-set, x € X. Let

Gx be the stabilizer of x and Gx be the orbit of x. Then the map

Y :G/Gx—— Gx  defined by

Y(gGx) = gx,

is an isomorphism of G- sets. In particular, |G| = |Gx||Gx]|.

(By a homomorphism of G-sets X,Y we mean a map

Y : X —— Y such that, y(gx) =

gP(x) Vg € Gand x € X.)

Proof. 1. ¢ is well defined.
Forall g,h € G,

gGx=hGx=> h™1g € Gx= h™lgx=x= gx = hx.

2. 1 is a homomorphism of G-sets.

Forall g,h € G,

¥(9(hGx)) = Y(ghGx) = ghx = g(hx) = gip(hGx).

3. P is surjective.

Vy =gx € Gx, y = gx = P(gGx).

4. 1 is injective.
Forall g,h € G,
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l/)(ng) = l/)(th) :>ng= hGx

Since ¥ is homormorphic and on G-sets and also bijective, 1 is isomor-

phic. O]

Proposition 3.2.17. Let M be a G-set. For each x € G, define M= {m € M|xm = m}.

Then

1
! redG

number of orbits in M.

Proof. M* considers the set of all points m in M that are stable under the action of
X € G. Hence, if we are looking at the number of all x’s that fixes the points m in M

then we are looking at the sum

X x
M|

XEG

but this, in terms of the stabilizer subgroup is

X
|G-

meM

Hence,

XxX
|M | = | Gm].

X€EG meM

Suppose m,n € M are in the same orbit. Then by the orbit-stabilizer theorem, we

have

L€ [ -
|Gm|  |Gn| |G|

|Gm‘ —
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Thus,

X
|Gn| = |Gm||Gnm].

neGm

But by the orbit-stabilizer theorem |Gm||Gn| is equal to |G| and hence

X
|Gn| = 1G]

neGm

Suppose there are k distinct orbits that partition the set M then the sum P em | Gm|

is

k k

X XX X
|Gm| = |Gn| = |G| = k|G].

meM i=1 neGm i=1

Substituting we have,

k|G
|G|Z|M| | |

zeG

Therefore |61 Pres | M¥| is the number of orbits in M. O

Definition 3.2.18. Let a group G act on itself by conjugation. If x € G then the

set

O(x)={y€G|y=gxgforsomeg € G}

is called the conjugacy class of x and the set

Ce(x) = {g € Glgxg™"=x}

is said to be the centralizer of x in G. The centralizer Csc(x) of x in G is also stabilizer

Gx OfX.
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Proposition 3.2.19. The quaternion group Q has 5 conjucacy classes.

Proof. Q = {#1,£1,+],£K} together with the operation, multiplication determined by

E=p=K=-11=K

JK=1KI=].

Thus, JI = KI?= -K = -1].
Similarly, K] = =JK, IK = —-KI. 1 is the unit element and -/, -], =K are

the inverses of [, J, K respectively.
Let X € Q be any arbitrary element. Then,

X1 =1Xand,

X(-1) = (-1)X

This implies that €1 = {1} and C2={-1} are conjugacy classes of Q.

Also,

JIGD =-J =] = -1 KJ(-K) = -KJK = JKK
= —]_

Similarly,

[J(-D =-I=]lI= -],
Kj(=K) = -KJK = JKK = -],

IK(-1) = -K, JK(-]) = -K.

Thus, the other conjugacy classes of Q are

C3={L-1},
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Cs = {J-J}, Cs =
{K-K}.

Therefore, there are 5 conjugacy classes of Q. O

Proposition 3.2.20. Let G < S4 be the set of all permutations with sign +1.

Then G is a subgroup of Sawith 4 conjugacy classes.

Proof.

Cr={(1)},

C2={(12),(13),(14),(23),(24),(34)},

C3 = {(123),(124),(132),(142),(234),(243),(134),(143)},
Cs = {(12)(34),(13)(24),(14)(23)}, Cs

= {(1234),(1243),(1324),(1423),(1342),(1432)}.

The sign of a permutation is +1 if the permutation can be written as a
product of even transpositions and -1 if it can be written as a product of odd

transpositions.

From this definition, we observe that all elements in C2 have the sign -1 and those
in C4+have the sign +1. The identity element (1) is of sign +1. Let us now obtain the
sign for elements in the class C3,Cs.

Let (abc) be an arbitrary element in C3. We have,

(abc) = (ac)(ab),

which implies every 3- cycle can be written as a product of 2 transpositions. Since

the number 2 is even the sign of all 3 -cycles is +1.

Take an arbitrary element (abcd) € Cs, we have,

28



(abcd) = (ad)(ac)(ab),

which implies that every 4-cycle can be written as a product of 3 transpositions.
Since the number 3 is odd the sign of all 4 - cycles is -1.

Now we can clearly list the elements in G.

G={(1),(123),(124),(132),(142),(234),(243),(134),(143),(12)(34),(13)(24),(14)(23)}.
Thus |G| = 12.

Let f,g € Sa. If sgn(f) = sgn(g) = 1, then sgn(fg) = sgn(f)sgn(g) = 1.
Also, sgn(e) = 1. Hence G is a subgroup of Sa.

As |G| = 12 and there are 4 ways to express 12 as a sum of squares

| 2=t
12=8-1+22
12=4-12+2-22 12

=3.12+32

The first case is ruled out as G is not abelian. So the number k of conjugacy classes
is an element of {4,8,9}.
In S4 all elements of a given cycle structure are conjugate. It suffices to only

determine how the class C3,C4 € Ssof (12)(34) and (123) decompose into

conjugacy classes Cs, Ci of G,

By direct computations we observe that,

(123) > (12)(34) ° (132) =
(14)(23), (124) - (12)(34) -

(142) = (13)(24).
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This shows that C4+ does not decompose in G.

Also,

(124) > (123) » (142) =
(243), (142) - (123) » (124) =

(134)

So the conjugacy class of (123) in G contains at least 3 elements. However, allO:{
must contain the same number of elements as there is an element of S
conjugation by which maps one to any other (this uses the fact that conjugating
elements in G by elements in S4 produces another element in G). Thus they have

cardinality 4 or 8, but k is at least 4 and hence it must be 4. Therefore, k=4. []

Definition 3.2.21. Let G be a group. The center of G is the subgroup
Z(G) ={x € G|lx=gxg~1Vg € G}

consisting of all elements commuting with every element of G.

Definition 3.2.22. Let G be a finite group and let n be the number of conjugacy

classes of order greater than 1. The class equation of G is

Gl =2(G) + Y[+ Cala)

7’

where xiis a class representative of each conjugacy class of order greater than 1.

3.3 Cardinality

Let A and B be sets.

Definition 3.3.1. If there is a bijection f: A — B between A and B, then
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|A| = |B|. Example
If A = {xy,z},B = {a,f,y}, then |A| = |Y | because {(x,@),(¥.8),(c,Y)} is a bijection

between the sets A and B. The cardinality of each of A and B is 3.

Definition 3.3.2. The product rule

If the P1,Ps,...,Pnare sets, then,|P1x P2 x. w. X Pn| = |P1|.|P2]...| Pn|

Definition 3.3.3. The sum rule

If A1,A2,As,...An are disjoint sets, then:

|[A1U A2U ... U An| = |A1| + |A2| + ... + |Ax|

3.4 Liegroup

Definition 3.4.1. A lie group is a nonempty subset G which satisfies the following
conditions:

a. Gisagroup.

b. G is a smooth manifold. This means that G is a differentiable manifold.

c¢. In particular, the group operation of multiplication,

u : (gh) —— gh and the inverse map
i : GaE

i: g —— g lare differentible maps(smooth)

Definition 3.4.2. A Lie Algebra over a field k = R or C is a vector space g together

with a bilinear map

g§xXg-——8

(XY)7-[XY],
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known as the Lie bracket such that
1. [XY]=-[YX] (anti-commutativity),

2. [[XY1Z] +[[V.Z].X] + [[ZX],Y] = O (Jacobi identity).

Definition 3.4.3. A Compact Lie group is a Lie group which is compact
topological manifold. A Lie group which is connected as a topological manifold is

said to be a connected Lie group.

Remark 3.4.4. A unitary group G = U(n) is a compact, connected Lie group.

Chapter 4

Review of Separating Sets

4.1  Representation of finite groups

4.1.1 Introduction

In Mathematics, the word “representation” basically means “structure-preserving
function”. Thus in group theory and ring theory, one would at least say a
representation is a homomorphism. Roughly speaking, a representation of a
group G is simply a representation of G by matrices or linear transformations. Let

V be a finite-dimensional complex vector space.

Definition 4.1.2. A representation of a group G in a vector space V is a

homomorphism

¢:G-— GL(V),
or

¢ : G —— GLn(C).
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Definition 4.1.3. The degree or dimension of a representation is the dimension of

the vector space V.

Definition 4.1.4. Let G be a finite group. The homomorphism

¢:G-—GL(V),

defined by

¢(9) =1Vg €G,
is said to be a trivial representation.

Definition 4.1.5. Let G = Shand GL(V) = C. Let

sgn : G-——C defined by,
BERL  ifoiseven

sgn(o) = ,
BIRR-1 ifo is odd

be the sign of a cycle in Sn. The homomorphism
¢d:G-——C

o 7- sgn(o),

is a representation of Snof degree 1. This representation ¢ is referred to as the sign

representation.

Proposition 4.1.6. Let V = R? be a vector space over R and G = hgi be the cyclic

group generated by g and of order r. The homomorphism

¢:G-—GL(V) defined by
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1 0
$lg) =08,
BRrl

is a representation of the cyclic group G.

Let G = Snand V be a finite dimensional complex vector space. Define a

homomorphism

¢:G-— GL(V) on the standard basis elements by

¢s(ei) = es(i) whereo € Gand e;€ V.

Permuting the rows of the identity matrix with respect to o we obtain a matrix
representation for ¢o Vo € Sn.

In particular, for n = 3 we have

0 1 0
Joy oy L1
g : 0
¢ =om0 O ¢z =am1 O pu29)=@E1
B, 0g, 0g,
5 0 »
1 1 0
1 W = 0o 0
b(23)= BIAIO Pai3)= BAO P32 = BAO
18, 0m, 10,
0 1 0
0 1 1
10 0 0 00

Definition 4.1.7. Let G be a finite group. Let V be a vector space with basis of V.
Left multiplication by g € G permutes the basis and extends to an invertible linear
transformation of V . This gives a representation known as the regular

representation of G and is of degree |G]|.
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Definition 4.1.8. A permutation matrix is a matrix for which every row or column
has exactly one non-zero entry 1.

A permutation representation is a representation for which every element of a group
acts by a permutation matrix.

An example of a permutation representation is the regular representation.

Definition 4.1.9. Let

¢:G-—GL(V)

be a representation. A subspace W of a vector space V is said to be stable under

G or G-invariant if Vg € G and w € W there exists a homomorphism

¢|lw: G —— GL(W) defined by ¢|w

(@) (W) = ¢g(w)

such that ¢pg(w) € W.
The homomorphism ¢|wis said to be a subrepresentation of G.

Definition 4.1.10. Two representations

¢:G->GL(V)  andy:G-— GL(W),

are said to be equivalent if there exist an invertible linear transformation

T:V -— W such that TepgT 1

=l/)ngE G.

This is denoted by ¢ ~ .

Definition 4.1.11 (Irreducible). Let
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¢:G-—GL(V)

be a representation. ¢ is said to be an irreducible representation if the only G-

invariant subspaces of Vare 0 and V.

Every degree one representation of a group is irreducible since there are no
proper non-zero subspaces. The converse however is not always true. That is, not
every irreducible representation has degree one. For example when a matrix is
not diagonalizable, the corresponding representation is a direct sum of

irreducible representations, not all of which are of degree 1.

Definition 4.1.12. Let G be a group. A vector space V is said to be completely
reducible if it is a direct sum of G-invariant subspaces of V. That is V=@ Viwhere

Viis a non-zero G-invariant subspace of V for each i. A representation

¢:G-—GL(V)

is completely reducible if V is completely reducible and the restriction ¢|viis
irreducible.

Definition 4.1.13. Let V be an inner product space. A representation

p:G--GL(V)

is said to be a unitary representation, if Vg € G, vw,E V

hp(g)(v).p(g)(w)i = hv,wi.

Definition 4.1.14. Given an inner product space V and a subspace W of V, there
exists a direct sum decomposition V= W @ W L. Definition 4.1.15. Let V be a

complex vector space. The map,
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he,ei: Vx V-— C,

such that

1. hv,wi =hw,vi.
2. hAu + v,wi = Ahu,wi + hvwi forA € C, u,y,w € V.
3. hyvi=0.
4, hvyvi=0eov=0.
is said to be a Hermitian inner product on V. Definition 4.1.16.

Let

p:G-— GL(V)

be a representation of G. The map,

(e,¢) : Vx V=— C defined by

(v,w) = Xho(g) (V)0 (g) (Wi gec

is a Hermitian inner product and Yg € G, v,w € G we have

(p(g)(M)p(g)(W)) = (v,w)

that is p(g) is unitary with respect to (s,e).

Lemma 4.1.17. A G-invariant subspace W c V has an G-invariant complement

UclV.

Proof. Let U be the orthogonal complement of W,
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U=W-L={u€V|huywi=0vwe W}

This is a subspace since for A € C, u,v € U and w € W we have,

hAu + v,wi = Ahu,wi + hv,wi =0,

ifveUnNnW=hyvi=0=>v=0.

Using the property: x1 = x, we obtain

U+WHi=UnWi=WHNWi=WnNnWL={0}>U+W=V.

Finally, ifg € G, u € U, w € W and p is a unitary representation of G then,

hp(g)(u),wi = hp(g-1)p(g)(u),p(g-1)(w)i since p is unitary =

hp(g)(u),wi =0 since p(g1)(w) € W.

Therefore U is invariant. O

Let us now show that every complex representation can be decomposed

into a direct sum of irreducible subrepresentation.

Theorem 4.1.18 (Masche). Let V be a representation of a finite group G. Suppose
W is a G-invariant subspace of V. Then there exists a G-invariant subspace U of V

such that V=W @ U.

Proof. Let W Lbe a complement of Win Vsuchthat V=W @ WL Leta:V-->W
be the projection of Vonto Walong W Lbe defined such that if v=w + wl then a(v)
= w.

Let q, the average of @ over G be defined as
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o) = & 3 wloalpls ) Yo €V

T .
9€G and ¢a representation of G.

For simplicity, we set ¢(g)a(¢(g1)(v)) to ga(g-1v). To complete the proof, we

prove that a is a linear transformation and to do so, we prove the following claim.

Claim 4.1.19. La:V--W.
2. a(w)=wVYwe W.
3. Ifh € G then ha(v) = a(hv)VvE V

Proof of Claim4.1.19. 1. Vv € V we have, a(g-1v) € W and hence ga(g-1v) egW c W Vv

since W is G-invariant.

- 1 -1
a(w) = = > galg'w)

geG

Thus, 1, and 2 implies a projects V onto W.
3.
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1
ha(v) = h@ Z ga(g'v),

geG

1
e > hga(g'v),

ged

1
= |G_| Z hga(g’li'z’lhv)

geG

1 _
= 1 2 hgo((hg) o)
geG

1 &
= il Z ka(k™ hu

geG

1 —1
o] > kkho,

geG

1
=11 2
geG

= hv, ) where k = hg,

7’

= hv by 2.

Thus, « is a linear transformation. O
Finally, we prove the claim

Claim 4.1.20. kera is G- invariant.

Proof of Claim 4.1.20. Let v € kera, then a(hv) = ha(v) = 0 and hence hv €

kera. O

Now, V = Im(a)@Kkera. But Im(a) = W and set kera = U. Therefore,

V=W @ Uis a G-subspace decomposition. O
Let Home(V,W) denote the set of all homomorphisms from Vto W

Lemma 4.1.21 (Schur). Let ¢ and  be irreducible representations of G and

T € Homg(V,W). Then T is either invertible or T = 0, consequently,

1. ifp ~, then Home(¢p,p) =0
2. Ifp=1,then T=Alwith A € C.
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Proof. See [?] O

4.2  Character Theory

In this section, we review an important tool in the study of representation theory,
the “character” of a representation. Informally, the character of a group is a
function of the group which associates to each element, the trace of the
corresponding matrix representation. In general, the character of a group
encodes salient information about the representation in a more condensed form,
but is a more specific case, the characters of irreducible representations tend to
convey much salient informations and properties of a group and we can therefore
use it to study the group’s structure. According to Ayekple [?],When it comes to

the classification of finite simple groups, character theory plays a major role.

Definition 4.2.1. Let V be a finite-dimensional vector space over a field say

K=Cand let
¢:G-— GL(V),
be a representation of a group G on V. The character of ¢ is the function

Xx¢: G —— Cdefined by

x9(9) = Tr(¢(9)),

where Tr is the trace of a linear map.
Definition 4.2.2. Let ¢ : G —— GL(V') be a representation.
1. The character y¢is said to be irreducible if ¢ is irreducible.

2. The character yyis linear if the dimension of ¢ is one.
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Remark 4.2.3. 1.If ¢ : G —— GLn(C) is a representation defined by ¢g =

(¢ii(g)) then

Xo(9) = Z vii(g)

2. If G is finite and k is of characteristic O then the kernel of the character yyis

the normal subgroup,

keryo={g € G|xs(9) = x¢(1)},

which is simply, the kernel of the representation ¢.

Proposition 4.2.4. Let

¢:G-— GL(V),

be a representation. Then

X9(1) = dege.

Proof. By definition, y¢(g) = Tr(¢(g)) and hence for g = 1 we have,

x(1) = Tr($(1)) = Tr(l) = dimV = deg¢.

]

Lets us now examine one of the properties of a character of a
representation. One of the main properties is that the character depends on the

equivalent classes of the representation.

Proposition 4.2.5. If ¢ and t are equivalent representations, then

Xo= Xz
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Proof. Suppose ¢,7: G —— GLn(C) are equivalent representations. Then there exist
an invertible matrix T € GLa(C) such that

¢g= TTgT_l Vg € G,

= x¢(9) = Tr(TtgT ),

= Tr(T 1Tzy), by the properties of a trace =
Tr(tg) = x<(9).

]

The next property shows that the character is invariant on conjugacy

classes.

Proposition 4.2.6. Let ¢ be a representation of a group G. Then Vg, h € G

x$(9) = x¢(hgh™).

Proof.

x¢(hgh™') = Tr(¢(hgh™)),

= Tr(¢(Mo(g)p(h™h),

=Tr(¢p(h~1)p(h)p(g)), by the properties of a trace

= Tr(¢(9)), =
X3(9)-

Proposition 4.2.7. Let ¢ : G —— GL(V') be a representation of the finite group

G. Then
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xs(97") = xe(9) Vg € G.
Proof. For any g,€,G, the order of g is finite and hence its representation has a finite
number of eigenvalues.
Suppose ¢ is an n-dimensional representation of the finite group G. Let A,...,.An €

G |Ail = 1Vi be the eigenvalues of the matrix associated to ¢(g). Suppose,

A1 0
0
$(g) = 0 -
2 0
'
A
0 =
Then
)(n,a(Q) ~ Z /\1
1=l .
Now, the eigenvalues of the matrix associated to ¢(g-1) arer » A2+ -+ Ar ' and
hence,
A-11 0
?
-100 o
= -
¢lg )=0 0
A-21
A—nl
0o .. 0
Thus,
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Definition 4.2.8 (Group algebra). Let G be a group. Define CG = {f|f: G —— C}. Then
CG is an inner product space with + and x given by

(fi+f2)(9) = fi(g) + f2(9), (cN(9) =
cfl9),

and with inner product defined by

<f1,f2> — % mez(g)

geG

CG is called the group algebra of G.

Theorem 4.2.9 (Schur orthogonality relations). Let ¢p : G —— Un(C) and p :

G —— Um(C) be inequivalent irreducible unitary representations. Then

(P, Piz) = 0.

andj=1,

2. ,
l O ()th(f’f"?l,"l.‘i(,’
. O

Proof. See [?]

Definition 4.2.10 (Class function). A class function is a function f: G —— C for which
fis constant on conjugacy classes of G or equivalently, f(g) = f(lhgh-1)Vg, h € G.
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From Proposition 4.2.6, one can clearly deduce that a character of a
representation is a class function. The space of class functions is the center of the

group algebra CG and is denoted by Z(CG).

Proposition 4.2.11. Let M be a G-set. Let M* = {m € M|z > m = m} for

each x € G. Then the character m of the permutation representation on CM is given
by m(x) = | M¥|.

Proof. We start by defining a vector space for the permutation representation,

followed by a linear map and a basis for the vector space.

Let V= CM be a vector space and let the linear map

px):V-—V,

be a permutation representation on V.

Let

ém: M-—C defined
by
Litm=n
6m(n) = "
BIREOotherwise
We claim that the set {0m}memis the basis for V.

Given f€ Vis f= P eMAmbm for some Am € C we have for every n € M,

fin) =X Anbm(n) = An.

meM

This implies that for every f € V we can write,

£=Xfm)ém,
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meM

which is a linear combination of the émand thus {0m} spans V.

Next, we show that the set {6m} is linearly independent.

Suppose that

X
AmSm = 0, meM

is the zero function, then acting it on n gives,

X
Am(Sm(n) = O, meM

== An=0.
This shows that the {6m} is a linearly independent set.

Therefore {6m} is a basis for V.
Now, we act the permutation representation p(x) on the basis vectors, since
acting a linear map on the basis vectors gives the entries anm of its matrix

representation.

p(X) (Sm) = X AnmOn where amm€C.
neM

Let p(x)(6m) = dm(x~1 ) which is a function in V and since every function in

V can be written as a linear combination of the basis we have,

Ozt > n)o,
5m(X_1 ) =neM

By comparison we have,

Upm = O (7" > 1)
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The character m is defined by

wlw) = tr(p(e) = 3 dnla”

meM

but

1 ifzleom=m=m=x>m

0 otherwise

We can restrict M to Mxsince?m ¢ M*, dp, (x> m) =0,
Therefore

m@)= > Omlx =9 |- |A/F

meM?® meM®

O
Theorem 4.2.12 (First orthogonality relation). Let ¢ and i be irreducible

representations of G. Then

1" o~
(XorXe) =
0 Qo

Thus, the irreducible characters of a group G form an orthonormal set of class

functions.

Proof. Suppose ¢ and i are unitary representations.

(X@:Xw == ZX,:(Q Xw

gEC‘
el ZZw ZL’{,J 9)
r;E("z 1 j=1
n
3> S A
i=1 j=1 qE(

n m

= Z Z(@%(Q)a Vii(9))-

i=1 j=1
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By the Schur’s orthogonality theorem (pii(9), ¥53(9)) = 0if ¢ = ¥ 3nd hence
(XgsXp) = 0if @ 1)

If ¢ ~ 1, then we may assume ¢ = 1. Under such circumstances, the Schur’s

orthogonality relation tell us

3=

(wii(9).V55(9)) =

This implies that

(o) = Y (oulo) @) = 3 = 1

O
Theorem 4.2.13 (Second orthogonality relation). Let C, C be conjugacy classes of

G. Let g € C and h € Cvand s be the number of inequivalent representations of G.

Then
e C =65
D xilg)xi(h) =
i=1 0 G=C

Proof. Let C be a conjugacy class of G. Define the function

oc: G-— Chy,
peE1d € G

oc=
g
ARARAO otherwise
Let
oc = Z(X?‘ dc)Xi
=1
Then
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- 52 (10 (o)

=1

= % mem-

By definition of 6c, we have that 6c(h) = 1 whenever h € G and in this case we must
have,

—~—— _ |G|
;Xi(g)Xi(h) = m

J

and 6c¢(h) = 0 whenever h 6€ C and this implies
D xilghxi(h) =0
i=1 .

Therefore

I
o
¢ g
N 4
Qe Q

O

Corollary 4.2.14. The number of inequivalent irreducible representations of a

finite group G is equal to the number of conjugacy classes of G.

For a proof to the corollary, kindly refer to [?].

Let us now build some notations which are salient for the understanding

of the remaining theorems and proofs.
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If Vis a vector space and ¢ is a representation of a finite group G. Then for m € Z

with m > 0, we set

T

mV =PV,
i=1
myp = @ @.
i=1
Let {¢\..,¢} be a complete set of irreducible unitary representation of G. Set, up
to equivalence, di= degg'.

Definition 4.2.15. Let ¢ : G —— GL(V ) be a representation of a group G. If
v ~ @i M then the integer, miis said to be the multiplicity of ¢'in ¢. If

mi> 0 then ¢'is said to be an irreducible constituent of ¢.

Remark 4.2.16. If¥ ~ Di-1 Mm%’ then

Lemma 4.2.17. Let ¢, and t be representation of a group G. Then x¢ = o+ Xr.

Proof. Suppose that ¢ : G —— GLs(C) and 7 : G —— GLA(C) are irreducible
representations of G. Then ¢ : G —— GLm+n(C) is of the form

Pg 0
¢(9) = Bxs(g) = Tr(¢(g)) = Tr(e(g)) + Tr(z(g)),
0 Tg
= Xe(9) + x:(9),
Thus,y¢= Yo + Xz 0

The above lemma implies that every character is an integral linear

combination of irreducible characters.

51



Theorem 4.2.18. Let ¢l..,¢5 be a complete set of representations of the

equivalence classes of irreducible representations of G and let ¥ ™ D1 7% then
mi = hyg,xoi. Therefore there exists a unique decomposition of ¢ into irreducible

constituents and ¢ is determined up to equivalence by its character.

Proof. By Lemma 4.2.17,

S
Xe — E m; XR,J"
=1

Thus,
s
(Xt Xoo) = D Xty Xt
k=1
=mifori=1,2,.,s
by the orthogonality relation. The other statements are generated from
Proposition 4.2.5. [

Corollary 4.2.19. A representation T is irreducible if and only if hyzx-i = 1.

Proof. Suppose™ ~ €Di_i %', Then
S

h)(r,)(‘ri = XmZi,
i=1

by the orthonormality of the irreducible characters. Since m; 2 0 is a positive
integer, hyrx: = 1 if and only if there exist a j such that m;= 1 and mi= 0 for i 6=}.

This is only possible if 7 is irreducible. []

Let G = S3act on the set X=1,2,3. Let o,a € S3 such that

0(1)=20(2)=1ando(3) =3, a(1) =

1, a(2)=3,and a(3) = 2.

Let ¢ : S3—— GL(V ) be a 2-dimensional representation of S3is given by
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-1 0 1 (1 f\/:i\
p(o) = 50(0)25 -
0 1 V3 =1
FRRY I PRRY I
b -+ _\/§ 1 s A 9 _\/g _1)
1 -3 1 0\
p(coaoao) =l , le)= i
2/% H1 0 1)

7

Theorem 4.2.20. The 2-dimensional representation ¢ of S3is irreducible.

Proof. The character of this representation is given by,

xo(e) =2, xo(0) = xp(a) =x¢(0 ° a -

0)=0,x¢(0 ° @) =xp(a ° 0),

Thus, computing the inner product gives

It
(X Xeo) = @ Z Ixsls

gESs
= (=17 + (174 ()
=1.

Thus, ¢ is an irreducible representation.

Let f: C2-— C2be given by multiplication by the matrix

1| -1 =v3
2 ﬁ ot

Then,
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, -1 —v3y1 (-1 —V3
2ot 1
2\/3_1 2\/3_1
1 -2 —2v3
P\ o3 o
1| —1 V3
2\L3 4
and
, 1[-1 -v8)1[ -1 V3
a’ = - =
2\\/5 Sy 2 Wod/z MY
1/40
4\04
10
0 1

7’

Define the map

¢ : 23 -— GL2(C) by, ¢(n) =

an,

For all x,y € Z3we have,

(x+y)=a,

= X,

= (X))

Therefore ¢ is a representation.
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Computing the characters yields,

10

X@(U) =Tr — 9
01

Xe(1) =Tr(a) = ;(2) - 1

Next, we compute the inner product.

<X",97X<,5> = % Z mX@(if),

= 2@ 1P+ ()

_%(4+1+1)=2.

Since hyg,xsi 6= 1, we conclude that ¢ is not irreducible.

Theorem 4.2.21. Recall the quaternion group is the set Q = {+1,%1,£],+K} together

with the operation, multiplication determined by

P=p=K=-11=K

JK=1KI=].

Thus, JI = KI2= -K = -1].
Similarly, K] = -JK, IK = -KI. 1 is the unit element and -1, -], -K are

the inverses of I, ], K respectively.

Consider the Pauli matrices:
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@i 0 0

i 0 -1@
. . .
=0 B,/=00K=0 0
0-i i 0 1

The map

¢ : Q —— GL2(C) defined by,
+17- *id,

+X7- +X where X=1]K

is an irreducible representation of Q.

Proof. To show that ¢ is a representation, we show that it is a homomorphism.

0 -1
) = ¢(K) =1 B,
10
BER D00
(Do) =& af
0-i i 0
0 -1
=0 @ = o),
-1 0
=1
$(-1) = p(-K) = 2,
-1 0
- 0 0 i
¢(-Dop(N =0 2,
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0 i {0
0 1=08=¢(-I)
-1 0
BEi 0
$UK) = p(DB a
0-i

AR Ri0-1
0 2, @

d(o(K) =0
2 M &1 d
1
Py
=2 B=¢0K)
0-i
0 i

(KD = p()D B,

i 0
0 -1 i O
$K)P(D) =B g 2,
10 0 -i
0 i

= = ¢(KI).
i 0
Continuing for the other elements, we observe that ¢ is a homomorphism.

Therefore ¢ is a representation.

Computing the character y¢ of the Pauli representation of Q gives

x¢(£1) = £2, and y¢(£X) = 0, where X = ] K.
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Next, we compute the inner product

1
(o xo) = (=2 +(2)7) = 1
Thus, ¢ is an irreducible representation. O]

Character Table

A character table, roughly, is a two dimensional table whose rows correspond to
irreducible representations and whose columns corresponds to the classes of

group elements.

Definition 4.2.22. Let G be a finite group with s conjugacy classes and s irreducible
characters. The character table of G is an array with s rows labeled by the s
inequivalent irreducible characters of G and s columns labeled by the s conjugacy
classes of G. The entries in a row are values of the character on the representatives

of the respective conjugacy classes of G.

Remark 4.2.23. [t is customary to label the first row by the trivial character and
the first column by the conjugacy classes of the identity. The entries in the first
column encode informations about the degree of the irreducible characters. Each
conjugacy class, say the jth conjugacy class Cj, is indicated by a representative ¢; €

Cjand hence each (i,j)th entry has values yi(cj).

Theorem 4.2.24. Given a finite group G with conjugacy classes C1,C>,...Ca and

irreducible characters y1,x2,...xd. If I' € Ma(C) is the character table, Table 4.1: The

character table.

C1 C2 Cs
x1 | xi(e1) | xi(c2) | .. | xi(cs)
x2 | x2(c1) | xa(c2) | .. | xa(cs)
xs | xs(cl) | xs(cz) | .. | xs(cs)
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[ij= xi(xj),xj € C;, then

|G|d

det
S et mrer]

Proof. We have that I" = [T'jj] where T'j = xi(x;),x; € C,.

Let I'°be a matrix defined by

ro=[|CiTl,

where I'jjare the elements of the conjugate transpose I'f of T'.

Post multiply I by I'
I = [Tyy] [|CilT]
The entries of this matrix looks like:

(I'r’),; j{:kaquc;

= Z Xi (@)X (%) | Ci|

k=1

= xi(9)xi(9)

gelG

o IGHX??; Xj>5

but by the orthonormality of irreducible characters we have

L ifjfj=j
O X5)= 4

lo ifi 6=

This implies that hy; ;i = djand hence

(FFO)U’ = IGI&]
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The product (I'T%);; can be written as

(FF,)Q‘ = |Cilr'ijﬁ-

= |Cil (IT7)

i,
dividing through by |Ci| we have,

1
|Ci]

&L =)

ij

Substituting the expression for (I'T?);into the above equation we have,

1
IT). = —|G|0;
)U |O,| ‘ | J'.
This shows that the product FFT) is a diagonal d x d matrix and hence the

determinant will be the product of its main diagonal entries i.e.

From the properties of determinant of matrices we have,

det (ITT) = det () det(I'T)

= det (I') det () by properties of

conjugate transpose,

= |det(T)|2

Therefore,

d
det () =] ‘
i=1

B |G|d
[T, 1Cil,

|G
Cl’
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Taking the square root of both sides gives;

|G

det (1) | = | =g —
H;:'l |C£| .

]

Let G = {f € S4|sgn(g) = +1}. From Proposition 3.2.20, we know that there
are 4 conjugacy classes of G and thus, by Corollary 4.2.14, there are 4 irreducible
characters of G.

The conjugacy classes of G are;

Ci={(1)},
C2={(12)(34),(13)(24),(14)(23)},
C3={(123),(134),(142),(243)}, Ca=

{(132),(143),(124),(234)}.

Theorem 4.2.25. Let y1,x2,x3,x4 be the characters of the irreducible representations
of G where 1 is the character of the 1-dimensional trivial representation which

takes every element of the group and assigns a 1.

Table 4.2: Character Table of G
e | (1| (2 C3 Cs
i A (ST 1 1

X2 1 1 827” e%i
X3 1 1 e—“g"i e—_;’r i

x4 |3 | -1 0 0
Proof. The entries in the first row are just the character of the 1-dimensional

trivial irreducible representation of G. All entries are 1 because the trace of 1 is

1.
Now, suppose the degree of the remaining irreducible representations are d2,ds,ds

then
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1?+d;+di+di = |G| =12

dy+dj +di =11

Therefore, we seek non-negative integer values of dz,ds,ds such that the above
equation is satisfied. We observe that the only non-negative integer values that

satisfy the above equation are

d2=1,d3=1,and ds+= 3.

Since the character of the identity always gives the degree of the irreducible
representations, we have the proof for the entries in the first column.

For the 1-dimensional irreducible representations, we have a simple way of
computing their character without actually knowing the representation itself.
This can be done be examining the properties the elements in the conjugacy
classes

carry.

Consider the conjugacy class C2, we have that Vf€ Cz2f - f=e=(1).
Taking the character y of both sides we have

x(f = f)=x(e),
== x(Mx(f) = x(e),
=xN=1

Next, suppose that f,g,h € C2are distinct elements. Then f = g = h and hence

X(f » 9) =xh), ==

x(Nx(g) = x(h),
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But all elements in the same conjugacy class have the same character and hence

x(f) = x(g) = x(h). Thus

xXx(A) =x(N), ==
xX2(N=x,

but we already have x?(f) = 1, hence by substitution, we have x(f) =1 f € C2.
Thus the other 1-dimensional characters of the elements in the conjugacy class

Cz2are given as

x1(C2) = x2(C2) = x3(C2) = 1.

Now, let us consider the conjugacy classes C3and C4. These two classes share some
properties: Vf € Czand Vg € C4we have f * f=g.

This implies that

X*(f) = x(9)-
Let the character x(f) = x2(C2) = a and x2(C3) = x(g) = b. Then we have that a= b.

To obtain the values of a and b we use the orthogonality of irreducible characters.
As at this stage the only character that has a complete row is the trivial character

x1thus we have,

(X X1) = |Cl;| > x(Hxalf) =0

fea

1
= (1 +3+da+4)=0

==a+b=-1
Substituting a2 = b into the above equation we obtain a quadratic equation
at+a+1=0 (4.1)
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Applying the quadratic formula to Equation (4.1) we arrive at

1403
= —

a

We see that a is a complex number and its conjugate. We then convert a to the

polar form rei¢ of complex numbers to obtain

2
g— 1+ 8 N =1
g 3

a:eiz_ir'

¢ 4w -
Thus we have,b = a> = e*35 ",

This shows that there are two possibilities for the 1-dimensional irreducible
character y(C3) and x(C4).

Thus these are the two 1-dimensional characters of the conjugacy classes €3 and

Ca.

2m - 4

x2(C3) =e=", x2(Cy) = s

—256 - -1
X3(Cs) =€=3","X3(Cs) =™
Finally, for the last row we use the orthonormality conditions.

Suppose x4(C2) = a,x4(C3) = b,xa(Ca) = c.
Then

(v} = g Sowaloula) = 0

gelG

1
= E(3+3(1.+4b+4(:) =0

’
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Simplifying gives

3+3a+4b+4c=0. (4.2)
We also have,
(X4: X2) Z x4(9)x2(g) =0
JGG

— E(Z% L 3a44be 51 4(:53_%i) —0.

7

Simplifying yields
3+ 3a+4be” 3+ dee= 31 =0, (4.3)
(X4 X3) Z x4(g =0
qEG
= 12(3 +3a+ 4dbe T +4(:(34'Tﬁ’:) =0,
which yields
3+ 3a+4be T +4ce 3=, (4.4)
Orthonormality gives,
(X4, X4) Z IXa(9)]" =1,
qEG
1 . . .
= ﬁ(9+3a2 +4b° +4c*) =1
Simplifying gives us

3a%2+ 4b%+ 4c2=3. (4.5)
Equating Equation (4.3) and Equation (4.4) we have,
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27

3+3a+4be 3" + dee~ 51 =3 + 3a + 4be T 4+ dce S
simplifying we have,

_ 2w _ A, 27, dm;
be 3'4+ce 3t =hbes' +ces "

grouping like terms yields,

Using one of the properties of complex numbers that is a complex number minus

its complex conjugate is 2 times the imaginary part of the complex number we

(oon ($) o ()

— biv/3 = —civ/3,

obtain

J

== b=-c by cancellation.

Next, we substitute b = —c into Equation (4.2)

3+3a-4c+4c=0,3

+3a=0>a=-1.

Finally, we substitute a = -1 and b = —c into Equation (4.5)

3+4c¢2+4c%2=3,
== 8¢c2=0, c

=0.

Thus b = c =0 and a = -1 and hence the proof of the result of the last row. m
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Recall, the quaternion group Q is a group of order |Q| = 8. From
Proposition 3.2.19, we know that there are 5 conjugacy classes of Q and thus, by

Corollary 4.2.14, there are 5 irreducible characters of Q.

Proposition 4.2.26. Let yi,x2x3x4xs be the characters of the irreducible
representations of G where xi is the character of the 1-dimensional trivial
representation.

Then the character table of G is shown below:

Table 4.3: The character table of the quaternion group Q.
1 |dsl BN

x1 |1} 1111

2|11 ]1)|- |-
11
3| 1)1 |- -
1 1
LT M -2 |1
1 1

xs|21-2,0,0/|0
Proof. The first row is verified by the definition of the character of the trivial

representation.

Letdifori=1,2,3,4,5 be the degree of the 5 irreducible representations of Q.
Then |Q| = 8 = Psi=1 d2i
For the trivial representation, di = 1 thus
8=1+%g2,
i=2

= 7= Xdzi.
i=2

This implies, d2=1,d3=1,ds=1and ds = 2.

All the dOs take 1 except the last d that takes the remaining number, and for this
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, 2 us remaining so ds = 2.

This verifies the entries in the first column.

The entries in the last row are obtained from the characters of the 2-dimensional
irreducible representation in Proposition 4.2.21. Suppose ¢ is a 1-dimensional
representation, then ¢(I) = ¢(-I). If y is any of the irreducible characters of Q
besides the irreducible character, then since y is a class function,y(I) = x(-I).

By the properties of elements in Q and of representations of a group, we have,

(D) = (=D,
= ¢(-1)o(), =
¢(-1) =1,

and

() = ¢(-1) = 1, =
PPN =1,

Thus ¢(I) € {-1,1}. Similarly, for ] and K we have, ¢(J),¢(K) € {-1,1}. Since the only
complete row at this stage is the row corresponding to yi1, we can apply the

orthogonality relation.

Leta = x(I), b= x(J) = b and y(K). Then

(x: x1) |Zx )xa(

TEQ
IC‘IZ 2—|—2a+2b+20)f0

7

>a+b+c=-1.

Thus, from the fact that ¢(I2) = 1, we have, a,b,c € {-1,1}.
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For the rows to be independent, we permute the possible values of a,b and c as

follows:
a=1 b=-1c=-1,a=
-1b=1c=-1,a=-1b
=-1lc¢=1L
These account for the remaining entries in the table. O

4.3 Young Tableaux

The convenient way of determining the dimensionalities of higher dimensional
irreducible representations of unitary groups and their basis functions is the use

of Young tableau.

A “box” is used as a basic unit of Young tableau as shown below that denotes a

basis state:

[]

The box represents any state, if an entry is voided.

A designated box by a number denotes one of the basis states in some

reference order. [llustratively, for U(2), we have

ni= Jue=fg
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Direct product construction is the utility of Young tableaux. There are
two types of states, for the two-fold direct products of U(2), that is symmetric and
antisymmetric.

The Young tableau for a generic two-particle symmetric state is:

[ 1]

and the two-particle antisymmetric state is:
In the framework of Young tableaux, the two-fold direct product is

written as :

0« O~ Eowl

The three-fold direct product illustrates the conventions used in the
construction of Young tableaux and their labelling [?].

The generic tableaux are:

|
DxDxD:EED+—+@

We say that the tableau is a tableau on the diagram 4, or that A is the shape
of the tableau. A standard tableau is a tableau in which the entries are the

numbers 1 to n each occurring once.

Rules to construct irreducible representations of the group N x N

The group SU(N) is the group of N x N complex unitary matrices (UU' = 1) with

unit determinant (det(U) = 1).
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e The complex multiplet ¥i(i = 1,..,N) which belong to the fundamental
representation of SU(N) (ie the lower dimension non trivial

representation,) yi—— Uiipjis represented by a box:

l/)1EDEN

» A Young tableau is a diagram of left-justified rows of boxes where any row

is not longer than the row on top of it, e.g.

¢ Any column cannot contain more than N boxes.

e Any column with exactly N boxes can be crossed out since it correspond

to the trivial representation (the singlet),

H % | |

N=1, N

S e

e The complex conjugate of a given irreducible representation is represented
by a tableaux obtained by switching any column of k boxes with a column

of ( N - k) boxes, e.g.

N-1

L
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e From the previous rule: the complex conjugate multiplet l/)-i(i =1,.,N) (i

— l,b_jUjiT = Ui~ l,b_j) is represented by a column of N - 1 boxes:

=

— : J— l/)i
=N-1=N. D

e Any irreducible representation of SU(N) can be constructed starting from
the fundamental irreducible representation. The direct product of
irreducible representations with the following rules:

- Write the two tableaux which correspond to the direct product of
irreducible representations and label successive rows of the second tableau

with indices a,b,c,...,

- Attach the boxes from the second to the first tableau, one at a time
following the order a,b,c,..., in all the possible ways. The resulting diagrams
should be valid Young tableaux i.e., with no two or more a in the same
column (neither b or c or ...).

- Two generated tableaux with the same shape but labels distributed
differently have to be kept. If two tableaux are identical only one has to be
kept.

- Counting the labels from the first row from right to left, then the second
row (from right to left) and so on, at any given box position there should be

no more b than a, more ¢ than b and so on.

e The adjoint representations is the irreducible representations with

dimension equal to the dimension of the group (i.e. N2-1) and can be
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constructed by a direct product of the fundamental representation and its
complex con-

jugate:

” O SR
] []

1 ®J=N- i 10
a[afala

NQN=N- N=(N-1)1

From the conjugation rule above it is clear that the adjoint representation

is self conjugate N2-1=N2-1

Chapter 5

Main Results: Separating sets for the unitary
group U(Fq2)

5.1 Introduction

Let Fg2be a quadratic field extension of the finite field Fq. Let G = {U € GL2(Fq2)|UT
U = I} be the group of unitary 2x 2 matrices over the field Fg.. In this Chapter, we
probe into the character table of the unitary group Uz(Fq2) = G defined over the
finite field Fq: by first examining the conjugacy classes and the irreducible

representations of G, the character table is then constructed for the separation.

5.2 Hermitian form

Given a field K, we can obtain a quadratic extension field (a field extension of
degree 2) by constructing the quotient field K[x]/hf{(x)i where hf{x)i is the ideal

generated by the irreducible polynomial of degree 2. A typical example of such
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field extensions is the field of complex numbers C over R which is normally seen
as C 7= R/hx2 + 1i. One can also think of C as the adjoining of R by the square root

of -1, i and this is usually written as R(i) = {a + bi|a,b € R}.

When we talk of an automorphism « on the extension field L over K, written as
L/K, we are simply referring to an isomorphism a from L to L which fixes K. We
also note that there are only two distinct automorphisms on any quadratic

extension field:

o the trivial automorphism - an automorphism which fixes every element of
the quadratic extension field,

e the order 2 automorphism - an automorphism a such that a2 =1 where 1
represent the identity map.

For the quadratic extension C we have, besides the trivial automorphism fixing all

of C, an order 2 automorphism

a:C-- C defined by

a+bi7- a-bi=a+ bi.

The complex conjugation.

Thus in a more general setting, we denote this order 2 automorphism by a(a) =
ava € K.

The field Fq2is a quadratic field extension of Fs where q = pkfor p a prime and k a
positive integer which is obtained by adjoining to Fqa square root of any
generator offs,

The non-trivial order 2 automorphism on Fq:is given by
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a:Fgp—— FeXx

7— x4,

Definition 5.2.1. Let V be an n-dimensional vector space defined over the quadratic

field extension L. Then the map H : V x V —— L is said to be a Hermitian form if for

alluvyw € Vanda € L 1. H(u + vw) = H(u,w) + H(v,w).
2. H(uv +w) =H(uyv) + H(uw).

3. H(au,v) =aH(u,v) =H(uav).

4. H(u,v) =H(vu).

Remark 5.2.2. We say that a Hermitian form H is non-degenerate if Vv € V

Aw € Vsuch that H(v,w) 6= 0.
A vector space V over L/K endowed with a non-degenerate Hermitian form H is

said to be a unitary space over L/K.
Definition 5.2.3. Given a unitary vector space V and an invertible linear
transformation t. If T is an isometry of the Hermitian form H such that

H(tu,7v) = H(u,v)Vu,v €V,

then t is said to be a unitary transformation.

The group U(V ) ={t € GL(V)|H(ru,7v) = H(u,v)Vu,v € V'} of unitary

transformations is a unitary group.

Remark 5.2.4. 1. Given a basis for the unitary vector space V, the group

Un(L) ={U € GLn(L)|U = (UT)~1} of nxn unitary matrices is isomorphic to U(V

).
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2. Given a basis in V, a matrix representation M of a linear transformation 7 €

GL(V), and the matrix representation H of the Hermitian form H

then t € U(V) if and only if MT HM = H.

10

We shall restrict our focus to two Hermitian forms given by I =

AT JA = J,

01 and
J=0-0a.
1
0
a
b
We note that for any 4 = € Uz(L), we have
c
d
ANG 0 1\ a b 0
b df \1 0) ¢ d 1
c a\ a b 0
d b) ¢ d 1
@c+ac be+ ad 0
ad + b bd + bd 1

ad+bc=1,ac+ac=

bd + bd = 0.

76

1)
)
1)

1)

o}’

0}'

This shows that using the form J, A is unitary if and only if
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Similarly for the form I, A is unitary if and only if

ad+bb=1=cc+dd, ab

+cd=0.

5.3 Conjugacy classes of G

The conjugacy classes of any group partition the group and hence we begin this

section with a brief analysis of the order of the group G.

Proposition 5.3.1. Let G = {U € GL2(Fq2)|UT U = I} be the group of unitary
2 x 2 matrices over the field Fq2 using the Hermitian form I. Then |G| = (q - 1)q(q +
1)2

Proof. To prove this proposition, we first prove the claim
Claim 5.3.2. Let U € GL2(Fq2). Then U € G if and only if U is of the form

a b
— .

—bD aD
/ where |D| = DD =1andaa +bb=1fora, b € Fg

proof of claim 5.3.2."&”
T
By definition of G we show that U U = I where [ is the identity matrix of

GLZ(qu).
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a b a b

=
=
Il

—bD aD —bD ab

a —bD a b

b aD —bD aD

|
5
(aa+bb|p| a —ablD|
|

ab — ab|D|  bb + aaD

10
0 1

J

T
= U U=1and hence U € G.

« ”

&=
Suppose
a bU=
€ GLZ(FZq).
c d

Let D = det(U) = ad - bc. U € G implies that

U sl
— I — (2]
Thus,
O 1 d —b
p d) Pl-c 4

By equality of matrices and simplification we have that d = aD, ¢ = -bD.

Substituting into the expression for D above we have,

D=daD +bbD == ad + bb = 1.

Also,
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det(T"' U) = det(I)

det(UT) det(U) =1,

=>DD=1.

Thus,

where [D| =1and aa + bb = 1.
0

To complete the proof of proposition 5.3.1, we consider different cases

for which aa:r bb =1 holds.

Casel:a=0.

be L. ={z € Falzz = 1},theker-

aa+bb=1=> |b| =1 and hence
nel of the norm map. Since |L| = g + 1 we have, (q + 1) choices for b. Also, |D| =1
== D € L and hence there are (q + 1) choices for D. Since a = 0

implies the matrix only depends on b and D and thus there are a total of (g+1)>2

possibilities for U.
Case2:b=0.

By a similar argument as in case 1, we obtain (g + 1) possibilities for U.

Case 3: a 6=0and b 6= 0. b 6= 0 and aa + bb = 1 implies aa = 1.6 a 6= 0

implies aa € Fq\{0,1} and thus there are only g - 2 possibilities for aa and this

also determines bb. This gives (g + 1) choices for a and also for b. In this case, the
matrix U depends on the three variables a,b and D. Since D has (q + 1) possibilities
we have that there are (q - 2)(q + 1)3 for the matrix U.

Thus, putting all the 3 cases together we have
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|Gl=(q+ 1) +(q+1)+(q-2)(q+1)3=(q-1)q(q+ 1)

O

Now we analyze the conjugacy class representatives of the unitary group
G = Uz2(Fq2) using the Hermitian form J and show the total number of elements in
each conjugacy class.

Let

DERRERBERERXx0xyx0xy

ax=0 0, bxy=00:y6=0,cxy=00:y=6x deyy=010:y6=0,
DRRERRBREREO0OX0Xx0yyX

be elements of the unitary group G. The elements axbxycxy and dxy are

representatives of the conjugacy classes of the unitary group G.

Proposition 5.3.3. The conjugacy class corresponding to axhas q + 1 class

representatives.

BRx 0

Proof. ax= B [ € G and by definition, we have xx = 1 which implies
0 x

x € L, the kernel of the norm map in Proposition 3.2.8. As the order of Lis g + 1,
we have that there are g + 1 possible choices for x and hence for ax.

Computing the center of ax, we observe that for any

A@ab

A=0101
ARcd

in G, if we set D = ad - bc, we have

80



Aa, A~ = —
D \c d 0 = —c a

\(3:1: dx —¢ a

0 =x

This shows that axcommutes with every other element in G and hence it is in the
center Z(G) of G. However, the center Z(G) consist of all elements in ¢ whose
conjugacy class has exactly one element and thus, we have a total of 1(q + 1) = q

+ 1 class representatives. [

Proposition 5.3.4. The conjugacy class corresponding to bxy,y 6= 0 has (q - 1)(q +

1)2 elements.

bT

T,y

Proof. bxy € G is unitary if and only if 3 Jory=J

that

This implies

xx=1 = x € G,

_xy + x;= 0.

| k=

x

The last equality implies 7 — and this shows that the homomorphism @Q

=

defined in Proposition 3.2.6 maps¥ t© —Zwhere x € L. Proposition 3.2.8 shows

that there are precisely g - 1 of such? € I for which this holds. There are q+1
choices for x € L and thus, there are (q - 1)(q + 1) possible

choices for bxy.
Computing the centralizer of bxy, we have for any arbitrary

B B a

b
@@ e GwhereD=ad - bc6=0,
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B B c

d
a b Ty 1 [ d =b Ty
c d 0 =z D —c a \0 x

Dz — acy a’y \ (T Y

S =

—cy  aey+ Dz \0 T

By equality of matrices we have,

Dx - acy = Dx, = acy = 0.
-cly=0,y6=0=>c=0,
a%y = Dy, = D = a?, Dx

=x,=>D=1.

Now, D = a2implies that ad — bc = a?and hence d =a as c= 0.

a b
Cc(ba:.y) == S G|Cl,b (= qu
0 a Thereforeis the centralizer of

bx,y,y 6= 0.

The order of this subgroup is dependent on the number of choices available for
both a and b.

The element b has g choices as b can take the value 0 whiles a is such that aa = 1
shows that a € L and hence it has g + 1 choices.

Thus |Ce(bxy)| = q(q + 1). The size of the conjugacy class of each bxyis the index of

Cc(bxy) in G, that is

G (- Dglg+1)?
S Celbey)] ~ algrn @Dt

(G : Calbay)]

Xyxz
Further computations show that ~ if and only if the image of
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0x0x
y and z coincide in L under the map @, in other words y and z lie in the same

cosetl'y = ker(Q).
The cardinality of this set being q — 1, shows there are q - 1 repetitions in the
counting of the number of choices of bxy. Thus the number reduces to q + 1.

Therefore, there areatotal of (g +1) - (g-1)(g +1) = (q - 1)(g + 1)2elements

in this class. O

Proposition 5.3.5. The conjugacy class corresponding to cxy,y 6= x is of order

(g—2)q(g+1)?
2 )

T 1— B et
Proof. cxy € G is unitary impliesCey/Cry = J = 27 = L.
Since y 6= x and xy = 1, we have, xx 6= 1 and also x 6= 0. Thus counting the number

of choices for x gives (q - 2)(q + 1) and that of y is obtained from x by

using xy = 1.
01

For P = we observe that
10

01 x 0 01 y 0
PcxyP 1= AR ER B = E B.
PERPRRAEAR100y100x

EEBEx0  y 0

This implies that ~ and hence there arechoices for w
0 y 0 x
Cxy.
ab

Letg = € G,and D = ad - bc then gcxyg-1= cxyimplies

83



B@cd

a b x 0 d —b\ T (J\

1 —
"D\ g 0 y —c a 0 y )
Hence \ \
1 [ adx — cby —abx + aby xz 0
D cdr —edy  —cbr + ady ) 0 y
adx - cby = Dx
—-cbx + ady = Dy

—-adx +aby =0 cdx -

cdy=0

This implies that ad = D 6= 0 and hence a 6= 0 6=d, alsocd=0,ab=0and ch =0

= ¢ =0, b = 0. This computations show that the centralizer of cxyis given by

i)
CelCry)= € Gla,de€Fp
0 d

and is of order (q-1)(g+1) since there are q2-1 for a and d is determined from ad

= D. Thus,
G| (g — 1)g(g +1)?
G : Cileay)] = = =q(g+1)
| =Gl @ Dt ety
(g—2)(g+1) _ (g—2)q(g+1)?
Hence thereare 2 — (g + 1) =" o ients in this class. O

Proposition 5.3.6. The conjugacy class corresponding to dxy,y 6= 0 is of order

{g—1)q?(q+1)*
2 .

T o—
Proof. dxy € G is unitary if and only if%ey/dey = Jiyhich implies

xx+yy=1, (5.1) xy+yx=0. (5.2)

84



Equation 5.1 + Equation 5.2 = (x + y)(x + y) =1 = x + y € L and Equation 5.1 -

Equation5.2 = (x-y)(x-y)=1=x-y € L. To count x

and y we consider two cases:
case1:x=0.

Ifx=0then yy =1 = y € L and hence there are q + 1 choices for y. case 2
:x6=06=y.

Let u,v € L and set =" and ¥ = “7" such that x +ty€L.

If x 6= 0 and y 6= 0 then we have u 6= *v and hence there are q + 1 choices for v
and g + 1 -2 =q - 1 choices for u. Thus, there are (g - 1)(gq + 1) choices in this
case.

Therefore putting all the two cases together gives (g+1)+(q-1)(q+1) = q(q+1)
choices for dxy.

To avoid double counting, we divide by 2 as computing

shows
that

<
—~

l
e
5

qlg+1) .
Thus, there are™ 2 choices for dxy.

a
b
Suppose thatg = € G then solving gdxyg~1 = dxy for a,b,c and d
c
d

yieldsa=dand b =c.

This shows that the centralizer of dxyis given by
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a b
CG(d:uy) = € G|a,b € qu

We have that aa + bb = 1 and ab + ab = 0.
To compute the order of C¢(dxy), we consider 3 cases for counting a and b.

casel:a=0.

If a = 0 we have bb =1 = b € G and hence there are g + 1 choices for b. case 2 :
b=0.

With a similar argument as in case 1 we obtain g + 1 choices for a.
case 3:a 6=06=D.

Ifa 6= 0 and b 6= 0 then a+b € L and by a previous argument we have (g-1)(g+1)

choices.

Thus, there are 2(q + 1) + (g - 1)(g + 1) = (g + 1)2choices in all.

~(g—1glqg+1)*

: Celd = =(q—1)q.
(e+1)? _ (a=D¢*(g+1)*
Therefore, there are (¢ — Dg- %57 = =5 clements in the conjugacy
class corresponding to dxy. m

The table below shows the number of elements in each conjugacy class.

Table 5.1: Conjugacy Class Representative of G.

Representatives | No. elements | No. classes | Total
elements
= 1 q+1 qg+1
bxy (@-1(q+1) (g+1) (q-1)(q +1)?
Cxy qlg+1) | HLD T -2
dry (a-1)q sl D¢t

We observe from Table 5.1 that the total number of conjugacy classes is
(g + 1)2. This implies there are (q + 1)%irreducible representations of the group

G.
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5.4  Irreducible characters of U;(F;2)

In this section we give a brief account of the irreducible characters of the group

G = U2(Fq2) and to do so we will need some of the major subgroups of G. We

start with the Borel subgroup B of G which is defined as

a b
B = € Gla,b,d € Fp

0 d

Counting the number of elements in B requires counting the choices available for
the elements a,b,d of Fq.. Using the properties of the unitary group G established
in the previous section and with a careful examination we observe that |B| = (q -
1)q(q +1).

Now, we consider the permutation representation of G which has dimension g+1.

This representation contains the trivial representation.

Let V be the g-dimensional representation obtained from the permutation

representation of G. The character yvof Vis such that

xv(ax) =q, xv(bxy) =0, xv(cxy) = 1, xv(dxy) =-1.

Computing the inner product

(xv,xv) = %I > xvig)xv(g)

geqG

J

we have hyv,yvi = 1 which implies that Vis an irreducible representation.

. * * *
Let - qu — C be a 1-dimensional character onFq“‘.

We can define a 1-dimensional representation of G as

Un(A) = n(det(4)).
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For any A € G, det(A) = 1 and hence giving rise to q + 1 forms of such 1-

dimensional representation, Uj.
The values of the characters on the representative of the conjugacy classes listed

above are given as

Xun(ax) = n(x)% xui(bxy) = n(X)% xvi(€xy) = n(XIn(), xvs(dxy) = n(x? - y?).

Also, we have a g-dimensional representation V/; of G given by the tensor product
of Vand Uy

Vn: V® Ur].

The character yv, of V/; takes the following values on the conjugacy classes

dx bxy Cxy dxy

v | qnx)? | 0 [ n(In(y) | -n(x*-y?)
Counting the number of irreducible characters there are of this type, we observe

that there are g + 1 as yu,has a total of g + 1 candidates.
To obtain the other irreducible characters we consider other representations that
can be obtained from inducing from larger subgroups of G.

Thus we define our next subgroup of G as

a b
D= la,b,d € IF 2
0 d

Letn and  be two 1-dimensional characters ont'e2 Let 1)
: D —— C*defined by
a b
g = n(@)B(d)
0 d
be a 1-dimensional representation on D. By lifting this representation to B, we are
able to then construct a (q + 1)-dimensional representation Wj;which is induced
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from B to G. This induced representation Wjshas the character yw,swhich takes
the following values on the conjugacy classes.

axy bx,y Cxy dx,y

wie | (@+ Dn(x)¢x) | n(x)4(x) | n(x)<) +n)¢(x) | 0

Suppose a is the generator offvand ¢ be a (q +1)th root of unity. Then careful

examination shows that Wh.is irreducible if and only if {(a) 6=na(n). Counting

(g—2)(g+1)
the number of irreducible characters of this type shows that there are —5"

irreducible characters. Thus, we have obtained

2q+1) + (q2)2(f1+1) _ (q+1)2(q+2)

2 _ (a+1)(g+2) _ qlgt+1)
irreducible characters and hence there are still (4 ) - 2 — T2 irre-

ducible characters to be found.

H = ! € G
Let L be a subgroup of G. The order of this group is (q+1)2
and hence [G: H] =(q - 1)q

Another way to obtain a new character is by considering the induced
representation from the subgroup H to G.

Given two distinct 1-dimensional characters 7,{ on the subgroup L, we obtain a

1-dimensional representation ¢ : H -— C* defined by

AR x y

QBR e =n(x + y){(x - y)
ARy x

If we induce the 1-dimensional representation ¢ to G we obtain a q(q -
1)dimensional representation Indg whose character takes the following values
on the conjugacy classes of G:

(] ax bx,y Cxy dx,y

xindp | (q=D)gn(x)¢(x) | 0 | 0 | n(x+y)d(x~-y)+n(x-y)(x+y)
Computing the inner product we obtain hyindg,xindei = g —1. This implies that Indp

is not irreducible.
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To obtain an irreducible representation we first compute the tensor product of V
and Whp,e. The character of this representation V @ Wy¢take the following values

on the conjugacy classes:

ax bx,y Cxy dx,y

xewe | q(@+1)nx)¢x) | 0 | n(x)BU) +nk)¢x) | 0

Now, let us consider the character Xy ¢ given by

Xn¢= XV Wye— XWye— XIndo.

This character is of dimension q - 1 and take the following values on each of the
conjugacy classes :

dx bx,y Cxy dx,y

Xne | (@-Dn)4x) | -n@x)4x) | 0 | nx+y)l(x-y) +nx-y)(x+y)
We observe that Xj¢is irreducible as hXy,¢Xnd = 1.

g(g+1)

Counting the number of such characters gives = 2. Summing

all the number of irreducible characters we get

(q—2)(g+1)  qlg+1)
> i

2(q+1) + = (g +1)?

which is the same as the number of conjugacy classes.

5.5 Separating sets

Proposition 5.5.1. Let W be an isotypic subspace of the vector space V, and let x

be the character of the irreducible subspace corresponding to W. Define

R (I RS
Yo Tel ZX(!J )g-

geG

Then the isotypic projection of h € V onto W is given by yoh.
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Remark 5.5.2. The computational complexity of these projections can be
reduced if we consider a separating set for the group G with respect to the vector

space V.

Definition 5.5.3. Let G be a group and V be the group algebra CG. Let {Ti}i—1be a
collection of simultaneously diagonalizable linear transformations of V whose
eigenspaces are direct sums of the G-invariant subspaces of V. For each Ginvariant
subspace Vi, let mi= (Ai,..,Ain) be the n-tuple of eigenvalues where

1 <j <n, and Ajjis the eigenvalue of Tjassociated to Vi. If mi=6 mxwhenever Vi6= Vi,

then the seti Li }i-1 is said to be a separating set for V.

Given a separating set {T:}i-1 for a vector space V, the computation of

the isotypic projections of each h € G can be obtained as follows :
1. project h onto the eigenspaces of T1.
2. project the result from 1 onto each of the eigenspaces of T.
3. project the result from 2 onto each of the eigenspaces of Ts.
4. continue the projection in this manner till the eigenspaces of Th.

After projecting onto the eigenspaces of T, each eigenspace projection becomes

a different isotypic projection of h[?].

5.6 Modified character table

In this section, we examine one of the ways of constructing a separating set of a
finite group G. This method, the class sum method, uses eigenvalues that a class
sum associates to the irreducible characters to obtain the separating set based on

the class sums which can actually distinguish each of the irreducible characters.
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Definition 5.6.1. Let G be a finite group with a conjugacy class C. The class sum C
of C is the sum of all elements of the conjugacy class C. That is,

=Yg

geC

Remark 5.6.2. The class sum C is an element of the center Z(CG) of the group

algebra CG.

Since, the separating sets are obtained by examining the eigenvalues a
class sum assigns to the irreducible characters, let us probe into how this

eigenvalues are obtained.

Suppose W is a n-dimensional irreducible representation and let Aw (C) be the

eigenvalue C assigns to W. Knowing that the trace of a linear transformation is the

sum of its eigenvalues, we have

Tr(_C) = nAw (6
Also,

Tr(C) = Tr(g) = IClxw(g

geC )foranyg € C.

By comparing the two expressions for Tr(C) we obtain a formula for computing

the eigenvalue Aw (C).

Proposition 5.6.3. Let W be an irreducible representation of G with corresponding

character . Then the class sum of the conjugacy class C will assign the eigenvalue

| x(9)

Aw (C) =|C . ,
wiC) =1 dim (W) forany g € C,

to W.
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Definition 5.6.4. Given a character table of a group G with s conjugacy classes

C1,..,Cs, the modified character table of G is an array whose (ij)th entries are

1G]

obtained by scaling the (ij)th entry of the character table ofG by x.(1) where i,j €
{1,2,..,s}. This table encodes informations about the eigenvalues that each class sum

assigns to each irreducible representation.
Definition 5.6.5. The semi-modified character table of a group G is an array whose
elements are obtained by dividing the ith row of the character table of G by yifor 1

<i<s.

Recall from Theorem 4.2.25, the character table of the subgroup G of Sa.

M 1234 | 123) | (132)
x1| 1 1 1 1
x| 1 4 e |le 3
x3| 1 1 o5 | eTHN
xs| 3 -1 0 0

Recall that the conjugacy classes C1, C2, C3and Csare of sizes, 1,3,4,and

4 respectively and the degrees of the 4 irreducible representations are 1,1,1, and

3.

Thus, to obtain the modified character table of G we scale each (ij)th entry by
151

xi((1) with i,j € {1,2,3,4}.

Direct computations yields: The class sum corresponding to the conjugacy classes

(1) | (12)(34) | (123) | (132)
X1 1 3 4 4
2 1 3 L"i A
gt 4e; 4e s
X3 1 3 4~ | 4o F
X4 1 -1 0 0

Table 5.2: Modified character table of G C S4.

C1, C2, C3and Cs4is given by

C1=(1),
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C2= (12)(34) + (13)(24) + (14)(23), C3 =
(123) + (134) + (243),

Cs+=(132) + (143) + (124) + (234).
From Table 5.2 we observe that, the set of all class sums {C1,C2,C3,C4} form a

separating set of size 4 as it assigns distinct 4-tuple of eigenvalues to each of the
irreducible representations of G.

However to reduce the computations required for the eigenspace projection, it is

more efficient to consider separating sets of minimal sizes.

Upon examining the 3 non-trivial class sums C2,C3,C4, we note that the class sum

Cs or Csassign distinct eigenvalues to all 4 irreducible representations and hence

{C3} or {C4} form a separating set of size 1.

Also,

{C2,C3,C4},{C2,C3},{C3,C4},{C2,Ca}
are separating sets of sizes 3,2,2 and 2 respectively.

Proposition 5.6.6. Recall the character table of the quaternion group Q from
Proposition 4.2.26 Using Definition 5.6.4, we construct the modified character

v R i i ¢

R

x2 | 141 | 17- | -
111
X311
1 1
s |1 1 |- |-
1 {1

x 12027000

table below:

112 2 2
2 l1/ 1 2 - |-

94



x3 1,1 |- 2]-
2 2
xa 1, 1 |- |-
2 |2
xs 1, -170,0/]0

Table 5.3: The modified character table of the quaternion group Q.

A meticulous examination of Table 5.3, shows that pairwise
combinations of the class sums, -1 +—] +] and -K+K assign distinct pairs of
eigenvalues to each irreducible representations of Q.

In particular, the set {-] + /-K + K} assigns to y1 the pair {2,2}; to y2 the pair
{-2,-2}; to 3 the pair {2,-2}; to y4 the pair {-2,2} and to ys the pair

{0,0}.

Therefore, the set {-] +],-K +K},{-I +1,-] +J} and {-] +]-K +K}

are separating sets of size 2.

These give the minimal separating sets as there are no separating sets of size 1.
This is because, none of the individual class sums independently distinguish all
the 4 irreducible representations with it's eigenvalues.

Nevertheless, there are separating sets of sizes 3,4 and 5.

Proposition 5.6.7. Let W be an isotypic subspace of CG, and let y be the character

of the irreducible submodule corresponding to W. Define

2= %IR > x(g7 g

geG
The isotypic projection of fonto W is then given by zf.

Definition 5.6.8. A separating set G with respect to V is a set of simultaneously
diagonalizable linear operators {T1,.Ts} of CG that distinguish the isotypic
subspaces of V with their eigenspaces. Each isotypic subspace will equal exactly one

intersection of eigenspaces E1N ... N Es, where Eiis an eigenspace of Ti. This means
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that if Wiand Wjare distinct isotypic subspaces of V then some Tkassigns a different

eigenvalue to each of them.

Proposition 5.6.9. Let W be irreducible module of G with corresponding character
Xx- Then the class sum of K will assign the eigenvalue

x(g

Ay (CK) = K| o7

to W where g is any element of K.

5.6.10 Separating Sets for Direct Products of Groups

Let G and H be two finite groups and let {x1,....xs} and ..., ):be the complete set of
irreducible characters of G and H, respectively. Then a complete set of irreducible

characters of G x H is given by

{xij}1siss, 1sjst

and if g € G and h € H we have yipj(g,h) = xi(g)i(h).

5.6.11 Separating Sets for the Dihedral Group

Theorem 5.6.12. {C"} form a separating set of minimal size for the dihedral group

DZn.

Proof. Case 1:n is odd. Then the character table of Dznis as follows:

1 r(1<a<®?) s

1 1 1 1

1 1 )

X2 1

W 2 2.cos(% ja) 0
(1<j<n3)
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We can construct the semi-modified character table easily:

1 r(1<a<™t) | s

1 1 1 1

1 1 )

X2 1

W 2 cfos(%ja) 0
(1<j=<=3h

Now we can see that class sum corresponding to s serves to distinguish y1 and y2
from each other and from all the 1. Now we show that the class sum
corresponding to r will distinguish all of the 1; from one another. Suppose Cr

assigns the same eigenvalue to yxand yy. Then this implies that

2mx 2my
(30.5'(—) = cos(—)
n n /.

O

Theorem 5.6.13. For any number q relatively prime to n,{C™,Cs} will form a

separating set for the dihedral group D2n.

Proof. First we will show that all the ijare distinguished from one another by

these class sums. From the proof of theorem 5.6.12, we know that it suffices to

. o 2mig i} 27r?s'q)
. ;I —1 Cos = co . N o
show that if 1 <{jk} < ??2 , then ( L ) ( " Jimplies j = k. If the
former is true, then there are two cases to consider.

2m5q 2nkq QM
Case]:( 7 )+( ' )+ o

for some m € Z. Then (j = k)qg = mn and since

n and q are relatively prime we have that n|(j - k). However, since n and q are

n—1

relatively prime we have that n|(j—k). However,J» k€{l,..."7} and thus their

difference is bounded above by %

Case 2:(27’?{;) N _(ZTTM) + 2mm.

: . n—1 n—1 __
since ged(n,q) = Ln|(j +k). But 7 T# = 55~ + "5~ = —1 g0 this is impossible.

Then we have that (j + k)m = mn and thus,
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Thus Creassigns a different eigenvalue to each irrep i;, regardless of whether n is
even or odd. In the case where n is odd, we still have y1 and y2 distinguished from
each other and from all the y;as before, so the parity of q is irrelevant. In the case
where n is even, it can be seen from the table that we must have q odd; otherwise,
we will not distinguish y1 from ys3 or y2 from ys with the two class sums. This is
already known to be true because n is even and gcd(g,n) = 1. Thus {C",C*} suffices

as a separating set for the dihedral group when ged(n,q) = 1. [J

5.7 Separating sets of the unitary group U(F;2)

In this section,we construct the character table of Uz(Fq:) from the irreducible
characters which we briefly discussed in section 5.4 but carefully derived in [?],
and later construct the modified character table in order to obtain the separating

sets of the unitary group Uz(Fqz).

Let (% Cbw,Ce,Cd% be the class sum corresponding to the conjugacy
classes of axbxy,cxyand dxyrespectively. The character table of Uz(Fq¢:) is given as

ax bx,y Cxy dx,y
XUy n(x)? n(x)? nxny) nx*-y?)
XV qn(x)? 0 nxn) -n(x%-y?)
xwie | @+ Dnx)¢(x) | n(x)<(x) | n(x)S0) + n(y){(x) 0
Xne | (@ - Dn)8x) | -n(x)¢(x) 0 =[n(m)¢(n) + n(n)¢(m)]

Table 5.4: Character table of G

The dimension of each of the irreducible representations of G are 1,q,q +1,q -1
and m = x + y and n = x - y. Using this dimensions and the character table, Table
5.4 we construct the semi-modified character table for G:

ax bx,y Cxy dx,y
XU n(x)? n(x)? n((X))fz()y) n(x? ;yf)
2 n(zin(y) n(z?—y?)
e | 0l 0 y ~1E=A)
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Xwz. | n(x)2(x) n(f;erl(fS) n(I)C(y;H(yJC (z) 0
v ) _n(-;)fl(r—) 0 _ [v:(m)C(néj(n)é(m)}
Table 5.5: Semi-modified character table of G.
bx,y Cxy dx,y
XU n(x)? nx)n) n(x*-y?)
XV 0 n(z)n(y) _ nlz?—y?)
q q
n(z)¢ () (@) (y)+ny)¢(x) 0
X Wi q+1 q+1
X0+ _?](.:;)_Cl(z) 0 " 4 [n(m)C(n{iiﬁ(n)c(m)]

Table 5.6: Separating Set Table

From Table 5.5, we observe that the class sum corresponding to bx,y,cxy or
dxy assigns distinct eigenvalues to all four irreducible representations and hence
distinguishes each of the irreducible characters. This, by definition of a separating
set serves as a separating set of size 1. Further investigation, shows that the class
sums Cbw,Cc, and C%, altogether and in a pairwise combination, assign distinct
list of eigenvalues to each irreducible character of G. Thus, the sets {Cbxy,Ccx},
{Cesy,Casy}, {Cbry,Cary} and {Cbsy,Cexy,Cdry} are separating sets of size 2,2,2 and 3

respectively.

Proposition 5.7.1. The sets {CP~}, {C»} and {C%} are minimal separating sets for

the unitary group U2(Fqz).
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Chapter 6

Conclusion

6.1 Introduction

In this, we conclude on the overview of [?] and the objectives of the thesis.

6.2 Review

In the review work of [?] of separating sets in chapter 4, separating sets of several
different groups, including products, the dihedral group and the alternating
group were examined.

In the aforementioned chapter, separating sets of minimal size for the
dihedral group that correspond to minimal sets of generators for the group was
see. [t was also shown that the structure of CAnis closely connected to that of CS»
and various methods for achieving a decomposition with the use of separating
sets were examined.

In [?], conjecture 5.1 seems likely to hold for all n, but remains a challenge
to verify. The separating set given by the aforementioned conjecture is suspected

to be of minimal size.

6.3 Summary
The cardinality of the group Uz(Fq2) was determined as (q - 1)q(g + 1)2in [?] .

For each conjugate class their cardinality is given as A_(q + 1),bxyhave element

- (¢=2)q(a+1)
A (q - 1)(q + 1)2,elements cxyis of order 3" and that dxyhas an order of

(g—1)g%(g+1)
3 )

The character table was constructed with each conjugacy class.
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Our build up to character theory in chapter 3 enabled us to efficiently
examine the separating sets of the quaternion group Q and the subgroup G c Ssin
chapter 4. The knowledge gathered was employed in probing into the irreducible
characters presented in [?] and thus by constructing the semi-modified character
table we were able to extract the separating sets for the unitary group Uz(Fgz). Our
investigations lead to the conclusion that, the minimal separating sets of the
group Uz(Fq2) are the individual class sums corresponding to the conjugacy

classes of the representatives bxy,cxyand dx,y.

6.4 Furtherwork

In attempt to prove the aforementioned conjecture would intriguing and
challenging future direction of research [?]

It would be interesting to look at other groups which have a minimal set
of generators which have a minimal set of generators for which the corresponding
class shows form separation sets. Further studies can be conducted into
irreducible characters in 2-dimensional and the separation of Uz groups. The
young tableaux of the representation can be looked at.

REFERENCES
[1] Ayekple Elikem Yao (2006). Representation theory of finite groups.
Unpublished Master’s thesis,Department of Mathematics, Kwame Nkrumah

university of Science and Technology,Kumasi,Ghana.

[2] Banister Melissa (2004). Separating Sets for the alternating and Dihedral

Groups.PhD thesis.

[3] Campbell John J. (2014). The irreducible characters of 2 x 2 unitary matrix

groups over finite fields. Master’s thesis, University of Alberta.

[4] Derksen Harmand and Kemper Gregor (2002) . Computational invariant the-

101



ory.

[5] John D Dixon(1970). Computing irreducible representations of groups.
Mathematics of Computation, 24(111):707-712.

[6] Dufresne Emilie(2009) . Separating invariants and finite reflection groups.
Advances in Mathematics, 221(6):1979-1989.

[7] Dufresne Emilie(2013) . Finite separating sets and quasi - affine quotients.

Journal of Pure and Applied Algebra, 2(217):247-253.

[8] Faraut Jacques (2008). Analysis on Lie groups: an introduction, volume 110.

Cambridge University Press.

[9] Fulton William and Harris Joe (1991) . Representation theory. a first course.

Graduate Texts in Mathematics, 129.

[10] TItzykson Claude and Nauenberg Michael (1966). Unitary groups:
Representations and decompositions. Reviews of Modern Physics, 38(1):95
[11] Katriel] (1991). Some useful results concerning the representation theory

of the symmetric group. Journal of Physics A: Mathematical and General

24(22):5227.

[12] Moshinsky Marcos (1963). Bases for the irreducible representations of the
unitary groups and some applications. Journal of Mathematical Physics,

4(9):1128 -1139.

[13] Rotman Joseph ] (2006). A first course in abstract algebra with

applications. AMC,10:12.

[14] Steinberg Benjamin (2009). Representation theory of finite groups.

102



[15] Thiem Nathaniel and Vinroot C Ryan (2009). Gelfand - graev characters of

the finite unitary groups. the electronic journal of combinatorics, 16(1):R146.

[16] Webb Peter (2007). Finite group representations for the pure
mathematician. The manuscript of the book is available on the author web page

http://www. math.umn. edu/~ webb/RepBook/index. html, 74:76.

[17] Wikipedia (2015). Compact group - wikipedia, the free encyclopedia. [On

- line; accessed 15 - September - 2015]

[18] Wikipedia (2015). Lie algebra - wikipedia, the free encyclopedia.On - line;

accessed 15 - September - 2015]

[19] www.cmth.ph.ic.uk/people/d.vvdensky/groups/chapter 9.pdf.[18 -

September - 2015]

103



