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ABSTRACT 

 

This thesis seeks to address the problem of inventory management Mantrac Ghana Limited. The 

objective of this study includes: 

(a)  To model Mantrac Ghana Limited’s inventory cost as Retroactive Holding 

             Cost   problem.   

(b) To determine optimal order quantity, reorder point and optimal total cost  

             of Mantrac Ghana Limited using Retroactive Holding Cost increase. 

     

Inventory models in which the demand rate depends on the inventory level are based on the 

common real-life observation that greater product availability tends to stimulate more sales.  
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 This thesis considers the inventory policy for an item with a stock-level dependent demand rate 

and a storage-time dependent holding cost.  

  

The holding cost per unit of the item per unit time is assumed to be an increasing function of the 

time spent in storage.  

 

Two time-dependent holding cost step functions are mentioned: Retroactive holding cost 

increase, and incremental holding cost increase. Procedures are developed for determining the 

optimal order quantity and the optimal cycle time using Retroactive holding cost increase. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The raw materials, work-in-process goods and completely finished goods that are considered to 

be the portion of a business's assets that are ready or will be ready for sale is inventory. Inventory 

represents one of the most important assets that most businesses possess, because the turnover of 

inventory represents one of the primary sources of revenue generation and subsequent earnings 

for the company's shareholders/owners.  

Possessing a high amount of inventory for long periods of time is not usually good for 

a business because of inventory storage, obsolescence and spoilage costs. However, 

possessing too little inventory isn't good either, because the business runs the risk of losing out 

on potential sales and potential market share as well. 

 

Inventory management forecasts and strategizes, such as a just-in-time inventory system, can 

help minimize inventory costs because goods are created or received as inventory only when 

needed.  

Inventory modeling is one of the most developed fields of operations management and much 

space has been devoted to this topic in the management science, operational research and 

practitioner oriented journals. 
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One of the basic implicit assumptions of inventory models has been the infinite shelf life of 

products while in storage, that is, a product once in stock remains unchanged and fully usable for 

satisfying future demand. 

Management scientists have been applying quantitative methods to help inventory managers 

make two critical decisions: how much inventory to order, and when to order it. With low value 

items, the how much to order and when to order can be based on simple heuristics or rules of 

thumb. 

In traditional inventory models, the demand rate is assumed to be a given constant. Various 

inventory models have been developed for dealing with varying and stochastic demand. All these 

models implicitly assume that the demand rate is independent, i.e. an external parameter not 

influenced by the internal inventory policy. 

  In real life, however, it is frequently observed that the demand for a particular product can 

indeed be influenced by internal factors such as price and availability. The change in the demand 

in response to inventory or marketing decisions is commonly referred to as demand elasticity. 

Most models that consider demand variation in response to item availability (i.e. inventory level) 

assume that the holding cost is constant for the entire inventory cycle. This thesis presents an 

inventory model with a stock-level dependent demand rate and a variable holding cost. In this 

model, the holding cost is an increasing step function of the time spent in storage. Two types of 

time-dependent holding cost increase functions rate considered: Retroactive increase and 

incremental increase. For each type, a simple algorithm that minimizes the total inventory cost 

(TIC) is developed for calculating the optimal order quantity and associated cycle time. 
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    The step structure of the holding cost function may be unique since it is the representative of 

many real- life situations in which the storage times can be classified into different ranges, each 

with its distinctive holding cost. This is particularly true in the storage of deteriorating and 

perishable items such as food products. The longer these food products are kept in storage the 

more sophisticated the storage facilities and services needed, and therefore, the higher the 

holding cost. For example, three different holding cost rates may apply to short-term, medium 

term and long term food storage. 

1.2        Brief History of Mantrac Ghana Limited 

          Mantrac Ghana Ltd headquartered in Accra is the authorized dealer for Caterpillar 

products in Ghana. It provides Caterpillar machines for wide and varied applications in the 

construction, agricultural and mining development sectors of the economy and a complete range 

of lift trucks and warehousing equipment for material handling needs.  

 

They also provide Caterpillar engines and generators for the oil, industrial marine, power 

generation, agriculture and pump applications. In addition, they supply the Olympian range of 

generators for small-scale industries and residential applications.  

 

Mantrac Ghana also supplies Kenworth trucks, Ingersoll-Rand drilling equipment and Perkins 

engines. They provide full product support service, ranging from simple component repairs to 

complete rehabilitation of machines. 

Mantrac Ghana Ltd. is the sole authorized dealer for Caterpillar Products in Ghana. Mantrac 

Ghana Ltd. distributes and supports the full range of CAT construction equipment including 

Wheel Loaders, Skid Steer Loaders, Dump Articulated Trucks, Backhoe Loaders, Excavators, 

Motor Graders, Track-Type Tractors and other products. Moreover, Mantrac Ghana Ltd. 

distributes Mining, Power Systems and Forklifts, Material-Handling & Warehousing equipment 
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for a wide range of industries and applications. Mantrac Ghana Limited is also the sole approved 

supplier of genuine Caterpillar parts, which are available at competitive prices. Highly-qualified 

employees work through an extensive branch network that includes a head office in Accra and 

branches in Kumasi, Takoradi and Tarkwa. Mantrac service centers are equipped to perform total 

overhauls, there are also qualified service engineers, with necessary diagnostic and repair tools, 

can be dispatched at any time to customers' 

  

 

Figure 1.0 Some types of  Hydraulic Hoses 
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Figure 1.1   Some Equipment of Mantrac Ghana Limited 
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1.3      Problem Statement 

The main problem facing the company especially in Ghana as an example, is the expected 

marginal holding cost incurred by maintaining excess inventory due to over-ordering; and the  

expected backlogging cost incurred by not satisfying demand on time due to under ordering. 

The company currently faces the potential problem of setting optimum safety stock level for an 

inventory-level dependent demand rate and a time dependent holding cost.  The company’s 

strategy is good for safety stock, but they may order too many quantities which will lead to 

increase in holding cost and the risk of losses through obsolesce or damages or they may order 

too small which will also increase the risk of lost sales and unsatisfied customers. 

 This study would demonstrate the need to set up a master ordering schedule considering the 

imprecise nature of forecasts of future demands and the uncertain lead time of the manufacturing 

process. 

1.3.0    Objectives 

   The objectives of the study are: 

    1     To model Mantrac Ghana Limited’s inventory cost of Hydraulic Hoses as Retroactive            

            Holding  Cost problem. 

    2     To determine optimal order quantity and optimal total cost of Hydraulic Hoses in Mantrac   

            Ghana   Limited using Retroactive Holding Cost increase Solution Algorithm. 
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1.4    Methodology 

 The problem under study is how to determine the optimum quantity of goods to order, the cost 

and the period within which to order to maximize profit. 

The application of inventory model will allow unit holding cost values to vary across different 

storage period. Variable unit holding costs are considered in the model in determining the 

optimal inventory policy. 

The holding cost per unit is assumed to increase only when the storage time exceeds specified 

discrete values. In other words, the holding cost per unit time is an increasing step function of the 

storage time. Two types of holding cost step function are considered: Retroactive Holding Cost 

Model and Lot – size model, for forecast and simulation methodology will be used to get the 

optimal solution. In retroactive increase, the unit holding cost rate of the last storage period is 

applied to all storage periods.  

Data was obtained from the inventory department of Mantrac Ghana Limited .The following data 

was obtained:   Stock list, Cost per unit item, Data on demand, Data on supply, Inventory holding 

cost. 

Mathematical software; Matlab was applied to solve the equations. Materials from the internet, 

books on inventory from KNUST library, papers  journals on inventory were used in carrying out 

this thesis. 
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1.5  Justification 

   Most companies in Ghana incur much cost as a result of keeping excess inventory in the 

warehouse. The operating cost of these companies keeps on increasing as the years go by. Also, 

some of these companies do not deliver services to their customers on time as a result of 

inadequate stocks hence the need for proper investigation into inventory control. 

Furthermore due to unavailability of factories which produce some essential goods that 

consumers need, some companies (retailers and wholesalers) have their goods run out of stock 

thereby affecting the economic and social survival of the population who depend solely on these 

companies. In addition, scientific research is an effective tool in finding antidotes to most 

problems facing both developed and developing nations hence the need for students to acquire 

the skills in academic research to assist in developing ones country. 
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1.6         Organization of the Thesis 

  This thesis is organized as follows; the Background of the study, the Problem Statement and the 

Objective of the study. This is followed by the Methodology and the Justification of the thesis. 

Relevant literature is reviewed in Chapter 2 whilst chapter 3 contains the methodology which 

clearly explains the mathematical tools that are applied and chapter 4 deals with the analysis and 

modeling of data. 

Chapter 5, finally, contains the conclusions and the recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0  Introduction 

The development of modern inventory management principles began when Harris (1913) derived 

the Economic Order Quantity (EOQ) formula. EOQ assumes that demand occurs at known, 

constant rate and supply fulfills the replenishment order after a fixed lead time. Unfortunately, 

the real world is not as ideal as that. In reality, demand rate is rarely constant; hard-to-predict 

market is common in most practical situations.  

Also, unpredictable events in supply systems can cause and create unpredictable delays in 

replenishments. Moreover, in current times when outsourcing is at the centre stage, complex and 

longer supply chains magnify the length and variability of lead times (Welborn, 2008). Although 

in the early days researchers acknowledged the necessity for considering uncertainties present in 

the real world, the rigorous work on inventory control models with stochastic features really 

began in 1950s. The classic book by Hadley and Whitin (1963), comprehends the research work 

done in this field to that date. This fundamental research done in those early days has had a 

pivotal effect on the subsequent developments in the field of inventory theory. 
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  2.1 Inventory Models 

The aim of inventory management is to minimize total operating costs while satisfying customer 

service requirement. In order to accomplish this objective, an optimal order policy will be 

determined by answering to questions such as when to order and how much to order. The 

operating costs taken into account, the procurement costs, the holding costs and the shortage 

costs which are incurred when the demand of the client cannot be satisfied (either lost sales costs 

or orders costs).                              

There exist different inventory policies namely: periodic review policy and the continuous 

review policy. The first policy implies that the stock level will be checked after a fixed period of 

time and an ordering decision will be made in order to complete the stock to an upper limit ( 

order up to point), if necessary. In the second inventory policy, the stock level will be monitored 

continuously. 

Deterioration refers to decay, damage or spoilage. In respect of items of foods, films, drugs, 

chemicals, electronic components and radio-active substances, deterioration may happen during 

normal period of storage and the loss is to be taken into account where we analyze inventory 

systems. 

There have been various models proposed for stock-level dependent inventory systems. Baker 

and Urban (1988a) investigated a deterministic inventory system in which the demand rate 

depends on the inventory level described by a polynomial function. A non-linear programming 

algorithm is utilized to determine the optimal order size and the reorder point. Urban (1995) 

investigated an inventory system in which the demand rate during stock-out periods differs from 

the in-stock period demand by a given amount. The demand rate depends on both the initial 
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stock and the instantaneous stock. Urban formulates a profit-maximizing model and develops a 

closed-form solution. 

Datta and Pal (1990) analyzed an infinite time horizon deterministic inventory system without 

shortage, which has a level dependent demand rate up to a certain stock level and a constant 

demand for the rest of the cycle.  Paul et.al (1996) investigated a deterministic inventory system 

in which shortage are allowed and fully back logged.  The demand is stock dependent to certain 

level and then constant for the remaining periods.  A flow chart is provided to solve the general 

solution. 

One of the terminal conditions used in the development of the Datta and Pal model was that the 

inventory level fall to zero at the end of the order cycle (i.e. Ttwheni  0 ).  In an inventory 

system that possesses an inventory-level-dependent demand rate, this may not provide the 

optimal solution.  It may be desirable to order large quantities, resulting in stock remaining at the 

end of the cycle, due to the potential profits resulting from the increased demand.  This 

phenomenon is discussed in Baker and Urban. 

Pal et al. (1993) developed a deterministic inventory model assuming that the demand rate is 

stock dependent and that the items deteriorate at a constant rate . 

Classical inventory models found in the existing literature generally deal with constant demand 

rate of the item or product. Evaluation of an inventory system with such a demand rate was first 

considered by F.W Harns (1915). He formulated the well-known known square root formula      

q = √2𝐶3𝐷/𝐶1 for economic order quantity (EOQ) of the item; C1, C3, D are the holding cost, 

replenishment cost and demand rate, respectively. After the pioneering attempt by Harns, several 

other researchers have extended his constant demand –rate to many other interesting and realistic 
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situations. A description of these models can be found in Naddar or any other standard literature 

on the subject.As time has progressed, inventory models have been developed in which the 

demand rate is not required to be constant. Such studies have been undertaken by Siver and 

Meal, Donaldson,Silver and Datta and Pal and Mukherjee. 

Very recently, it has been observed that in some situations the demand may be influenced by the 

on-hand inventory; that is the demand rate may go up or down if the on-hand inventory level 

increases or decreases. Such a situation generally arises for a consumer- goods type of inventory. 

In this connection, it would not be out of place to refer to the observation made by Levin et al. 

around it. It is a common belief that large pile of goods displayed in a supermarket will lead the 

customer to buy more” .Later, Silver and Peterson also noted the sales at the retail level tend to 

be more proportional to the inventory displayed. 

Among the important papers published so far with inventory-level-dependent demand rate. 

Mention should be made of works by Gupta and Vrat, Mandal and Phaujdar, Baker and Urban. 

Gupta and Vrat have discussed a situation where the demand rate has been assumed to depend on 

the order quantity, whereas Mandal and Phaujdar have discussed an inventory problem assuming 

the demand rate to be a linear function of the on-hand inventory level at that time. Baker and 

Urban have analyzed a similar situation assuming the demand rate to be dependent on the on-

hand inventory i according to the relation R (i) = 𝛼𝑖𝛽 where 𝛼 > 0, 0 <   𝛽 <1. 

A number of authors investigated inventory systems with a two-stage demand rate. Baker and 

Urban (1988b) considered an inventory system with an initial period of level-dependent demand 

followed by a period of constant demand. The analysis conducted on this model imposes a 

terminal condition of zero inventories at the end of the order cycle. Datta and Pal (1990) 
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analyzed an infinite time horizon deterministic inventory system without shortage, which has a 

level-dependent demand rate up to a certain stock level and a constant demand for the rest of the 

cycle. Paul et al. (1996) investigated a deterministic inventory system in which shortages are 

allowed and are fully back-logged. The demand is stock dependent to a certain level and then 

constant for the remaining periods. 

Hwang and Hann (2000) constructed an inventory model for an item with an inventory-level 

dependent demand rate and a fixed expiry date. All units that are not sold by their expiry date are 

regarded as useless and therefore discarded. Separable programming is utilized to determine the 

optimal order level and order cycle length. 

Ray and Chaudhuri (1997) take the time value of money into account in analyzing an inventory 

system with stock-dependent demand rate and shortages. 

Shao et al. (2000) determined the optimum quality target for a manufacturing process where 

several grades of customer specifications may be sold. Since rejected goods could be stored and 

sold later to another customer, variable holding costs are considered in the model. Beltran and 

Krass (2002) analyzed the dynamic lot sizing problem with positive or negative demands and 

allowed disposal of excess inventory. Goh (1994) apparently provides the only existing 

inventory model in which the demand is stock dependent and the holding cost is time dependent. 

Actually, Goh (1994) considers two types of holding cost variation :(a) a nonlinear function of 

storage time and (b)  a nonlinear function of storage level. While Goh (1992) models a holding 

cost variation over time as a continuous nonlinear function, the storage time is divided into a 

number of distinctive periods with successively increasing holding costs. As the storage time 
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extends to the next time period, the new holding cost can be applied either retroactively (to all 

storage periods) or incrementally (to new period only). 

Zipkin (2000) provides a systematic discussion of inventory models with stochastic lead times.  

systems, parallel systems and limited-capacity systems. Exogenous sequential systems are 

essentially standard inventory systems with constant lead times replaced by stochastic lead times 

(Kaplan, 1970).In a parallel system, an infinite-server queue is used to model the supply process. 

With an unlimited capacity, the order lead times are independent and identically distributed 

random variables. 

The aim of inventory management is to minimize total operating costs while satisfying consumer 

service requirements. In order to accomplish this objective, an optimal ordering policy will be 

determined by answering to questions such as when to order and how much to order. The 

operating costs taken into account are the procurement costs, the holding costs and the shortage 

costs which are incurred when the demand of a client cannot be satisfied (either lost sales costs 

or backorder costs). 

There exist different inventory policies which are periodic-review policy and the continuous-

review policy. The first policy implies that the stock level will be checked a fixed period of time 

and an ordering decision will be made in order to complete to an upper limit (order up to point), 

if necessary .In second policy, the stock level will be monitored continuously. A fixed quantity 

will be ordered when the stock level reaches a reorder point. The order quantity will only be 

delivered after a fixed lead time and shortage can exist if the inventory is exhausted before the 

receipt of the order quantity. Those basic policies can be adapted to take into account special 

situations such as stochastic demands and lost sales or backorder. 
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Research on Inventory Record Inaccuracy (IRI) has been taking place since 1960s with the report 

by (Rinehart, 1960). The author stated that this inaccuracy produces “deleterious” on operational 

performance. Following this, it was reported that this divergence between stock record and 

physical stock results in “warehouse denials” (Iglehart and Morey, 1972). Their research took 

into consideration the frequency the depth of inventory counts and stocking policy to minimize 

total inventory and inspection costs. 

Moreover, focusing on the significance of measuring IRI, DeHoratius and Raman (2008) show 

that inventory counts may not impact record inaccuracy and additional buffer stock may not be 

equally necessary across all times in all stores. In fact, safety stock in the continuous- review 

lost-sales inventory models is one of the effective inventory management policies for mitigating 

long run total cost. 

Ritchken and Sanker (1984) used a regression- based method to adjust the size of the stock by 

incorporating an additional safety stock requirement in order to estimate the risk in inventory 

problems. Persona et al. (2007) propose innovative cost-based analytical models for showing that 

one can reduce the occurrence of stock-outs by introducing a safety stock or pre-assembled 

modules or components. On considering the continuous-review lost sales inventory models with 

a Poisson demand, Hills (2007) shows that a base- stock policy is “economically” optimal and 

that computing the optimal base-stock and its corresponding cost is quite simple for a backorder 

model. 

However for lost- sales model, this policy is not optimal. Hence, the author proposes three 

alternative policies. Two of these involve modifying the optimal base-stock policy by imposing a 

delay between the placements of successive orders. The third policy is to place orders at pre-
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determined fixed and regular intervals. However these policies require a lot of complex 

calculations for lead-times under demand uncertainty.  

In addition, quantitative measures were applied and it was found out that the quality of service-

level declines in a continuous review (Q, R) inventory policy when there are inventory miscounts 

and variations in lead- time (Kumar and Arora, 1992). Even though most of the current research 

focusing on (Q, R) policy often proposes models of operational research, stimulation modeling is 

becoming an effective and timely tool and is capturing the cause and effect relationship in this 

field (Kang and Gershwin, 2004). 

Urban (1995) investigated an inventory system in which the demand rate during stock out 

periods differs from the in-stock period demand by a given amount. The demand rate depends 

upon both the initial stock and the instantaneous stock. Urban formulates a profit-maximizing 

model and develops a closed form solution. Datta and Pal (1990) analyzed an infinite time 

horizon deterministic inventory system without shortage, has a level dependent demand rate up 

to a certain stock level and a constant demand for the rest of the cycle. 

Paul et al. (1996) investigated a deterministic inventory system in which shortages are allowed 

and are fully back-logged. The demand is stock dependent to a certain level and then constant for 

the remaining periods. Hwang and Hahn (2000) constructed an inventory model for an item with 

an inventory-level dependent demand rate and a fixed expiry date. All units that are not sold by 

their expiry date are regarded as useless and therefore discarded. 

The holding cost is explicitly assumed to be varying over time in only few inventory models. 

Shao et al. (2000) determined the optimum quality target for a manufacturing process where 

several grades of customers’ specifications may be sold. Since rejected goods could be sold later 
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to another customer, variable holding costs are considered in the model. Betran and Krass (2002) 

analyzed the dynamic lot sizing problem with positive or negative demands and allowed disposal 

of excess inventory. 

Goh (1994) apparently provides the only existing inventory model in which the demand is stock 

dependent and the holding cost is time dependent. While Goh (1992) models holding cost 

variation over time as a continuous nonlinear function, the storage time is divided into a number 

of distinct periods with successively increasing holding costs. As the storage time extends to the 

next time period, the new holding cost can be applied either retroactively (to all storage periods) 

or incrementally (to the new period only). 

Montgomery et al. (1973) propose a continuous review inventory system where a fraction of the 

unfilled demand is backordered and the remaining fraction is lost. Both the cases of deterministic 

and stochastic demands are considered, but the stochastic demand case is treated heuristically. 

Rosenberg (1979) reformulates the above model by introducing “fictitious demand rate that 

simplifies the analysis of the partial backorder policy and gives an economic interpretation of the 

circumstances under which this policy is optimal. 

Kim and Park (1985) extend the Montgomery et al.(1973) stochastic demand model to one in 

which the cost of a backorder is assumed to be proportional to the length of time for which the 

backorder exists. Assuming at most one order outstanding at any point in time and an arbitrary 

continuous destiny function of lead time demand, they derive the equations from which the 

optimal order quantity and the reorder point can be iteratively computed. Assuming Poisson 

demand and an exponential lead time, Woo and Sphicas (1991) formulate a partial backorder 

model that allows a finite number of orders to be outstanding. 
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 Rabinowitz et al. (1995) analyze a (Q, r) inventory model where a fixed maximum number of 

backorders b is allowed. During the stock out period, the first b units of incoming demand are 

backordered and the remainder is lost. Under the assumption of Poisson demand and no more 

than a single order outstanding, they derive the expected annual cost function and employ an 

exhaustive search procedure to find the optimal values of Q,R and b. Chu et al. (2001) generalize 

the above model by dividing the lead time into two segments and use two backorder control 

limits, one for each time segment.  

 Posner et al. (1972) treat the case where backorder customers are willing to wait for a random 

period of time. The demand process is assumed to be Poisson, and the lead time and how long 

the customers are willing to wait are assumed to be exponentially distributed. Das (1977) uses 

an(S-1, S) policy and assumes that customers are willing to wait for a fixed amount of time 

before canceling their orders. Moinzadeh (1989) also considers an (S-1,S) inventory system with 

Poisson demand and a constant lead time. Smeitink (1990) proves that Moinzadeh’s results holds 

for an arbitrary lead time and that the steady-state net inventory probabilities depend on the mean 

of the lead time and not on the shape of its distribution. Chang and Dye (1999) consider a partial 

backordering system for deteriorating items with the backlogging rate dependent on the length of 

the waiting time for the next replenishment. 

Moon and Gallego (1994) introduce the distribution-free procedures in the analysis of stochastic 

inventory models. They solve both the continuous review and the periodic review model with a 

mixture of backorders and lost sales using the minimax distribution-free approach. The treatment 

of the periodic review model is heuristic. 



30 
 

Porteus (1990) reviews stochastic periodic review models including one where a fraction of the 

excess demand is backordered. A myopic approximation to this model is provided by Nahmias 

(1979). For recent findings regarding the computation of optimal solutions to general (s, S0 

inventory systems with a backorder policy (both periodic and continuous review systems) 

During the lead time there is a cut off point. Before that, if shortage occurs incoming demands 

will be filled by emergency orders, and after that all unfilled demands are backordered. 

Backorders costs are usually time dependent, that is, they accumulate over time. DeCroix and 

Arreola-Risa (1998) and Cheung (1998) consider inventory systems that offer economic 

incentives (time –based price discount) to customers who are willing to wait longer than normal 

delivery times. Furthermore, Kim and Park (1985) and Park (1989) argue that the time duration 

of the backorder is a critical factor of the backorder costs and must be considered in an inventory 

system. 

Given the importance of shortening the time duration of the backorder period, it is reasonable to 

let backorders occur close to the time when replenishment is due to arrive. Although inventory 

systems are typically customer driven, we do notice that there are many real systems controlled 

solely by the supplier In such cases ,emergency orders are often adopted instead of the lost sale 

policy (although they are mathematically the same) in order to maintain customer loyalty. 

Rabinowitz et al. (1995) consider a model for this type of inventory system. However, in their 

model, shortages are first backordered and the rest are filled by emergency orders. This may not 

be the most cost-effective because of the time –dependent cost of backorders. Furthermore, 

setting the time limit rather than the limit on backorders is operationally more convenient. 
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The assumption of no more than one outstanding order is commonly made in the existing 

inventory models with emergency orders or lost sales. The usage and plausibility of the 

assumption has been discussed in detail Hadley and Whitin (1963), Kim and Park (1985), and 

Cheung (1998). In particular, Hadley and Whitin (1963) discussed the difficulty in developing 

the exact solutions for the lost sales case when more than one outstanding order is allowed. 

Hadley and Whitin (1963,p. 198) argued that “ If  r < Q, then there can never be more than a 

single order outstanding. In the lost sales case then, it is possible to stipulate that there is only a 

single order outstanding if one requires that r < Q.” 

System Dynamics (SD) methodology aims to model real complex dynamic systems for 

understanding them and coming up with policies to change the problematic dynamic behavior. 

The real dynamic problems contain feedbacks, delays and random noise or uncertainties which 

make them “complex” ( Grӧßler,2004). Feedbacks and delays are the main reasons why human- 

decision- making behavior results in unwanted behavior in these systems (Sterman 1989a). In 

most cases, the problems that are which SD is interested in have problematic dynamic behaviour 

usually caused by not optimal decisions of humans. To achieve the aim of making valid models 

of dynamic systems, SD tries to capture human decision making behaviour together with 

feedbacks and delays which are all endogenously included in the model. 

In other words, SD models should be able to represent “intended rationality" of human beings 

(Grӧßler, 2004). The words intended rationality or bounded rationality is used to describe the 

decision making behaviour of humans in these complex dynamic systems which are far from 

optimal. This behaviour should not be interpreted as humans acting irrationally (Grӧßer et 

al.2004). However, the rationality of decision maker is bounded or limited because of the 

complexity of many real dynamic systems (Sterman, 2000). Thus the modeler should represent 
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the two bounded rationality of the decision maker for the model to be a valid representation of 

reality. 

In order to model human decision- making behaviour in a certain system, one must first 

understand how people behave or decide in that system. Laboratory experiments are conducted 

where subjects play the role of the decision-maker in the model of the system to capture the 

behaviour of human beings. Then their decision behaviour is modeled with the help of certain 

heuristics and rules. Various studies work on generic systems such as stock management 

problem and use laboratory experiments to come up with decision-making behaviour formulation 

( Sterman 1989a., b.,Dogan and Sterman 2000,Barlas and Ӧzevin 2001). Many of these studies 

base their formulations on anchor and adjustment heuristic which is first proposed by Tversky 

and Kahnman (1982).  

Clark and Scarf (1960) considered a multiechelon serial system under continuous review. 

Svoronos and Zipkin (1991) study continuous review hierarchical inventory systems with 

exogenous stochastic replenishment lead times and one-for-one replenishment policy. By 

preserving the order of replenishment, the authors were able to approximate the study-state 

performance and to bring out the important role played by the lead time variance. Lee and 

Billington (1993) use a single-node periodic review model as a building block to analyze a 

decentralized supply chain with normally distributed demands and processing lead time. 

More examples on supply chain models were proposed by Tayue et.al (1999). An extension of 

the standard periodic-review model is to impose a capacity limit at each stage on the maximum 

amounts of outputs per time unit. Glasserman and Tayur (1994) demonstrate that in a serial 

system with an echelon base-stock policy, the inventory and backorders are stable if the mean 
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demand per period is less than the capacity at every node. Glasserman and Wang (1998) use a 

large deviations approach to obtain an asymptotic linear relationship between lead time and 

inventory as the fill rate approaches 100%. 

Zipkin (2000) provides a systematic discussion of inventory models with stochastic lead times. 

Based on the system structure, the models are divided into three groups:  exogenous sequential 

systems, parallel systems and limited-capacity systems. Exogenous sequential systems are 

essentially standard inventory systems with constant lead times replaced by stochastic lead times 

(Kaplan, 1970). In a parallel system, an infinite-server queue is used to model the supply 

process. With an unlimited capacity, the order lead times are independent and identically 

distributed random variables. 
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CHAPTER THREE 

METHODOLOGY 

3.0     Introduction 

The main objective of this thesis is to determine the optimum (i.e. minimum cost) inventory 

policy for an inventory system with inventory-level dependent demand rate and a time-dependent 

holding cost. Assuming the demand rate to be inventory level dependent means the demand is 

higher for greater inventory levels. Assuming the holding cost per unit of the item per unit time 

to be time dependent means the unit holding cost is higher for longer storage periods. The model 

that will be developed for the inventory system is based on allowing unit holding cost values to 

vary across different storage period. Variable unit holding costs are considered in the model in 

determining the optimal inventory policy. 

The holding cost per unit is assumed to increase only when the storage time exceeds specified 

discrete values. In other words, the holding cost per unit time is an increasing step function of the 

storage time. Two types of holding cost step functions are considered: Retroactive increase, and 

incremental increase. In retroactive increase, the unit holding cost rate of the last storage period 

is applied to all storage periods. In incremental increase, the rate of each period, including the 

last period, is applied only to units stored in that particular period. 
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3.1   Inventory 

The raw materials, work-in-process goods and completely finished goods that are considered to 

be the portion of a business's assets that is ready or will be ready for sale. Inventory represents 

one of the most important assets that most businesses possess, because the turnover of 

inventory represents one of the primary sources of revenue generation and subsequent earnings 

for the company's shareholders/owners.  

Possessing a high amount of inventory for long periods of time is not usually good for 

a business because of inventory storage, obsolescence and spoilage costs. However, 

possessing too little inventory isn't good either, because the business runs the risk of losing out 

on potential sales and potential market share as well. 

Inventory management forecasts and strategies, such as a just-in-time inventory system, can help 

minimize inventory costs because goods are created or received as inventory only when needed.  

3.1.1  Types of inventory 

Several   different   types   of   inventories   are conducted, depending upon the type of material 

involved and type of information needed. 

Generally, inventory types can be grouped into four classifications. These are: 

 Raw materials inventory 

 Work-in-process (WIP) inventory 

 Finished goods inventory 

 Maintenance, repair, and operating supplies, or MRO goods 
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The figure below displays the types of inventory. 

 

Figure 3.1 Types of Inventory (csun (2011) ie.California State University, Northridge ppt.). 

3.2  Inventory Models 

Inventory analysis has two problems of importance to the organization of stock items, namely: 

 Deciding when to place an order for the replenishment of the stock. 

 Deciding how large an order is to be placed. 

Two types of uncertainties must be considered: 

a. the quantity of items that will be demanded during a given period  

b. the time that will elapse between placing an order and the actual delivery of the item. 

A major problem of inventory is how we can establish optimal stock levels and this is difficult 

because of the uncertainty of supply and demand for the commodity. Using inventory models we 

could formulate policies to control the system.  

In some cases such as retailer, wholesaler / distributor, where items are purchased externally, if 

the problem of inventory exists, then there are two main questions, which generally arise and 

face any organization. These are how many to order and when to order. Having too much 
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inventory reduces both purchase and /or ordering costs, but it may tie up capital, which may lead 

to unnecessary holding cost and possibility of deteriorating items. 

Whereas having too little inventory reduces the holding cost, but it can result in lost of 

customers, which may affect the reliability of the organization. 

Answering these two questions will lead to the optimal level of inventory for any organization, 

which minimizes its total inventory cost. 

Inventory costs, which are related to the operation of an inventory system, are caused by the 

actions or lack of actions that the organization is establishing. 

The most common costs to an inventory system may include: 

 The purchase cost of an item obtained from an external source. 

 The order cost of issuing a purchase order to an outside source. 

 The holding /carrying cost for keeping items in storage. 
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3.3  Inventory Level 

This depends on the relative rates of flow in and out of the system.  

Let   

 ty  be rate of input flow of items at time t   

 tY  be the cumulative flow of items into the system 

 tz  be the rate of flow of items out of the system time t   

 tZ  be the cumulative flow of items out of the system , 

then the inventory level,  tI  is the cumulative input less the cumulative output. 

     tZtYtI                                                                              …………………..3.0 

      dttztytI

t

 
0

 

     dttzdttytI

tt

 
00

                ….…………….3.1 

 

The figure 3.3 below represents the inventory system when the rates vary with time. The 

figure might represent a raw material inventory. The flow out of inventory is relatively 

continuous activity where individual items are replaced into the production system for 

processing. To replenish the inventory, an order is placed to a supplier. After some delay time, 

called the lead time, the raw material is delivered in a lot of a specific amount. At the moment of 
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delivery, the rate of input is infinite and other times it is zero. Whenever the instantaneous rates 

of input and output to a component is not the same, the inventory level changes. When the input 

rate is higher, inventory grows; when the output rate is lower, inventory declines. Usually the 

inventory level remains positive. This corresponds to the presence of on hand inventory. In 

situation where cumulative output exceeds the cumulative input, the inventory level is negative. 

This is what we call a backorder or shortage condition. 

 

 

 

 

Figure 3.2 Inventory fluctuations as a function of time 

 

3.4  Lot-size or Economic Production Quantity (EPQ) 

3.4.1  Introduction 

The lot-size refers to the number of units in an order. The Lot-size model is design for the 

production situations in which once supply begins, demand begins. During supply, demand 

would be reducing the inventory while supply would be adding the inventory. We assume that 

supply rate exceeds the demand rate during the supply run. The excess supply would cause a 

gradual inventory build-up during the supply period. When supply is completed, the continuing 
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demand will cause the inventory to gradually decline until a new supply is started. The inventory 

pattern for this system is as shown below in figure 3.4 respectively. 

 

 

 

 

 

   Figure 3.4 Inventory pattern for lot-size model 

3.4.2  Assumptions for Lot-size 

The following assumptions are considered: 

 Average demand is fixed 

 Demand pattern is periodic 

 Average cost per order is constant 

 Daily production rate is greater than daily demand rate during the production run. 

 

 

 

 

 

Average 

inventory 

Maximum 

Inventory 

Non production 

Phase 

 Production 

Phase 

 In
ve

n
to

ry
 

Time t  



41 
 

3.4.3  Notations for lot-size 

Let: 

 Orderingcost per orderzc   

Annual holdingcost per unithC   

CostHoldingAnnualcH  

Number of orders per unit timen   

Annual Setup costk   

Number of days for productiont   

rateDemandd  

D Annual demand 

sizeLotQ  

timeCycle  

 

TotalannualholdingcostcT   

 , , List of OptimalquantitiesQ T     

 

timeperCostT
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3.4.4  Inventory Level Trajectory of Lot-Size Model 

The equation of the trajectory of the inventory pattern is of the form: 

   tdp
T

tQ 
1

         ……………..3.2 

Where p daily arrival rate 

 d daily demand rate 

 t number of days for production 

Since we are assuming that p will be larger than d , the daily inventory build-up rate during the 

production phase is .p d  If we run production for t days and place dp  units in the inventory 

each day, the inventory at the end of production will be  tdp  . From the diagram above, the 

inventory at the end of production is also the maximum inventory. Thus  

Maximum inventory  tdp   

If we are aware of producing lot-size of Q  units at a daily production of p units, then:  

ptQ   and the length of production t must be days
p

Q
t   
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Thus,  

  tdp inventory Maximum  

      









p

Q
dp  

    Q
p

d








 1          …………………..3.3 

 

 
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 
P

Q
dp
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Q
p

d
InventoryAverage 








 1

2

1
      …………………….3.4 

 

3.4.5  Development of the Optimal Order Quantity for Lot-Size Model 

We develop below the Lot-size model through the construction of the total inventory cost model. 

Let the annual holding cost per unit be
hC , the equation for annual holding cost is  

unit)per cost  (Annualinventory) (Average Cost Holding Annual   
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   hc QC
p

d
H 








 1

2

1
                    ……………………3.5 

If D  is the annual demand for the product and k  is the setup cost per production then the annual 

setup cost is 

  productionpertSetupyearperproductionNumberCostOrderingorSetupAnnual cos  

    k
Q

D
               …………………..3.6 

Thus, the total annual cost 
cT model is 

k
Q

D
QC

p

d
T hc 








 1

2

1
              …………………3.7 

Suppose that facility operates 250 days per year .Then we write daily demand d  in terms of 

annual demand D  as follows: 

    
250

D
d   

Now let P  denotes the annual production if the product were produced every day then, 

 pP 250   and  
250

P
p   
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Thus, 

 
P

D

P

D

p

d






















250

250
 

Therefore the total annual cost model can also be written as  

k
Q

D
QC

P

D
T hc 








 1

2

1
                ……………………….3.8 

Setting to zero the derivative of 
cT with respect to Q , we obtain 

0
dQ

dTc  

DkQC
P

D
h 21

2

1 2 







  

hC
P

D

Dk
Q













1

22
 

Solving for order quantity optimality policy we have 

hC
P

D

Dk
Q













1

2*
               …………………3.9 

and 

d

Q*
*               …………………..3.10 
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Substitute optimal lot-size, *Q , into the total cost expression, 
cT ,  

k
Q

D
CQ

P

D
T hc *

**
1

2

1









                  ……………...3.11 

Note: As the production rate p approaches infinity, 
p

D
 approaches zero. That is 










p

D
1  

representing probability of no shortage. 

At optimum, the total holding cost is equal to total ordering or set-up cost. 

3.4.6  Stockout and service level 

Stockout: Stockout occurs when there is insufficient stock to satisfy customers demand. 

Service level p1 (stockout) 

Taylor (2006), Anderson (2004) 

 

3.4.7  Effective Inventory Cost Decision for Lot-Size Model 

1) 
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3) k
Q

D
CostOrdering 








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4) 
D

Minimum Ordering Cost k
Q

 
  
 

 

i.e k
Q

D
k

Q

D



















 

3.4.8  Periodic Review Inventory System 

An alternative to the continuous review system is the periodic review inventory system. With a 

periodic review, the inventory may be checked and orders placed on a weekly, bi-weekly, tri-

weekly, monthly or some other periodic basis. 

 3.4.9  Replenishment Level (M) 

It is inventory level at which the order quantity should be demanded at the review period. If the 

normal probability distribution is used then: 

M d zs   where 

d = mean demand 

z = number of standard deviations necessary to obtain the acceptable stockout probability 

s = standard deviation of the distribution 
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 3.4.10   How-Much-To-Order Decision 

The how-much-to-order decision at any review period is determined using the model 

Let: 

q M X    where   q  represents the order quantity at review period 

M = replenishment level 

X = the inventory on hand at review period which varies since demand is probabilistic. 

Taylor (2006), Anderson (2004) 

3.5  Retroactive Holding Cost and Incremental Increase Cost Models 

There is no question that uncertainty plays in most inventory management situations. The retail 

merchant wants enough supply to satisfy customer demands but ordering too much increase 

holding costs and the risk of losses through obsolescence or spoilage. An order too small 

increases the risk of lost sales and unsatisfied customers. These situations are common, and 

answers one gets from deterministic analysis very often are not satisfactory when uncertainty is 

present. 

The model that will be developed for the inventory system is based on allowing unit holding cost 

values to vary across different storage periods. Variable unit holding costs are considered in the 

model in determining the optimal policy. The holding cost per unit is assumed to increase only 

when the storage time exceeds specific discrete values. That is the holding cost per unit time is 

an increase step function of the storage time. Two types of holding cost step functions will be 

considered: 
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 Retroactive increase; the unit holding cost rate of the last storage period is applied to 

all storage period.  

 Incremental increase; Higher storage cost rates is applied to storage in later periods. 

 

3.5.1  Notations for Retroactive Holding Cost and Incremental Increase Cost 

The following notations are adopted from Goh (1992) for the model under consideration for 

Mantrac Ghana Limited’s  Hydraulic Hoses inventory system. 

  ttimeatinventory handonthe: tq  

  ratedemandbaseconstant:D  

ratecostholdingdifferentwithperiodstimedistinctnumber: ofn  

0tatcycletheofstartthefromtime: t  

 ni ttniit and,0,,...,2,1where,periodoftimeend: 0
 

orderpercostordering:k  

ihi periodinitemtheofcostholding:  

    iii ttththtth  1if,timeat itemtheofcostholding:  

timecycle:T  

levelinventorythetorelationinelasticityindicatingparameterdemand:  
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3.5.2 Assumptions and Limitations for Retroactive Holding Cost and Incremental Holding 

Increase Cost 

The following assumptions and limitations are considered: 

 The demand rate R is an increasing step function of the inventory level q. 

 The holding cost is varying as an increasing step function of time in storage. 

 Replenishments are instantaneous. 

 Shortages are not allowed. 

 A single item is considered. 

 The demand rate R dependence on the inventory level q is expressed as 

  0,10,0,  qDDqqR           …………………3.12 

 

3.6  The Models 

 The Total Inventory Cost (TIC) per unit time includes two components: 

 a. Ordering cost  

 b. Holding cost 

Once ordering is made per cycle, the ordering cost per unit time is simply
T

k
. The total holding 

cost per cycle is obtained by integrating the product of the holding cost  th  and inventory  tq  

over the whole cycle.  

That is, 
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The total holding cost per cycle =    
0

1 Tk
h t q t dt

T T
   

Hence, 

   
T

dttqth
TT

k

0

1
TIC             ………………………..3.13 

Since the demand rate is equal to the rate at which the inventory level decrease, we can describe 

inventory level q  by the following differential equation: 

 
  

10,0,0

,









TtD

tqD
dt

tdq

             ……………………….3.14 

The on-hand inventory level at time t ,  tq  can be evaluated by solving equation (3.14): 

Ddtdqq  , 

Integrating both sides: 

,0
00

TtwhereDdtdqq

tt

 
  

 
,

1
0

1

Dt
q

t











 

     tDqtq    1011  

     01 11     qtDtq  

 



52 
 

However, 

  ,0 11   Qq  

Thus,  

    ,1 11     QtDtq  

       1

1
11 QtDtq        …………………...3.15 

The period T  can be evaluated by substituting the inventory function  tq  atT .  

That is: 

  0Tq  

      01 1

1
1    QTDTq  

   

   















11

11

1

1

QqDT

QTqTD

 

Hence,  
  



 






1

1

1 qD

Q
T               ……………….. ……3.16a 

Or 

     1

1
11 qTDQ                            ……………………..3.16b 
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3.6.1  Retroactive Holding Cost Increase 

The holding cost is assumed to be an increasing step function of storage time, that is

nhhhh  ...321
. Here, a uniform holding cost that depends on the length of storage is used. 

Specifically, the holding cost of the last storage period applies retroactively to all previous 

storage periods. Thus, if the cycle ends at in period, ,e  with  ee tTt 1
 then the holding cost 

rate 
eh  is applied to all periods .,...,2,1 e  In this case; the TIC per unit time can be expressed as  

 

ii

T

i

tTtwhere

dttq
T

h

T

k
TIC









1

0

,
         ………………….. 3.17 

Substituting the value of   tq  from (3.1.5) 

  
 

 
  

 
 



























 

1

2

1

0

1

1

0

1

1
2

,1

QD
TD

h

T

k

dtQtD
T

h

T

k
TIC

Ti

t

i

 

Thus,  

 
 

 
    

 
 












 





 





 


1

2
11

2
1 1

2
QTDQ

TD

h

T

k
TIC i  

Substituting the value of T  from (4.2.4)  

   
 

ii

i

tTtwhere

Qh

Q

kD
TIC















1

1
,

2

11






        …………………. 3.18 
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Setting the derivative of TIC  with respect to Q equal to zero and solving for Q , we obtain:

 
    

.,
21

1

2

1

ii

i

tTt
h

kD
Q 







 
 


       ………………… 3.19 

3.6.2  Solution Algorithm 

The optimum solution can be determined by using the following solution algorithm steps, 

Alfares (2007): 

1. Beginning with the lowest holding cost 1h , using 

    

1

2

1

1 2
, i i

i

kD
Q t T t

h

  



  
    

 
 to determine Q  and 

 








1

1

D

Q
T  to 

determine T for each 
ih until Q  is realizable  ii tTtie 1

. Call these values 

.RR QandT  

2. Use      1

1

1 TDQ  to calculate all break-point values ofQ , 

  iRii QTTttQQ each;, 1   is obtained by substituting 
it  into      1

1

1 TDQ . 

3. Use 
   

 
,

2

11
1 


 









Qh

Q

kD
TIC i

ii tTt 1
 to calculate the RQTIC for   

iQeachand  

4. Choose the value of Q  that gives the lowest .TIC  
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3.6.3  Incremental Holding Cost Increase  

The holding cost is now assumed to be an incremental step function of the storage time. 

According to this function, higher storage cost rate apply to storage in later periods. Thus, if the 

cycle ends in period,  ,, 1 ee tTtwithe 
then holding cost rate 1h is applied to period 1, rate 2h  

is applied to period 2, and so on; thus rate 
eh is applied only to period e  from time 

1et  up to time

T . For this we reset the value of 
et as  Tet , and then express the TIC per unit time as: 

     
1 2

1 1

1 2

0

TIC ...
e

e

t Tt t

e

t t

hh hk
q t dt q t dt q t dt

T T T T




                  ……………………. 3.20 

Substituting the value of  tq  from eqn. (4.2.3), we obtain: 

 

 

 

Substituting the value of T from eqn. (4.2.4), and rearranging and simplifying terms gives: 

   
 

  
 

  
 
 








































  1

2
1

1

1
1

1

1
1

2

1

2

11
TIC i

e

i

iii tDQ
Q

hhQh

Q

kD
    …3.21 

To find the optimal order size Q , we set the derivative TIC  with respect to Q equal to zero. 

After simplification, we obtain: 

 
 

     
  

 

  
 
  01

2

1
1

2

1

1

2
1

1

1
1

11

1
1

1

1

1
1

1





























 






















i

e

i

ii
i

e

i

ii

tDQ

Q

hh
tDQhh

Qh

Q

kD

..........3.22 

   

 
  

 
 









































 

1

2

1

1

1

1

1

1

1

1

1
2

,1TIC

QtD
TD

h

T

k

dtQtD
T

h

T

k

i

i

i

i

t

t

e

i

i

e

i

t

t

i
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If the entire inventory cycle happens to fall into the first period  1T0 t , then 1e and the 

summations over i in eqn. 3.22 are empty. In that case the optimum solution is simply obtained 

by substituting 1h into eqn. 3.19 to calculate ,Q and then substituting Q  into eqn. 3.15 to 

calculate T. obviously, a simple closed form solution for Q  and T  can be determined only if 

.1tT   

In general, the optimum solution must be determined by the following solution algorithm steps, 

Alfares (2007). 

3.6.4  Solution Algorithm 

1. Substitute 1h into 
    

,
21 2

1

 








 


ih

kD
Q

ii tTtQ  1
 to determine

maxQ , and 

then substitute 
maxQ into 

 








1

1

D

Q
T   to determine

maxT . If
1max tT  , stop; the solution 

 maxmax, TQ  is optimal. 

2. Substitute 
nh into 

    

ii

i

tTtQ
h

kD
Q 







 
 



1

2

1

,
21 

 to determine ,minQ  and 

Substitute minQ  into 
 








1

1

D

Q
T  to determine minT . 

3. Depending on the values of maxmin and TT , determine the possible periods that T may fall 

into (i.e., all feasible values of e ). 
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4. For each feasible value of e , solve 

 
 

     
  

 

  
 
  01

2

1
1

2

1

1

2
1

1

1
1

11

1
1

1

1

1
1

1





























 






















i

e

i

ii
i

e

i

ii

tDQ

Q

hh
tDQhh

Qh

Q

kD

 

numerically to determine the optimum value of .Q  If Q  corresponds to the correct period, it 

is considered realizable. 

5. Using 
   

 
  

 
  

 
 








































  1

2
1

1

1
1

1

1
1

2

1

2

11
TIC i

e

i

iii tDQ
Q

hhQh

Q

kD
, 

calculate TIC for  iiR tQQQ eachand   

6. Choose the value of Q  that gives the lowest TIC  
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND MODELING 

4.1 Data Collection and Description 

The data for this project was obtained from Inventory Department of Mantrac Ghana Limited on 

stock, demand and supply of Hoses covering a period of six years on monthly basis.  

Stock: The goods or merchandise kept on the premises of a business or warehouse and available for sale 

or distribution. 

Demand: An economic principle that describes a consumer’s desire and willingness to pay a 

price for a specific good or service. Holding all other factors constant, the price of a good or 

service increases as its demand increases and vice versa.   

Supply: A fundamental economic concept that describes the total amount of a specific good or 

service that is available to consumers. Supply can relate to the amount available at a specific 

price or the amount available across a range of prices if displayed on a graph. This relates closely 

to the demand for a good or service at a specific price; all else being equal, the supply provided 

by producers will rise if the price rises because all firms look to maximize profits.  
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 The data comprises the following: 

 Monthly data on stock, demand and supply of Hoses from January 2005 to December 

2010. 

Table 4.1 Stock, demand and supply data of Hoses for January, 2005 to December, 2010. 

  YEAR                   2005             2006 …               2010  

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY … STOCK DEMAN

D 

SUPPLY   

JAN 2400 1804 1804 3500 1405 1405 … 3200 1850 1850   

FEB 2060 2045 2045 2600 1975 1975 … 3400 2135 2135  

MARCH 2500 1750 1750 4000 4128 4000 … 3500 3590 3500  

APRIL 1500 251 251 4500 2145 2145 … 4000 3250 3250  

MAY 1400 468 468 4800 2694 2694 … 3840 2850 2850  

JUNE 900 390 390 3000 1945 1945 … 3000 2000 2000  

JULY 1000 1005 1000 4100 3056 3056 … 3010 3045 3010  

AUG 2000 1065 1065 3500 2043 2043 … 4500 2800 2800  

SEPT 935 50 50 1000 632 632 … 3000 900 900  

OCT 3500 3567 3500 2000 1024 1024 … 2100 610 610  

NOV 4000 1157 1157 1200 380 380 … 1490 780 780  

DEC 3000 4309 3000 1500 1902 1500 … 1000 1200 1000  

AVERAGE 2099.58 1488.42  2975 1944.08  … 3003.33 2084.17   

Average annual demand  =  23182.32 units 

Average annual stock   =  32207.88 units 
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The stock, demand and supply data for January, 2007 to December 2010 is displayed in 

appendix A. The average stock and demand for each year was displayed in the last rows of 

the table. The average monthly stock for the six years period was 2684 and that of demand 

was 1932. 

 Inventory holding cost per unit per year and fixed ordering cost per inventory cycle as at 

the year 2010 are displayed in the table below. 

 

Table 4.2 Data on cost components 

COST AMOUNT (GH¢) 

Ordering cost per order (k) 58.00 

Holding cost period one (h1) 2.90 

Holding cost period two (h2) 3.90 

Holding cost period three (h3) 4.90 

Holding cost period four (h4) 5.90 

 

The costs are in Ghana cedis. 

4.2 Stock, Demand and Supply data compared 

Figure 4.1 below displays the trajectory of stock, demand and supply data from January 

2005 to December 2010. 

A cursory look at the pattern of the graph shows that during most of the periods, the stock 

was more than the demand and supply. However, a careful observation of the pattern of 

the graph shows the incidence of periodicity with high and low points. During some 
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months, the demand was more than the stock and supply and this will result into 

backorders and lost sales which is one of the problems of the company. 

The high demands during this period are due to some factors such as the low humidity 

which cause the hose to wear off very early because those periods are in the harmattan. 

Also because the grounds are very hard during those periods, the hydraulic systems of the 

excavators which make use of the hose do wear off quickly because of the difficulties the 

excavators experienced when excavating. 

 

Figure 4.1 Trajectory of Stock, demand and supply from 2005 - 2010 
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4.2.1  Computational procedures 

 The following values were used in the computations. 

 Average annual demand (D)                             =     
𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

6 𝑦𝑒𝑎𝑟𝑠
 × 12 months 

                                                                                                         =    
11591.17

6
 × 12 

                                                                                                            = 1931.86 x 12 

          = 2683.985 units  

 Ordering cost per order (k)                            = GH¢58.00 

 Inventory holding cost per unit year (h)   = GH¢2.90 

 According to H.K Alfares( 2007), fraction of demand backordered during stock out  

         period (β)   =   0.1 

  Holding Cost for period one  h1  = GH¢2.90/ unit year  0< T≤ 0.2,  t1 = 0.2 year 

  Holding Cost for period two  h2  = GH¢3.90/ unit year  0. 2 < T≤ 0.4, t2 = 0.4 year 

  Holding Cost for period three  h3  = GH¢4.90/ unit year  0.4 < T≤ 0.6, t3 = 0.6 year 

 Holding Cost for period four  h4 = GH¢5.90/ unit year  0.6< T≤ 0.8,  t4 = 0.8 year etc. 
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The following computations were made using Retroactive Holding Cost solution algorithm. 

Alfares (2007): 

 Solution algorithm step 1 

Using  
    

1

21 2
,

i

kD
Q

h

    
   

 
  to compute ,Q  and   

  



 






1

1

1 qD

Q
T  to determine 

T for each 
ih  until Q is realizable  1. . i ii e t T t   . Call these values QR. and TR. 

Begin with 
1h   GH¢2.90 

  ⇒  Q∗ = [
58( 2683.985)( 1 −0.1 )(2 −0.1)

2.90
]

1

( 2 −0.1)
 = 409.2637 units 

The corresponding cycle time, T = 
(409.2637)( 1 −0.1)

2683.985(1 −0.1)
 = 0.0928 ( realizable)  

since 0 < T ≤ 0.2. 

When 
2h 

 
GH¢3.90 

⇒  Q∗ = [
58( 2683.985)( 1 −0.1 )(2 −0.1)

3.90
]

1

( 2 −0.1)
 = 350.1741 units 

The corresponding cycle time, T = 
(350.1741)( 1 −0.1)

2683.985(1 −0.1)
 = 0.0807 (not realizable)  

since 0.2 < T ≤ 0.4. 
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When h3 =  
GH¢4.90 

⇒  Q∗ = [
58( 2683.985)( 1 −0.1 )(2 −0.1)

4.90
]

1

( 2 −0.1)
 = 310.5343 units 

The corresponding cycle time, T = 
(310.5343)( 1 −0.1)

2683.985(1 −0.1)
 = 0.0724 (not realizable)  

since 0.4 < T ≤ 0.6. 

When  h4 = GH¢5.90 

⇒  Q∗ = [
58( 2683.985)( 1 −0.1 )(2 −0.1)

5.90
]

1

( 2 −0.1)
 = 281.6171 units 

The corresponding cycle time, T = 
(281.6171)( 1 −0.1)

2683.985(1 −0.1)
 = 0.0663 (not realizable)  

since 0.6 < T ≤ 0.8. 

This is repeated until realizable QR and TR are obtained for h1< h2 < h3 <…hn. From above,            

QR = 409.2637 and TR = 0.0928.  
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The table below displays the results for Solution Algorithm step1: 

 Table 4.3 Results of Solution Algorithm step1 

hi Q T  1. . i ii e t T t    Remark(s) 

h1= GH¢2.90 409.2637 0.0928 

0 < T ≤ 0.2 

 

Realizable 

h2 = GH¢3.90 350.1741 0.0807   0. 2 < T≤ 0.4 Not realizable 

h3= GH¢4.90     310.5343 0.0724 0.4 < T ≤ 0.6 Not realizable 

h4 = GH¢5.90    281.6171  0.0663 0.6 < T ≤ 0.8.   Not realizable 

 

 Solution Algorithm step2 

Calculating all break points of ,Q    1, ; eachi i R iQ Q t t T T Q    is obtained by substituting  
it   

into    
1

11Q D T        

We have:   

When t1= 0.2 

⇒ Q1 = [2683.985( 1 − 0.1)0.2]
1

(1−0.1) = 960.0208 units 

When t2 = 0.4 

⇒ Q2 = [2683.985( 1 − 0.1)0.4]
1

(1−0.1) = 2073.8 units 
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When t3 = 0.6 

⇒ Q3 = [2683.985( 1 − 0.1)0.6]
1

(1−0.1) = 3254.0 units 

When t4 = 0.8 

⇒ Q4 = [2683.985( 1 − 0.1)0.8]
1

(1−0.1) = 4479.6 units 

The table below displays the result for Solution Algorithm step2: 

Table 4.4  Results of Solution Algorithm step2 

T Qi 

t1 = 0.2 Q1 = 960.0208 

t2 = 0.4 Q2 = 2073.8 

t3 = 0.6 Q3 = 3254.0 

t4 = 0.8 Q4 = 4479.6 

 

From the table the minimum Qi  is Q1 =  960.0208. 
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 Solution Algorithm step3 

Using 
   

 1

1 1
,

2

ikD h Q
TIC

Q 

 



 
 


1i it T t    to calculate the TIC using QR = 409.2637 

units and each Q1, 

we have: 

for QR = 409.2637 units, 

⇒ TIC (409.2637 ) = 
58(2683.985)(1 – 0.1)

( 409.2637)( 1 −0.1)
 + 

2.90( 1 −0.1)(409.2637)

(2 −0.1)
 = 1186.9 

For Q1= 960.0208 units, 

⇒ TIC (960.0208 ) = 
58(2683.985)(1 – 0.1)

( 960.0208 )( 1 −0.1)
 + 

2.90( 1 −0.1)(960.0208 )

(2 −0.1)
 = 1608.8 

For Q2 = 2073.8 units, 

⇒ TIC (2073.8) = 
58(2683.985)(1 – 0.1)

( 2073.8  )( 1 −0.1)
 + 

3.90( 1 −0.1)(2073.8  )

(2 −0.1)
 = 3976.1 

For Q3 = 3254 units, 

⇒ TIC (3254) = 
58(2683.985)(1 – 0.1)

( 3254)( 1 −0.1)
 + 

4.90( 1 −0.1)(3254  )

(2 −0.1)
 = 7649.4 

For Q4 = 4479.6 units, 

⇒ TIC (4479.6) = 
58(2683.985)(1 – 0.1)

( 4479.6)( 1 −0.1)
 + 

5.90( 1 −0.1)(4479.6 )

(2 −0.1)
 = 1259.2 
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The table below displays the Q* and TIC* for solution algorithm step3: 

 Table 4.5 Results of TIC using QR and Qi 

Q* 
TIC* 

QR
*
 = 409.0208 

           1186.9 

 Q1
* =   960.0208             1608.8 

Q2
*
  =    2073.8             3976.1 

 Q3
*  = 3254             7649.4 

Q4
*
 =  4479.6            1259.2 

 

Solution Algorithm step 4 

Choose the value of Q that gives the lowest TIC. 

From table 4.6, the value of Q that gives the lowest Total Inventory Holding Costs (TIC) is 

409.2637 and corresponding minimum Total Inventory Cost  TIC*= GH¢1186.9 the cycle period 

realizable for this order quantity Q* and TIC*
 is 0.2year. 
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4.2.2  Discussion of Results 

From the Solution Algorithm step 1, a cycle time of 0.0928 gives a realizable value. This gives 

an optimum quantity of 409.0208 units and Total Inventory Cost of GH¢ 1186.90. 

Low quantity costs with corresponding higher cycle times results in Low Total Inventory Cost as 

can be observed across the table. Also, the higher the optimum cost, the higher the Total 

Inventory Cost. The Total Inventory Cost also depends on the cycle time. 

However, cycle times of 0.0807, 0.0724 and 0.0663 gives unrealizable values as can be seen in 

the table below.  

      Table 4.6  Quantity, Cycle time and Total Inventory Cost 

Q∗ Cycle time, T TIC (GH¢)  

409.0208 0.0928 1186.9 Realizable 

960.0208 0.0807 1608.8 Not 

realizable 

2073.8 0.0724 3976.1 Not 

realizable 

3254 0.0663 7649.4 Not 

realizable 

 

 As more bundles of hoses remain in the warehouses with associated increases in holding costs, 

the Total Inventory Cost also increases .This will result in the company incurring more debts. 

The Total Inventory Cost (TIC) often depend on the lead time demand, the expected shortage 

cost at the end of the period, the fraction of demand backordered during stock out period and the 

quantity demanded by the customers. 
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Shortage brings loss of goodwill and it is difficult to the exact amount of shortage cost. The same 

problem is experienced in the case of the ordering and holding costs hence in inventory, the 

decision maker may allow the flexibility in the cost parameter values in order to tackle the 

uncertainties which always fit the real situations. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

An inventory model to model Mantrac Ghana Limited’s inventory cost using a Retroactive 

Holding Cost was used. 

With the model, the optimal order quantity Q* which minimizes the Total Inventory Cost 

(TIC) was determined to be 409 units. The cycle period T * for the quantity Q* to be 

produced per cycle is 0.2year. 

 Mantrac Ghana Limited could order 409 units per each order within the cycle period of  

0.2 year. This would minimize the Total Inventory Cost to GH¢1186.9  
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5.2 Recommendations 

Based on the findings so far arrived at, in order to ensure proper inventory control systems at 

Mantrac Ghana Limited, the following recommendations are made. 

 To determine optimal quantity Q*, optimal Total Inventory Cost (TIC*) and cycle period 

T*, companies who own storage facilities should use Retroactive Holding Cost model. 

 To sustain the inventory of Mantrac Ghana Limited, stakeholders of the company should 

use the Retroactive Holding Cost Model to produce the quantity Q*, of 409 units per each 

order within the cycle period of 0.2 year. 

 There should be further study at Mantrac Ghana Limited, using another holding cost as 

increasing step function of the storage time, : that is: higher storage cost rates apply to 

storage of later  periods (Incremental holding  cost increase). 
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APPENDIXES 

APPENDIX A DATA ON STOCK, DEMAND AND SUPPLY FROM 2006 - 2010 

 

TABLE A1 Data on stock, demand and supply from Jan. 2005 – Dec. 2006 

YEAR 2005 2006 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2400 1804 1804 3500 1405 1405 

FEBRUARY 2060 2045 2045 2600 1975 1975 

MARCH 2500 1750 1750 4000 4128 4000 

APRIL 1500 251 251 4500 2145 2145 

MAY 1400 468 468 4800 2694 2694 

JUNE 900 390 390 3000 1945 1945 

JULY 1000 1005 1000 4100 3056 3056 

AUGUST 2000 1065 1065 3500 2043 2043 

SEPTEMBER 935 50 50 1000 632 632 

OCTOBER 3500 3567 3500 2000 1024 1024 

NOVEMBER 4000 1157 1157 1200 380 380 

DECEMBER 3000 4309 3000 1500 1902 1500 

AVERAGE  2099.58 1488.42  1373.33 2975 1944.08  1899.92 
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TABLE A.2 Data on stock, demand and supply from Jan. 2007 – Dec. 2008 

YEAR 2007 2008 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2400 1504 1504 3000 1704 1704 

FEBRUARY 3000 2040 2040 2500 1865 2500 

MARCH 2900 3400 2900 3895 4234 3895 

APRIL 4000 2100 2100 4022 3001 3001 

MAY 3000 1934 1934 3200 2890 2890 

JUNE 2500 2310 2310 3000 2003 2003 

JULY 3500 3078 3078 4300 3070 3070 

AUGUST 3100 2250 2250 3500 2065 2065 

SEPTEMBER 1510 712 712 1450 520 520 

OCTOBER 1200 500 500 1250 792 792 

NOVEMBER 1300 890 890 1000 450 450 

DECEMBER 2000 2068 2000 1500 1600 1500 

AVERAGE 2534.17 1898.83  1851.5  2718.08 2016.17  2032.5 
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TABLE A.3 Data on stock, demand and supply from Jan. 2009 – Dec. 2010 

YEAR 2009 2010 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2500 1607 1607 3200 1850 1850 

FEBRUARY 2800 2045 2045 3400 2135 2135 

MARCH 3500 4560 3500 3500 3590 3500 

APRIL 5000 3500 3500 4000 3250 3250 

MAY 3400 2750 2750 3840 2850 2850 

JUNE 3000 1984 1984 3000 2000 2000 

JULY 3200 3055 3055 3010 3045 3010 

AUGUST 3100 2750 2750 4500 2800 2800 

SEPTEMBER 2500 810 810 3000 900 900 

OCTOBER 1800 655 655 2100 610 610 

NOVEMBER 1145 798 798 1490 780 780 

DECEMBER 1340 1400 1340 1000 1200 1000 

AVERAGE  2773.75 2159.5 2066.2   3003.33 2084.17 2057  

 

AVERAGE ANNUAL DEMAND (D) FOR THE PERIOD -        23182.32 units 

AVERAGE ANNUAL STOCK                 -        32207.88 units  

AVERAGE ANNUAL SUPPLY                                                   -     18757.26 units 
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APPENDIX B 

Table   B1   Data on cost components 

COST AMOUNT (GH¢) 

Fixed ordering cost per inventory cycles (C) 58.00 

Holding cost per item per year (h) 2.90 

 

 

APPENDIX C 

 

C.1    MATLAB OUTPUT FOR DETERMINATION OF OPTIMAL QUANTITY AND 

OPTIMAL TIC OF MANTRAC GHANA LIMITED’S INVENTORY OF HOSES 

USING RETROACTIVE HOLDING COST MODEL.   

>> D=2683.985 

 

D = 

 

  2.6840e+003 

 

>> k=58 

 

k = 

 

    58 

 

>> h1=2.90 
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h1 = 

 

    2.9000 

 

>> b=0.1 

 

b = 

    0.1000 

 

>> Q=(((k*D)*(1-b)*(2-b))/h1)^(1/(2-b)) 

 

Q = 

 

  409.2637 

 

>> T=(Q^(1-b))/(D*(1-b)) 

 

T = 

 

    0.0928 

 

>> h2=3.90 

 

h2 = 

    3.9000 
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>> Q=(((k*D)*(1-b)*(2-b))/h2)^(1/(2-b)) 

 

 

Q = 

 

  350.1741 

 

>> T=(Q^(1-b))/(D*(1-b)) 

 

T = 

 

    0.0807 

 

>> h3=4.90 

 

h3 = 

 

    4.9000 

 

>> Q=(((k*D)*(1-b)*(2-b))/h3)^(1/(2-b)) 

 

Q = 

 

  310.5343 
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>> T=(Q^(1-b))/(D*(1-b)) 

 

 

T = 

 

    0.0724 

>> h4=5.90 

 

h4 = 

 

    5.9000 

 

>> Q=(((k*D)*(1-b)*(2-b))/h4)^(1/(2-b)) 

 

Q = 

 

  281.6171 

 

>> T=(Q^(1-b))/(D*(1-b)) 

 

T = 

 

    0.0663 

End of step 1 
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Step 2 

>> D=2683.985 

D = 

 

  2.6840e+003 

 

>> b=0.1 

 

b = 

 

    0.1000 

 

>> T=0.2 

 

T = 

 

    0.2000 

 

>> Q=(D*(1-b)*T)^(1/(1-b)) 
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Q = 

 

  960.0208 

 

>> T=0.4 

T = 

    0.4000 

 

>> Q=(D*(1-b)*T)^(1/(1-b)) 

 

Q = 

 

  2.0738e+003 

 

>> T=0.6 

 

T = 

 

    0.6000 

 

>> Q=(D*(1-b)*T)^(1/(1-b)) 

 

Q = 

 

  3.2540e+003 



84 
 

 

>> T=0.8 

 

T = 

 

    0.8000 

>> Q=(D*(1-b)*T)^(1/(1-b)) 

 

Q = 

 

  4.4796e+003 

 

Step 3 

 

>> k=58 

 

k = 

 

    58 

 

>> D= 2683.985 

 

D = 

 

  2.6840e+003 
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>> b=0.1 

 

b = 

 

    0.1000 

>> h1=2.90 

 

h1 = 

 

    2.9000 

 

>> Q1=960.0208 

 

Q1 = 

 

  960.0208 

 

>> TIC=((k*D)*(1-b))/(Q1^(1-b))+((h1)*(1-b)*Q1)/(2-b) 

 

TIC = 

 

  1.6088e+003 

>> h2=3.90 
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h2 = 

 

    3.9000 

 

>> Q2=2073.8 

Q2 = 

 

  2.0738e+003 

>> TIC=((k*D)*(1-b))/(Q2^(1-b))+((h2)*(1-b)*Q2)/(2-b) 

 

TIC = 

 

  3.9761e+003 

>> h3=4.90 

 

h3 = 

 

    4.9000 

 

>> Q3=3254 

 

Q3 = 

 

        3254 
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>> TIC=((k*D)*(1-b))/(Q3^(1-b))+((h3)*(1-b)*Q3)/(2-b) 

 

TIC = 

 

  7.6494e+003 

>>  

>> h4=5.90 

 

h4 = 

 

    5.9000 

 

>> Q4=4479.6 

 

Q4 = 

 

  4.4796e+003 

 

>> TIC=((k*D)*(1-b))/(Q4^(1-b))+((h4)*(1-b)*Q4)/(2-b) 

 

TIC = 

  7.6494e+003 

 

>>  

>> h4=5.90 
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h4 = 

 

    5.9000 

 

>> Q4=4479.6 

 

Q4 = 

 

  4.4796e+003 

 

>> TIC=((k*D)*(1-b))/(Q4^(1-b))+((h4)*(1-b)*Q4)/(2-b) 

TIC =  

 1.2592e+004 

 

 

 

 

 

 

 


