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ABSTRACT

In an attempt to help assess the solar energy resources potential of KNUST, a model
was developed from data collected from the KNUST solar energy center to aid
forecast future global radiation values. Many studies were carried out in order to
develop this model. In this thesis, the Box Jenkins method was applied to the global
solar radiation data from KNUST. By the application of time series analysis, a
seasonal autoregressive moving average model that 1s ARIMA (0, 0, 1) (1, 0, 1) 2]
was tentatively used to model the data. Ljung-Box statistic was used in diagnostic

checking and it is shown that the model is adequate.
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CHAPTER ONE
INTRODUCTION
BACKGROUND TO THE STUDY

When solar power enters into the earth’s atmosphere a part of the energy is lost by
absorption by air molecules, clouds and particulate matter. Radiation that is not
absorbed, and directly reaches the surface of the earth is called direct radiation.
Absorbed radiation which reaches the ground is called diffuse radiation. Some of the
radiation may reach a receiver after reflecting off the ground, and is called the albedo.
The total radiation involved is called the global radiation. By definition it is the total
quantity of short wave radiant energy emitted by the suns disc as well as that which is
scattered diffusively by the atmosphere and cloud, passing through a unit area in the

horizontal in a unit time.

Just as fossil fuel based energy industry relies on exploration and proven reserves for
discovery and economic support of energy markets, so does renewable energy sector
depends upon the assessment of resources for planning and selling their energy
pmducﬁui technology. Ees-sotar-based renewable energy technologies such as solar

thermal or photovoltaic conversion systems, the basic resource or fuel available is

m—

solar radiation. Assessment of the solar resource for these technologies is based upon
measured data, where available. However, the sparse distribution in space, and
particularly over time, of *measumd solar data leads to the use of modeled solar
radiation as the basis for many engineering and economic decisions. Measured and
modeled solar radiation has attendant uncertainties. Most solar radiation models rely
on measured data for their development or validation, and often the uncertainty or

accuracy of that measured data is unknown. Okundamiya and Nzeako (2011 ) upon

1
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research stated that Global solar radiation is an important parameter necessary for
most ecological models and serves as input for different photovoltaic conversion
system; hence is of economic importance to renewable energy alternative. Solar
radiation reaching the earth’s surface depends on the climatic condition of the specific
site location, and this 1s essential for accurate prediction and design of a solar energy
system. When global solar radiation is used to generate electrical energy for any
specific site location, a provision should be made to forecast solar energy which will
convert to electrical energy to recover the load demand, that is, the amount of solar
energy for that place ought to be known. Technology for measuring global solar
radiation is however costly and has instrumental hazards. Although solar radiation data
are available in most meteorological stations, many stations in developing countries
including Ghana suffer from a shortage concern of these data. Thus, alternative
methods for estimating these data are therefore required. One of these methods is the
use of empirical models. Accurate modeling depends on the quality and quantity of the
measured data used and is a good tool for generating global solar radiation at locations
where measured data are not available. According to Almorox and Hontoria (2003),
Knowledge of local solar radiation is essential for many applications, including

i ’/’/—_’_ . .
architectural design, solar energy systems and particularly for design methods, crop

—prowth models and evapotranspiration estimates in the design of irrigation systems.

Thus solar radiation is a required variable for the designers of solar energy systems. It
is often provided as solar radiation maps, which is usually a preferable approach, more
efficient and easy to handle. In order to build them, many procedures have been
proposed. Most of them require knowing the solar radiation at many points spread

wide across the region of interest. In addition, empirical, semi empirical, physical,



neural networks, wavelets, fractals, etc. techniques must be assumed for the spatial

prediction.

Unfortunately, solar radiation is still a scarcely sampled variable with respect to other
environmental variables as temperature or precipitation, and there is usually a small set
of stations with available radiation measurements. Again Solar radiation is said to be a
primary driver for many physical, chemical and biological processes on the earth’s
surface, and complete and accurate solar radiation data at a specific region are of
considerable significance for such research and application fields as architecture,
industry, agriculture, environment, hydrology, agrology, meteorology, limnology,
oceanography and ecology. Besides, solar radiation data are a fundamental input for
solar energy applications such as photovoltaic systems for electricity generation, solar
collectors for heating, solar air conditioning climate control in buildings and passive
solar devices .1t is of economic importance as a renewable energy alternative. Recently
global solar radiation is being studied due to its importance in providing energy for
Earth’s climate system. The solar radiation reaching the Earth’s surface depends upon
climatic conditions of a location, which is essential to the prediction, and design of a
solar ene_rgi ,;;stem, Bulxyi,and-Sambo (2001).Sunshine duration measurements have

been made at many locations around the world for over a century, using different

_.--""-.-.-

methods and instruments. It can be used to characterize the climate of a particular
region hence applied in tourism. Furthermore, if solar radiation measurements are not
available, sunshine duration <_:lata can be used as a proxy for the solar irradiance, which
is a valuable quantity for agriculture, architects, and various solar energy applications
(Velds 1992). A commonly used instrument for the measurement of sunshine duration
is the Campbell-Stokes sunshine. Although considerable effort has been done to make

use of solar energy efficiently from industrial revolution with the expectation that



fossil fuels would run out in the future, only minimal resources have been directed
towards forecasting incoming solar energy at ground level Vezirogluanddot, (2008).
However, the necessity to have forecasting models which could optimize the
integration of solar energy into electric grid is increasing as they gain recognition as an
energetic source. Currently, the potential market of solar energy is huge. Its
development is being supported by agreements in Kyoto protocol and by progressive
series of regulations regarding green energy (feed-in tariff) established in several
countries like Spain and Germany (lizianas et al., 2007). In the case of Spain, current
legislation (Royal Decree 661/2007, 25th of May) allows promoters minimize
investment risks and contribute to the development of solar energy. Rating and sizing
of solar energy systems and performance analysis of such systems requires
information on solar radiation at Earth’s surface is available. Such information is also
essential in many other applications such as crop growth models, evaporation—
transpiration estimates and building comfort conditions. There is no doubt that
measured data are the best source of obtaining information on solar radiation. But, the
measurement of solar parameters is made only in meteorological stations. Therefore, it
has been necessary to estimate solar radiation by theoretical models. The parameters
iy e e
affecting solar radiation can be categorized in astronomical, geographical, geometrical,
—physical and meteorological factors. Ertekin and Yaldiz, (1999). Knowledge of the
local solar-radiation is essential for the proper design of building energy systems, solar
energy systems and a good evaluation of thermal environment within buildings. The
best database would be the long-term measured data at the site of the proposed solar
system. However, the limited coverage of radiation measuring networks dictates the

need for developing solar radiation models. Since the beam component (direct

irradiance) is important in designing systems employing solar energy, such as high-
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temperature heat engines and high-intensity solar cells, emphasis is often put on
modeling the beam component. An optimal use of the renewable energy needs its
characterization and prediction in order to size detectors or to estimate the potential of
power plants. Paolil and voyant (2010) .In terms of prediction, electricity suppliers
are interested in various horizons to estimate the fossil fuel saving and to manage and
dispatch the power plants installed. Artificial intelligence techniques are becoming
more and more popular in the renewable energy domain and particularly for the
prediction of meteorological data such as solar radiation, Thereby many research
works have shown the ability of Artificial Neural Networks (ANNs) to predict times

series of meteorological data.

In any solar energy conversion system, the knowledge of global solar radiation is
extremely 1mportant for the optimal design and the prediction of the system
performance. The best way of knowing the amount of global solar radiation at a site is
to install pyranometers at many locations in the given region and look after their day-
today maintenance and recording, which is a very costly exercise. The alternative
approach is to correlate the global solar radiation with the meteorological parameters
at the place ﬁhere the data is collected. The resultant correlation may then be used for
locations ;)f similar meteorological and geographical characteristics at which solar data
arﬂer not available. However, the necessity to have forecasting models which could
optimize the integration of solar energy into electric grid is increasing as they gain
recognition as an energetic ;c)urce. Currently, the potential market of solar energy is
huge. Information of local solar radiation is essential for many applications, including
architectural design, solar energy systems and particularly for design. Unfortunately,

for many developing countries, solar radiation measurements are not easily available

due to the cost and maintenance and calibration requirements of the measuring
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equipment. Therefore, it is important to elaborate methods to estimate the solar
radiation based on readily available meteorological data. A model is therefore
developed by this thesis and used to predict or forecast future values. Data for the
study was collected from the Solar Energy Application Laboratory (SEAL) at
KNUST. The solar energy application laboratory (SEAL) was officially established in
1997 by the mechanical Engineering department. The type of data collected include;
solar radiation, bright sunshine hour duration, relative humidity and air temperatures.
KNUST measures solar radiation (global and diffuse) using Kipp and Zonen
radiometers connected to a data logger. These instruments are generally classified as
second-class equipment according to the World Meteorological Organization. The
instruments are estimated to have a 5% margin of error. The MSD used to collect
global solar radiation data until their instruments (Bellani Distillation Pyranometers,
classified as third-class instrument with 15% error) broke down. As a result, they are
currently only measuring the duration of bright sunshine using Campbell — Stokes

sunshine recorders

1.1 PROBLEM STATEMENT

The MSD used. to coltect global ‘solar radiation data until their instruments broke

down. As a result, they are currently measuring the duration of bright sunshine only

m—

using Campbell-stokes sunshine recorders. Upon the establishment of the KNUST
energy Centre, it is now the only institution in Ghana which measures solar radiation
(global and diffuse).Currently the center has on record, radiation data from 1995 to

2004. Thus no data has been collected since 2005 and no alternative method has been

put in place to generate future values
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1.2 OBJECTIVES

The major aim of this thesis therefore is to use time series data analysis on the global
solar radiation data of KNUST, specifically from January 1995 to December 2003.

The following are the specific objectives of the study:

1. To model the average monthly global solar radiation data of KNUST using time

series analysis

2. To predict the future global solar radiation values for KNUST.

153 METHODOLOGY

The KNUST energy center measures solar radiation (global and diffuse). Currently it
has on record global radiation data from January 1995 to December 2004. There is no
data record from 2005 to date. Moreover no alternative measure has been put in place
to generate radiation values. By this thesis, time series ARIMA model 1s used to
analyze the data.In the process the Box- Jenkins approach is used for the analysis of

this data.Time series analysis of the datawas conducted with the help of R and SPSS.

The KNUST library and the internet were our main source of information.

1.4 JUSTIFICATION

e

Measured data are the best source of obtaining information on solar radiation.
However the limited coverage of radiation measuring networks dictates the need for
developing solar radiation models. Unfortunately, for many developing countries,
including Ghana solar radiation measurements are not easily available due to the cost

and maintenance and calibration requirements of the measuring equipment. It is
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therefore believed that this model when developed for the average monthly global

by Sy

solar radiation of KNUST will be useful in the following ways;

e As an alternative method of generating global solar radiation values for

KNUST

e for accurate prediction and design of solar energy systems for KNUST

e to properly assess the solar energy resources potential of KNUST

e to serve as basis for engineering and economic decisions at KNUST

. It 1s therefore believed that a model built by this thesis will help the socio- economic

development of Ghana.
1.5 STRUCTURE OF THE THESIS

Chapter one contains the background statement, problem statement, objectives and
significance of the study. Chapter two reviews the relevant literature and theories of

time series analysis withspecial explanation on the Box Jenkins method.

Chapter three deals with modeling and analysis of data collected. Here we apply the

Box —Jenkinsmethod of modeling time series experiment.

Chapter four deals with the data analysis and results obtained from the Box Jenkins

—

approach. Chapter five deals the conclusion and recommendations of the study.
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CHAPTER TWO
LITERATURE REVIEW

2.0 INTRODUCTION

In the design and study of solar energy, information on solar radiation and its
components at a given location is very essential. Solar radiation data are required by
solar engineers, architects, agriculturistsand hydrologists for many applications such as
solar heating, cooking, drying and interior illumination ofbuildings. For this purpose,
in the past, several empirical correlations have beeq developed in order toestimate the
solar radiation around the world. The main objective of this chapter is to review global
solar radiation models. There are several formulae which relate global radiationto
other climatic parameters such as sunshine hours, relative humidity and maximum
temperature. Themost commonly used parameter for estimating global solar radiation
is sunshine duration. Sunshine duration cém be easily and reliably measured and data

are widely available.

2.1 REVIEW

-

Raji et al (2012) statedmadiatiﬂn is the driving force for a number of solar

_energy applications such as photovoltaic system for electricity generations. Hence, the

determination of solar radiation data through various approaches becomes imperative.
In this paper, the Box Jenkins method is applied to global solar radiation data for some
western cities of Nigeria. Seasonal autoregressive model of order 1 ARIMA (1,1,0)
(1,2,0) and auto regression of order 2 ARIMA (2,1,0) (2,2,0) were tentatively used to
model the ground and satellite solar data for Lagos respectively. Likewise ARIMA

(0,0,3) (1,1,0) and (2,2,0) (2,1,0) for Ibadan ground & satellite data. ARIMA (2,1,0)
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(2,2,0) ARIMA (2,0,0) (2,1,0) for Akure ground & satellite data respectively. Ljung-
Box statistic, Residual auto-correlation and partial residual autocorrelation plots were
used in the diagnostic checking. Using the model it was shown that the models are

quiet adequate

Akuffo et al (2003) also aimed at developing adequate,accurate and reliable solar and
wind energy resources data and information and evaluation tools as an integral part of
the nation’s energy planning and policy framework. Specifically the study involved
compilation and analysis of solar radiation data from KNUST and the MSD. For the
solar radiation data, the MSD measurement was validated using the KNUST data.
However MSD solar radiation was discontinued after 1988. Since then MSD has only
measured sunshine duration. Thus the bright sunshine measurement was converted to
monthly averages of daily solar irradiation using the Angstrom-page correlation. These
estimates were then validated using KNUST data. The estimated average percentage
error of the MSD estimates with respect to the KNUST data is 3% after validation.
The MSD validated estimates were then compared with NASA satellite generated
measurements. A set of time series covering a period of 10 years was then developed

based on the data collected for-al-22 synoptic stations across the country. Since the

solar radiation estimates were made for a horizontal plane, their corresponding

inclined plane equivalents were computed.

Almorox and Hontoria (2003) estimated the global solar radiation from sunshine hours
for 16 meteorological stations in Spain, using only the relative duration of sunshine.
They employed several equations including the original Angstrom—Prescott linear
regression and the modified functions (quadratic, third degree, logarithmic and
exponential functions). Estimated values were compared with measured values in

terms of the coefficient of determination, standard error of the estimate and mean

10



absolute error. All the models used fitted the data adequately such that each could be
used to estimate global solar radiation from sunshine hours. It was also found that
seasonal partitioning does not significantly improve the estimation of global radiation.
It was finally concluded that the third degree models perform better than the other
models, however the linear model was given much preference due to its greater

simplicity and wider application

Okundamiyal and Nzeako2 (2011) proposed a temperature-based model of monthly
mean daily global solar radiation on horizontal surfaces for selected cities,
representing the six geopolitical zones in Nigeria. Their model was based on linear
regression theory and was computed using monthly mean daily data set for minimum
and maximum ambient temperatures. The results of the three statistical indicators:
Mean Bias Error (MBE), Root Mean Square Error (RMSE), and f-statistic (TS),
performed on the model along with practical comparison of the estimated and

observed data, validate the excellent performance accuracy of the proposed model.

Linares-Rodriguez, et al (2011) used four variables (total cloud cover, skin
temperature, I’fmtal column water vapor and total column ozone) from meteorological
reanalysis to generate “Synthetic daily global solar radiation via artificial neural
__network (ANN) techniques. By using the reanalysis data as an alternative to the use of
satellite imagery, the model was validated in Andalusia (Spain), using measured data
for nine years from 83 ground stations spread over the region. The geographical
location and the four meteorological variables were used as input data. Sixty five
ground stations were used as training dataset and eighteen stations as independent

dataset. The optimum network architecture yielded a root mean square error of 16.4%

and a correlation coefficient of 94% for the testing stations. The results demonstrated

11



the generalization capability of this approach over unseen data and its ability to

produce accurate estimates and forecasts.

Zaharim et al (2009) stated that solar radiation is a primary driver for many physical,
chemical and biological processes on the earth’s surface, and also a driving force
behind a number of solar energy applications such as photovoltaic systems for
electricity generation, solar collectors for heating, solar air conditioning climate
control in buildings and passive solar devices. Many studies were carried out in order
to develop a method to estimate the solar radiation. In their paper, the Box-Jenkins
method was applied to solar radiation data from Bangi, Malaysia. Nonseasonal
autoregressive model of order 1, ARMA (1, 0), was tentatively used to model the data.
Ljung-Box statistic was used in diagnostic checking and it was shown that the model

was adequate.

Falayi et al (2008) developed a number of multilinear regression equations to predict
the relationship between global solar radiations with one or more combinations of the
weather parameters: for Iseyin Nigeria for five years (1995-1999). Using the
Angstrom quel as the base, other regression equations were developed by modifying

-

Angstrom equation. The value of correlation coefficient (r) and value of Root Mean

Square Error (RMSE), Mean Bias Error (MBE) and Mean Percentage Error (MPE)

were determined for each equation. The equation with the highest value of r and least
value of RMSE, MPE and MBE was used. It was concluded that the developed model

could be used for estimating global solar radiation on horizontal surfaces.

Hinssen and knap (2006 ) evaluated two Pyranometric methods for the determination
of sunshine duration (SD) from global irradiance measurements by means of

summated sunshine seconds derived from Pyrheliometric measurements in

12
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combination with the WMO threshold of 120 W m? for the direct solar irradiance. The
evaluation was performed using direct and global radiation measurements made at the
Cabauw Baseline Surface Radiation Network (BSRN) site in the Netherlands for the
period March 2005-February 2006. The “Slob algorithm” used 10-min mean and
extreme values of the measured global irradiance and parameterized estimates of the
direct and diffuse irradiance. The “correlation algorithm” directly relates SD to 10-min
mean measurements of global irradiance. The cumulative Pyrheliometric SD for the
mentioned period was 1429 h. Relative to this value, the Slob algorithm and
correlation algorithm gave -72 h (-5%) and +8 h (+Q.6%). It was concluded that, by the
use of either algorithm, it was possible to estimate daily sums of SD from 10-min

mean measurements of global irradiance with a typical uncertainty of 0.5-0.7 h day 1.

Isikwue et al (2012) proposed the coefficients for Angstrom - Prescott type of model
for the estimation of global solar radiation in Makurdi, Nigeria using relative sunshine
duration alongside the measured global solar radiation data (2001-2010). The model
constants a and b obtained in their investigation for Makurdi were .138 and 0.488
respectively. The correlation coefficient of 89% (P=0.00) between the clear sky index
and relative _.s;nshine duration,-as-well as the coefficient of determination, R? of 79.5

obtained showed that the model fits the data very well. Hence, the very low mean

—

standard error of 0.025 showed a good agreement between the measured and estimated
global solar radiation. Consequently, the developed model in this work could be used

with confidence for Makurdi, and other locations with similar climate conditions.

Marti'n et al (2010) presented comparisons of statistical models based on time series
applied to predict half daily values of global solar irradiance with a temporal horizon
of 3 days. Half daily values consist of accumulated hourly global solar irradiance from

solar rise to solar noon and from noon until dawn for each day. The models tested

13



were autoregressive, neural networks and fuzzy logic models. Due to the fact that half
daily solar irradiance time series is non-stationary, it has been necessary to transform it
to two new stationary variables (clearness index and lost component) which are used
as input of the predictive models. Improvement in terms of RMSD of the models
essayed was compared against the model based on persistence. The validation process
shows that all models essayed improve persistence. It was finally concluded that the
best approach to forecast half daily values of solar irradiance was by neural network

models with lost component as input,

Yorukoglu and Celik (2005) used Models such as the Angstrom—Prescott equation to
estimate global solar radiation from sunshine duration. They investigated the goodness
of the estimation of global solar radiation based on a set of statistical parameters such
as Rz, RMSE, MBE, MABE, MPE and MAPE. A case study of the estimation models
and global solar radiation estimation from sunshine duration was presented using five
different models (linear, quadratic, cubic, logarithmic and exponential), which are the
most common models used in the literature, based on 6 years long measured hourly
global solar radiation data. The statistical parameters were clearly derived from the

basics forrbj:}m of the data sets,-and the inconsistencies caused by this confusion and

other factors were exposed.

-

Paulescu and Schlett (2003) tested six global solar irradiation models against data
measured at three stations from Romania in the year 2000.They fitted an empirical
global solar irradiation model which requires as input a single meteorological
parameter associated with the mean daily cloud amount. The accuracy of the EIM was
accepted and compared to that of parametric models, which need more than one
meteorological datum as input. The main conclusion was that such simple empirical

“local-models™ are a useful alternative for the more complicated one. In addition, the

14



details of obtaining EIM were presented as a driven-tool, which may serve as a guide

to elaborate similar simple solar irradiation models in any other location as well.

Saffaripour and Mehrabian (2009): predicted the global solar radiation intensity in
areas where meteorological stations do not exist and information on solar radiation
cannot be obtained experimentally. The approach was to develop the multiple
regression relations between the global solar radiation intensity (the dependent
variable) and geographical, geometrical, astronomical and meteorological parameters
(the independent variables). The independent variables used for this purpose were
selected based on their ease of measurability outside the meteorological station and
without expensive equipment. — Linear regression relations using one, two, three, four,
five, six, and seven independent variables were developed to predict the global solar
radiation intensity on horizontal surfaces. An advanced computer program based on
least square analysis was used to obtain the regression coefficients. The relations
having the highest correlation coefficients were selected. The study shows even when
only one independent variable (declination angle) is used, the one variable regression

relation predicts the global solar radiation with an accuracy that is satisfactory in most
engineering applications. _——

ZohrabSamanil (2009): introduced a Procedure to estimate the solar radiation and
subsequently reference crop evapotranspiration using minimum climatological data.
He described a modification to an original equation which uses maximum and
minimum temperature to estimate solar radiation and reference crop
evapotranspiration. The proposed modification allows for correcting the errors
associated with indirect climatological parameters which affect the local temperature
range. The proposed modification improves the accuracy of estimates of solar

radiation from temperature.
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Bulut and Buyukalaca (2006) developed a simple model for estimating the daily global
radiation. The model was based on a trigonometric function, which has only one
independent parameter, namely the day of the year. The model was tested for 68
locations in Turkey using the data measured during at least 10 years. It is seen that
predictions from the model agree well with the long-term measured data. The
predictions were also compared with the data available in literature for Turkey. It was
expected that the model developed for daily global solar radiation will be useful to the
designers of energy-related systems as well as to those who need to estimates the

yearly variation of global solar-radiation for any specific location in Turkey.

Fooladmand H., (2012), estimated monthly sunshine hours based on minimum,
maximum and mean monthly air temperature, and minimum, maximum and mean
monthly air humidity, and the obtained equations were used for estimating monthly
ETo based on the Penman-Monteith equation and the results were compared with the
Penman-Monteith equation by using actual sunshine hours data. The results indicated
that the derived equations for estimating sunshine hours had high accuracy for
estimating monthly ETo with the Penman-Monteith equation. It was concluded that it
is possible to estimate monthly EFe with Penman-Monteith equation without using the

sunshine hours data.

——

Paolil et al (2011) presented an application of neural networks in the renewable
energy domain. They developed a methodology for the daily prediction of global solar
radiation on a horizontal surface using an ad-hoc time series preprocessing and a
Multi-Layer Perceptron (MLP) in order to predict solar radiation at daily horizon. The
results obtained were promising with nRMSE< 21% and RMSE < 998 Wh/m?. The
optimized MLP presented prediction similar to or even better than conventional

methods such as ARIMA techniques, Bayesian inference, and Markov chains and k-
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Nearest-Neighbors approximators. Moreover it was found that the data preprocessing

approach can reduce significantly forecasting errors.

El-Sebaiiland Trabea 2 (2005) measured data of the monthly average global solar
radiation on a horizontal surface H and the number of bright sunshine hour’s » for five
locations in Egypt was analyzed. The regression constants for the first, second and
third order Angstroms type correlations for each location was calculated using the
method of regression analysis. Comparisons between measured and calculated values
of H are performed for the present locations. The values obtained for the RMSE, MBE
and the MPE indicated that the second and third order Angstrom type correlations do
not improve the accuracy of estimation of global radiation. Therefore, the measured
data available for the selected locations are combined and a first order correlation has
been proposed for all Egypt. Moreover, all Egypt correlation is extended to other

Egyptian locations which are not included in the regression analysis.

Karoro et al (2011) used five years of global solar radiation data to estimate the
monthly average of daily global solar irradiation on a horizontal surface based on a
single parameter, sunshine hours, using the artificial neural network method. The five-
year data was split into t\m003—2006 and 2007-2008; the first part was used
for training, and the latter was used for testing the neural network. Results obtained
using the proposed model showed good agreement between the estimated and actual
values of global solar irradiation. A correlation coefficient of 0.963 was obtained with
a mean bias error of 0.055 MJ/m? and a root mean square error of 0.521 MJ/m?. The
single-parameter ANN model shows promise for estimating global solar irradiation at

places where monitoring stations are not established and stations where we have one

common parameter (sunshine hours).
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Remund] and Miiller]l (2011) carried out an analysis based on long time series of
global radiation with a duration of at least 40 years and the forecasts of global
radiation till 2100.For the mean and most of the individual 25 examined sites the
dimming for the period 1950 — 85 and the brightening [2, 3] for the period 1985 —
2009 1s statistically significant. The negative trend during the dimming period is
clearly stronger (approx. factor 2) than the positive trend during the brightening phase.
The individual regions and groups of measurement sites show a great variety of
different trends for the analyzed sub periods. The variation depending on the duration
of measurement is also quite different from site to site. The future changes are
relatively small. On an average the global radiation will decrease slightly. However, in

the Mediterranean region the trend is positive (+ 2 — 3 % till 2100).

Assi and Jama (2010) employed a Number of mathematical correlations to predict the
monthly average global solar radiation on horizontal using the sun hours as an input
parameter. The study was carried out on two weather stations in the UAE, which are
Abu Dhabi and Al Ain, using a daily weather data recorded for 13 years. The used
correlations included the linear Angstrom-Prescott model and its derivations, namely,

the second and third order correlations. Moreover, the single term exponential model,

logarithmic model, linear logarithmic model and power model were all examined in

s

—

this work. The performance of the aforementioned correlations as global solar
radiation estimators was evaluated by comparing the predicted values with the
measured values. Different ‘statistical error tests were employed to examine the
accuracy of the mathematical models. All fits performed well in Abu Dhabi and Al

Ain, The linear Angstrom-Prescott model and the third order model performed the best

for Abu Dhabi and Al Ain, respectively.
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Mihalakakou et al (1999) describes a neural network approach for modeling and
making short-term predictions on the total solar radiation time series. The future
hourly values of total solar radiation for several years are predicted, by extracting
knowledge from their past values, using feed forward back propagation neural
networks. The results were tested using various sets of non-training measurements, the
findings were very encouraging and the model was found able to simulate the future
values of total solar radiation time series based on their past values. *"Multilag" output
predictions were performed using the predicted values to the input database in order to
model future total solar radiation values with sufﬁcient accuracy. Furthermore, an
autoregressive model is developed for analyzing and representing the total solar
radiation time series. The predicted values of solar radiation were compared with the
observed data series and i1t was found that the neural network approach leads to better

predictions than the AR model.

Markvart et al (2005); describes a sizing procedure based on the observed time series
of solar radiation. Using a simple geometrical construction, the sizing curve is
determined as a superposition of contributions from individual climatic cycles of low
daily solar radiation. Unlike the-traditional methods based on loss-of-load probability,
the reliability of supply enters in this method through the length of the time series of

data used in the analysis. The method thus resembles techniques used in other

branches of engineering where extreme values are considered as functions of certain

recurrence intervals.

Wong and Chow (2001) considered solar radiation models for predicting the average
daily and hourly global radiation, beam radiation and diffuse radiation. Seven models
using the A ° angstrom— Prescott equation to predict the average daily global radiation

with hours of sunshine are considered. The average daily global radiation for Hong
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Kong (22.3N latitude, 114.3E longitude) is predicted. Estimations of monthly average
hourly global radiation are discussed. Two parametric models are reviewed and used
to predict the hourly irradiance of Hong Kong. Comparisons among model predictions

with measured data are made.

Bar-Severl and Kuangl (2004) describe the development and testing of a set of new
and improved solar radiation pressure models for Global Positioning System (GPS)
satellites that 1s based on four and one-half years of precise GPS orbital data. These
empirical models show improved performance in both GPS orbit fit and prediction
relative to the state-of-the-art models. Orbit-fit rms is improved 80 percent for Block
[IR satellites and 24 percent for Block IIA satellites. Orbit-prediction accuracy
improved58 percent for Block IIR satellites and 32 percent for Block ITIA satellites.
These new models are designated GSPM.04. It 1s shown that, after the implementation
of these new models, Block IIA and Block IIR satellites perform about the same in

orbit fit and in orbit prediction.1

Safari and Gasore (2009) estimate global solar radiation on horizontal surface using

sunshine-based models. Angstrom-type polynomial of first and second order have

been developed from lomlt)rds of monthly mean daily sunshine hour values

_and measured daily global solar radiation on horizontal surface at Kigali, Rwanda.

Coefficients of those polynomials were derived using least square regression analysis.
These coefficients were then used for the estimation of solar radiation in other places

of Rwanda where measures of solar radiation do not exist but sunshine records are

available

Myers D. R. (2003) Measurement and modeling of broadband and spectral terrestrial

solar radiation is important for the evaluation and deployment of solar renewable
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energy systems. We discuss recent developments in the calibration of broadband solar
radiometric instrumentation and improving broadband solar radiation measurement
accuracy. An improved diffuse sky reference and radiometer calibration and
characterization software and for outdoor pyranometers calibrations is outlined.
Several broadband solar radiation model approaches, including some developed at the
National Renewable Energy Laboratory, for estimating direct beam, total
hemispherical and diffuse sky radiation are briefly reviewed. The latter include the
Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the
Direct Insolation Simulation Code (DISC) for estimgting direct beam radiation from
global measurements; and the METSTAT (Meteorological and Statistical) and
Climatological Solar Radiation (CSR) models that estimate solar radiation from
meteorological data. We conclude that currently the best model uncertainties are

representative of the uncertainty in measured data.

Sun and Kok (2007) sought to assemble solar radiation model capable of producing
long-term, steady-state radiation forecasts. While computational methods for
estimating solar radiation intensity outside the earth’s atmosphere are well established,
ground level ﬁuxes were _diffieult to predict, given that the incoming flux is
considerably attenuated by passage through .the atmosphere, both as a result of its
;n_l_position and of cloud distribution. The model was based on historical daily overall
global solar irradiation (DOI, kJ m-2d-1) data, recorded in the Canadian cities of
Vancouver, Winnipeg, Montr_eal, and Halifax, as supplied by the Meteorological
Service of Canada. Analyzed and decomposed through a Fourier transform procedure,
a single city-specific set of multiple single-year DOISs yielded city-specific descriptors,

from which new year-long DOI sequences could be synthesized. Statistical testing

ensured that synthetic data sets were sufficiently similar to the historical data sets.
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CHAPTER THREE
METHODOLOGY

3.0 INTRODUCTION

This chapter deals with the basic concepts on time series,stationary and non-stationary
time series, ARIMA model, (autoregressive integrated moving average), principles of

ARIMAModeling (Box and Jenkins 1976) and conclusion. The objective of the study

wasachieved alongside with statistical softwares such as R and SPSS.
3.1 BASIC CONCEPTS OF TIME SERIES

Time series by definition is a collection of observations made sequentially according
to the timeof their outcome. It is a sequence of data points, measured typically at
successive times, spacedoften at uniform time intervals. Time series analysis
comprises methods that attempt to understand the underlying context of the data points
by making forecasts or predictions. It involves the use of a model to forecast future
events based on known past events, hence one is able to forecast future data points
before they are measured. A standard example in econometrics isthe opening price of a

share of stock based on m;f;nnance.

"The term time series analysis is used to distinguish a problem, firstly from more

ordinary data analysis problems (where there is no natural ordering of the context of
individual observations), and secondly from spatial data analysis where there is a
context data, observations relate to geographicallocations. There are additional
possibilities in the form of space time models (often called spatial temporal analysis).
A time series model will generally reflect the fact that observations close together in

time will be more closely related than observations further apart.Inaddition, it often
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makes use of the natural one way ordering of time, so that values in a seriesfor a given
time will be expressed as been derived from past values, rather than from future

values. A time series plot may reveal various features of the data such as;

e Trend, which indicates a long term change in the mean level as well as the
upward ordownward movement that characterizes a time series over a period of

time. Thus trend reflects the long —run growth or decline in the time series.

e Periodicity shows pattern repeating in time variations. The periodic patterns in
a timeseries complete themselves within a calendar year and are then repeated
on a yearly basis.This is usually caused by such factors as weather and

, customs.

e Unusual features, refers to irregular fluctuations component of a time series,
this is in line with the erratic movements that follow no recognizable or regular
: pattern. Many irregular fluctuations in a time series are caused by events that

cannot be forecasted suchas earthquakes, wars, and hurricanes. these features

could be modeled in an additive form as

tt x_t=mt+~sé+mt e t=0,1,2...n (3.1)
‘Where

m, = is a trend and usually a slowly changing function of time,

s, = is a periodically function of time and

w, = is the random noise component

a trend m,can exist as linear, where
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m—

my=fo+ P t (3.2)

quadratic where

me =Po + By t+ B, t* (3.3)

or polynomial of degree k = 1 where

Me=Po+Bi t+Pt% + .oiviiiinnin + B t* (3.4)

As shown by Box and Jenkins (1970) and further in Box and Jenkins (1976), models
for time series data can have many forms and represent different stochastic
processes such as the autoregressive(AR) models, thé integrated (I) models, and the
moving averages (MA) models. These three classes depend linearly on previous data
points, hence a combination of these ideas produces Autoregressive moving average
(ARMA) and Autoregressive integrated moving average (ARIMA) models, the use of

autoregressive fractionally integrated movihg average

(ARFIMA) model generalizes the former three. Among other types of non — linear
time series models, also exist models that represent the changes of variance along time
(heteroskedasticity). These Is are called autoregressive conditional
heteroékedasticity (ARCH) and this collection comprise;s a wide variety of

_-—-_-_...--

representation such as;

(GARCH, EGARCH, FIGARCH, CGARCH, etc ). Here changes in variability are

related to, or predicted by, recent past values of the observed series.
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3.2 STATIONARY AND NON STATIONARY TIME SERIES

There are two types of stationarity to be discussed under this heading namely;

stationary andnon-stationary time series.
3.2.1 Stationary Time Series

A series 1s said to be stationary if the mean and autocovariance of the series do not
depend on time. The theory behind ARMA estimation is based on stationary time

series. Stationary series are made up of strict and weak stationary series.

A strictly stationary time series is one for which the probabilistic behavior of every

collection of values

{xn, xtzl e 888 BEE EE  4ns wEs sEs ass ses sws xtk}

is identical to that of the time shifted set

{J'l'.'th_lmx[_-2_|.‘i-|._Jr yiven ank menninp snnd FPTE s anvd .xtk+h}.
That is,
P{xXt1<C1y ons XekS €} = PEXTTER < C15 o0 » Xekan < Ck } (3.5)

forallk =1, 2, ..., all time points t;, t5, . . . , t x, all numbers ¢, ¢y, . . ., ¢k, and all time

shifts h=0£1,+2, ....

If a time series is strictly stationary, then all of the multivariate distribution functions
for subsets of variables must agree with their counterparts in the shifted set for all

values of the shift parameter h. For example, when k= 1, (3.5) implies that

P {x;<c}=P {x,<c} (3.6)
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for any time points s and 1.

A weakly stationary time seriesx;, is a finite variance process such that

(1) The mean value function, p , is constant and does not depend on time t, and

(ii) The covariance function, y(s, t), depends on s and t only through their difference
s —t|.

We shall use the term stationary to mean weak stationarity; however if a process 1s

stationary in the strict sense, we will use the term strictly stationary.

Because the mean function, E (x.;) =u;, of a stationary time series is independent of

time ¢, we will write

He= W (3.7)
3.2.2 Non Stationary Time Series

Most of the time series we encounter are nonstationary. Any series that i1s not
stationary is saidto be non-stationary. For a nonstationary series to be made stationary
it has to go through the @g,pmcess--of the Box — Jenkins approach in order to be

made stationary.

-

"

A simple non stationary time series model is given by
Xe = Uet Ve = (3.8)

Where themean p.is a function of time andy, is a weakly stationary series with mean

zero. A random noise process xdefined as

X=X T Wy (3.9)
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[s a nonstationary series, where w is a stationary random disturbance term
Assuming x, = 0 then fort=1"
X:1= Wy and
Xo= Xyt @y = Wy + @ (3.10)
by successive substitution
Xt = Yioq Wy (3.11)
HenceE(x;) =t p and var ( x,) =t ¢
since the mean and variance change with t, the process is said to be nonstationary .
3.3 ARIMA MODEL (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE)

ARIMA models (autoregressive integrated moving average) are generalization of the
simple ARmodel that uses three tools for modeling the serial correlation in the
disturbance. It is called an integrated model because the stationary ARMA model that
is fitted to the differenced data has to be summed or “integrated “to provide a model
for the nonstaﬁohary data. A differencestationary series is said to be integrated and is
denoted as I (d) where d is the order of integration. Suppose we difference‘d’ times, to

make the series stationary then the process is integrated of order d or I(d) and it has d

unit roots. This will be modeled as an ARIMA(p, d.q)

the order of integration is the number of unit roots contained in the series, or the
number ofdifferencing operations it takes to make the series stationary. Each
integration order correspondsto differencing the series being forecasted. A first —order
integrated component means that theforecasted model is differenced once with (d= 1)

of the original series. A second order integrated component means the forecasted
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model is differenced twice with (d = 2). The three tool for modeling the serial

correlation as contained in ARIMA models are as follows;

e An autoregressive model of order p i.e. AR(p)
e Moving average term of order q 1.e. MA(q)

e Autoregressive moving average 1.e. ARMA (p,q)
3.3.1 AUTOREGRESSIVE MODEL AR (p)

Autoregressive model AR (p) is a type of random process which is often used to model
and predict various types of natural phenomenon. The idea behind the autoregressive

models is to explain the present value of the series. x;, by a function of (p) past values

such asx;_1Xt_»X¢—3 .... X;—ptherefore an Autoregressive process of order p is
written as
Xt = @1X¢—1T QPaXp—2+ ... T PpXep T Wy (3.12)

Wherew, is the white noise such thatw, ~ WN (0,6%) and is uncorrelated. Since AR

is autoregressive. Writing equation (3.12) in terms of the lag operator L,
x¢= (1L + QL% +...+ @p LP)xptw, (3.13)

i

—

Now using the backward shift operator on equation 3.12 we obtain

We =Xt — P1Xt—1 — P2Xt—2--- -~ PpXt—p (3.14)
this simplifies to
we =(1-0B- @B - ..., - 9, BP )x; (3.15)

Suppose we let w=¢0(B)x; then
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X
Thusif @@ (B)x, thenan AR of order P can be simplified as
@(B)=1-9;B-9,B’ - ... - ... @B°........ (3.16)
by defimition an AR or order (1) is defined as
Xe =@ Xpqt W, (3.17)
Wherew, ~ WN (0,07 ) and ¢ = constant
we define AR (2) as
Xe™ @Xpq + P2Xp 2t W (3.18)
this continues with AR ( 3 ) up to AR of order (p) as in the case of equation 3.12
to test for stationarity of AR(1) let

Xy = @PXp_y + W

Then x; = @(@x;.z + W, y) + @,

—m———

...--"""-—_—-

icx[ =9X;.q + Wp

—

=@ X3 + Py + W,

This simplifies to

@ x;x + )25 P (3.19)
The later simplifies 1o

’.It-t = X - 27;'3 Py (3.20)
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then

This reduces to

limy 00 @**E(xZ.;) =0 (3.21)
If |@| < 1 and the variance of x; is bounded then

Xt = Lo ¢  we- (3.22)
Where 1n the mean sense

_={ @/ for j=0
i~ o forj<o0

As a result AR(1) is stationary and also has linear process with mean

E(x¢)=X =0 @ E(w,-— j) = 0 and the variance

E e
y(0) =

1— @2

-

3.3.2 MOVING AVERAGE MODEL -MA (q)

As an alternative to the autoregressive representation in which the x;on the left-hand
side of the equation are assumed to be combined linearly, the moving average model
of order g, abbreviated as MA(g), assumes the white noise w;on the right-hand side of

the defining equation are combined linearly to form the observed data.

Thus the moving average model of order g, or MA (q) model, is defined to be
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Xt = {ﬂt 4= Blu}t_i o e S AT e qut"q (3 .23)
Where there are q lags in the moving average andf;.. ............ 0, (0q # 0) are

parameters. The noise w,; 1s assumed to be Gaussian white noise.

We may also write the MA (q) process in the equivalent form

xy = 6(B)w, (3.24)
Thus using the moving average operator we have

6(B) =1+ 6,B+6,B%*+ . . .. .. + 6,B1 | (3.25)

Unlike the autoregressive process, the moving average process is stationary for any

-------

Considering the MA (1) model x; = w, + 6; w;_4 then

((1'+ 68%)a2, h=0
y(h) =1 0d, =1
: 0, =1

And the autocorrelation function is

p(h) = y(1+06%)°

|
i
|
|
f
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3.3.3 AUTOREGRESSIVE MOVING AVERAGEMODEL; ARMA (p, q)

ARMA model are combination of the AR and MA models and is called autoregressive

moving average which is given by.

Xt = Q1Xpq + o FOp X + W + 0104 + + 0,0t (3.26)
Where w; is a purely random process with mean zero and varianceo
Using the lag operator L, we can write an ARMA process as

@(L)x: = 6(L)w; (3.27)

Where @(L) and 6(L) are polynomials of orders p and q respectively, defined as

e(L)= (l-o1L—q; L*—. .. .. - ¢plL’) (3.28)
and
O(L) =(1+6; L+ 6L+ ....+ 6,L°) (3.29)

For example the ARMA (1, 1) process is given by
— ///)

Xp = Q1 Xp—1 + Wy + 61054

——

e ——

And in terms of the lag operator L this can be written as
(l-oL)x = (1+ 6; L)we

Hence

_ (1464L
X, = (1+ch) W, (3.30)

Since ; is a pure random process with variance g we obtain variance as
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(¢+0)(1+¢0) o2

var(xe, X¢—1) = = (3.31)
Where
p(l) = cov(xyXe—1) _ (@+0)(1+¢@0) (332)

var(xy)  1+602+2¢0

Successive values of p(k) can be obtained from the recurrence relation

pk) =@p(i—1) for k>2

Thus the ACF for an ARMA (1, 1) process is such that the magnitude of p; depends

onbothgp and 6

3.4 MULTIPLICATIVE SEASONAL ARIMA MODELS

We now introduce several modifications made to the ARIMA model to account for
seasonal and nonstationary behavior. Often, the dependence on the past tends to occur
most strongly at multiples of some underlying seasonal lag s. For example, with
monthly econom_i_p_ data, there is a strong yearly component occurring at lags that are
multiples Df".f: =12 becamﬁong connections of all activity to the calendar
year. Data taken quarterly will exhibit the yearly repetitive period at s = 4 quarters.
Natural phenomena such as solar radiation also have strong components corresponding
to seasons. Hence, the natural variability of many physical, biological, and economic
processes tends to match with seasonal fluctuations. Because of this,it is appropriate to

introduce autoregressive and moving average polynomials that identify with the

seasonal lags. The resulting pure seasonal autoregressive moving average model, say,

ARMA (P, Q) s, then takes the form
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@, (BS)x, = 0, (BS)w, (3.33)

with the following definition. The operators

®,(B5)=1-0 B - ®,8°— - -—DpB™ (3.34)
and
0o (B%) = 140 1B °+0 ,B%+ - - +0 oBY (3.35)

arethe seasonal autoregressive operator and the seasonal moving average operator of

orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure seasonal ARMA
(P,0)s is causal only when the roots of ®p(z 3 ) lie outside the unit circle, and it is

invertible only when the roots of ®o(z’) lie outside the unit circle.

In general, we can combine the seasonal and nonseasonal operators into a

multiplicative seasonal autoregressive moving average model, denoted by

ARMA(p, q) * (P,Q)s, and write

@, (B*)(B)x: = 8(B)8BIw;— - 636)
op—"
X¢ = Xp—q + Xp—12 o R, ) Al Bwt..l T th—lz 3 (337)

as the overall model.

Although the diagnostic properties in Table 3.1 are not strictly true for the overall
mixed model, the behavior of the ACF and PACF tends to show rough patterns of the

indicated form. In fact, for mixed models, we tend to see a mixture of the facts listed
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in Tables 3.1 and 3.2. In fitting such models, focusing on the seasonal autoregressive

and moving average components first generally leads to more satisfactory results.

Selecting the appropriate model for a given set of data from all of those represented by
the general form is a daunting task, and we usually think first in terms of finding
difference operators that produce a roughly stationary series and then in terms of
finding a set of simple autoregressive moving average or multiplicative seasonal
ARMA to fit the resulting residual series. Differencing operations are applied first, and
then the residuals are constructed from a series of reduced length. Next, the ACF and
the PACF of these residuals are evaluated. Peaks that appear in these functions can
often be eliminated by fitting an autoregressive or moving average component in
accordance with the general properties of Tables 3.1 and 3.2. In considering whether

the model is satisfactory, diagnostic techniques discussed 1s applied.

3.5 PRINCIPLES OF ARIMA MODELING (BOX JENKINS 1976)

Box Jenkins forecasting models are based on statistical concepts and principles and are

able tomodel a wide spectrum of time series behavior. It has a large class of models to

choose fromand a systematic approach for identifying the correct model form. There

i —

—

are both statistical tests for verifying model validity and statistical measures of
forecast uncertainty. In contrast,traditional forecasting models offer a limited number
of models relative to the complex behavior of many time series with little in a way of

guidelines and statistical tests for verifying the validityof the selected model. It

consists of a four step iterative procedure as follows;

1. Model identification
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2. Model fitting
3. Model diagnostics and

4. Forecasting

The four iterative steps are not straight forward but are embodied in a continuous flow

chart depending on the set of data one is dealing with or handling.

See figure 3.1 below for the chart of the box-Jenkins modeling approach for an

ARIMA model
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Modeling Approach
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differencing

Model selection

Are residuals
uncorrelated?

model

Are parameters significant and
uncorrelated?

|

Forecast

Figure 3.1 showing Box —Jenkins approach for ARIMA modeling
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Referring to the above chart, it should be noted that the variance of the errors of the
underlying model must be invariant (i.e. constant). This means that the variance for
each subgroup of data used must be the same and should not depend on the level or the
point in time. If this is violated then one can remedy this by stabilizing the variance

and also making sure,there are no deterministic patterns in the data.
3.5.1 MODEL IDENTIFICATION

A Preliminary Box-Jenkins analysis with a plot of the initial data should be run as the
starting point in determining an appropriate model. The input data must be adjusted to
form a stationary series, one whose values vary more or less uniformly about a fixed

level over time.

Apparent trends can be adjusted by having the model apply a technique of ‘regular
differencing’ a process of computing the difference between every two successive
values, computing a differenced series which has overall trend behavior removed. If a
single differencing does not achieve stationarity, it may be repeated, although rarely if
ever, are more than two regular differencing required. Where irregularities in the
differenced series continue to be displayed, log or inverse functions can be specified
to stabilize the series such that the remaining residual plot displays values
approaching zero and without any pattern. Given a set of time series data like radiation
under consideration, one can calculate the mean, variance, autocorrelation function
(ACF), and partial autocorrelation function (PACF) of the time series. This calculation
enables one to look at estimated ACF and PACF which gives one an idea about the

correlation between the observations, indicating the sub-group of models to be

entertained. This process is done by looking at the cut-offs in the ACF and PACF.
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At the identification stage for this radiation data, we try to match the estimated ACF

and PACF with the theoretical ACF and PACF as a guide for tentative model

selection, but the final decision cannot be made until the model is estimated and

diagnosed.

Table 3.1 Behavior of the ACF and PACF for Causal andInvertible ARMA Models

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after Tails off
Lag q
PACF Cuts off after Tails off Tails off
Lag P

Judge (1985) points out that when the PACF has a cut-off at p while the ACF tails off,

it gives us an auteregressive of order p (AR (p)). If the ACF has a cut off at q while the

PACF tapers off, it gives a moving average of order q (MA (q)). However, when both

ACF and PACF tail off, it suggests the use of the autoregressive moving —average of

order p and ¢ ARMA (p,q) .
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Table 3.2 Behavior of the ACF and PACF for Causal and Invertible Pure Seasonal

ARMA Models
AR(P)s MA(Q)s ARMA(P,Q)s
ACF Tails off at lags ks, | Cuts off after Tails off at lags ks
K=1,2,.......... Lag Qs
PACF Cuts off after Tails off at lags ks | Tails off at
Lag Ps | AR Lags ks

Sometimes the ACF doesn’t die out quickly, which may suggest that our stochastic
process is nonstationary. This situation suggests the use of the ARMA (p, d, q) to
difference the data (d) times, once or twice, until stationarity is obtained. This is the

error term, equivalent to pure, white noise.

A gee;d .autoregressive‘ﬁﬁdel of order p (AR (p) has to be stationary, and a good
_ 'moving average model of order q (MA (q)) has to be invertible. Invertibility and
stationarity will give a constant mean, variance, and covariance. Anderson (1976)
Chatfield (1984) and judge (1985) pointed out that by using what is called Wold’s
decomposition. In their'subrnjssion , they pointed out that it is possible to show how
the AR and MA processes are equivalent, thus causing one to expect that whenever a
low — order —model of one type adequately explains a series, so should a higher-orde:
model of the other. This expectation is valid only if the sum of the coefficients is less

than one. Nevertheless, the principle of parsimony requires the model builder to
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choose the low —order-model, where the smallest possible number of parameters is

employed for adequate representation.

Finally, quality of the coefficients has to meet two requirements. They must be
statistically significant, and the correlation between the coefficients must be less than
0.9. The estimated ARIMA model has to have a significant t statistic for each

coefficient of the estimated model

The correlation matrix measures the correlation between the estimated coefficients.
The coefficients of the ARIMA model are correlated. however, if the absolute
correlation coefficients between the two estimated ARIMA coefficients is 0.9 or
more , such a coefficient value may suggest that the estimated coefficient are unstable
and of poor quality. Under this condition the estimate could be inappropriate for future

time periods, unless the behavior of future observations is the same as the behavior of

a given realization.

3.5.2 MODEL FITING

Model fitting consists of finding the best possible estimates for the parameters of the
tentg';ively identim . In this stage, methods of estimation such as the method of

moments, least-squares estimators and maximum likelihood estimators are considered

to estimate the parameters.

A Box-Jenkins model is considered not invertible, if the weights placed on the past \z-
observations when expressing z, as a function of these observations do not decline as
we move further into the past. A model which is invertible on the other hand, implies
that these weights do decline. Intuitively , this condition shou]d. hold , since it seems

only logical that a recent observation should count more heavily than a more

Libeary
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distantly past observation. The condition of stationary and invertibility implies that
the parameters used in the model under consideration satisfy certain criteria. When we
obtain the final least squares point estimates of the parameters in our model, we should
verify that these point estimates satisfy the stationarity and invertibility conditions.

The model will be considered inadequate if those conditions are not met.
3.5.3 MODEL DIAGNOSTICS

In model diagnostics, various diagnostics such as the method of autocorrelation of the
residuals and the Ljung-Box-Pierce statistics are used to check the adequacy of the
tentatively identified model. If the model is found to be inappropriate, we should
return back to model identification and cycle through the steps until, ideally, an
acceptable model is found. In order to achieve an acceptable model we test whether
the estimated model conforms to the specifications of a stationary univariate process.
In particular, the residuals should be independent from each other and constant in
mean and variance over time. (Plotting the mean and variance of residuals over time
and performing a Ljung-Box test or plotting autocorrelation and partial autocorrelation
of the residuals are helpful to identify misspecification.) If the estimation is
L "

inadequate, we have to return to step one and attempt to build a better model which

can be used to forecast future time series values.
The following are used in selecting the best or candid model;

a. Correlogram of the residuals

b. Normality test of the residuals; where under the normality test we consider

the following
1. Histogram
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ii. Swilk (Shapiro-wilk)
11l. Sktest (skewness-kurtosis)
c. Akaike information criterion (AIC) given by the relation
AIC=2K In (L) (3.38)

Where K is the number of parameters in the model, and L is the maximized value of

the likelihood function for the estimated model.

d. Normalized Bayesian information criterion being one of the model selection
criterions indicates that the model with the least NBIC value is selected among

the other proposed models.

The ACF of the residuals can be examined in two ways. First, the ACF can be scanned

to see if any individual coefficients fall outside some specified confidence interval

around zero.

Approximate confidence intervals can be computed. The Correlogram of the true

residuals (which are unknown) is such that 7;is normally distributed with mean

E(r) =0 | (3.39)
And variance
Var(r) =~ | (3.40)

where (r;,) is the autocorrelation coefficient of the ARMA residuals at lag k. The

appropriate confidence interval is found by referring to a normal distribution (CDF).
For example, the 0.975 probability point of the standard normal distribution is 1.963.

The 95% confidence interval for 1y, is therefore +1.96 for the 99% confidence interval,
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the 0.995 probability point of the normal CDF is 2.57. The 99% CI is therefore+2.57.
anry, outside this CI is evidence that the model residuals are not random. A subtle point
that should be mentioned is that the Correlogram of the estimated residuals of a
fitted ARMA model has somewhat different properties than the Correlogram of the
true residuals which are unknown because the true model is unknown . A different
approach to evaluating the randomness of the ARMA residuals is to look at the ACF
‘as a whole’ rather than at the individual ‘ r  separately (Chatfield, 2004) . The test

is called the portmanteau Lack of fit test and the test statistic is

Q ~NZjiri 34D

This statistics is referred to as the portmanteau statistic, or ‘Q’ statistic. The Q
statistic, computed from the lowest Kautocorrelations, says at lagsk=1,2,3 ......
20, follows a chi-square distribution with (k-p-q) degrees of freedom , where p and q
are the AR and MA orders of the- model and N is the length of the time series. If the
computed Q exceeds the value from the chi-square table for some specified
significance level, the null hypothesis that the series of autocorrelation represents a
random series is rejected at that level. The p-value gives the probability of exceeding

e

the computed Q by chance alone, given a random series of residuals.

Thus non-random residuals give high Q and small p-value. The significance level is
related to the p-value by significance level (%) = 100 (1-p). A significance level

greater than 99%, for example, corresponds to a p-value smaller than 0.01.



3.5.4 FORECASTING

The Box — Jenkins methodology requires that the model to be used in describing and
forecasting a time series to be both stationary and invertible. Thus, in order to
tentatively identify a Box —Jenkins model, we must first determine whether the time
series we wish to forecast is stationary. If it is not, we must transform the time series
into a series of stationary time series values through the process of differencing. A
time series is said to be stationary (second order stationary) if the statistical properties
such as the mean (first moment) and the variance (second moment) of the time series
are essentially constant through time. From th;e plot of the time series values if the
observed values of a time series seem to fluctuate with constant variation around a
constant mean, then it is reasonable to believe that the time series is stationary,

otherwise it is said to be nonstationary.

Notwithstanding, after scrutinizing the estimated time series model through all the

diagnostic checks, then the model is fit for forecasting.

3.5.5 CONCLUSION

-

Chaﬁér three 1s cm&ur main sections and specifically deals with the basic
concepts on time series. Stationary and Non stationary time series , ARIMA
model (autoregressive integrated moving average), and principles of ARIMA

modeling ( Box —Jenkins 1976) the next chapter which is chapter four discusses the

results of the study in a more detailed and concise manner.
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CHAPTER FOUR
DATA ANALYSIS AND RESULTS

4.0 INTRODUCTION

Data analysis and results obtained from this thesis are displayed in this chapter. The

analysis is discussed under the following headings; data collection and examination,

model 1dentification, diagnostic checking, and forecasting.
4.1.1 DATA COLLECTION AND EXAMINATION

Data for this thesis was collected from the KNUST solar energy laboratory. Daily data
measured on hourly basis was converted to average monthly global solar radiation.
Sample of the raw data is displayed at appendix one while a plot of the average

monthly data is shown in figure 4.1

A time series plot of the global solar radiation of KNUST (1995-2003)
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Figure 4.1 global solar radiation of KNUST (1995-2003)
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4.1.2 TEST FOR STATIONARITY

We begin the analysis by testing for stationarity of the series using Kwiatkowski etal

(1992)test abbreviated KPSS test. The test assesses the null hypothesis that a

univariate time series y is trend stationary against the alternative hypothesis that a

univariate time series y is trend non-stationary.

Table 4.1 showing kpss test for stationary

KPSS level Truncation lag parameter p-value

0.1599 2 0.10

From table 4.1 above since the p — value is greater than the significance level of 0.05;

we fail to reject the null hypothesis which says that the data is stationaryand conclude

that the data is stationary.
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4.1.3 TEST FOR SEASONALITY.

The presence of an annual seasonal component in a data can be seenfrom a close
examination of the ACF and the PACF plotof a time series .We therefore proceed to

find the ACF and the PACEF of the time series.

A plot showing the ACF against lag number of the solar radiation

radiation
[0 Coefficient
1.0— — Upper Confidence Limit
- Lower Confidence Limitl
0.5
5 [
00
<
| |
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Figure 4.2: ACF plot of radiation against number of lag

The ACF showed in figure 4.3 shows significant peaks at lags of multiples of 12. This

suggests the presence of an annual seasonal component in the data. However

examination of the PACF will allow a more definitive conclusion.
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A plot showing thePACF against lag number for solar radiation

radiation

10— O Coetniciert
— Upper Confidence Lt
— Lower Confidence Lot

0.5

00

Partial ACF

-0.54

=1 0™

 &‘“ T T I I TTrTTYTY T Tyl 0 V0 0
1 35S 7 9111315171921 D 2S27 29N DS IT N 434547

Lag Number

Figure 4.3: PACF plot of radiation against lag number

There-exist two sigm/’ﬁgzlnLgeaks at lags land 12 in the PACF. This confirms the
presence of an annual seasonal component in the data. However the behavior of the

__.-.-.'H—-.-

subsequent lags indicates that the process is not purely seasonal.
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4.14 SPECTRAL PLOTS

Spectral plot of periodogram against frequency

Periodogram of radiation by Frequency
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. Figure 4.4: The periodogram of radiation seriesby frequency
3 i -

The periodogram shows a sequence of peaks that stands out from the background
noise with the frequency peak at a frequency of just less than 0.1.Each of the data

points in the time series represents a month, so an annual periodicity corresponds to a

period of 12.

Because period and frequency are reciprocals of each other, a period of 12 corresponds

to a frequency of 1/12 (0.083)
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So an annual component implies a peak in the periodogram at 0.083. And this is

precisely what we expect to find if there is an annual periodic component.

Spectral plot of density against frequency

A plot showing the Identification of periodic component of the time series

Spectral Density of radiation by Frequency
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Window: Tukey-Harmming (5)

Figuxﬁ;.S: spectral density-of radiation by frequency

_— Spectral density function is a smoothed version of the periodogram.Smoothing

o m—

provides a means of eliminating the background noise from the periodogram allowing

the underlying structure to be more clearly isolated. There are significant peaks

showing at frequencies which are multiples of 0.083

We can now conclude that the data contains a periodic component with a period of 12

months.
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4.1.5 DECOMPOSITION OF THE ADDITIVE TIME SERIES OF RADIATION

The figure below shows the various components of the data.

Decomposition of additive time series
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Figured.6: decompesition of radiation series

— Decomposition of the additive time series showing from the top are the observed or
original component,the trend component,the seasonal or periodic component and the

random or irregular component of the series which is seen at the bottom.

We now proceed to set an annual periodicity to the series. By this the penodicity is set

to 12 and this creates a set of new data variables that are designed to work with trend

procedures
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The set of data variables created are:

1. ERR-the residual component

3. SAS-seasonally adjusted series

Table showing the ERR, SAS, SAF, and STC for a one year period

2. STC-smoothed trend cycle

Table 4.2created variables for the additive time series

4. SAF-seasonal adjustment factors

ERR SAS SAF STC
17.3993055555556 | 331.93798225308643 | -29.93798225308642 | 314.53867669753083
17.44791666666663 | 330.47964891975306 | 48.52035108024692 | 313.03173225308643
3334027 376.67756558641975 | 64.32243441358025 | 310.0178433641975
T14.39004629629630 | 307.70881558641975 | 33.29118441358026 | 322.09886188271605
9.6349022633745 351.81298225308643 | 64.18701774691358 | 342.17807998971193
56.83577674897117 | 388.30256558641975 | -0.302565586419761 | 361.4667888374486
-6.606867283950635 355.46344521604937 | -49.46344521604938 | 362.0703125
11.9443?;@526?532 ~ 365 03173225308643 | -80,03173225308632 | 354.0871592078189
5 035336625514415 | 331.76089891975306 | -57.76089891975308 | 340.7961355452675
TTRI0I8518518516 | 325.03798225308643 | 2.0620177469135883 | 337.7481674382716
6.612268518518476 T A796i89197531 | 44.52035108024691 | 339.0919174382716
32.46527 367 0673225308643 | -39.40673225308642 | 334.94145447530866
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SAF- signifies the effect of each period on the level of the series.
SAS-; signifies the original series with seasonal variations removed.

STC-; signifies a smoothed version of the seasonally adjusted series that shows both

trend and cyclic component

ERR-; signifies values that remain after the seasonal, trend and cycle components have

been removed from the series.

NB; The SAS is chosen to be the most appropriate series since it represents the
original series with the seasonal variation removed .We thus proceed with a plot of the

SAS.

A plot showing seasonal adjusted series for radiation from 1995 to 2003
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Figure 4.7: seasonally adjusted series of the radiation data.
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This is the plot of the original series with the seasonal variation removed. The
remaining plot reveals the trend component of the series. Figure 4.7 therefore reveals

an upward trend with a number of peaks evident at random intervals, showing no

evidence of an annual pattern.
4.1.6 SEASONAL FACTORS
The seasonal factors for each season or month of the year are displayed below.

Table 4.3 seasonal factors for global solar radiation of KNUST

Months Seasonal factor
January -29.938
February 48.520
March 64.322
April " 33.291
May 64.187
June ~ [-0303
July ) -49.463
August - P 80,032
“September -57.76]
October 2.062
November - 44.520
s -39.40

The estimated seasonal factors are given for the months January to December. They

arethesameforcachyaar.'l‘hclargﬁsensonalfmismianh(abmﬂ
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64.322). while the lowest is seen in August (about -80.032), indicating a peak in global

radiation in March and a trough in August each year



4.2 MODEL IDENTIFICATION

In an attempt to identify which model is best for the data we plot the auto correlation

function ACF and the partial autocorrelation function PACF as shown in the figure

below.
Series: data
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Figure 4.8: ACF and PACF of the global radiation data from 1995 — 2003

The figure above shows both the autocorrelation function and the partial

autocorrelation function of global radiation at various lags.
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Using the behavior of the causal and invertible pure seasonal ARIMA models, thus
observing the seasonal lags, both the ACF and the PACF seem to tail off after lag k’s

where k=1,2,3 . . . suggesting an ARIMA (1, 0, 1)112) model.

Again considering the behavior of the causal and invertible ARIMA models, thus
observing the non-seasonal lags the ACF cuts off after lag 1 while the PACEF cuts off

after lag 2 suggesting an ARIMA (2, 0, 1) model.
Combining the two models give the following mixed models;
» ARIMA(Z2,0,1)(1,0,1)42
> X =(P1X—1 + PaXp_z + 0¢ + 010 1)(PXe—12 + W + Owr_13)
> ARIMA(0,0,1)(1,0,1)2 'i
» X = (W¢ + 010p-1)( PXp—gp + O T @ff’t—lz)
> ARIMA(2,0,1)(1,0,0)112;

> xX; =(P1X¢-1 + P2Xp2+ O T 010 1)(PXe_12)

-

) ‘-’/——‘_—_ 4 [ (]
To select the best model for forecasting into the future, each model is assessed basgd

— —

— onits AIC,BIC andAIC,.. i

e T e s - k. T
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4.2.1 MODEL SELECTION

Table 4.4 selection of best model based on Information criterion (AIC, AICc, BIC)

MODEL AIC AlCc BIC Variance o
ARIMA(2,0.1)(1,0.1)[12] | 1128.65 1129.77 1147.43 1533
ARIMA(0,0,1)(1,0,1)[12] | 1124.86 1125.44 1138.27 1525
ARIMA(2.0,1)(1.0.0)[12] | 1147.7 1148.53 116379 | 2066

The table above shows the Akaike Information criterion (AIC), the corrected Akaike
Information criterion (AICc) and the Bayesian Information criterion (BIC)

respectively.

The information criterion indicate that the model with the least value is selected

among the other proposed models

From the tableabovethe best model among the suggested models is ARIMA

(0,0,1)(1,0,1)[12] since it has the smallest value for the AIC, AICc and BIC. It also

has the gimllest vmiagggf—_ !
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4.2.2 MODEL FITTING

The co-efficient, the standard error (s.e) and the t-values for the

orders are displayed in the table below;

Table 4.5 parameter estimates of ARIMA(0,0,1)(1,0,1)(1

various ARIMA

mal

sarl

smal X-mean
Coefficient | 0.1487 0.9835 -0.7886 358.3099
S.€ 0.1009 0.0203 0.1262 15.2334
t-values 1.4737 48.4483 6.2488

The common rule or assumption is that a t-statistics with an absolute value greater

than 1.25 for lags 1 through3 or greater than 2 for lags 4 and beyond indicates a

coefficient statistically significant.

Based on the t-value test all the coefficients aresaid to be statistically significant since

—— !##,,ﬂ—*-"‘__
their t-values are all greater than 1.25.
4.3 MODEL DIAGNOSTICS

Diagnostics of ARIMA(0,0,1)(1,0, 1)(12)

The figure shows the following; (four in one plot labeled a, b, c, and d)

a. standardized residuals
h gY
b. ACEF of residuals L ;:% .
«WAME NV p ecHNT

C. Normal Q-Q plot of standardized residuals
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d.

P-values for Ljung-Box statistics
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Figure 4.9: DIAGNOSTICS OF ARIMA(0,0,1)(1,0,1)(12

a. The standardized residuals plot in the figure above supports the model, since

there is no evidence of trend, thus the standardized plot exhibits no obvious
s /——“"—
pattern.

From the plot of the ACF of the residuals; the lags show no statistically

significant evidence of non — zero autocorrelation in the residuals.

With the normal g- q plot of the standardized residual, most of the residuals

seem to follow the line of best fit fairly closely except for some few residuals

deviating from the normality. Since most of the residuals are located on the

straight line, we conclude that the normality assumption has also been satisfied.
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d. The plot of the Ljung — Box statistic shows that most of the Ljung — Box p —

values are all less than 0.05, thus the Ljung — Box statistic is significant at any

positive lag.

4.3.1 THE BEST MODEL

By the parameter estimates above the equation for the best model is thus given

by
X = (Wg + 01we—1)(Pxi_17 + W + Owe_q3)

Substituting the coefficients of the various parameters in the above equation

yields

x; =(w; + 0.1487w;_4) (0.9835x;_1, + w; — 0.7886w;_12)
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4.4 FORECASTING
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Figure 4.10a: radiation forecasts with confidence intervals for 2004

Figure above gives the visual representation of the original global radiation data, its

forecasts and confidence interval.

radiation
|8
\
\ sha
x
.4.-";—
—_—

1 Ly O D s T OO ==

Figure 4.10b showing radiation plot with existing 2004 data.

Based on the supporting model statistics and forecasting criterion, it is proposed that

L,
""""

the best model among the three suggested models 1s ARIMA (0,0,1)(1,0,1)[12]
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4.4.1 FORECASTING FOR 2004

Table 4.6 forecasting for the year 2004 for KNUST global radiation

Months Forecast values Standard error
January 342.6218 39:13217
February 408.7124 39.56122
March 422.8910 39.56122
April 388.7332 39.56122
May 421.7421 39.56122
June 358.6227 39.56122
Tuly 313.6345 39.56122
August 282.8173 39.56122
September 291.7101 39.56122
October — 379.9046 39.56122
= 5 |
November 404.1462 39.56122
"December 334.1084 39.56057
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4.4.2 EVALUATIONOF FORECAST PERFORMANCE

The first test for forecasting models were developed in 1939 by Tinbergen in response
to Keynes who stated that theories must be confirmed if the data and statistical
methods are employed correctly. The standard approach of forecast accuracy analysis
is to investigate the bias of forecasts, their efficiency in terms of incorporating all
available information and performance compared with other forecast of the same
indicator. Test of forecast efficiency, determines whether the forecast utilizes all the
available information at a given point in time. It is further to check whether the
forecast efficiency is related to the question of the impact of potential determinants of
radiation on the forecast performance. To assess the out-of-sample forecasting ability
of the model it is advisable to retain some observations at the end of the sample period
which are not used to estimate the model. Consider for example the radiation data
from the period of January 1995 to December 2003, which was used to model the

radiation and subsequently provided twelve months ahead forecast from January to

December2004 as shown below.
e .’/,_———-""__
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Table 4.7

forecasting performance evaluation

PERIOD | FORECAST | ACTUAL | ERROR | % LOWER | UPPER
VALUES VALUES ERROR
109 343 335 -8 2.4 241.844 | 458.464
110 409 414 5 1.2 240377 | 476.641
111 423 450 27 | 6 240377 | 476.641
112 389 414 25 6 240377 | 476.641
113 422 383 -39 10.2 240377 | 476.641
114 359 341 58 5.3 240377 | 476.641
115 314 273 41 15 240377 | 476.641
116 283 242 -42 17.4 240377 | 476.641
117 1292 355 63 17 240.377 | 476.641
= _.,,r-"""'"-'—____-_f
118 380 403 23 57 240377 | 476.641
119 404 402 ) 0.005 240377 | 476.641
120 334 _396 62 15.7 240.377 | 476.641

The strength or power of a forecast 1s determined by the calculated forecast error. The

error of a forecast 1S calculated by the difference between the actual values and the

forecast values. When the forecast value is higher than the actual value the error is
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negative and we say the forecast is high. Similarly we say the forecast is low if the

forecast value is of a lower value than the actual value.

4.5 SUMMARY OF FINDINGS

The thesis was aimed at selecting the best model among various ARIMA estimated
models which has the highest forecasting power. We have identified a framework for
ARIMA modeling which includes the following steps; data collection and
examination; model identification; diagnostic checking and forecasting performance
evaluation. We adopted the traditional Box-Jenkins approach of forecasting known as
ARIMA modeling, in which a time series is expressed in terms of past values of
itself (the autoregressive component) plus current and lagged values of a “white noise’
error term (the moving average component). The primary purpose behind this study
was to find out which ARIMA model is more accurate and appropriate for forecasting

purposes in the real world situation, keeping in mind the cost of modeling building.

A general rule of thumb for univariate forecasting is to test for all the stages of the
ARIMA process. ARIMA models are theoretically justified and can be surprisingly

robust w:i-fh respect to alternative (multivariate) modeling approaches. The study was

based on KNUST average monthly global solar radiation data, which was used to

—

estimate various possible ARIMA models and the candid model, was selected based
on the BIC, AIC, and the AICc The comparative performance of these ARIMA

models have been checked and verified. Several ARIMA models were selected and

tested and it was concluded that ARIMA(0,0,1)(1,0,1)[12) 1s the best model.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The objective of this thesis is to model the average monthly global radiation of

KNUST using time series analysis and also to predict the future global radiation of

KNUST.

By the application of the Box-Jenkins methodology the analysis was successfully

carried out with the following results;

1. The model developed is ARIMA(0,0,1)(1,0,1)12) or
> x = (W¢ + 010p1)( PXp_12 + 0 + OW¢_12)
Substituting the values of the estimated parameters; we have

} xt = ({Ut + 0.14870)!:_1)( 0.9835:1’:;:..12 + Wt — 0.7886{Ut._12)

2. From the estimated seasonal factors shown in table 4.1, it is revealed that

| gflabai solar radiation attains its peak in March while the lowest is recorded in

s august.

68



3.2 RECOMMENDATIONS

The modeled global solar radiation shall serve the following purpose for KNUST and

for the matter the nation as a whole.

1. To generate global monthly average solar radiation data for KNUST.
2. for proper assessment of the solar energy resource potential of KNUST.

3. Serve as the basis for engineering and economic decisions, for example, in the

construction of solar based devices such as solar panels, and solar water heaters.

4. Maximum solar energy could be stored in March where radiation is at its peak and
used for a number of solar energy applications such as photovoltaic systems for

electricity generation during low radiation seasons at the energy center.

5.3 LIMITATION

1. At the time of writing the thesis available data was from 1995 to 2004 only.

e

2 Forecasted values were already in existence.
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APPENDIX 1

SAMPLE OF RAW RADIATION DATA

Month Time Global/Ave Diff/Ave Temp ('C) | Gmim Press (bar)
Rad (W/m® | Rad (W/m?)
1 100 -2.55 -1.254 59 -3.135 1
1 200 -1.94 -1.045 101 -2.717 136
1 300 -0.641 -0.418 236 -1.045 204
1 400 -0.422 -0.418 | 301 -0.627 306
1 500 -0.526 -0.418 401 -0.836 456
1 600 -1.098 -0.627 523 -1.673 544
1 700 2.526 14.22 700 -1.673 601
1 800 36.92 72.3 800 15.05 701
1 900 133.9 294.7 859 70 807
1 1000 250.6 435.9 944 184.2 934
1 f1 100 27— 7 492.2 1043 222.6 1006
1200 458.8 603.9 1126 261.2 1103
1 1300 485 650.6 1247 314.9 1233
1 1400 540.6 627.6 1306 275.2 1400
1 1500 323.3 501.6 1418 188.4 1450
1 1600 249.6 314.4 1524 184.2 1503
1 1700 157.3 237.6 1606 87.4 1655
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APPENDIX 2

Time series plot of global radiation
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APPENDIX 3

ACF of global radiation

radiation

[0 Coetficiem
o — Upper Confidence Lt
— Lowetr Confidence Lini

05

ACF

| L B

05—

|

-1.0—
T2 3 3 2 3 7 G A0 A ie 16 18
Lag Number
APPENDIX 4
PACF of global radiation
— /‘—/
radiation

e ' x [ Coefficsert
i iy :an-c':m::

1

Partial ACF

76



APPENDIX 5

radiation
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Periodogram of radiation by Frequency
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APPENDIX 7

Spectral Density of radiation by Frequency
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APPENDIX 9

Decomposition of additive time series
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APPENDIX 10

Series: data
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APPENDIX 11

Standardlzed Reslduals
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APPENDIX 12

data
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R -CODES

data=ts(radiation, start=1995,freq=12)

plot(data,xlab="Time(years)",ylab="Global Radiation",col="blue")

a=decompose(data)

plot(a)

b=aSseasonal

kpss.test(data)

acf2(data)

sarima(data,2,0,1,1,0, 1,12)

sarima(data,0,0,1,1,0,1,12)

sarima(data,2,0,1,1,0,0,12)

sarima.for(data,12,0,0,1,1,0,1,12)
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