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Abstract 

General Insurance companies in Ghana are confronted with problems when they 

want to use past or present claims amounts in forecasting future claim severity. 

This study seeks to determine an appropriate statistical distribution for the 

claims amounts of SIC, to determine the posterior distribution of the claims 

amounts of SIC, and to estimate the expected future claims amounts of SIC using 

Bayesian methodology. Secondary data from motor policy was obtained from 

State Insurance Company (SIC) over a period of one year (from January 2015 to 

December 2015) was used. Claims data that were above GHS 4,000 were 

considered by the researcher. The analysis of the data was done using Excel, 

Statistical Package for Social Science (SPSS) and EasyFit software. The research 

work revealed that the claims data and the posterior distribution of the claim 

amount followed log-normal distribution and the expected future claim amount 

is GHS 21,525.27.  



 

iv 

Acknowledgements 

My humble gratitude goes to God Almighty for his guidance and confidence that 

has enabled me to complete this work successfully. 

I wish to express my most heartily gratitude and thanks to my supervisor, Dr. A.Y. 

Omari-Sasu for the valuable and useful discussion which invaluably improved 

this thesis. 

I am also very grateful to Nana Kena Frimpong for his valuable suggestions and 

corrections for this thesis. 

My profound thanks go to my wife Mrs. Sarah Efua Acquah and my children 

Petrout Papa Kwesi Acquah, Euodia Efua Acquah and Nana Kwamena Acquah for 

their encouragement and commitment towards the course of my career 

development. 

However, I am completely answerable for any limitation that may be detected in 

this work. 

 

 



 

v 

Contents 

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii  

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Background to the Study . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Problem Statement of the Study . . . . . . . . . . . . . . . . . . . 1 

1.3 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 



 

vi 

1.5 Justification of the Study . . . . . . . . . . . . . . . . . . . . . . . 3 

1.6 Limitation of the Study . . . . . . . . . . . . . . . . . . . . . . . 3 

1.7 Organization of the Study . . . . . . . . . . . . . . . . . . . . . . 4 

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.2 Relevant Literature Related to the Research . . . . . . . . . . . . 5 
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3.2 Scope of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3.3 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3.4 Actuarial Modeling Process of Claims Amounts . . . . . . . . . . 10 

3.4.1 Pareto Distribution, P(α,λ) . . . . . . . . . . . . . . . . . 10 

3.4.2 Exponential Distribution, Exp(λ) . . . . . . . . . . . . . . 12 

3.4.3 Gamma Distribution, Gamma(α,λ) . . . . . . . . . . . . . 13 

3.4.4 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . 14 

3.4.5 Log-normal Distribution, LN(µ,σ2) . . . . . . . . . . . . . 16 

3.5 Checking model fit . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3.5.1 The Probability-Probability (P-P) plot . . . . . . . . . . . 18 

3.5.2 The Akaike’s Information Criteria (AIC) . . . . . . . . . . 18 

3.6 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 



 

vii 

3.7 Determination of posterior distribution of claim amount . . . . . . 19 

3.7.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . 19 

3.7.2 Prior distribution . . . . . . . . . . . . . . . . . . . . . . . 19 

3.8 Determining expected future claims amounts from the posterior 

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

4 Analysis and Findings . . . . . . . . . . . . . . . . . . . . . . . . . 21 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

4.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

4.3 Interpretation of Histograms . . . . . . . . . . . . . . . . . . . . 22 

4.3.1 Histogram of the Claims Amounts of SIC . . . . . . . . . . 22 

4.4 Descriptive Statistics of log of claims amounts in SIC . . . . . . . 24 

4.4.1 Histogram of the log of claims amounts . . . . . . . . . . . 25 

4.5 P-P Plot of the Five Distributions . . . . . . . . . . . . . . . . . . 26 

4.6 Test Statistics of Distributions . . . . . . . . . . . . . . . . . . . . 27 

4.6.1 Test Statistics for Pareto Distribution . . . . . . . . . . . . 27 
4.6.2 Test Statistic for Exponential distribution . . . . . . . . . 28 

4.6.3 Test Statistic for Gamma distribution . . . . . . . . . . . . 29 

4.6.4 Test Statistic for Weibull distribution . . . . . . . . . . . . 30 

4.6.5 Test Statistic for Log-normal distribution . . . . . . . . . . 31 

4.7 Maximum Likelihood Estimates . . . . . . . . . . . . . . . . . . . 32 



 

viii 

4.8 Determining the Expected Claim amount using the Bayesian Method- 

ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

4.8.1 Determining Likelihood function . . . . . . . . . . . . . . . 34 

4.8.2 Determining the Posterior Distribution . . . . . . . . . . . 35 

4.9 Determining expected future claims amounts . . . . . . . . . . . . 35 

5 Conclusion and Recommendations . . . . . . . . . . . . . . . . . . 37 

5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  



 

ix 

List of Tables 

4.1 Descriptive Statistics of claim amount in SIC . . . . . . . . . . . . 22 

4.2 Descriptive Statistics of log of claims amounts in SIC . . . . . . . 24 

4.3 Showing the test statistics for Pareto distribution of claims data . 27 

4.4 Showing the test statistics for Exponential distribution of claims  

 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

4.5 Showing the test statistics for Gamma distribution of claims data 29 

4.6 Showing the test statistics for Weibull distribution of claims data 30 

4.7 Showing the test statistics for lognormal distribution of claims data 31 

4.8 Showing computed log-likelihoods, A.I.C. and parameters . . . . . 33 

  



 

x 

List of Figures 

4.1 Histogram showing claims amounts of SIC . . . . . . . . . . . . . 23 

4.2 Histogram showing log of claims amounts in SIC . . . . . . . . . . 25 

4.3 P-P plot showing the log of the claim amount of the five distributions 26  



 

xi 

List of Acronyms 

SIC - State Insurance Company Limited 

AIC - Akaike’s Information Criteria 

COTTOR - Committee On Theory Of Risk 

P-P Plot - Probability - Probability Plot 

ZAIG - Zero - Adjusted Inverse Gaussian 

EIW - Exponentiated Inverse Weibull  



 

1 

Chapter 1 

Introduction 

1.1 Background to the Study 

Over three quarters of a million people are killed and tens of millions injured on 

the roads in low income countries each year. Many, if not most, will come from 

poor households, particularly vulnerable to the risk of road trauma and its 

economic consequences. While road safety is traditionally focused on prevention 

activities, fair and timely compensation systems will help bereaved families and 

injured victims recover from the shock of a road crash (Murray, 2013). 

Claims amounts from insurance companies are sometimes with large data, which 

are relatively heavy tails. To model such data, heavy tail statistical distributions 

like gamma, exponential, weibull and lognormal are used (Boland, 2006). 

Owing to the rapid growth of the number of motor vehicles operating in 

developing countries and the obvious economic and social ramifications, there 

have been various research in the actuarial literature to model such insurance 

claims reported by insured drivers (Denuit et al, 2007). 
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1.2 Problem Statement of the Study 

In actuarial profession, the ability to model claim depends on the understanding 

and interpretation of loss distribution as it is vital in making insurance decisions 

in estimating premiums, expected profits and reserves. Knowledge on 

distribution of insurance claims can also help in advising insurance companies to 

consider reinsurance (Boland, 2006). 

State Insurance Company has two major motor policies, namely, comprehensive 

and third party only. The researcher focused on comprehensive motor policies 

that have large claims amounts. Most insurance fund managers place much 

emphasis on large claims amounts and in view of this selecting the best model to 

model the large claims data is vital to them. 

A clearer understanding of probability and loss distribution in general insurance 

is important because it does not only help to summarize and model large amounts 

of claim but also help to give timely outcomes (Raz & Shaw, 2000). 

However, various models were employed to determine the goodness of fit of the 

models that fit the claims amounts. The aim was to select the best method out of 

the sample methods that will provide accurate and consistent data for planning. 

1.3 Objective of the Study 

The objectives of this research work were: 
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• to determine an appropriate statistical distribution for the claims amounts of 

State Insurance Company ( SIC ). 

• to determine the posterior distribution of the claims amounts of SIC. 

• to estimate the expected future claims amounts of SIC. 

1.4 Methodology 

This study focused on secondary data from State Insurance Company. Descriptive 

statistics were employed to ascertain the nature of the data with respect to its mean, 

median, mode, standard deviation, variance, skewness, kurtosis and sum. Loss 

distribution such as Pareto, exponential, gamma, log normal and Weibull were used to 

determine the claims amounts. Bayesian methodology was employed. With this 

method the likelihood is multiplied with the prior to arrive at the posterior 

distribution. Continuous uniform distribution was used as a prior for the data. The 

posterior provides the current distribution. 

1.5 Justification of the Study 

The significant of the study was to highlight the essence of understanding 

probability and loss distribution that is used by general insurance. This will 

enable the insurance company to make decisions such as estimating premiums, 

expected profits and reserves. Knowledge about the distribution of insurance 

claims can also help in advising insurance companies to consider reinsurance. 
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Insurance companies often receive large amounts of claim during certain periods. 

The design of a suitable loss distribution that will model the severity of claims 

will enable insurance fund managers to have a better understanding of claims 

data. 

1.6 Limitation of the Study 

The research could have considered claims amounts beyond one year but due to time 

constrains the study was limited to one year claims data. 

As a result of time constrain, this research considered five loss distributions. This 

limited the distributions of the research. 

There was difficulty in getting access to data from insurance companies but due to 

further explanation of the research work to the insurance company the data was 

finally made available. 

1.7 Organization of the Study 

The work is organized into five main chapters that is chapters one to five. Chapter 

One covers introduction, which is made up of background of the study, statement 

of the problem, objectives, methodology, justification of the study, limitation of 

the study, and chapter organization. Chapter two deals with the review of related 

literature, while Chapter three describes the methodology, including the scope of 

the data, actuarial modeling process, data processing and Bayesian methodology. 
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Chapter four contains results and discussions of the study and chapter five is 

summary, conclusions and recommendations of the study.  
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter was developed with the motive of reviewing pass works so as to get 

theories and empirical evidence to support this research. 

2.2 Relevant Literature Related to the Research 

Finger & Robertson (1976) postulated that an insurance excess layer has 

inflationary effect over that attributed to overall growth of claim cost. They also 

claimed that total claim cost increases at an annual rate and the overall rate is 

less than the trend of the basic limit cost. Their paper discussed the trend that 

exists between the claim cost and the basic limit cost. They derived a model to 

estimate the basic limit trend out of the overall trend. 

Heckman et al. (1983) discussed aggregate loss distributions from the 

prospective of collective risk theory. Their aim was to come out with an accurate, 

reliable and practical method to determine the cumulative probabilities and 

excess pure premium ratios for loss distributions when claim severity and claim 

count distributions are considered. They identified the disadvantages of the 

collective risk model to be the uncertainty of its parameters. They acknowledged 

that further research need to be carried out in the area of collective risk. They 

emphasized the relevance of testing the predictions of the collective risk model 

against the actual total claim loss. Secondly, they stress the need to test the 
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sensitivity of the collective risk model to violations of the assumptions underlying 

it. 

Guiahi (2000) provided better statistical method for fitting parametric 

distributions to loss data involving deductibles, policy limits and rating variables. 

The presence of deductibles and policy limits did not give him a good fit and he 

resorted into using Akaike’s Information Criteria (A.I.C). The criteria employed 

by Guiahi for estimating which probability distribution best suit the claims data 

was the value of Akaike’s Information Criteria, A.I.C. With this criterion the model 

with the smaller AIC value is considered to be the appropriate one. The paper also 

discussed statistical tests of hypotheses to know the effect of rating variables on 

loss distribution. In his view lognormal was the best fit of the claims data.. A 

statistical package, S-Plus, were used to compute the maximum likelihood 

estimate (MLE) of the model parameters. Finally, he concluded that a lot of 

statistical models could be used to fit distributions to claims data. 

Renshaw (2004) focused on modeling both the claim frequency and claim 

severity components of the claims process in general insurance in the presence 

of rating factors using the quasi-likelihood. The maximum likelihood estimates 

was used by him to estimate the parameters. In his view the quasi-likelihood 

parameter estimates exhibits similar asymptotic properties as the maximum 

likelihood parameter estimates. His research also indicated how selected 

parameterized variance functions can be used to model heterogeneity in the 

claim frequency process and to provide a parameterized family of claim response 

variables. He introduced parameterized power link function which includes the 

log-link as a special case. 

Fiete (2005) developed model to fit into 490 claims amounts drawn from 7 

various years and used maximum likelihood estimate to estimate parameter 
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values. He used P-P plots to know the goodness of fit of all possible outcome to 

avoid depending on a single number. He used several statistical distributions 

such as gamma, lognormal, weibull, inverse weibull and Pareto to fit the 

insurance claim severity. He also assumed no zero claims. According to him 

Pareto distribution had the best of fit and hence assumed that claims within each 

year are generated by a Pareto distribution. 

Wright (2005) also presented actuarial modeling on his COTOR answer using 

inverse Pareto, Pareto, burr, Paralogistic, inverse Paralogistic, log logistic, 

Pearson VI, inverse burr, log-normal and restricted benktander families. He used 

actuarial procedure to fit models to 490 claims of 7 different years and also used 

maximum likelihood method to estimate parameters. In his research the P-P plots 

and Kolmogorov-smirnov test (K-S test) was used to determine the effectiveness 

of fit. The restricted benktander family is a one-shape-parameter sub-family of 

the benktander II family. It has the property (like Pareto and exponential 

families) that left-truncation gives another distribution in the same family. The 

research was salient on this particular distribution because it is useful for 

modeling excess loss amounts but the study focused on claims. 

Meyers (2005) fitted distributions to 250 claims and the distributions used was 

lognormal, weibull and gamma. Meyers based his methodology on Bayesian 

solution and used maximum likelihood estimate to determine the parameters. 

This means that Meyers multiplied the likelihood with the prior to derive the 

posterior distribution. In this particular study the likelihood was used to calculate 

the A.I.C with the aim of selecting the appropriate probabilistic model for the 

claims amounts. 
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Shevchenko (2010) researched into calculation of aggregate loss distribution, 

estimated the operational risk capital under the loss distribution approach 

requires evaluation of aggregate (compound) loss distributions which is one of 

the classic problems in risk theory. According to him distributions that are used 

in operational risk, closed-form solutions are not available. However, modern 

computers use numerical methods to calculate this distribution. His research 

addressed numerical algorithms that can be used to compute aggregate loss 

distributions. Monte Carlo, Panjer recursion and Fourier transformation methods 

were compared.  
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Chapter 3 

Methodology 

3.1 Introduction 

The main aim of this chapter was to discuss the various methods adopted for this 

study. This study focused on the loss severity of claims amounts using the State 

Insurance Company as case study. This chapter discusses the scope of data, 

actuarial modeling process, data processing and Bayesian methodology. 

3.2 Scope of Data 

Secondary data from motor policy was obtained from State Insurance Company. 

A period of one year (January, 2015 - December, 2015) data was used.The 

researcher wanted to consider higher claims and upon consultation with the 

claims manager at SIC, higher claims in their insurance company are GHS 4000 

and beyond. Upon studying the data from January, 2015 - December, 2015, the 

higher claims were 135. The data used in the study follows the following 

assumptions: 

1. All motor vehicles registered under the policy must make a claim (No zero claims 

in a year). 

2. The claims are independent and identically distributed 

3. All future claims should be derived from the same distribution 
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3.3 Descriptive Statistics 

Creswell (2009) in his research explains that information on current data is mainly 

concerned with describing the nature of the present situation of the data. In this study 

the descriptive statistics was used so as to know the expected claims above GHS 

4,000.00 at SIC. The mean, median and mode shows skewness of the individual claim 

amount. This helped the researcher to fit the positively skewed distributions to the 

State Insurance Company data. 

3.4 Actuarial Modeling Process of Claims Amounts 

In general insurance the frequency and severity of claim analysis is important 

because it helps in estimating future expected claims for pricing. The modeling 

process of general insurance on claims amounts are done by continuous 

probability distributions such as Pareto, exponential, gamma, Weibull, lognormal 

distributions, etc. The log-likelihood function was used as a tool to select the 

distribution that fit the claims data. That is the distribution with the highest log-

likelihood estimate was selected to be the best fit. The expectation was used to 

determine the claims amounts that an individual policyholder could claim. The 

definitions of the above distributions are given below: 

3.4.1 Pareto Distribution, P(α,λ) 

The Pareto distribution function is denoted as P(α,λ). The random variable X has 

Pareto distribution denoted as X ∼ P(α,λ), if its probability function ( PDF ) 

is: 
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Parameters : α,λ(α > 0,λ > 0) 

0 (3.1) 

let xi,i = 1,2,...n be the claims amounts, then the likelihood function is given 

as: 

) (3.2) 

  (3.3) 

L = αλα(λ + x1)−(α+1) × αλα(λ + x2)−(α+1) × ··· 
(3.4) 

× αλα(λ + xn)−(α+1) 

∴ The likelihood function is: 

n 
L = αnλnα X(λ + xi)−(α+1) (3.5) 

i=1 

Take logs. This will usually simplify the algebra. 

  (3.6) 

Expectation of Pareto Distribution 

Write the first x in the integral as (λ + x) − λ and make the integral “look 

like”Pareto probabilities 

  (3.7) 
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Splitting up the integral into two bits and inserting appropriate constants so that both 

integrals look like Pareto PDF’s: 

  (3.8) 

] (3.9) 

  (3.10) 

(3.11) 

3.4.2 Exponential Distribution, Exp(λ) 

The exponential distribution is denoted as Exp.(λ). The random variable X has a 

exponential distribution denoted as X ∼ Exp.(λ), if its probability density function 

(PDF) is: 

Parameter : λ(λ > 0) 

PDF : f(x) = λe−λx,x > 0 (3.12) 

Let xi,i = 1,2,...,n be the claims amounts, then the likelihood function is given 

as: 
n 

L = Yf(x|λ) 

i=1 

(3.13) 

  (3.14) 

∴ The likelihood function is: 
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  (3.15) 

Take logs. This will usually simplify the algebra.  

n logl 

= nlogλ − λXxi (3.16) 
i=1 

Expectation of Exponential Distribution 

In calculating for the expectation of the exponential distribution the log-likelihood 

was differentiated 

  (3.17) 

= 0 (3.18) 

= 0 (3.19) 

(3.20) 

(3.21) 

  (3.22) 

  (3.23) 

(3.24) 
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3.4.3 Gamma Distribution, Gamma(α,λ) 

If X follows a gamma distribution with parameter  then its proba- 

bility density function is: 

0 (3.25) 

Let xi,i = 1,2,...,n be the claims amounts, then the likelihood function is given 

as: 

n 

L = Yf(x|α,λ) 

i=1 

(3.26) 

  (3.27) 

  (3.28) 

  (3.29) 

Take logs. This will usually simplify the algebra. 

  (3.30) 
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Expectation of Gamma Distribution 

  (3.31) 

= 0 (3.32) 

= 0 (3.33) 

(3.34) 

(3.35) 

  (3.36) 

  (3.37) 

(3.38) 

3.4.4 Weibull Distribution 

The weibull distribution is denoted as weibull(c,γ). The random variable X has a 

weibull distribution denoted as X ∼ weibull(c,γ), if its probability density function 

(PDF) is: 

Parameters : c,γ(c > 0,γ > 0) 
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PDF : f(x) = cγxγ−1e−cxγ,x > 0 (3.39) 

Let xi,i = 1,2,...,n be the claims amounts, then the likelihood function is given 

as: 
n 

L = Yf(x|c,γ) (3.40) 

i=1 

  (3.41) 

(3.42) 

∴ The likelihood function is: 

  (3.43) 

Take logs. This will usually simplify the algebra. 

  (3.44) 

Expectation of Weibull Distribution 

  (3.45) 

(3.46) 

Let 
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  (3.47) 

(3.48) 

The Gammalin function is: 

  (3.49) 

(3.50) 

3.4.5 Log-normal Distribution, LN(µ,σ2) 

A lognormal distribution function is denoted as LN(µ,σ2). A random variable X has 

a lognormal distribution, denoted as X ∼ LN(µ,σ2), if its probability function (PDF) 

is: 

  (3.51) 

Let xi,i = 1,2,...,n be the claims amounts, then the likelihood function is given 

as: 

) (3.52) 
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! 

(3.53) 

! 

(3.54) 

∴ The likelihood function is: 

! 

(3.55) 

Take logs. This will usually simplify the algebra. 

  (3.56) 

Expectation of Log-normal Distribution  

Z ∞ E(X) = xf(x)dx (3.57) 
− ∞ 

  (3.58) Let 

 

dx = xσdt 
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However, 

 

  (3.59) 

(3.60) 

(3.61) 

)] (3.62) 

0] (3.63) 

  (3.64) 

3.5 Checking model fit 

It was assumed that none of the sampled models considered was true and 

because of that the aim was to select the best approximating model (Anderson & 

Burnham, 2004). The mere fact that out of the sampled distributions only one had 

the highest log-likelihood estimate does not necessarily means that it could 

provide a good fit to the claim data. A further test had to be conducted to ascertain 

whether that selected distribution actually fit the data by using P-P Plots and 

Akaike’s Information Criteria ( A.I.C. ). 
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3.5.1 The Probability-Probability (P-P) plot 

The probability-probability (p-p) plot is a probability plot for assessing how 

closely two data sets agree, which plots the two cumulative distribution functions 

against each other. It is used to evaluate the skewness of a distribution. The plot 

will be approximately linear if the specific theoretical distribution is the correct 

model (Wilk & Gnanadesikan, 1968). 

3.5.2 The Akaike’s Information Criteria ( AIC ) 

The AIC is a type of criteria used in selecting the best model for making inference 

from a sample of models. With this criteria, the model with the smallest AIC value 

is considered to be the desirable one. This is because the model is estimated to be 

the closest to the unknown truth among the models considered ( Anderson & 

Burnham, 2004). The AIC is defined by: 

AIC = -2 (maximized log-likelihood) + 2 (no. of parameters estimated) In 

this research, the AIC was used to check the goodness of fit. 

3.6 Data processing 

The researcher used computer statistical packages to perform tests and graphical 

presentations. EasyFit software was used for fitting distribution, the parameter 

estimation and computation of likelihood values. SPSS was used to performed 

descriptive analysis of the data and plotting of the histograms. 
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3.7 Determination of posterior distribution of claim 

amount 

After the goodness of fit test, the posterior distribution was determined by 

multiplying the likelihood function of the claims amounts by the prior 

distribution under the Bayesian methodology. 

 

3.7.1 Likelihood function 

The researcher determined the likelihood functions of the claims amounts after 

the goodness of fit of the distribution of claims amounts is known. If the likelihood 

is based on a set of known values x1,x2,...,xn, then the likelihood function will take 

the form: 

f(x1/µ)f(x2/µ)···f(xn/µ) 

where f(x) is the PDF of the likelihood to be fitted. 

 

3.7.2 Prior distribution 

Frees et al (2014) stated that, there may not be any prior information about a 

particular parameter. Alternatively, with all the inherent concerns about 

overconfidence, a more objective approach may be preferred even when expert 

opinion is available. The researcher used continuous uniform distribution to be 

the prior because of non-availability of expert opinion. In view of this the 
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researcher assumed that each claims amounts have equal chance of occurring. 

With a finite sample space, a natural choice is to divide the prior density evenly 

throughout the space. 

Also, if the parameter is continuous over a bounded interval, [a,b], then 

 

3.8 Determining expected future claims amounts from 

the posterior distribution 

1. If the likelihood is based on a set of known values x1,x2,...,xn, then the likelihood 

function will take the form f(x1/µ)f(x2/µ)···f(xn/µ) where f(x) is the PDF of the 

distribution that is to be fitted. 

 

2. Take logs. This will usually simplify the algebra 

 

3. This usually involves differentiating the log-likelihood function with respect 

to the parameter(s), and setting the resulting expression(s) equal to zero. 

 

4. Solve the resulting equation(s) to find the parameters. 
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Chapter 4 

Analysis and Findings 

4.1 Introduction 

The purpose of this chapter is to present the results and discuss the empirical 

findings of the study. The chapter is divided into six sections; we start with the 

summary statistics, followed by interpretation of histograms, maximum 

likelihood estimates, the log-likelihoods, goodness of fit test and Bayesian 

methodology. The actuarial modeling process that was used by the researcher 

and the results arrived at would be shown numerically and graphically. 

Conclusions will be drawn on the findings in order to identify which loss 

distribution best fit the claims amounts. 

4.2 Summary Statistics 

The descriptive statistics of the claims amounts of SIC under motor insurance 

were computed in order to show the vital features of the data. A sample size of 

135 claims was analyzed. The descriptive statistics of the amount of claims were 

computed using SPSS. 

The table 4.1 below shows the descriptive statistics. 
Table 4.1: Descriptive Statistics of claim amount in SIC 

n 135 

Mean 2.9537E4 

Median 1.8000E4 

Mode 1.60E4 

Standard 

deviation 

3.2502E4 
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Variance 1.056E9 

Skewness 3.248 

Kurtosis 11.852 

Sum 3.99E6 

Source: Computed from SIC data 

Explanation to Table 4.1 

The data is heavily skewed and therefore most distributions that show such 

features can be used to model the claims. From the table 4.1, the descriptive 

statistics of the claims data were not normally distributed because the mean, 

median and mode with values of GHS 29,537.00, GHS 18,000.00 and GHS 

16,000.00 respectively are not equal. The skewness is 3.248 which shows that the 

data is positively skewed. The standard deviation which shows the variation from 

the mean is 32,502. This means that most of the data lies between ±32,502 away 

from the mean. The kurtosis of 11.852 shows that the data is having high peak. 

The sum of the claim amount is GHS 3,990,000.00. 

4.3 Interpretation of Histograms 

4.3.1 Histogram of the Claims Amounts of SIC 

The histogram of the claims amounts of SIC in 2015 is shown in figure 4.1. 



 

26 

Figure 4.1: Histogram showing claims amounts of SIC 

There were gaps in the histogram such that it may not have been practical to 

begin fitting a distribution in its original form. The histogram has a normal curve 

superimposed in it. The curve shows the skewness of the claims data. It can be 

observed from the diagram that, the original claims data has a heavy right-hand 

tail. This means that very few of the claims amounts were of high values whiles 

most of the claims amounts were of low values. 

4.4 Descriptive Statistics of log of claims amounts in SIC 

Table 4.2 below shows the descriptive statistics of log claims amounts in SIC: 
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Table 4.2: Descriptive Statistics of log of claims amounts in SIC 

n 135 

Mean 9.9775 

Median 9.7981 

Mode 9.68 

Standard 

deviation 

0.70821 

Variance 0.502 

Skewness 1.106 

Kurtosis 0.910 

Sum 1346.96 

Explanation to Table 4.2 

From table 4.2, the descriptive statistics of the log of claims amounts shows the 

mean, median and mode with values of 9.9775, 9.7981 and 9.68 respectively are 

equal. The skewness which is still positively skewed has reduced to 1.106. The 

standard deviation which shows the variation from the mean has also reduced to 

0.70821. This indicates that majority of the data lies between ±0.70821 away 

from the mean. The peakness of the data has reduced to 0.910. The sum of the 

claim amount is now 1346.96. 
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4.4.1 Histogram of the log of claims amounts 

 

Figure 4.2: Histogram showing log of claims amounts in SIC 

In an attempt to reduce the skewness and increasing the shape of the bars of the 

original data log transformation was employed. The log of the claims data was 

computed using Excel. From figure 4.2 the bars of the histogram are well 

pronounced and the normal curve is less skewed. The log transformation was 

used to model the claims data. The normal curve that was superimposed on the 

histogram is relatively normally distributed. Therefore, the log of the claims 

amounts was chosen and the maximum likelihood was used to fit the five 

distributions. A closer observation of figure 4.2 revealed that the log of the claims 

data could be used to fit the five distributions that were selected. At this stage the 

P-P plot, parameter estimation and the test statistics at 0.01 significance level for 

the five distributions were computed. 
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4.5 P-P Plot of the Five Distributions 

 

Figure 4.3: P-P plot showing the log of the claim amount of the five distributions 

From the graph the exponential distribution depicts the worst fit among the 

distributions. This is because the points are very far from the reference line. In 

the case of Pareto and Weibull distributions at the ends of the reference line, some 

of the points are on it but the point seems to move further away from the middle 

of the reference line. These two distributions do not provide good fit to the data. 

However, the gamma and lognormal distributions shows great signs of providing 

good fit to the data as both were very close to the reference line and it was very 

difficult to determining the best one. Further computation was done by using AIC 

to know which one best fit the claims data. 
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4.6 Test Statistics of Distributions 

Test statistics was conducted on State Insurance claims to obtain the best fit. 

The test statistics table is shown below. 

4.6.1 Test Statistics for Pareto Distribution 

Table 4.3: Showing the test statistics for Pareto distribution of claims data 

 

Explanation to Table 4.3 

The Kolmogorov-Smirnov test, Anderson-Darling and Chi-square goodness of fit 

test from table 4.3 indicates that at 99% confident level Pareto distribution do 
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not fit the claims amounts of SIC. There is a rejection of all the test statistics as 

indicated in table 4.3 at 1% significant level showing that the P-value of 0.00308 

and 0.00291 of Kolmogorov-Smirnov and Chi-Square tests are less than the 1 % 

significant level. The statistic of 0.15335, 5.8009 and 21.661 of 

KolmogorovSmirnov, Anderson-Darling and Chi-Square test are greater than the 

critical values of 0.1402, 3.9074 and 18.475. State Insurance claims data do not 

follow Pareto 

distribution. 

4.6.2 Test Statistic for Exponential distribution 

Table 4.4: Showing the test statistics for Exponential distribution of claims data 
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Explanation to Table 4.4 

The Kolmogorov-Smirnov, Anderson-Darling and Chi-square goodness of fit test 

from table 4.4 indicates that at 99% confident level Exponential distribution do 

not fit the claims amounts of SIC. There is a rejection of all the test statistics as 

indicated in table 4.4 at 1% significant level showing that the p-value of 0 of 

Kolmogorov-Smirnov and Chi-Square test are less than the 1% significant level. 

The statistic of 0.5962, 54.139 and 1286.8 of Kolmogorov-Smirnov, 

AndersonDarling and Chi-Square test are greater than the critical values of 

0.1402, 3.9074 and 16.812 respectively. State Insurance claims data do not follow 

exponential 

distribution. 

4.6.3 Test Statistic for Gamma distribution 

Table 4.5: Showing the test statistics for Gamma distribution of claims data 
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Explanation to Table 4.5 

The Kolmogorov-Smirnov, Anderson-Darling and Chi-square goodness of fit test from 

table 4.5 indicates that at 99% confident level gamma distribution fit the claims 

amounts of SIC. There is an acceptance of all the test statistics as indicated in table 4.5 

at 1% significant level showing that the P-value of 0.02896 and 0.01425 of 

Kolmogorov-Smirnov and Chi-Square test are greater than the 

1% significant level. The statistic of 0.1239, 2.9068 and 17.536 of 

KolmogorovSmirnov, Anderson-Darling and Chi-Square test are greater than the 

critical values of 0.1402, 3.9074 and 18.475 respectively. State insurance claims 

data follow gamma distribution. 
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4.6.4 Test Statistic for Weibull distribution 

Table 4.6: Showing the test statistics for Weibull distribution of claims data 

 
Explanation to Table 4.6 

The Kolmogorov-Smirnov, Anderson-Darling and Chi-square goodness of fit test 

from table 4.6 shows that at 99% confident level Weibull distribution do not fit 

the claims amounts of SIC. There is a rejection of all the test statistics as indicated 

in table 4.6 at 1% significant level showing that the P-value of 2.9208E- 

4 and 4.4921E-4 of Kolmogorov-Smirnov and Chi-Square test are less than the 

1% significant level. The statistic of 0.17912, 7.6618 and 26.278 of 

KolmogorovSmirnov, Anderson-Darling and Chi-Square test are greater than the 

critical values of 0.1402, 3.9074 and 18.475 respectively. State insurance claims 

data do not follow Weibull distribution. 
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4.6.5 Test Statistic for Log-normal distribution 

Table 4.7: Showing the test statistics for lognormal distribution of claims data 

 
Explanation to Table 4.7 

The Kolmogorov-Smirnov, Anderson-Darling and Chi-square goodness of fit test 

from table 4.7 indicates that at 99% confident level lognormal distribution fit the 

claims amounts of SIC. There is an acceptance of all the test statistics as indicated 

in table 4.7 at 1% significant level showing that the P-value of 0.04152 and 

0.02047 of Kolmogorov-Smirnov and Chi-Square test are greater than the 

1% significant level. The statistic of 0.11847, 2.703 and 16.559 of 

KolmogorovSmirnov, Anderson-Darling and Chi-Square test are greater than the 

critical values of 0.1402, 3.9074 and 18.475 respectively. State Insurance claims 

data follow lognormal distribution. 
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The table 4.3 to table 4.7 show that gamma and lognormal has been accepted by 

the test statistics at 0.01 significance level as the best fit of the log of claims 

amounts of SIC. It is also noted that Pareto, Weibull and Exponential distributions 

were rejected by the test statistics at 0.01 significance level and hence cannot be 

used to fit the claims data. At this stage out of the five sampled distributions only 

two were accepted at 0.01 significance level. The researcher conducted a further 

analysis on the two distributions (gamma and lognormal distributions) to 

identify which one of them fit the claims data best. 

4.7 Maximum Likelihood Estimates 

The log of the claims data were used to compute the maximum likelihood 

estimates and the parameter estimates of the two sampled distributions. Table 

4.8 below shows the parameters of the two statistical distributions having been 

fitted to the claims data. 

Table 4.8: Showing computed log-likelihoods, A.I.C. and parameters 

 

The log-likelihood was used as a tool to select the distribution that fits the data. It 

is also important to note that EasyFit was used to obtain the parameter values of 

the sampled distributions. From table 4.8, the log-normal and gamma 

distributions had log-likelihood values of -67.5003 and -141.3248 respectively. 

This showed that the log-normal distribution had the highest log-likelihood value. 
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However, the lognormal distribution had the smallest value of AIC(139.0006). It 

was therefore concluded that the log-normal distribution was the best fitted 

distribution among the two distributions for the claims data since it had the 

smallest value of AIC. That is, the log-normal distribution was estimated to be the 

closest to the unknown true distribution among the two remaining distributions. 

On the basis of this, the log-normal distribution was the best fit of the sampled 

distributions. 

As compared to Guiahi (2000) researched into issues and methodologies for 

fitting alternative statistical distributions to samples of insurance data. 

Lognormal was selected to be the best fit for the data. In his research he used the 

method of maximum likelihood to estimate model parameters and also his 

criteria for comparing which probability distribution fits the data set best was 

based upon the value of akaikes information criteria, AIC. That is, the model with 

the smaller 

AIC value is the more desirable one. 

4.8 Determining the Expected Claim amount using the 

Bayesian Methodology 

The researcher then calculated the expected claims amounts of SIC using the 

Bayesian Methodology. In order to determine the expected claims amounts, the 

likelihood function of the best fit model (log-normal) of the claims amounts must 

be combined with the prior distribution(continuous uniform distribution) to 

obtain the Posterior Distribution. The expectation of the posterior distribution 

will then be the expected claim for SIC. 
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4.8.1 Determining Likelihood function 

Let Xi,i = 1,2,...,n be the random claims amounts 

X ∼ lognormal(µ,σ2) 

Holding the scale parameter constant and varying the shape parameter. Likelihood 

) (4.1) 

! 

(4.2) 

! 

(4.3) 

! 

(4.4) 

4.8.2 Determining the Posterior Distribution 

The posterior distribution is the product of the likelihood and the prior. It is denoted 

as Posterior ∝ likelihood function x prior. 

) (4.5) 

  (4.6) 
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  (4.7) 

The posterior distribution follows a log-normal distribution. 

4.9 Determining expected future claims amounts 

The researcher then used the posterior distribution to determine the expected 

claims. The log-likelihood of the posterior distribution were obtained in order to 

find the expected claims for SIC. 

  (4.8) 

(4.9) 

(4.10) 

= 0 (4.11) 

= 0 (4.12) 



 

40 

297938027 (4.13) 

976982883 (4.14) 
The antilog of the claims amounts of 9.976982883 is 21525.27. Therefore, the 

expected claim amount of SIC is GHS 21,525.27. This means that an individual 

policy holder is likely to make a claim of GHS 21,525.27 from State Insurance 

Company based on their previous data.  
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Chapter 5 

Conclusion and Recommendations 

This chapter seeks to present a brief summary on the content of the research 

work undertaken in this thesis and outline the major conclusions that were 

derived from the empirical results. The next section discusses recommendation 

and suggested areas for future research. 

5.1 Summary of results 

The research was carried out at SIC of Ghana. The study adopted the secondary 

data approach by using claims amounts above GHS 4,000. The study analyzed 135 

claims data from SIC. The descriptive statistics had mean, median, mode and 

skewness to be 2.9537E4, 1.8000E4, 1.60E4 and 3.248 respectively. The mean, 

median and mode were not equal. The data was positively skewed. There were 

gaps in the histogram and it would not have been appropriate to start fitting a 

distribution in its original form. Log transformation was employed to reduce the 

skewness of the claims data. The claims data was logged once and the skewness 

of the data was reduced to 1.106. The mean, median and the mode of the log of 

claims data were almost equal. The log transformation was used to model the 

claims data. 

EasyFit, Excel and SPSS softwares were used in computing the appropriate 

statistical distributions that best fit the insurance claims data. It was revealed in 

the analysis in chapter four that the lognormal distribution provided the best 

model for the claims amounts of comprehensive motor insurance of SIC. 
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According to table 4.3 to table 4.7 the gamma and lognormal distributions was accepted 
by the test statistics as the best fit for the log of claims amount of SIC. It was noted that 
Pareto, Weibull and exponential distribution could not be used to fit the claims 
amounts of SIC as it was rejected by the test statistics shown in table 4.3, table 4.4 and 
table 4.6 under 0.01 significant level. However, from table 4.8, the lognormal 
distribution had the highest log-likelihood function of -67.5003, which implies that 
among the chosen statistical distributions it had a greater chance in providing a good 
fit for the claims data. The lognormal distribution was then followed by the gamma 
distribution which had a log-likelihood of -141.3248. The outcome of the log-likelihood 
means that the gamma distribution could not provide an appropriate model for the 
claims data. The lognormal distribution had the highest log-likelihood function. The 
AIC was computed to test whether the lognormal distribution provided the best fit for 
the claims data. The AIC confirmed that the lognormal distribution had the smallest 
value of 139.0006 indicating that it had the best fit for the claims data. The gamma 
distributions followed in that order with AIC value of 286.6496, showing that it would 
not be regarded as a good fit to the claims data. 

The P-P plots for the statistical distributions was plotted to graphically re-affirm 

the goodness of fit test computed by the AIC. Figure 4.3 showed that the P-P plot 

of the lognormal distribution provided the best fit to the claims data as almost all 

the points are on the reference line. 

It was revealed in chapter four that the posterior of the claims amounts follows a log 

normal distribution. The expected claims amounts was GHS 21,525.27. 

5.2 Conclusion 

The study revealed that the appropriate statistical distribution for the claims amounts 

of SIC was lognormal distribution. 

The research showed that the posterior distribution of the claims amounts of SIC is a 

lognormal distribution. 
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Finally, the expected future claims amounts of SIC was GHS 24,525.27. 

5.3 Recommendations 

The sample size used for the study could be increased to enhance the reliability of 

the expected future claims amounts of SIC. 

The posterior distribution could be used by researchers as their informative prior 

for further calculations of their posterior. 

Further research could be conducted in this area by introducing more continuous 

distributions to further improve the accuracy of the distribution that best fits the 

claims data. 
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