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ABSTRACT

In this thesis an SIA compartment model of the gmaission dynamics of HIV/AIDS is

developed using Ghana Data.

The resulting system of three non-linear differ@inéiquations was analyzed in respect of
stability of the three equilibrium points namelyettisease free which was found to be
unstable and two endemic equilibrium points whicbrevfound to be stable. Further
analysis to determine the conditions for the breakd epidemic were done using the

basic reproductive number of the infection.

Simulations of solutions of the model in variougrsarios were also performed. It was
found that the rate of transition from HIV infectéd AIDS relative to the rate of
transition from susceptible to HIV infected stateuld need to be increased in order to

effectively control the spread of the disease.
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CHAPTER ONE

INTRODUCTION

1.0 Overview

The origin of HIV and AIDS has puzzled scientisteresince the illness first came to light in the

early 1980s. For over twenty years it has beenstligect of fierce debate and the cause of
countless arguments, with everything from a proooss flight attendant to a suspect vaccine
programme being blamed.

The first recognized cases of AIDS occurred inW8A in the 1980s. A number of gay men in

New York and California suddenly began to develage ropportunistic infections and cancers
that seemed stubbornly resistant to any treatn#drthis time, AIDS did not yet have a name,

but it quickly became obvious that all the men wartering from a common syndrome.

The discovery of HIV, the Human Immunodeficiencyud, was made soon after. While some
were initially resistant to acknowledge the conmmec{and indeed some remain so today), there

is now clear evidence to prove that HIV causes AIDS

The significance of this risk factor was partictygorofound in the African region, accounting
for 19.4% of the total burden of disease in Afrib&ost of this burden is directly attributable to
HIV/AIDS, though other sexually transmitted infexts (STIS) also comprise an important
element. Interventions to limit the spread of HIve aherefore urgently needed in Africa

especially.



1.1 Background

Human immunodeficiency virus (HIV) is a lentivirga@ member of the retrovirus family), and
like all viruses of this type, it attacks the imnewsystem. Lentiviruses are in turn part of a large
group of viruses known as retroviruses that cawssguired immunodeficiency syndrome
(AIDS), a condition in humans in which the immungstem begins to fail, leading to life-
threatening opportunistic infection. The name ‘ientis’ literally means ‘slow virus’ because
they take such a long time to produce any advdfsetg in the body. They have been found in a

number of different animals, including cats, shéepses and cattle.

However, the most interesting lentivirus in ternighee investigation into the origins of HIV is

the Simian Immunodeficiency Virus (S1V) that affechonkeys, which is believed to be at least
32,000 years old. In fact, it is generally accepthdt HIV is a descendant of a Simian
Immunodeficiency Virus because certain strains Ivf I¥ear a very close resemblance to HIV-1

and HIV-2.

There are only two species of HIV known to exisiv/H and HIV-2. HIV-1 is the virus that was

initially discovered and termed both LAV and HTLV:I

It is more virulent, more infective, and is the sawf the majority of HIV infections globally.
The lower infectivity of HIV-2 compared to HIV-1 ipfies that fewer of those exposed to HIV-2
will be infected per exposure. Because of its nedfyf poor capacity for transmission, HIV-2 is

largely confined to West Africa.

HIV-2 for example corresponds to SIVsm, a straihef Simian Immunodeficiency Virus found
in the sooty mangabey (also known as the Whiteaoedl monkey), which is indigenous to

western Africa.



The most virulent, pandemic strain of HIV, namEll/-1, was until recently more difficult to
place. Until 1999, the closest counterpart that leeh identified was SIVcpz, the SIV found in

chimpanzees. However, this virus had certain dicanit differences from HIV.

1.1.1 How HIV-1 Originated

In February 1999 a group of researchers from thizdgsity of Alabama announced that they
had found a type of SIVcpz that was almost idehttoaHIV-1. This particular strain was
identified in a frozen sample taken from a captimember of the sub-group of chimpanzees

known as Pan Troglodytes (P.t. troglodytes), whiele once common in west-central Africa.

The researchers (led by Paul Sharp of Nottinghanivegsity and Beatrice Hahn of the
University of Alabama) made the discovery during ttourse of a 10-year long study into the
origins of the virus. They claimed that this sampieved that chimpanzees were the source of

HIV-1, and that the virus had at some point crosgezties from chimps to humans.

Their final findings were published two years laterNature magazine. In this article, they
concluded that wild chimps had been infected siamdbusly with two different simian
immunodeficiency viruses which had “viralse” torfora third virus that could be passed on to

other chimps and, more significantly, was capablafecting humans and causing AIDS.

These two different viruses were traced back td\atBat infected red-capped mangabeys and
one found in greater spot-nosed monkeys. They\melieat the hybridization took place inside
chimps that had become infected with both strafrfsI\d after they hunted and killed the smaller

species of monkey.



They also concluded that three ‘groups’ of HIV-Ingy Group M, N and O came from the SIV
found in P.t troglodytes, and that each group igTeed a separate crossover ‘event from

chimps to humans.

1.1.2 How HIV-2 Originated

Until recently, the origins of the HIV-2 virus hadmained relatively unexplored. HIV-2 is
thought to come from the SIV in Sooty MangabeybBeathan chimpanzees, but the crossover to
humans is believed to have happened in a similay (wa&. through the butchering and
consumption of monkey meat).It is far rarer, siguaintly less infectious and progresses more
slowly to AIDS than HIV-1. As a result, it infectar fewer people, and is mainly confined to a

few countries in West Africa.

By analyzing samples of the two different subtypédIV-2 (A and B) taken from infected
individuals and SIV samples taken from sooty maegap Dr. Vandamme concluded that
subtype A had passed into humans around 1940 dotgpsuB in 1945 (plus or minus 16 years
or so). Her team of researchers also discoverddthiavirus had originated in Guinea-Bissau
and that its spread was most likely precipitatedhsyindependence war that took place in the
country between 1963 and 1974. Her theory was lohakeby the fact that the first European
cases of HIV-2 were discovered among Portugueserares of the war, many of whom had
received blood transfusions or unsterile infectidoowing injury, or had possibly had

relationships with local women.

HIV is a retrovirus and like most of the virusestlnms family of viruses the Retroviridae, only

replicates in dividing cells.



HIV has some unfortunate unique properties evehiwithis retrovirus family such as using the
MRNA processing of the cell it invades to synthési®wn viral RNA. Although studies (Ho et
al. 1995) have shown the dynamics of viral repiarais very high in vivo the immune system
can counteract this replication from 5 to 10yearsnore depending on the initial infection.
Cases of haemophiliacs who have been given conéedrblood have succumbed in a matter of

months.

Infections by the virus HIV-1, the most common e#yj has many highly complex
characteristics, most of which are still not unttlewd. The fact that the disease progression can
last more than 10years from the first day of infacis just one of them. Another is that while
most viral infections can be eliminated by an immuesponse, HIV is only briefly controlled by
it. HIV primarily infects a class of white bloodltseor lymphocytes, called CD4 T-cells, but also
infect other cells such as dendritic cells. Thaizihas a high affinity for a receptor present on

the cell surface of each of these cells which guitie virus to their location in vivo.

When the CD4 T-cell count, normally around 1Q@0/decreases to 2Qd/ or below, a patient

is characterized as having AIDS. There are veryifipeclearly (Morb Mort Week Report
42(No. RR-17), Table 308-1 and Table 308-2, DecemBe 1992) which are used to diagnose
the AIDS; the CD4 T-cell count is not the only factThe categories are regularly updated.
These are used by the Centers for Disease Cowtr@ufveillance purposes. For example, if a
patient with the virus has a CD4T-cell count greditan 5004L but has, or has had one of a
variety of diseases then a formal diagnosis is nazadkeregistered. The reason for the fall in the
T-cell count is unknown. T-cells are normally repthed very quickly in the body, so the
infection may affect the source of new T-cellstor tife span of preexisting ones. Although HIV

can kill cells that it infects, only a small framti of CD4 T-cells are infected at any given time.
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Because of the central role of CD4 T-cells in immueagulation, their depletion has widespread
deleterious effects on the functioning of the immsystem as a whole and this is what leads to

AIDS.

HIV infection has four basic stages: incubationiqugracute infection, latency stage and AIDS.
The initial incubation period upon infection is agytomatic and usually lasts between two and
four weeks. The second stage, acute infections last average of 28 days and can include
symptoms such as fever, lymphadenopathy (swolleyphynodes), pharyngitis(sore throat), and

rash, myalgia(muscle pain), malaise, and mouthesophageal sores.

The latency stage, which occurs third, shows femmisymptoms and last anywhere from two
weeks to twenty years and beyond. AIDS, the foartl final stage of HIV infection shows as

symptoms of various opportunistic infections.

Infections with HIV occur by the transfer of bodillpids such as blood, semen, vaginal fluid,
breast milk. Within these bodily fluids, HIV is ment as both free virus particles and virus
within infected immune cells. The four major route$ transmission are unsafe sex,
contaminated needles, breast milk, and transmigssom an infected mother to her baby at birth
(perinatal transmission). Screening of blood préesluéor HIV has largely eliminated

transmission through blood transfusion or infediabd products in the developed world.

HIV infection in humans is considered pandemic by World Health Organization (WHO).
Nevertheless, complacency about HIV may play aredy in HIV risk. From its discovery in

1981 to 2006, AIDS killed more than 25 million pé&ap



HIV infects about 0.6% of the world’s populatiom. 2005 alone, AIDS claimed an estimated
2.4-3.3 million lives, of which more than 570,00@re children. A third of these deaths are

occurring in Sub-Saharan Africa, retarding econognawth and increasing poverty.

According to current estimates, HIV is set to inf@0 million people in Africa, resulting in a

minimum estimate of 18 million orphans.

HIV infects primarily vital cells in the human imme system such as helper T cells (to be
specific, CD4 T cells), macrophages, and dendritic cells. HI\eation leads to low levels of
CD4" T cells through three main mechanisms: First,alivéral killing of infected cell; second,
increased rates of apoptosis in infected cells; #mdi, killing of infected CDZ4 by CD8
cytotoxic lymphocytes that recognize infected cahen CDZ4 T cell numbers decline below a
critical level, cell-mediated immunity is lost, arthe body becomes progressively more

susceptible to opportunistic infections.

Most untreated people infected with HIV-1 eventpaévelop AIDS. These individuals mostly
die from opportunistic infections or malignancieseciated with the progressive failure of the
immune system. HIV progresses to AIDS at a variafsiee affected by viral, host, and
environmental factors; most will progress to AID8hm 10years of HIV infection: some will
have progressed much sooner and some will take romgjer. Treatment with anti-retrovirals
increases the life expectancy of people infecteth WilV has progressed to diagnosable AIDS,
the average survival time with antiretroviral thgravas estimated to be more than 5years as of

2005. Without antiretroviral therapy, someone whe AIDS typically dies within a year.

The history of HIV is a complex one.



Twenty years ago, little was known about the myster illness that was killing thousands of
people. The history of HIV tells us that scientistiaiggled for a cause and even more important
a solution. Then an American scientist named RdBaelto co-discovered a virus later known as

HIV that seemed to be the culprit.

His research and findings opened the door to afredd of medicine and science dedicated to

finding answers to the epidemic of the 20th centdity and AIDS.

In the mids 80’s Gallo and his team co-discoveterirus they believed to be responsible for
the killer disease known as AIDS. In addition, @alhd his team developed a test that identified
the virus in humans-the HIV antibody blood testisTiest makes possible the early identification
of infected people, allowing for early and betteatment resulting in long life expectancies for

those living with HIV.

Since the mid-1980’s, numerous models have beegrla®ed to describe the immune system
and its interaction with HIV. These models are duateistic and stochastic models. Stochastic
models aim to account for the early events in tiseate when there are few infected cells and a

small number of viruses.

Most models have been deterministic. Deterministicdels, which attempt to reflect the
dynamic changes in mean cell numbers, are morecapj# to later stages of the process when
the population is large. These models typicallysider the dynamics of the CD4 cells, latently

infected cells and virus populations as well asetffiects of drug therapy.

Because of the ethics, among other things, of da&xgeriments on humans, fundamental

information has been lacking about the dynamiddIdfinfection.



For example, since the disease takes an averabgyeérs to develop it was widely thought that

the components of the disease process would alstowe

A combination of mathematical modeling and expernitaehas shown this is not the case, by
showing that there are a number of different timbsc in HIV infection. The current
understanding of the rapidity of HIV infection hitally changed the manner in which HIV is

treated in patients and has had a major impacttending patients lives;

1.2 Statement of the Problem

Since the first cases of AIDS were identified ire tbnited States nearly two decades ago,
HIV/AIDS has emerged as one of the leading cha#erfgr global public health. Particularly in
sub-Saharan Africa, where the overwhelming majootyHIV and AIDS cases appear, the

epidemic continues to take a massive human toll.

This pandemic has not only taken a massive toliuman lives but also affected developmental
agenda of most developing countries including Ghdhdas also denied majority of our
effective labor force the strength to function prdp thereby reducing our total output as a

nation.

Scientist/researchers have over the years sincerttergence of this life threatening diseases
have worked tirelessly to bring this pandemic unclentrol, adapting different mathematical

techniques and almost always end up with some tatve and qualitative questions to answer:
how many people are infected with the HIV each dayl?ere are these people resident?, how

many new cases will be administered in the futuaed, how to control the disease?



An understanding of the magnitude and trajectoryhef HIV/AIDS epidemic, as well as the
uncertainty around these parameters, is critigaliyortant both for planning and developmental

purposes.

1.3 Objectives of the Research

As a motivation for this research, it is importaot to let our arms down in our effort to prevent
and control the HIV/AIDS epidemic in our countryh&a. Countries including Ghana are
dealing with the growing impact of the epidemics e youngest and most productive
population groups; increasing numbers in childred adolescents; worsening situation among
the poor and marginalized population; a continuaggravation of the existent health problems;

and above all, the diversion of resources fromrtiealth, welfare and educational priorities.

If mathematical models based on the underlyingstrassion mechanism of HIV/AIDS might
help the medical and scientific communities underdtbetter how the disease spreads in the

community then we have to support it as mathenzatsci

The specific objectives of the study are to;

1. To construct an SIA compartmental model of HIV/AID®. comprising the Susceptible,
Infected (without AIDS) and Infected with AIDS coamments.

2. Investigate solutions and the stability of the &qua of the model analytically and using
Ghana data.

3. Also investigate the role of the basic reproductivenber.

4. Based on the above findings, determine implicatfongntervention.

10



1.4 M ethodology
Many mathematical models have been developed apliedpo the HIV/AIDS epidemic since
its initial occurrence (Knox, 1986; Anderson, et 4986; Anderson, 1988; Dietz et al., 1983;

Dietz, 1988; Brauer, 1993; Brauer and Castillo,22@0astillo et al., 1994; Chowell et al., 2004).

These mathematical models are proposed based omatbhee and the type of disease one is

looking at.

Considering the process of a disease that fitsSiReframework we have a flow of individuals
from the susceptible group to the infected groug @wen to the removed group (identified here

with AIDS group).

Susceptible—~Infected—Removed AIDS)

We therefore seek to apply the following mathenatimethods to model the HIV/AIDS

dynamics:

We construct a compartmental model, in which thal tpopulation is divided into three groups
(variables), a susceptible population, the popatatvith the HIV infection and the population

which are infected and show symptoms of AIDS.

We then develop systems of non-linear differerggaiations based on the compartmental model,
after which we find the steady state equilibria &edce establish the points at which the system
will attain stability by first linearizing the symihs of nonlinear differential equations. This

linearization is done by finding the jacobian matind solving to get the eigenvalues.

We will go ahead and find the basic reproductii®ra

11



The data for the thesis is specifically from Ghdata which was collected from WHO website

and the evaluations are carried out using numesioallations with MatLab.

1.5 Structure of the Thesis

The thesis is organized in five chapters, each tehagpntaining an introductory note of what

should be expected in the respective chapters.

In chapter one, we looked at the historical backgdy statement of the problem, objective of the
thesis, methodology, justification and the struetof the thesis. Chapter two deals with a review
of related research, chapter three also deals with methodology which involves the

mathematical methods for modeling, chapter fouoives the stability analysis of the model and

we gave a concluding note and some recommendatidhe chapter five of this thesis.

12



CHAPTER TWO

REVIEW OF RELATED LITERATURE

2.0 Introduction

Mathematical models provide a unified and flexi@pproach to the study of the spread of AIDS
and other infectious diseases. This chapter preseidfly, a review of some of the papers that

use mathematical models to study the epidemioldg\DS.

In general, modeling the transmission of AIDS inpapulation is carried out by way of
compartmental models. The population is dividea itite susceptible, infective and removed
individuals. Each infective is infectious duringrandom period of time. While infected, it
behaves independently of the others and is abtemtact susceptible, which will then become
infective. After that period, the individual is rened, by death for example, and plays no further

role in the propagation of the disease.

2.1 Mathematical Modelsfor HIV Dynamics

Mathematical models play an important role in thederstanding of the dynamics of the

transmission of HIV.

We present a few of such models that are relatéuigdhesis.

One of such known models was presented by (Ho .el395). Their work examines the
pathogenesis of the dynamical process of HIV usinghodel based on a simple equation

expressing the rate of change of the viral coneéiotr depending on time. This work was

13



extended by (Perelson et al., 1996) including tiheadics of infected T-cells and the non-

infectious viral loads.

As a consequence of the above mentioned artistegral models began to include biological
processes into the mathematical models. Some ¢ thiee compartmental models (Murray et al.,
1998; Callaway and Perelson, 2002) and some moeat&vorks using delay differential models

as in (Nelson et al., 2000; Nelson and Perelsod20

We begin with a simple Susceptible-Infected-Recedd6IR) model. We consider a variation of
this model proposed by (Tassier, 2005). As a var@anthis thesis, SIR can also stand for
Susceptible-Infected-Removed if people are alloweedie from their infection and thus leave

the population under consideration.

Thus we have three groups or states in which wepltzare individuals and the number of people
in each group was treated as a time series dateewde have a number of infected individuals

as well as susceptible and recovered individua¢seh point in time.

From his model of the disease he noted that eatikidual in the population is in one of the

three groups.

From his work he mentioned that an individual ptgly moves from the susceptible to the

infected group when he comes in contact with aecdted person.

He then supposed that each infected person congaictdividuals in each period of time on
average. Now each contact may not result in trassion of the disease. Perhaps calgercent

of the contacts result in transmission.

Thus the potential number of transmissions mayt lnecsty * o.

14



He then defined3 = y * a.f is the average of transmissions possible fromvanginfected

person in each period.

Now, we must remember that there are three groopthe population. If we assume that

individuals are mixed randomly then each potentaismission may be from an infected person
to a susceptible person which results in a newctateperson. Or a transmission may occur from
an infected person to another infected person wiastlts in nothing happening since the person
is already infected or the potential transmissioaynoccur from an infected person to a

recovered or immune person. In this case againimgpithanges. Since onky percent of the

population is susceptible each infected personrgéggonlyfs, hew infections each period.

Each infected person recovers (or is removed os)d some rate. Let the fraction of the

infected group that recovers be

Tassier (2005) then described the SIR process gheenurrent state of the population in period t
described b, I; and R;. With this he wrote a series of differential eqoias that describe the
motion of the system. He actually carried out thysfirst describing the susceptible population
by beginning period t witl§; individuals in the susceptible population. We thase on average

Bs.I;from the population.

From all the analysis Troy Tassier made from higlehohe concluded on the fact that if a

disease removes its carriers quickly the diseasetifkely to have a long life itself.

15



Greenhalgh (1997) also wrote a paper on Mathematocaeling of the spread of HIV/AIDS
amongst injecting drug users and in his paper keldped and analyzed a model for the spread
of HIV/AIDS amongst a population of injecting drugers. His model was based on what is

originally due to Kaplan (1989).

Greenhalgh (1997) then ended up with deriving tifferéntial equations which describe the
progress of the disease amongst the addicted pgmpuknd the proportion of needles which are

infected.

Another paper written by Altman (1994) on the tofigsceptible-Infected-Removed epidemic
models with dynamic partnerships also looks intavheell an extension of the classical,
stochastic, Susceptible-Infected-Removed (SIR) ezpid model could be used to allow for

disease transmission through a dynamic networladhprships.

M. Altman actually came up with some deductionsvbich the Markov model with partnerships

was considered. In his model he made a couplesoinggtions which are:

1. Removal from the infectious state occurs atrsstamt rate.

2. Unpaired individuals begin a partnership at astant rate, partnerships dissolve at a constant
rate, and partnerships behave independently. Torerdie interval during which two individuals

are unpaired and paired are independent, expoftewistributed random variables.

3. Partnerships always begin with a contact, winigty or may not be effective, and thereafter
effective contacts occur at a constant rate. Thezethe contacts other than the initiating contact

may be modeled as Poisson processes.
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4. An effective contact between an infectious imdiial and susceptible individual results in

transmission.

In his paper, he wrote that to understand theaindiynamics of the model, we look at what
happens when a few cases are introduced into a f@gulation of susceptible individuals. So
long as these initial cases are distributed rangamthe population, it suffices to consider what

happens when a single initial case is introduced.

The independence of the partnership processesemfilat the secondary cases arising from a
particular infectious individual are unlikely to partners of each other, and thus the number of
infected individuals will initially grow like a braching process, just as for the classical model.
The threshold for a major epidemic is when the ayemumber of secondary cases produced by

an isolated initial casky, is greater than 1.

He denoted the initial case by individialThe number of secondary case is the sum over the N
other individuals of the probability thatransmits to the other individual. The individualse
identical, so it suffices to compute the probapithati transmits to some individual The key

to computing this probability, and more generalty understanding the dynamics of the
epidemic, is to consider the configuration of thyadi(i, j). since each individual can be in one
of three possible disease states and the indi\8dualy or may not be partners at a given time,
there are 18 possible configurations for the dyldeese configurations will be denoted by two
letters, indicating the disease status of the twdividuals in the dyad. A centered dot was used
to indicate thal andj are unpaired, a dash to indicate that they ameg.akor example, lef-S

denote the configuration where both are susceptiplé they are partners,S denote the
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configuration where is infected angis susceptible and they are not partners, etc. Bzad

will move among the possible configurations acaogdb a Markov process.

After his consideration of the so many possib#itia the transmission dynamic, M. Altman
came up with a diagrammatic representation ofrdrstnission rates among the states for a dyad

of individuals, from first infection to transmissi@r removal.

In his diagram, external sources of infection gmored/ - S refers to the state where the first

individual is infectious, the second is susceptdoe they are not currently partnes,S refers
to the state where the first individual is removi@, second is susceptible and they are currently

partners, etc. The dyad begins with one infectadl are susceptible individual, either in state

IS or statd-S.

In this model external infection is assumed to kegligible for large populations with

independent partnership processes, which is whythleching process approximation is valid.

This reduced diagram has three absorbing statésR - S, andR-S.

This paper has been concerned with the initial dyos and the final size of the epidemic.

Lopez-Cruz (2006) wrote a paper on Sl epidemic tidadictured Sl epidemic models with
applications to HIV epidemic. In her paper she alkiyudivided the work into three main parts.
The first parts dealt with effect of age structareS- I epidemic models in the form of Ordinary
Differential Equations and Delay Differential Equais, respectively. dpez-Cruz finally came

up with anS-1 epidemic model which represents contagious disdgsamics in single patch
(Brauer and Castillo, 2001; Brauer, 2002; Edelst2005).
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The birth rate is dependent on the total populaNohut it is more realistic to depend on the

sexually active population in the case of one s&dels and depend on the sexually active
female population in the case of two sex modelshénsecond- I model, the infection term is
modified for non constant total populatigﬁ% and Cy is the maximum number of infections an
infected individual can cause in a unit of timea#isumed a constant recruitment which is not
realistic. Taking into consideration the modelirggues above described, these models are

improved by the following research: A I model is developed in Hwang and Kuang (2005) to
study the host extinction dynamics in a simple pigeahost interaction model. Those can be
applied to the study of epidemiological trends afedses and conditions that permit global
stability. For example, consider that the diseas@des the population into susceptible and

infected subpopulations.

Assume that the newborn of infected individualsiddoe a susceptible individual, the main

difference with the above mentioned models.

By standard results (Thieme, 2003), the solutiohgshe system exist, are unique, positive,

uniformly eventually bounded and defined [0noo). For the stability results of the genefall

model, it could be reviewed in (Hwang and Kuand)3)(as a particular case.

A paper written by Abdulkarim (2007) osIR Epidemic Model with Application to
Transmission Dynamics of HIV/AIDS also consideramvhthe SIR epidemic model could be
used to analyze how the transmission of the epidémm one state or population group to the

other. In his paper, he examined the Susceptiblestives-Removed/RecoveredSIR)
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epidemic model and applied it to horizontal trarssin of HIV/AIDS in a homogeneous
mixing population with the additional assumptioratthhe AIDS virus does not Kkill. Instead;

AIDS infectives are removed from circulation urddath by non disease induced factors.

Also the stability of the equilibrium point are ewmed through the basic reproductive number
of the infection and trace-determinant conditiortted Jacobian matrix at the equilibrium point,

for a system of non-linear differential equation.

Then also in his paper, Abdulkarim (2007) consideaeseries of models with some parameter

definition which actually defined the various aggexf the disease modeling process.

In his model, he assumed that the death rate isaime as the birth rate and that the deaths in the
class of infectives, denoted by A in tBER epidemic model, reduces it to a simgil model,
where the removed/recovered class forms the clad$D$ infectives, without disease induced
death. Since they are assumed, non-sexually aatideare quarantined. They do not contribute

to transmission dynamics of the infection.

To have an AIDS free stable population, the proddithe net transmission of HIV-infection and

the average length of infection for AIDS shouldiéss than unity.

After his model to study the transmission of theedise and the equilibrium state, Abdulkarim

(2007) then went on to model for the possibilityeafstence of an endemic equilibrium point.

The identified endemic equilibrium poiff is not stable. However, Mugisha et al. (2005) and
Heffeman et al. (2005) gave insights into the usdhe basic reproductive numbé&;, in

analyzing the stability of the endemic equilibriymint.
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They observed that R, > 1, then the system has an asymptotically stableremdequilibrium
and the disease-free equilibrium is unstable. Hewnevf R; < 1, then the disease-free

equilibrium is locally asymptotically stable whilee endemic equilibrium is unstable.

Abdulkarim (2007) then adapted the above statedoagp and, using the next generation

operator by Diekmann (Herfferman et al., 2005)¢c&&egorized the population into two classes.

This requirement is also obtained using the deteaintior trace method of investigating stability

of equilibrium points for systems of two non-linehfferential equations.

After a series of analyses made with respect tovéin®us models, Abdulkarim concluded that
increasing the birth rate, decreasing AIDS progoesgate and minimizing net transmission for

both cases may eradicate HIV/AIDS, but would giveray incubation period for AIDS.
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CHAPTER THREE

MATHEMATICAL MODEL

3.0 Introduction to Disease Moddling

Mathematical models have been used in epidemiofogyat least 250 years, taking as a
somewhat arbitrary starting point Daniel Bernoslktudy, published in 1760, on the advantages
of smallpox vaccination. Mathematical models arencwmnly understood to have two distinct

roles: to predict and to facilitate understanding.

By far the largest, best-understood group of modeldeterministic and expressed in terms of
differential equations. These can be simple modet$h as théli, SIR or SEIR models, which

consist of one, two and three equations, respdgtoremore complicated aggregations of states.
These deterministic models model the behavior aflezpiologically relevant classes. These
classes are sometimes referred to as compartmedtths type of model are compartmental
models. ThesI epidemic model, for example, models two statesysxeptible statéS) and an

infectious stat€l). The SEIR model adds an exposed sté® for those who are exposed but
not yet infectious and a recovered state. ’he model only adds a recovered or removed

state(R).

Usually the choice between such models is dictaiedhe natural history of the disease: for
example, is there a recovered state that is immusethere an exposed state that is not
infectious? Generally, the simpler the model ig mhore transparent its behavior and the more
understandable its results. At the same time, taohnsimplicity can obviously be a barrier to

the accuracy of prediction.
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Some of these models are SIS model, SIR model, SiRISSI model respectively.

3.0.1 The SIS Moddl

Some infections do not confer any long lasting imitwu Such infections do not have a

recovered state and individuals become susce@daa after infection.

This type of disease can be modeledSi§type. The total population N is divided into two
compartments witt = S + I, where S is the number of individuals in the sptibé class, | is
the number of individuals who are infectious. T$I6 model since one typical pathway is

through S, then I, and then back to S, as showowbel

sl O | I

«— pEe—>

MuS (p+a)l
Fig.3.1: The transfer diagram for the SIS model.
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The transfer diagram leads to the following systemdifferential equations for this SIS model

are:

dS_)\ SI S + &I

dt_ _B 2

dl

= BSI- (@ + 1+ )l )

The parameters are positive constants. The conitasitthe recruitment rate of susceptible
corresponding to births and immigratiaenis the per capital natural mortality rate.

We assume that a disease may be fatal to someitfecieath rate from infectious clagsAnd

® the rate at which individuals infectious and rattw susceptible class and they don’t acquire
immunity.

Which, together wittN = S + I, implies:

N s uN-al 2
T - A HN-«a (2)

Thus the total population size N may vary in tirmethe absence of disease, the population size

N converges to the equilibriu?‘r;(u It follows from (2) thatimg,pt oo N < ’1/“.

3.0.2 The SIR and SIRS Models

Some infectious disease confers permanent immuemy other disease confers temporal
acquired immunity. These types of disease can beelad by SIR and SIRS models,

respectively.
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The total population N is divided into three conipants withN = S +1 + R, where S is the
number of individuals in the susceptible class the number of individuals who are infectious

and R is the number of individuals recovered.

The SIRS model since one typical pathway is thro8glthen I, then R, and then back to S, as

shown below:

A
S Bs! > | Kl » R YR > S
S (n+a)l R

Fig.3.2: The transfer diagram for the SIRS model.

The transfer diagram leading to the following systeof differential equations for this SIRS

model are:

dS_)\ SI-puS + yR

dt_ _B _u Y)

dI

—=BSI-(x + p + o), 3
dt

dR

E— KI—(H +Y)R

Where parameters , 3, x and c are positive constants apds a non-negative constant. Here

we assume that is the rate at which infectives recover, if theaeered individuals acquired

permanent immunity.
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This, together wittN = S + 1 + R implies,

dN_)\ N - al 4
dt_ _H‘_a' ()

Thus the total population size N may vary in tirmethe absence of disease, the population size

N converges to the equilibriuﬁf“ :

3.0.3 The SI Epidemic Model

The S| epidemic model is a prelude to the SIA mobfethis model we consider, we consider
only two population groups in which we have thesslaf the susceptibles and the class of the

infectives which is a combination of the infectedldhose infectives with full-blown AIDS.

This type of disease can be modelefitype. The total population N is divided into two
compartments with = S + I, where S is the number of individuals in the sptbée class, | is
the number of individuals who are infectious. Bhenodel has one typical pathway and that is
through S, then |, as shown below.

Based on the flow diagram below, we generate ostesys of nonlinear differential equation.

A
S |
u H+ o
\ 4 A\ 4
NATURAL NATURAL
DEATH DEATH

Fig.3.3: A flow diagram of the SI model.
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The transfer diagram leads to the following systefrdifferential equations for the SI model.
= A- plS- uS

S
a
a_ S I 5
= P+ 5)

The parameters are positive constants. The conitasitthe recruitment rate of susceptible

corresponding to births and immigratienis the per capita natural mortality rate.

Which, together wittN = S + [, implies:

dN—A N — al 6
i uN — « (6)

Thus the total population size N may vary in tirmethe absence of disease, the population size

N converges to the equilibriu??;(u.lt follows from (6) thalimg,,; 0o N < ’1/#.

From the system of nonlinear differential equatjoms first consider the existence of equilibria.

For any value of parameters, the model always lthsease-free equilibriu, = (N, 0).
To find the positive equilibrium set:
That is

ds_di_
dt  dt

27



In equatiorf5), if att = 0, an infected individual is introduced into an othise infection-free
population of susceptibles, we have initiddly= Nand I = 0, and the disease-free equilibrium

point is determined as

S,1) — (N,0).

When the epidemic starts, the syst@m evolves to a steady state when

dS dI 0
dt  dt
From(6), Since
dN = A N I
a - AT
It implies that
A-plS-uS=0

pS-(u+a)I=0

Solving for the various population grougsand I we get

_ (a+ pN*
¢

S*

_ -y
B o

I*
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We then investigate the behavior of the flow neguiilédrium solutions using the linearization

technique

The Jacobian matrix for ti model is therefore given by:

il S
=\ ows
Ui Ui
v v #re

Where p =nl/N

Considering the zero endemic equilibrium point,wik first shift the variables so that the origin
is at the equilibrium(S*,1*) = (N,0) — (0,0) and the Jacobian matrix at the disease-free

equilibrium point is obtained as,
J= (—u —n¢ )
0 n{—(u+a)
That means that any term with higher powerS*afnd I* are very small, so we neglect them.

Solving for the eigenvalues of the Jacobian mattithe equilibrium points.

_nés
N =0
0 n—w+a)—T

det| H~T

therefore:

T'=—pandné — (a+up)

Where T is our eigenvalue.

29



Considering the non-zero endemic equilibrium pdi$it, /*), we establish the stability of the
equilibrium point(S*, I*) by finding the Jacobian matrix at the endemic ldguim point and

hence the eigenvalues of such Jacobian matrix:

Therefore for:

(@ +wN* (A—uN")

S5I) =
&1 =( v "
_ml _ms
j=| W N
ndl ¢S
N v wto

—n{(A — puN") — auN*

—(a+w
TRy aN*
aN*

(8%, I") Is the non-zero endemic equilibrium point, thus gopulation of each type, provided

(§*,I") are all positive quantities.
Solving for the eigenvalues of the Jacobian mgBiX) above, we get

—n¢{(A — puN") — auN*

- —T —(a+pw)
det al . =0
n{(A — uN") 7
aN*
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—WMﬁ—nﬂﬂ—uNﬂ_T T_nﬂa+uXA—uNﬂ _o
aN* alN* B

Hence

—(auN* + ng(A — uN™))

hTo = 2aN”

(apuN* +ngA — MN*)))2 _ngla+ WA= pNY)
- 20N* oaN*

WhereT is the eigenvalue of the Jacobian Mat{i3x7).

Now, | would want to find the reproductive number this model first with a simple method. In

this method for findin@®,, we survey to have increase and decrease of ivéacttherefore we

have,

dl
dt

then

plS —(a+w)I >0

p¢S > (a+ wl
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S
p< 51
(a+wl
Where
_n
P=N
It implies that
ngs
—>1 butatt=0,S~N
N(u+v) e
=
n¢
>1
(u+v)
If we take
n¢
R, =
" (u+v)

Therefore:% > 0, we haver, > 1.

Also if % < 0 we will getR, < 1 by similar computation as we did in the above walton.
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From the response we got from the SI epidemic moael would want to consider a more
complicated but precise model and this model isShe epidemic model where the infectives

are compartmented into the infective class andetimdectives showing symptoms of AIDS.

An SIA epidemic model of HIV/AIDS is as modeled bt

3.1 Model Parametersand Assumptions

We formulate an HIV/AIDS model by considering thepplation of individuals in the different
groups or stages. At tinte there areS(t) human susceptiblesit) infectives who are the
infected and infectious individuals that have net geveloped AIDS symptomd,(t) AIDS
patients who are infected and with AIDS symptomd &iit) are individuals who dieof the
AIDS. Susceptibles have sexual contacts at a{ratéth a probability of transmission at one
sexual encounter denoted pyA proportion of these sexual contacts are wifedtives. Let us
assume there is a constant immigration até susceptible into a population of si¥e We
assume that susceptibles die naturally at aurai®e also assume AIDS patients also die a
natural death at a rate In addition we assume uniform mixing with thefelient population
groups and also sexual contacts within susceptdasot result in any transmission and thus do
not feature in the model. Also, sexual contactdhiwiinfectives which give rise to issues about

the role of re-infections are ignored.
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Table 3.1: Presented below is a table of parameters, thearig¢ions and their values

Parameters Descriptions Values/1000
A Recruitment rate 28.74 births
u Natural death rate 9.10 deaths
p Transmission probability Not known
{ Number of sexual contact Not known
v Rate of progression to 10.91
AIDS
o HIV/AIDS induced death 0.76 deaths

rate

Source: WHO (2009 Ghana data)

3.2 Derivation of Equationsfor the SIA Model

The equations derived are for tl§é4 model for the transmission process as shown in the

description of each epidemiological class belowether with a pictorial representation of the

flow diagram of the disease on which | base my rhode

3.2.1 Susceptibles, S(t)

Consider a constant recruitment ratéo the susceptible population per unit time. Ritedu
individuals consist of maturing young persons jognithe sexually active age group at a

predetermined age. The recruitment term can beittewin terms of birth rate, maturation rates

and rates of mother-to-child transmission with tiags.
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Susceptibles are removed through infection or iyrahdeath. We let be the natural death rate
for the sexually active adults. The removal ratsugceptible through infection is the number of
new HIV infections per unit time. This rate is inm@mnt in calculating HIV incidence which by
definition is the number of new infected personsairspecified time period divided by the

number of uninfected persons that were exposethi®same time period.

3.2.2 Number of New HIV Infections

Let each susceptible hagesexual contacts per unit time. Assume that a ptapol/N of these
contacts are with infectives and at each of thesdacts with infectives, a susceptible has a

probabilityp of getting infected.

Let p¢ be a function of the number of AIDS cases givem©@), then the total probability of
one susceptible getting HIV infected from any cfittsex contacts per unit time(ig(A(t))) /
N. This is the expression for the force of infectidhe force of infection is the probability that a

susceptible will get HIV infections per unit timegiven byn(A(t))IS/N.

3.2.3 Infectives, I(t)

Infectives are recruited through new HIV infectiodescribed above and removed through
progression to AIDS at rateand through natural death at raté /v is the duration spent in the
infective stage and/u is the life expectancy of the adult population.ttB@f these rates

assumed constant in the model.
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3.2.4 AIDS Cases, A(t)

AIDS cases are recruited through progression froenimfective stage to the AIDS stage and
removed through AIDS accelerated deaths ataateu wherel/o is the average duration spent
in the AIDS stage if natural deaths are assumedtantin the model. However, allowing for
variability in o could be necessary given the advances in meditalentions and in charges in

medical seeking behaviors for persons living wilWAIDS.

3.2.5 A flow diagram of the disease as modeled by the system below:

Presented below is a flow diagram that represéetStA epidemic model for HIV/AIDS based

on which we generate our systems of nonlinear rdiffeal equation.

A 4 A 4 A 4
NATURAL NATURAL NATURAL
DEATH DEATH DEATH

Fig.3.4: A flow diagram of the disease as modeled by tistesy of equations.
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3.2.6 Model Equations

As the first step in the modeling process, we ifeihe independent and dependent variables.
The independent variable is time t, measured irs.dde consider two related sets of dependent

variables.

The first set of dependent variable counts peoptae groups, each as a function of time:
S = S(t),is the number of susceptible individuals,
[ = I(t),is the number of infected individuals, and

A = A(t),is the number of AIDS patients.

The second set of dependent variables representsaittion of the total population in each of

the categories.

So, if N is the total population, we have
s(t) = S(t)/N, the susceptible fraction of the population,
i(t) = I(t)/N, the infected fraction of the population, and

a(t) = A(t)/N, the proportion of AIDS patients in the

entire population.
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Looking at the two sets of dependent variablesughoit seems more natural to work with
population counts, working with the fraction wilebmy option since calculation with the

fractions will make my work simpler.

It is also noted that the two set of dependentdes are proportional to each other, so either set

will give us the same information about the progresthe epidemic.

From the descriptions and assumptions on the dysamwi the epidemic made above, the

following are the model equations.

_—UI_U.A_OA 32
dt ()

Then for the scaled variables, we have the noratirtBfferential equation presented below:

ds _ 2 34
pri —us(t) — pds(t) (3.4)
di

== pls(t) — pi(t) — vi(t) (3.5)
da ]

i vi(t) — pa(t) —oa(t) (3.6)
s +i(t)+alt)=1 (3.4)
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Where N is the total size of the population gnég nI/N. Thus,S,1, A are all bounded above

by N.

The mathematical formulation of the epidemic prables completed given initial conditions

such as

S(0) =S, > 0,1(0) = I, > 0,A(0) = 4, > 0

3.3 Stability of Fixed Point of the Nonlinear SIA Epidemic Equations
3.3.1 Determination of Stability by Linearization

Let fR™ - R™ be aC' map and suppose thatis a point such that(p) = 0, that is,p is a

fixed point for the differential equation below:

x'(0) = f(x(®)).

The linear part of at p, denotedf (p), is the matrix of partial derivatives @t Forx € R",

f(x) € R™, so we can write:

f1(x)

f2(x)
flx) =

fn(lx)

The functionf; are called the component functiond.of
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We define

fy . 0fi af1
a—xl(p)a—xz(p) a—xn(p)

f; . [ 0f> af3
a—xl(P)a—xz(P) E(P)
Df(p) = :

Jn of, u‘an
Iy iy .. Iy

dx, dx, 0x,

Sincef is C, Taylor's theorem for functions of several varebkays that
fG) =Df()(x —p) + g(x),

Wheref (p) = 0 andg is a function that is small neprin the sense that

i lg)l _ 0
x-p |x —pl

3.3.2 Proof of Linearization of the SIA Epidemic Model:

Consider the system 814 epidemic model

S=f(S1A4)
[=g(S,1,4)
A=h(S1,A)

and suppose th@s*, I*, A*) is a fixed point.
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That is

f&I17,47) =0

g 1,A)=0

h(S*, I*, A*) = 0.

Let
U=S-5"
V=I-I"
W=A-A

denote the components of a small disturbance franiixed point. To see whether the

disturbance grows or decays, we need to deriverdiftial equations fdv, V andW/.

Let’s do theU-equation first:

U = S(Since S* is a constant)

=f(S*+UTI"+V, A+ W) ( by substitution)

9 ) )
= f(S* 1", A" )+Ua—f+Va—j;+ W£+0(U3 V3, W3, Uvw)

(Taylor's series expansion)
of _ of  of
ds

+V—=—+W=+0(U3V3w3Uvw) since f(U*,V*,W*) =0

=U al 9A
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It should be noted that these partial derivativédsbe evaluated at the fixed poi(§*,I*, A*);
that is they are numbers and not functions. Alse notatior0(S*,I*, A*) denote quadratic terms

in U,V and W.since U,V and W are small, these quadratic terms are extremeljl.sma
Similarly, we findVandW. That is:

) ag ag dg e
V—U%+VE+WQ+O(S,I,A)

LV—Uah+Vah+Wah+06*ﬁAﬂ
- as al 94 AR

Hence the disturband@®,V, W) evolves according to

of of of
(55 ol 9A

dg dg dg

U \
"1=13s a1 3a
W K S ol AA)

U
(V) + quadratic terms. (3.5)

on on oh| W

S al dA

The matrix
of of af
dS 9l 0A
dg dg dg

s al 94
oh 0h oh

as al dA

] =

(S*,I*,A*)

is called the Jacobian matrix at the fixed p@htl*, A*).
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Now since the quadratic terms(ih) are tiny, it's tempting to neglect them altogethewe do

that, we obtain the linearized system

af
a9

S
oh

0S

3.3.3 Calculations

Theorem 1.0:

of
ol
a9
ol
oh

)|

LetS(t),I(t) and A(t) be solution to mod€l3.0) — (3.2)

1. If Ry <1, thenlim,_, I(t) = 0 and we have a disease free equilibrium.

2. If Ry > 1, thenlim,_.(S(t),I(t), A(t)) = (

3.3.3.1 Steady State Equilibrium

v+u (0+u)(A—uN*) A—uN*

: )

pl’ ov o

Because of the biological meaning of the compon(e&’(tts),](t),A(t)), we focus on the model

in the first octant ofR3.we first consider the existence of equilibria ofteyn(3.0) — (3.3). For

any value of parameters, modal0) — (3.3) always has a disease-free equilibriign=

(N, 0,0).
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To find the positive equilibrium set:
That is

ds dI _dA
dt  dt dt

In equation(3.0) — (3.3), if att = 0, an infected individual is introduced into an athise
infection-free population of susceptible, we hamgially S = N,I = 0,and A = 0 and the

disease-free equilibrium point is determined as
(s,1,A) — (N, 0,0).

When the epidemic starts, the syst€ht)- (3.3) evolves to a steady state when

dS dI _dA
dt  dt dt
Since
N = S(t) + I(t) + A(t)
dN = A-pS I A
T A wS-p-pA-o
= A- uN - oA
It implies that

A- plS-pS = 0

I
o

p¢S — vl - pl

vI- 6A- pA = 0
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Solving for the various population groussl, A we get

o — (v + PWN*
ng
o (c+ WA —puN")
- oLV
At = (A - uN7)
(o)

W+ wN* (6 +w)@A—uN") (A—uN")

S5 1", A%) =

)

3.3.3.2 Linearization of Equation

In this section we investigate the behavior of tlesv near equilibrium solutions using the
linearization technique and connect it to the HartrfGrobman theorem, which relates a

nonlinear system to the corresponding linear orze thee equilibrium.

The Jacobian matrix for t#A model is therefore given by:

ndl ngs
TN TN 0
= ndl ngs
N N @tw 0
0 v —(o+w

Where p =nl/N
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Considering the zero endemic equilibrium point,wik first shift the variables so that the origin
is at the equilibrium(S*,1*,A") = (N,0,0) — (0,0,0)and the Jacobian matrix at the disease-

free equilibrium point is obtained as,

-u -n¢ 0
JWN,0,0)=( 0 n{-(v+ w 0 (3.6)
0 v -(c+ W

we are only considering small derivatives from ¢lg@ilibrium, so thas*, I*, A* are small.

That means that any term with higher powerS*of* and A*are very small, so we neglect them.

Solving for the eigenvalues of the Jacobian mdBi%),we get

—u-T —n¢ 0
det 0 n({—@w+w-T 0 =0
0 v —(o+pn)—-T
= W+ ((e+wW+TM - @W+w-T)=0
therefore: (u+T) =0,

(c+uw)+T=0 or

- (w+w)-T)=0
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Hence
T=-p—(c+p)andni—(+u)

Where T is our eigenvalue.

Considering the non-zero endemic equilibrium p@&it /*, A*), we find the Jacobian matrix at

the endemic equilibrium point:

W+wN* (c+w@—uN") 4 —/W*))

S* 1", A%) = ,

—uovN* —nd(o + p)(A — uN"*)

—(u+v) 0
ouN*
J(5, 1, A") = n¢(o + (A — uN") ) . (3.7)
ouN*
0 v —(o+p)

(§*,1*,A*) is non-zero endemic equilibrium point, thus theudation of each type, provided

(§*, 1%, A") are all positive quantities.

Solving for the eigenvalues of the Jacobian mgBi%) above, we get

—poUN* — + WA — uN*
pov nZJ(ZN* wWA—p ) _ o ) 0 \
det | n¢(o + WA~ uN") r 0 ) =0
ouN*
0 v —(o+up)—T
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n{(oc +u)(A—uN")
ouN*

—uovN" —nd(o + p)(A —uN") T
ouN*

>T—(u+v) )((J+,u)+T)

=0

Therefore
(c+w+T)=0

or

((—MUN* —n(e+ W@ —pN) T) o MW@+ QA uN*)) o

oUN* ouN*

Hence
T = _(O- + ,U),
and

—(pouN" +ng(o + (A — pN™))
20uN*

4 ((uovN* +n¢(oc+ WA - uN*)))2 _ gk +v)(o+ WA —pNY)
- 20uN* ouN*

WhereT is the eigenvalue of the JacobianMati3x7).

Further analysis of these results will be carriatlin the chapter IV of this thesis.
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3.4 Reproductive Number

One of the fundamental questions of mathematicaeepiology is to find threshold conditions
that determine whether an infectious disease \ilead in a susceptible population when the

disease is introduced into the population.

The threshold conditions are characterized by thecatled reproductive number, the
reproduction number, the reproductive ratio, basproductive value, basic reproductive rate, or

contact number, commonly denotedRyin mathematical epidemiology.

In epidemiology, the basic reproduction numberrofrdection is the mean number of secondary
cases a typical single infected case will cause population with no immunity to the disease in
the absence of interventions to control the inGector it is the average number of susceptible
who can be infected by a typical infective in a plagion in which everybody is considered as

susceptible.

The reproductive number defines the direction efdisease. This can be written mathematically

as:

R, = T* * (infectious period) + 1

1
Rate of change

infectious period =

andT* is the dominant eigenvalue.

The basic reproductive rate is affected by sevabrs including the duration of infectivity of
affected patients, the infectiousness of the osyanand the number of susceptible people in the

population that the affected patients are in cantatt.
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3.4.1 Calculations

Now, | would want to find the reproductive number this model first with a simple method. In

this method for findin@,, we survey to have increase and decrease of ivdscttherefore we

have:
If
dl S0
dt
then
plS—(u+v)I>0
p¢S > (u+v)l
=
S
24 o1
(n+v)!
Where
_mn
P=N
It implies that
ng¢s
>1 butatt=0,S = N
N+ v) e
=
n¢
>1
(u+v)

50



If we take

_ n¢
(u+v)

Ro
Therefore:% > 0, we have, > 1.
Also if % < 0 we will getRy < 1 by similar computation as we did in the above walton.

It should be noted that the basic reproductive remt6.1 can be used to determine the
dynamics of the modé€B.0) — (3.2), hence further analysis of these result will bedena the

chapter IV of this thesis.
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CHAPTER FOUR

ANALYSISAND NUMERICAL SIMULATIONSOF THE MODEL

4.0 Introduction:

In this section, we will be looking at the implicats of the results we got in the chapter three of
my thesis. This will involve a study of the sigodince of the various eigenvalues and the
reproductive number as well as the MatLab simutatesult to the stability of the system of

differential equations.

4.1 Analytic Study of Results:

In this section, we are going to present a detatady into the results we obtained in the chapter
[l of this thesis. Although numerical solutiongarery important besides analytic result, it is

very necessary to use both tools to establish@kpbnclusions to our study.

From chapter Ill, we considered the zero endemiglibgum point and the Jacobian matrix at

the disease-free equilibrium point were obtained as

-u -n¢ 0
JN,00)=| 0 ni{-(+ w 0 (4.3)
0 v -(c+ w

We only considered small derivatives from the efjdim, so thag*, 1", A* are small.
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That means that any term with higher powersot* and A* are very small, so we neglected

them.

Solving for the eigenvalues of the Jacobian mg#ig) we got

—u-T ¢ 0
det 0 n({—w+w-T 0 =0
0 v —(e+wn)—-T

Hence

T, T, and T3 = —u, —(0 + p) and n¢ — (v + p)

Where thel'’s are our eigenvalues.

From the above jacobian matrix, we are getting tregaalues of the eigenvalue given that
uand (o + p) are all positive for any positive valuesiotr and v. From the first two results of

our eigenvalues, it is so obvious that we obtamatige values.

This goes to explain the fact that at the non-endequilibrium point, the state of the system
can be estimated in either of two ways, that isstfstem experiences a nodal sink provided

n{ < (v + w) and hence the system will be in a state of tagddikty and this explains that either
there is no body in the population infected wita HiV/AIDS disease or there are some

infectives in the population but the disease spezaccompletely under control.

Now if n{ > (v + p), then the system will now have a saddle point.
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Considering the non-zero endemic equilibrium pofit I*, A*), we found the Jacobian matrix at

the endemic equilibrium point:

W+ wN* (+p)A—uN) (4 —AN*))

S5, 1", A%) = ,

—pouN* —ni(o + p)(A — uN")

—(u+v) 0
ouN*
J A= 05+ )@= N . ) (4:4)
ouN*
0 v —(o+ )

(§*,1*,A) is the non-zero endemic equilibrium point. Thug thopulation of each type,

provided(S*, I*, A*) are all positive quantities.

Solving for the eigenvalues of the Jacobian m&Bi%) above, we got

—pouN* —nd(o + u)(A — uN")
/ e -T —(u+v) 0 \
det | n{(o +w (A — uN") r 0 )=0
ouN*
0 v —(o+up)—T
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Therefore:

Tl = _(O- + .u)l

Or

—(uouN" +ng(o + WA — uN"))

T Ts = 20UN*

4+ |(HouN" + Ng(c + WA —pN)) . nilk+v)(o+ WA - uNY)
t ( 20uN* ) ouN*

WhereT,, T,, T; are the eigenvalue of the Jacobian Maf#ix).

From the above results of the eigenvalues, we tahy she entire system by considering the
nature of the eigenvalues. From the result of tigervalues above we realize that, its first

valueT;is negative for positive values of the respectatesu and o.

Also considering the second set of values for tigerwalues, we will use the discriminate
analysis to establish the behavior of the systeth such an eigenvalue. We can now conclude

on the behavior of the system based on the analysiise operations below.
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Considering the case where A > uN* for all the cases below, Then if:

_ e+ v)(o+ WA - pNT)
ouN*

0

(pouN”" +nl(o + (A — pN"))
( 20UN* )

Then the eigenvaluél, and T;, are complex conjugate, this goes to explain #oe that in this

case the system will have a spiral sink at uN* sinceT;, T, and T; have a negative real part.

Since we realize that the eigenvalues of the Jaoabiatrix have a negative real value and two
complex conjugate with negative real part at uN*, if the discriminant is less than zero, then
the system experiences a spiral sink at the equitib That means the system have a certain

form of oscillatory behavior at equilibrium whilesisolution still moves to stable direction.

In other words, the system behaves in a dampetatscy manner with a certain period

determined by the parameters.

Also if

((HGUN* +n¢(c + WA — uN"))
20UN*

0@ WA
ouN*

)2

Then we will get two real eigenvalue®, and T;. This goes to explain the fact that the system
will be a nodal sink af’, < 0 and T; < 0 but the system will experience a saddle point at

eithefl, > 0 or T3 > 0 or both for A > uN*seeindl; < 0.
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Since we have a negative real value and two distead values if the discriminant is greater than
zero, it implies that the system experiences almsidk at the equilibrium if and only if the two
distinct real values are both negative else theesygxperiences a saddle point . This means the
system moves to stable direction if and only if the distinct real values are both negative else

the system experiences a state of instability.

((HGUN* +nG(o + W@ — pN"))
20UN*

MY+ )(o + WA= pNY)
ouN* B

)? 0,

Then

T —(uouN* + (o + p)(A — uN"))
- 20uN*

This implies that at the case where- uN*,we will get one repeated eigenvalues, T which is

negative hence a nodal sink is established.

Considering the case where the discriminant is lequeero. This measures a stable system since
the eigenvalues of the Jacobian matrix have a ivegagal value and one repeated value hence a

nodal sink is established.
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Also:
Considering the case where A < uN* for all the cases below, Then if:

((HGUN* +n¢(c + WA — uN"))

_ e+ v)(o+ WA - pNT)
20uN*

ouN*

)? 0

Then the eigenvaluel, and T;, are complex conjugate, this goes to explain doe that in this

case the system will have a saddle poirt etuN* sinceT; < 0 while T, and T; both have a

positive real part.

Also if:

(ooN" + 1300 + WA= pND)\" i+ v)(o+WA-pN)
20UN* ouN*

Then we will get two real eigenvalu€sand T;. This goes to explain the fact that the system

will be a saddle point at eith@& > 0 or T; > 0 or both for A < uN* seeing thal; < 0.

0,
20VN* ouN*

<(u0vN* + g0+ W@ - uN*))>2 _ M+ 0)(o+ WA= N _
Then

~(uouN" +ni(o + W) (A — uN"))
20UN*

Tz,Tg =
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This implies that at the case where< uN*, we will get one repeated eigenvalue, T which are

positive hence a saddle point is established.

From the above analysis, we realize that etuN*, the eigenvalues of the Jacobian matrix will
have a negative real value and two complex congugyéth positive real part if the discriminant
is less than zero, a negative real value and tatindt real values or a negative real value and
one repeated real value which are positive, hamesystem experiences a saddle point at the
equilibrium with all the cases consideredlat uN*. That means the system experience a state
of instability at all the cases whete< uN*. In other words, the system will experience an

outbreak of the disease.

In all the analysis made in our analytic study, wigezen the model parameter values, the period

of the oscillation plays a role in predicting fugththe behavior of the infections.

We also considered what the reproductive numbemni the relationship it has with rate of
change of infectives in the population and henee, lme used to determine the dynamics of the

model(3.0) — (3.2).
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The reproductive number defines the direction efdisease. This can be written mathematically

as:

Ry =T * (infectious period) + 1

1
Rate of change

infectious period =

andT* is the dominant eigenvalue.

Now, calculating for the reproductive number of rab@.0) — (3.2), using the simple method.

In this method for findindk,, we survey to have increase and decrease of ivdscttherefore

we have,
If
dl S0
dt
then
plS —(u+v)I>0
piS > (u+v)l
S
R B CH
(n+v)l
Where
_n
P=N
It implies that
ng¢s
————>1 butatt=0,S=N
N+ v) e
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Wt

If we take

Then for% > 0, we haver, > 1.

Now, if the system enters a stage where Ry > 1, then it is said to be asymptotically
unstable and this implies that there will be a@esioutbreak of the HIV/AIDS epidemic in the

country provided the rate of change of infectivepasitive.

Also:
dl ,
if yr < 0,wewill get Ry < 1

by similar computation as in the above calculation, this will imply that the system will be
in a state of total stability and hence the emopulation will be free from the opportunistic

infection(HIV-epidemic).

We also looked at when the system will develop@desmic using the basic reproductive rate.
In doing this we consider the case where the ildactte is greater than zero, which means that
we have increasing number of infectives in theeaysand this will give us a reproductive rate
which is greater than 1, hence the system experseae outbreak of HIV/AIDS epidemic since

the system is asymptotically unstable in this case.
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We also consider the case where the infectionisategative, which means that we have
decreasing number of infectives in the system hrsdwill result in a case where the
reproductive rate is less than 1, hence the systgrariences stability which implies that the

entire population will be free from the opporturdshfection.

Infact, the results of our numerical simulationa isonfirmation of the results we had in the

analytic study as well as the graphical results.
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4.2 Numerical Simulation:

This section will be established based on the aleaathematical simulations using MatLab. In

this respect we present computer simulations oéyiséem(3.0) — (3.2).

We take the parameters of the system as presentbd tables below taken our total population

asN = 24791073.

We finally complete the model by given each difféi@ equation an initial condition. Since
none of the population is immune at the beginnifhihe epidemic, we assume that almost
everyone in the population is susceptible. We atgume a trace level of infection in the

population, that is:

S(0) = 24791073, 1(0) =15  A(0) =0

In terms of the scaled variables, the initial ctiods are:

s(0) =1,

i(0) =6.051x 1077,

a(0)=0

This will be the variables with which the graphindl be appropriately presented.

For each table of parameter values, we have gralp@sults to our differential model as well as

the phase portrait.
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Table 4.1: Parameter values in respect of lowahtefection with a high rate of conversion

from infectives to AIDS and low AIDS acceleratecterates

Parameters of the A u p ¢ v o
system
Values of the 132495 0.00025 0.06 2 0.825 0.524
(Parameters)/year

We also assume values for the different populaji@ups such that 6‘5(0), I(O),A(O)) =

(24791073,15,0) thenE, = (24791073,0,0) andR, = 0.1455 < 1.

Population

| | | | | |
0 50 60 0 80 90 100
Time(Years)

Fig. 4.1a: Numerical solution of the model with gr@eters from Table 4.1.
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The above graph (Fig. 4.1a), gives the proportiosusceptible, infective and AIDS patients
with time, showing that the system is stable agptioportion of susceptible in the population
takes a sharp increase until its size attains ibguitn after 40year of growth as compared to the

other class of population.
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Fig. 4.1b: A phase portrait showing the stab#ityiation of the differential model.

The above phase portrait (Fig. 4.1b) is a represient of a stable system with all the field lines

converging at a point. This figure demonstrateshbilty situation called a nodal sink.
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Table 4.2: Parameter values in respect of highafiefection with a high rate of conversion

from infectives to AIDS and high AIDS accelerateghth rates

Parameters of the A u p ¢ v o
system
Values of the | 13249.5 0.00025 0.06 12 0.825 2.334

(Parameters)/yeaf

We also assume values for the different populaji@ups such that 6‘5(0), I(O),A(O)) =

(24791073,15,0) thenE, = (24791073,0,0) andR, = 0.87273 < 1.

Population

o
=)
I

06

| |

40 50

Time(Years)

60

Fig. 4.2a: Numerical solution of the model with gr@eters from Table 4.2.

66

100




The above graph (Fig. 4.2a) gives the proportiosusteptible, infective and AIDS patients with
time, Showing that the system is stable as thequtigm of susceptible in the population takes a
sharp increase until its size attains equilibriugfobe 10year of growth with those infected also

increasing at a relatively low rate as comparetthéosusceptible growth with less AIDS patients.
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Fig. 4.2b: A phase portrait showing the stab#iityiation of the differential model.

The above phase portrait (Fig. 4.2b) is a represient of a stable system with all the field lines

converging at a point. This figure demonstrateghility situation called a nodal sink.
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Table 4.3: Parameter values in respect of lowaatefection with a low rate of conversion from

infectives to AIDS and high AIDS accelerated daatles

Parameters of the A u p ¢ v o
system
Values of the 13249.5 0.00025 0.06 4 0.225 2.524
(Parameters)/year'

We also assume values for the different populagimups such théﬂ(o), I(O),A(O)) =

(24791073,15,0). ThenE*(S*,I*,A*) = (14.078,31344.134,2793.872) andR, = 1.0667 > 1

Population

| | | | | |

40 50 60 70 80 %0
Time(Years)

Fig. 4.3a: Numerical solution of the model with gr@eters from Table 4.3.
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The above graph (Fig. 4.3a) gives the proportiosusteptible, infective and AIDS patients with
time, showing that the system is unstable as tbpgstion of susceptible and infectives in the
population takes a sharp increase until they bti#tinaconvergence at time greater than 15years
but less than 20years whilst the AIDS cases ragisteery low proportion of people. We also
noticed that the size of the susceptible populatdes a short time to stabilize unlike those
belonging to the infected class who take averalgelger time to attain a constant value. In fact

this is enough prove of the fact that the systethbei unstable.

06 T T T T T T
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02 -

02+ .
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Fig. 4.3b: A phase portrait showing the stabilityation of the differential model.

The above phase portrait (Fig. 4.3b) is a reptasien of an unstable system with some of the
field lines moving away from the origin. This figudemonstrates a situation of instability called

a saddle.
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Table 4.4: Parameter values in respect of highafiafection with a high rate of conversion

from infectives to AIDS and low AIDS acceleratecterates

Parameters of the A u p ¢ v o
system
Values of the 13249.5 0.00025 0.06 14 0.825 0.52

(Parameters)/year'

We also assume values for the different populagimups such théﬂ(o), I(O),A(O)) =

(24791073,15,0). ThenE*(S*,I*,A*) = (14.733,8551.632,13457.503) andR, = 1.0182 > 1

x10*
3

Population

0 | | | | | | | | 1

= —

0 10 2 k1l 40 5 60 70 80 %
Tirme(Years)

Fig. 4.4a: Numerical solution of the model with gg@eters from Table 4.3.
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The above graph (Fig. 4.4a) gives the proportiosusteptible, infective and AIDS patients with
time. We realize a system with an epidemic ascigarly demonstrated by the graph. This has a
high progression of the infectives into the AID$we@nd fairly high proportion of people

leaving the susceptible group into the infectivassl hence an unstable system.

06 ,

D2 -
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Fig. 4.4b: A phase portrait showing the stabilityation of the differential model.

The above phase portrait (Fig. 4.4b) is a represientof an unstable system with some of the
field lines moving away from the origin. This figudemonstrates a situation of instability called

a saddle.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.0 Introduction

At present, however, almost all the developing ¢toes have increasingly realized the necessity
of social consciousness in preventing the HIV/Al@#demic. Also different protective

measures against diseases are found to be effective

One main goal of mathematical epidemiology is tdarstand how to control or eradicate
diseases. We therefore seek to explain the dynabetavior of the nonlinear differential
equation and how different types of models are tig@@pture the essential behavioral of a

population and the biological features (Naturatdmg) of the infection.

In this section of the thesis, we seek to givescdption and analysis of the various
mathematical techniques used to mimic the operstidthe real-life process described in the

SIA epidemic model as presented in @#APTER IV of this thesis.

These mathematical techniques used in the analiygie model are analytic study and

numerical simulations using MatLab.
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5.1 Conclusion

We have investigated the transmission dynamics &la epidemic model with positive
immigration. We have also characterized the equuiib and thresholds and shown how they are

affected by the immigration profile.

Much of the theory at the basis of the modern abmif infectious diseases (Anderson and May,
1991) has been developed around the equilibriunysisaf the basic SIR age-structured model

in a closed stationary population in which the uvgonent of susceptible occurs at birth only.

After a series of analysis made with respect tovidm@us models, we realize in conclusion that
in almost all the cases whete> uN*, the system realized a total stability but in &k ttases

whered < uN* the system is always unstable.

We are also able to establish that in situationgere/met transmission rates is very small as
compared to the rate of progression to AIDS, tretesy experience stability. Hence increasing
the birth rate (immigration rate), increasing AlDS3ogression rate relative to the net

transmission rate and Minimizing net Transmissiam &lmost all cases may eradicate

HIV/AIDS, but would give long incubation period f&IDS since from our assumptian >>

L.
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5.2 Recommendations

The findings of this thesis provide useful inpw$blicy formulation and execution in the fight

against the spread of HIV/AIDS.

In order to control the epidemic, the transitiorpefsons from the susceptible to the infective

populations should be reduced to the barest minimum

This can be achieved by conscientising the enbpuface on the risks and prevention methods.
Civil society and other identifiable groups shob#involved in engaging society on the
epidemic with particular emphasis on abstinendbd@asafest option. For instance, religious
bodies should be encouraged to make HIV testingdatany prior to wedlock. Medical studies
suggest that transmission rate depends mainlye@mties given their socio-economic status in

society; hence educational campaigns should betedgnainly on them.

Also the issue of the accessibility and afford&pidif the antiretroviral drugs should be reduced
and provision of appropriate medical care to tHeated will reduce the rate of progression to

full — blown AIDS relative to the transmission afsseptible to infective.

However, decreasing the transmission rate is assacg condition but that alone is not a
sufficient mechanism to control the spread of thidemic. Other essential parameters such as an
increased immigration rate (albeit considered uepiable), and reduced progression rate affects

the spread of the disease.
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