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ABSTRACT 

The call for models applying quantitative data of pathogens that are of interest to 

replace the otherwise commonly applied models using fecal indicator conversion 

ratio has gained prominence, challenges of analytical studies on virus enumeration 

(genome copies or particles) have contributed further to the low availability of data 

in Quantitative Microbial Risk Assessment (QMRA) modelling. In this thesis, a 

probabilistic stochastic model was developed to respond to the call for virus of 

interest based models. Quantitative data on genome copies of Norovirus and 

oocyste of Cryptosporidium spp. were applied in a QMRA model. The model was 

extended to include an induced immunity for Dose Response Incidence (DRI) of 

illness reduction in individual and population exposures, five different scenarios were 

modelled for Norovirus based on the epidemiological understanding of immunity 

within an individual and Norovirus transmission dynamics. A third model was 

developed to measure the uncertainty of compliance and reliability of wastewater 

effluent with integrated policy standards. The probabilistic QMRA model revealed 

fecal indicator ratio conversion method underestimated the Disability Adjusted Life 

Years (DALYs) with more than two (2) orders of magnitude and were confirmed using 

the Cryptosporidium spp. data. For immunity extended DRI models, results shows, 

illness incidence is much reduced when both dose-dependent and immunity are 

integrated into risk assessment models. Integration of immunity only into DRI model 

also performed better than dose-DRI model only. It was also revealed that, 

irrespective of the epidemiology transmission dynamics within the population, DRI 

models predictions were similar and dose-immunity DRI model was better predictor.  

Finally, the analyses of compliance and reliability of wastewater effluent 

measurements revealed that results from wastewater effluents which met the policy 

standard values, in some cases could not meet the compliance level needed for 

effluent discharge. A chart was developed for the various wastewater treatment 

effluent discharge parameters for easy comparison with effluent discharges.  



xix 

 



xx 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

To secure and increase crop production, irrigation has become a principal water use 

in many countries, which otherwise traditionally have been depending on rain 

water(Anonymous, 2014; Jiménez, 2006). This drive of irrigating farm products for food 

production has resulted in the use of wastewater in areas where water is scarce. 

Wastewater is undoubtedly a major source of human pathogens as well as a key 

source of nutrients for plants growth. Wastewater is known to serve as both an 

ingredient of foodstuffs and an independent vehicle for human exposure to 

microbiological hazards (Food and Agricultural Organization, 2003). The practice of 

using wastewater for irrigation is dated as far back as before the 14th century where 

farmers in China used it in combination with human excreta and animal excrement 

as fertilizers (Drechsel et al., 2009).  

It has been estimated that, wastewater irrigation alone covers 4-6 million hectares 

(Jimenez and Asano, 2008) and in the near future, for  4 out of 5 cities, urban 

agriculture workers will use wastewater for peri-urban farming activities (Lundqvist and 

Raschid-Sally, 2013). Middle East countries are known for high usage of treated 

wastewater. More than 60% of treated wastewater is used for agricultural irrigation in 
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Israel alone (Lawhon and Schwartz, 2006). Other countries included are Egypt, Jordan 

and countries along the Nile (Hegazy, 2013; Drechsel and Scott, 2009). In Ghana, 

several studies indicate the abundant use of wastewater for irrigation (Amoah et al., 

2007; Seidu et al., 2008; Silverman et al., 2013; Amoah et al., 2005; State, 2010; Mok 

and Hamilton, 2014; Drechsel and Scott, 2009; Karavarsamis and Hamilton, 2010; 

Haas, et al., 2014; Scheierling et al., 2010)  

As a global phenomenon, wastewater usage has both advantages and 

disadvantages. It is noted that 1000 cubic meters of municipal wastewater used to 

irrigate one hectare can supply approximately 16 – 62 kg total nitrogen and 4 – 24 kg 

phosphorus of soil nutrient (Qadir et al., 2010) making it a substitute for artificial 

fertilizers and essential for chemical-free farming. However, among the 

disadvantages, the most important is the risk of pathogen occurrence (WHO, 2006), 

which may results human disease and hence makes it a concern for public health. In 

dealing with such public health issues, a more holistic method of assessing the risk of 

pathogen occurrence instead of diseases has gained ground among scientists( 

Drechsel et al.,  2007). 

1.1.1 Quantitative Modelling of Hazards from Wastewater 

Quantitative Risk Assessment modelling is a growing area of research attracting a 

great number of academicians at both regional and global levels, due to the 

mathematical and computational intensity required to describe the physical, 
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chemical, financial, economic and biological phenomena, etc. Over the last three 

decades, one of the powerful branches of quantitative risk assessment modelling that 

has seen enormous growth in theoretical background and applications for 

quantification of health risk is Quantitative Microbial Risk Assessment (QMRA), which 

primarily focuses on  identification and quantification of the potential adverse health 

risk (probability of infection/illness) associated with exposure of individuals or 

populations to hazardous materials (Heidinger, 2009). Technically, it provides a 

framework for modelling a food chain process and hence estimates an associated 

probable risk especially for food borne infection from consumption of contaminated 

food (Duarte and Nauta, 2015). Fundamentally, risk assessment combines the 

knowledge and nature of the hazards, and characterises the risk through robust 

models based on theoretical statistics (Haas et al., 2014). After the first publications of 

human health risks associated with exposures (Dudley et al., 1976; Fuhs, 1975), the 

field has grown exponentially into all areas (van Lieverloo et al., 2007; An et al., 2007; 

Labite et al., 2010; Armstrong, 2005) and has been making inroads into other field of 

studies such as environmental assessment (Ward, 1993; Verdonck, 2001), drug delivery 

(Heylings, 2011) etc. 

Despite the great advancements of estimating risk and in particular QMRA, risk 

estimate of many waterborne and food borne diseases are based on the ratio 

conversion method (Silverman et al., 2013), i.e. where the occurrence of common 

fecal bacteria like E. coli are used to estimate the pathogen contamination (e.g. 
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Norovirus) level of water and so the human health risk, by assuming a fixed ratio 

between the occurrence of indicator bacteria and the pathogen of interest. 

Likewise, there has also been an apparently rare interest in accounting for induced 

immunity when estimating the risk of illness due to infection (Havelaar and Swart, 

2014). These limitations calls for a more unrelenting and resolute research to dive into 

modelling approaches where the pathogen of interest is in focus and the translation 

of risk estimates to illness accounts for induced immunity with a parsimonious model 

such as the fractional Poison dose response, where probabilistic modelling offers a 

way.  

1.2 Problem Statement 

Traditionally, modelling of illness or diseases has to do with mathematical 

epidemiology; nevertheless, such a method is unable to always provide sufficient 

sensitivity to measure health risk directly with the availability of human health data as 

well as not pathogenic specific. Distinctively, prediction of relative risk of diseases for 

future scenarios, in order to evaluate efficacy and efficiency of alternative mitigation 

processes in diseases modelling rest entirety on the use of QMRA. However, in QMRA 

modelling for estimating water safety, studies typically use fecal indicator ratio 

conversion for describing virus concentration to express the relationship between the 

occurrence of fecal indicators (typical E. coli) and the pathogen of interest (bacteria 

or virus). This approach was used in the WHO guideline for the Safe Use of 

Wastewater, Grey water and Excreta(WHO, 2006), and has been adopted by all 
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subsequent studies  (Barker et al., 2014; Fiona Barker et al., 2013; Mara et al., 2010; 

Mara and Sleigh, 2010; Travis et al., 2010; Mok and Hamilton, 2014; Ackerson and 

Awuah, 2012) . This method has raised concern from practitioners as well. Silverman et 

al., (2013) noted “while the ratio of Norovirus (NoV) GII to E. coli or thermotolerant 

coliform is likely to differ over place and time and may include animal fecal sources 

as well as environmental sources and reservoirs, it is an important finding that the 

current assumption of 0.1 – 1 Norovirus particles per 510  E. coli would underestimate 

virus dose with exposure to wastewater and surface water sample”. This call of 

concern was supported by Mok and Hamilton (2014) who remarked “if standard 

pathogen concentrations are to be used effectively, there should be a move away 

from indicator species such as E. coli toward the pathogens of interest such as 

viruses’’. Moreover, risk assessment basically ends with either predicting annual risk of 

illness or the annual Diseases Adjusted Life Years (DALYs), but most research studies 

applying the illness dose-dependent of infection fail to include and characterize the 

various dynamics of immunity response of individuals within the population.  

It is against this background that this study is carried out to model through all the 

stages from using pathogen of interest to predict the incidence of illness based on 

epidemiological inclusion of induced immunity for humans’ exposure to the use of 

wastewater. 
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1.3 Research Objectives 

The overall aim of this study was to develop improved risk models for humans exposed 

to hazardous substances from wastewater used for unrestricted irrigation of 

vegetables. The specific objectives were: 

(i) To develop a probabilistic quantitative risk assessment model with genome 

copies of Norovirus and fecal indicator ratio conversion for dose estimation. 

(ii) To develop an integrated induced immunity dose response model for Norovirus 

for modelling probability of illness incidence reduction.  

(iii) To develop statistical measurements modelling for quantification of uncertainty 

and compliance level of low quality water effluent for measuring wastewater 

discharge.  

1.4 Methodology 

The study presents and discusses statistical approaches for probabilistic modelling of 

gastroenteritis following human’s exposure to wastewater through the consumption of 

vegetables subjected to unrestricted irrigation.  Probabilistic modelling formulation 

with an exposure to a single infectious pathogen are constructed, then induced 

immunity will be incorporated as a results of continuous exposure to pathogens and 

combine epidemiological data into the modelling to predict the incidence of illness 

either in an individual or in the population. Additionally, incidence of illness models 

with induced immunity are formulated, introducing transmission dynamics within the 
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age structured epidemiological modelling of Norovirus. Relevant epidemiological 

data are incorporated into the Dose Response (DR) models to provide simulation 

results for estimating risks and incidence of illness among the population. Finally, 

based on data from two wastewater ponds in Kumasi, Ghana, statistical 

measurements for assessing reliability and compliance given policy standard values 

for such measurements are also formulated. 

 

1.5 Scope of the Study 

The study is limited to quantitative microbial risk assessment of Norovirus and 

Cryptosporidium (for validation) in Ghana specifically on wastewater used for 

unrestricted irrigation. Ghana falls among countries with a high volume of wastewater 

usage for peri-urban and urban agriculture and hence exposed consumers to the risk 

associated with wastewater(Amoah et al., 2005). Though other pathogens are 

presents in wastewater, the study takes special interest in Norovirus and in some 

instances Cryptosporidium spp., as Norovirus has seen some special interest as a 

better replacement for rotavirus which was used in WHO policy guideline for use of 

Wastewater and Greywater for farming. Cryptosporidium spp. are interesting 

because they are quite robust parasites (protozoa) that can survive for a 

considerable time in the environment. 
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1.6 Significance of the Study 

This study will rally round the need to move towards a more realistic model approach 

and minimize the assumptions under which conditions pertaining to the risk estimates 

are made by applying data on the pathogen of interest to minimize and if possible 

eliminate the fecal indicator ratio conversion method. It will facilitate the move to 

combine epidemiological data into risk assessment by shedding more light on the 

transmission of probability of infection to illness stage. The study will further provide 

insight into probabilistic modelling with quantification of experts’ opinion in 

formulating probability distribution inclusion in risk assessment. Finally it will add more 

knowledge to the existing literature on risk assessment estimate procedures 

particularly, towards the move to pathogen of interest modelling, risk estimate of 

illness with induced immunity modelling and measurements of wastewater discharges 

with policy standards as well as provide the platform for researchers to extend the 

frontiers of knowledge on risk estimates of diseases. 

 

1.7 Organization of the Thesis 

The thesis is organized into different chapters as follows: Chapter 1 deals with the 

background of the study, problem statement and objectives of the study, the 

methodology, scope and significance of the study are also put forward. Chapter 2 

presents a literature review of the QMRA procedure, the deterministic and stochastic 
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approach in QMRA probabilistic modelling, detection methods of hazards as well as 

quantification of uncertainty in QMRA. In chapter 3 put forward various statistical 

backgrounds in probabilistic modelling. The chapter presents the background of 

probability distributions, estimation of parameters of the various distributions used in 

the models and the modelling of pathogen densities. Chapter 4 presents the 

probabilistic modelling of using quantitative measures of the virus of interest amidst 

insufficient data and inclusion of expert’s judgment as well as experts opinions for 

estimating does, as opposed to the conventional method of using the conversion 

ratio based the occurrence of fecal indicators. Simulations for predicting risk of illness 

is carried out, sensitivity results also examined and discussed. Chapter 5 is devoted to 

estimating probability of illness accounting for temporary acquired induced immunity 

by including epidemiological data. In Chapter 6, measuring parameters that 

characterise effluent discharge of treated and untreated wastewater, which form the 

basis of hazardous (pathogenic) substances, are put forward. Chapter 7, the final 

chapter, presents the summary, conclusions and recommendations of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the study put forward relevant literature on wastewater use and the 

quantitative microbial risk assessment method used to estimate risk associated either 

directly or indirectly exposure to wastewater. This chapter also focuses on water 

scarcities which lead to the use of wastewater, the merits and demerits of wastewater 

usage for food production as well as the extent of wastewater usage in Ghana. The 

quantitative microbial risk assessment approach, which is being used for estimation of 

risk in addition to uncertainty quantification associated with illness given infection as a 

result of exposure to wastewater are also captured. The chapter ends with the 

description of epidemiological models estimating induced immunity for quantifying 

illness. 

2.2 Water Scarcity 

One of the most challenging natural gifts of nature affecting the existence of 

mankind in the 21st century and beyond is shortage of freshwater. Freshwater is 

estimated to make up a very small fraction of all water on this planet earth. Nearly 

seventy percent (70%) of the world is covered by water, while only 2.5 percent of it is 

fresh for human and animal usage. Yet, just one percent (1%) of freshwater is easily 

accessible, and most of it is trapped in glaciers and snowfields. Only 0.007% of the 
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planet's water is available to fuel and feed its seven billion people (National 

Geographic Report, 2015). 

Observation from National Geographic Report (2015) stated, :”Due to geography, 

climate, engineering, regulation, and competition for resources, some regions seem 

relatively flush with freshwater, while others face drought and debilitating pollution’’. 

In most of the developing countries, clean water is either hard to come by or a 

commodity that requires laborious work or significant currency to obtain. Since the 

debate of freshwater scarcity is not settling (Rooijen and Rooijen, 2008), this still 

remains as an abstract concept to many and a stark reality to others 

World Wildlife Fund Report (2015) estimations suggest that, globally, 1.2 billion people, 

live in areas of physical scarcity of water, an additional 500 million people are 

approaching this situation, whereas another 1.6 billion people face economic water 

shortage 1(Fig.2.1). Surprisingly, up to 70% of the worlds freshwater are used for 

agricultural purposes, of which 60% is specifically for irrigation of crops alone. These 

have all contributed to increasing freshwater withdrawals from aquifers and hence 

increasing the demand for water for all sphere of life.  

                                                      
1
 where countries lack the necessary infrastructure to take water from rivers and 

aquifers 
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Figure 2.1: Areas of Physical and Economical Water Scarcity, (Sources WMA, 2007) 

  

2.3 Irrigation Practices and Wastewater Usage 

There is no complete global inventory on the extent to which wastewater is used to 

irrigate land, mostly due to lack of heterogeneous data and the fear that countries 

have about disclosing information; economic penalties can be imposed if produce is 

found to have been irrigated with low-quality water (Jiménez, 2006). Farm irrigation as 

a practice has been going on for millennia, however, from the 20th century and 
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beyond, irrigation has become a principal water use feature in many countries to 

serve as a guarantee for increased crop production (Anonymous, 2014).  

Due to the high dependence of water for food production, wastewater has been 

used as an alternative to irrigate many farms (Jiménez, 2006). In developing countries, 

the increase in wastewater usage has been productive,  as millions of small-scale 

farmers in urban and peri-urban areas depend on wastewater or polluted water 

sources to irrigate high-value edible crops for urban markets (Qadir et al., 2010).  

Wastewater also serves as a source of both water and nutrients needed for plant 

growth and reduces the cost of using fertilizer on plants(Jimenez and Asano, 2008; 

Jiménez, 2006). It permits higher crop yields, year-round production, and enlarges the 

range of crops that can be irrigated, particularly in (but not limited to) arid and semi-

arid areas. Wastewater recycles organic matter and other nutrients to soils. Again, it 

improves soil properties (soil fertility and texture) and offers additional benefits such as 

greater income generation from cultivation and marketing of high-value crops, which 

contribute to improved nutrition and guarantee employment opportunities for 

farmers. 

However, several studies point out (Ackerson and Awuah, 2012; Amoah et al., 2005; 

An et al., 2007; Barker, 2014; Barker et al., 2014; Crabtree et al., 1997; Scheierling and 

Mara, 2010; Qadir et al., 2010; Mara et al., 2007; Shuval et al., 1997; Petterson, 2002; 

Seidu et al., 2008; Mara and Sleigh, 2010; Petterson, 2001; Silverman et al., 2013; 

Lundqvist and Raschid-Sally, 2013; Mara et al., 2010), that as much as wastewater has 
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merits of its usage, there is also associated public health concern with it; the presence 

of pollutants in wastewater can reduce soil productivity, toxic to plants or humans 

consuming crops and the pathogens contained in wastewater can cause health 

problems for humans as well as animals.  

2.4 Wastewater Usage in Ghana  

Urbanization and population growth come along with increasing demand for 

sanitation infrastructure. In Ghana, and other parts of Sub-Saharan Africa, sanitation 

infrastructure within the urban areas is inadequate lagging behind to the population 

growth rate. According to (Keraita et al.,  2002) less than 5 percent of city dwellers 

are linked to infrequently functional sewage systems and sewage treatment plants for 

wastewater treatment is also limited, less than 8 percent of wastewater generated 

are being treated and discharge.  Most untreated wastewater end up in streams and 

other water bodies which serve as sources for irrigation water in many urban and peri-

urban areas and constitute the only available surface water for irrigation which 

guarantees all year access to water for farming(Drechsel et al., 2009; Keraita et al., 

2002).  

In Ghana, the use of polluted water for vegetable farming is more widespread in the 

more populated cities where safe water is scarce (Seidu et al., 2008). This makes it 

among countries with largest volume of raw wastewater usage worldwide (Fig. 2.2), 

and represents one of the centres used mainly in the study of wastewater used for 
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agriculture in developing countries (Fung, 2011; Ackerson and Awuah, 2012; Labite et 

al., 2010; Amoah et al., 2006; Amoah et al., 2007; Amoah et al., 2005; Hall et al., 2009; 

Tiimub et al., 2012; Mok and Hamilton, 2014; Mara and Sleigh, 2009; WHO, 2006; 

Drechsel and Scott, 2009; Lundqvist and Raschid-Sally, 2013; Jiménez, 2006; Raschid-

sally and Jayakody, 2008; Mara and Sleigh, 2010). This has also led to the studies 

investigating wastewater associated health risks in Ghana for several pathogenic 

hazards (Ackerson and Awuah, 2012; Barker et al., 2014; Barker, 2014; Drechsel et al., 

2009; Karavarsamis and Hamilton, 2010; Labite et al., 2010; Mok, Barker, and Hamilton, 

2014; Seidu et al., 2008).  

 

Figure 2.2: Countries using large volumes of raw wastewater for agricultural irrigation  

(Sources: intechopen.com) 

Ghana 
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2.5 Probabilistic Model Applications and Statistics to the Study of Quantitative Risk 

Assessment (QRA) of Exposure to Wastewater 

It must certainly be noted that, it has taken too long for probabilistic modelling to use 

for biological phenomena such as microbial risk assessment as compared to physical 

phenomena. Most researches in quantification of uncertainty modelling of physical 

situations were statistical and probabilistic (Rabiner, 1989). It has been used to mimic 

physical phenomena by providing the necessary uncertainty surrounding most 

physical situation and has helped in understanding models in projecting reality in an 

experimental setting. Probabilistic model has been used in wide range of applications 

due to its flexibility and underlying assumptions (Furman and Pivi, 2002; Heath et al., 

2008; Soize et al., 2008; Palmer et al., 2005; Boomsma et al., 2008; Sparck et al., 2000).  

Risk assessment has also seen a great application of probabilistic modelling 

approach in the use of wastewater over the years (Haas, 2014; Mota et al., 2009; van 

der Voet et al., 2009; Haas et al., 2014; Hamilton et al., 2006; Mofarrah and Husain, 

2010; Hamilton et al., 2006; van der Voet et al., 2007; Duarte and Nauta, 2015; Labite 

et al., 2010; Ackerson and Awuah, 2012; Machdar et al., 2013) mostly to make  sound 

predictions and estimates. One of the key features of QRA is that it attempts to look 

at whole systems and not at isolated parts. Each possible adverse event is followed 

through to its consequences, and the consequences of different adverse events can 
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be combined. This is possible by using a quantitative approach, which provides a 

common basis for the evaluation of risks and harms (Parsons et al., 2005). 

 

2.6 Quantitative Microbial Risk Assessment (QMRA) Framework 

Quantitative Microbiological Risk Assessment (QMRA) is the process of estimating the 

risk from exposure to microorganisms. It is a process that involves measuring known 

microbial pathogens or indicators and subjects them to uncertainty quantification 

procedure through simulation to estimate the risk of transfer. Basically QMRA falls 

within the frame work of risk analysis, which basically deals with three different phases 

Figure 2.3 depicts the risk analysis framework(Charles et al., 2014) 

 

Figure 2.3: Risk Analysis Framework 
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QMRA in itself is made up four steps, namely; 

• Hazard Identification 

• Hazard Characterization 

• Exposure Assessment 

• Risk Characterization 

2.6.1 Hazard Identification 

Hazard Identification is the process of determining whether exposure to a stressor can 

cause an increase in the incidence of specific adverse health effects (e.g., microbial 

pathogens) and whether the adverse health effect is possible to occur in humans( 

Haas et al., 2014). Hazard identification examines scientific data available for a given 

pathogen of interest (or chemicals) and develops evidence to describe the link 

between the negative effects and the pathogen. Wastewater is known to contain 

numerous pathogenic microbes and serve as a source of pathogenic concern for 

humans, most of these pathogenic microbes are reference pathogens which 

includes Norovirus and Cryptosporidium spp  (U S EPA, 2006).   

Norovirus 

Norovirus (NoV) is responsible for numerous cases of waterborne and food borne 

gastroenteritis every year which makes it a leading cause of both endemic and 
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epidemic gastroenteritis in the world (Hassine-Zaafrane et al., 2014; Atmar, 2010). 

Unlike the case of rotavirus, Norovirus cause illness among both children and adults 

(Glass et al., 2009) and hence makes it an ultimate target for hazard identification. 

After the use of rotavirus for generalization of gastroenteritis in WHO (2006), Norovirus 

risk assessment has gained prominence to be a replacement for rotavirus, since the 

latter affects children under 5 years. 

Cryptosporidium spp 

Cryptosporidium is also an important contaminant found in drinking water and is 

associated with a high risk of waterborne disease particularly for the immune 

compromised (Rose, 1997). The parasites can infect a significant proportion of the 

exposed population at low doses. The characteristics of Cryptosporidium, however, 

may vary among isolates, Cryptosporidium parvum (C. parvum) and Cryptosporidium 

hominis (C. hominis) are the two species of primary importance in human infections 

((Reinoso and Bécares, 2008)). Cryptosporidium is frequently isolated from publicly 

owned treatment works (POTW) effluent, storm water, and livestock manure, and their 

respective oocyst can survive for extended periods of time in the environment. The 

high environmental loading of potentially human infectious Cryptosporidium in calves 

makes Cryptosporidium of particular interest in estimating risk related to livestock 

sources of fecal pollution ( Reinoso and Bécares, 2008). 
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2.6.2 Hazard Characterization 

Hazard characterisation describes the properties of the hazards and the vulnerability 

of consumers exposed to hazards, ending up with an expression of the dose response 

relationship i.e. the relationship between the quantitative occurrence of the hazard 

and the human health outcome  (Haas et al., 2014; Medema and Ashbolt, 2006). 

Specifically, it is the evaluation of the nature of adverse effects of physical, chemical 

or biological agent which may be present in the wastewater (WHO, 2006) 

2.6.3 Exposure Assessment 

It is the process of estimating or measuring the magnitude, frequency and duration 

of exposure to a hazard, along with the number and characteristics of the 

population exposed. Supremely, it defines the sources, pathways, routes, and the 

uncertainties in the assessment  (Haas et al., 2014; Medema and Ashbolt, 2006). 

2.6.4 Risk Characterisation 

A risk characterization is the estimation of the associate risk given the nature and 

presence or absence of risks, along with information about how the risk was assessed, 

where assumptions and uncertainties still exist, and where policy choices can be 

made (Haas et al., 2014; Medema and Ashbolt, 2006) . The risk characterisation is the 

integration of the hazard characterization (i.e. the dose-response relationship) and 

exposure assessment (i.e. the estimated dose). It quantifies the relationship among 

the integrated factors to estimate a probable adverse effect to occur within a 
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population or an individual with attended uncertainties, and also to indicate places 

or points, where mitigation for hazard control could be implemented. However, such 

decision of activating a mitigation process is solely risk management or political 

decision. 

 

Figure 2.4: Risk QMRA Framework (sources: Brul et al., 2012) 

 

2.7 Microbial Data Estimation in QMRA 

Microbial data estimation is setting the basis of exposure to hazards that might results 

in infection, in as much as there is no one acceptable standard for microbial data 

estimation, several studies have used different methods of estimating dose per 
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exposure (Barker et al., 2013; Mok et al., 2014; Karavarsamis and Hamilton, 2010; 

Hamilton et al., 2006b; Soller, 2008; Mota et al., 2009; Teunis et al., 2002). However, one 

thing that is certain is the use of ratio conversion for fecal indicator organism to 

represent pathogen of interest, modelling after the adoption of conversion ratio used 

by WHO (2006) in QMRA. In the quest to improve the process, several studies (Sofia 

and Duarte, 2013; Yusoff et al., 2011; Duarte et al., 2013)have contributed in the 

advancement of improving counts of microbial data and effects of making sense of 

false zeroes. Nevertheless, microbial enumeration methods such as plate counts, most 

probable number and other alternatives are all limited in one way or the other for 

making a complete enumeration, hence enumeration is relied on probabilistic 

approach in quantifying the uncertainty surrounding it such as the recovery methods 

(Petterson et al., 2007).  

2.8 Uncertainty and Variability Risk Estimate of Illness given infections  

Inputs in QMRA may result in uncertainty if ignorance of input parameters are results 

of incertitude arise from due to limits on empirical studies or mensurational precision 

(Ferson and Ginzburg, 1996), this can be diminished by gathering additional 

information about the parameter, on the other hand, variability results in an intrinsic 

heterogeneity in input values for a parameter (Hass  et al., 2014). Uncertainty results 

from several sources in modelling approach, which includes, the parameter, model 

and the scenario, whiles variability results from mainly identifiable characteristics 

which results in differential exposure or dose response characteristics (Haas, 2014).  It is 
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essential to quantify uncertainty either in parameter, scenario or model source in 

order to prioritize factors that must be necessary to be assessed  to arrive at a fairly 

account estimates, all different aspects that can contribute to a specific kind of 

uncertainty or variability must be accounted for, and their relative importance 

assessed (Duarte et al., 2013). Such a phenomenon is well suited for probability 

distribution characterization, though a consensus as to the cauterization method 

whether through frequentist approach or Bayesian approach is yet to settle (Rigaux 

et al., 2013; Ntzoufras, 2009; Greiner et al., 2013; Albert et al., 2008; Parsons et al., 

2005). 

2.9 Population Risks Estimation in QMRA 

The focus of QMRA on hazard exposure has all been centralized in risk 

characterization for a single person or single exposure as an endpoint (Hass et al., 

2014). The focus of characterizing exposure has mainly ended with annual risk of 

illness or Diseases Adjusted Life Years (DALYs) (Hamilton et al., 2006; Mok et al., 2014; 

Barker, 2014; Pavione et al., 2013; Barker et al., 2014; Dawber et al., 2009; Amoah et 

al., 2005). However, where detailed peculiarities of dynamics of illness incidence is 

desirable, it is better to look at the  population in its entirety rather than individual 

exposures (Hass et al., 2014; Messner et al. 2014). Community level risk estimate is 

essentially based on three (3) criteria:1) the duration of disease state; 2) the carrier 

state; and 3) the rate at which secondary cases occur from direct or indirect contact 

with primary cases or individuals in the asymptomatic state. These three basic criteria 
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hinged on mathematical epidemiology studies of the illness and hence can be better 

analysed with a combination of QMRA and mathematical epidemiology of 

illness/diseases. Recently, a couple of studies (Swart et al., 2012; Tribble et al., 2010; 

Messner et al. 2014; Teunis et al., 2002) have provide the way for such inclusion and 

extension in quantifying risk assessment for a population. 
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CHAPTER 3 

METHODOLOGY 

Modelling with probability distribution delves much deeper into mathematical 

statistics or statistical theory and draws assumptions from distribution to make sense 

out of data and makes useful relationship among physical parameters. This chapter 

presents the building block of the modelling; it begins with review of some statistical 

parameters, probability and ends with quantification of uncertainty in probability 

modelling. 

3.2 Statistics Measurement 

Statistics is in essence closely related to probability theory; however, the two fields 

have entirely different goals. A typical probability problem starts with some 

assumptions about the distribution of a random variable (e.g., that it's binomial), and 

the objective is to derive some properties (probabilities, expected values, etc.) of said 

random variable based on the stated assumptions. The statistics problem goes almost 

completely the other way around. Indeed, in statistics, a sample from a given 

population is observed, and the goal is to learn something about that population 

based on the sample (Wackerly et al., 2007). In other words, the goal in statistics is to 

reason from sample to population, rather than from population to sample as in the 

case of probability. 
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3.2.1 Statistics 

Definition 3.1. Let 1 2, ,..., nX X X be a sample whose distribution may or may not depend 

on an unknown parameter θ . Then any measureable function ( )1 2, ,..., nT T X X X=

include; the sample mean (Hogg, McKean and Craig, 2005) 

�

1

1 n

i
i

T X X
n =

= = ∑      3.1 

The sample variance 

�( )
2

2

1

1

1

n

i
i

T S X X
n =

= = −
− ∑      3.2 

The sample median 

nT M=          3.3 

In general, ( )A xT I=  where ( )A xI denotes the indicator function describe as (Rice, 2001)  

( )
1,

0,A x

x A
I

x A

∈
=  ∉

      3.4 

3.2.2 Probability 

A random experiment is any process whose outcome is unpredictable. The sample 

space contains all the possible outcome of the experiment (Spanos, 1999). 

Example (Sample Space) 

Consider a single coin-toss, and assume that the coin will either land heads (H) or tail 

(T) but not both, we may define: { },H TΩ = , { } { } { }{ }, , , ,F H T H T= ∅  and hence { } 0P ∅ =
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, { } { } 1

2
P H P T= = , { }, 1P H T = . Probability is the measure of likeliness that an event will 

occur and quantifies as a number between 0 and 1. Probability density functions in 

one, discrete or continuous, variable are denoted by ( )p x and ( )f x respectively. They 

are assumed to be properly normalized such that 

( ) 1
x

p x =∑  and ( ) 1f x dx
∞

−∞

=∫     3.5 

for discrete and continuous cases respectively. 

Where the sum or integral are taken over all relevant values for which the probability 

density function is defined. The distribution function or cumulative function is also 

defined as (Rice, 2001) 

( ) ( )
x

i

p x p i
=−∞

= ∑  and ( ) ( )
x

F x f t dt
−∞

= ∫     3.6 

for discrete and continuous cases respectively. 

Axioms of Probability 

1. The probability of an event E must be between 0 and 1 inclusive: ( )0 1P E≤ ≤  

2. ( ) 1P Ω =  

3. For two given events M and N , the law of total probability is presented as  

( ) ( ) ( ) ( )P M N P M P N P M N= + −∪ ∩  
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4. For mutually exclusive events 1 2, ,..., nE E E (Rice, 2001),  

( ) ( )1 2
11

...
n n

n i i
ii

P E E E P E P E
==

 = = 
 

∑∪ ∪ ∪ ∪  

3.3 Expectation and Variance 

The Mathematical expectation of a random variable X denotes the average of all 

possible values of 1 2, ,..., nX X X  whiles the variance of a random variable X measures 

the spread of value around the expectation. These two characteristics of a random 

variable are used in the description of distribution, reliability, sufficiency, consistency 

and performance of random variables as well as hypothesis testing procedures. In 

practices of all spheres, scientists rely heavily on the use of these two parameters in 

describing phenomena, procedures and processes to give a summary of an 

observed phenomenon in order to help make sound judgment from physical and 

experimental circumstances (Jaynes, 2003).  

In the description of expected value of a random variable X , the probability mass 

function or density function is used for discrete and continuous random values 

respectively. 

Definition3.2 

If X is a discrete random variable with frequency probability mass function ( )p x , the 

expected value of X , denoted ( )E X is  
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( ) ( )i i
i

E X x p xµ = =∑      3.7 

Provided that ( )i i
i

x p x < ∞∑ , if the sum diverges, then expectation is undefined 

(Jaynes, 2003; Wackerly et al., 2007). 

 For the case of X continuous random variable with density ( )f x  

( ) ( )E X xf x dxµ
∞

−∞

= = ∫      3.8 

Provided that ( )x f x dx < ∞∫ , if the integral diverges, the expectation is 

undefined(Rice, 2001). 

Theorem 3.1 

If X is a random variable with ( )0 1P X ≥ =  and for which ( )E X exists, then

( ) ( ) /P X t E X t≥ ≤ (Wackerly et al., 2007). 

Proof 

For the discrete case   

( ) ( )
x

E X xp x=∑  

( ) ( )
x t x t

xp x xp x
< ≥

= +∑ ∑
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Therefore, 
 

( ) ( )
x t

E X xp x
≥

⇒ ≥∑      3.9 

All terms in the sums are non-negative due to random variable X taking only non-

negative values(Rice, 2001) 

          ( ) ( )( )
x t

E X tp x tP X t
≥

≥ = ≥∑                           3.10 

For measure of spread or dispersion, variance is measured as follow 

Definition 3.3 

If X is a random variable with expected value ( )E X , the variance of X is  

                                ( ) ( ){ } ( ) ( )2 2
Var X E X E X x f x dxµ= − = −   ∫                                        3.11 

This can lead to a simplified form as(Hogg et al., 2005)  

                                         ( ) [ ]( )22 2 2 2Var X E X E X E Xσ µ   = = − = −                                  3.12 

Proof  

Provided that, the expectation exist 
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( ) ( ){ }
( )

2

2 22

Var X E X E X

E X Xµ µ

= −   

= − + 

                                             3.13 

By the linearity of expectation 

( ) ( ) ( )2 22Var X E X E Xµ µ= − +  

( )2 2 22E X µ µ= − +  

( )2 2E X µ= −  

                                                     ( ) ( )( )22E X E X= −                                                        3.14 

3.3.1 Moments  

The moments are the expectations of powers of the of the random variable(Hogg et 

al., 2005), in general the algebraic moment of order r  is defined on the expectation 

value as  

                                        ( ) ( ) ( )'r r r
r

k

E X k p k x f x dxµ
∞

−∞

= = =∑ ∫                                         3.15 

Form moments running from order 0,1,...,n , clearly '
0 1µ = and from normalization 

condition ( )'
1 E Xµ µ= = , thus the mean or the expectation. 

Central moment of order r is also defined as  
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                                         ( )( ) ( )( )' r r

r E k E k E x E xµ    = − = −
   

                                       3.16 

The most common used of the central moment is order 2 (Hogg et al., 2005), thus '
2µ

which is the variance of the distribution. In using the third and fourth central moments, 

the third central moment is used to measure the asymmetry or skewness in the 

distribution whiles the fourth central moment is also used to measure the degree of 

peakness. We often define the coefficient of skewness 1η  and kurtosis 2η  by  

                                                       3
1 3

2
2

µη
µ

=  And 4
2 2

2

µη
µ

=                                               3.17 

The coefficient of excess kurtosis is given by  

                                                                 ' 4
2 2

2

3
µη
µ

= −                                                      3.18 

Where the shift by 3 units assures that both measures are zero for a normal distribution. 

Distribution with positive kurtosis is called leptokurtic, those with kurtosis around zero 

are also called mesokurtic and those with negative kurtosis are called platykurtic. 

Leptokurtic distributions are normally more peaked than normal distribution while 

platykurtic distributions are more flat topped (Jaynes, 2003; Rice, 2001). 

3.4 Joint Distribution and Marginal Density 

The joint behaviour of two random variables X and Y is determined by the 

multiplication of their density functions or the cumulative distribution function, 
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irrespective of the nature of the density function (discrete or continuous)(Hogg et al., 

2005; Wackerly et al., 2007). 

Definition 3.4: For any two random variables X and Y , the joint cumulative probability 

distribution function of X and Y is 

                                          ( ) ( ), , , ,F x y P X x Y y x y= ≤ ≤ −∞ < < ∞                                         3.19 

                  ( ) ( ) ( ) ( ) ( )1 2 1 2 2 2 2 1 2 1 1, , , , ,P x X x y Y y F x y F x y F x y F x y≤ ≤ ≤ ≤ = − − +                  3.20 

For a discrete random variable X and Y defined on the same sample space, the 

probability joint mass function is defined as  

                                                        ( ) ( ), ,i i i iP x y P X x Y y= = =  

                                        ( ) { } ( ) ( )
( ): , 0

, ,X
y p x y

P x P X x P X x Y p x y
>

= = = = ∈ = ∑ℝ                       3.21 

And  

                                         ( ) { } ( ) ( )
( ): , 0

, ,Y
x p x y

P y P Y y P Y y X p x y
>

= = = = ∈ = ∑ℝ                       3.22 

For a continuous random variable. Let X  and Y be joint continuous, if there exists a 

function ( ),f x y defined for all ,x y such that for any 2C ⊂ ℝ the joint probability density 

function defined as  
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                                               ( )( ) ( )
,

, ,
x y A

P X Y A f x y dxdy
∈

∈ = ∫∫                                              3.23 

Thus { } ( ), ,
B A

P X A Y B f x y dxdy∈ ∈ = ∫ ∫ , hence ( ) ( ) ( )
2 2

, , ,
b a

F a b f x y d f a b
a b a b −∞ −∞

∂ ∂= =
∂ ∂ ∂ ∂ ∫ ∫  

Definition 3.5: Two random variables are said to be independent if for any two sets of 

real numbers Aand B , then  

                                                 { } { } { },P X A Y B P X A P Y B∈ ∈ = ∈ ∈                                    3.24 

Then ,a b∀ , hence two random variables X  and Y are independent if and only if the 

function is the product of the marginal distribution functions 

                                                          ( ) ( ) ( ), X YF a b F a F b=                                                   3.25 

Similarly, in the jointly continuous case independence is equivalent to  

                                                           ( ) ( ) ( ), X Yf x y f x f y=                                                  3.26 

For more than two random variables 1,..., nX X are independent if for all sets of real 

number 1,..., nA A  then 

                                           { } { }1 1 2 2
1

, ,...,
n

n n i i
i

P X A X A X A P X A
=

∈ ∈ ∈ = ∈∏                             3.27 
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Hence the joint probability mass functions and joint probability density functions hold, 

that is in both cases independence is equivalent to being equal to their respective 

product of the marginal. 

 

3.5 Some Common Probability Distributions 

This section presents some common probability distributions which feature mostly in 

this study, with its characteristics. They were chosen mainly based on its relevant to 

characterize the conditions under study. 

3.5.1Bernoulli Distribution 

This can be used to model a single experiment which has two possible outcomes; It is 

a random variable probability distribution which takes value 1 with success probability 

p and 0 with failure probability 1q p= − . Both p  and 1q p= −  are limited to the interval 

from zero to one. The distribution has the simple form (Hogg et al., 2005);  

                                            ( )
1 ,   0 ( )

,

,   1 (Success)

p if x failure

p x p

p if x

− =
= 
 =

                                               3.28 

With expectation ( )E X p=  and variance ( ) ( )1Var X p p= −  
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3.5.2 Beta Distribution 

It is essential for the modelling of behaviour of random variables limited to intervals of 

finite length. It is a family of continuous distribution defined on the interval[ ]0,1 . The 

probability density function is given as: 

                                                    ( ) ( ) ( ) 111
: , 1

,
f x x x

B

βαα β
α β

−−= −                                       3.29 

Where , 0α β >  and 0 1x≤ ≤ . The quantity ( ),B α β  is the beta function in terms of the 

common Gamma function defined as  

                                                        ( ) ( ) ( )
( )

,B
α β

α β
α β

Γ Γ
=

Γ +
                                                     3.30 

 

Figure 3.1: Beta Family of Functions for selected parametric values of α and β  
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The expectation and variance are given as  

                                        ( )E X
α

α β
=

+
 and ( )

( ) ( )2
1

Var X
αβ

α β α β
=

+ + +
                          3.31 

The third central moment given as 
( )

( ) ( ) ( )3 3

2

1 2

αβ β α
µ

α β α β α β
−

=
+ + + + +

 and fourth central 

moment are also given as 
( ) ( )( )

( ) ( ) ( ) ( )

2

4 4

3 2 6

1 2 3

αβ α β αβ β α
µ

α β α β α β α β

+ + + −
=

+ + + + + + +
 

 

3.5.3 Binomial Distribution 

The distribution describes the probability of exactly x  successes in N  trials if the 

probability of a success in a single trial is p  and a failure is 1q p= − . It has the 

distribution.  

                                              ( ) ( ), , 1
N xxN

p x N p p p
x

− 
= − 
 

                                                   3.32 

Where0 x N≤ ≤ , 0 1p≤ ≤ , with expectation ( )E X Np= , variance 

( ) ( )1Var X Np p Npq= − = , third central moment ( ) ( ) ( )3 1 1 2Np p p Npq q pµ = − − = − and 

fourth central moment ( ) ( ) ( ) ( )4 1 1 3 1 2 1 3 2Np p p p N Npq pq Nµ = − + − − = + −        
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3.5.4 Exponential Distribution 

It is a random variable distribution use to model processes where events happen at a 

constant rate. The exponential distribution is given by  

                                                             ( ) 1
, exp

x
f x λ

λ λ
 = − 
 

                                                3.33 

Where , 0xλ > . The distribution has the expectation ( )E X λ= , variance ( ) 2Var X λ= , third 

central moment 3
3 2µ λ= and fourth central moment 4

4 9µ λ=  

 

Figure 3.2:  Exponential distribution with different expectation values. 

3.5.5 Double Exponential Distribution 

The Double exponential distribution popular known as the Laplace distribution is given 

by: 
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                                                 ( ) ( ); , exp
2

f x x
λµ λ λ µ= − −                                                  3.34 

Where ,x µ ∈ℝ ,and 0λ > ∈ℝ , it has the expectation ( )E x µ=  

 

3.5.6 F-Distribution 

This is a random variable continuous distribution widely used in test statistics and most 

notably in the analysis of variance, it is given by  

( )
( )

1 2

1

1 2

1 22 2 11 2 2

1 2
1 2 2

1 2

2
; , *

2 2

d d
d

d d

d d
d d

F
f F d d

d d
d F d

−

+

+ Γ  
 =

    +Γ Γ   
   

 

                                                           

( )

1 2 1

1 2

1
2 2 2

1 2

1 2 2
1 2

*
,

2 2

d d d

d d

d d F
d d

d F dB

−

+=
  + 
 

                                       3.35 

The expectation and variance are given by 2
2

2

; 2
2

d
d

d
>

−
 and 

( )
( ) ( )

2
2 1 2

2

1 2 2

2 2

2 4

d d d

d d d

+ −

− −

respectively. Figure 3.3 depicts the F-distribution values of 1d  and 2d
.
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Figure 3.3: The F-distribution for different values of 1d  and 2d  

3.5.7 Gamma Distribution 

The probability density function of the Gamma distribution is given by 

                                                   ( ) ( )
( ) ( )

1

, , exp
k

x
f x k x

k

θ θ
θ θ

−

= −
Γ

                                             

3.36 

For 0k > , 0θ > , 0x ≥ with expectation ( ) k
E X

θ
=  and variance ( ) 2

k
Var X

θ
= , the k is a 

shape parameter and isθ  a scale parameter. The gamma function is defined as: 

                                                               ( ) 1

0

y kk e y dy
∞

− −Γ = ∫                                                     3.37 
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Figure 3.4 shows the Gamma probability density function with different scale and 

shape parameter values 

 

Figure 3.4: Gamma probability density function with different scale and shape 

parameter values 

3.5.8 Chi-square Distribution 

It’s a distribution of random variable that describes the ratio of two independent 

standard normal variable, it is a special form of Gamma distribution with 0.5θ = and 

2
kk = . It is useful for the derivation distribution of sample variance and the goodness 

of fit test. The probability density function with k degrees of freedom is given by 

                                                           ( )

1
2

2

2
;

2
2

k
xx

e
f x k

k

−
 
 
 =

 Γ  
 

                                                      3.38 
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Where 0x ≥ . The figure below shows some chi-square family of graphs for k  values of 

1,2,3,4,6 and 9 

 

Figure 3.5: Graph of chi-square distribution for some values of k 

3.5.9 The Generalized Gamma Distribution 

The gamma distribution is a random variable distribution bounded on one side, a 

generalized gamma distribution is obtained by adding a third parameter giving it a 

more flexible version of the distribution, the distribution is given by  

                                           ( ) ( )
( ) ( )

1

; , , exp
bc

cac ax
f x a b c ac

b

−

 = −
 Γ

                                           3.39 

Where a (a scale parameter) and b are real positive parameters as is used for the 

gamma distribution but a  third  parameter c has been added to control the 

distribution into different family of distribution (Rice, 2001) 
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Figure 3.6: A generalized Gamma distribution with different values of c [ ]1, 2a b= =  
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Table 3.1:  Generalized Gamma Distribution to other related distributions  

Distribution a B C 

Generalized Gamma a B C 

Gamma a B 1 

Chi-squared 1
2  2

n  1 

Exponential 1
α  1 1 

Weibul 1
σ  1 η  

Rayleigh 1
2α

 1 2 

Maxwell 1
2α

 3
2  2 

Standard normal (folded) 1
2

 1
2  2 

 

3.5.10 Geometric Distribution 

In practice, the geometric distribution is use to express the probability of having to 

wait exactly r  trials before the first successful event, if the probability of a success in a 

single trial is p  (and its failure is 1q p= − ). The distribution is given by 

                                                          ( ) ( ) 1
; 1

r
p r p p p

−= −                                                      3.40 
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With expectation ( ) 1
E r

p
=  , variance ( ) 2

1 p
Var r

p

−= , the third central moment 

( )( )
3 3

1 2p p

p
µ

− −
= and the fourth central moment 

( )( )2

4 4

1 9 9p p p

p
µ

− − +
=  

3.5.11 Hyper-geometric Distribution 

In practice the random variable distribution of the hyper-geometric distribution 

describes the experiments where elements are picked at random without 

replacement. It is given by  

                                            ( ); , ,

M N M

r n r
p r n N M

N

n

−  
  −  =

 
 
 

                                                     

3.41 

Where the random variable r has limits from ( )max 0,n N M− + to ( )min ,n M ,
M

p
N

= ,

( )1q p= − . it has the expectation ( )E r np= , the variance ( )
1

N n
Var r npq

N

− =  − 
the third 

central moment ( ) ( ) ( )
( ) ( )3

2

1 2

N n N n
npq q p

N N
µ

− −
= −

− −
and the fourth central moment 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 2

4

1 6 3 2 6

1 2 3

N N n N n pq N n Nn n N n
npq N n

N N N
µ

+ − − + − − + −
= −

− − −
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3.5.12 Log-normal Distribution 

The log-normal distribution is given by 

                                              ( )
2

1 1 ln
; , exp

22

x
f x

x

µµ σ
σσ π

 − = −  
   

                                  3.42 

Where the variable 0x > and the parameters 0µ > and 0σ > are all real numbers, in 

this case denoted in the same spirit as normal distribution but ln xµ = . It has the 

expectation ( )
2

exp
2

E x
σµ 

= + 
 

 and variance ( ) ( ) ( )2 2exp 2 exp 1Var x µ σ σ = + −  . In 

practices it is used to characterize random variables which have non-negative 

values.
 

 

Figure 3.7: The log-normal distribution 
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3.5.13 Negative Binomial Distribution 

In practice, the negative binomial distribution expresses the probability of having to 

wait exactly r  trials until successes have occurred if the probability of a success in a 

single trial is p  and its failure as  1q p= − . The distribution is given by 

                                                  ( ) ( )1
; , 1

1
r kkr

p r k p p p
k

−− 
= − − 

                                              3.43 

Where the variable r k≥ and the parameter 0k > are integers and the parameter 

0 1p≤ ≤ is a real number, it has the expectation ( ) k
E r

p
= , Variance ( ) 2

kq
Var r

p
= , third 

central moment 
( )

3 3

2kq p

p
µ

−
=  and fourth central moment 

( )2

4 4

6 6 3kq p p kq

p
µ

− + +
=  

3.5.14 Normal Distribution 

The normal distribution often call Gauss distribution is the most important distribution 

used in statistics, it has many application due to its underlying assumption. The 

distribution is given by 

                                                   ( )
2

1 1
; , exp

22

x
f x

µµ σ
σσ π

 − = −  
   

                                  3.44 

It has the expectation ( )E x µ=  and variance ( ) 2Var x σ=  
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Figure 3.8: Normal distribution 

3.5.15 Poisson Distribution 

Poisson distribution describes the probability to find exactly x  events in a given length 

of time if the events occur independently at a constant rate µ . The distribution is 

given by  

                                                                ( );
!

xe
p x

x

µµµ
−

=                                                      3.45 

The distribution has expectation ( )E x µ= , variance ( )Var x µ= , third central moment 

3µ µ=   and fourth central moment ( )4 1 3µ µ µ= +  
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Figure 3.9: Poisson distribution 

3.5.16 Student’s t -distribution 

The student’s t -distribution is given by  

                                                       ( )
1

2 2

1
2

; 1

2

vv
x

f x v
v vvπ

+−
+ Γ     = + 
   Γ  
 

                                        3.46 

Where 0v >  and x∈ℝ  
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Figure 3.10: The student t distribution 

 

3.5.17 Triangular Distribution/Pert Distribution 

The triangular distribution is given by 

                                                        ( ) 2

1
; ,

x
f x

µ
µ θ

θ θ
− −

= +                                                   3.47 

Where the variable x  is bounded to the interval xµ θ µ θ− ≤ ≤ + and the location and 

scale parameters µ and ( )0θ θ > all are real numbers. It has expectation ( )E x µ= , due 

to its symmetry of the distribution odd central moments vanishes while even moments 

are given by  
( ) ( )

2

1 2

n

n n n

θµ =
+ +
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Figure 3.11: The Triangular Distribution 

Practically, the pert distribution is used exclusively in modelling expert’s estimates, 

where one is given expert’s minimum, most likely and maximum values or guesses, 

and forms an alternative to the triangle distribution. It is given by 

( ) ( )1 2, , 4 , , ,Pert a b c Beta a cα α= , 
( )( )

( )( )1

2a b a c

b c a

µ
α

µ
− − −

=
− −

, 
( )

( )
1

2

c

a

α µ
α

µ
−

=
−

 and mean 

4

6

a b cµ + += . 
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3.5.18 Uniform Distribution 

The uniform distribution is a simple case with the distribution given by 

                                              ( )

0            

1
; , ,   

0            

for x a

f x a b for a x b
b a

for x b

<
= ≤ ≤ −

>

                                               3.48 

It has the expectation ( )
2

a b
E x

+= , variance ( ) ( )2

12

b a
Var x

−
= , the third central moment 

3 0µ =  and the fourth central moment 
( )4

4 80

b a
µ

−
=  

 

Figure 3.12:  The probability density function of Uniform Distribution 
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3.5.19 Inverse-Gaussian Distribution 

Also known as Wald distribution is a continuous probability density function with two 

parameter of support, with pdf given as 

                                                ( ) ( )1 2
2

3 2
, , exp

2 2

x
f x

x x

λ µλµ λ
π µ

− − =   
                                      3.49 

Where 0, 0x µ> > is the mean and 0λ > is the shape of the parameter, with 

expectation ( ) 1 1 1
,E x E

x
µ

µ λ
 = = + 
 

and variance ( )
3

2

1 1 2
,Var x Var

x

µ
λ µλ λ

 = = + 
 

 

 

Figure 3.13: Graph of Inverse Gaussian Distribution 
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3.6 Estimation of Parameters in Distribution 

Let 1 2, ,..., nX X X be a sample from a distribution (section 3.5.1-3.5.19) with a Cumulative 

Density Function (CDF) Fθ , depending on the parameter θ which is unknown (Jaynes, 

2003). In most cases it is important also to know the parameter space Θ  

Definition 3.6 

Let 1 2, ,..., nX X X be a sample distribution Fθ  withθ ∈ Θ . A parameter estimate of θ is a 

function ɵ ɵ ( )1 2, ,..., nX X Xθ θ= taking values in Θ . When data is observed but we don’t 

know which of the models fit Fθ  assuming { } ( )1,..., nX X fθθ ∈ ≈ then it is up to the 

determination of the best model. 

3.6.1 Maximum Likelihood Estimators (MLEs) 

Supposed 1,..., nX X fθ∼  where θ is unknown. Then by definition, the likelihood function 

for the independent means multiply is given as (Johansen and Juselius, 2009) 

                                                     ( ) ( ) ( )1
1

,...,
n

n i
i

L f X X f Xθ θθ
=

= = ∏                                       3.50 

Definition 3.7: Given 1,...,
iid

nX X fθ∼ , let ( )L θ and ( )l θ be the likelihood and log-likelihood 

functions, respectively, then the maximum likelihood estimator of θ is defined as (Kotz 

et al., 2004) 

                                           ɵ ( ) ( )arg max arg maxL l
θ θ

θ θ θ
∈Θ ∈Θ

==                                                    3.51 
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The estimation problem reduces by solving the likelihood equation ( ) 0l θ
θ
∂ =

∂
. 

Example with normal distribution 

If ( )2
1,..., ,

iid

nX X N µ σ∼ defined in section 3.2, their joint density is the product of their 

marginal densities 

                                               ( )
2

1
1

1 1
,..., , exp

22

n
i

n
i

x
f x x

µµ σ
σσ π=

 − = −  
   

∏                        3.52 

The log likelihood function is thus 

                                                  ( ) ( )2

2
1

1
, log log 2

2 2

n

i
i

n
l n Xµ σ σ π µ

σ =
= − − − −∑                       3.53 

With partial derivatives with respect µ to andσ yields 

                                                          

( )

( )

2
1

23

1

1 n

i
i

n

i
i

l
X

l n
X

µ
µ σ

σ µ
σ σ

=

−

=

∂ = − ∂


∂ = − + −

∂ 

∑

∑

                                         3.54 

Solving simultaneously yields 
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�

� ( )2

1

1 n

i
i

X

X X
n

µ

σ
=

=



= − 


∑
                                         3.55 

3.6.2 Uncertainty Quantification and Sampling 

Monte Carlo Method and Latin Hypercube Sampling 

Monte Carlo simulation relies on repeated random sampling procedure and statistical 

analysis to compute test statistics (Mason et al., 2008). Let a test statistics

( )1,...,n nT T X X= , where nT  is a random variable from a function of random variables

1,..., nX X . Hence sampling distribution nT  is 

                                                    

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1
1 1

2 2 2 2 2
1 1

1 1

,..., ,...,

,..., ,...,

,..., ,...,

n n n

n n n

s s s s s
n n n

X X T T X X

X X T T X X

X X T T X X

→ =



→ = 




=→ = 



                               3.56 

That is for each sample 
( ) ( )
1 ,...,s s

nX X of size n, there is a corresponding 
( )s

nT obtained by 

applying the function ( ).T to that particular sample. This method of simulation is very 

closely related to a random experiment for which specific results are not known in 

advanced. Latin Hypercube Sampling (LHS) provides an efficient sampling method in 
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place or a random sampling, it partition the range into N intervals of equal probability 

and sample within each range with equal probability as explore in Keramat and 

Kielbasa (1999). 

Gibbs Sampling 

Suppose a joint probability ( )1, ,..., nf x y y , the variable of interest characteristics of the 

marginal density ( )1 1... , ,..., ,...,n nf x y y d y dy∫ ∫ . Rather than computing the direct 

approximate of ( )f x , the Gibbs sampler effectively generation of a sample 

( )1,..., mX X f x∼ without requiring ( )f x  by simulating a large enough sample, the 

desired characteristics can be  calculated to a desired degree of accuracy (Casella 

and George I, 1992). 

 

3.7 Fitting Distribution to Pathogen Concentration for Exposure Assessment 

Practically, the purpose of exposure assessment is to determine the amount of 

pathogen organism corresponding to a single exposure which comprises the 

expected dose and its distribution. The expected dose d concentration of 

microorganisms given the mean concentration µ  and consumption per exposure m ,  

                                                                    ( )d E mµ=                                                          3.57 
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Assuming independency of µ  and m , then by the expected dose computation 

(section 3.3) is  

                                                                       d mµ=                                                            3.58 

3.7.1 Poisson Random Distribution of Organism 

Measuring micro-organism distribution with Poisson distribution as described (section 

3.6.1). If organism is distributed randomly in volumeV , hence  

                                                             ( ) ( ) ( )exp
!

n

V
P x n V

n

µ
µ= = −                                       3.59 

Where µ  is the mean density and ( )P x n= is the probability of x  samples containing n

organisms. The distribution is completely known when the parameter µ  is known 

employing the maximum likelihood method (section 3.6.1.), the average dose 

expected for set of samples of each volume is equal to Vµ . Assume ( )expx µ∼  for 

L UN x N≤ ≤ , then 

                                                    ( ) ( ) ( )exp
!

U

L

n
n n

L U
n n

V
P n x n V

n

µ
µ

=

=

≤ ≤ = −∑                                   3.60 

For infinite upper limit of the concentration  
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( ) ( )( )

( ) ( )
1

0

1 0 1

1 exp
!

L

L L

n
n n

n

P n x P x n

V
V

n

µ
µ

= −

=

≤ ≤ ∞ = − ≤ ≤ −





= − − 


∑

                            3.61 

At different volumes, and measuring the number of organisms in each samples, 

assuming independence of samples, the likelihood function for obtaining the 

unknown parameters (Section 3.6.1) 

                                              

( ) ( )

( ) ( )

( ) ( )

1

1
1

1 1 1

exp
!

ln
ln '

ln ln

in
k

i

i
i i

k
k

i i i
i

i

k k k

i i i
i i i

V
L V

n

V n V
L

V n n

µ
µ

µ
µ

µ µ µ

=

=
=

= = =


= −




− − = 


= − − 




∏

∑∑

∑ ∑ ∑

                                           3.62 

Estimating the Poisson mean count assay with either a constant and variable volume, 

the above equation can directly be applied to body of data and expected mean 

estimated as: 
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( )( )
( ) 1 1

1

1

ln ' 1
0

k k

i i
i i

k

i
i

ML k

i
i

d L
V n

d

n

V

µµ

µ

= =

=

=

−
= − = 






= 



∑ ∑

∑

∑

                                         3.63 

Since 
( )( )

( )
2

2

ln '
0

d L

d µ

−
>  

For count assays with upper limits where detection are termed ‘too numerous to 

count’ (TNTC) 

                            

( ) ( ) ( )( )

( ) ( ) ( )( )

,
1 1 1

,
1 1

ln ' ln ln 1 1 ,

exp 1 1 ,
!

i

j kk k

i i i L i
i i i j

n
k jk

i

i L i
i i ji

L V n V n V

V
L V n V

n

µ µ µ

µ
µ µ

+

= = = +

+

= = +

 − = − − − Γ − −  




       = − − Γ − −         

∑ ∑ ∑

∏ ∏

                    3.64 

Where ( )( ),1 1 ,L in Vµ − Γ − −
 

is the incomplete gamma distribution. 

3.7.2 Non-Poisson Distributions 

For a discrete distribution, the probability that a random variable assumes some value 

less than or equal to x  is related by  
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                                                                  ( ) ( )
L

x

i x

F x p i
=

=∑                                                      3.65 

For a continuous distribution and its relation to probability density function (pdf) 

                                                                ( ) ( )
L

x

x

F x f z dz= ∫                                                      3.66 

Where Lx  is the lower limit of support for the distribution. Alternative distributions are 

mainly based on Poisson distribution; it’s a mixture distribution. A mixture distribution 

can be derived as follows from a Poisson distribution which provides  much more 

flexibility and a greater variability in the expected count among replicates: 

                                                ( ) ( ) ( )
0

; , ; ;M PP x V P x V h dβ µ µ β µ
∞

= ∫                                        3.67 

Where ( );PP x Vµ derivation from the Poisson distribution is, Vµ is mean density in a 

sample and ( );h µ β is the mixing distribution describing the variability in means density 

with distribution parameter. ( );h µ β  can take any form for the description of variability 

as described in (Haas et al., 2014). 

Negative Binomial: (Greenwood et al., 1920) derivation of negative binomial as a 

gamma mixture of Poisson distribution, deriving the negative binomial with mean 

density in a sample as a mixture of gamma distribution 
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                                      ( ) ( ) ( ) ( )
( ) ( )

1

0

exp exp
!

x
k

NB

V x
P x V x d

x k

µ θ θ
µ θ µ

−∞  
= − − 

Γ  
∫                            3.68 

Evaluated analytically as 

                           
( )
( ) ( ) ( )

( )
1

! 1 !

x kx
k

NB

x k x kV V k V
P V

k x V k x kk V

θ µ µθ
θ µ

−
−    Γ + Γ + + = + =     Γ + Γ +     

             3.69 

Poisson Lognormal: Describing the variability with log-normal distribution (Reid, 2012) 

which has been used to fit species-abundance and bibliometric data (section 3.7.1) 

will lead to  

                               ( ) ( ) ( )
2

0

1 1 ln
exp exp

! 22

x

LN

V x
P x V d

x x

µ µµ µ
σσ π

∞   − = − −   
     

∫                   3.70 

Solving it numerically with the Gauss-Hermite quadrature (William et al., 1989)will lead 

to  

                                    

( ) ( ) ( ) ( )

( ) ( )

21
exp exp

!

exp 2

x

LNP x q q V q V dq
x

q sq

ϕ ϕ
π

ϕ µ

∞

−∞


= − −       




= +


∫
                      3.71 

Poisson-Inverse Gaussian: the inability of analytically expressing the integral of the 

Poisson log-normal makes data fitting somewhat difficult, inverse Gaussian is a 

potential replacement for the lognormal due to its properties and its being positively 
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skewed, when the Inverse-Gaussian is used for mixing distribution for a Poisson the 

results follows: 

                                    ( ) ( ) ( ) ( )1 2
2

3 2
0

exp exp
! 2 2

x

PIG

V x
P x V d

x x x

µ λ µλµ µ
π µ

∞  − − 
 = −     

∫                   3.72 

Integrated to yield the following (54) 

                              ( ) ( ) ( ) ( )
21

4

1
2

2 2
! 2

x
x

PIG x

e
P x V V K V

x V

φ φµ φ φ µ φ φ µ
φ µ −

  = + +   + 
             3.73 

Where ( )K x is a modified Bessel function of the third kind. 

3.7.3 Empirical Distribution Data Fitting 

Let 1,..., nX X be a random sample following the ordered statistics 1 2 ... nX X X< < < . The 

empirical cumulative distribution function (CDF) ( )nF x  is given as; 

                                               ( )

( )

( ) ( )

( )

10,           

1
,

1,           

n i n

n

x X

F x X x X
n

x X

 <


= ≤ ≤




≥

                                                        3.74 

This represents a positively skew continuous step function, the statistics measuring the 

differences of ( )F x and ( )nF x gives the Empirical Distribution function (EDF). 
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Kolmogorov-Smirnov statistics (KS) compares the EDF with the fitted distribution 

function defined by; 

                                                  

( ) ( ){ }

( ) ( ){ }

sup

sup

x n

x n

D F x F x

KS
D F x F x

+

−

 = −

= 

= −



                                            3.75 

Hence the KS statistics D  is defined as ( ) ( ) ( )sup max ,n
x

D F x F x D D+ −= − = . The 

quadratic statistics is defined by ( ) ( ){ } ( ) ( )2

nQ n F x F x x dF xψ
∞

−∞

= −∫ . It is noted that, when

( ) 1xψ = , then the function ( ) ( ){ } ( )2

nQ n F x F x dF x
∞

−∞

= −∫ is the Cramer-von Mises 

Statistics and when ( ) ( ){ } ( ){ } 1
1x F x F xψ

−
 = −  , then the function turns to be Anderson-

Darling Statistics (AD). 

 

3.8 Handling Scarce Data and the Principle of Maximum Entropy 

Practically, in risk assessment modelling, statistics known about the data is either 

scarce, insufficient and in most cases of detection of pathogen methods applied 

makes it undetectable. Handling such data sources also call for the use of maximum 

entropy in characterizing the uncertainty of such dataset. 
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The measure of uniformity of a distribution is by its entropy, thus, the higher the 

entropy, the higher the uniformity (Harremoës and Topsøe, 2001). The maximum 

entropy consists of selecting the most uniform distribution of a set of possible 

distributions, that’s the one with maximum entropy. Given a set of observation 

{ }1,2,...ix i NΩ = =  

For a distribution p on χ , the set of all distributions on χ by ∆ is defined as  

                                             : ( ) 1
x

p p xR
χ

χ +

∈

 
 
 
  

∆ = → =∑                                               3.76 

The empirical distribution of sample is denoted by p namely 1
( )

 for 

N
x i

i
x

p x
N

χ
χ== ∈

∑

Defining 1 if 1
0 otherwise( )x xxχ 



== . The concept of feature function (thus expectation). It 

is a non-negative value function on χ , hence the expectation of the feature function 

f respect to the distribution p by  

                                                              ( ) ( )p
x

E f f x p x
χ∈

   =∑                                             3.77 

Hence having the set of feature function s { }1,2,...if i N= . Defining the distribution p

which is a subset c  of ∆ as  for 1,...,p i ic p P E f E p f i n
−  

       
  

= ∈ = = , this is called the 
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constraints for these equations (Singh and Setup, 2003). The maximum entropy 

dictates that, there should be a selection of distribution 
*

p of C that maximize 

entropy. Hence as an optimization problem, we are left with 

argmax argmax*
( )log ( ) ( )p c p c

x
p x p x H pp

χ
∈ ∈

∈

 
 
 
 

= − =∑  

As seen earlier, the entropy is bounded below by zero and from above by log χ with 

the uniform distribution on χ . Hence ( )H p is continuous, strictly convex, bounded 

function in ∆ , moreover, C is bounded, closed, convex and non-empty subset of R
χ

 

since p C
−

∈ . 

3.8.1 Relation of Maximum Entropy to Maximum Likelihood 

We defined the log-likelihood of a model p with respect to the empirical distribution 

�p by the function(Coughlan, 2010)  

                                           �
� �( ) log ( ) ( ) log ( )p

p

xx

L p p x p x p x
χχ ∈∈

= =∑∏                                                 3.78 

Given nRλ ∈  
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� �

�

�

1

1

( ) log ( )

( )1
( ) log exp

( ) log ( )

n

i

p

x

i i

x

n

i i
x i

L p p x p x

f x
p x

Z

p x Z f x

χ

λ
χ

λ
χ

λ λ

λ

λ

=

∈

∈

+

∈ =

=



 ∑   

 = 
  




 = −  


∑

∑

∑ ∑

                                                   3.79 

 

                                           
� [ ]

( )

1

log
n

p ii
i

Z E fλ λ

ψ λ

+

=

= − 



= 

∑
                                                             3.80 

The maximum entropy principle is sometimes regarded as an ideal learning method 

that makes minimal assumptions in arriving at an estimate of a distribution learned 

from data. Finally, note that maximum likelihood is sometimes regarded as non-

Bayesian because there is no explicit prior given.  

 

3.8.3 Normalization and partition functions 

The general approach for assigning probabilities where normalization is absorbed into 

the denominator is given as: 
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                                                ( )0

1 1

exp exp 1
n m

j j i
k j

f x
λ λ

= =

 − − = 
 

∑ ∑                                              3.81 

                                                ( )
( )0

1

exp exp

1

m

j j i
j

i

f x

p x

λ λ
=

 − − 
 =
∑

                                          3.82 

                                                     

( )

( )

0

1

0

1 1

exp exp

exp exp

m

j j i
j

n m

j j i
k j

f x

f x

λ λ

λ λ

=

= =

 − − 
 =
 − − 
 

∑

∑ ∑
                                          3.83 

                                                                 

( )

( )

1

1 1

exp

exp

m

j j i
j

n m

j j i
k j

f x

f x

λ

λ

=

= =

 
− 
 =
 
− 
 

∑

∑ ∑
                                         3.84 

                                                                         
( )

( )1,...,
i

m

k x

z λ λ
=                                                 3.85 

Where ( )j if x  is a function of the random variable ix  reflecting what we know 

                                                              ( ) ( )
1

exp
m

i j j i
j

k x f xλ
=

 
= − 

 
∑                                         3.86 

Is the kernel and 

                                                        ( ) ( )1
1 1

,..., exp
n m

m j j i
k j

z f xλ λ λ
= =

 
= − 

 
∑ ∑                                  3.87 
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Is the normalizing facto, called the partition function (Harremoës and Topsøe, 2001). 

Probability assignment is completed by determining the Lagrange multipliers 

, 1,...,j j mλ =  from m constraints which are function of the random variables 

 

Examples of Maximum Entropy Given Constraints 

1 Range Constraints 

For a discrete case  { }max0,1,...,R r∈  

Lagrangian  

( )( ) log ( ) ( ) 1i i iL p x p x p xλ= − + −∑ ∑  

Critical points 

log ( ) 1 0i
i

L
p x

p
λ∂ = − − + =

∂
 

( ) 1 0i

L
p x

λ
∂ = − =
∂ ∑  

Solution 1 1
ip e

N
λ−= =  Uniform distribution 

Practical example, suppose we know only three possible empirical values and .The 

maximum entropy 



70 

 

3 3

1 1

max ( ) log ( ) ( ) 1
i

i i i
p

i i

L p x p x p xλ
= =

  = − + −  
  

∑ ∑  

For first order conditions yield 

[ ]1exp 1ip λ= −  for i=1,2,3 .  1 log3λ =  

As expected, the maximum entropy probability assignment is a discrete uniform 

distribution with  

1

3ip =  

2. Mean constraints [ ]
0

( )
x

R xp x µ
∞

=

= =∑�E  

Lagrangian: ( ) ( )1 2( ) log ( ) ( ) 1 ( )i i i iL p x p x p x xp xλ λ µ= − + − + −∑ ∑ ∑  

Critical points 

2log ( ) 1 0i
i

L
p x x

p
λ λ∂ = − − + + =

∂
 

Solution  

2 1 1( ) xp x eλ λ+ −=  

                                                                      
xe µµ −=   

Exponential distribution 
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Partition function approach 

With knowing the support and the mean, the kernel is given as 

( ) [ ]1 1
1

exp
n

i
i

z xλ λ
=

= −∑  

And  

( )
( )1

i
i

k x
p

z λ
=  

[ ]1

1
1

exp

exp

i
m

j
j

x

x

λ

λ
=

−
=

 − ∑
 

Where xi are the random empirical data, solving the constraints 

( )
1

0
n

i i
i

x p x µ
=

− =∑  

[ ]1

1
1

1

exp
0

exp

n
i

im
i

j
j

x
x

x

λ
µ

λ=

=

−
− =

 − 

∑
∑

 

This produces 1λ to identify the probability constraints 

Example: suppose we know a little more on the empirical values thus the support and 

the mean, n=3 and mean is 2.5 
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[ ]
3

1

( ) 2.5
x

R xp x
=

= =∑�E  

[ ]3
1

3
1

1
1

exp
2.5 0

exp

i
i

i
j

j

x
x

x

λ

λ=

=

−
− =

 − 

∑
∑

 

3

1

( ) 2.5 0
x

xp x
=

− =∑  

3. Mean and variance [ ]
0

( )
x

R xp x µ
∞

=

= =∑�E  

( ) ( )2 2 2

0

( )
x

R x p xµ µ σ
∞

=

 − = − =
  ∑E

 

We find that  

[ ] [ ]
[ ] [ ]

1 1

1 1 1

3 2exp exp 2log
2.5

1 exp exp 2

z λ λ
λ λ λ

+ +∂ = =
∂ + +

 

Solving gives
 

1 0.834λ = −
  1 2 30.116, 0.268, 0.616p p p= = =

 

Lagrangian  

( ) ( ) ( )2 2
1 2 3

0

( ) log ( ) ( ) 1 ( ) ( )i i i i
x

L p x p x p x xp x x p xλ λ µ λ µ σ
∞

=

 = − + − + − + − − 
 

∑ ∑ ∑ ∑
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( )22 1 3( ) exp x x
p x

λ λ λ µ+ − −=  

With density function 

( )

2

21 2exp
2

x µ

σ
πσ

 − −
 
 =

 (in continuous distribution form for approximation) 

The partition function approach 

( )
( )

2

2

2

2

exp
( )

exp

x
p x

x

λ µ

λ µ

 − −
 =
 − −
 ∑

 

And the average empirical constraint is  

( )2
( ) 0x f xµ µ− − =∑  

( )
( )

( )

2

22

2

2

exp
0

exp

x
x

x

λ µ
µ µ

λ µ

 − −
 − − =
 − −
 

∑
∑

 

So that 2 2

1

2
λ

σ
=  

Hence the density function for is 

( )

2

21 2exp
2

x µ

σ
πσ

 − −
 
 =  Gaussian distribution(Elod, 

2013) 
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3.9 Modelling Population and Community Illness with Epidemiological Framework 

Modelling illness incidence with epidemiological framework as described (Charles et 

al., 1999) and other mathematical epidemiological model techniques (Chiyaka et al., 

2010; Li et al., 2011; Medlock, 2009; Andersson and Britton, 2000), describing the 

incubation distribution as a fraction of persons who first become ill as a result of 

exposure, defining the instantaneous rate of infection as ( )tβ within a population N

(Sartwell, 1995), hence the instantaneous rate of a person entering a pool of persons 

becoming infected is ( )t Nβ  resulting in ( )dN
t N

dt
β= −  (Williams, 1965). The general 

incubation distribution could be defined as a differential equation based on the 

cumulative fraction of persons who become ill before or on t days as an 

instantaneous rate of illness as a convolution (Haas et al., 2014) 

( ) ( ) ( ) ( )
0

t

Q t N f t dλβ τ τ τ τ= −∫ where λ  is the fraction of infected persons who becomes 

ill which is based on asymptotic forms for incubation time distribution (Williams, 1965).  

Figure 3.14 illustrates a simple epidemiological model for diseases transmission to 

infected subjects 
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Figure 3.14: A simple epidemiological model for diseases transmission to infected 

subjects 

From this concept, the simple model becomes (Fig. 3.14) 

                                                              

( )

( ) ( )

( )

( )

           

      

   

1
         

                  

dN
t N

dt

Q tdI
t N

dt

dX
Q t

dt

dY
Q t

dt

β

β
λ

λ
λ

= − 



= −



− =



= 

                                             3.88 

This allows the estimation of the rate at which cases appear as a function of 

instantaneous rate of infection.  It must be noted that, the mode assumed that the 
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underlying incubation distribution for the conversion to the symptomatic state is the 

same as for the asymptomatic state. For a more complex modelling with the  

conversion of individuals to the post-infected state described by two different 

parameters, thus the number of symptomatic infected individuals per unit time and 

the number of asymptomatic individuals per unit time who enters the post-infected 

rate (Fig. 3.15) leading to the model.  

Figure 3.15 shows a schematic epidemiological model for diseases transmission to 

post-infected subjects 

 

Figure 3.15: A schematic epidemiological model for diseases transmission to post-

infected subjects 
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( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

          

 

1
       

      

       

dN
t N

dt

Q tdI
t N

dt

dX
Q t S t

dt

dY
Q t R t

dt

dZ
S t R t

dt

β

β
λ

λ
λ

= − 



= −



−= − 



= −





= + 


                                              3.89 

Hence defining the cumulative distribution ( )G t as a function of individuals existing the 

diseases state before or at time twith a density function ( )g t  to account for duration 

of illness, hence 

                                                 ( ) ( ) ( )
0

t

R t Q t g t dτ τ= −  ∫                                                       3.90 

Again, defining the cumulative distribution ( )H t as a fraction of asymptomatic person 

from post-infected state to infected state and ( )h t is its derivative, hence 

                                                         ( ) ( ) ( )
0

1t

S t Q t h t d
λ τ τ

λ
− = −  

∫                                      3.91 

(White et al., 1986) documentation of Norwalk virus in food borne outbreak shows 

that evidence exist of some organism illness may occur for both pre-infection as well 

as post-infection, others of such post-infection has also recorded (Ozawa et al., 2007; 
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Nordgren et al., 2010; Vega et al., 2011; Teunis et al., 2014; Mattison, 2011; Sukhrie et 

al., 2012) such a secondary occurrence is made by modification of the 

epidemiological framework, Kermack and McKendrick (1927) describe the 

occurrence as a product of susceptible and infected individuals, this indicates both 

symptomatic and asymptomatic serves as a point for infection within the time they 

are in their states, by extension of the model will lead to: 

                                            

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

          

'
 

1
'                         

'                                 

                                 

dN
t N t N X Y

dt

Q tdI
t N t N X Y

dt

dX
Q t S t

dt

dY
Q t R t

dt

dZ
S t R t

dt

β γ

β γ
λ

λ
λ

= − − + 



= + + −



−= − 



= −





= + 


                                     3.92 

                           ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
0

'
t

Q t N N X Y f t dλ β τ τ γ τ τ τ τ τ τ= + + −  ∫                     3.93 

To account for immunity impact, it’s worth making the assumption that post-infection 

does not occur, thus persons are no longer susceptible, defining the distribution ( )i t as 

a density function for residency in the post-infection state (immune), hence transition 

back for effect of waning immunity to susceptible state is by the convolution: 
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                                              ( ) ( ) ( ) ( )
0

1
t

T t R S i dτ τ τ τ= + −  ∫                                               3.94 

                                         

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

          

'
           

1
'                                   

'                                           

                         

dN
t N t N X Y T t

dt

Q tdI
t N t N X Y

dt

dX
Q t S t

dt

dY
Q t R t

dt

dZ
S t R t T t

dt

β γ

β γ
λ

λ
λ

= − − + +

= + + −

−= −

= −

= + −         























                               3.95 

 

3.9.1 Transmission of Pathogens in the Population 

Pathogen transmission among individuals within the population depends on the 

shedding and transmission rate of exposed and infected individuals. Three different 

transmission modes are described to cater for all forms of pathogen transfer within the 

population. 

• Susceptible Population 

All individuals within the population are susceptible and hence becomes infectious, 

individuals within the susceptible compartment moves into the exposed 

compartment with rate ( λ ), from exposed an individual can then move either to the 
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infected asymptomatic compartment with rate ( DU ) or move to infected 

symptomatic compartment with rate ( sU ) and then move into the infected 

asymptomatic compartment with rate ( AU ). From asymptomatic compartment an 

individual moves to recovery compartment with rate ( λ ) and hence can move back 

into the asymptomatic compartment again with rate ( p ), or waning immunity can 

make the individual becomes susceptible again and move to susceptible 

compartment with rate (θ ), all compartments have a natural death rate of d , the 

differential equation for the transmission is given below: 

( )

( )

( )

( )

( )

                   

             

              

            

                    

                  

 

   

                

s D

s
s A s

A
A s A A

A

dS
B R d S

dt

dE
S U U d E

dt

dI
U E U d I

dt

dI
U I R p d I U E

dt

dR
pI d R

dt

θ λ

λ

λ

λ θ

= + − +

= − + +

= − +

= + − + +

= − + +   






















    3.96 

• No Immune Boosting Transmission mode 

Individuals do not move back into the asymptomatic compartment, the only path is 

recovery and hence by waning immunity becomes susceptible again. 
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( )

( )

( )

( )

( )

             

                 

        

             

             

                   

   

      

                 

            

s D

s
s A s

A
A s A A

A

dS
B R d S

dt

dE
S U U d E

dt

dI
U E U d I

dt

dI
U I p d I U E

dt

dR
pI d R

dt

θ λ

λ

θ

= + − +

= − + +

= − +

= − + +

= − +

        























    3.97 

 

• Genetic Resistance Individuals within the Population 

Not all exposed individuals within the population are susceptible, proportion (υ ) of 

the individuals inherit a genetic resistance which makes them resistance to the 

pathogens, but they forms part of the population for transmission.  
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( )

( ) ( )

( )

( )

                                

                         

1         

        

                

             

                   

               

s D

s
s A s

A

dG
B d

dt

dS
B R d S

dt

dE
S U U d

dt

dI
U E U d I

dt

dI
U

dt

υ

υ θ λ

λ

= −

= − + − +

= − + +

= − +

= ( )

( )                  

A s A A

A

I R p d I U E

dR
PI d R

dt

λ

λ θ



















+ − + +





= − + + 


                                            3.98 

 

3.10 Summary 

This chapter presented the different statistical theory principle ideas of the 

methodology used in this study, various probability distributions which forms the 

models under studies were presented as well as their usage in the determination of 

quantify pathogen concentration. The chapter also presented the handling of 

various forms of dataset that emerged as part of the studies which does not forms 

part of the quantitative nature of probability distributions and not enough to fit 

parametric distributions on them. This chapter has presented the various theoretical 

aspects of the distributions and data handling quantification used in the rest of the 

study as well as the epidemiological aspect of illness incidence within a population 
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with immunity. In the next chapter, probabilistic quantitative risk assessment model 

with genome copies and fecal indicator ratio conversion for dose estimation is 

presented. 
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CHAPTER 4 

PROBABILISTIC QUANTITATIVE RISK ASSESSMENT MODEL WITH GENOMIC COPIES FOR 

DOSE ESTIMATION 

The main objective of this chapter is to develop a probabilistic model for the risk 

assessment with both genome copies of virus/oocyst particles and the use of fecal 

indicator ratio conversion method to meet the objectives in Section 1.3. In this 

chapter a probabilistic model approach of modelling with genome/oocyst particles 

is presented in addition to ratio conversion method to assess the impact of the use of 

pathogen of interest in microbial risk estimation procedure. The daily probability of 

infection are determined as well as the annual estimation of risk. Daily Adjusted Life 

Years (Diseases Burden) has also been determined for consumer exposure to 

pathogens in wastewater. Various parameter estimations and sensitivity analysis are 

also carried out. 

4.2 The Model and Its Analysis 

This section presents the models formulation for quantifying a probable risk of 

infection or illness by accidental ingestion of Norovirus through consumption.  

The models include dose ingestion, build-up of probabilistic approach of pathogen 

ingestion and its corresponding dose-response models, survival and hazard function 

of illness and characterization of probable risk to annual risk and the estimation of 

Daily Adjusted Life Years (DALYs). 
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4.2.1 Model formulation and Pathogen Concentration 

The description of transmission of pathogen from water unto the vegetables then 

onto consumption is modelled as a farm to fork approach, irrigation with wastewater 

on farms for all crops including vegetables and salad crop eaten uncooked is termed 

as unrestricted irrigation, and poses a health challenge to both farmers and 

consumers as well. These stakeholders are directly exposed to the hazards in the 

wastewater and create a public health concern. The pathogen path for contact with 

its host is through a complex interaction method as shown in Figure 4.1. 

 

Figure 4.1: Schematic Exposure to wastewater through to estimating illness 
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The pathogen dose (virus genomic or particles/oocyst) that the consumer is exposed 

to on the �th day ( d : number of virus/oocyst particles ingested per person per 

exposure) resulting from consumption of either salad (cabbage, lettuce or a salad 

crop) irrigated with wastewater. The water/produce model for modelling ingestion of 

pathogen from wastewater directly or indirectly (salad consumption) is given as  

    

 * * * * * * *

,  Water model

10 exp( )

1,  Produce model

p

w
z c pq R

p

V

d C C I T R V kt

V

−

∈
= − = 
 =

ℝ

                                     4.1 

  

Hence dose ( d )is a joint probability distribution given as  

                                          

( )( )
( )

( )

, , , , , , , , ,   

, , , , , , , ,
, , , , , , , , ,   

z q C P
A

z q C P

z q C P

A

f C C I T R V W k t discrete case

d P C C R I T V W k t A
C C I T R V W k t dA continuos case




= ∈ = 



∑

∫
              4.2 

Where ( ) 1
; , ,   zC f x a b for a x b

b a
= = ≤ ≤

−
(section 3.5.18) is the daily consumption of 

vegetable per person ( 1 1gperson day− − )(Fung, 2011), ( ) ( ) ( )
0

; , ; ;q M PC P x V P x V h dβ µ µ β µ
∞

= = ∫  

is the mixture distribution of concentration of pathogen in irrigation water/on 

vegetable produce ( /no ml )(Rice, 2001), ( ) ( )1
; , 1

1
r kk

c

r
R p r k p p p

k
−− 

= = − − 
 (section 
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3.5.13) is the recovery methodology of pathogen concentration (no/ml)(Petterson et 

al., 2007), I is the percentage of infection of virus,  RT is the transfer rate of virus from 

the irrigation water to the produce in the case of water model, we assume in this 

work, for water model all virus genome copies/oocyst detected in the irrigation water 

were transfer to the produce for the worst case approach, and half of the Norovirus 

genome copies and all oocyst are infectious.   

( )
2

1
,   ,  

1 1
; , exp ,   

22

p

for a x b cabbage
b a

V
x

f x lettuce
µµ σ

σσ π

 ≤ ≤ −=   −  = −      

 is the volume of irrigation water caught 

by product ( 1mg− ) (Mok et al., 2014; Mok and Hamilton, 2014; Shuval et al., 1997), 

( ) ( )1 2, , , , ,w Pert a b c Beta a cα α= =   (Section 3.5.17) is the pathogen reduction by pre-

consumption preparation ( 10log unit , ( )
2

1 1
; , exp

22

x
k f x

µµ σ
σσ π

 − = = −  
   

 (section 

3.5.14) is the pathogen  kinetic decay constant (per day) and 
1

,   t for a x b
b a

= ≤ ≤
−

 

(3.5.18) is time between last waste water irrigation event and harvesting 

vegetable/storage (days).  

4.2.2. The Dose Response Model Formulation 

Building a mathematical dose response relationship is establishing the relations 

between level of pathogen, exposure and the measure of likelihood occurrence of 
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adverse effects.  The two sequential sub processes for estimating the level of infection 

is as namely(Haas et al., 2014); 

i. One or more organism or  virus genomic copies (particles) ingested is (are) 

capable of causing diseases 

ii. Ingested organism/virus/oocyst particle undergo decay or inactivated to 

multiply to cause infection/disease by host susceptible responses, and only a 

fraction of the ingested organism reach a site where infection can begin by 

breaking all barriers within the body immune system. 

The two measures are to ensure that, for an infection to occur within a susceptible 

host organism or individual, there is at least a surviving organism breaking all the 

mechanism of the defensive nature of the an individual, be it fully protected, partially 

protected or immune-compromised susceptible. Infection can only occur when there 

is a surviving pathogen to cause infectious foci within a cell of an individual( Furumoto 

and Mickey, 1970; Haas et al., 2014b; Mickey and Furumoto, 1970).  

Hence, ingestion precisely j organism from exposure to wastewater contaminated 

with a pathogen of a mean dose d  is expressed as j given d(Mickey and Furumoto, 

1970): 

( )1P j d            4.3 
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 Continually, the probability of k surviving organism or pathogen particles within the 

ingestion j organism to initiate an infection process can also be expressed as; 

( )2P k j                 4.4 

Assuming independency for the two processes (thus the ingestion of precisely j

organism and the surviving pathogens remain to initiate infection process), the 

probability of k  organisms surviving to initiate infection by breaking all defense 

mechanism within the body is given by the independent event (Furumoto and 

Mickey, 1970; Furumoto and Ray, 1967; Haas et al., 2014b): 

( ) ( ) ( )1 2

1j

P k P j d P k j
∞

=

=∑          4.5 

     

The least number of organism ( mink ) surviving to initiate an infection leads to a 

probability of infection ( Furumoto and Mickey, 1970; Furumoto and Ray, 1967; Haas 

et al., 2014b). 

( ) ( ) ( )1 2

min

I

k k j k

P d P j d P k j
∞

= =

= ∑ ∑         4.6   

Where ( mink ) is not the minimal infection dose or threshold needed to be reached to 

cause an infection, however the average inoculate dose required to cause half of 
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the subjects to experience a response of infection(Furumoto and Mickey, 1970a; 

Mickey and Furumoto, 1970b). 

4.2.2.1 Exponential Dose Response Model 

Characterising the distribution of organism between each dose as random and 

assuming independency for each ingested organism, this has an identical survival 

probability2 r and that min 1k = (thus for a single hit assumption). Hence for Poisson 

distribution of organism(Furumoto and Mickey, 1970a; Mickey and Furumoto, 1970b). 

( )1
!

j

dP j d e
j

d −=            4.7   

Modelling survival means of organism to cause an infection with binomial distribution 

leads to  

( ) ( ) ( )2
!

1
! !

j kj
P k j r

k j k

−
= −         4.8

  

 Hence, substituting equation 4.7 and 4.8 into equation 4.5 leads to equation 4.9 

(Furumoto and Mickey, 1970a; Haas et al., 2014; Mickey and Furumoto, 1970b) 

                                                      
2
 This is a probability that an organism survives all barriers of defense mechanisms and initiate an infectious focus within 

cell 
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( ) ( ) ( )

( ) ( ) [ ] [ ]( )

( )

min

1

min

!
1

! ! !

1

! !

j
j kd

j k
I

k k

k j k d rdr

k k j k

j
e r

j k j k
P d

e d r e

k j k

dr

d −−
∞

=

=

− − −−∞ ∞

= =

   
   −
     = 



−   = − 

∑
∑

∑ ∑

       4.9   

But 
( )

min

1
!

k dr

k k

e

k

dr
−∞

=

=∑ , hence 

( ) ( )min 1

0

1
!

k drk

I

k

e
P d

k

dr
−−

=

 
 = −
 
 

∑        4.10    

With the earlier single hit assumption (thus one organism survived is capable to cause 

an infection)  min 1k = yields (Mickey and Furumoto, 1970) 

( ) 1 rd
IP d e−= −                 4.11     

Where d  is the dose subjected to individuals and r is the infectivity rate of the 

pathogen of interest or under study. Hence given a mean dose of d from ingestion 

precisely j organism with k organism surviving to initiate an infection, the exponential 

dose response model is as given (equation 4.11). 
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4.2.2.2 The Beta-Poisson Dose Response Model 

Replacing equation 4.8 with a mixture distribution with respect to the parameter r  to 

account for variability in the interaction probability yields equation 4.12 (Furumoto 

and Mickey 1967) 

( ) ( ) ( )
1

2

0

!
( )1

! !

j k kj
P k j f r drr

k j k r
− 

=  −− 
∫       4.12    

From equation 4.11 and applying a mixture operation directly, for assuming a 

variation in the dose to dose for the Poisson distribution, then 

( )
1

inf

0

1 ( )rdP d e f r dr− = − ∫         4.13     

 

     

1 1

0 0

1

0

( ) ( )

1 ( )              

rd

rd

f r dr e f r dr

e f r dr

−

−


= − 






= −


∫ ∫

∫

       4.14      

Again, accounting for the variation between doses to dose, a great deal of flexibility 

is the use of beta distribution, hence incorporating the beta distribution into equation 

4.10 yields (Furumoto and Ray, 1967) 
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( )
( ) ( ) ( )

1
11

inf

0

( ) 1 1 rdP d r r e dr
βαα β

α β
−− − Γ +

= − − Γ Γ 
∫  

The integral  can be expressed as confluent hyper-geometric written as a series 

expansion  

( ) ( )
1 1

1

0 0

d rrd de dr e e f r−− −=∫ ∫      4.15 

( ) ( )
1

00

1
!

j
jd

j

a
e r f r dr

j

∞
−

=

= −∑∫  

( ) ( )
1

0 0

1
!

j
jd

j

a
e r f r dr

j

∞
−

=

= −∑ ∫  

( )
( ) ( ) ( )

1
11

0 0

1
!

j
jd

j

a
e r r dr

j

βαα β
α β

∞
+ −− −

=

Γ +
= −

Γ Γ∑ ∫  

( )
( ) ( )

( ) ( )
( )0 !

j
d

j

ja
e

j j

α β α β
α β α β

∞
−

=

Γ + Γ Γ +
=

Γ Γ Γ + +∑    4.16 

( )
( )

( )( )
21

1 ...
1 4

d d
e d

β ββ
α β α β α β

−  + = + + + + + + +  
 

( )1 1 , ;de F dβ α β−= +  

Therefore,  
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( )
( ) ( ) ( ) ( )

1
11

1 1

0

1 , ;rdr r e dr F d
βαα β

β α β
α β

−− − Γ +
− = + Γ Γ 

∫   4.17 

The ingestion of virion genome copies/oocyst is based on whether it is aggregated or 

disaggregated, as virion genome copies/oocyst particles may or may not be 

aggregated. 

Hence in a confluent hyper-geometric function (Furumoto and Ray, 1967; Mickey and 

Furumoto, 1970) 

( )inf 1 1( ) 1 , ,P d F dα α β= − + −        4.18 

Furumoto and Mickey (1967) derived the following expression approximation to Hyper 

geometric function (equation 4.16) based on the certain valid parameter values, thus 

when 1β ≫ and α β≪ the simple relation holds. 

( ) 1 1I
d

P d
α

β

−
 = − + 
          4.19

 

4.2.2.3 Modelling Illness Resulting from Infection 

Given the presence of a high pathogen, colonization of a host with 1≥ surviving 

organism does not necessarily lead to illness, however, there is an increase in the 

probability of the host defense measure to fight off the colonization of the surviving 

organisms, this leads to two ingredients for the risk of acute illness, thus the hazard of 

illness and the duration of infection as described by Teunis et al., (1999). 
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Definition 4.1 

Suppose T is a non-negative random variable representing the time until an event of 

interest happens. Let assume T is a continuous variable unless otherwise specify, then 

the probability density function (pdf) and its cumulative distribution function (cdf) are 

used to characterise the random variable distribution and denoted as: 

( )
( ) ( ) ( ) ( ):                 

0 0
:

pdf f t
F P T

cdf F t P T t

 = == ≤ 
 

Therefore, the survival function (the probability that the event of interest has not yet 

occurred by time t) is defined as; 

( ) ( ) ( )1 , 0
def

S t F t P T t t= − = > ∀ >      4.20 

And the corresponding hazard function is also defined as; 

( ) ( )
( )0

lim
def

h

P t T t h T t f t
h t

h S t↓
−

 ≤ < + ≥  = =  

Where ( ) ( )lim
h t

S t S s− ↑
= , thus hazard function is the conditional density, given that the 

event of intereste has not yet occurred prior to time t. For continuous time T 

( ) ( ) ( )ln 1 ln
d d

h t F t S t
dt dt

= − − = −    

Let the cumulative hazard function defined as; 
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( ) ( )
0

,    0
tdef

H t h u du t= >∫  

( )
( )

ln 1

ln

F t

S t

= − −  

= −
     4.21 

Therefore,  

( ) ( )( )
( ) ( ) ( )( )

exp

exp

S t H t

f t h t H t

= −

= −
 

Let infection at initial stage ( 0 t≤ < Λ ) and inactivation of pathogen within host at 

given a hazard function ( )h t  where Λ is the time until infection occurs. Moreover, the 

commonest distribution for describing the survival function of illness be the 

exponential distribution function with scale parameterη , then 

( ) [ ]expf t η η= − Λ  and ( )h t η=  

( ) ( )
0

inf : 1 exp ,     0
t

H t P ill u dt tη
 

= = − − ≤ < Λ 
 
∫    

then the probability that infection results in illness can be written as the cumulative 

function 

( ) ( ) ( )inf; 1 expP ill F t ηΛ = = − − Λ        4.22 
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Assuming the duration Λ is described by the gamma distribution to reflect individual 

differences in resistance of host colonization of pathogen, gamma density distribution 

is (Teunis et al., 1999) 

( ) ( )
1; , exp

d
g d

d

ω
ωω

ω

−
− −Λ Λ = Λ  Γ  

       

( ) ( ) ( ) ( )1

0

inf 1 exp exp 1 1
r

d
P ill d d

d

ω
ωωη η

ω

∞ −
−−

=

 −Λ = − − Λ Λ Λ = − +      Γ   
∫  

( ) ( ) ( )
( )1 1

0 0

1
inf exp exp

r r

d d
P ill d d

d d

ω ω
ω ω η

ω ω

∞ ∞− −
− −

= =

   −Λ + −Λ = Λ Λ − Λ Λ     Γ Γ       
∫ ∫  

( )1 1 d
ωη −= − +       4.23 

The probability that illness occurs is  

  ( )

( ) ( ) ( ) ( )

( ) ( )

1

0

inf 1 exp exp 1 1 ,

inf

, : , , 1 1 ,  

r

d
P ill d d Norovirus

d

P ill

d D x A B C AD Bx C AD Bx C cryptosporidium oocyst

ω
ωω

ω

η η
ω

∞ −
−−

=

−

  −Λ = − − Λ Λ Λ = − +      Γ    
 =  
 = − + = − + − + 
 



∫
     4.24 

Hence from equation 4.24, the probability of illness per dose per person is calculated 

as 

inf ( )ill I dPill P P=        4.25 
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4.2.2.3 Annual Risk of infection/illness and Diseases Burden 

The annual risk of infection and illness are determined with the frequency of 

exposures (n)of an individual within a  year and were modelled following the 

independent assumption of Karavarsamis and Hamilton (2010). The annual risk of 

infection or illness P was estimated as 

     [ ]
1

1 1
n

k
k

P P
=

= − −∏         4.26 

Where ��is the kth median probability of infection or illness per exposure event in n  

total exposures within a year. Estimating the annual disease burden using the 

Disability Adjusted Life Year (DALY, �����	
���
�
�) metric (Barker, 2014; Barker et al., 

2014; Barker et al., 2013; Mok and Hamilton, 2014; Mok et al., 2014), which is used to 

measure all disease burden expressed as the number of years lost due to disability, 

illness or premature death (Mara and Sleigh, 2010, 2009; Mara et al., 2010). Hence 

equation 4.26 is given as  

     ill kDALY P BS=
∼

                  4.27 

Where ill kP
∼

is the annual probability of illness per given dose per person and 

1
,   B for a x b

b a
= ≤ ≤

−
(section 3.5.18) is the disease burden (DALY per case of 

diarrhoea) and S is the proportion of population susceptible to the diseases.  
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4.3 Modelling Scarce, Imprecise Data and Expert’s Opinion for Uncertainty 

Quantification in QMRA Model 

Parameters input values for modelling in QMRA presents a challenge to the entire 

model in itself, accounting for most of the uncertainty pertaining to the either the 

model or the scenarios. Lack of data, imprecise data and interval assumptions are 

characterised by ambiguity and imprecise linguistic description of events rendering 

estimation of parameters based on combining experts’ opinion and limited data 

available.  

4.3.1 The Evidence Theory 

The theory of evidence, popular referred to us Dempster-Shafer Theory (DST) is based 

on two principal elements developed by Dempster (1976) and Shafer (1976) (Benavoli 

et al., 2009),  is solely based on belief and plausibility measures and are characterised 

by a function m , called basic probability assignment (credibility)(bpa). 

A body of evidence induce credibility on a class ( )p X  of all possible subset of X, with 

the assumption that, evidence resides upon an empty set. 

Thus [ ]: ( ) 0,1im p X →  and 

1. ( ) 0m φ ≥  

2. ( )
( )

1i
A p X

m A
∈

=∑  
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The class of the focal subset of X corresponding to im  is ( ){ }, 0i iF A A X m A= ⊆ >  

A belief measure and plausibility are defined on a universal set X as a function of 

mapping a power set to a range [ ]0,1 (Salmona, 2014), where plausibility measure is 

the dual of the belief measure 

                                                         

[ ]

( ) ( )

: 0,1

1

XBel m P

Pl A Bel A

≡ →


= − 

                                            4.28 

Given, ‘A’ a family of subset of X, then the belief, plausibility and ambiguity of ‘A’ by 

mi is defined as (Ayyub and Klir, 2006). 

                                                  ( ) ( )
, `0

i i
B A B

Bel A m B
⊆ ≠

= ∑       4.29 

                                                             ( ) ( )
`0

i i
B A

Pl A m B
∩ ≠

= ∑      4.30 

( ) ( )
`0,

i i
B A B A

Amb A m B
∩ ≠ ⊄

= ∑               4.31 

4.3.2 Aggregation of Evidence and Conflict 

Definition 4.2. (Simple Evidence) 

A simple evidence denotes the case when the bodies of evidence are mutually 

exclusive, and it induce a probability distribution 
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Definition 4.3. (Mixed Evidence) 

A pair of dependent bodies of evidence of experts dependently induce a joint 

probability distribution, thus ( ) ( ) [ ]: 0,1ijm P X P X → . If the body of evidence are 

independent, then ( ) ( ) ( ),ij i jm A B m A m B= . If ( ) 0jm B > , then the conditional 

probability distribution on ( )P X  given B is defined as ( ) ( ) ( ), /ij ji jm A B m A B m B= . The 

corresponding class of focal pairs of subsets is ( ) ( ){ }, , , , 0iji jF A B A X B X m A B= ⊆ ⊆ >  

 

Let’s 1m and 2m be basic probability assignments to the same element from two 

experts, then Dempster’s rule of combination to obtain a combined opinion 1,2( )m  as 

                                            ( )
( ) ( )

( ) ( )

1 2

1,2

1 21

j k i

j k

j k
allA A A

i

j k
allA A

m A m A

m A
m A m A

φ

=

=

=
−

∑

∑

∩

∩

                                       4.32 

Where iA  
must be a nonempty set and ( )1,2 0m φ = , the term ( ) ( )1 21

j k

j k
allA A

m A m A
φ=

− ∑
∩

becomes the normalizing factor for the contradiction or conflicts among the two 

experts (Sentz, 2002; Wierman, 2001; Zadeh et al., 1978).  Generally, suppose we have 

evidences and we want to fuse this into forming a single body of evidence and 

assume all collected evidence concern the same universe X . Let evidence be 

, , 1,2,3,...i i iA F m i= =
 
and K  be conflict among evidence, if jA F∈  then i

i

A φ
∀

=∩ . Then 
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total conflict as described with the Dempster rule of combination is given as 

( )
i

i

i i
A

K m A
φ

∀

=

= ∑
∩

. Hence focal set is  ,i i i i
i i

F A A A F
∀ ∀

 
= ∈ 
 
∩ ∩ .  The basic probability for

C F∈ ,  

                                                                 ( )
( )

1

i
i

i i
A C

m A

m C
K

∀

=

=
−

∑
∩

                                              4.33
 

Where C is the combination of the different expert’s opinion, and K is the accounting 

for the conflict among the overlaps of the experts’ opinion. Hence  

                                                                  ( )
( )

( )1

i
i

i
i

i i
A C

i i
A

m A

m C
m A

φ

∀

∀

=

=

=
−

∑

∑
∩

∩

                                         4.34 

4.3.3 Weighting Evidence Assignment 

A body of evidence induces a probability distribution on the class ( )m A  of all possible 

opinion on the subject A .  Assuming residence of evidence for combination is not 

equally credible and any contradiction are not taking into account expressed by 

(Bae et al., 2004). 

                                                          ( ) ( )1,2,3,...,
1

1 n

n i k k i
k

m A w m A
n =

= ∑                                          4.35 
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Definition 4.4 

A family of weights is probabilistic if they satisfy the equalities 

( ) ( )
( )

1 ;i i
C P X

w C A A F X m
∈

= ∀ ∈∑ , where both C and A are a collections of suspects. ‘A’ 

must be a focal set of body of evidence, but C is arbitrary. 

The weight factors are assigned based on the credibility of the evidence and its 

source. Hence relaxing the (Bae et al., 2004; H.-R. Bae et al., 2004) (equation 4.35) 

assumption and incorporating into Dempster rule (equation 4.34) leads to  

                                              ( )
( ) ( )

( ) ( )

1 1

1,2,3,...

1 1

...

1 ...

j k i

j k

j n n k
allA A A

n

j n n k
allA A

w m A w m A

m C
w m A w m A

φ

=

=

=
−

∑

∑

∩

∩

                            4.36 

4.4 Model Implementation for Fecal Indicator Ratio Conversion and Virus Genomic 

copies for Dose Estimation through Vegetable Consumption in Ghana 

The study includes the input parameters of different variables such as pathogen 

concentration in wastewater, which are predominantly the first hand sources of water 

available for irrigation in developing countries. Amoah et al., (2007) described the 

different sources of water primarily used for irrigation in developing countries, 

considered as wastewater mainly from streams, drains and partially treated 

wastewater from Waste Stabilization Ponds (WSP). This study uses data from these 

sources of water (streams, drains wastewater) and Waste Stabilization Pond (WSP) 
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effluent, however, the WSP on pond effluent involves the usage of both the influent 

and effluent discharge waters used for irrigation by farmers.  

Lettuce and cabbage were selected as the main vegetables for the study to 

represent crops commonly eaten raw in developing countries such as Ghana and 

other African countries. These crops do not form part of the traditional cuisines in 

households, but are major component associated with street foods (Fung, 2011).  

Information on actual volumes of consumed vegetables in Ghana is scarce and 

various QMRA studies (Ackerson and Awuah, 2012; Barker, 2014; Seidu et al., 2008) 

have therefore used estimates of salad consumption. Fung (Fung, 2011) reported that 

salad mainly consisted of lettuce and cabbage (> 75%) with a salad serving size of 

20g per meal. This meal size is higher than the estimated value of 10 g – 12 g of 

lettuce per meal per day (Seidu et al., 2008), in Ghana there is lack of comprehensive 

study on salad servings contaminated from Norovirus or Cryptosporidium spp, hence 

all servings were assumed to be contaminated as a worst case scenario.  The 

estimated value for consumption data ( zC  )is combined through experts’ opinion, a 

uniform distribution (Figure 4.2) was fitted to cater for the different portion sized found 

in earlier studies and again, a uniform distribution (Figure 4.3) was also fitted for all 

year round frequency (total exposure) of consumption of vegetable. 
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Figure 4.2: Fitted Distribution for Salad Consumption size  

 

Figure 4.3: Fitted Distribution for Total Consumption Frequency  
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 Volume of water (��) caught on the surface of Asian vegetables (Mok et al., 2014) 

was used as an approximate estimate for the study, as previous studies in Ghana 

have shown that such values are appropriate(Barker et al., 2014). Uniform distribution 

of water was used for cabbage (Figure 4.4) and normal distribution truncated at zero 

was used for lettuce (Figure 4.5) to characterize the volume of water detained by the 

two vegetables.  

 

 

Figure 4. 4: Fitted Uniform Distribution for Wastewater caught on Cabbage  
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Figure 4.5: Fitted Normal Distribution for Wastewater Caught on Surface of Lettuce 

 The kinetic in-field decay constant (	�) was fitted to normal distribution (Figure 4.6) 

with data used in previous studies (Barker et al., 2013; Mok et al., 2014; Hamilton et al., 

2006a). However, cabbage and lettuce are perishable and consumption of these 

products is usually done soon after harvest. Hence, post-harvest virus decay beyond 

48 hours was considered insignificant and was not included.  
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Figure 4.6: Fitted Distribution for Pathogenic Kinetic Decay 

Time for withholding water (�	) was assumed to be within 0 to 2 days after irrigation. A 

uniform distribution (Figure 4.7) was fitted to cover zero to a maximum of two days as 
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Figure 4.7: Fitted Distribution for Period of Irrigation Cessation before Harvest 

Washing of vegetables during preparation is common practice in Ghanaian food 

stalls and households (Amoah et al., 2007; Fung, 2011; Seidu et al., 2008). Although 

reports on varying degree of efficiency of bacterial removal by washing and 

disinfection are available(Amoah and Drechsel, 2007; WHO, 2006b),  similar 

information on reduction of viruses are scarce.  Allwood and Malik, (2004) pointed out 

that viruses may be more resistant than bacteria during washing, and Norovirus is no 

exception (Mattison, 2011) as enteric viruses are known to be resistant to the 

environment as well. The distribution fitted by Barker et al., (2014) for washing 

vegetable was used as the modal value for the PERT distribution (Figure 4.8) in this 

study though it referred to bacterial reduction. Nevertheless, previous studies 

indicated that these values can be applied to virus as well (Ayuso-Gabella et al., 

-0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

P
ro

b
a
b
ili

ty
 P

(X
)



110 

 

2011; Barker et al., 2013; Mara. , Sleigh, 2010; Mok and Hamilton, 2014; Seidu et al., 

2008) .  

 

Figure 4.8: Fitted Distribution for Pre-Consumption Vegetable Preparation 

All input parameters are reported in Table 4.I as well as Norovirus published data for 
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Table 4.I: Distributions of input parameters 

Parameter Notatio
n 

Units Distribution type 
(Value)~[mean] 

Reference 

Diarrheal Burden 
of Diseases in 
Ghana 

B  1 1person year− −

 

Uniform (1.06E-04-6.23E-
03)~[3.16E-03] 

Begg et al. 2007; 
Haagsma et al. 
2008; 

Salad 
consumption 

 

ZC  1gday−  Uniform(10-20) ~[14.1] Seidu et al. 2008; 
Fung 2011(Fung, 
2011);  

Frequency of 
consumption 

 

n  1( )day year−  Uniform (208-365) Seidu et al. 2008; 
Mok et al. 2014. 

Volume of 
irrigation water 
caught by 
product 

PV  /ml g    

Cabbage  /ml g  Uniform(0.00775,0.108) 
~[0.0580] 

 

Mok et al. 2014; 
Barker et al. 2013; 
Hamilton et al. 
2006; Shuval et al. 
1997 

Lettuce  /ml g  Normal(0.108,0.019)~tru
ncated at zero~[0.108] 

 

Mok et al. 2014; 
Barker et al. 2013; 
Hamilton et al. 
2006; Shuval et al. 
1997 

Pathogen kinetic 
decay constant 

k  1day−  Normal(1.07,0.07)~trunc
ated at zero~[1.07] 

Barker et al. 2013; 
Hamilton et al. 
2006; Petterson 
2001; Petterson 
2002 
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Time for 
withholding or 
irrigation 
cessation  

t  days  Uniform (0,2)~[1.0] Barker et al. 2013 

Post-
harvest/Food 
Preparation 
Washing for Virus 
reduction 

w  10log units  Pert(0.1,1.0,2.0)~[1.0] Mok et al. 2014; 
Baert et al. 2009; 

Baert & 
Uyttendaele 2008; 
Ndiaye et al. 
2011(Ndiaye et al., 
2011); Croci et al. 
2002(Croci et al., 
2002); Mitakakis 
2004(Mitakakis, 
2004).  
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Table 4.2: Norovirus/Cryptosporidium spp and fecal indicator in raw 
sewage/Distributions and fit parameters used in models 

Dose Response 

Parameters 

Units Distribution type 

(Value)~[mean] 

Reference 

Norovirus dose-

response parameters 

for a+b inoculums3 

Hyper geometric Beta Poisson 

 

 

0.040α = , 0.055β = , 0.997a = , 0.00255η = , 

0.086ω =  

(Teunis et al., 

2008)(Teunis and 

Havelaar, 2000) 

Cryptosporidium spp 

response parameters 

1.10ω = , 0A B= = , 0.77C = , 0.00419r =  (Teunis et al., 2002) 

Norovirus 

Data 

Indicator 

Org.(CFU/mL) 

Norovirus 

(gc/mL) 

Virus 

Recovery 

Ratio of 

Means 

Min ratio Max. Ratio 

Drain 2 610 10−  21.85 10×  25% 50%−  41.76 10−×  51.85 10−×  11.60 10−×  

Stream 2 510 10−  21.03 10×  25% 50%−  47.13 10−×  41.03 10−×  29.90 10−×  

Pooled 2 610 10−  21.64 10×  25% 50%−  41.56 10−×  51.64 10−×  11.60 10−×  

Reference:(Hassine-Zaafrane et al., 2014), (Katayama et al., 2008),(Haramoto et al., 2006), 

(Silverman et al., 2013), (La Rosa et al., 2010)(Flannery et al., 2012) 

 

 

                                                      
3
 Maximum likelihood estimates for the combined dose response models with and without virus aggregation and dose 

response model with no aggregation applied to susceptible subjects. 
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4.5 Simulation Results 

4.5.1 Estimation of Annual Probability of infection and illness of gastroenteritis 

The annual probability of infection for Norovirus ranged from 19.2 10−×   to 19.4 10−×  for 

all genome copies Norovirus while the ratio conversion method also ranged from 

18.8 10−× to 19.1 10−× . Again, the annual probability of diseases4 at a given infection 

ranged from 18.6 10−×   to 19.0 10−×   for the genome copies Norovirus and 18.1 10−×   to 

18.3 10−×  for ratio conversion Norovirus (Table 4.3). Moreover, the ratio conversion for 

cryptosporidium spp. was found to be 32.3 10−×  and the oocyst cryptosporidium spp. 

data annual probability of infection was 14.9 10−× , yet the annual probability of disease 

given infection were 31.5 10−× , 12.7 10−×  for E.coli conversion and oocyst data 

respectively. Using the USEPA’s threshold of 10-4 annual probability of infection and 

the recommended 10-6 risk of infection by Signor and Ashbolt (2009) daily risk target, 

all model scenario exceeded the thresholds, hence vegetables irrigated cannot be 

said to be safe for consumption.   

 

  

                                                      
4
 All servings of salad were assumed to be contaminated 
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Table 4.3: Annual probability of gastroenteritis infection an/illness and diseases burden 

(DALYs) per person per year 

Model Scenarios 

(Norovirus Analysis) 

Annual probabilities Diseases Burden (DB: DALY pppy) 

Infection Diseases/infect 5thPercent’ Median 95thPercent’ 

Stream genome 

copies Norovirus 

19.4 10−×  18.6 10−×  68.0 10−×  54.1 10−×  41.2 10−×  

Stream Norovirus 

Ratio 

19.1 10−×  18.1 10−×  96.8 10−×  7*1.2 10−×  75.8 10−×  

Drains genome 

copies Norovirus 

19.3 10−×  19.0 10−×  61.3 10−×  51.8 10−×  58.7 10−×  

Drains Norovirus 

Ratio 

18.8 10−×  18.2 10−×  108.7 10−×  8*1.4 10−×  87.1 10−×  

Pooled genome 

copies Norovirus 

19.2 10−×  18.9 10−×  68.2 10−×  56.7 10−×  41.7 10−×  

Pooled Norovirus 

Ratio 

19.1 10−×  18.3 10−×  72.6 10−×  63.7 10−×  51.7 10−×  

Cryptosporidum spp Analysis 

E. coli conversion 32.3 10−×  31.5 10−×  71.5 10−×  63.7 10−×  53.7 10−×  

Oocyst Data 14.9 10−×  12.7 10−×  52.4 10−×  46.6 10−×  33.8 10−×  

Ratio Conversion distribution values    

Norovirus stream 10[normal(4.45.0.86),truncatedat 3.3 and 7.5]/100-2.35x103b 

Norovirus Drain 10[normal(4.35.1.06),truncatedat 3.2 and 7.0]/100-2.49x103b 

Norovirus Pooled 10[normal(4.30.1.04),truncatedat 3.1 and 7.2]/100-2.40x103b 

Cryptos oocyste Lognormal(0.002,0.003)   

b is the mean from 3,650,000 iterations of pathogen concentration data 
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4.5.2 Annual Diseases Burden 

The median annual diseases burden for ranged from 51.8 10−×  to 56.7 10−×  for all 

genome copies Norovirus (stream, drain and pooled data) concentration with 95th 

percentile values ranged from 58.7 10−×  to 41.7 10−×  while for ratio conversion Norovirus 

(stream, drain and pooled data), the median annual diseases burden ranged from 

8*1.4 10−×  to 63.7 10−×  with 95th percentile ranges from 87.1 10−×  to 51.7 10−× .      

 All scenarios (stream and drain data) using the genome copies Norovirus estimation 

for diseases burden (DALY) were 2≥ orders of magnitude higher than the use of ratio 

conversion Norovirus method of translating fecal indicator to Norovirus. It should be 

noted that only scenarios involving ratio conversion Norovirus achieved the health 

target of less than 61 10−×  DALY pppy, whereas scenarios involving the use of genome 

copies Norovirus data were ≤ 1order of magnitude less than the DALY health target 

of 41 10−×  DALY pppy (Figure 4.9). When pooled data were used for both genome 

copies and ratio conversion Norovirus, the median annual diseases burden for both 

achieved the DALY of 41 10−×  but not 61 10−×  (Figure 4.10). 

On the part of cryptosporidium spp., the median DALY diseases burden ranged from 

71.5 10−×  to 53.7 10−× for ratio conversion and 52.4 10−×  to 33.8 10−×  for oocyst data, 

representing the 5th and the 95th percentile for each respectively. Again all scenarios 

for the cryptosporidium spp. for the oocyst data DALY were close to 2≥ order of 

magnitude higher than the ratio conversion method (Figure 4.11). 
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Figure 4.9: Cumulative Probability Curve of Daily Adjusted Life Years (Diseases Burden) 

for Stream and Drain wastewater for Actual Norovirus5 and ratio conversion. Each 

cumulative probability represents the diseases burden for either the actual norovirus 

genome copies dose estimation or the conversion ratio dose estimation for stream 

water and drain water. 

 

 

                                                      
5
 Actual Norovirus: genome copies norovirus dose 
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Figure 4.10:  Cumulative Probability Curve of Daily Adjusted Life Years (Diseases 

Burden) for Pooled Data. This represents the combined pool data for stream and 

drain water, the cumulative probability graph shows the differences of using either 

the actual genome copies pool data or that of ratio conversion estimation for dose in 

modelling risk assessment. 
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Figure 4.11:  Cumulative Probability Curve of Daily Adjusted Life Years (Diseases 

Burden) for Cryptosporidium. This represents a comparison of E.coli conversion and 

that of oocyst data studies. 
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In this study, Spearman’s’ was used to determining the relative change in various 

input parameters for estimation of probability of illness and for that matter the Daily 

Adjusted Life Years. As shown in Table 4.4 the probability of illness was very sensitive 

directly to water quality, volume of irrigation water caught by the vegetable, daily 

consumption of vegetable, it was somehow less sensitive to the kinetic decay 

constant. But it recorded an inversely sensitivity to the virus reduction due to food 

preparation and the time between the last irrigation and harvest (cessation of 

irrigation).  

On the part of cryptosporidium spp., there is a strong relation to water quality, and 

diseases burden, kinetic decay constant and other weak positive correlation with 

volume of irrigation water caught on surface of vegetable as well as consumption 

frequency. Whiles there’s a negative influence from pre-consumption food 

preparation and cessation of irrigation (Table 4.5). 
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Table 4.4: Spearman’s rank order correlation coefficients for probability of illness 

(Norovirus) 

Parameters Correlation Coefficient (Spearman 

Rank) 

Water Quality 0.62 

Volume of irrigation water caught by 
vegetable 

0.51 

Kinetic decay Constant 0.04 

Virus Reduction by Food Preparation -0.24 

Cessation of irrigation -0.118 

 

Table 4.5: Spearman rank order correlation coefficients for DALYs (Cryptosporidium) 

Parameters Correlation Coefficient (Spearman Rank) 

 Oocyst Data E.coli Conversion 

Water Quality 0.64 0.72 

Volume of irrigation water caught by 
vegetable 

0.09 0.38 

Kinetic decay Constant 0.38 0.38 

Virus Reduction by Food Preparation -0.43 -0.55 

Cessation of irrigation -0.03 -0.05 

Consumption Size 0.09 0.14 

E. coli conversion - 0.12 

Diseases Burden 0.52 0.52 

Consumption Frequency 0.08 0.10 



122 

 

4.6 SUMMARY 

The probabilistic stochastic model presented to model exposure for dose estimation 

of Norovirus and Cryptosporidium with vegetable consumption irrigated with low 

quality water indicates the disease burden of the different model scenarios was 

found to be acceptable under different thresholds of DALY. Silverman et al., (2013) 

reported that sufficient Norovirus data in Ghana were not available to fit a distribution 

(11 quantifiable samples), however, it was indicated that the figures are conservative 

estimates and might be a few orders higher due to analytical challenges. Again the 

use of empirical model to characterize the genome copies data due to its 

insufficiency to fit a parametric distribution also contributes to uncertainty.  This 

supports the result of this study to the effect that, the estimates for DALY in the case of 

stream and drain wastewater might be some orders higher than what is reported in 

this study and hence serve as conservative estimates. 

In the scenarios presented here, none of the models  using genome copies of 

Norovirus nor cryptosporidium spp. to predict the diseases burden found that it could 

establish the safety of consuming the produce i.e. the threshold of ≤ 10
�pppyDALY 

was not met. In contrast, the use of ratio conversion met the threshold for the same 

model in the case of Norovirus. The WHO guideline states that “if the overall burden of 

diseases from other exposures is very high, setting a less stringent level of acceptable 

risk of 10-5DALY per person per year  or 10-4DALY per person per year  may be more 

realistic as was argued by Mara and Hamilton (Mara and Hamilton, 2010) ”This 
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assertion of WHO may guide the results of accepting the burden of diseases level for 

all model scenarios used in this study. On the other hand, the ratio conversion method 

currently applied to estimate the diseases burden produces significantly lower 

estimate of DALY with 2 or more orders of magnitude lower than the use of genome 

copies Norovirus concentration data or oocyst cryptosporidium data. It should be 

noted that, differences in diseases burden for stream and drain were significant for 

Norovirus, yet, both achieved the threshold of the health target of 410 DALYppp− , with 

the estimation of diseases burden in drain wastewater being less than that of stream 

water, whiles in case of cryptosporidium, the conversion ratio meets the threshold but 

the oocyst data does not. 

With emphasis placed on the differences of order of magnitude in DALYs as a result of 

the use of fecal indicator ratio conversion in estimating health risk in various QMRA 

models, (Payment and Locas, 2011) argued that, the use of E. coli as indicator of 

fecal pollution does not represent well the presence of protozoa and other pathogen 

microorganisms. These Indicators are useful for monitoring hygiene such as in 

slaughter plants, but a high level fecal indicator does not necessarily mean a high 

level of pathogens, as this will depend on the infectivity level of the source. On the 

part of (Silverman et al., 2013), “ while the ratio of NV GII to E. coli or thermotolerant 

coliform is likely to differ over place and time and may include animal fecal sources 

as well as environmental sources and reservoirs, it is an important finding that the 

current assumption of 0.1 – 1 Norovirus particles per 510   E. coli would  underestimate 
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virus dose with exposure to wastewater and surface water sample”. Again, “if 

standard pathogen concentrations are to be used effectively, there should be a 

move away from indicator species such as E. coli toward the pathogens of interest 

such as viruses as put forward by Mok and Hamilton (2014). 

This study shows that, a move away from using fecal indicator conversion rates can 

lead to more realistic risk estimation as shown clearly with ≥ 1 order of magnitude 

higher when cryptosporidium oocyst or genome copies Norovirus particle 

concentration is used, though the values are considered conservative and by no 

means represent the total comprehensive Norovirus concentration in streams, drains 

and WSPs as reported by (Silverman et al., 2013) due to factors such as the technique 

applied for the quantification and the insufficient number of samples used to 

characterize the concentration. Moreover, the unavailability of aggregation data for 

quantification of risk in dose response model might contributes as a model 

uncertainty. Still, it gives a basis for a virus interest health risk assessment based on the 

concentration of genome copies of human Norovirus and a corresponding fecal 

ratio conversion in order to established specific health based targets. 
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CHAPTER 5 

INTEGRATED IMMUNITY DOSE RESPONSE MODELING FOR ILLNESS REDUCTION 

INCIDENCE OF NOROVIRUS 

In this chapter, dose-response models are formulated and an extension is made on 

the integration of immunity in risk assessment modelling with the use of Fractional-

Poisson dose response function. A detailed derivation of various Dose Response 

Incidence(DRI) models are presented as a function of induced temporary immunity 

on exposed individuals in order to obtain the effect of accounting for immunity in 

dose response. Epidemiological results and compartment studies for transmission 

dynamics of Norovirus have been incorporated to achieve a comprehensive 

incidence of illness on exposed individuals in risk assessment. The effects of the various 

temporary immunity induced DRI models are determined integrating the transmission 

dynamics scenarios. Simulated results on the transmission dynamics, illness inflation 

factor (the protective effect of induced immunity to compensate for future infection 

and disease transmission), partial and full immunity loss as well as effects of exposure 

duration are presented. The models are applied on vegetable consumers’ exposure 

to Norovirus and the results are presented to estimate the effect of immunity based 

on the transmission dynamics scenarios for individual illness incidence. 
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5.2 The Model and its Analysis 

In this section, the Fractional Poisson Model for estimating the risk of ingestion of 

Norovirus to account for the likelihood of individuals’ heterogeneous response to 

infection is presented along with the modelling results. Temporary immunity models 

are also shown to take into account the loss of partial and full immunity and how this 

affects the estimation of the probable risk of illness. 

 5.2.1 The Fractional Poisson Model 

A reference is made to equation 4.18 (Section 4.2.2.2) for estimating a response to 

dose inoculums. Accounts from Teunis et al., (2008) for quantification of probability of 

illness assume that individual complete virus genomic copies or particles ingested by 

each human subject share a common probability ( )r of independently initiating 

infection in subjects. Moreover, under the beta-Poisson model r is a mixed distribution 

(equation 4.15) indicating, some subjects may have very small values of r , thus 

infection probabilities per individual virion near zero and vice versa.  Hence, the 

aggregated Norovirus infection probability is a beta function with parameters 

described as6  

( )
( )

inf 2 1

1 1

( , , ) 1 ,, (1 ) / , ; /(1 )

                        1 , ,

P dose F d a a a a

F d

α β α α β
α α β

= − − + − −

= − + −
                 5.1 

Where ( )aµ is of the form 

                                                      
6
 The beta-poisson function in this case is the second order hyper geometric function which diverges at dose exceeding 

342 genome copies of the virus particles replacing the first order hyper geometric function. 



127 

 

( ) /((1 ) ln(1 ))a a a aµ = − − −           5.2 

Hence  

                                                    ( )
( )

( )

inf

, 0

1 , 1

d

a

d

a

e d

P d

e d

µ

µ

−

−


=

= 

 − ≥

                                                         5.3 

Assumption of probability of infection (Messner et al., 2014)across susceptible 

population ( ) ( ) ( )
1

2

0

!
( )1

! !

j k kj
P k j f r drr

k j k r
− 

=  −− 
∫   (equation 4.14), leads to  

                                               ( ) ( ) ( )
1

0
inf

!
( )1

! !

j k kj
f r drr

k j k
P d

r Bernoulli

r
−  

  −−  = 




∫

∼

                                 5.4 

                                          ( )
1 ,  r 0 ( )

,

,   r 1 (Success)

p if failure

p r p Bernoulli

p if

− =
= 
 =

∼                                    5.5  

Where p is the proportion of susceptible individuals. 

Thus individuals are either perfectly susceptible or perfectly protected against 

infection and cannot be anywhere in between in equation 5.5, hence, from 5.3 with 

perfectly susceptible leads to:  

               ( )
inf( , ) 1

d

aP d P eµ
−

= −                                                 5.6
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Simulate Results for Probability of Infection with Fractional Poisson Dose Response 

Simulated results for equation 5.6 shows a steady progression of probability of 

infection (Figure 5.1). The lower infection probability is less than 1 log of dose 

(genome copies) exhibiting a monotonic increment as dose ingestion increases. The 

absoluteness of infection was not reached at the highest dose of 8 logs of genomic 

copies. However, it should be noted that dose ingestion alone is not the only factor 

determining probability of infection. It depends also on exposure frequency. For 

instance, very frequent exposure may lead to a continuous ingestion of pathogens 

and hence to a higher probability of infection. Naturally, when exposure leads to 

infection (either symptomatic or asymptomatic) there is an associated acquired 

immunity for the protection of individuals who are exposed frequently to the 

pathogens. Such acquired immunity may explain the reasons behind the non-

contract of illness/diseases of individuals frequently exposed to wastewater and 

henceforth the need to integrate such acquired immunity in risk assessment models. 
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Figure 5.1: Simulated results for probability of infection with Fractional-Poisson model 
within a dose of genome copies. 

 

5.2.2 Temporary Immunity Dose Response Incidence (DRI) Models  

Dose Response models measure the response to ingestion of pathogens and are 

thereby crucial for estimating the risk associated with the ingestion of pathogens.  In 

this section, four different DRI models are developed and their inclusion for assessing 

risk estimates as applied in a Norovirus risk assessment. The purpose is to estimate the 

impact as a result of exposures leading to temporary acquired immunity for an 

individual. 
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5.2.2.1 Naive DRI Model 

Reference to equations 4.20 to 4.25, the conditional probability of illness from infected 

subjects is inf infill illP P P=        

Assumption 

1. Illness outcome is independent on all previous exposure.  

2. Probability of illness at exposure ( )jP d is Bernoulli distributed. 

3.  Total exposure E for a specified period 

Then the probability of  illness is given as (Havelaar and Swart, 2014) 

( ) ( )inf inf

1

E

illill j j
j

P P d P d
=

=∑          5.7 

For cases of independency, infillP ϕ= , the conditional probability per exposure is 

( )infillP P dφ= . For a constant average dose, the probability of illness for individual 

exposure is  

( )infillP E P dϕ=          5.8 

Where E is the total number of exposures within a year. Therefore, the probability of 

illness within the population is also given as ( )infillP NE P dϕ= (Havelaar and Swart, 

2014), where  N is the population size 
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5.2.2.2 Model for Multiple Exposures 

Modelling risk of illness estimation with integrated immunity, the cases of illness for 

exposure is dependent on the waning of temporarily acquired immunity from 

previous transition from susceptible to partial protection and then back to be 

susceptible. 

Effect of Acquired Immunity 

In the case of a compartmental model to account for effect of acquired immunity, 

(Swart et al., 2012) presented the schematic process as shown below (Fig. 5.2) 

 

Figure 5.2: Schematic overview of infection and immunity  
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Table 5.1: Description of Parameters used in the Model 

Symbols Description 
α  Loss of full immunity 
γ  Loss of partial immunity 
λ  Force of infection 
π  Proportion of the susceptible involving of illness 
S Susceptible population 
P Fully protected after infection 
Q Partial protection 

 

The deterministic first order differential equation for Figure 2.3 can be described by 

equation (5.9) as follows; 

( )

( )

1

2

3

          
dS

f Q S
da
dP

f Q S P
da
dQ

f P Q
da

γ λ

λ α

α γ λ

= = − 

= = + − 

= = − + 


      5.9  

where, all parameters are positive, thus S(0),P(0) and Q(0)>0. The Jacobian of 

equation (5.9) is represented as;
 

( )

1 1 1

2 2 2

3 3 3

0

0j

df df df

dS dP dQ

df df dfdf
J

da dS dP dQ

df df df

dS dP dQ

λ γ
λ α λ

α λ γ

 
 
  − 
   = = = −   

   − +  
 
 

 

For ( )det 0J XI− = , the resulting characteristic equation is 
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( )

0

0

X

J XI X

X

λ γ
λ α λ

α λ γ

− − 
 − = − − 
 − + − 

   5.10 

3 2 2 2 2 2 0X X X X X X X X Xλ γ α αλ αγ λ λ λγ+ + + + + + + + =  

3 2 2 2 2 2 0X X X X X X X X Xλ γ α λ αλ αγ λ λγ+ + + + + + + + =  

( ) ( )3 2 22 0X X Xλ γ α αλ αγ λ λγ+ + + + + + + =  

( ) ( )2 22 0X X Xλ γ α αλ αγ λ λγ + + + + + + + =   

Therefore, the eigenvalues of the characteristics equation are 

( ) ( )1 2 30, ,X X Xα λ λ γ= = − + = − +  

and the corresponding eigenvectors from equation 15.10 are: 

( )( ) ( )( ) ( ), , , , , , 1,0, 1αγ λ λ γ αλ γ γ α α+ − − − . 

Let R be the expected number of transition of an individual from S to P before 

ultimately dying of natural cause, assuming that, illness does not leads to death. 

Again, let the expected number of transitions from S to P be defined as 

( ) ( )
0

R s a F a daλ
∞

= ∫ , where s(a) is the probability of individual susceptibility at age ‘a’, 

and F(a) is the individual probability to survive until age ‘a’. Therefore, the full and 

partial waning of immunity is given as; 
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( )

0

0

s s
d

p p
da

q q

λ γ
λ α λ

α λ γ

−    
    = −    

    − +           

5.11 

( ) ( ) ( )0 1, 0 0, 0 0s p q= = = . 

The general solution for the equation 5.11 using the eigenvalues and eigenvectors of 

equation 5.10 and equation 5.11 

( )
( )
( )

( ) ( ) ( ) ( )1 2 3

1

  +C exp +C 0 exp

1

s a

p a C a a

q a

αγ γ
λ γ λ γ α α λ γ λ

αλ α

−       
       = + − − + − +             

       −      

 

Using the initial conditions from equation 5.11 results 

( ) ( )1 2 3

1 1

0   +C +C 0

0 1

C

αγ γ
λ γ λ γ α

αλ α

−       
       = + −       
       −            

5.12 

( ) ( )
1 2 3

1 2

1 2 3

1 C +C

0 C

0 C C

C

C

C

αγ γ
λ γ λ γ α
αλ α

= −
= + + −
= + −

 

Hereafter, 
( )( ) ( )( ) ( ) ( )1 2 3

1
, ,C C C

λ αλ
α λ γ λ α γ α λ α γ γ λ

= = =
+ + − + − +

. Therefore, the 

specific solution is given as; 



135 

 

( )
( )
( ) ( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

1
                                         

1
exp

1

0 exp

1

s a

p a

q a

a

a

αγ
λ γ λ

α λ γ λ
αλ

γ
γ α α λ

α γ α λ
α

αλ γ λ
α γ γ λ

   
   = +    + +       
− 
 + − − +    − +  

  
 
 + − +    − +   −     

5.13 

The relevant solution for quantification of expected number of transition into the 

susceptible compartment after waning of immunity is given as; 

( ) ( ) ( ) ( ) ( ) ( )
( )( )( )

exp expa a
s a

αλ α λ γ λ αγ α γ γλ γ λ α λ
α γ α λ γ λ

+ − + + − − + − +      =
− + +

  

5.14 

Let the probability to survive until age ‘a’ be described by a survival function

( ) 1,    0

0,        

a A
F a

a A

≤ ≤
=  >

, where A is the life expectancy of the population under study, 

consequently, the total transition from S to P of an individual is  

( )( )
( )

( )( )
( )

( ) ( ) ( )

2

2

2

2

1 exp                                         

1 exp

1 exp

R A

A

A
A

αλ γ λ
α γ γ λ

γλ α λ
α γ α λ

αλγ γ λ
α λ γ λ


 = − − +    − + 

 − − − +    − + 

 + − − +   + +    

5.15 
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( )( )lim
A

R

A

αλγ
α λ γ λ→∞

=
+ +

     

5.16 

Hence 

( ) ( )R A A
αγλ λ τ

α λ γ λ
= ≡

+ +
                5.17 

Where,α  is loss of full immunity, γ  is loss of partial immunity, λ is force of infection (the 

rate at which susceptible individual acquire an infection)and τ is illness inflation factor 

(is the protective effect of induced immunity to compensate for future infection and 

diseases transmission), hence ( )( )
αγτ

α γ γ λ
=

+ +
.  Therefore, ( )infEP dλ =  and τ  is 

obtained from binomial model of exposure (Section 3.5.3). 

( )( ) ( )( )inf infEP d EP d

αγτ
α γ

=
+ +

                         5.18

       

5.2.2.3 Immunity DRI Model 

Characterising the impact of immunity by the inflation factor through scaling the 

naïve model, it leads to the immunity model given as  

( )( ) ( )( )
inf

inf inf

( )
ill

EP d
P

EP d EP d

αγϕ
α γ

=
+ +

 

( )infillP E P dτ ϕ=        5.19 

As D → ∞ (for higher dose level), ( )inf 1P d ≈ , hence immunity model in such a scenario 

is represented as 
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( )( ) ( )( )inf inf
ill

E
P

EP d EP d

αγϕ
α γ

=
+ +

 

illP Eτ ϕ=         5.20 

 

Incorporating the Effect of Dose dependent conditional probability of illness 

 

Modelling the hazard function of illness subject to exposure duration of infection 

(equation), the infected duration  describes the period of which infection persists in 

an individual thus0 t≤ < Λ , where Λ is the entire period of infection hence describing 

the hazard function ( )H t (Probability of illness given infection) 

                                ( ) ( ) ( )
0

inf : 1 exp ,     0
t

H t P ill u h t dt t
 

= = − − ≤ < Λ 
 
∫                       5.21 

For a hazard function defined as 

( ) ( ) ( )ln 1 ln
d d

h t F t S t
dt dt

= − − = −    

( ) ( )
0

,    0
tdef

H t h u du t= >∫  

( )
( )

ln 1

ln

F t

S t

= − −  

= −
 

( ) ( )( )
( ) ( ) ( )( )

exp

exp

S t H t

f t h t H t

= −

= −
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Scaling the infection period leads to an integral of the hazard function ( )/H t Λ  over 

the period of infection and assuming an exponential model for the survival function 

(see equation 4.20 to 4.21). If the scale factor is η , then  

( ) ( )inf; 1 expP ill ηΛ = − − Λ
 

Varying the distribution of the unknown duration Λwith Gamma distribution to 

account for individual heterogeneity in resistance and persistence of host to 

colonization of infection leads to  

( ) ( )
1; , exp

d
g d

d

ω
ωω

ω

−
− −Λ Λ = Λ  Γ  

 

( ) ( ) ( )
1

0

inf 1 exp exp
r

d
P ill d

d

ω
ωη

ω

∞ −
−

=

 −Λ = − − Λ Λ Λ      Γ   
∫  

( ) ( )1 1

0 0

exp exp exp
r r

d
d d

d d

ω
ω ω η

ω

∞ ∞−
− −

= =

 −Λ  −Λ    = Λ Λ − Λ − Λ Λ     Γ      
∫ ∫  

                                 

( )
( )

( ) ( )

1

0

1
1 exp

inf  1 1                         

r

d
d

d

P ill d

ω
ω

ω

η
ω

η

∞−
−

=

−

 −Λ + 
= − Λ Λ   Γ     



= − + 



∫

                           5.22 

Where ω  and dη are the shape and scale parameters of an underlying Gamma 

distribution for duration of infection describing the heterogeneity in response of 

subjects. 
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5.2.2.4 Dose DRI Model 

Replacing ϕ in this case for the immunity model leads to the dose model (Messner et 

al., 2014)as  

( )( ) ( )inf1 1I E d P d
ωη −= − +       5.23 

5.2.2.5 Combined Model with Immunity and Dose Dependence 

The dose-immunity DRI model has the effects of acquired immunity and dose-

dependent conditional probability of illness as 

( )
( )( ) ( )( )

inf

inf inf

1 1 ( )
ill

E d P d
P

EP d EP d

ωαγ η

α γ

− − +
 =

+ +
 

( )( ) ( )inf1 1illP E d P d
ωτ η −= − +       5.24 

5.3 Model Implementation 

In this section, the model is implemented with the use of simulation from 

epidemiological data sources for Norovirus for varying dose. An iterative approach of 

sampling with hypercube sampling procedure (Section 3.7) is employed, unknown 

parameters were estimated (Section 3.6) and model uncertainty quantified.   

5.3.1 Simulated Model Implementation  

Modelling the acquired temporary immune probability of illness requires multifaceted 

data input parameters to describe the various relations and probability distributions. 

Parameter description and generation are intrinsic and conservative, to evaluate the 
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incidence models with global values of Norovirus, a simulation plot was carried out for 

the illness inflation factor (Equation 5.18). Implementing the loss of full and partial 

immunity impact with the illness inflation factor, the plot shows a steeply decrement in 

illness inflation factor for frequent exposures (daily and weekly) as dose increases, a 

less steeply decrement was also recorded for monthly exposure with increasing dose 

as well. Nevertheless, the illness inflation factor does not respond sensitively to 

infrequent exposures (semi-yearly and yearly) as compared to the frequent exposures 

for increasing dose. Figure 5.3 confirmed that exposure frequency do have impact on 

the inflation factor of illness and contributes to its prediction of illness incidence with a 

loss of either partial or full immunity into the susceptible compartment. 

 

Figure 5.3: Illness inflation factor (tau) as a function of force of infection depending on 

dose and exposure intensity for Norovirus for parameters [ ]0.1α ∼ , [ ] 42.42 8.44 10Xγ −−∼  
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5.3.2 Dose Response (DRI) Models for Incidence of illness with Frequency of Exposure 

In this thesis, the impact of temporary induced immunity and dose-dependent factors 

for incidence of illness DRI models are compared to the naïve and dose models 

currently in use. It’s worth noting that, the estimated parameters describing the range 

of values for loss of full and partial immunity were used as a function of illness inflation 

factor to estimate the incidence of illness in DRI models. 

From Figure 5.4 to Figure 5.7, the various DRI models have striking effect on the 

estimated incidence risk given exposure, as the illness incidence are strongly reliant 

on the dose levels, besides the impact of illness is dependent on the different 

frequency exposures as well as the characterisation of the DRI model with respect to 

whether there is an inclusion of immunity or not.  

Results show (Equation 5.8), the naïve DR incidence model (Figure 5.4) increases 

sharply with increment in dose level and therefore highly sensitive to frequent 

exposure (daily and weekly exposures) whiles infrequent exposures also directly 

responded, however, with less impact. On dose DRI model (Figure 5.5) resulted from 

equation 5.23, there is a slight decrease in illness incidence for infrequent exposure 

(Monthly, Semi-yearly and yearly) whereas the decrease is sharp with increasing dose 

level for the frequent exposure (daily and weekly exposures).  
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For immunity (Equation 5.19) DRI model (Figure 5.6), the frequent exposure (daily and 

weekly) have a higher incidence level at low dose and decreases monotonically with 

increasing dose, nevertheless, for infrequency exposures (monthly, semi-yearly and 

yearly), illness incidence increases with increasing dose levels.  

For dose-immunity (Equation 5.24) DRI model incidence (Figure 5.7) reaches 

maximum, the model has a higher incidence of illness at lower dose and at a 

frequent exposure level. Clearly, at a lower dose, the illness incidence is mostly 

dependent on the DRI model, thus dose-immunity DRI model exhibits a higher illness 

incidence reduction than the rest of the models, it is also influence by the frequency 

of exposure, the more frequent exposure, the higher the level of illness incidence 

reduction.  

Illness incidence reduction is impacted significantly for DRI models with immunity 

inclusion and exhibits a less prominent of increasing effect of dose on incidence of 

illness at a higher dose levels. Generally, DRI models for risk estimates with immunity 

inclusion are approximately 2 logs lower than those without immunity included for 

Norovirus, and confirms a similar case for C. jejuni illness incidence reduction 

(Havelaar and Swart, 2014)on the prediction that, the current use of probable risk of 

illness (naïve and dose incidence DRI models approach) overestimate the true 

incidence of risk of illness.  
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Figure 5.4: illness Incidence for Naïve Dose Response Incidence Model 

 

Figure 5.5: illness Incidence for Dose DRI  Model 
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Figure 5.6: illness Incidence for Immunity Dose Response Incidence Model 

 

Figure 5.7: illness Incidence for Dose-immunity Dose Response Incidence Model 
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5.4 Illness Scenarios model Implementation with Norovirus Epidemiological Data 

In this section, examination of simulated results on temporary immunity dose response 

models shall be carried out, population dynamics shall be integrated into the model 

to describe various scenarios, the scenarios model will be adopted from 

epidemiological studies on Norovirus across all different clinical transmissions, (Huynen 

et al., 2013; Simmons et al., 2013). The models will keep track of the following groups in 

the population: Symptomatic infectiousness, pre and post symptomatic infectiousness 

low and high, innate genetic resistance, geno-group type 4. Duration of induced 

immunity has been inconsistent from different studies(Simmons et al., 2013; Atmar, 

2010; Frenck et al., 2012; Hamilton et al., 2006) especially in the case of Norovirus 

which has been believed previously to be from 6 months to 2 years, yet rare studies is 

seen to include both the influence of acquired temporary immunity and the 

transmission dynamics of Nov in risk assessment. The inclusion of the different 

transmission dynamics (Figure 5.8) will help to have an idea on how these dynamics 

within the population could influence risk assessment given its immunity influence on 

the different illness incidence reduction dose response models. 
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Figure 5.8: Modified Schematic overview of population dynamics of immunity states 

of Norovirus (Simmons et al., 2013) 

Figure 5.8 describes an epidemiological model of modified Maternal Susceptible 

Exposed Infected Exposure (MSEIIR model) to describe Norovirus infectiousness in a 

population. Five different Nov transmission scenarios described below within the 

population adopted for estimating the illness inflation factor.  

5.4.1 Scenario Description for Epidemiological Norovirus Transmission Dynamics in a 

Population 

The various scenarios are described below; 
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• Symptomatic Individual Infectious 

Only symptomatic individuals are infectious. This comprises individuals in the 

population under the assumption that all exposed individuals are susceptible to 

Norovirus infection and none is genetically resistance. It is worth noting that, naïve 

model dose not relates to symptomatic individuals infectiousness, the earlier refers to 

estimation of risk without inclusion of temporary acquired immunity.  

• Pre-symptomatic and Post-symptomatic infectiousness (Low)  

Pre-symptomatic persons in compartment (E)  are individual Exposed but yet to be 

symptomatic of the infection (Ozawa et., 2007; Simmons et al., 2013; Sukhrie et al., 

2012; Sukhrie et al., 2010; Teunis et al., 2014). 

• Pre-symptomatic and Post-symptomatic infectiousness (High) 

In this scenario, individuals exposed in the compartment (E) of the mathematical 

epidemiological model and asymptomatic compartment (Teunis et al., 2014). 

• Scenario D: Innate Genetic Resistance 

This is based on the assumption that part of the population is completely resistant to 

infection and diseases (G), thus they possess the non-secretor phenotype and plays 

no role in transmission process, however, they do make contact with persons included 

in empirical incidence estimate (Frenck et al., 2012). This is also different from 

immunity model or dose-immunity models; the innate genetic resistance is the 
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inclusion of individuals whose genetic make-up excludes them from infectiousness, 

yet forms part of the population. 

Scenario E: Genogroup 2 Type 4 (GII.4) 

Model scenarios A to D assume all NoV to be anti-genetically indistinguishable. In this 

scenario, it is assumed that only GII4 are infectious. The incidence of GII.4 is estimated 

based on values from (Vega et al., 2011; Huynen et al., 2013; Nordgren et al.,  2010) 

;Frenck et al., 2012) (Simmons et al., 2013) 

• Scenario F: No Immune Boosting by Asymptomatic Infection 

Persons do not travel from recovery (R) compartment to asymptomatic (A) 

compartment. The only pathway out of the recovery compartment is through waning 

of partial immunity to become susceptible (S) again.  

Data input for modelling scenarios based on epidemiological studies are as shown in 

Table (5.2). 
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Table 5.2: Norovirus Epidemiological Data for Population Dynamics Immunity Modelling  

 

Parameter Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F 

Loss of full immunity(α per year) 0.1 0.1 0.1 0.1 0.1 0.1 

Loss of partial immunity  (γ per 

year ( )410X −  

4.22 7.02−  4.12 6.85−  2.42 4.02−  5.39 8.44−  3.42 4.91−  4.17 7.02−  

Duration of incubation sµ  

(days) 

1 1 1 1 1 1 

Duration of asymptomatic 
infection ρ  (days) 

10 10 10 10 10 10 

Duration of symptoms aµ  

(days) 

2 2 2 2 2 2 

Relative infectiousness during 
asymptomatic infection period 

0 0.05 0.25 0 0 0 

Relative infectiousness during 
incubation period 

0 0.05 0.25 0 0 0 

Strains Included All All All All GII.4 All 

Boosting of immunity by 
asymptomatic infection 

Yes Yes Yes Yes Yes No 

Total Exposure for Annual 
quantification  (days) 

1-365 1-365 1-365 1-365 1-365 1-365 
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The infection probability for 
subjects with disaggregated 
dose (P) 

0.722 0.722 0.722 0.722 0.722 0.722 

Parametric mean dose ( )aµ  1106 1106 1106 1106 1106 1106 

Dose response parameters for 
illness given infection( ,r η ) 

0.086, 

2.60E-03 

0.086, 

2.60E-03 

0.086, 

2.60E-03 

0.086, 

2.60E-03 

0.086, 

2.60E-03 

0.086, 

2.60E-03 

Life Expectancy A (years) 63 63 63 63 63 63 

Parameter values (Simmons et al., 2013; Sukhrie et al., 2012, 2010; Tribble et al., 2010)  
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5.4.2 Applied Induced immunity model of Dose-Response Models for Consumers 

Exposure 

In this section, consumers’ exposure to Norovirus is modelled based on the dose-

response immune induced models presented earlier, and characterized based on 

the Nov transmission dynamic scenarios presented in Section 5.4.1.  Parameters 

describing the modelling process of the applied induced immunity model are given in 

Table 5.3 

Table 5.3: Parametric Values for Model Implementation 

Parameter Description Estimate Estimate Value(s) Reference 

infP  Probability of infection  Calculated7  Equation 5.61 

d  
Arithmetic Mean Dose per 
exposure per occasion Variable 

( )aµ  Parametric Mean dose 1106 (Teunis et al., 2008) 

P  

The infection probability for 
subjects with disaggregated 
dose 0.722 

(Messner et al., 
2014) 

illP  Probability of illness Calculated Equation 5.8 to 5.24  

infillP  
Probability of illness given 
infection Calculated 

(Havelaar and 
Swart, 2014) 

N  Population 2.50E+07 
Population 

pyramids (2015) 

E  Total Exposure Calculated  [208.365]~[286.5] (Seidu et al. 2008, 

                                                      
7
 Calculated values are based on the equations derived in the study and simulated to generated random numbers fitting 

onto a distribution. 
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Mara et al. 2010) 

,ω η  
Dose response parameters 
for illness given infection  0.086, 2.60E-03 (Teunis et al., 2008) 

α  Loss of full immunity Calculated 

Values for different 
epidemiological 
scenarios refer 

(Table 5.1 

(Simmons et al., 
2013) 

γ  Loss of partial immunity Calculated Equation 5.11 

λ  Force of infection Calculated Equation 5.11- 

τ  Inflation factor  Calculated Equation 5.12 

 

Assigning a uniform distribution to the loss of full and partial immunity to characterise 

its influence on the immunity-DR models, estimation of illness incidence for the various 

transmission dynamics scenarios is therefore presented here with the Norovirus 

transmission dynamics using equations 5.8, 5.19, 5.23 and .5.24. 

The transmission dynamics in all scenarios had illness incidence for dose-immunity DRI 

model within 8 71 10 1 10− −× − ×  , immunity DRI model also falls within 6 31 10 1 10− −× − × , dose 

DRI model also falls within 5 21 10 1 10− −× − ×  and Naïve DRI model falls within 1 01 10 1 10− −× − ×

The estimated difference for the dose-immunity DRI model and naïve DRI model is 

approximately close to 8 logs of magnitude, whiles, dose-immunity and dose DRI 

model also has a difference of approximately 6 logs of magnitude (Figure  5.9, 5.10, 

5.11, 5.12, 5.13, 5.14).  The individual illness incidence decreases from naïve, dose-

model, immunity model and dose-immunity model.  
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The illness incidence risk estimate for various acquired immunity-incorporated dose 

models (dose-immunity, immunity) for all the transmission dynamic scenarios gives a 

much lesser estimation of risk as compare to the naïve and dose-model approach 

currently in use (Figure 5.9, 5.10, 5.11, 5.12, , 5.13, 5.14).  Moreover, there is a significant 

change in log magnitude of illness incidence estimation among all dose response 

models and across all transmission dynamics with or without immunity inclusion.  

 

 

Figure 5.9: Illness Incident Reduction Models for ‘Symptomatic infectiousness’ of 

Norovirus per Person per Year 

1
E
-0

0
8

1
E
-0

0
7

1
E
-0

0
6

1
E
-0

0
5

1
E
-0

0
4

1
E
-0

0
3

1
E
-0

0
2

1
E
-0

0
1

1
E
+

0
0
0

C
u
m

m
u
la

ti
v
e
 P

ro
b
a
b
ili

ty



154 

 

 

Figure 5.10: Illness Incident Reduction Models for ‘Pre-Symptomatic and Post-

Symptomatic  infectiousness Low’ of Norovirus per Person per Year 

 

Figure 5.11: Illness Incident Reduction Models for ‘Pre-Symptomatic and Post-

Symptomatic  infectiousness High’ of Norovirus per Person per Year 
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Figure 5.12: Illness Incident Reduction Models for ‘Innate Genetic Resistance’ of 

Norovirus per Person per Year 

 

Figure 5.13: Illness Incident Reduction Models for ‘Genogroup II Type 4’ of Norovirus 

per Person per Year 

1
E
-0

0
8

1
E
-0

0
7

1
E
-0

0
6

1
E
-0

0
5

1
E
-0

0
4

1
E
-0

0
3

1
E
-0

0
2

1
E
-0

0
1

1
E
+

0
0
0

C
u
m

m
u
la

ti
v
e
 P

ro
b
a
b
ili

ty

1
E
-0

0
8

1
E
-0

0
7

1
E
-0

0
6

1
E
-0

0
5

1
E
-0

0
4

1
E
-0

0
3

1
E
-0

0
2

1
E
-0

0
1

1
E
+

0
0
0

C
u
m

m
u
la

ti
v
e
 P

ro
b
a
b
ili

ty



156 

 

 

Figure 5.14: Illness Incident Reduction Models for ‘No Immune Boosting after 

Asymptomatic Infection’ of Norovirus per Person per Year 
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immunity protection for the probability of illness given infection, the dose-immunity 

DRI model has 7 logs, 5 logs and 3 log (in most cases) of magnitude less to the naïve 
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show a difference. The difference in the illness incidence DRI models is not sensitive to 

the epidemiological scenarios, thus, Norovirus transmissions dynamics does not affect 

the various DRI models predictions. In all cases, the immunity DRI model and the dose-

immunity DRI models resulted in significant lower levels of illness as compared to naïve 

and dose-DRI models (Table 5.4). A comparison difference of 7 logs of magnitude 

exists for dose-immunity and naïve DRI models for all epidemiological transmission 

dynamics, 5 logs, and 3 logs differences for dose-immunity and dose-DRI model, 

immunity DRI model respectively. Though the DRI models exhibit no differences in 

terms of logs magnitude of incidence estimates of illness among the transmission 

dynamics (with the exception of immunity dose model which had 1 log less for pre-

symptomatic and post-symptomatic low), there exist some differences in terms of 

values which can translate into logs magnitude difference when the estimate is 

extended for a large population. Furthermore, there is no difference for all DRI models 

of the transmission dynamics of symptomatic infectiousness’ and the ‘no immune 

boosting after asymptomatic infectiousness’ this confirms Teunis et al., (2014) study 

indicating, shedding of virus is similar for both symptomatic and asymptomatic 

infectiousness, however, it is also worth noting, some differences exist between studies 

for shedding of virus of infected subjects (Atmar et al., 2008), this differences is 

attributed to genotype studied, nevertheless, the difference in numbers shed could 

not have clinical significance, hence such indifference in risk estimate of illness 

incidence as seen is not unusual (Teunis et al., 2014). 
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Table 5.4: Annual Individual risk of Illness for Dose-Response Models with 

Epidemiological Scenarios of Norovirus 

Scenarios/Models Naïve 

Model 

Immunity 

Model 

Dose 

Model 

Dose-Immunity 

Model 

Symptomatic Individual Infectious 13.09 10−×  51.51 10−×  31.21 10−×  85.7 10−×  

Pre-symptomatic and Post-
symptomatic infectiousness (Low) 

13.09 10−×  51.47 10−×  31.19 10−×  85.65 10−×  

Pre-symptomatic and Post-
symptomatic infectiousness (High) 

13.09 10−×  68.76 10−×  31.20 10−×  83.32 10−×  

Innate Genetic Resistance 13.09 10−×  51.87 10−×  31.21 10−×  87.11 10−×  

Genogroup 2 Type 4 (GII.4) 13.09 10−×  51.12 10−×  31.19 10−×  84.29 10−×  

No Immune Boosting by 
Asymptomatic Infection 

13.09 10−×  51.51 10−×  31.21 10−×  85.77 10−×  

 

Population Risk Estimate 

In order to estimate for an approximate population of 25million total population for 

Ghana, range of values characterising the transmission dynamics to estimate the 

illness incidence in population with varying loss of partial and full immunity, shows a 

significant decrease in illness incidence considering at different percentage level. 

According to results (Appendix B, See basic statistics results, and output distributions), 

the illness incidence level saw a decrease when dose-immunity or immunity DRI 

model is used instead of dose model or naïve model, and hence by incorporating the 

effect of the immunity and dose-dependent lead to a further approximately logs 

magnitude of less prediction of illness incidence in the population. 
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5.5 Daily Adjusted Life Years (DALYs) with immunity incorporated DR models for 

different transmission dynamics for Norovirus 

Estimating the annual risk of infection or illness with temporary immunity dose response 

models can be translated into estimating the overall DALY across transmission 

dynamics as follows: 

( )_
1

1 1 1
E

ill k i
i

P Q
=

 = − − − 
 

∏      5.25 

Where E  is the total exposure and Q is illness incidence per exposure, hence 

For Naïve DRI model 

( )( )( )_ inf
1

1 1 1
E

ill naive i
i

P P dϕ
=

 = − − − 
 

∏     5.26 

Immunity DRI Model 

( )( )( )_ inf
1

1 1 1
E

ill immunity i
i

P P dτϕ
=

 = − − − 
 

∏     5.27 

Dose DRI Model 

( )( ) ( )( )( )_ inf
1

1 1 1 1 1
E

ill immunity
ii

P d P d
ωη −

=

 = − − − − + 
 

∏    5.28 

Dose-Immunity DRI Model 

( )( ) ( )( )( )_ inf
1

1 1 1 1 1
E

ill dose immunity
ii

P d P d
ωτ η −

−
=

 = − − − − + 
 

∏    5.29 

Therefore, the Daily Adjusted life years is estimated as  

( )_
1

1 1 1
E

ill k i
i

P Q B
=

 = − − − 
 

∏      5.30 
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Where k, is the DRI model used for the estimation, B is the diseases burden within the 

population 

Daily Adjusted Life Years, which measures the diseases or health conditions of people 

as the sum of the years of life lost, due to premature mortality and disability (WHO, 

2015). The DALY for the various DRI models across the transmission dynamics follows 

similar patters as the risk estimate of individual illness incidence. In all scenarios, the 

dose-immunity DRI model falls within 11 91.0 10 1.0 10− −× − × DALY pppy, Immunity DRI 

model also falls within 9 61.0 10 1.0 10− −× − × DALY pppy, the dose DRI model falls within 

8 41.0 10 1.0 10− −× − × DALY pppy and the naïve DRI model falls within 5 21.0 10 1.0 10− −× − ×

DALY pppy (Figure 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20). 

 

Figure 5.15: DALY for ‘Symptomatic Infectiousness’ transmission dynamics 
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Figure 5.16: DALY for ‘Pre-Symptomatic Post Symptomatic Infectiousness Low’ for 

transmission dynamics 

 

Figure 5.17: DALY for ‘Pre-Symptomatic Post Symptomatic Infectiousness High’ for 

transmission dynamics 
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Figure 5.20: DALY for ‘No Immune Boosting by Asymptomatic Infection’ for 

transmission dynamics 

The median DALY estimate, puts all scenarios describing the transmission dynamics 
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Table 5.5: DALY(s) for Dose-Response Models with Epidemiological Transmission 

Dynamics of Norovirus 

Scenarios/Models Naïve 

Model 

Immunity 

Model 

Dose 

Model 

Dose-Immunity 

Model 

Symptomatic Individual Infectious 13.09 10−×  51.51 10−×  31.21 10−×  85.7 10−×  

Pre-symptomatic and Post-
symptomatic infectiousness (Low) 

13.09 10−×  51.47 10−×  31.19 10−×  85.65 10−×  

Pre-symptomatic and Post-
symptomatic infectiousness (High) 

13.09 10−×  68.76 10−×  31.20 10−×  83.32 10−×  

Innate Genetic Resistance 13.09 10−×  51.87 10−×  31.21 10−×  87.11 10−×  

Genogroup 2 Type 4 (GII.4) 13.09 10−×  51.12 10−×  31.19 10−×  84.29 10−×  

No Immune Boosting by 
Asymptomatic Infection 

13.09 10−×  51.51 10−×  31.21 10−×  85.77 10−×  

5.6 Summary 

This chapter presented various dose-response models for Norovirus, where the impact 

of the illness incidence was determined based on whether the dose-response models 

were based on immunity or dose-dependent probability. For immunity included dose-

response models, illness incidence was low, whereas for dose-dependency models, 

the illness incidence shifted and a steep rise is observed. The naïve DRI model 

increases monotonically with increasing exposure frequency. The influence of 

pathogen dose was evident. At a low pathogen dose level, the illness incidence is 

affected by the choice of the DRI model (thus whether the model has induced 

immunity included or not), while at high pathogen dose, the impact of immunity 

protection dominates. Applying the models to the Norovirus data, all epidemiological 
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scenarios had the same trend of movement of the various dose-response models, 

and individual and population level of illness incidence reduction was much better 

measured by the dose-immunity DRI model, followed by the immunity DRI models. The 

study recorded a difference of 7 logs of magnitude less when the dose-immunity DRI 

model is used compared to the naïve model, whiles a 4 log of magnitude less is 

recorded if immunity alone is integrated to get the immunity DRI model as compared 

to the naïve model across all the transmission dynamics. Applying the DALY showed a 

similar trend of DRI models across all transmission dynamics of NoV. The immunity 

incorporated models tend to predict a lower incidence all year round, while the non-

immunity incorporated models do not. It was also found that, the immunity 

dependent models (immunity and dose-immunity models) meet the WHO standard 

of 41.0 10X − . Besides the dose-immunity DRI model meets the more stringent WHO 

standard target of 61.0 10X − in all NoV transmission scenarios. It is worth noting that, the 

transmission dynamics of NoV influence on predicting risk estimate is similar in all 

scenarios and tends to have a minimal difference in terms of values for each 

scenario. 
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CHAPTER 6 

STATISTICAL MEASUREMENT MODELING FOR UNCERTAINTY QUANTIFICATION OF LOW 

QUALITY WATER EFFLUENT DISCHARGE 

6.1 Introduction 

This section presents measurement of uncertainty quantification for Waste 

Stabilization Pond (WSP) effluent discharge as against policy standard values for such 

discharge. In risk assessment for microbial pathogens, there is a strong correlation 

between risk estimates and the pathogen concentration in wastewater. Moreover, 

strong correlation also exists between physico-chemical parameters and pathogen 

concentrations as well. Total coliform count reveals an existence of strong positive 

association with temperature, turbidity, pH and alkalinity. Chloride, fluoride and 

Dissolve Oxygen (DO) are negatively correlated with total coliform count (Maheepal 

and Singh, 2014). In most cases significant positive correlation is observed between 

pollution indicator bacteria and pathogenic bacteria which may imply their co-

presence.  

The study integrates the use of policy standards and acceptable compliance level 

based on design model of WSP to establish refer charts for some physico-chemical 

and biological parameters measure for discharge effluents from WSP and treatment 

plants. Also, the study established the need for such a chart as a guide to monitor 

effluent discharge parameter values and help in controlling pathogenic 
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concentration reduction as a result of discharging effluents either onto streams or for 

irrigation purposes based on accepted Environmental Protection Agency (EPA) 

standards in Ghana.  

6.2 Modelling Statistical Framework for Reliability 

Several studies have defined reliability as the ability to perform the specified 

requirements free from failure (Niku et al.,1979) e.g. the percentage of times a 

wastewater treatment plant complies to discharge standards (Mcbride and Ellis, 2001; 

McBride, 2003; Smith et al., 2001). The WSPs will be completely reliable if the process 

performance does not violate the target standards of the regulatory bodies 

specifications (Oliveira and Von Sperling, 2008). Mathematically, 

                    Failure effluent concentration effluent requirements= >                         6.1 

A risk of failure is always unavoidable, hence  

               ( )1Reliability P failure= −                             6.2 

From equation 6.1, equation 6.2 becomes 

     ( )1   Reliability P effluent concentration effluent requirements= − >       6.3 

 

In measuring the effluent discharge, a suitable distribution function to describe such 

effluent discharge is the use of lognormal distribution (Niku et al., 1979). The lognormal 

distribution owning to its deviation in symmetry measured by the skewness coefficient, 
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has positive skewness since there is usually a lower bound for effluent concentration, 

but there are no upper bounds. 

 

Let ( )1 2, ,..., nX X X X= be a random variable effluent quality values of physic-

chemical/biological property of low quality water having a lognormal distribution and 

µ  and 2σ  respectively denoted the mean and the variance of Y where

( ) ( )2ln ,Y X N µ σ= ∼ . The probability density function of the lognormal distribution is  

                                             ( )
( )2

2 2

ln1
exp

, , ; for 022

0                           ; for 0

x

f x x

µ
µ σ σσ π

  −
 − 

 = >  


≤

                       6.4 

 

       

The mean for the lognormal population is ( ) ( )2
exp 2E X σµ= + where ( )E X  denotes 

the expectation of X . For a known arithmetic mean and standard deviation of the 

effluent discharge values, then the location parameters can be determined, thus 

[ ]
[ ]( )

2 2
ln 2

ln 1x

Var X

E X
σ σ

 
 = = +
  
 

 and [ ]( ) [ ]
[ ]( ) [ ]( ) 2

ln 2

1 1
ln ln 1 ln

2 2x

Var X
m E X E X

E X
µ σ

 
 = = − + = −
  
 

, 

Hence at different location parameter values, the probability density function and 

the cumulative density function are as shown. 
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Figure 6.1: The probability density function and the cumulative density function of the 

log-normal distribution. Hence the density function for effluent quality is given as  

                                    ( )



2

lnln

1 1 1
exp ln  0

22
x

x xx

x
f x x

mx σσ π

   − = ≥   
     

                                   6.5 

Where x  represents effluent variable concentration, ln xσ  represents standard 

deviation of the natural logarithm of X and  
xm    represents mean of x . For the ��� 

moment about the origin in the moment generation function. 
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                                                 6.6 

Where [ ] xE X m= and [ ] xVar X σ= , thus equation (6.6) is the mean and variance of the 

original data of effluent discharge. Re-arranging equations 6.6 accounting for the 

relationship of parameters of probability density function of lognormal distribution in 

terms of moment of variable � leads to; 

                                                        

2
2
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                                                         6.7 

Where ln xm  is the average natural logarithm of X 

The maximum likelihood estimation of parameters for the log-normal distribution 

parameters is represented by  

( ) ( )ln ln
1

1
, , ln ; ,

n

L x x N x x
i i

f x m f x m
x

σ σ
=

 
= =  

 
∏ , Lf

  

denotes the probability density function of the distribution and Nf that of the normal 

distribution, hence the log-likelihood function 
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      ( )ln 1, ,...,L x x nl m x xσ
 

( )ln 1ln , ln ,..., lni N x x n
i

x l m x xσ= − +∑
 

( )ln 1, ln ,..., lnL x x nl m x xϖ σ= +   

hence it holds that, the logarithmic likelihood function reaches their maximum for 

mean and variance as;  

�
ln i

i
x

x
m

n
=
∑

 

�
( )2

2

ln i x
i

x m

n
σ

−
=
∑

 

For some probability of failure at α the lognormal distribution will have a property of 

X , thus 

        ( ) 1sP X X α≤ = −                                                 6.8 

Where sX is the effluent concentration standard fixed for policy assessment. Hence 

choosing the parameters of the lognormal distribution, equation 6.7 becomes 

                  ln

ln

ln
1s x

x

X m
P Z α

σ
 −≤ = − 
 

                                     6.9 

The standard Z  normal distribution can also be defined from equation 6.10 as  

                       ( )1 1P Z Z α α−≤ = −                                               6.10 
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Hence at reliability level of 1 α−  of a failure level of α , a known standard of effluent 

concentration level could be calculated given a coefficient of variation, the 1Z α−  

values are as shown in Table 6.1 for the cumulative probability at (1 )α−  and its 

percentiles. 

Table 6.1: Values of Standard Normal Distribution 

Cumulative Probability 1 α−  Percentiles 1Z α−  

50 0.000 

60 0.253 

70 0.525 

80 0.842 

90 1.282 

92 1.405 

95 1.645 

98 2.054 

99 2.326 

99.9 3.090 

 

It should be noted that, the higher the normal variate value the higher the 

corresponding compliance level (cumulative probability). Hence substituting 

equation 6.7 (mean and variance) into equation 6.9 leads to; 
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                                            6.11 

Making the mean value the subject of equation 6.11 becomes 

                                     ( ) ( )
1 1

2 22 2
11 exp ln 1x x x sm V Z V Xα−

     = + − +      
                                       6.12 

By simplification, equation 6.12 results 
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                                                6.13 

The statistical parameters used in the reliability to relate the mean constituent value 

xm  to standard sX defines the coefficient of variation (CV) as xV  

                                                               x
x

x

V CV
m

σ= =                                                            6.14 

From equation 6.12, the Coefficient of Reliability (COR) is given as 

( ) ( )
1 1

2 22 2
11 exp ln 1x xCOR V Z Vα−

     = + − +      
                                     6.15 

Putting equation 6.14 into equation 6.15 

                                     ( ) ( )
1 1

2 22 2
11 exp ln 1COR CV Z CVα−

     = + − +      
                       6.16 
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The COR  values are obtained as a function of coefficient of variation and reliability 

level, the different values of the coefficient of variation depends on the different 

mean and standard deviation parameters. Hence equation 6.16 becomes 

                                                              x Sm COR X=                                                              6.17 

Where  SX  is the effluent quality standard;  

COR   is the coefficient of reliability, and xm is the mean effluent concentration 

needed to achieve a certain compliance level of effluent quality standard. 

 

6.3 Results on Statistical Measurement Modelling for Uncertainty Quantification 

6.3.1 Simulated Results for Coefficient of Reliability 

Simulated results indicate influences of coefficient of reliability as a function of 

coefficient of variation and normal-variate values show that, a lower coefficient of 

reliability is dependent on the high normal-variate value which signifies a lower failure 

rate and a high coefficient of variation. As shown in Figure 6.2, the CV values are 

inversely related to the COR values, nevertheless, the CV values are directly related 

to the normal variate values that measure the reliability. 
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Figure 6.2: Simulated Coefficient of Reliability values 

6.3.2 Results on Application of Development Reference Charts 

Result of effluent discharge compliance and performance are much to be desired, 

when the effluent discharge is compared to the fixed standard value only and where 

it is assume that discharge concentration is less than the standard value. The 

performance is good and indicates a better compliance level of the WSPs. However 

with inclusion of reliability and compliance levels, the reference chart developed 

(Table 6.2 (See Appendix C also)), such an assumption is not always true. 

From the developed chart, the required standard of effluent discharge concentration 

of BOD5 or TSS is 50mg/L (EPA, Ghana Standard). If a sample taken from a specified 

WSP gives a mean effluent quality of 48.00 and with standard deviation of 14.4, will 
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have a CV value of 0.3, as indicated in Table 6.2 corresponds to a compliance level 

(COR) of 0.6 (60%) i.e.  less than the required less stringent compliance level of 0.8 

(80%) for WSPs (Oliveira and Von Sperling, 2008), This is despite the fact that the mean 

effluent concentration from the WSP as compared to the EPA standard falls below 

the standard value of 50mg/L  and can be classified as a good discharged value. 

Nevertheless, the WSP is underperforming, its effluent discharge value is just less than 

that of a compliance level of 0.60, hence its compliance level is below what’s 

generally accepted (even in a less stringent level of 0.80). Such information, if 

available can trigger a further check to be done to identify the segment of the 

wastewater stabilization pond (Anaerobic, facultative and maturation) that is 

underperforming, which could support the routine maintenance of the ponds. 

The same procedure could be used by comparing the expected mean effluent 

concentration of the segments of the pond to its samples using its design 

compliance. Hence finding the compliance level of effluent to check for 

malfunctioning of pond segments, this is necessary due to the different expected 

work to be done by each segment to enhance the maintenance of the ponds 

regularly. Nonetheless, a critical look should be taken because CV values directly 

relate to reliability and inversely to COR values, the CV value with high standard 

deviation and lower mean of an effluent can have the same value as a CV of high 

mean and low standard deviation value of an effluent, the later shows a more 
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consistent discharge as shown in Table 6.2. This shows that, a lower value of CV does 

not necessarily indicate better results. 

Moreover, with the use of the developed charts (Appendix C)for various parameters 

of WSPs in Ghana, once an effluent concentration average is known and its 

compliance level at design is also known, a quick reference point can be made to 

find what was expected to be discharging and compare to its current discharge to 

be assure of its compliance without necessary comparing it to fixed standard values. 

These reference charts were developed to serve as reference points in assessing the 

various characteristics of compliance and performance of WSPs in Ghana. Table 6.2 

to 6.3 (See Appendix C for the rest) are intended to make it easier to assess the 

performance of WSPs and its corresponding reliability and compliance level without 

going through the task of using the log-normal procedure as shown above. 
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Table 6.2: Reference Chart of Compliance of Mean Effluent Discharge of BOD5,TN and TSS for 50mg/L and 

Trichloroethylene, Benzene for 50 µg/l 

 

 

 

                   

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 

50% 50.00 50.25 50.99 52.20 53.85 55.90 58.31 61.03 64.03 67.27 70.71 78.10 86.02 94.34 102.96 111.80 134.63 158.11 

60% 50.00 49.00 48.50 48.46 48.85 49.60 50.68 52.02 53.59 55.36 57.28 61.50 66.09 70.94 75.96 81.11 94.30 107.71 

70% 50.00 47.69 45.95 44.75 43.99 43.62 43.58 43.81 44.26 44.89 45.67 47.57 49.78 52.21 54.78 57.44 64.30 71.28 

80% 50.00 46.20 43.16 40.77 38.93 37.56 36.56 35.86 35.42 35.17 35.08 35.26 35.78 36.53 37.42 38.42 41.16 44.06 

90% 50.00 44.22 39.56 35.83 32.86 30.51 28.64 27.16 25.99 25.06 24.32 23.27 22.63 22.25 22.05 21.98 22.16 22.60 

92% 50.00 43.68 38.61 34.56 31.34 28.79 26.75 25.13 23.84 22.79 21.95 20.72 19.91 19.37 19.02 18.81 18.63 18.75 

95% 50.00 42.64 36.81 32.21 28.57 25.70 23.42 21.60 20.13 18.95 17.98 16.52 15.50 14.78 14.26 13.87 13.29 13.03 

98% 50.00 40.94 33.95 28.56 24.41 21.19 18.67 16.68 15.10 13.83 12.79 11.22 10.12 9.32 8.72 8.26 7.47 7.00 

99% 50.00 39.84 32.17 26.37 21.98 18.63 16.05 14.05 12.47 11.21 10.20 8.68 7.63 6.86 6.29 5.85 5.10 4.64 

999% 50.00 36.92 27.65 21.07 16.38 12.99 10.51 8.67 7.29 6.22 5.40 4.22 3.44 2.90 2.51 2.22 1.74 1.45 
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Table 6.3: Reference Chart of Compliance of Mean Effluent Discharge of TP for 2.0mg/L

 Coefficient of Variation 

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 2.00 2.01 2.04 2.09 2.15 2.24 2.33 2.44 2.56 2.69 2.83 3.12 3.44 3.77 4.12 4.47 5.39 6.32 7.28 8.25 

60% 2.00 1.96 1.94 1.94 1.95 1.98 2.03 2.08 2.14 2.21 2.29 2.46 2.64 2.84 3.04 3.24 3.77 4.31 4.85 5.39 

70% 2.00 1.91 1.84 1.79 1.76 1.74 1.74 1.75 1.77 1.80 1.83 1.90 1.99 2.09 2.19 2.30 2.57 2.85 3.13 3.41 

80% 2.00 1.85 1.73 1.63 1.56 1.50 1.46 1.43 1.42 1.41 1.40 1.41 1.43 1.46 1.50 1.54 1.65 1.76 1.88 2.00 

90% 2.00 1.77 1.58 1.43 1.31 1.22 1.15 1.09 1.04 1.00 0.97 0.93 0.91 0.89 0.88 0.88 0.89 0.90 0.93 0.95 

92% 2.00 1.75 1.54 1.38 1.25 1.15 1.07 1.01 0.95 0.91 0.88 0.83 0.80 0.77 0.76 0.75 0.75 0.75 0.76 0.77 

95% 2.00 1.71 1.47 1.29 1.14 1.03 0.94 0.86 0.81 0.76 0.72 0.66 0.62 0.59 0.57 0.55 0.53 0.52 0.52 0.52 

98% 2.00 1.64 1.36 1.14 0.98 0.85 0.75 0.67 0.60 0.55 0.51 0.45 0.40 0.37 0.35 0.33 0.30 0.28 0.27 0.26 

99% 2.00 1.59 1.29 1.05 0.88 0.75 0.64 0.56 0.50 0.45 0.41 0.35 0.31 0.27 0.25 0.23 0.20 0.19 0.17 0.16 

99.9% 2.00 1.48 1.11 0.84 0.66 0.52 0.42 0.35 0.29 0.25 0.22 0.17 0.14 0.12 0.10 0.09 0.07 0.06 0.05 0.05 
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6.3.3 Statistical Measurement of Performance Based on Reference Chart 

 This study used two plants (KNUST waste stabilization pond, Ahinsan Waste 

Stabilization pond data from 2009 student projects). From the comparison of the 

various discharge qualities to the standards of EPA, it is very evident that, some of the 

parameters for the KNUST plant do not conform to EPA standards (Table 6.4). Though 

some  exceptions like the temperature (24.66), TN (10.83),  TC(79.69), pH (6.78) and 

turbidity (59.69) level, which recorded a lower discharge values than the EPA 

standard, all other parameters such as TSS (51.53), TP (12.2), BOD5 (81.75) and E.coli 

(26.50) were higher than the standard. In contrast, the Ahinsan WSP was performing 

better in terms of discharge values than the KNUST plant. This WSP had most of its 

effluent discharge values lower than the EPA, which included; temperature (26.6), pH 

(7.3), TN (0.01), Ammonia (0.36), BOD5 (38), COD (99), Conductivity (484), TDS (242). 

The performing discharge values of the Ahinsan WSP is attributed to some form of 

maintenance during the trial work of aqua-culture in the ponds, whereas, the KNUST 

plant did not receive any form of maintenance over quite a number of years, which 

can explain its under-performance.  
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Table 6.4: Effluent Discharge Values and the EPA standard 

Parameter EPA standard KNUST Plant Ahinsan WSP 

Temperature (0C) < 30 24.66 26.60 

pH 6 – 9 6.78 7.30 

TSS (mg/L) 50 51.63 52.00 

TP (mg/L) 2 12.20 6.10 

Turbidity (NTU) 75 59.69 - 

TN (mg/L) 50 10.83 0.01 

Ammonia/Ammonium 

(mg/L) 

1 - 0.36 

BOD5 (mg/L) 50 81.75 38.00 

COD (mg/L) 250 - 99.00 

Conductivity (��/��) 750 - 484.00 

TDS (mg/L) 1500 - 242.00 

DO (mg/L) 1 - 0.80 

TC (MPN/100ml) 400  1.7x108 

E.coli (MPN/100ml) 10 26.50 7.1x105 

 

EPA’s Discharge Standards to be achieved in Operation Concentration 

The measured reliability of the KNUST treatment plant and Ahinsan WSP (Table 6.5) 

shows different compliance level of the discharge values to the standard values used 

for the design. Only two discharge values (TN; 98.65) and pH; 48.80 - 80.00) met the 
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less stringent design specification of 80.00 compliance on the KNUST plant and as well 

recorded an observed value less than its mean design concentration value (Table 

6.6). The different compliance levels of the actual effluent discharge were: 

Temperature (73.60), TSS (63.70), TP (1.70), Turbidity (75.20), BOD5 (63.30) and E.coli 

(31.90), and discharge values for temperature, pH, turbidity and TC were all lower 

than the EPA standards, but fall short of meeting the design compliance of 95 

percent.  

The Ahinsan WSP had five of its discharge values (TN, 99.90, Conductivity 98.30 

Ammonia, 96.70; COD, 95.20 and TDS, 98.20) conforming to the standard compliance 

of 95 percent compliance and achieving its observed effluent discharge being less 

than the mean design concentration with the required compliance level (Table 6.6), 

whereas the rest were not complying with the design compliance level. These 

included; Temperature (69.50), pH (48.00 to 74.20), TSS (64.10), TP (8.40), BOD5 (77.30), 

DO (74.90), TC (0.00) and E.coli (0.00). Again, temperature, pH, BOD5, conductivity 

and DO effluent discharge meet the EPA standard but its compliance level does not 

meet the design specification. 
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Table 6.5: Actual Mean Effluent Discharge, Reliability and its Compliance 

Parameters KNUST Treatment Plant AHINSAN WSP  

 Mean 

Effluent 

Discharge 

Reliability Compliance Mean 

Effluent 

Discharge 

Reliability Compliance 

Temperature (0C) 24.66 0.63 73.60 26.60 0.51 69.50 

pH 
6.78 

-0.03-

0.84 

48.8-80.0 
7.30 

-0.05-

0.65 

48.0-74.2 

TSS (mg/L) 51.63 0.35 63.70 52.00 0.36 64.10 

TP (mg/L) 12.20 -2.11 1.70 6.10 -1.38 8.40 

Turbidity (NTU) 59.69 0.68 75.20 - - - 

TN (mg/L) 10.83 2.21 98.65 0.01 17,09 99.90 

Ammonia/Ammo

nium (mg/L) - -  -  0.36 1.84 96.70 

BOD5 (mg/L) 81.75 0.34 63.30 38.00 0.75 77.30 

COD (mg/L) - - - 99.00 1.66 95.20 

Conductivity 

(��/��) 
- - 

- 
484.00 

2.12 

98.30 

TDS (mg/L)    242.00 2.09 98.20 

DO (mg/L) - - - 0.80 0.67 74.90 

TC (MPN/100ml)    1.7x108 -13.17 00.00 

E.coli 

(MPN/100ml) 
26.50 -0.47 

31.90 7.1x105 

-14.92 

00.00 
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Table 6.6: Mean design effluent concentration to achieve 95% compliance with the 

standard and observed actual effluent concentrations 

Parameters KNUST  AHINSAN  

CV COR Mean 

Design  

Conc. 

Observed 

Actual  

Mean 

Conc. 

CV COR Mean 

Design  

Conc. 

Observed 

Actual Mean 

Conc. 

Temperature 

(0C) 
0.57 

0.48 

14.40 
24.66 0.72 

0.43 

12.90 
26.60 

pH 0.49 0.52 3.12 2.78 0.63 0.46 2.76 7.30 

TSS (mg/L) 0.92 0.37 18.50 51.63 0.98 0.36 18.00 52.00 

TP (mg/L) 0.84 0.39 0.78 12.20 0.73 0.42 0.84 6.10 

Turbidity (NTU) 0.73 0.42 31.50 59.69 - - - - 

TN (mg/L) 1.04 0.35 17.54 10.83 0.54 0.49 24.50 0.01 

Ammonia/Amm

onium (mg/L) - - - - 
0.77 0.41 0.41 0.36 

BOD5 (mg/L) 2.41 0.27 13.50 81.75 0.69 0.44 22.00 38.00 

COD (mg/L)  - - - - 0.81 0.40 100.00 99.00 

Conductivity 

(��/��) 

- - - - 0.69 0.44 660.00 484.00 

TDS (mg/L)  - - -  1.03 0.35 350.00 242 

DO (mg/L)     - 0.85 0.39 0.39 0.80 

TC (MPN/100ml)     1.21 0.33 132.00 1.7x108 

E.coli 

(MPN/100ml) 1.32 0.32 3.20 26.50 0.84 0.39 3.90 7.1x105 
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6.4 Summary 

In this chapter, uncertainty measurements were measured with a log-normal 

distribution function. A measurement table incorporating compliance level, reliability 

and standard policy value for effluent discharge were used to estimate various 

coefficient of variation. Coeffecient of reliability were obtained based on the 

discharge values and the designed compliance level of the waste stabilization 

ponds. Compliance measurements were found that, by comparison of discharge 

values to policy standard values for acceptance. In some cases, effluent values 

might meet standard value by comparison by fails to meet the expected value when 

compliance is to be measured as part of acceptable effluent discharge value. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the conclusions and recommendations of the study. 

Probabilistic quantitative risk assessment models were presented, illustrating the 

impact of two contrasting ideas, namely the use of fecal indicators as a ratio 

conversion method due to lack of specific pathogen data, and the use of the scarce 

pathogen data available as a best alternative to the ratio conversion method. The 

quantitative model was analysed and the simulation results were discussed. Extension 

of the model to include illness incidence DR models were presented for the case of 

Norovirus and different population epidemiological dynamics were integrated into 

the model to find its effects on predicting illness given infection. An all-inclusive 

modelling of measuring effluent discharge was presented by integrating both 

reliability and compliance into such measurements. The results obtained were 

presented in Chapter 4, 5 and 6 respectively and shall be summarized in this chapter. 

7.2 Conclusion Findings 

The study revealed the following; 

7.2.1 Risk Assessment using Dose Estimates based onGenome Copies and Conversion 

Ratio 

We estimated the risk of illness and disease burden with the use of fecal indicator 

ratio conversion or genome copies Norovirus for consumption of vegetables in 
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Ghana. A QMRA model was developed to estimate the differences in disease 

burden, and the results showed that: 

1. All model scenarios for consuming vegetables irrigated with wastewater 

(stream or drain) met the 10
! DALY pppy threshold for Norovirus. However, 

models that use genomic copies Norovirus are considered highly conservative 

estimates. 

2. In all cases, stream water recorded a higher probability of illness and disease 

burden than the drain water sources and again represents conservative 

estimates due to insufficient data availability. 

3. In the model of the same scenarios, the use of fecal indicator ratio conversion 

tends to underestimate the risk of disease burden DALY pppy as compared to 

the use of genome copies of Norovirus. This indicates that a shift from using 

fecal indicator to data on the actual pathogen (virus) of interest might give a 

more realistic output of the risk estimates. 

4. A 2 order of magnitude was recorded in terms of differences in DALY for fecal 

indicator ratio conversion and genome copies Norovirus for stream and drain 

water. However, when pooled data were used, more than 1 order magnitude 

difference was recorded. Cryptosporidium spp. also showed a similar 

difference of close to a 2 order of magnitude difference in DALY for fecal ratio 

conversion and oocyst data. 
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7.2.2 Results on Illness Incidence Model with Induced Immunity 

The adoption of the best DR model to estimate the illness dependency on 

infection/illness as well as DALY shows, inclusion of dose-dependent and immunity, 

substantially reduces the uncertainty surrounding the estimation of illness due to 

infection to a tune of 4≥  logs order of magnitude less than the naïve DR model, as 

immunity plays a substantial role in estimating the illness. The study revealed that 

transmission dynamics on response to disease infectiousness in epidemiological 

modelling do not have a significant impact on the extent of illness reduction given 

infection in terms of magnitude orders but a slight difference in values under the 

same order of magnitude. On the part of the DALY calculation, the inclusion of 

immunity in the dose-immunity DR model was found to result in acceptable pathogen 

levels under WHO stringent condition of 61.0 10X −
 In all scenarios for the 

epidemiological analysis. The dose-immunity DRI model was found to be performing 

better and hence gives the best estimate as copare to Naïve, Dose and Immunity DRI 

models. Nevertheless, the immunity DRI model without the dose-dependent inclusion 

also had a significant difference of 4≥  logs order of magnitude less as compared to 

the naïve DR model and 2≥ logs order of magnitude as compared to dose DR model 

for DALYs, and can serve as an alternative in other scenarios where the dose-

dependent DR model estimation is not available for use. 
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7.2.3 Statistical Measurement for Quantifying Uncertainty in Low Quality Water Effluent 

From this study, it was observed that, measuring performance of WSP and treatment 

plants using effluent discharge values in comparison to standards alone is sufficient 

only for knowing effluent quality but cannot be used to evaluate compliance of the 

WSP or treatment plant. It is evident that compliance that considers both effluent 

quality discharges and design capability and its performance measure, is more 

appropriate than the use of removal efficiency and fixed standard values alone. In 

this study, we developed reference charts (Appendix C: Supplementary Results), 

which can be used for assessing effluent discharge qualities. These were carried out 

for different compliance levels from the Ghana EPA standard discharge values.  

The importance of a stable operation and thus low CV should be remembered at all 

times, so that the WSP or treatment plant should not need to be designed to achieve 

very low mean effluent concentration. The effluent discharge values of the sites used 

for the study were not complying fully with the design specification (for the less 

stringent specifications of WSP and treatment plant). However, the Ahinsan WSP had 

some of its water quality parameters (TN, Ammonia, TDS and COD) meeting both the 

compliance level at 95% and the EPA discharge standards. Irrespective of the 

presence of two maturation ponds in series for the Ahinsan WSP, it could not meet the 

pathogen reduction standard values expected. 
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7.3 Limitations and Recommendations 

In this section, the limitation and recommendations of the study are presented. The 

limitations are basically based on the various models built in this study. The 

recommendations are based on the outcome of the study. 

7.3.1 Limitations 

The study has some limitations with regards to the modelling process and the data 

validation, just like all other quantitative modelling approach, using probability 

distributions, this add up to the model uncertainty as some of the assumptions made 

and data applied are based on  various studies differing in geographical location, 

agricultural practices and human race. Response to disease is also sensitive to 

geographical locations, genetic make-up and environmental conditions. In this study, 

not all model parameters used primary data that could be fitted and  the predictions 

validated against some observed outputs. Hence, we relied on assumptions of 

probability distributions and theoretical theorems for such estimations. In some cases, 

scarce data were used and some were combined with experts’ opinion. Though such 

opinions are accepted in quantitative risk modelling, their subjectivity in nature makes 

them less desirable for uncertainty quantification. 
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7.3.2 Recommendations 

The study revealed that, modelling risk of infection and illness with ratio conversion 

method underestimated the risk of infection and hence can lead to an insufficient 

mitigation process. The study also revealed that in the face of scarce data for 

Norovirus, using the pathogen of interest estimation was far better than the use of 

ratio conversion, which was also confirmed forCryptosporidium spp, for which 

sufficient data for quantifying its distribution were available.  

The study further established that, estimating illness incidence is better measured 

when dose-dependency and induced immunity are included in the dose-response 

modelling step. It is recommended that such models are used in estimating  risk of 

illness given infection. However, in cases, where dose-dependent models are 

unavailable, immunity DR models are recommended to be used instead of the naïve 

DR model. 

The study also revealed that measures of effluent discharge that are compared to 

policy standard should be used in conjunction with expected compliance and 

reliability level. For measurements, where the effluent doesn’t record negative values 

and follows a log-normal distribution, it is recommended that the chart produced by 

this study are used as a guide to measure the effluent outputs with a known 

compliance level. Finally, this study can guide towards modelling risk assessment from 
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the water treatment to estimating illness given infection for practitioners in the field of 

risk assessment modelling. 

7.4 Areas of Possible Further Research 

The avenue for further research based on the resuts of this study is outlined below: 

• Application of different methods for characterising mixed distributions to 

account for variability in cases where such variability description is ambiguous 

in nature. 

• Estimation of shape parameter using different pathogen concentrations to 

pave a way for more dose-dependent DR models to be constructed, which will 

make the dose-immunity DR models available for most pathogens. 

• Estimation and modelling of dose-dependent models for other pathogens of 

interest with the use of parsimonious DR models like fractional poison, 

exponential model and other empirical models.  

• Studies to involve different mathematical epidemiological models to construct 

appropriate illness inflation factor for various pathogen transmission dynamics 
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APPENDICES 

 

APPENDIX A 

A1 CRYPTOSPORIDIUM OOCYST DATA RISK ASSESSMENT 

 

Summary Statistics for DALY / Oocyst data 

 Statistics   Percentile   

Minimum -2.01643E-05 5% 2.386E-05 
Maximum 0.006184724 10% 6.123E-05 
Mean 0.001121648 15% 0.0001058 
Std Dev 0.001228328 20% 0.0001538 
Variance 1.50879E-06 25% 0.0002175 
Skewness 1.55299248 30% 0.000284 
Kurtosis 5.003454498 35% 0.0003565 
Median 0.000655246 40% 0.0004397 
Mode 1.55852E-05 45% 0.0005408 
Left X 2.38552E-05 50% 0.0006552 
Left P 5% 55% 0.0007946 
Right X 0.003842637 60% 0.0009426 
Right P 95% 65% 0.0011277 
Diff X 0.003818782 70% 0.00134 
Diff P 90% 75% 0.0016273 
#Errors 0 80% 0.0019405 
Filter Min Off 85% 0.0023624 
Filter Max Off 90% 0.0029489 
#Filtered 0 95% 0.0038426 

 



210 

 

Change in Output Statistic for DALY / Oocyst 

data 

Rank Name Lower Upper 

1 PRODUCE DATA 0.0001036 0.0022764 
2 Disease Burden 0.0001521 0.0020863 
3 Virus reduction / 

Water real data 
0.0003904 0.0021002 

4 volume of 
irrigation water 

0.0009586 0.0013629 

5 Daily 
consumption 

0.0009059 0.0013071 

6 Frequency of 
consumption 

0.0009322 0.0012902 

7 Days for 
withholding 
water 

0.0010679 0.0011718 
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A2 CRYPTO E.COLI CONVERSION 
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Summary Statistics for DALY / E.coli conversion 

Statistics   Percentile   

Minimum 1.03267E-10 5% 1.546E-07 
Maximum 0.000223168 10% 3.411E-07 
Mean 9.27416E-06 15% 5.56E-07 
Std Dev 1.56191E-05 20% 8.103E-07 
Variance 2.43956E-10 25% 1.12E-06 
Skewness 4.041970518 30% 1.468E-06 
Kurtosis 26.84844898 35% 1.894E-06 
Median 3.70901E-06 40% 2.41E-06 
Mode 7.36907E-08 45% 2.995E-06 
Left X 1.54578E-07 50% 3.709E-06 
Left P 5% 55% 4.515E-06 
Right X 3.71838E-05 60% 5.547E-06 
Right P 95% 65% 6.784E-06 
Diff X 3.70292E-05 70% 8.448E-06 
Diff P 90% 75% 1.044E-05 
#Errors 0 80% 1.318E-05 
Filter Min Off 85% 1.703E-05 
Filter Max Off 90% 2.399E-05 
#Filtered 0 95% 3.718E-05 
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Change in Output Statistic for DALY / E.coli conversion 

Rank Name Lower Upper 

1 Virus reduction / 
Water real data 

1.678E-06 2.787E-05 

2 Time for 
withholding 
irrigation 

8.475E-07 1.801E-05 

3 Disease Burden 1.185E-06 1.652E-05 
4 volume of irrigation 

water (K6) 
2.488E-06 1.534E-05 

5 Daily consumption 6.326E-06 1.247E-05 
6 volume of irrigation 

water (D6) 
6.7E-06 1.188E-05 

7 Frequency of 
consumption 

6.836E-06 1.133E-05 

8 Days for 
withholding water 

7.839E-06 1.049E-05 
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APPENDIX B 

ILLNESS INCIDENCE PER POPULATION PER YEAR 

 

  

Incidence in the population per year 

Population 

Percentage 

Population 

Number 

Naïve 

Model 

Immunity 

Model 

Dose 

Model 

Dose-immunity 

Model 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

5 1.25E+06 3.86E+05 1.81E+01 1.54E+03 7.21E-02 

10 2.50E+06 7.72E+05 3.63E+01 3.07E+03 1.44E-01 

15 3.75E+06 1.16E+06 5.44E+01 4.61E+03 2.16E-01 

20 5.00E+06 1.54E+06 7.25E+01 6.14E+03 2.88E-01 

25 6.25E+06 1.93E+06 9.07E+01 7.68E+03 3.61E-01 

30 7.50E+06 2.32E+06 1.09E+02 9.21E+03 4.33E-01 

35 8.75E+06 2.70E+06 1.27E+02 1.07E+04 5.05E-01 

40 1.00E+07 3.09E+06 1.45E+02 1.23E+04 5.77E-01 

45 1.13E+07 3.47E+06 1.63E+02 1.38E+04 6.49E-01 

50 1.25E+07 3.86E+06 1.81E+02 1.54E+04 7.21E-01 

55 1.38E+07 4.25E+06 1.99E+02 1.69E+04 7.93E-01 

60 1.50E+07 4.63E+06 2.18E+02 1.84E+04 8.65E-01 

65 1.63E+07 5.02E+06 2.36E+02 2.00E+04 9.37E-01 

70 1.75E+07 5.40E+06 2.54E+02 2.15E+04 1.01E+00 

75 1.88E+07 5.79E+06 2.72E+02 2.30E+04 1.08E+00 

80 2.00E+07 6.18E+06 2.90E+02 2.46E+04 1.15E+00 

85 2.13E+07 6.56E+06 3.08E+02 2.61E+04 1.23E+00 

90 2.25E+07 6.95E+06 3.26E+02 2.76E+04 1.30E+00 

95 2.38E+07 7.34E+06 3.45E+02 2.92E+04 1.37E+00 

100 2.50E+07 7.72E+06 3.63E+02 3.07E+04 1.44E+00 



215 

 

APPENDIX B1 ILLNESS INCIDENCE PER PERSON PER YEAR 

B1A. (SYMPTOMATIC INFECTIOUNESS) 

PROBABILITY GRAPHS FOR DR MODELS 

  

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Symptomatic Infectiousness Individual 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 

Minimum 2.88E-08 5% 4.02E-08 Minimum 3.14E-05 5% 8.52E-05 

Maximum 1.02E-07 10% 4.30E-08 Maximum 5.07E-03 10% 1.44E-04 

Mean 5.92E-08 15% 4.55E-08 Mean 1.50E-03 15% 2.22E-04 

Std Dev 1.30E-08 20% 4.75E-08 Std Dev 1.22E-03 20% 3.14E-04 

Variance 1.69736E-16 25% 4.94E-08 Variance 1.48551E-06 25% 4.21E-04 

Skewness 0.471635968 30% 5.13E-08 Skewness 0.69866711 30% 5.41E-04 

Kurtosis 2.832924093 35% 5.31E-08 Kurtosis 2.466732266 35% 6.83E-04 

Median 5.81E-08 40% 5.47E-08 Median 1.21E-03 40% 8.46E-04 

Mode 5.99E-08 45% 5.64E-08 Mode 6.06E-05 45% 1.03E-03 

Left X 4.02E-08 50% 5.81E-08 Left X 8.52E-05 50% 1.21E-03 

Left P 5% 55% 5.97E-08 Left P 5% 55% 1.40E-03 

Right X 8.34E-08 60% 6.13E-08 Right X 3.85E-03 60% 1.63E-03 

Right P 95% 65% 6.31E-08 Right P 95% 65% 1.85E-03 

Diff X 4.32E-08 70% 6.50E-08 Diff X 3.76E-03 70% 2.11E-03 

Diff P 90% 75% 6.75E-08 Diff P 90% 75% 2.37E-03 

#Errors 0 80% 7.00E-08 #Errors 0 80% 2.66E-03 

Filter Min Off 85% 7.31E-08 Filter Min Off 85% 2.99E-03 

Filter Max Off 90% 7.72E-08 Filter Max Off 90% 3.34E-03 

#Filtered 0 95% 8.34E-08 #Filtered 0 95% 3.85E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.02E-06 5% 4.82E-06 Minimum 2.24E-01 5% 2.33E-01 

Maximum 4.28E-04 10% 5.61E-06 Maximum 3.93E-01 10% 2.41E-01 

Mean 3.96E-05 15% 6.32E-06 Mean 3.09E-01 15% 2.50E-01 

Std Dev 5.92E-05 20% 7.00E-06 Std Dev 4.89E-02 20% 2.58E-01 

Variance 3.50246E-09 25% 7.87E-06 Variance 0.002387251 25% 2.67E-01 

Skewness 2.809171132 30% 8.83E-06 Skewness -2.71097E-06 30% 2.75E-01 

Kurtosis 11.6465013 35% 9.99E-06 Kurtosis 1.799996474 35% 2.83E-01 

Median 1.51E-05 40% 1.13E-05 Median 3.09E-01 40% 2.92E-01 

Mode 6.66E-06 45% 1.31E-05 Mode 2.91E-01 45% 3.00E-01 

Left X 4.82E-06 50% 1.51E-05 Left X 2.33E-01 50% 3.09E-01 

Left P 5% 55% 1.78E-05 Left P 5% 55% 3.17E-01 

Right X 1.77E-04 60% 2.13E-05 Right X 3.85E-01 60% 3.26E-01 

Right P 95% 65% 2.60E-05 Right P 95% 65% 3.34E-01 

Diff X 1.72E-04 70% 3.21E-05 Diff X 1.52E-01 70% 3.43E-01 

Diff P 90% 75% 4.07E-05 Diff P 90% 75% 3.51E-01 

#Errors 0 80% 5.34E-05 #Errors 0 80% 3.60E-01 

Filter Min Off 85% 7.23E-05 Filter Min Off 85% 3.68E-01 

Filter Max Off 90% 1.11E-04 Filter Max Off 90% 3.77E-01 

#Filtered 0 95% 1.77E-04 #Filtered 0 95% 3.85E-01 
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B1B. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS LOW) 

PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAP FOR DR MODELS 

 

  



218 

 

Summary Statistics for Pre-Symptomatic and Post-Symptomatic Low 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.81E-08 5% 3.92E-08 Minimum 3.10E-05 5% 8.50E-05 
Maximum 1.00E-07 10% 4.20E-08 Maximum 5.08E-03 10% 1.44E-04 
Mean 5.78E-08 15% 4.43E-08 Mean 1.50E-03 15% 2.23E-04 
Std Dev 1.28E-08 20% 4.65E-08 Std Dev 1.21E-03 20% 3.11E-04 
Variance 1.63933E-16 25% 4.82E-08 Variance 1.46886E-06 25% 4.21E-04 
Skewness 0.483785996 30% 5.00E-08 Skewness 0.676579428 30% 5.47E-04 
Kurtosis 2.839293047 35% 5.16E-08 Kurtosis 2.42652171 35% 6.85E-04 
Median 5.65E-08 40% 5.32E-08 Median 1.20E-03 40% 8.45E-04 
Mode 5.57E-08 45% 5.49E-08 Mode 5.10E-05 45% 1.02E-03 
Left X 3.92E-08 50% 5.65E-08 Left X 8.50E-05 50% 1.20E-03 
Left P 5% 55% 5.82E-08 Left P 5% 55% 1.40E-03 
Right X 8.12E-08 60% 5.98E-08 Right X 3.77E-03 60% 1.63E-03 
Right P 95% 65% 6.16E-08 Right P 95% 65% 1.87E-03 
Diff X 4.20E-08 70% 6.37E-08 Diff X 3.68E-03 70% 2.12E-03 
Diff P 90% 75% 6.59E-08 Diff P 90% 75% 2.38E-03 
#Errors 0 80% 6.86E-08 #Errors 0 80% 2.67E-03 
Filter Min Off 85% 7.18E-08 Filter Min Off 85% 2.99E-03 
Filter Max Off 90% 7.57E-08 Filter Max Off 90% 3.32E-03 
#Filtered 0 95% 8.12E-08 #Filtered 0 95% 3.77E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.83E-06 5% 4.69E-06 Minimum 2.24E-01 5% 2.33E-01 
Maximum 4.33E-04 10% 5.46E-06 Maximum 3.93E-01 10% 2.41E-01 
Mean 3.85E-05 15% 6.17E-06 Mean 3.09E-01 15% 2.50E-01 
Std Dev 5.71E-05 20% 6.88E-06 Std Dev 4.89E-02 20% 2.58E-01 
Variance 3.2615E-09 25% 7.68E-06 Variance 0.002387257 25% 2.67E-01 
Skewness 2.815156623 30% 8.62E-06 Skewness -7.56816E-07 30% 2.75E-01 
Kurtosis 11.81161483 35% 9.67E-06 Kurtosis 1.799994143 35% 2.83E-01 
Median 1.48E-05 40% 1.11E-05 Median 3.09E-01 40% 2.92E-01 
Mode 6.10E-06 45% 1.28E-05 Mode 3.72E-01 45% 3.00E-01 
Left X 4.69E-06 50% 1.48E-05 Left X 2.33E-01 50% 3.09E-01 
Left P 5% 55% 1.75E-05 Left P 5% 55% 3.17E-01 
Right X 1.69E-04 60% 2.08E-05 Right X 3.85E-01 60% 3.26E-01 
Right P 95% 65% 2.52E-05 Right P 95% 65% 3.34E-01 
Diff X 1.64E-04 70% 3.12E-05 Diff X 1.52E-01 70% 3.43E-01 
Diff P 90% 75% 4.01E-05 Diff P 90% 75% 3.51E-01 
#Errors 0 80% 5.22E-05 #Errors 0 80% 3.60E-01 
Filter Min Off 85% 7.38E-05 Filter Min Off 85% 3.68E-01 
Filter Max Off 90% 1.05E-04 Filter Max Off 90% 3.77E-01 
#Filtered 0 95% 1.69E-04 #Filtered 0 95% 3.85E-01 
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B1C. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS HIGH) 

PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic High 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 1.67E-08 5% 2.32E-08 Minimum 3.22E-05 5% 8.46E-05 
Maximum 5.88E-08 10% 2.48E-08 Maximum 5.03E-03 10% 1.45E-04 
Mean 3.39E-08 15% 2.62E-08 Mean 1.50E-03 15% 2.21E-04 
Std Dev 7.44E-09 20% 2.73E-08 Std Dev 1.21E-03 20% 3.12E-04 
Variance 5.53724E-17 25% 2.84E-08 Variance 1.47456E-06 25% 4.21E-04 
Skewness 0.52151757 30% 2.93E-08 Skewness 0.69355851 30% 5.51E-04 
Kurtosis 2.874078836 35% 3.03E-08 Kurtosis 2.468769613 35% 6.93E-04 
Median 3.31E-08 40% 3.13E-08 Median 1.21E-03 40% 8.45E-04 
Mode 2.87E-08 45% 3.22E-08 Mode 5.10E-05 45% 1.02E-03 
Left X 2.32E-08 50% 3.31E-08 Left X 8.46E-05 50% 1.21E-03 
Left P 5% 55% 3.41E-08 Left P 5% 55% 1.41E-03 
Right X 4.77E-08 60% 3.50E-08 Right X 3.80E-03 60% 1.62E-03 
Right P 95% 65% 3.60E-08 Right P 95% 65% 1.85E-03 
Diff X 2.45E-08 70% 3.72E-08 Diff X 3.72E-03 70% 2.11E-03 
Diff P 90% 75% 3.86E-08 Diff P 90% 75% 2.38E-03 
#Errors 0 80% 4.02E-08 #Errors 0 80% 2.67E-03 
Filter Min Off 85% 4.20E-08 Filter Min Off 85% 2.96E-03 
Filter Max Off 90% 4.43E-08 Filter Max Off 90% 3.33E-03 
#Filtered 0 95% 4.77E-08 #Filtered 0 95% 3.80E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 1.74E-06 5% 2.76E-06 Minimum 2.24E-01 5% 2.33E-01 
Maximum 2.40E-04 10% 3.16E-06 Maximum 3.93E-01 10% 2.41E-01 
Mean 2.27E-05 15% 3.58E-06 Mean 3.09E-01 15% 2.50E-01 
Std Dev 3.39E-05 20% 4.02E-06 Std Dev 4.89E-02 20% 2.58E-01 
Variance 1.14885E-09 25% 4.54E-06 Variance 0.00238726 25% 2.67E-01 
Skewness 2.814525713 30% 5.10E-06 Skewness -1.16214E-06 30% 2.75E-01 
Kurtosis 11.62342123 35% 5.76E-06 Kurtosis 1.799999732 35% 2.83E-01 
Median 8.79E-06 40% 6.54E-06 Median 3.09E-01 40% 2.92E-01 
Mode 3.79E-06 45% 7.51E-06 Mode 3.60E-01 45% 3.00E-01 
Left X 2.76E-06 50% 8.79E-06 Left X 2.33E-01 50% 3.09E-01 
Left P 5% 55% 1.03E-05 Left P 5% 55% 3.17E-01 
Right X 1.00E-04 60% 1.22E-05 Right X 3.85E-01 60% 3.26E-01 
Right P 95% 65% 1.48E-05 Right P 95% 65% 3.34E-01 
Diff X 9.76E-05 70% 1.82E-05 Diff X 1.52E-01 70% 3.43E-01 
Diff P 90% 75% 2.32E-05 Diff P 90% 75% 3.51E-01 
#Errors 0 80% 3.09E-05 #Errors 0 80% 3.60E-01 
Filter Min Off 85% 4.24E-05 Filter Min Off 85% 3.68E-01 
Filter Max Off 90% 6.21E-05 Filter Max Off 90% 3.77E-01 
#Filtered 0 95% 1.00E-04 #Filtered 0 95% 3.85E-01 
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B1D. (INNATE GENETIC RESISTANCE) 

PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Innate Genetic Resistance 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.57E-08 5% 5.05E-08 Minimum 3.13E-05 5% 8.52E-05 
Maximum 1.23E-07 10% 5.41E-08 Maximum 5.12E-03 10% 1.45E-04 
Mean 7.28E-08 15% 5.69E-08 Mean 1.49E-03 15% 2.22E-04 
Std Dev 1.53E-08 20% 5.92E-08 Std Dev 1.21E-03 20% 3.14E-04 
Variance 2.34802E-16 25% 6.15E-08 Variance 1.45973E-06 25% 4.23E-04 
Skewness 0.487413486 30% 6.36E-08 Skewness 0.677393831 30% 5.48E-04 
Kurtosis 2.890478312 35% 6.56E-08 Kurtosis 2.434814128 35% 6.88E-04 
Median 7.13E-08 40% 6.74E-08 Median 1.20E-03 40% 8.43E-04 
Mode 7.33E-08 45% 6.94E-08 Mode 5.18E-05 45% 1.02E-03 
Left X 5.05E-08 50% 7.13E-08 Left X 8.52E-05 50% 1.20E-03 
Left P 5% 55% 7.32E-08 Left P 5% 55% 1.41E-03 
Right X 1.01E-07 60% 7.52E-08 Right X 3.78E-03 60% 1.64E-03 
Right P 95% 65% 7.74E-08 Right P 95% 65% 1.85E-03 
Diff X 5.07E-08 70% 7.98E-08 Diff X 3.69E-03 70% 2.12E-03 
Diff P 90% 75% 8.24E-08 Diff P 90% 75% 2.38E-03 
#Errors 0 80% 8.55E-08 #Errors 0 80% 2.67E-03 
Filter Min Off 85% 8.95E-08 Filter Min Off 85% 2.96E-03 
Filter Max Off 90% 9.42E-08 Filter Max Off 90% 3.29E-03 
#Filtered 0 95% 1.01E-07 #Filtered 0 95% 3.78E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.83E-06 5% 6.08E-06 Minimum 2.24E-01 5% 2.33E-01 
Maximum 5.68E-04 10% 6.97E-06 Maximum 3.93E-01 10% 2.41E-01 
Mean 4.87E-05 15% 7.80E-06 Mean 3.09E-01 15% 2.50E-01 
Std Dev 7.28E-05 20% 8.66E-06 Std Dev 4.89E-02 20% 2.58E-01 
Variance 5.30392E-09 25% 9.69E-06 Variance 0.002387262 25% 2.67E-01 
Skewness 2.863963764 30% 1.09E-05 Skewness 1.13629E-06 30% 2.75E-01 
Kurtosis 12.17038231 35% 1.23E-05 Kurtosis 1.799999743 35% 2.83E-01 
Median 1.87E-05 40% 1.40E-05 Median 3.09E-01 40% 2.92E-01 
Mode 8.23E-06 45% 1.61E-05 Mode 3.67E-01 45% 3.00E-01 
Left X 6.08E-06 50% 1.87E-05 Left X 2.33E-01 50% 3.09E-01 
Left P 5% 55% 2.17E-05 Left P 5% 55% 3.17E-01 
Right X 2.11E-04 60% 2.63E-05 Right X 3.85E-01 60% 3.26E-01 
Right P 95% 65% 3.16E-05 Right P 95% 65% 3.34E-01 
Diff X 2.05E-04 70% 3.95E-05 Diff X 1.52E-01 70% 3.43E-01 
Diff P 90% 75% 5.01E-05 Diff P 90% 75% 3.51E-01 
#Errors 0 80% 6.53E-05 #Errors 0 80% 3.60E-01 
Filter Min Off 85% 9.08E-05 Filter Min Off 85% 3.68E-01 
Filter Max Off 90% 1.35E-04 Filter Max Off 90% 3.77E-01 
#Filtered 0 95% 2.11E-04 #Filtered 0 95% 3.85E-01 
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B1E. (NO-IMMUNE BOOSTING AFTER ASYMPTOMATIC INFECTIOUNESS) 

PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for No-Immune Boosting after Asymptomatic Infectiousness 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.86E-08 5% 4.00E-08 Minimum 3.08E-05 5% 8.35E-05 
Maximum 1.03E-07 10% 4.30E-08 Maximum 5.10E-03 10% 1.44E-04 
Mean 5.89E-08 15% 4.52E-08 Mean 1.50E-03 15% 2.21E-04 
Std Dev 1.31E-08 20% 4.73E-08 Std Dev 1.22E-03 20% 3.14E-04 
Variance 1.7088E-16 25% 4.92E-08 Variance 1.4928E-06 25% 4.22E-04 
Skewness 0.511478568 30% 5.10E-08 Skewness 0.702327797 30% 5.51E-04 
Kurtosis 2.852008556 35% 5.28E-08 Kurtosis 2.488539216 35% 6.86E-04 
Median 5.74E-08 40% 5.44E-08 Median 1.21E-03 40% 8.45E-04 
Mode 5.88E-08 45% 5.58E-08 Mode 5.93E-05 45% 1.01E-03 
Left X 4.00E-08 50% 5.74E-08 Left X 8.35E-05 50% 1.21E-03 
Left P 5% 55% 5.89E-08 Left P 5% 55% 1.41E-03 
Right X 8.32E-08 60% 6.06E-08 Right X 3.81E-03 60% 1.62E-03 
Right P 95% 65% 6.26E-08 Right P 95% 65% 1.86E-03 
Diff X 4.32E-08 70% 6.47E-08 Diff X 3.73E-03 70% 2.11E-03 
Diff P 90% 75% 6.72E-08 Diff P 90% 75% 2.39E-03 
#Errors 0 80% 6.99E-08 #Errors 0 80% 2.66E-03 
Filter Min Off 85% 7.32E-08 Filter Min Off 85% 2.98E-03 
Filter Max Off 90% 7.73E-08 Filter Max Off 90% 3.35E-03 
#Filtered 0 95% 8.32E-08 #Filtered 0 95% 3.81E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.91E-06 5% 4.77E-06 Minimum 2.24E-01 5% 2.33E-01 
Maximum 4.37E-04 10% 5.56E-06 Maximum 3.93E-01 10% 2.41E-01 
Mean 3.93E-05 15% 6.25E-06 Mean 3.09E-01 15% 2.50E-01 
Std Dev 5.84E-05 20% 6.99E-06 Std Dev 4.89E-02 20% 2.58E-01 
Variance 3.41367E-09 25% 7.82E-06 Variance 0.002387261 25% 2.67E-01 
Skewness 2.823672209 30% 8.79E-06 Skewness 2.71019E-06 30% 2.75E-01 
Kurtosis 11.84958146 35% 9.99E-06 Kurtosis 1.800002432 35% 2.83E-01 
Median 1.51E-05 40% 1.14E-05 Median 3.09E-01 40% 2.92E-01 
Mode 6.62E-06 45% 1.31E-05 Mode 3.35E-01 45% 3.00E-01 
Left X 4.77E-06 50% 1.51E-05 Left X 2.33E-01 50% 3.09E-01 
Left P 5% 55% 1.77E-05 Left P 5% 55% 3.17E-01 
Right X 1.72E-04 60% 2.12E-05 Right X 3.85E-01 60% 3.26E-01 
Right P 95% 65% 2.57E-05 Right P 95% 65% 3.34E-01 
Diff X 1.68E-04 70% 3.21E-05 Diff X 1.52E-01 70% 3.43E-01 
Diff P 90% 75% 4.12E-05 Diff P 90% 75% 3.51E-01 
#Errors 0 80% 5.28E-05 #Errors 0 80% 3.60E-01 
Filter Min Off 85% 7.34E-05 Filter Min Off 85% 3.68E-01 
Filter Max Off 90% 1.08E-04 Filter Max Off 90% 3.77E-01 
#Filtered 0 95% 1.72E-04 #Filtered 0 95% 3.85E-01 

 

 

  



225 

 

B1F. (GENEGROUP II TYPE 4) 

PROBABILITY GRAPH FOR DR MODELS 

 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Genogroup II Type 4 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.30E-08 5% 3.14E-08 Minimum 3.04E-05 5% 8.36E-05 
Maximum 7.19E-08 10% 3.34E-08 Maximum 5.04E-03 10% 1.45E-04 
Mean 4.39E-08 15% 3.50E-08 Mean 1.50E-03 15% 2.21E-04 
Std Dev 8.54E-09 20% 3.63E-08 Std Dev 1.21E-03 20% 3.16E-04 
Variance 7.28569E-17 25% 3.75E-08 Variance 1.47255E-06 25% 4.20E-04 
Skewness 0.465230605 30% 3.86E-08 Skewness 0.672747896 30% 5.47E-04 
Kurtosis 2.799305973 35% 3.97E-08 Kurtosis 2.414534399 35% 6.87E-04 
Median 4.30E-08 40% 4.08E-08 Median 1.21E-03 40% 8.43E-04 
Mode 4.14E-08 45% 4.19E-08 Mode 5.99E-05 45% 1.02E-03 
Left X 3.14E-08 50% 4.30E-08 Left X 8.36E-05 50% 1.21E-03 
Left P 5% 55% 4.41E-08 Left P 5% 55% 1.41E-03 
Right X 5.95E-08 60% 4.52E-08 Right X 3.78E-03 60% 1.62E-03 
Right P 95% 65% 4.65E-08 Right P 95% 65% 1.87E-03 
Diff X 2.81E-08 70% 4.79E-08 Diff X 3.70E-03 70% 2.13E-03 
Diff P 90% 75% 4.94E-08 Diff P 90% 75% 2.41E-03 
#Errors 0 80% 5.11E-08 #Errors 0 80% 2.68E-03 
Filter Min Off 85% 5.32E-08 Filter Min Off 85% 2.97E-03 
Filter Max Off 90% 5.59E-08 Filter Max Off 90% 3.32E-03 
#Filtered 0 95% 5.95E-08 #Filtered 0 95% 3.78E-03 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.39E-06 5% 3.61E-06 Minimum 2.24E-01 5% 2.33E-01 
Maximum 3.33E-04 10% 4.20E-06 Maximum 3.93E-01 10% 2.41E-01 
Mean 2.93E-05 15% 4.74E-06 Mean 3.09E-01 15% 2.50E-01 
Std Dev 4.35E-05 20% 5.25E-06 Std Dev 4.89E-02 20% 2.58E-01 
Variance 1.89012E-09 25% 5.83E-06 Variance 0.002387257 25% 2.67E-01 
Skewness 2.766709876 30% 6.57E-06 Skewness -2.07672E-06 30% 2.75E-01 
Kurtosis 11.25084402 35% 7.45E-06 Kurtosis 1.799997377 35% 2.83E-01 
Median 1.14E-05 40% 8.55E-06 Median 3.09E-01 40% 2.92E-01 
Mode 4.58E-06 45% 9.85E-06 Mode 3.69E-01 45% 3.00E-01 
Left X 3.61E-06 50% 1.14E-05 Left X 2.33E-01 50% 3.09E-01 
Left P 5% 55% 1.31E-05 Left P 5% 55% 3.17E-01 
Right X 1.32E-04 60% 1.58E-05 Right X 3.85E-01 60% 3.26E-01 
Right P 95% 65% 1.90E-05 Right P 95% 65% 3.34E-01 
Diff X 1.28E-04 70% 2.37E-05 Diff X 1.52E-01 70% 3.43E-01 
Diff P 90% 75% 3.02E-05 Diff P 90% 75% 3.51E-01 
#Errors 0 80% 4.02E-05 #Errors 0 80% 3.60E-01 
Filter Min Off 85% 5.45E-05 Filter Min Off 85% 3.68E-01 
Filter Max Off 90% 8.13E-05 Filter Max Off 90% 3.77E-01 
#Filtered 0 95% 1.32E-04 #Filtered 0 95% 3.85E-01 
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APPENDIX B2 DAILY ADJUSTED LIFE YEARS 

B2A. (SYMPTOMATIC INFECTIOUNESS) 

PROBABILITY GRAPHS FOR DR MODELS 
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PROBABILITY GRAPH FOR DALY SYMPTOMATIC INFECTIOUNESS  

  

CUMMULATIVE GRAPH FOR DALY SYMPTOMATIC INFECTIOUNESS 
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Summary Statistics for Symptomatic Infectiousness Individual 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.87E-12 5% 2.32E-11 Minimum 6.03E-09 5% 1.59E-07 
Maximum 6.03E-10 10% 4.08E-11 Maximum 2.90E-05 10% 2.89E-07 
Mean 1.87E-10 15% 5.77E-11 Mean 4.71E-06 15% 4.41E-07 
Std Dev 1.15E-10 20% 7.57E-11 Std Dev 5.10E-06 20% 6.29E-07 
Variance 1.32061E-20 25% 9.25E-11 Variance 2.59851E-11 25% 8.61E-07 
Skewness 0.452798307 30% 1.10E-10 Skewness 1.521360609 30% 1.12E-06 
Kurtosis 2.592060219 35% 1.27E-10 Kurtosis 5.037160683 35% 1.44E-06 
Median 1.79E-10 40% 1.44E-10 Median 2.78E-06 40% 1.82E-06 
Mode 2.08E-10 45% 1.62E-10 Mode 2.23E-07 45% 2.25E-06 
Left X 2.32E-11 50% 1.79E-10 Left X 1.59E-07 50% 2.78E-06 
Left P 5% 55% 1.96E-10 Left P 5% 55% 3.35E-06 
Right X 3.90E-10 60% 2.13E-10 Right X 1.56E-05 60% 4.05E-06 
Right P 95% 65% 2.29E-10 Right P 95% 65% 4.88E-06 
Diff X 3.67E-10 70% 2.48E-10 Diff X 1.55E-05 70% 5.92E-06 
Diff P 90% 75% 2.67E-10 Diff P 90% 75% 7.00E-06 
#Errors 0 80% 2.89E-10 #Errors 0 80% 8.29E-06 
Filter Min Off 85% 3.15E-10 Filter Min Off 85% 1.00E-05 
Filter Max Off 90% 3.45E-10 Filter Max Off 90% 1.22E-05 
#Filtered 0 95% 3.90E-10 #Filtered 0 95% 1.56E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 5.01E-10 5% 5.01E-09 Minimum 2.20E-05 5% 1.06E-04 
Maximum 2.27E-06 10% 8.69E-09 Maximum 2.01E-03 10% 1.83E-04 
Mean 1.23E-07 15% 1.23E-08 Mean 8.40E-04 15% 2.67E-04 
Std Dev 2.18E-07 20% 1.59E-08 Std Dev 4.86E-04 20% 3.46E-04 
Variance 4.74898E-14 25% 1.98E-08 Variance 2.36544E-07 25% 4.26E-04 
Skewness 3.73522302 30% 2.39E-08 Skewness 0.171402279 30% 5.08E-04 
Kurtosis 20.47696808 35% 2.79E-08 Kurtosis 2.040761429 35% 5.89E-04 
Median 4.36E-08 40% 3.24E-08 Median 8.26E-04 40% 6.62E-04 
Mode 6.09E-09 45% 3.75E-08 Mode 8.62E-04 45% 7.43E-04 
Left X 5.01E-09 50% 4.36E-08 Left X 1.06E-04 50% 8.26E-04 
Left P 5% 55% 5.17E-08 Left P 5% 55% 9.06E-04 
Right X 5.52E-07 60% 6.17E-08 Right X 1.66E-03 60% 9.87E-04 
Right P 95% 65% 7.51E-08 Right P 95% 65% 1.07E-03 
Diff X 5.47E-07 70% 9.28E-08 Diff X 1.55E-03 70% 1.15E-03 
Diff P 90% 75% 1.17E-07 Diff P 90% 75% 1.22E-03 
#Errors 0 80% 1.55E-07 #Errors 0 80% 1.30E-03 
Filter Min Off 85% 2.14E-07 Filter Min Off 85% 1.39E-03 
Filter Max Off 90% 3.22E-07 Filter Max Off 90% 1.51E-03 
#Filtered 0 95% 5.52E-07 #Filtered 0 95% 1.66E-03 
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B2B. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS LOW) 
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PROBABILITY GRAPH FOR DR MODELS 

  

  

CUMMULATIVE GRAP FOR DR MODELS 
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic Low 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 4.22E-12 5% 2.28E-11 Minimum 5.02E-09 5% 1.56E-07 
Maximum 5.85E-10 10% 3.97E-11 Maximum 2.86E-05 10% 2.83E-07 
Mean 1.83E-10 15% 5.72E-11 Mean 4.73E-06 15% 4.34E-07 
Std Dev 1.12E-10 20% 7.30E-11 Std Dev 5.08E-06 20% 6.14E-07 
Variance 1.24636E-20 25% 9.01E-11 Variance 2.58503E-11 25% 8.41E-07 
Skewness 0.426850051 30% 1.06E-10 Skewness 1.469588941 30% 1.13E-06 
Kurtosis 2.549796025 35% 1.24E-10 Kurtosis 4.780574204 35% 1.46E-06 
Median 1.76E-10 40% 1.41E-10 Median 2.81E-06 40% 1.84E-06 
Mode 9.85E-11 45% 1.58E-10 Mode 2.23E-07 45% 2.32E-06 
Left X 2.28E-11 50% 1.76E-10 Left X 1.56E-07 50% 2.81E-06 
Left P 5% 55% 1.92E-10 Left P 5% 55% 3.42E-06 
Right X 3.80E-10 60% 2.09E-10 Right X 1.57E-05 60% 4.10E-06 
Right P 95% 65% 2.26E-10 Right P 95% 65% 4.92E-06 
Diff X 3.58E-10 70% 2.43E-10 Diff X 1.55E-05 70% 5.90E-06 
Diff P 90% 75% 2.61E-10 Diff P 90% 75% 7.05E-06 
#Errors 0 80% 2.82E-10 #Errors 0 80% 8.46E-06 
Filter Min Off 85% 3.05E-10 Filter Min Off 85% 1.01E-05 
Filter Max Off 90% 3.35E-10 Filter Max Off 90% 1.24E-05 
#Filtered 0 95% 3.80E-10 #Filtered 0 95% 1.57E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 5.06E-10 5% 4.57E-09 Minimum 2.25E-05 5% 1.10E-04 
Maximum 2.30E-06 10% 8.37E-09 Maximum 2.01E-03 10% 1.87E-04 
Mean 1.23E-07 15% 1.21E-08 Mean 8.39E-04 15% 2.67E-04 
Std Dev 2.19E-07 20% 1.60E-08 Std Dev 4.85E-04 20% 3.44E-04 
Variance 4.81227E-14 25% 1.94E-08 Variance 2.35281E-07 25% 4.24E-04 
Skewness 3.73975682 30% 2.33E-08 Skewness 0.173813979 30% 5.05E-04 
Kurtosis 20.58032945 35% 2.70E-08 Kurtosis 2.047171235 35% 5.85E-04 
Median 4.18E-08 40% 3.12E-08 Median 8.28E-04 40% 6.60E-04 
Mode 1.63E-08 45% 3.61E-08 Mode 6.37E-04 45% 7.45E-04 
Left X 4.57E-09 50% 4.18E-08 Left X 1.10E-04 50% 8.28E-04 
Left P 5% 55% 4.97E-08 Left P 5% 55% 9.11E-04 
Right X 5.54E-07 60% 5.94E-08 Right X 1.65E-03 60% 9.86E-04 
Right P 95% 65% 7.23E-08 Right P 95% 65% 1.06E-03 
Diff X 5.49E-07 70% 9.05E-08 Diff X 1.54E-03 70% 1.14E-03 
Diff P 90% 75% 1.16E-07 Diff P 90% 75% 1.21E-03 
#Errors 0 80% 1.53E-07 #Errors 0 80% 1.30E-03 
Filter Min Off 85% 2.16E-07 Filter Min Off 85% 1.39E-03 
Filter Max Off 90% 3.27E-07 Filter Max Off 90% 1.50E-03 
#Filtered 0 95% 5.54E-07 #Filtered 0 95% 1.65E-03 
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B2C. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS HIGH) 

  

  

  



234 

 

PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic High 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 2.43E-12 5% 1.34E-11 Minimum 6.75E-09 5% 1.61E-07 
Maximum 3.35E-10 10% 2.34E-11 Maximum 3.00E-05 10% 2.98E-07 
Mean 1.07E-10 15% 3.34E-11 Mean 4.72E-06 15% 4.38E-07 
Std Dev 6.55E-11 20% 4.28E-11 Std Dev 5.14E-06 20% 6.33E-07 
Variance 4.28405E-21 25% 5.28E-11 Variance 2.64408E-11 25% 8.53E-07 
Skewness 0.418612994 30% 6.33E-11 Skewness 1.584434156 30% 1.12E-06 
Kurtosis 2.500428674 35% 7.35E-11 Kurtosis 5.382651481 35% 1.44E-06 
Median 1.02E-10 40% 8.26E-11 Median 2.78E-06 40% 1.85E-06 
Mode 4.20E-11 45% 9.25E-11 Mode 3.09E-07 45% 2.30E-06 
Left X 1.34E-11 50% 1.02E-10 Left X 1.61E-07 50% 2.78E-06 
Left P 5% 55% 1.12E-10 Left P 5% 55% 3.39E-06 
Right X 2.22E-10 60% 1.22E-10 Right X 1.57E-05 60% 4.08E-06 
Right P 95% 65% 1.32E-10 Right P 95% 65% 4.88E-06 
Diff X 2.09E-10 70% 1.42E-10 Diff X 1.56E-05 70% 5.78E-06 
Diff P 90% 75% 1.54E-10 Diff P 90% 75% 6.87E-06 
#Errors 0 80% 1.67E-10 #Errors 0 80% 8.23E-06 
Filter Min Off 85% 1.80E-10 Filter Min Off 85% 1.00E-05 
Filter Max Off 90% 1.97E-10 Filter Max Off 90% 1.23E-05 
#Filtered 0 95% 2.22E-10 #Filtered 0 95% 1.57E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.15E-10 5% 2.76E-09 Minimum 2.24E-05 5% 1.10E-04 
Maximum 1.37E-06 10% 5.01E-09 Maximum 2.02E-03 10% 1.87E-04 
Mean 7.12E-08 15% 7.08E-09 Mean 8.39E-04 15% 2.67E-04 
Std Dev 1.29E-07 20% 9.40E-09 Std Dev 4.86E-04 20% 3.47E-04 
Variance 1.65967E-14 25% 1.17E-08 Variance 2.3629E-07 25% 4.22E-04 
Skewness 3.955094049 30% 1.40E-08 Skewness 0.176484417 30% 5.04E-04 
Kurtosis 23.09409582 35% 1.62E-08 Kurtosis 2.032922131 35% 5.86E-04 
Median 2.53E-08 40% 1.86E-08 Median 8.22E-04 40% 6.62E-04 
Mode 7.75E-09 45% 2.16E-08 Mode 7.15E-04 45% 7.38E-04 
Left X 2.76E-09 50% 2.53E-08 Left X 1.10E-04 50% 8.22E-04 
Left P 5% 55% 2.93E-08 Left P 5% 55% 9.03E-04 
Right X 3.25E-07 60% 3.47E-08 Right X 1.65E-03 60% 9.84E-04 
Right P 95% 65% 4.17E-08 Right P 95% 65% 1.07E-03 
Diff X 3.22E-07 70% 5.25E-08 Diff X 1.54E-03 70% 1.14E-03 
Diff P 90% 75% 6.66E-08 Diff P 90% 75% 1.22E-03 
#Errors 0 80% 8.74E-08 #Errors 0 80% 1.30E-03 
Filter Min Off 85% 1.21E-07 Filter Min Off 85% 1.39E-03 
Filter Max Off 90% 1.84E-07 Filter Max Off 90% 1.51E-03 
#Filtered 0 95% 3.25E-07 #Filtered 0 95% 1.65E-03 
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B2D. (INNATE GENETIC RESISTANCE) 
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PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Innate Genetic Resistance 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 5.21E-12 5% 2.85E-11 Minimum 5.06E-09 5% 1.54E-07 
Maximum 7.53E-10 10% 4.97E-11 Maximum 2.99E-05 10% 2.87E-07 
Mean 2.30E-10 15% 7.10E-11 Mean 4.74E-06 15% 4.37E-07 
Std Dev 1.40E-10 20% 9.29E-11 Std Dev 5.13E-06 20% 6.26E-07 
Variance 1.9494E-20 25% 1.14E-10 Variance 2.62801E-11 25% 8.63E-07 
Skewness 0.394049907 30% 1.36E-10 Skewness 1.5297722 30% 1.12E-06 
Kurtosis 2.47116647 35% 1.57E-10 Kurtosis 5.145107801 35% 1.43E-06 
Median 2.21E-10 40% 1.79E-10 Median 2.80E-06 40% 1.85E-06 
Mode 2.44E-10 45% 1.99E-10 Mode 2.18E-07 45% 2.30E-06 
Left X 2.85E-11 50% 2.21E-10 Left X 1.54E-07 50% 2.80E-06 
Left P 5% 55% 2.42E-10 Left P 5% 55% 3.39E-06 
Right X 4.74E-10 60% 2.62E-10 Right X 1.54E-05 60% 4.08E-06 
Right P 95% 65% 2.84E-10 Right P 95% 65% 4.91E-06 
Diff X 4.45E-10 70% 3.07E-10 Diff X 1.53E-05 70% 5.91E-06 
Diff P 90% 75% 3.31E-10 Diff P 90% 75% 7.05E-06 
#Errors 0 80% 3.56E-10 #Errors 0 80% 8.45E-06 
Filter Min Off 85% 3.85E-10 Filter Min Off 85% 1.01E-05 
Filter Max Off 90% 4.20E-10 Filter Max Off 90% 1.23E-05 
#Filtered 0 95% 4.74E-10 #Filtered 0 95% 1.54E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 5.17E-10 5% 6.22E-09 Minimum 2.43E-05 5% 1.08E-04 
Maximum 2.85E-06 10% 1.10E-08 Maximum 2.02E-03 10% 1.86E-04 
Mean 1.53E-07 15% 1.55E-08 Mean 8.40E-04 15% 2.65E-04 
Std Dev 2.70E-07 20% 2.03E-08 Std Dev 4.87E-04 20% 3.45E-04 
Variance 7.30434E-14 25% 2.47E-08 Variance 2.36977E-07 25% 4.29E-04 
Skewness 3.697836184 30% 2.95E-08 Skewness 0.17210223 30% 5.05E-04 
Kurtosis 20.40807467 35% 3.42E-08 Kurtosis 2.032512639 35% 5.83E-04 
Median 5.25E-08 40% 3.92E-08 Median 8.26E-04 40% 6.62E-04 
Mode 2.43E-08 45% 4.54E-08 Mode 4.99E-04 45% 7.45E-04 
Left X 6.22E-09 50% 5.25E-08 Left X 1.08E-04 50% 8.26E-04 
Left P 5% 55% 6.20E-08 Left P 5% 55% 9.08E-04 
Right X 7.03E-07 60% 7.53E-08 Right X 1.66E-03 60% 9.83E-04 
Right P 95% 65% 9.11E-08 Right P 95% 65% 1.06E-03 
Diff X 6.97E-07 70% 1.13E-07 Diff X 1.55E-03 70% 1.14E-03 
Diff P 90% 75% 1.44E-07 Diff P 90% 75% 1.23E-03 
#Errors 0 80% 1.92E-07 #Errors 0 80% 1.31E-03 
Filter Min Off 85% 2.67E-07 Filter Min Off 85% 1.40E-03 
Filter Max Off 90% 4.04E-07 Filter Max Off 90% 1.51E-03 
#Filtered 0 95% 7.03E-07 #Filtered 0 95% 1.66E-03 
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B2E. (NO-IMMUNE BOOSTING AFTER ASYMPTOMATIC INFECTIOUNESS) 
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PROBABILITY GRAPH FOR DR MODELS 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for No-Immune Boosting after Asymptomatic Infectiousness 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 4.26E-12 5% 2.31E-11 Minimum 1.19E-08 5% 1.54E-07 
Maximum 6.13E-10 10% 4.00E-11 Maximum 2.95E-05 10% 2.88E-07 
Mean 1.87E-10 15% 5.70E-11 Mean 4.76E-06 15% 4.45E-07 
Std Dev 1.14E-10 20% 7.50E-11 Std Dev 5.15E-06 20% 6.32E-07 
Variance 1.30332E-20 25% 9.25E-11 Variance 2.65423E-11 25% 8.61E-07 
Skewness 0.438631402 30% 1.10E-10 Skewness 1.503421922 30% 1.12E-06 
Kurtosis 2.556541133 35% 1.27E-10 Kurtosis 4.939202974 35% 1.45E-06 
Median 1.77E-10 40% 1.44E-10 Median 2.80E-06 40% 1.81E-06 
Mode 1.48E-10 45% 1.60E-10 Mode 1.65E-07 45% 2.27E-06 
Left X 2.31E-11 50% 1.77E-10 Left X 1.54E-07 50% 2.80E-06 
Left P 5% 55% 1.94E-10 Left P 5% 55% 3.38E-06 
Right X 3.87E-10 60% 2.12E-10 Right X 1.58E-05 60% 4.08E-06 
Right P 95% 65% 2.31E-10 Right P 95% 65% 4.91E-06 
Diff X 3.64E-10 70% 2.48E-10 Diff X 1.56E-05 70% 5.85E-06 
Diff P 90% 75% 2.67E-10 Diff P 90% 75% 7.01E-06 
#Errors 0 80% 2.89E-10 #Errors 0 80% 8.44E-06 
Filter Min Off 85% 3.12E-10 Filter Min Off 85% 1.02E-05 
Filter Max Off 90% 3.42E-10 Filter Max Off 90% 1.26E-05 
#Filtered 0 95% 3.87E-10 #Filtered 0 95% 1.58E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 4.00E-10 5% 4.73E-09 Minimum 2.23E-05 5% 1.07E-04 
Maximum 2.18E-06 10% 8.40E-09 Maximum 2.01E-03 10% 1.87E-04 
Mean 1.23E-07 15% 1.23E-08 Mean 8.40E-04 15% 2.65E-04 
Std Dev 2.16E-07 20% 1.62E-08 Std Dev 4.87E-04 20% 3.45E-04 
Variance 4.68413E-14 25% 2.00E-08 Variance 2.37398E-07 25% 4.27E-04 
Skewness 3.678275458 30% 2.38E-08 Skewness 0.178388897 30% 5.00E-04 
Kurtosis 19.86742882 35% 2.78E-08 Kurtosis 2.043520821 35% 5.83E-04 
Median 4.39E-08 40% 3.24E-08 Median 8.27E-04 40% 6.65E-04 
Mode 1.35E-08 45% 3.71E-08 Mode 7.38E-04 45% 7.44E-04 
Left X 4.73E-09 50% 4.39E-08 Left X 1.07E-04 50% 8.27E-04 
Left P 5% 55% 5.08E-08 Left P 5% 55% 9.04E-04 
Right X 5.51E-07 60% 6.07E-08 Right X 1.66E-03 60% 9.86E-04 
Right P 95% 65% 7.38E-08 Right P 95% 65% 1.06E-03 
Diff X 5.46E-07 70% 9.22E-08 Diff X 1.56E-03 70% 1.14E-03 
Diff P 90% 75% 1.18E-07 Diff P 90% 75% 1.22E-03 
#Errors 0 80% 1.56E-07 #Errors 0 80% 1.30E-03 
Filter Min Off 85% 2.21E-07 Filter Min Off 85% 1.40E-03 
Filter Max Off 90% 3.24E-07 Filter Max Off 90% 1.51E-03 
#Filtered 0 95% 5.51E-07 #Filtered 0 95% 1.66E-03 
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B2F. (GENEGROUP II TYPE 4) 
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PROBABILITY GRAPH FOR DR MODELS 

 

 

CUMMULATIVE GRAPH FOR DR MODELS 
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Summary Statistics for Genogroup II Type 4 

Dose-Immunity Model / Incidence per person per 

year 

Dose Model / Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.20E-12 5% 1.73E-11 Minimum 5.81E-09 5% 1.54E-07 
Maximum 4.20E-10 10% 3.02E-11 Maximum 2.97E-05 10% 2.86E-07 
Mean 1.39E-10 15% 4.28E-11 Mean 4.70E-06 15% 4.33E-07 
Std Dev 8.40E-11 20% 5.57E-11 Std Dev 5.03E-06 20% 6.39E-07 
Variance 7.05068E-21 25% 6.97E-11 Variance 2.52973E-11 25% 8.69E-07 
Skewness 0.371280581 30% 8.28E-11 Skewness 1.498333705 30% 1.13E-06 
Kurtosis 2.42294695 35% 9.55E-11 Kurtosis 5.001455157 35% 1.47E-06 
Median 1.34E-10 40% 1.08E-10 Median 2.81E-06 40% 1.86E-06 
Mode 1.61E-10 45% 1.21E-10 Mode 1.18E-07 45% 2.30E-06 
Left X 1.73E-11 50% 1.34E-10 Left X 1.54E-07 50% 2.81E-06 
Left P 5% 55% 1.47E-10 Left P 5% 55% 3.42E-06 
Right X 2.87E-10 60% 1.60E-10 Right X 1.55E-05 60% 4.16E-06 
Right P 95% 65% 1.73E-10 Right P 95% 65% 4.98E-06 
Diff X 2.69E-10 70% 1.86E-10 Diff X 1.53E-05 70% 5.84E-06 
Diff P 90% 75% 1.99E-10 Diff P 90% 75% 6.97E-06 
#Errors 0 80% 2.15E-10 #Errors 0 80% 8.29E-06 
Filter Min Off 85% 2.32E-10 Filter Min Off 85% 1.01E-05 
Filter Max Off 90% 2.54E-10 Filter Max Off 90% 1.21E-05 
#Filtered 0 95% 2.87E-10 #Filtered 0 95% 1.55E-05 

 

Immunity Model / Incidence per person per year Naive/ Incidence per person per year 

Statistics  Percentage Statistics  Percentage 
Minimum 3.47E-10 5% 3.67E-09 Minimum 2.49E-05 5% 1.07E-04 
Maximum 1.55E-06 10% 6.53E-09 Maximum 2.02E-03 10% 1.86E-04 
Mean 9.25E-08 15% 9.48E-09 Mean 8.40E-04 15% 2.65E-04 
Std Dev 1.64E-07 20% 1.23E-08 Std Dev 4.87E-04 20% 3.42E-04 
Variance 2.68224E-14 25% 1.52E-08 Variance 2.37332E-07 25% 4.24E-04 
Skewness 3.613497548 30% 1.78E-08 Skewness 0.171673405 30% 5.01E-04 
Kurtosis 18.74992932 35% 2.08E-08 Kurtosis 2.021870674 35% 5.83E-04 
Median 3.23E-08 40% 2.39E-08 Median 8.25E-04 40% 6.66E-04 
Mode 1.76E-08 45% 2.79E-08 Mode 2.86E-04 45% 7.44E-04 
Left X 3.67E-09 50% 3.23E-08 Left X 1.07E-04 50% 8.25E-04 
Left P 5% 55% 3.76E-08 Left P 5% 55% 9.10E-04 
Right X 4.18E-07 60% 4.48E-08 Right X 1.65E-03 60% 9.82E-04 
Right P 95% 65% 5.45E-08 Right P 95% 65% 1.06E-03 
Diff X 4.15E-07 70% 6.68E-08 Diff X 1.55E-03 70% 1.14E-03 
Diff P 90% 75% 8.65E-08 Diff P 90% 75% 1.22E-03 
#Errors 0 80% 1.16E-07 #Errors 0 80% 1.30E-03 
Filter Min Off 85% 1.58E-07 Filter Min Off 85% 1.40E-03 
Filter Max Off 90% 2.44E-07 Filter Max Off 90% 1.52E-03 
#Filtered 0 95% 4.18E-07 #Filtered 0 95% 1.65E-03 
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APPENDIX C1: Reference Chart of Compliance of Mean Effluent DischargeofBOD5.TN and TSS for 50mg/L and Trichloroethylene. Benzene for 50 µg/l 
 

 
 
 
APPENDIX C2: Reference Chart of Compliance of Mean Effluent Discharge of TP for 2.0mg/L 
 

 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 50.00 50.25 50.99 52.20 53.85 55.90 58.31 61.03 64.03 67.27 70.71 78.10 86.02 94.34 102.96 111.80 134.63 158.11 182.00 206.16 
60% 50.00 49.00 48.50 48.46 48.85 49.60 50.68 52.02 53.59 55.36 57.28 61.50 66.09 70.94 75.96 81.11 94.30 107.71 121.19 134.66 
70% 50.00 47.69 45.95 44.75 43.99 43.62 43.58 43.81 44.26 44.89 45.67 47.57 49.78 52.21 54.78 57.44 64.30 71.28 78.26 85.19 
80% 50.00 46.20 43.16 40.77 38.93 37.56 36.56 35.86 35.42 35.17 35.08 35.26 35.78 36.53 37.42 38.42 41.16 44.06 47.02 49.97 
90% 50.00 44.22 39.56 35.83 32.86 30.51 28.64 27.16 25.99 25.06 24.32 23.27 22.63 22.25 22.05 21.98 22.16 22.60 23.18 23.83 
92% 50.00 43.68 38.61 34.56 31.34 28.79 26.75 25.13 23.84 22.79 21.95 20.72 19.91 19.37 19.02 18.81 18.63 18.75 19.02 19.37 
95% 50.00 42.64 36.81 32.21 28.57 25.70 23.42 21.60 20.13 18.95 17.98 16.52 15.50 14.78 14.26 13.87 13.29 13.03 12.93 12.93 
98% 50.00 40.94 33.95 28.56 24.41 21.19 18.67 16.68 15.10 13.83 12.79 11.22 10.12 9.32 8.72 8.26 7.47 7.00 6.70 6.50 
99% 50.00 39.84 32.17 26.37 21.98 18.63 16.05 14.05 12.47 11.21 10.20 8.68 7.63 6.86 6.29 5.85 5.10 4.64 4.33 4.11 

99.9% 50.00 36.92 27.65 21.07 16.38 12.99 10.51 8.67 7.29 6.22 5.40 4.22 3.44 2.90 2.51 2.22 1.74 1.45 1.27 1.14 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 2.00 2.01 2.04 2.09 2.15 2.24 2.33 2.44 2.56 2.69 2.83 3.12 3.44 3.77 4.12 4.47 5.39 6.32 7.28 8.25 
60% 2.00 1.96 1.94 1.94 1.95 1.98 2.03 2.08 2.14 2.21 2.29 2.46 2.64 2.84 3.04 3.24 3.77 4.31 4.85 5.39 
70% 2.00 1.91 1.84 1.79 1.76 1.74 1.74 1.75 1.77 1.80 1.83 1.90 1.99 2.09 2.19 2.30 2.57 2.85 3.13 3.41 
80% 2.00 1.85 1.73 1.63 1.56 1.50 1.46 1.43 1.42 1.41 1.40 1.41 1.43 1.46 1.50 1.54 1.65 1.76 1.88 2.00 
90% 2.00 1.77 1.58 1.43 1.31 1.22 1.15 1.09 1.04 1.00 0.97 0.93 0.91 0.89 0.88 0.88 0.89 0.90 0.93 0.95 
92% 2.00 1.75 1.54 1.38 1.25 1.15 1.07 1.01 0.95 0.91 0.88 0.83 0.80 0.77 0.76 0.75 0.75 0.75 0.76 0.77 
95% 2.00 1.71 1.47 1.29 1.14 1.03 0.94 0.86 0.81 0.76 0.72 0.66 0.62 0.59 0.57 0.55 0.53 0.52 0.52 0.52 
98% 2.00 1.64 1.36 1.14 0.98 0.85 0.75 0.67 0.60 0.55 0.51 0.45 0.40 0.37 0.35 0.33 0.30 0.28 0.27 0.26 
99% 2.00 1.59 1.29 1.05 0.88 0.75 0.64 0.56 0.50 0.45 0.41 0.35 0.31 0.27 0.25 0.23 0.20 0.19 0.17 0.16 

99.9% 2.00 1.48 1.11 0.84 0.66 0.52 0.42 0.35 0.29 0.25 0.22 0.17 0.14 0.12 0.10 0.09 0.07 0.06 0.05 0.05 
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APPENDIX C3: Reference Chart of Compliance of Mean Effluent Discharge of Soluble Arsenic. Lead and Silver of 0.1mg/L 

 
 
 
APPENDIX C4: Reference Chart of Compliance of Mean Effluent Discharge for Temperature of 300C 

 
 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.16 0.17 0.19 0.21 0.22 0.27 0.32 0.36 0.41 
60% 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.19 0.22 0.24 0.27 
70% 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.13 0.14 0.16 0.17 
80% 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.10 
90% 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 
92% 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
95% 0.10 0.09 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
98% 0.10 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 
99% 0.10 0.08 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

99.9% 0.10 0.07 0.06 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 30.00 30.15 30.59 31.32 32.31 33.54 34.99 36.62 38.42 40.36 42.43 46.86 51.61 56.60 61.77 67.08 80.78 94.87 109.20 123.69 

60% 30.00 29.40 29.10 29.08 29.31 29.76 30.41 31.21 32.16 33.21 34.37 36.90 39.66 42.56 45.58 48.66 56.58 64.62 72.71 80.80 

70% 30.00 28.61 27.57 26.85 26.39 26.17 26.15 26.29 26.56 26.94 27.40 28.54 29.87 31.33 32.87 34.46 38.58 42.77 46.96 51.12 

80% 30.00 27.72 25.90 24.46 23.36 22.53 21.93 21.52 21.25 21.10 21.05 21.16 21.47 21.92 22.45 23.05 24.69 26.44 28.21 29.98 

90% 30.00 26.53 23.73 21.50 19.72 18.31 17.19 16.30 15.59 15.03 14.59 13.96 13.58 13.35 13.23 13.19 13.29 13.56 13.91 14.30 

92% 30.00 26.21 23.16 20.74 18.81 17.27 16.05 15.08 14.30 13.68 13.17 12.43 11.94 11.62 11.41 11.29 11.18 11.25 11.41 11.62 

95% 30.00 25.59 22.09 19.32 17.14 15.42 14.05 12.96 12.08 11.37 10.79 9.91 9.30 8.87 8.55 8.32 7.98 7.82 7.76 7.76 

98% 30.00 24.56 20.37 17.14 14.64 12.71 11.20 10.01 9.06 8.30 7.67 6.73 6.07 5.59 5.23 4.95 4.48 4.20 4.02 3.90 

99% 30.00 23.91 19.30 15.82 13.19 11.18 9.63 8.43 7.48 6.73 6.12 5.21 4.58 4.12 3.77 3.51 3.06 2.78 2.60 2.47 

99.9% 30.00 22.15 16.59 12.64 9.83 7.79 6.31 5.20 4.37 3.73 3.24 2.53 2.06 1.74 1.51 1.33 1.04 0.87 0.76 0.68 
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APPENDIX C5: Reference Chart of Compliance of Mean Effluent Discharge ofTC of 400 MPN/100ml 

 
 

APPENDIX C6: Reference Chart of Compliance of Mean Effluent Discharge ofTotal Arsenic. Total Chromium and Nickel of 0.5mg/L 

 
 
 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 400.00 402.00 407.92 417.61 430.81 447.21 466.48 488.26 512.25 538.14 565.69 624.82 688.19 754.72 823.65 894.43 1077.03 1264.91 1456.02 1649.24 
60% 400.00 391.98 387.99 387.72 390.80 396.84 405.42 416.17 428.75 442.86 458.24 492.02 528.74 567.51 607.69 648.86 754.36 861.65 969.49 1077.30 
70% 400.00 381.48 367.64 357.96 351.92 348.99 348.66 350.49 354.09 359.15 365.38 380.55 398.28 417.70 438.23 459.50 514.42 570.27 626.12 681.56 
80% 400.00 369.61 345.27 326.16 311.47 300.45 292.45 286.90 283.33 281.34 280.63 282.09 286.27 292.23 299.39 307.35 329.27 352.51 376.14 399.74 
90% 400.00 353.74 316.46 286.63 262.90 244.07 229.14 217.30 207.91 200.46 194.55 186.17 181.01 177.99 176.43 175.88 177.25 180.80 185.43 190.60 
92% 400.00 349.43 308.84 276.47 250.73 230.29 214.03 201.06 190.68 182.34 175.62 165.75 159.24 154.96 152.18 150.47 149.08 150.02 152.16 154.96 
95% 400.00 341.16 294.50 257.66 228.59 205.61 187.36 172.79 161.06 151.57 143.81 132.14 124.02 118.24 114.05 110.97 106.34 104.23 103.46 103.46 
98% 400.00 327.52 271.59 228.51 195.27 169.49 149.34 133.46 120.80 110.61 102.31 89.80 80.99 74.58 69.76 66.05 59.80 56.03 53.61 51.97 
99% 400.00 318.75 257.35 210.97 175.84 149.05 128.43 112.39 99.77 89.70 81.57 69.45 61.01 54.89 50.31 46.77 40.78 37.09 34.62 32.88 

99.9% 400.00 295.36 221.21 168.59 131.01 103.89 84.08 69.38 58.29 49.80 43.18 33.75 27.53 23.21 20.08 17.74 13.91 11.63 10.14 9.09 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 0.50 0.50 0.51 0.52 0.54 0.56 0.58 0.61 0.64 0.67 0.71 0.78 0.86 0.94 1.03 1.12 1.35 1.58 1.82 2.06 

60% 0.50 0.49 0.48 0.48 0.49 0.50 0.51 0.52 0.54 0.55 0.57 0.62 0.66 0.71 0.76 0.81 0.94 1.08 1.21 1.35 

70% 0.50 0.48 0.46 0.45 0.44 0.44 0.44 0.44 0.44 0.45 0.46 0.48 0.50 0.52 0.55 0.57 0.64 0.71 0.78 0.85 

80% 0.50 0.46 0.43 0.41 0.39 0.38 0.37 0.36 0.35 0.35 0.35 0.35 0.36 0.37 0.37 0.38 0.41 0.44 0.47 0.50 

90% 0.50 0.44 0.40 0.36 0.33 0.31 0.29 0.27 0.26 0.25 0.24 0.23 0.23 0.22 0.22 0.22 0.22 0.23 0.23 0.24 

92% 0.50 0.44 0.39 0.35 0.31 0.29 0.27 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

95% 0.50 0.43 0.37 0.32 0.29 0.26 0.23 0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.13 0.13 

98% 0.50 0.41 0.34 0.29 0.24 0.21 0.19 0.17 0.15 0.14 0.13 0.11 0.10 0.09 0.09 0.08 0.07 0.07 0.07 0.06 

99% 0.50 0.40 0.32 0.26 0.22 0.19 0.16 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04 

99.9% 0.50 0.37 0.28 0.21 0.16 0.13 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 
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APPENDIX C7: Reference Chart of Compliance of Mean Effluent Discharge for COD. Chloride and Total residual chlorine of 250 mg/L 

 
 
 
 
 
APPENDIX C8: Reference Chart of Compliance of Mean Effluent Discharge of Conductivity of 1500��/�� 

 
 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 250.00 251.25 254.95 261.01 269.26 279.51 291.55 305.16 320.16 336.34 353.55 390.51 430.12 471.70 514.78 559.02 673.15 790.57 910.01 1030.78 

60% 250.00 244.99 242.49 242.32 244.25 248.02 253.39 260.10 267.97 276.79 286.40 307.51 330.46 354.69 379.81 405.54 471.48 538.53 605.93 673.32 

70% 250.00 238.43 229.77 223.73 219.95 218.12 217.91 219.05 221.31 224.47 228.36 237.85 248.92 261.06 273.90 287.19 321.51 356.42 391.32 425.97 

80% 250.00 231.01 215.79 203.85 194.67 187.78 182.78 179.31 177.08 175.84 175.39 176.31 178.92 182.65 187.12 192.09 205.79 220.32 235.09 249.83 

90% 250.00 221.09 197.79 179.15 164.31 152.54 143.21 135.81 129.95 125.29 121.60 116.36 113.13 111.25 110.27 109.92 110.78 113.00 115.89 119.13 

92% 250.00 218.39 193.03 172.79 156.71 143.93 133.77 125.66 119.18 113.96 109.76 103.60 99.53 96.85 95.11 94.04 93.17 93.76 95.10 96.85 

95% 250.00 213.22 184.07 161.04 142.87 128.50 117.10 107.99 100.67 94.73 89.88 82.59 77.51 73.90 71.28 69.36 66.46 65.14 64.66 64.66 

98% 250.00 204.70 169.74 142.82 122.04 105.93 93.34 83.41 75.50 69.13 63.94 56.12 50.62 46.61 43.60 41.28 37.37 35.02 33.50 32.48 

99% 250.00 199.22 160.84 131.86 109.90 93.16 80.27 70.25 62.35 56.06 50.98 43.41 38.13 34.31 31.44 29.23 25.49 23.18 21.64 20.55 

99.9% 250.00 184.60 138.26 105.37 81.88 64.93 52.55 43.36 36.43 31.12 26.99 21.10 17.20 14.50 12.55 11.09 8.70 7.27 6.34 5.68 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 1500.00 1507.48 1529.71 1566.05 1615.55 1677.05 1749.29 1830.98 1920.94 2018.04 2121.32 2343.07 2580.70 2830.19 3088.69 3354.10 4038.87 4743.42 5460.08 6184.66 

60% 1500.00 1469.91 1454.95 1453.95 1465.51 1488.14 1520.31 1560.63 1607.80 1660.72 1718.42 1845.07 1982.79 2128.16 2278.84 2433.23 2828.86 3231.18 3635.59 4039.89 

70% 1500.00 1430.57 1378.65 1342.37 1319.72 1308.70 1307.46 1314.32 1327.84 1346.80 1370.19 1427.07 1493.55 1566.36 1643.37 1723.14 1929.07 2138.51 2347.93 2555.85 

80% 1500.00 1386.04 1294.76 1223.08 1168.00 1126.70 1096.70 1075.88 1062.47 1055.02 1052.35 1057.84 1073.50 1095.87 1122.71 1152.57 1234.75 1321.92 1410.53 1499.01 

90% 1500.00 1326.52 1186.71 1074.88 985.88 915.25 859.26 814.88 779.68 751.74 729.57 698.14 678.80 667.47 661.60 659.54 664.70 678.02 695.36 714.76 

92% 1500.00 1310.34 1158.15 1036.76 940.25 863.59 802.61 753.98 715.06 683.79 658.56 621.58 597.16 581.08 570.68 564.25 559.03 562.58 570.61 581.09 

95% 1500.00 1279.35 1104.39 966.23 857.22 771.03 702.60 647.95 603.99 568.37 539.28 495.51 465.07 443.39 427.68 416.14 398.78 390.86 387.96 387.97 

98% 1500.00 1228.20 1018.47 856.91 732.25 635.57 560.03 500.46 453.00 414.77 383.65 336.74 303.72 279.66 261.60 247.69 224.25 210.13 201.03 194.90 

99% 1500.00 1195.33 965.05 791.15 659.40 558.94 481.62 421.48 374.12 336.37 305.90 260.45 228.78 205.84 188.65 175.40 152.92 139.07 129.83 123.31 

99.9% 1500.00 1107.61 829.55 632.20 491.27 389.61 315.30 260.16 218.60 186.74 161.94 126.58 103.22 87.02 75.31 66.54 52.18 43.63 38.02 34.08 



249 

 

APPENDIX C9: Reference Chart of Compliance of Mean Effluent Discharge of TDS of 1000 mg/L 

 
 
APPENDIX C10: Reference Chart of Compliance of Mean Effluent Discharge of DO. Total Cyanide. Phenol . Selenium and Ammonia of 
1.0mg/L 

 
 
 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 1000.00 1004.99 1019.80 1044.03 1077.03 1118.03 1166.19 1220.66 1280.62 1345.36 1414.21 1562.05 1720.47 1886.80 2059.13 2236.07 2692.58 3162.28 3640.05 4123.11 

60% 1000.00 979.94 969.97 969.30 977.01 992.09 1013.54 1040.42 1071.87 1107.14 1145.61 1230.05 1321.86 1418.77 1519.23 1622.15 1885.91 2154.12 2423.73 2693.26 

70% 1000.00 953.71 919.10 894.91 879.81 872.47 871.64 876.22 885.23 897.87 913.46 951.38 995.70 1044.24 1095.58 1148.76 1286.05 1425.67 1565.29 1703.90 

80% 1000.00 924.03 863.17 815.39 778.67 751.13 731.13 717.25 708.31 703.34 701.57 705.23 715.67 730.58 748.47 768.38 823.17 881.28 940.35 999.34 

90% 1000.00 884.35 791.14 716.59 657.25 610.17 572.84 543.25 519.78 501.16 486.38 465.43 452.53 444.98 441.07 439.70 443.13 452.01 463.57 476.51 

92% 1000.00 873.56 772.10 691.17 626.84 575.73 535.07 502.65 476.71 455.86 439.04 414.38 398.11 387.39 380.45 376.17 372.69 375.05 380.41 387.39 

95% 1000.00 852.90 736.26 644.15 571.48 514.02 468.40 431.97 402.66 378.92 359.52 330.34 310.04 295.59 285.12 277.43 265.85 260.57 258.64 258.65 

98% 1000.00 818.80 678.98 571.28 488.17 423.71 373.35 333.64 302.00 276.52 255.77 224.49 202.48 186.44 174.40 165.12 149.50 140.09 134.02 129.94 

99% 1000.00 796.88 643.37 527.43 439.60 372.62 321.08 280.99 249.42 224.25 203.94 173.63 152.52 137.22 125.77 116.94 101.95 92.71 86.55 82.20 

99.9% 1000.00 738.41 553.03 421.47 327.51 259.74 210.20 173.44 145.73 124.49 107.96 84.38 68.82 58.02 50.21 44.36 34.78 29.08 25.35 22.72 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 1.00 1.00 1.02 1.04 1.08 1.12 1.17 1.22 1.28 1.35 1.41 1.56 1.72 1.89 2.06 2.24 2.69 3.16 3.64 4.12 

60% 1.00 0.98 0.97 0.97 0.98 0.99 1.01 1.04 1.07 1.11 1.15 1.23 1.32 1.42 1.52 1.62 1.89 2.15 2.42 2.69 

70% 1.00 0.95 0.92 0.89 0.88 0.87 0.87 0.88 0.89 0.90 0.91 0.95 1.00 1.04 1.10 1.15 1.29 1.43 1.57 1.70 

80% 1.00 0.92 0.86 0.82 0.78 0.75 0.73 0.72 0.71 0.70 0.70 0.71 0.72 0.73 0.75 0.77 0.82 0.88 0.94 1.00 

90% 1.00 0.88 0.79 0.72 0.66 0.61 0.57 0.54 0.52 0.50 0.49 0.47 0.45 0.44 0.44 0.44 0.44 0.45 0.46 0.48 

92% 1.00 0.87 0.77 0.69 0.63 0.58 0.54 0.50 0.48 0.46 0.44 0.41 0.40 0.39 0.38 0.38 0.37 0.38 0.38 0.39 

95% 1.00 0.85 0.74 0.64 0.57 0.51 0.47 0.43 0.40 0.38 0.36 0.33 0.31 0.30 0.29 0.28 0.27 0.26 0.26 0.26 

98% 1.00 0.82 0.68 0.57 0.49 0.42 0.37 0.33 0.30 0.28 0.26 0.22 0.20 0.19 0.17 0.17 0.15 0.14 0.13 0.13 

99% 1.00 0.80 0.64 0.53 0.44 0.37 0.32 0.28 0.25 0.22 0.20 0.17 0.15 0.14 0.13 0.12 0.10 0.09 0.09 0.08 

99.9% 1.00 0.74 0.55 0.42 0.33 0.26 0.21 0.17 0.15 0.12 0.11 0.08 0.07 0.06 0.05 0.04 0.03 0.03 0.03 0.02 
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APPENDIX C11: Reference Chart of Compliance of Mean Effluent Discharge of Turbidity of 75 NTU 
 

 
APPENDIX C12: Reference Chart of Compliance of Mean Effluent Discharge of E.coli  of 10 MPN/100ml 
 

 
 
 
 
  

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 75.00 75.37 76.49 78.30 80.78 83.85 87.46 91.55 96.05 100.90 106.07 117.15 129.03 141.51 154.43 167.71 201.94 237.17 273.00 309.23 

60% 75.00 73.50 72.75 72.70 73.28 74.41 76.02 78.03 80.39 83.04 85.92 92.25 99.14 106.41 113.94 121.66 141.44 161.56 181.78 201.99 

70% 75.00 71.53 68.93 67.12 65.99 65.44 65.37 65.72 66.39 67.34 68.51 71.35 74.68 78.32 82.17 86.16 96.45 106.93 117.40 127.79 

80% 75.00 69.30 64.74 61.15 58.40 56.33 54.84 53.79 53.12 52.75 52.62 52.89 53.68 54.79 56.14 57.63 61.74 66.10 70.53 74.95 

90% 75.00 66.33 59.34 53.74 49.29 45.76 42.96 40.74 38.98 37.59 36.48 34.91 33.94 33.37 33.08 32.98 33.23 33.90 34.77 35.74 

92% 75.00 65.52 57.91 51.84 47.01 43.18 40.13 37.70 35.75 34.19 32.93 31.08 29.86 29.05 28.53 28.21 27.95 28.13 28.53 29.05 

95% 75.00 63.97 55.22 48.31 42.86 38.55 35.13 32.40 30.20 28.42 26.96 24.78 23.25 22.17 21.38 20.81 19.94 19.54 19.40 19.40 

98% 75.00 61.41 50.92 42.85 36.61 31.78 28.00 25.02 22.65 20.74 19.18 16.84 15.19 13.98 13.08 12.38 11.21 10.51 10.05 9.75 

99% 75.00 59.77 48.25 39.56 32.97 27.95 24.08 21.07 18.71 16.82 15.30 13.02 11.44 10.29 9.43 8.77 7.65 6.95 6.49 6.17 

99.9% 75.00 55.38 41.48 31.61 24.56 19.48 15.76 13.01 10.93 9.34 8.10 6.33 5.16 4.35 3.77 3.33 2.61 2.18 1.90 1.70 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 10.00 10.05 10.20 10.44 10.77 11.18 11.66 12.21 12.81 13.45 14.14 15.62 17.20 18.87 20.59 22.36 26.93 31.62 36.40 41.23 

60% 10.00 9.80 9.70 9.69 9.77 9.92 10.14 10.40 10.72 11.07 11.46 12.30 13.22 14.19 15.19 16.22 18.86 21.54 24.24 26.93 

70% 10.00 9.54 9.19 8.95 8.80 8.72 8.72 8.76 8.85 8.98 9.13 9.51 9.96 10.44 10.96 11.49 12.86 14.26 15.65 17.04 

80% 10.00 9.24 8.63 8.15 7.79 7.51 7.31 7.17 7.08 7.03 7.02 7.05 7.16 7.31 7.48 7.68 8.23 8.81 9.40 9.99 

90% 10.00 8.84 7.91 7.17 6.57 6.10 5.73 5.43 5.20 5.01 4.86 4.65 4.53 4.45 4.41 4.40 4.43 4.52 4.64 4.77 

92% 10.00 8.74 7.72 6.91 6.27 5.76 5.35 5.03 4.77 4.56 4.39 4.14 3.98 3.87 3.80 3.76 3.73 3.75 3.80 3.87 

95% 10.00 8.53 7.36 6.44 5.71 5.14 4.68 4.32 4.03 3.79 3.60 3.30 3.10 2.96 2.85 2.77 2.66 2.61 2.59 2.59 

98% 10.00 8.19 6.79 5.71 4.88 4.24 3.73 3.34 3.02 2.77 2.56 2.24 2.02 1.86 1.74 1.65 1.49 1.40 1.34 1.30 

99% 10.00 7.97 6.43 5.27 4.40 3.73 3.21 2.81 2.49 2.24 2.04 1.74 1.53 1.37 1.26 1.17 1.02 0.93 0.87 0.82 

99.9% 10.00 7.38 5.53 4.21 3.28 2.60 2.10 1.73 1.46 1.24 1.08 0.84 0.69 0.58 0.50 0.44 0.35 0.29 0.25 0.23 
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APPENDIX C13: Reference Chart of Compliance of Mean Effluent Discharge for pH  
Lower bound for pH for 6 (interval equation 21) 

 
 
Upper bound for pH for 9 (interval equation 21) 

 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 6.00 6.03 6.12 6.26 6.46 6.71 7.00 7.32 7.68 8.07 8.49 9.37 10.32 11.32 12.35 13.42 16.16 18.97 21.84 24.74 

60% 6.00 5.88 5.82 5.82 5.86 5.95 6.08 6.24 6.43 6.64 6.87 7.38 7.93 8.51 9.12 9.73 11.32 12.92 14.54 16.16 

70% 6.00 5.72 5.51 5.37 5.28 5.23 5.23 5.26 5.31 5.39 5.48 5.71 5.97 6.27 6.57 6.89 7.72 8.55 9.39 10.22 

80% 6.00 5.54 5.18 4.89 4.67 4.51 4.39 4.30 4.25 4.22 4.21 4.23 4.29 4.38 4.49 4.61 4.94 5.29 5.64 6.00 

90% 6.00 5.31 4.75 4.30 3.94 3.66 3.44 3.26 3.12 3.01 2.92 2.79 2.72 2.67 2.65 2.64 2.66 2.71 2.78 2.86 

92% 6.00 5.24 4.63 4.15 3.76 3.45 3.21 3.02 2.86 2.74 2.63 2.49 2.39 2.32 2.28 2.26 2.24 2.25 2.28 2.32 

95% 6.00 5.12 4.42 3.86 3.43 3.08 2.81 2.59 2.42 2.27 2.16 1.98 1.86 1.77 1.71 1.66 1.60 1.56 1.55 1.55 

98% 6.00 4.91 4.07 3.43 2.93 2.54 2.24 2.00 1.81 1.66 1.53 1.35 1.21 1.12 1.05 0.99 0.90 0.84 0.80 0.78 

99% 6.00 4.78 3.86 3.16 2.64 2.24 1.93 1.69 1.50 1.35 1.22 1.04 0.92 0.82 0.75 0.70 0.61 0.56 0.52 0.49 

99.9% 6.00 4.43 3.32 2.53 1.97 1.56 1.26 1.04 0.87 0.75 0.65 0.51 0.41 0.35 0.30 0.27 0.21 0.17 0.15 0.14 

 Coefficient of Variation 
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 

50% 9.00 9.04 9.18 9.40 9.69 10.06 10.50 10.99 11.53 12.11 12.73 14.06 15.48 16.98 18.53 20.12 24.23 28.46 32.76 37.11 

60% 9.00 8.82 8.73 8.72 8.79 8.93 9.12 9.36 9.65 9.96 10.31 11.07 11.90 12.77 13.67 14.60 16.97 19.39 21.81 24.24 

70% 9.00 8.58 8.27 8.05 7.92 7.85 7.84 7.89 7.97 8.08 8.22 8.56 8.96 9.40 9.86 10.34 11.57 12.83 14.09 15.34 

80% 9.00 8.32 7.77 7.34 7.01 6.76 6.58 6.46 6.37 6.33 6.31 6.35 6.44 6.58 6.74 6.92 7.41 7.93 8.46 8.99 

90% 9.00 7.96 7.12 6.45 5.92 5.49 5.16 4.89 4.68 4.51 4.38 4.19 4.07 4.00 3.97 3.96 3.99 4.07 4.17 4.29 

92% 9.00 7.86 6.95 6.22 5.64 5.18 4.82 4.52 4.29 4.10 3.95 3.73 3.58 3.49 3.42 3.39 3.35 3.38 3.42 3.49 

95% 9.00 7.68 6.63 5.80 5.14 4.63 4.22 3.89 3.62 3.41 3.24 2.97 2.79 2.66 2.57 2.50 2.39 2.35 2.33 2.33 

98% 9.00 7.37 6.11 5.14 4.39 3.81 3.36 3.00 2.72 2.49 2.30 2.02 1.82 1.68 1.57 1.49 1.35 1.26 1.21 1.17 

99% 9.00 7.17 5.79 4.75 3.96 3.35 2.89 2.53 2.24 2.02 1.84 1.56 1.37 1.24 1.13 1.05 0.92 0.83 0.78 0.74 

99.9% 9.00 6.65 4.98 3.79 2.95 2.34 1.89 1.56 1.31 1.12 0.97 0.76 0.62 0.52 0.45 0.40 0.31 0.26 0.23 0.20 
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