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ABSTRACT

The call for models applying quantitative data of pathogens that are of interest to
replace the otherwise commonly applied models using fecal indicator conversion
rafio has gained prominence, challenges of analytical studies on virus enumeration
(genome copies or particles) have contributed further to the low availability of data
in  Quantitative Microbial Risk Assessment (QMRA) modelling. In this thesis, a
probabilistic stochastic model was developed to respond to the call for virus of
interest based models. Quantitative data on genome copies of Norovirus and
oocyste of Crypfosporidium spp. were applied in a QMRA model. The model was
extended to include an induced immunity for Dose Response Incidence (DRI) of
illness reduction in individual and population exposures, five different scenarios were
modelled for Norovirus based on the epidemiological understanding of immunity
within an individual and Norovirus fransmission dynamics. A third model was
developed to measure the uncertainty of compliance and reliability of wastewater
effluent with integrated policy standards. The probabilistic QMRA model revealed
fecal indicator rafio conversion method underestimated the Disability Adjusted Life
Years (DALYs) with more than two (2) orders of magnitude and were confirmed using
the Cryptosporidium spp. data. For immunity extended DRI models, results shows,
illness incidence is much reduced when both dose-dependent and immunity are
infegrated into risk assessment models. Integration of immunity only into DRI model
also performed better than dose-DRI model only. It was also revealed that,
imrespective of the epidemiology transmission dynamics within the population, DRI
models predictions were similar and dose-immunity DRI model was better predictor.
Finally, the analyses of compliance and reliability of wastewater effluent
measurements revealed that results from wastewater effluents which met the policy
standard values, in some cases could not meet the compliance level needed for
effluent discharge. A chart was developed for the various wastewater treatment

effluent discharge parameters for easy comparison with effluent discharges.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

To secure and increase crop production, irrigation has become a principal water use
in many countries, which otherwise fraditionally have been depending on rain
water(Anonymous, 2014; Jiménez, 2006)- This drive of irrigating farm products for food
production has resulted in the use of wastewater in areas where water is scarce.
Wastewater is undoubtedly a major source of human pathogens as well as a key
source of nutrients for plants growth. Wastewater is known to serve as both an
ingredient of foodstuffs and an independent vehicle for human exposure to
microbiological hazards (Food and Agricultural Organization, 2003). The practice of
using wastewater for irrigation is dated as far back as before the 14 century where
farmers in China used it in combination with human excreta and animal excrement

as fertilizers (Drechsel et al., 2009).

It has been estimated that, wastewater irrigation alone covers 4-6 million hectares
(Jimenez and Asano, 2008) and in the near future, for 4 out of 5 cities, urban
agriculture workers will use wastewater for peri-urban farming activities (Lundqgvist and
Raschid-Sally, 2013). Middle East countries are known for high usage of treated

wastewater. More than 60% of tfreated wastewater is used for agricultural irrigation in



Israel alone (Lawhon and Schwartz, 2006). Other countries included are Egypt, Jordan
and countries along the Nile (Hegazy, 2013; Drechsel and Scott, 2009). In Ghana,
several studies indicate the abundant use of wastewater for irrigation (Amoah et al.,
2007; Seidu et al., 2008; Silverman et al., 2013; Amoah et al., 2005; State, 2010; Mok
and Hamilton, 2014; Drechsel and Scott, 2009; Karavarsamis and Hamilton, 2010;

Haas, et al., 2014; Scheierling et al., 2010)

As a global phenomenon, wastewater usage has both advantages and
disadvantages. It is noted that 1000 cubic meters of municipal wastewater used to
irigate one hectare can supply approximately 16 — 62 kg total nitrogen and 4 — 24 kg
phosphorus of soil nutrient (Qadir et al.,, 2010) making it a substitute for artificial
fertiizers and essential for chemical-free farming. However, among the
disadvantages, the most important is the risk of pathogen occurrence (WHO, 2006),
which may results human disease and hence makes it a concern for public health. In
dealing with such public health issues, a more holistic method of assessing the risk of
pathogen occurrence instead of diseases has gained ground among scientists(

Drechsel et al., 2007).

1.1.1 Quantitative Modelling of Hazards from Wastewater
Quantitative Risk Assessment modelling is a growing area of research attracting a
great number of academicians at both regional and global levels, due to the

mathematical and computational intensity required to describe the physical,



chemical, financial, economic and biological phenomena, etc. Over the last three
decades, one of the powerful branches of quantitative risk assessment modelling that
has seen enormous growth in theoretical background and applications for
quantification of health risk is Quantitative Microbial Risk Assessment (QMRA), which
primarily focuses on identification and quantification of the potential adverse health
risk (probability of infection/illness) associated with exposure of individuals or
populations to hazardous materials (Heidinger, 2009). Technically, it provides a
framework for modelling a food chain process and hence estimates an associated
probable risk especially for food borne infection from consumption of contaminated
food (Duarte and Nauta, 2015). Fundamentally, risk assessment combines the
knowledge and nature of the hazards, and characterises the risk through robust
models based on theoretical statistics (Haas et al., 2014). After the first publications of
human health risks associated with exposures (Dudley et al., 1976; Fuhs, 1975), the
field has grown exponentially into all areas (van Lieverloo et al., 2007; An et al., 2007;
Labite et al., 2010; Armstrong, 2005) and has been making inroads into other field of
studies such as environmental assessment (Ward, 1993; Verdonck, 2001), drug delivery

(Heylings, 2011) etc.

Despite the great advancements of estimating risk and in particular QMRA, risk
estimate of many waterborne and food borne diseases are based on the ratio
conversion method (Silverman et al., 2013), i.e. where the occurrence of common

fecal bacteria like E. coli are used to estimate the pathogen contamination (e.g.



Norovirus) level of water and so the human health risk, by assuming a fixed ratio
between the occurrence of indicator bacteria and the pathogen of interest.
Likewise, there has also been an apparently rare interest in accounting for induced
immunity when estimating the risk of illness due to infection (Havelaar and Swart,
2014). These limitations calls for a more unrelenting and resolute research to dive into
modelling approaches where the pathogen of interest is in focus and the translation
of risk estimates to illness accounts for induced immunity with a parsimonious model
such as the fractional Poison dose response, where probabilistic modelling offers a

way.

1.2 Problem Statement

Traditionally, modelling of illness or diseases has to do with mathematical
epidemiology; nevertheless, such a method is unable to always provide sufficient
sensitivity o measure health risk directly with the availability of human health data as
well as not pathogenic specific. Distinctively, prediction of relative risk of diseases for
future scenarios, in order to evaluate efficacy and efficiency of alternative mitigation
processes in diseases modelling rest entirety on the use of QMRA. However, in QMRA
modelling for estimating water safety, studies typically use fecal indicator rafio
conversion for describing virus concentration to express the relationship between the
occurrence of fecal indicators (typical E. coli) and the pathogen of interest (bacteria
or virus). This approach was used in the WHO guideline for the Safe Use of

Wastewater, Grey water and Excreta(WHO, 2006), and has been adopted by all



subsequent studies (Barker et al., 2014; Fiona Barker et al., 2013; Mara et al., 2010;
Mara and Sleigh, 2010; Travis et al., 2010; Mok and Hamilton, 2014; Ackerson and
Awuah, 2012) . This method has raised concern from practitioners as well. Silverman et
al., (2013) noted "while the ratio of Norovirus (NoV) GIl to E. coli or thermotolerant
coliform is likely to differ over place and time and may include animal fecal sources
as well as environmental sources and reservoirs, it is an important finding that the
current assumption of 0.1 = 1 Norovirus particles per 10° E. coli would underestimate
virus dose with exposure to wastewater and surface water sample”. This call of
concern was supported by Mok and Hamilton (2014) who remarked “if standard
pathogen concentrations are to be used effectively, there should be a move away
from indicator species such as E. coli toward the pathogens of interest such as
viruses''. Moreover, risk assessment basically ends with either predicting annual risk of
illness or the annual Diseases Adjusted Life Years (DALYs), but most research studies
applying the iliness dose-dependent of infection fail to include and characterize the

various dynamics of immunity response of individuals within the population.

It is against this background that this study is carried out to model through all the
stages from using pathogen of inferest to predict the incidence of illness based on
epidemiological inclusion of induced immunity for humans' exposure to the use of

wastewater.



1.3 Research Objectives
The overall aim of this study was to develop improved risk models for humans exposed
to hazardous substances from wastewater used for unrestricted irrigation of

vegetables. The specific objectives were:

(i) To develop a probabilistic quantitative risk assessment model with genome
copies of Norovirus and fecal indicator ratio conversion for dose estimation.

(i) To develop an integrated induced immunity dose response model for Norovirus
for modelling probability of illness incidence reduction.

(iii) To develop statistical measurements modelling for quantification of uncertainty
and compliance level of low quality water effluent for measuring wastewater

discharge.

1.4 Methodology

The study presents and discusses statistical approaches for probabilistic modelling of
gastroenteritis following human's exposure to wastewater through the consumption of
vegetables subjected to unrestricted irrigation. Probabilistic modelling formulation
with an exposure to a single infectious pathogen are constructed, then induced
immunity will be incorporated as a results of continuous exposure to pathogens and
combine epidemiological data intfo the modelling to predict the incidence of illness
either in an individual or in the population. Additionally, incidence of illness models

with induced immunity are formulated, infroducing fransmission dynamics within the



age structured epidemiological modelling of Norovirus. Relevant epidemiological
data are incorporated info the Dose Response (DR) models to provide simulation
results for estimating risks and incidence of illness among the population. Finally,
based on data from two wastewater ponds in Kumasi, Ghana, statistical
measurements for assessing reliability and compliance given policy standard values

for such measurements are also formulated.

1.5 Scope of the Study

The study is limited to quantitative microbial risk assessment of Norovirus and
Cryptosporidium (for validation) in Ghana specifically on wastewater used for
unrestricted irrigation. Ghana falls among countries with a high volume of wastewater
usage for peri-urban and urban agriculture and hence exposed consumers to the risk
associated with wastewater(Amoah et al., 2005). Though other pathogens are
presents in wastewater, the study takes special interest in Norovirus and in some
instances Cryptosporidium spp., as Norovirus has seen some special interest as a
better replacement for rofavirus which was used in WHO policy guideline for use of
Wastewater and Greywater for farming. Cryptosporidium spp. are interesting
because they are quite robust parasites (protozoa) that can survive for a

considerable time in the environment.



1.6 Significance of the Study

This study will rally round the need to move towards a more realistic model approach
and minimize the assumptions under which conditions pertaining to the risk estimates
are made by applying data on the pathogen of interest to minimize and if possible
eliminate the fecal indicator ratio conversion method. It will facilitate the move to
combine epidemiological data into risk assessment by shedding more light on the
transmission of probability of infection to illness stage. The study will further provide
insight info probabilistic modelling with quantification of experts’ opinion in
formulating probability distribution inclusion in risk assessment. Finally it will add more
knowledge to the existing literature on risk assessment estimate procedures
particularly, fowards the move to pathogen of interest modelling, risk estimate of
illness with induced immunity modelling and measurements of wastewater discharges
with policy standards as well as provide the platform for researchers to extend the

frontiers of knowledge on risk estimates of diseases.

1.7 Organization of the Thesis

The thesis is organized into different chapters as follows: Chapter 1 deals with the
background of the study, problem statement and objectives of the study, the
methodology, scope and significance of the study are also put forward. Chapter 2

presents a literature review of the QMRA procedure, the deterministic and stochastic



approach in QMRA probabilistic modelling, detection methods of hazards as well as
quantification of uncertainty in QMRA. In chapter 3 put forward various stafistical
backgrounds in probabilistic modelling. The chapter presents the background of
probability distributions, estimation of parameters of the various distributions used in
the models and the modelling of pathogen densities. Chapter 4 presents the
probabilistic modelling of using quantitative measures of the virus of interest amidst
insufficient data and inclusion of expert's judgment as well as experts opinions for
estimating does, as opposed to the conventional method of using the conversion
ratio based the occurrence of fecal indicators. Simulations for predicting risk of illness
is carried out, sensitivity results also examined and discussed. Chapter 5 is devoted to
estimating probability of illness accounting for temporary acquired induced immunity
by including epidemiological data. In Chapter 6, measuring parameters that
characterise effluent discharge of freated and untreated wastewater, which form the
basis of hazardous (pathogenic) substances, are put forward. Chapter 7, the final

chapter, presents the summary, conclusions and recommendations of the study.



CHAPTER 2

LITERATURE REVIEW

2.1 Infroduction

In this chapter, the study put forward relevant literature on wastewater use and the
quantitative microbial risk assessment method used to estimate risk associated either
directly or indirectly exposure to wastewater. This chapter also focuses on water
scarcities which lead to the use of wastewater, the merits and demerits of wastewater
usage for food production as well as the extent of wastewater usage in Ghana. The
quantitative microbial risk assessment approach, which is being used for estimation of
risk in addition to uncertainty quantification associated with illness given infection as a
result of exposure to wastewater are also captured. The chapter ends with the
description of epidemiological models estimating induced immunity for quantifying

illness.

2.2 Water Scarcity

One of the most challenging natural gifts of nature affecting the existence of
mankind in the 21st century and beyond is shortage of freshwater. Freshwater is
estimated to make up a very small fraction of all water on this planet earth. Nearly
seventy percent (70%) of the world is covered by water, while only 2.5 percent of it is
fresh for human and animal usage. Yet, just one percent (1%) of freshwater is easily

accessible, and most of it is frapped in glaciers and snowfields. Only 0.007% of the
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planet's water is available to fuel and feed its seven bilion people (National

Geographic Report, 2015).

Observation from National Geographic Report (2015) stated, :"Due to geography,
climate, engineering, regulation, and competition for resources, some regions seem
relatively flush with freshwater, while others face drought and debilitating pollution’’.
In most of the developing countries, clean water is either hard to come by or a
commodity that requires laborious work or significant currency to obtain. Since the
debate of freshwater scarcity is not sefting (Rooijen and Rooijen, 2008), this still

remains as an absfract concept to many and a stark reality to others

World Wildlife Fund Report (2015) estimations suggest that, globally, 1.2 billion people,
live in areas of physical scarcity of water, an additional 500 million people are
approaching this situation, whereas another 1.6 bilion people face economic water
shortage 1(Fig.2.1). Surprisingly, up to 70% of the worlds freshwater are used for
agricultural purposes, of which 60% is specifically for irrigation of crops alone. These
have all confributed to increasing freshwater withdrawals from aquifers and hence

increasing the demand for water for all sphere of life.

*where countries lack the necessary infrastructure to take water from rivers and
aquifers
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WATERWORLD Areas of physical and economic water scarcity

NT"';:;;«"

W Physical water scarcity
Approaching physical
water scarcity

© Economic water scarcity |

W Little or no water scarcity
Not estimated

NOTE: When more than 75% of a region’s river flows are withdrawn for agriculture, industry. and domestic purposes, it suffers
from physical water scarcity. Economic water scarcity is when human, institutional, and financial capital limit access to water,
even where water is available locally. SOURCE: Comprehensive Assessment of Water Management in Agriculture, 2007

Figure 2.1: Areas of Physical and Economical Water Scarcity, (Sources WMA, 2007)

2.3 Irrigation Practices and Wastewater Usage

There is no complete global inventory on the extent to which wastewater is used to
irigate land, mostly due to lack of heterogeneous data and the fear that countries
have about disclosing information; economic penalties can be imposed if produce is
found to have been irrigated with low-quality water (Jiménez, 2006). Farm irrigation as

a practice has been going on for millennia, however, from the 20t century and
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beyond, irrigation has become a principal water use feature in many countries to
serve as a guarantee for increased crop production (Anonymous, 2014).

Due to the high dependence of water for food production, wastewater has been
used as an alternative to irrigate many farms (Jiménez, 2006). In developing countries,
the increase in wastewater usage has been productive, as millions of small-scale
farmers in urban and peri-urban areas depend on wastewater or polluted water
sources to irrigate high-value edible crops for urban markets (Qadir et al., 2010).
Wastewater also serves as a source of both water and nutrients needed for plant
growth and reduces the cost of using fertilizer on plants(Jimenez and Asano, 2008;
Jiménez, 2006). It permits higher crop vyields, year-round production, and enlarges the
range of crops that can be irrigated, particularly in (but not limited to) arid and semi-
arid areas. Wastewater recycles organic matter and other nutrients to soils. Again, it
improves soil properties (soil fertility and texture) and offers additional benefits such as
greater income generation from cultivation and marketing of high-value crops, which
confribute to improved nutrition and guarantee employment opportunities for
farmers.

However, several studies point out (Ackerson and Awuah, 2012; Amoah et al., 2005;
An et al., 2007; Barker, 2014; Barker et al., 2014; Crabftree et al., 1997; Scheierling and
Mara, 2010; Qadir et al., 2010; Mara et al., 2007; Shuval et al., 1997; Petterson, 2002;
Seidu et al., 2008; Mara and Sleigh, 2010; Petterson, 2001; Silverman et al., 2013;

Lundqvist and Raschid-Sally, 2013; Mara et al., 2010), that as much as wastewater has
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merits of its usage, there is also associated public health concern with it; the presence
of pollutants in wastewater can reduce soil productivity, toxic to plants or humans
consuming crops and the pathogens contained in wastewater can cause health

problems for humans as well as animals.

2.4 Wastewater Usage in Ghana

Urbanization and population growth come along with increasing demand for
sanitation infrastructure. In Ghana, and other parts of Sub-Saharan Africa, sanitation
infrastructure within the urban areas is inadequate lagging behind to the population
growth rate. According to (Keraita et al., 2002) less than 5 percent of city dwellers
are linked to infrequently functional sewage systems and sewage freatment plants for
wastewater tfreatment is also limited, less than 8 percent of wastewater generated
are being freated and discharge. Most unfreated wastewater end up in streams and
other water bodies which serve as sources for irrigation water in many urban and peri-
urban areas and constitute the only available surface water for irrigation which
guarantees all year access to water for farming(Drechsel et al., 2009; Keraita et al.,

2002).

In Ghana, the use of polluted water for vegetable farming is more widespread in the
more populated cities where safe water is scarce (Seidu et al., 2008). This makes it
among countries with largest volume of raw wastewater usage worldwide (Fig. 2.2),

and represents one of the centres used mainly in the study of wastewater used for
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agriculture in developing countries (Fung, 2011; Ackerson and Awuah, 2012; Labite et
al., 2010; Amoah et al., 2006; Amoah et al., 2007; Amoah et al., 2005; Hall et al., 2009;
Timub et al.,, 2012; Mok and Hamilton, 2014; Mara and Sleigh, 2009; WHO, 2006;
Drechsel and Scoftt, 2009; Lundqgvist and Raschid-Sally, 2013; Jiménez, 2006; Raschid-
sally and Jayakody, 2008; Mara and Sleigh, 2010). This has also led to the studies
investigating wastewater associated health risks in Ghana for several pathogenic
hazards (Ackerson and Awuah, 2012; Barker et al., 2014; Barker, 2014; Drechsel et al.,
2009; Karavarsamis and Hamilton, 2010; Labite et al., 2010; Mok, Barker, and Hamilton,

2014; Seidu et al., 2008).

“ ' Ghana

(@) Monitoring sites

20 countries using the largest volumes of
raw wastewater for agricultural irrigation

3

Figure 2.2: Countries using large volumes of raw wastewater for agricultural irrigation

(Sources: intfechopen.com)



2.5 Probabilistic Model Applications and Statistics to the Study of Quantitative Risk
Assessment (QRA) of Exposure to Wastewater

It must certainly be noted that, it has taken too long for probabilistic modelling to use
for biological phenomena such as microbial risk assessment as compared to physical
phenomena. Most researches in quantification of uncertainty modelling of physical
situations were statistical and probabilistic (Rabiner, 1989). It has been used to mimic
physical phenomena by providing the necessary uncertainty surrounding most
physical situation and has helped in understanding models in projecting reality in an
experimental setting. Probabilistic model has been used in wide range of applications
due to its flexibility and underlying assumptions (Furman and Pivi, 2002; Heath et al.,

2008; Soize et al., 2008; Palmer et al., 2005; Boomsma et al., 2008; Sparck et al., 2000).

Risk assessment has also seen a great application of probabilistic modelling
approach in the use of wastewater over the years (Haas, 2014; Mota et al., 2009; van
der Voet et al., 2009; Haas et al., 2014; Hamilton et al., 2006; Mofarrah and Husain,
2010; Hamilton et al., 2006; van der Voet et al., 2007; Duarte and Nauta, 2015; Labite
et al., 2010; Ackerson and Awuah, 2012; Machdar et al., 2013) mostly to make sound
predictions and estimates. One of the key features of QRA is that it attempts to look
at whole systems and not at isolated parts. Each possible adverse event is followed

through to its consequences, and the consequences of different adverse events can
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be combined. This is possible by using a quantitative approach, which provides a

common basis for the evaluation of risks and harms (Parsons et al., 2005).

2.6 Quantitative Microbial Risk Assessment (QMRA) Framework

Quantitative Microbiological Risk Assessment (QMRA) is the process of estimating the
risk from exposure to microorganisms. It is a process that involves measuring known
microbial pathogens or indicators and subjects them to uncertainty quantification
procedure through simulation to estimate the risk of transfer. Basically QMRA falls
within the frame work of risk analysis, which basically deals with three different phases

Figure 2.3 depicts the risk analysis framework(Charles et al., 2014)

Risk Analysis

Risk Assessment

Risk Management

(Science based) (Policy based)
1. Hazard identification 1. Evaluation
2. Hazard characterization 2. Management option
3. Hazard assessment assessment
4.

Risk characterization 3. Implementation of
management decision
4.  Monitoring and
review

Risk Communication
Interactive exchange of

information and options on
risk amang risk assessors, risk
managers, and stakeholders

Figure 2.3: Risk Analysis Framework

17



QMRA in itself is made up four steps, namely;

Hazard Identification

Hazard Characterization

Exposure Assessment

Risk Characterization

2.6.1 Hazard Identification

Hazard Identification is the process of determining whether exposure to a stressor can
cause an increase in the incidence of specific adverse health effects (e.g., microbial
pathogens) and whether the adverse health effect is possible to occur in humans|(
Haas et al., 2014). Hazard identification examines scientific data available for a given
pathogen of interest (or chemicals) and develops evidence to describe the link
between the negative effects and the pathogen. Wastewater is known to contain
numerous pathogenic microbes and serve as a source of pathogenic concern for
humans, most of these pathogenic microbes are reference pathogens which

includes Norovirus and Cryptosporidium spp (U S EPA, 2006).

Norovirus

Norovirus (NoV) is responsible for numerous cases of waterborne and food borne

gastroenteritis every year which makes it a leading cause of both endemic and
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epidemic gastroenteritis in the world (Hassine-Zaafrane et al., 2014; Atmar, 2010).
Unlike the case of rotavirus, Norovirus cause illness among both children and adults
(Glass et al., 2009) and hence makes it an ultimate target for hazard identification.
After the use of rotavirus for generalization of gastroenteritis in WHO (2006), Norovirus
risk assessment has gained prominence to be a replacement for rotavirus, since the

latter affects children under 5 years.

Cryptosporidium spp

Cryptosporidium is also an important contaminant found in drinking water and is
associated with a high risk of waterborne disease particularly for the immune
compromised (Rose, 1997). The parasites can infect a significant proportion of the
exposed population at low doses. The characteristics of Cryptosporidium, however,
may vary among isolates, Cryptosporidium parvum (C. parvum) and Cryptosporidium
hominis (C. hominis) are the two species of primary importance in human infections
((Reinoso and Bécares, 2008)). Cryptosporidium is frequently isolated from publicly
owned freatment works (POTW) effluent, storm water, and livestock manure, and their
respective oocyst can survive for extended periods of fime in the environment. The
high environmental loading of potentially human infectious Cryptosporidium in calves
makes Cryptosporidium of particular interest in estimating risk related to livestock

sources of fecal pollution ( Reinoso and Bécares, 2008).
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2.6.2 Hazard Characterization

Hazard characterisation describes the properties of the hazards and the vulnerability
of consumers exposed to hazards, ending up with an expression of the dose response
relationship i.e. the relationship between the quantitative occurrence of the hazard
and the human health outcome (Haas et al., 2014; Medema and Ashbolt, 2006).
Specifically, it is the evaluation of the nature of adverse effects of physical, chemical

or biological agent which may be present in the wastewater (WHO, 2006)

2.6.3 Exposure Assessment

It is the process of estimating or measuring the magnitude, frequency and duration
of exposure to a hazard, along with the number and characteristics of the
population exposed. Supremely, it defines the sources, pathways, routes, and the

uncertainties in the assessment (Haas et al., 2014; Medema and Ashbolt, 2006).

2.6.4 Risk Characterisation

A risk characterization is the estimation of the associate risk given the nature and
presence or absence of risks, along with information about how the risk was assessed,
where assumptions and uncertainties sfill exist, and where policy choices can be
made (Haas et al., 2014; Medema and Ashbolt, 2006) . The risk characterisation is the
integration of the hazard characterization (i.e. the dose-response relationship) and
exposure assessment (i.e. the estimated dose). It quantifies the relationship among

the integrated factors to estimate a probable adverse effect to occur within a
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population or an individual with attended uncertainties, and also to indicate places
or points, where mitigation for hazard control could be implemented. However, such

decision of activating a mitigation process is solely risk management or political

decision.
Hazard Identification
- What is the problem?
- What is the hazard (pathogen, toxin)?
- Which foods are associated?
Hazard Characterisation Exposure Assessment
- Which consumers are vulnerable? - What are the levels of the hazard in the
- What are traits of the hazard leading to food eaten?
illness? - How much of the food is eaten?
- What s the dose-response relationship? - How often is the food eaten?

Risk Characterisation

- What is the risk to consumers and to sup-groups of consumers?
- What is the effect of different mitigation actions?
- What are key assumptions and uncertaintiesin the assessment?

Figure 2.4: Risk QMRA Framework (sources: Brul et al., 2012)

2.7 Microbial Data Estimation in QMRA
Microbial data estimation is setting the basis of exposure to hazards that might results
in infection, in as much as there is no one acceptable standard for microbial data

estimation, several studies have used different methods of estimating dose per
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exposure (Barker et al., 2013; Mok et al., 2014; Karavarsamis and Hamilton, 2010;
Hamilton et al., 2006b; Soller, 2008; Mota et al., 2009; Teunis et al., 2002). However, one
thing that is certain is the use of ratio conversion for fecal indicator organism to
represent pathogen of interest, modelling after the adoption of conversion ratio used
by WHO (2006) in QMRA. In the quest to improve the process, several studies (Sofia
and Duarte, 2013; Yusoff et al., 2011; Duarte et al.,, 2013)have conftributed in the
advancement of improving counts of microbial data and effects of making sense of
false zeroes. Nevertheless, microbial enumeration methods such as plate counts, most
probable number and other alternatives are all limited in one way or the other for
making a complete enumeration, hence enumeration is relied on probabilistic
approach in quantifying the uncertainty surrounding it such as the recovery methods

(Petterson et al., 2007).

2.8 Uncertainty and Variability Risk Estimate of lliness given infections

Inputs in QMRA may result in uncertainty if ignorance of input parameters are results
of incertitude arise from due to limits on empirical studies or mensurational precision
(Ferson and Ginzburg, 1996), this can be diminished by gathering additional
information about the parameter, on the other hand, variability results in an intrinsic
heterogeneity in input values for a parameter (Hass et al., 2014). Uncertainty results
from several sources in modelling approach, which includes, the parameter, model
and the scenario, whiles variability results from mainly identifiable characteristics

which results in differential exposure or dose response characteristics (Haas, 2014). 1tis
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essential to quantify uncertainty either in parameter, scenario or model source in
order to prioritize factors that must be necessary to be assessed to arrive at a fairly
account estimates, all different aspects that can contribute to a specific kind of
uncertainty or variability must be accounted for, and their relative importance
assessed (Duarte et al.,, 2013). Such a phenomenon is well suited for probability
distribution characterization, though a consensus as to the cauterization method
whether through frequentist approach or Bayesian approach is yet to settle (Rigaux
et al., 2013; Ntzoufras, 2009; Greiner et al., 2013; Albert et al., 2008; Parsons et al.,

2005).

2.9 Population Risks Estimation in QMRA

The focus of QMRA on hazard exposure has all been cenfralized in risk
characterization for a single person or single exposure as an endpoint (Hass et al.,
2014). The focus of characterizing exposure has mainly ended with annual risk of
illness or Diseases Adjusted Life Years (DALYs) (Hamilton et al., 2006; Mok et al., 2014;
Barker, 2014; Pavione et al., 2013; Barker et al., 2014; Dawber et al., 2009; Amoah et
al., 2005). However, where detailed peculiarities of dynamics of illness incidence is
desirable, it is better to look at the population in its entirety rather than individual
exposures (Hass et al.,, 2014; Messner et al. 2014). Community level risk estimate is
essentially based on three (3) criteria:1) the duration of disease state; 2) the carrier
state; and 3) the rate at which secondary cases occur from direct or indirect contact

with primary cases or individuals in the asymptomatic state. These three basic criteria
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hinged on mathematical epidemiology studies of the illness and hence can be better
analysed with a combination of QMRA and mathematical epidemiology of
illness/diseases. Recently, a couple of studies (Swart et al., 2012; Tribble et al., 2010;
Messner et al. 2014; Teunis et al., 2002) have provide the way for such inclusion and

extension in quantifying risk assessment for a population.
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CHAPTER 3

METHODOLOGY
Modelling with probability distribution delves much deeper info mathematical
statistics or statistical theory and draws assumptions from distribution to make sense
out of data and makes useful relationship among physical parameters. This chapter
presents the building block of the modelling; it begins with review of some statistical
parameters, probability and ends with quantification of uncertainty in probability

modelling.

3.2 Statistics Measurement

Statistics is in essence closely related to probability theory; however, the two fields
have entirely different goals. A typical probability problem starts with some
assumptions about the distribution of a random variable (e.g., that it's binomial), and
the objective is to derive some properties (probabilities, expected values, etc.) of said
random variable based on the stated assumptions. The statistics problem goes almost
completely the other way around. Indeed, in stafistics, a sample from a given
population is observed, and the goal is to learn something about that population
based on the sample (Wackerly et al., 2007). In other words, the goal in statistics is to
reason from sample to population, rather than from population to sample as in the

case of probability.
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3.2.1 Statistics

Definition 3.1. Let X, X,,...,.X, be a sample whose distribution may or may not depend
on an unknown parameter . Then any measureable function T=T(X;,X,,....X,)

include; the sample mean (Hogg, McKean and Craig, 2005)

=X =131x, 3.1
n i=1
The sample variance
g s
T=%°=——"_ X —-X 3.2
n—1;( ' )
The sample median
T=M 3.3

In general, T = IA(X) where IA(X) denotes the indicator function describe as (Rice, 2001)

1LxOA
I = 3.4
0,xOA

3.2.2 Probability
A random experiment is any process whose outcome is unpredictable. The sample

space contains all the possible outcome of the experiment (Spanos, 1999).
Example (Sample Space)

Consider a single coin-toss, and assume that the coin will either land heads (H) or tail

(T) but not both, we may define:Q={H,T}, F={0{H} {T} {H.T}} and hence P{00} =0
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,P{H} =P{T} ==, P{H,T} =1. Probability is the measure of likeliness that an event will

N

occur and quantifies as a number between 0 and 1. Probability density functions in

one, discrete or continuous, variable are denoted by p(x)and f (x)respectively. They

are assumed to be properly normalized such that

> p(x)=1and T f(x)dx=1 3.5

X

for discrete and continuous cases respectively.

Where the sum or integral are taken over all relevant values for which the probability
density function is defined. The distribution function or cumulative function is also

defined as (Rice, 2001)
p(x)=3 p(i) and F(x)= | f (1)t 3.6

for discrete and continuous cases respectively.

Axioms of Probability
1. The probability of an event E must be between 0 and 1 inclusive: 0<P(E)<1
2. P(Q) =1
3. Fortwo given events M and N, the law of total probability is presented as

P(MUN)=P(M)+P(N)-P(MNN)
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4. For mutually exclusive events E,E,,...,E, (Rice, 2001),

n

P(EUE,U..UE,)= (UEJ ZP

3.3 Expectation and Variance
The Mathematical expectation of a random variable X denotes the average of all

possible values of X, X,,...,X,, whiles the variance of a random variable x measures

the spread of value around the expectation. These two characteristics of a random
variable are used in the description of distribution, reliability, sufficiency, consistency
and performance of random variables as well as hypothesis testing procedures. In
practices of all spheres, scientists rely heavily on the use of these two parameters in
describing phenomena, procedures and processes to give a summary of an
observed phenomenon in order to help make sound judgment from physical and

experimental circumstances (Jaynes, 2003).

In the description of expected value of a random variable X, the probability mass
function or density function is used for discrete and continuous random values

respectively.

Definition3.2

If Xis a discrete random variable with frequency probability mass function p(x), the

expected value of X, denoted E(X)is
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H=E(x)= % xp(x) 37
Provided that) |x|p(x)<e, if the sum diverges, then expectation is undefined

(Jaynes, 2003; Wackerly et al., 2007).

For the case of X continuous random variable with density f ()
,u=E(X)=.[Xf(x)dx 3.8

Provided ’rho’rJ.|x|f(x)dx<oo, if the infegral diverges, the expectation is

undefined(Rice, 2001).

Theorem 3.1

If Xis a random variable with P(X=0)=1 and for which E(X)exists, then

P(X=t)< E(X)/t(Wackerly et al., 2007).

Proof

For the discrete case
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Therefore,

= E(X)2> xp(x) 3.9

xt

All terms in the sums are non-negative due to random variable X taking only non-

negative values(Rice, 2001)

E(X)2 > tp(x) =tP(X =t) 3.10

x=t
For measure of spread or dispersion, variance is measured as follow

Definition 3.3
If Xis a random variable with expected value E(X), the variance of Xis
Var (X) = E{[ X = E(X) ]} = [ (x- )" f (x)ax 3.11
This can lead to a simplified form as(Hogg et al., 2005)
Var(X)=0® = E[ X?]-u*= E[ x*]-(E[X])’ 3.12

Proof

Provided that, the expectation exist
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var (x) = E{[ x-E(X)T]

= E(X2-2uX +4*)

3.13

By the linearity of expectation
Var (X) = E(X?) -2uE(X) + 4
=E(X?) =22+ 1
=E(X?)-4

=E(x?)-([E(X)]) 3.14

3.3.1 Moments
The moments are the expectations of powers of the of the random variable(Hogg et
al., 2005), in general the algebraic moment of order r is defined on the expectation

value as

E(X")=4 :Zk:krp(k):.[xrf(x)dx 3.15

—00

Form moments running from order0,1,..n, clearly g =1and from normalization

condition g4 = y=E(X), thus the mean or the expectation.

Central moment of order ris also defined as

31



4 =E|(k=E(K)) | =E[ (x-E(X)) | 3.16

The most common used of the central moment is order 2 (Hogg et al., 2005), thus g,

which is the variance of the distribution. In using the third and fourth central moments,
the third central moment is used to measure the asymmetry or skewness in the
distribution whiles the fourth centfral moment is also used to measure the degree of

peakness. We often define the coefficient of skewness n, and kurtosis 77, by

n, =42 And p, =44 3.17
/JZA H;

The coefficient of excess kurtosis is given by

A /4
,72_111_:2_3 3.18

Where the shift by 3 units assures that both measures are zero for a normal distribution.
Distribution with positive kurtosis is called leptokurtic, those with kurtosis around zero
are also called mesokurtic and those with negative kurtosis are called platykurtic.
Leptokurtic distributions are normally more peaked than normal distribution while

platykurtic distributions are more flat topped (Jaynes, 2003; Rice, 2001).

3.4 Joint Distribution and Marginal Density
The joint behaviour of two random variables Xand Yis determined by the

multiplication of their density functions or the cumulative distribution function,
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irespective of the nature of the density function (discrete or continuous)(Hogg et al.,

2005; Wackerly et al., 2007).

Definition 3.4: For any two random variables X and Y, the joint cumulative probability

distribution function of X and Y is

F(xYy)=P(X<xY<sy),~0<x,y<o 3.19

P(%<X<%,V,SYSY,)=F (X, Y) =F (XY )-F(X,¥ ) +F(X,y) 3.20

For a discrete random variable X and Y defined on the same sample space, the

probability joint mass function is defined as
P(x%,y)=P(X =%,Y=¥)

P (x)=P{X=x =P(X=xYOR)= > p(xVy) 3.21

y:p(x,y)>0
And

R (¥)=P{Y =y} =P(v=yXTR)= 3 p(xy) 322

x:p(x,y)>0

For a continuous random variable. Let X and Y be joint continuous, if there exists a

function f (x, y) defined for all x,ysuch that for any C 0 R?the joint probability density

function defined as
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P((X.Y)OA)= [[ f(xy)dxdy 3.23

2 2 b a

Thus P{X OAYOB} = [ [ f(xy)dxdy, hence 0 F(ab)=
2o dadb

|
g
O
—_—
—_—
—
—
X
<
~
o
1
—
—
o
O
~

Definition 3.5: Two random variables are said to be independent if for any two sets of

real numbers Aand B, then
P{XOAYOB} =P{XOA P{YUB} 3.24
Then Oa,b, hence two random variables X and Y are independent if and only if the
function is the product of the marginal distribution functions
F(ab)=F(a)F,(b) 3.25
Similarly, in the jointly continuous case independence is equivalent to

f(xy)="f(x)f(y) 3.26

For more than two random variables X,,...,X are independent if for all sets of real

number A,...,A, then

P{XlDAi,XZDAZ,...,XnDAJ:ﬁP{XiDA} 3.27
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Hence the joint probability mass functions and joint probability density functions hold,
that is in both cases independence is equivalent to being equal to their respective

product of the marginal.

3.5 Some Common Probability Distributions
This section presents some common probability distributions which feature mostly in
this study, with its characteristics. They were chosen mainly based on its relevant to

characterize the conditions under study.

3.5.1Bernoulli Distribution
This can be used to model a single experiment which has two possible outcomes; It is
a random variable probability distribution which takes value 1 with success probability

pand 0 with failure probabilityqg=1- p. Both p and q=1-p are limited to the interval

from zero to one. The distribution has the simple form (Hogg et al., 2005);

1-p, if x=0 (failure)
p(x p)= 3.28
p, if x=1 (Success)

With expectation E(X)=p and variance Var (X) = p(1-p)
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3.5.2 Beta Distribution

It is essential for the modelling of behaviour of random variables limited to intervals of

finite length. It is a family of continuous distribution defined on the in’rervoI[O,J]. The

probability density function is given as:

f(x:a,B)= L x""l(l—x)ﬂ_1 3.29

Where a,4>0 and 0<x<1. The quantity B(a,B) is the beta function in terms of the

common Gamma function defined as

B(a,ﬁ):w 3.30
(a+5)
2.5
- a=B=05—
/ a=5B=1 ——
/ a=1B=3 ——
> | // a=2p=2 —
[\ a=2,B=5——
|
s N
1} ‘
lf |
os lf
[ N
\\
N
0 1 1 -
0 0.2 0.4 0.6 0.8 1

Figure 3.1: Beta Family of Functions for selected parametric values of aand g
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The expectation and variance are given as

and Var (X) = ap 331

=)= (@AY (@50

a+p

2aB(B-a)
(a+p) (a+B+1)(a+B+2)

The third central moment given as y, = and fourth central

3a,8(2(a+,6’)2+a,6’(,8+a—6))
(a+B) (a+B+1)(a+p+2)(a+p+3

moment are also given as y, =

3.5.3 Binomial Distribution
The distribution describes the probability of exactly X successes in N frials if the

probability of a success in a single trial is p and a failure is q=1-p. It has the

distribution.
N L N-x
p(X,N,p){ij (1- p) 3.32

Where0<x<N,0< p<1, with expectation E(X)=Np, variance
Var (X) =Np(1-p)=Npg, third central moment g =Np(1-p)(1-2p)=Npg(g-p)and

fourth central moment 4, = Np(1-p)[ 1+ 3p(1- p)(N - 3]=Npa[ + Pq(N- 2]
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3.5.4 Exponential Distribution
It is a random variable distribution use to model processes where events happen at a

constant rate. The exponential distribution is given by

f(x,/l):%exp(—jxj 3.33

Where A,x > 0. The distribution has the expectation E(X) =2, varianceVar (X) =A%, third

central moment 1, = 24* and fourth central moment g, =91*

1.6
.4l A=05 |
Lo —_— =1
Lo e

X0.8
0.6
0.4
0.2 \¥
0.05 1 2 3 4 5

Figure 3.2: Exponential distribution with different expectation values.

3.5.5 Double Exponential Distribution
The Double exponential distribution popular known as the Laplace distribution is given

by:
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f (% u,1) :%exp(—/ﬂx—,uD

Where x, u0OR ,and A >00R, it has the expectation E(x)=u

3.5.6 F-Distribution

3.34

This is a random variable confinuous distribution widely used in test stafistics and most

notably in the analysis of variance, it is given by

The expectation and variaonce are given by d .

;d,>2 and
d,-2

respectively. Figure 3.3 depicts the F-distribution values of d;, and d,
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2d,?(d, +d,-2)
d,(d,-2)*(d,-4)




25

di=1, d2=1 ——
d1=2, d2=] =—
2 d1=5, d2=2 =—
d1=10, d2=1 ——
d1=100, d2=100
15
1
05 \ ;
0 %J
0 1 2 3 4 5

Figure 3.3: The F-distribution for different values of d, and d,

3.5.7 Gamma Distribution

The probability density function of the Gamma distribution is given by

k-1

exp(-6x)
3.36

Fork>0, 6>0,x=0with expectation E(X)=g and variance Var(X)=§, the kis a

shape parameter and is@ a scale parameter. The gamma function is defined as:

r(k)=[eydy 3.37
0
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Figure 3.4 shows the Gamma probability density function with different scale and

shape parameter values

0.5 T T

0.4

TTTTTTTT

0.3

T

TITTTTTTTT

0.2

TIT[TITTTTT

0.1

0o 2 4 6 8 10 12 14 16 18 20

Figure 3.4: Gamma probability density function with different scale and shape

parameter values

3.5.8 Chi-square Distribution
It's a distribution of random variable that describes the ratio of two independent

standard normal variable, it is a special form of Gamma distribution with 8=0.5and
k= k2. It is useful for the derivation distribution of sample variaonce and the goodness

of fit test. The probability density function with kdegrees of freedom is given by

3.38
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Where x=0. The figure below shows some chi-square family of graphs for k values of
123,46 and 9
f},-(:l,') Xf

0.5 i =

041 \

0.3t

Il
A W -

0.2

0.1

0.0

Figure 3.5: Graph of chi-square distribution for some values of k

3.5.9 The Generalized Gamma Distribution
The gamma distribution is a random variable distribution bounded on one side, a
generalized gamma distribution is obtained by adding a third parameter giving it a

more flexible version of the distribution, the distribution is given by

%);H ex{—(ac)q 3.39

r(b

f(xab,c)=

Where a(a scale parameter) and bare real positive parameters as is used for the
gamma distribution but a third parameter chas been added to control the

distribution into different family of distribution (Rice, 2001)
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af(x)

0.5

Figure 3.6: A generalized Gamma distribution with different values of ¢ [a=1,b= 2]
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Table 3.1: Generalized Gamma Distribution to other related distributions

Distribution a B C

Generalized Gamma a B C

Gamma a B 1

Chi-squared % % 1

Exponential % 1 1

Weibul }/a 1 7

Rayleigh }/ 1 2
a2

Maxwell }/ y 2
a2 2

Standard normal (folded) }/ }/ 2
&> 2

3.5.10 Geometric Distribution
In practice, the geometric distribution is use to express the probability of having to
wait exactly r trials before the first successful event, if the probability of a success in a

single trialis p (and its failure is q=1-p). The distribution is given by

r-1

p(r;p)=p(1-p) 3.40
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1-p

2 !

With expectation E(r)= .

the third central moment

ol

, variance Var(r)=

L :Mond the fourth central moment y, =

p p

(1- p)(p2—9p+ 9)

4

3.5.11 Hyper-geometric Distribution
In practice the random variable distribufion of the hyper-geometric distribution
describes the experiments where elements are picked at random without

replacement. It is given by

3.41

Where the random variable rhas limits from max(0n-N+M)to min(n,M),p=%,

N -n
N -1

q=(1-p). it has the expectation E(r)=np, the variance Var (r) = npq( j’rhe third

central moment  x, =npq(q-p) ((I\IN_—nl))((NN __22;)

N(N+1)-6n(N-n)+3pg(N*(n- 2 -Nn’+ 61(N -n))
(N-1)(N-2)(N-3

and the fourth central moment

4, =npg(N -n)
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3.5.12 Log-normal Distribution

The log-normal distribution is given by

Inx
f(xu0)= anZr ” } 3.42

Where the variable x>0and the parameters y>0and o>0are all real numbers, in

this case denoted in the same spirit as normal distribution but g=Inx. It has the

2

expectation E(x):exp[;ﬁ%J and variance Var (x) =exp( 2+0°)[ ex{o?)- 1. In

practices it is used to characterize random variables which have non-negative

values.

0=0.25, n=0 |

Figure 3.7: The log-normal distribution
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3.5.13 Negative Binomial Distribution
In practice, the negative binomial distribution expresses the probability of having to
wait exactly r frials until successes have occurred if the probability of a success in a

single trialis p and its failure as q=1- p. The distribution is given by

p(r:k, p) =(L_3 P (1-p)" 3.43

Where the variable r=kand the parameter k>0are integers and the parameter

0< p<lis a real number, it has the expectation E(r):h, VorionceVar(r):k—cj, third
p p

kq(p2—6p+ 6+ 3<q)

4

Y

kq(2-p)

cenfral moment g, = 5

and fourth cenfral moment p, =

3.5.14 Normal Distribution
The normal distribution often call Gauss distribution is the most important distribution
used in statistics, it has many application due to its underlying assumption. The

distribution is given by

f(x ,0) =— ex;{—%{x_”ﬂ 3.44

O~ 27T o

It has the expectation E(x)=x and variance Var (x) =o”
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Figure 3.8: Normal distribution

3.5.15 Poisson Distribution
Poisson distribution describes the probability to find exactly x events in a given length

of time if the events occur independently at a constant rate . The distribution is

given by

3.45

The distribution has expectation E(X) =, varianceVar (x) =4, third central moment

M, = and fourth central moment 4, =,u(1+ 3,u)
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Figure 3.9: Poisson distributfion

3.5.16 Student’s t-distribution

The student’s t-distribution is given by

3.46

Where v>0 and xOR
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Figure 3.10: The student t distribution

3.5.17 Triangular Distribution/Pert Distribution

The triangular distribution is given by

“|x-4 1
82

f(xu6)= 3.47

N

Where the variable X is bounded to the interval u-6< x< u+68and the location and
scale parameters pzand 8(68>0)all are real numbers. It has expectation E(x) = i, due

to its symmetry of the distribution odd central moments vanishes while even moments

n

are given by u :W
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Figure 3.11: The Triangular Distribution

Practically, the pert distribution is used exclusively in modelling expert’s estimates,
where one is given expert’'s minimum, most likely and maximum values or guesses,

and forms an alternative to the friangle distribution. It is given by

:(,u—a)(Zb—a—c)l a:M and  mean
(b-#)(c-a) © (k-a)

Pert(a,b,c) =Betad(a;,0,,a€), a,

_a+4db+c
—

51



3.5.18 Uniform Distribution

The uniform distribution is a simple case with the distribution given by

0 for x<a
3.48
f(x;a,b)= bi,for as<x<b
-a
0 for x>b

2
It has the expectation E(x) =i2b, varianceVar (x) = (bls) , the third central moment
(b-2)’
U, =0 and the fourth central moment g, :T
F(x)
0 . /
b-a _
0 a b X

Figure 3.12: The probability density function of Uniform Distribution
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3.5.19 Inverse-Gaussian Distribution

Also known as Wald distribution is a continuous probability density function with two

parameter of support, with pdf given as

AT =A(x-u)
f(x,,u,/])=[ﬁ} exp% 3.49

Where x>0,u>0is the mean and A>0is the shape of the parameter, with

3

expectation E(x) =4, E(lj =1+ 1and varance Var (x) =H Var (lj =i+_22
X) u A A X) A

3 =T gl |

A=0.2, p=1—

A=3, y=1l—v

A=1, p=3—

2.5 A=0.2, p=3—

Te—

Figure 3.13: Graph of Inverse Gaussian Distribution
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3.6 Estimation of Parameters in Distribution

Let X, X,,....X, be a sample from a distribution (section 3.5.1-3.5.19) with a Cumulative
Density Function (CDF) F,, depending on the parameter 8which is unknown (Jaynes,

2003). In most cases it is important also to know the parameter space ©
Definition 3.6

Let X, X,,...X,be a sample disfribution F, with80©. A parameter estimate of 8is a
function @:@(Xl,xz,...,xn)foking values in®. When data is observed but we don'’t
know which of the models fit F, assuming O0{X,,...X.} =(f,)then it is up to the

determination of the best model.

3.6.1 Maximum Likelihood Estimators (MLEs)

Supposed X,,...,. X, ~ f, where 8is unknown. Then by definition, the likelihood function

for the independent means multiply is given as (Johansen and Juselius, 2009)

L(8) = fe(Xl,...,Xn):|j £, (%) 3.50

iid

Definition 3.7: Given X,,...,X, ~ f,. let L(8)and 1(6) be the likelihood and log-likelihood

functions, respectively, then the maximum likelihood estimator of @is defined as (Kotz

et al., 2004)

6=argmax.(6)- argmak(8) 3.51
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The estimation problem reduces by solving the likelihood equo’rion%l (6’) =0.

Example with normal distribution

iid

If X,,....X,~N (,u,az) defined in section 3.2, their joint density is the product of their

marginal densities

w1 1 x-uY
f (xl,...,xn|,u,a) = D o ex{—E(Tj } 3.52
The log likelihood function is thus
I(,u,a)=—n|oga—2|oan— 2;22'1:(Xi—,u)2 3.53
i=1l

With partial derivatives with respect pto andoyields

3.54

Solving simultaneously yields
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3.55

3.6.2 Uncertainty Quantification and Sampling

Monte Carlo Method and Latin Hypercube Sampling

Monte Carlo simulation relies on repeated random sampling procedure and statistical

analysis to compute fest stafistics (Mason et al., 2008). Let a test statistics

T, —T(Xl,...,Xn), where T, is a random variable from a function of random variables

Xi. X, . Hence sampling distribution T, is

3.56

That is for each sample X9, ... X! of size n, there is a corresponding T obtained by
applying the function T() to that particular sample. This method of simulation is very

closely related to a random experiment for which specific results are not known in

advanced. Latin Hypercube Sampling (LHS) provides an efficient sampling method in
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place or a random sampling, it partition the range into N intervals of equal probability
and sample within each range with equal probability as explore in Keramat and

Kielbasa (1999).
Gibbs Sampling

Suppose a joint probability f (X, yi,....Y,), the variable of interest characteristics of the
marginal densifyj....'[f(x,yl,...,yn)dyl,...dyn. Rather than computing the direct
approximate of f(x), the Gibbs sampler effectively generation of a sample

Xy, Xy ~ F(X)without requiring f(x) by simulating a large enough sample, the

m

desired characteristics can be calculated to a desired degree of accuracy (Casella

and George |, 1992).

3.7 Fitting Distribution to Pathogen Concentration for Exposure Assessment

Practically, the purpose of exposure assessment is to determine the amount of
pathogen organism corresponding to a single exposure which comprises the
expected dose and its distribution. The expected dose dconcentrafion of

microorganisms given the mean concentration g and consumption per exposure m,

d =E(um) 3.57
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Assuming independency of g and m, then by the expected dose computation

(section 3.3) is
d=um 3.58

3.7.1 Poisson Random Distribution of Organism
Measuring micro-organism distribution with Poisson distribution as described (section

3.6.1). If organism is distributed randomly in volumeV , hence

P(x=n)=@exp(—f)\/) 3.59

Where y is the mean density and P(x=n)is the probability of x samples containing n

organisms. The distribution is completely known when the porome’rerp is known
employing the maximum likelihood method (section 3.6.1.), the average dose
expected for set of samples of each volume is equal to NV . Assume x~exp(,u) for

N, <x<N,, then

P(anxan):n:m (_ ) exp(—,f)\/) 3.60

For infinite upper limit of the concentration
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3.61

At different volumes, and measuring the number of organisms in each samples,
assuming independence of samples, the likelihood function for obtaining the

unknown parameters (Section 3.6.1)

-In(L")= ,uzk: anln( ) 3.62

Estimating the Poisson mean count assay with either a constant and variable volume,
the above equation can directly be applied to body of data and expected mean

estimated as:
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For count assays with upper limits where detection are termed ‘too numerous to

count’ (TNTC)

k k j+k

-In(L)=udV,=>'n In(ZM)— > In[l—l’((nu -1) —ZN)}

i=1 i=1 i=j+1

i=j+1

{ B .)]{ﬁ el -3 2]

Where [l—F((nL’i —1) —ZNH is the incomplete gamma distribution.

3.7.2 Non-Poisson Distributions

3.63

3.64

For a discrete distribution, the probability that a random variable assumes some value

less than or equal to x is related by
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F(x)=> p(i) 3.65

=X

For a continuous distribution and its relation to probability density function (pdf)
F(x)= I f (z)dz 3.66

Where x_ is the lower limit of support for the distribution. Alternative distributions are

mainly based on Poisson distribution; it's a mixture distribution. A mixture distribution
can be derived as follows from a Poisson distribution which provides much more

flexibility and a greater variability in the expected count among replicates:

(%, B) :_[PP W B)du 3.67
0

Where B, (x V) derivation from the Poisson distribution is, x4V is mean density in a
sample and h(x; B)is the mixing distribution describing the variability in means density
with distribution parameter. h(,u,,B) can fake any form for the description of variability

as described in (Haas et al., 2014).

Negative Binomial: (Greenwood et al., 1920) derivation of negative binomial as a
gamma mixture of Poisson distribution, deriving the negative binomial with mean

density in a sample as a mixture of gamma distribution
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PNB(X):I(’L:\(/!) exp(_p\/){e(re(;))_ exr(—@x)]d,u 3.68
Evaluated analytically as
_T(x+k)( v ) o TR v Y kev )
P = T (k) (1“9\/} &) = i [k+ZNJ [ » j 369

Poisson Lognormal: Describing the variability with log-normal distribution (Reid, 2012)
which has been used fo fit species-abundance and bibliometric data (section 3.7.1)

will lead to

Py (X)= ]j ('u)\(/')x exp(—ZN)LJ\l/ZT exp{—zl( InXU_’quﬂd,u 3.70

Solving it numerically with the Gauss-Hermite quadrature (Wiliam et al., 1989)will lead

fo

1

Pl = _]ieXp(—qZ)exp{—qﬁ(q)V][;ﬁ(q)V]qu

3.71

$(a) =exp(u +sav/2)

Poisson-Inverse Gaussian: the inability of analytically expressing the integral of the
Poisson log-normal makes data fitting somewhat difficult, inverse Gaussian is a

potential replacement for the lognormal due to its properties and its being positively
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skewed, when the Inverse-Gaussian is used for mixing distribution for a Poisson the

results follows:

o (7) Yy _
Pas :.([( x!) exp( )H%ﬂxg} exp%}d,u 3.72
Integrated to yield the following (54)
P () =S () [l 2 )| | —2 %K + 21 3.73
PIG (X) _;(/LN) [¢(¢ /)‘/H o+ 2;_)\/ X_% (0(40 /I\/) .

Where K(x) is a modified Bessel function of the third kind.

3.7.3 Empirical Distribution Data Fitting

Let X,,...,X,be a random sample following the ordered stafistics X, < X, <..< X, . The

empirical cumulative distribution function (CDF) F,(x) is given as;

0, X< X
e
F.(x)= = Xy S X< Xy 3.74
1, X2 X

This represents a positively skew continuous step function, the statistics measuring the

differences of F(x)and F,(x)gives the Empirical Distribution function (EDF).
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Kolmogorov-Smirnov statistics (KS) compares the EDF with the fitted distribution

function defined by;

D* =sup{F, (x)-F(x)}

KS= 3.75

Hence the KS stafistics D is defined as D :suqa(x)— F (x)‘ = ma>(D+ D‘) .The
quadratic stafistics is defined by Q = nT {F (x)=F (x)}zz//(x) dF (x). It is noted that, when
@(x) =1, then the function Q= nT {F,(x)-F (x)}"dF (x)is the Cramer-von Mises

Statistics and wheny (x) =|{ F (x)}41-F (x _1,Then the function fturns to be Anderson-
w (%) =[{F OH1-F (x)} ]

Darling Statistics (AD).

3.8 Handling Scarce Data and the Principle of Maximum Entropy

Practically, in risk assessment modelling, stafistics known about the data is either
scarce, insufficient and in most cases of detection of pathogen methods applied
makes it undetectable. Handling such data sources also call for the use of maximum

enfropy in characterizing the uncertainty of such dataset.
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The measure of uniformity of a distribution is by its entropy, thus, the higher the
enfropy, the higher the uniformity (Harremoés and Topsae, 2001). The maximum
enfropy consists of selecting the most uniform distribution of a set of possible

distributions, that’s the one with maximum entropy. Given a set of observation

Q={>«\i=1,2,..|\|}

For a distribution pon y, the set of all distributions on y by Ais defined as

A=1p:x - R*; p(x) =1 3.76
X
N
- D xdx)
The empirical distribution of sample is denoted by pnamely p=1=L for xO x

N
Defining Xx(X) :{%ifoi(;é'wvise. The concept of feature function (thus expectation). It

is a non-negative value function on y, hence the expectation of the feature function

f respect to the distribution pby

B f =Y F(X)p(x) 3.77
g

Hence having the set of feature function s {fi|i :1,2,...N} . Defining the distribution p

which is a subset ¢ of AosC:{pD P|Ep[fi:|: E [_)[ fi] fori :1,...,n}, this is called the
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constraints for these equations (Singh and Setup, 2003). The maximum entropy

dictates that, there should be a selection of distribution p of Cthat maximize

entfropy. Hence as an optimization problem, we are left  with

p =2 m“{—gx p(x)log p(x)} = a9mat ()

As seen earlier, the entropy is bounded below by zero and from above by Iog|X| with
the uniform distribution on Y. Hence H(p)is continuous, strictly convex, bounded

functionin A, moreover, Cis bounded, closed, convex and non-empty subset of R‘*‘
since |_oDC.

3.8.1 Relation of Maximum Entropy to Maximum Likelihood

We defined the log-likelihood of a model pwith respect to the empirical distribution

pby the function(Coughlan, 2010)

La(p) =log[] p(x)* = p(x)logp(x) 3.78

X0y

Given AOR"
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LipA =Y p(x)log pA(x)

X0y

p(x)lo 2 ex g/hfi(x)
=zp 972, FF 3.79

X0y

=y 5@0[— logZ + i)li f (x)j

:—|OgZA+i/1iEl~3[fi] 3.80
i=1 '

=¢(4)

The maximum entropy principle is sometimes regarded as an ideal learning method
that makes minimal assumptions in arriving at an estimate of a distribution learned
from data. Finally, note that maximum likelihood is sometimes regarded as non-

Bayesian because there is no explicit prior given.

3.8.3 Normalization and partition functions
The general approach for assigning probabilities where normalization is absorbed into

the denominator is given as:
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exp_)lozn:exp{—zml/]jfj ()g)}= 1 3.81

p(x)= 3.82

exp 7 exp{—zm:/g f (% )}
=1

= T > 3.83
e b3 e 3,1, (x)
k=1 j=1
exp{—z/lj b ()g)}
== 3.84
Zexp[-Zﬁj f (% )}
k=1 =]
B L Ve 3.85
z(Ay, . Ay)
Where f,(x) is a function of the random variable x reflecting what we know
k()g):exp{—z/h fj(x)} 3.86
=t
Is the kernel and
z(A,.0A,) =Zn: exp{—zm:/h f. ()g)} 3.87
k=1 i=1
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Is the normalizing facto, called the partition function (Harremoés and Topsee, 2001).
Probability assignment is completed by determining the Lagrange multipliers

A;.j=1,...m from m constraints which are function of the random variables

Examples of Maximum Entropy Given Constraints

1 Range Constraints

For a discrete case RI{0,1,...J mag
Lagrangian

L==)" p(x)logp (x)+A(> p ()-1)
Critical points

a—L=—Iog p(X)-1+A=0
ap,

oL

& =3 p(0-1=0

Y P (%)
Solution p =¢e'* :_Iil Uniform distribution

Practical example, suppose we know only three possible empirical values and .The

maximum entropy
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3 3
L= mpax[_z P (X)IOQpi (X)"'/](Z P; (X )_ ]J}
i i=1 i=1
For first order conditions yield
p =expA -] fori=1,23. A =log3

As expected, the maximum entropy probability assignment is a discrete uniform

distribution with

Wl

2. Mean constraints  E[R] = i Xp(X) = u
x=0

Lagrangian: L=-)_ p(x)logp, (x)+)ll(z o (x)—l) +/1z(2xpI (x)—,u)
Crifical points

L o logp ()=1+A+xA2= 0
op,

Solution
p(x) = e/ XA
= pe *H
Exponential distribution
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Partition function approach

With knowing the support and the mean, the kernel is given as

z(A)= IZ;: exp[ 4. ]

And
_k(x)
B Z(/\l)
\ exp[-2,x |

> expl A |
=i
Where xi are the random empirical data, solving the constraints
Z % B (X) =4/ =0
i=1

nooexpl—Ax
3 p-Ax] X —

- exp[—Alxj ]
=1

j

#=0

This produces A to identify the probability constraints

Example: suppose we know a little more on the empirical values thus the support and

the mean, n=3 and mean is 2.5
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i Xp(x)—-2.5=0

x=1

3. Mean and variance E[R] = i Xp(X) = U
x=0

B[ (R- ) |= X (x=4) px) = 0°

x=0
We find that

dlogz _3+2exdA ]+ exp 2]

o, LrexgAlrexi 2] o

Solving gives

A =-0.834 p, =0.116,p,= 0.268p,= 0.616

Lagrangian

L=-3"p(¥logp (x)+A:( 3 p () ~1)+A2( X xp (x)—u)m{i(x—u)z p(x)—aZJ

x=0
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_ _\2
p(X)=eXp/12X+/11 A3(x= )

With density function

]

20

(in continuous distribution form for approximation)

The partition function approach

exp[—)l2 (x—,u)zJ

> exp[—ﬂ2 - ,u)zJ

p(x) =

And the average empirical constraint is

Z(x—,u)zf(x)—,uzo

e exp[—/lz(x—,u)z} "
2 (x=u) Zexp[—Az(x—,u)z} K=0

1

0.2

So that A, =

2

i—(x—u)}
L exg 20 Gaussian distribution(Elod,
270

Hence the density function foris =

2013)
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3.9 Modelling Population and Community lliness with Epidemiological Framework

Modelling illness incidence with epidemiological framework as described (Charles et
al., 1999) and other mathematical epidemiological model techniques (Chiyaka et al.,
2010; Li et al., 2011; Medlock, 2009; Andersson and Britton, 2000), describing the

incubation distribution as a fraction of persons who first become ill as a result of

exposure, defining the instantaneous rate of infection as ,B(t)wi’rhin a populationN

(Sartwell, 1995), hence the instantaneous rate of a person entering a pool of persons
. : .. dN -
becoming infected is B(t)N resulting in E:—,B(t)N (Williams, 1965). The general

incubation distribution could be defined as a differenfial equation based on the
cumulative fraction of persons who become ill before or on tdays as an

instantaneous rate of illness as a convolution (Haas et al, 2014)

t
Q(t) :f/lﬁ(r)N (r) f (t-7)dr where A is the fraction of infected persons who becomes
0

il which is based on asymptotic forms for incubation time distribution (Williams, 1965).

Figure 3.14 illustrates a simple epidemiological model for diseases transmission fo

infected subjects
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1-4
i Q(t) Infec’red-
A Asymptomatic(X)

B(t)N

Susceptible ’ " |

Infected
Q(l‘) Symptomatic (Y)

Figure 3.14: A simple epidemiological model for diseases transmission to infected
subjects

From this concept, the simple model becomes (Fig. 3.14)

dN

E—‘ﬁ(t)'\‘
di ~Q(t)
S ™)
3.88
dX _1-4
ERPI
dy _
E—Q(t)

This allows the estimation of the rate at which cases appear as a function of

instantaneous rate of infection. It must be noted that, the mode assumed that the
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underlying incubation distribution for the conversion to the symptomatic state is the
same as for the asymptomatic state. For a more complex modelling with the
conversion of individuals to the post-infected state described by two different
parameters, thus the number of symptomatic infected individuals per unit time and
the number of asymptomatic individuals per unit time who enters the post-infected

rate (Fig. 3.15) leading to the model.

Figure 3.15 shows a schematic epidemiological model for diseases transmission to

post-infected subjects

Infected |
Asymptomatic(X)

_S@)

| Post Infected (Z) \
l‘ Infected

Symptomatic (Y) R(1)

B()
Susceptible -‘ Infected (I) |
(N) 1

Figure 3.15: A schematic epidemiological model for diseases fransmission to post-

infected subjects
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& =-a()
s
& -Z40()-s() 3.89
S =Q)=R()
E=s(1)+R()

Hence defining the cumulative distribution G(t)as a function of individuals existing the
diseases state before or at time twith a density function g(t) to account for duration

of illness, hence

t

R(t):j[Q(t)]g(t—r)dr 3.90

0

Again, defining the cumulative distribution H (t) as a fraction of asymptomatic person

from post-infected state to infected state and h(t)is its derivative, hence

s(t) :H¥Q(t)}h(t—r)dr 391

(White et al., 1986) documentation of Norwalk virus in food borne outbreak shows
that evidence exist of some organism illness may occur for both pre-infection as well

as post-infection, others of such post-infection has also recorded (Ozawa et al., 2007;
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Nordgren et al., 2010; Vega et al., 2011; Teunis et al., 2014; Mattison, 2011; Sukhrie et
al.,, 2012) such a secondary occurrence is made by modification of the
epidemiological framework, Kermack and McKendrick (1927) describe the
occurrence as a product of suscepftible and infected individuals, this indicates both
symptomatic and asymptomatic serves as a point for infection within the time they

are in their states, by extension of the model will lead to:

A =—B(N-FON(X +Y)

4. (t)N+y(t)N(x+v)-Q'T(t)

=rQ)-s() 392

=R

L —s(1)+R()
Q'(t):J:A{,B(T)N(T)+y(r)N(r)[X(r)+Y(r)]}f(t—r)dr 3.93

To account for immunity impact, it's worth making the assumption that post-infection

does not occur, thus persons are no longer susceptible, defining the distribution i(t) as

a density function for residency in the post-infection state (immune), hence transition

back for effect of waning immunity to susceptible state is by the convolution:
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T(t):I[R(r)+8(r)]i(1—r)dr 3.94

T = BON-FON(XY)+T()

d_ (t)N+y(t)N(X+Y)—L()

at

& 14 )-s(y) o
=R

?j_f: (t)+R(t)—T()

3.9.1 Transmission of Pathogens in the Population

Pathogen fransmission among individuals within the populafion depends on the
shedding and transmission rate of exposed and infected individuals. Three different
transmission modes are described to cater for all forms of pathogen transfer within the

population.

» Susceptible Population

All individuals within the population are susceptible and hence becomes infectious,
individuals within  the susceptible compartment moves into the exposed

compartment with rate (), from exposed an individual can then move either to the
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infected asymptomatic compartment with rate (U,) or move to infected
symptomatic compartment with rate (U,) and then move info the infected
asymptomatic compartment with rate (U,). From asymptomatic compartment an

individual moves to recovery compartment with rate (A1) and hence can move back
info the asymptomatic compartment again with rate (p), or waning immunity can
make the individual becomes susceptible again and move to susceptible
compartment with rate (&), all compartments have a natural death rate of d, the

differential equation for the fransmission is given below:

%:BM’R—(A +d)S

dE

E:AS—(US+UD+d)E

d58% E-(U,+d)! 3.96
dt S A s

dl

d—tA=UAIS+/1R—(p+d)IA+UAE

dR
E=pIA—()I+9+d)R

* No Immune Boosting Transmission mode

Individuals do not move back intfo the asymptomatic compartment, the only path is

recovery and hence by waning immunity becomes susceptible again.
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§=B+9R—(A +d)S
dt

E:)Is—(us+uD+d)E
dt

di,
dt

=U,E-(U,+d)I, 3.97

dl
d—tA:uAls—(p+d)|A+uAE

dR
i pl,—(6+d)R

* Genetic Resistance Individuals within the Population

Not all exposed individuals within the population are susceptible, proportion (v) of
the individuals inherit a genetic resistance which makes them resistance to the

pathogens, but they forms part of the population for fransmission.
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§= B(1-v)+6R-(A1+d)S

dE
E:AS—(UJUD +d)

di
dtS:USE—(UA+d)IS

%:UAIS+AR—(p+d)IA+UAE

%:P|A—()|+9+d)R 3.98

3.10 Summary

This chapter presented the different statistical theory principle ideas of the
methodology used in this study, various probability distributions which forms the
models under studies were presented as well as their usage in the determination of
quantify pathogen concenfration. The chapter also presented the handling of
various forms of dataset that emerged as part of the studies which does not forms
part of the quantitative nature of probability distributions and not enough to fit
parametric distributions on them. This chapter has presented the various theoretical
aspects of the distributions and data handling quantification used in the rest of the

study as well as the epidemiological aspect of illness incidence within a population

82



with immunity. In the next chapter, probabilistic quantitative risk assessment model
with genome copies and fecal indicator ratio conversion for dose estimation is

presented.
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CHAPTER 4

PROBARBILISTIC QUANTITATIVE RISK ASSESSMENT MODEL WITH GENOMIC COPIES FOR
DOSE ESTIMATION
The main objective of this chapter is to develop a probabilistic model for the risk
assessment with both genome copies of virus/oocyst particles and the use of fecal
indicator ratio conversion method to meet the objectives in Section 1.3. In this
chapter a probabilistic model approach of modelling with genome/oocyst particles
is presented in addition to ratio conversion method to assess the impact of the use of
pathogen of interest in microbial risk estimation procedure. The daily probability of
infection are determined as well as the annual estimation of risk. Daily Adjusted Life
Years (Diseases Burden) has also been determined for consumer exposure to
pathogens in wastewater. Various parameter estimations and sensitivity analysis are

also carried out.

4.2 The Model and Its Analysis

This section presents the models formulation for quantifying a probable risk of
infection orillness by accidental ingestion of Norovirus through consumption.

The models include dose ingestion, build-up of probabilistic approach of pathogen
ingestion and its corresponding dose-response models, survival and hazard function
of illness and characterization of probable risk to annual risk and the estimation of

Daily Adjusted Life Years (DALYs).
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4.2.1 Model formulation and Pathogen Concentration

The description of fransmission of pathogen from water unto the vegetables then
onto consumption is modelled as a farm to fork approach, irrigation with wastewater
on farms for all crops including vegetables and salad crop eaten uncooked is tfermed
as unrestricted irrigation, and poses a health challenge to both farmers and
consumers as well. These stakeholders are directly exposed to the hazards in the
wastewater and create a public health concern. The pathogen path for contact with
its host is through a complex interaction method as shown in Figure 4.1.

Low Quality Water for
Imigation of Vegetables

1 J
Vegetable Harvesting
Industrial Market
Storage ~ ™

5

[ Industrial and house-hold storage ]

Recovery ]

W = ‘ p -
Infection ‘ > / liness
Food ? ~__
Preparation/Consumption l
Exposure

Diseases Daily Adjusted
Endemic Life Years

Figure 4.1: Schematic Exposure to wastewater through to estimating illness
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The pathogen dose (virus genomic or particles/oocyst) that the consumer is exposed
to on the kth day (d: number of virus/oocyst particles ingested per person per
exposure) resulting from consumption of either salad (cabbage, lettuce or a salad
crop) irrigated with wastewater. The water/produce model for modelling ingestion of

pathogen from wastewater directly or indirectly (salad consumption) is given as

Vp OR, Water model
d=Cz+Cyv 1+ Ter Re Vs 107 expfkt )= 4.1
Vp =1, Produce model

Hence dose (d )is a joint probability distribution given as

> £(C,.C,.1.T.R. Vo, Wk t) , discrete case
A

d=P((C,.C,.R..I. TN, W k1) DA)= 4.2

(C,.C,.1.T.R. V, W k t)dA, continuos case
A

Where szf(x;a,b):b—la,for asxs<b (section 3.5.18) is the daily consumption of

vegetable per person ( gperson~day™)(Fung, 2011),C, =R, (xV, ) :IPP (V) h(w; B)du
0

is the mixture distribution of concentration of pathogen in irrigation water/on

r - ,
vegetable produce (no/ml)(Rice, 2001). R = p(r;k, p):(k—lj P“(1-p) " (section
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3.5.13) is the recovery methodology of pathogen concentration (no/ml)(Petterson et

al., 2007), |is the percentage of infection of virus, Tgis the fransfer rate of virus from
the irrigation water to the produce in the case of water model, we assume in this
work, for water model all virus genome copies/oocyst detected in the irrigation water
were transfer to the produce for the worst case approach, and half of the Norovirus
genome copies and all oocyst are infectious.

i, for a<x<b, cabbage
b-a

Vo = 1 1 x-pY
f(xuo)= ex ——( ,uj , lettuce
o~ 2 2\ o

is the volume of irrigation water caught

by product (mg™) (Mok et al., 2014; Mok and Hamilton, 2014; Shuval et al., 1997),

w=Pert(a,b,c) =Beta(a,,a,,a,c) (Section 3.5.17) is the pathogen reduction by pre-

2
consumption preparation (log, unit, k=f(xu0)= = 12ﬂex{—%(¥j } (section

3.5.14) is the pathogen kinetic decay constant (per day) and t=b—1a,for as<xs<b

(3.5.18) is ftime between last waste water irigafion event and harvesting

vegetable/storage (days).

4.2.2. The Dose Response Model Formulation
Building a mathematical dose response relationship is establishing the relations

between level of pathogen, exposure and the measure of likelihood occurrence of
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adverse effects. The two sequential sub processes for estimating the level of infection
is as namely(Haas et al., 2014);
i. One or more organism or virus genomic copies (particles) ingested is (are)
capable of causing diseases
i. Ingested organism/virus/oocyst particle undergo decay or inactivated to
multiply fo cause infection/disease by host susceptible responses, and only a
fraction of the ingested organism reach a site where infection can begin by

breaking all barriers within the body immune system.

The two measures are to ensure that, for an infection to occur within a susceptible
host organism or individual, there is at least a surviving organism breaking all the
mechanism of the defensive nature of the an individual, be it fully protected, partially
protected or immune-compromised suscepfible. Infection can only occur when there
is a surviving pathogen to cause infectious foci within a cell of an individual( Furumoto

and Mickey, 1970; Haas et al., 2014b; Mickey and Furumoto, 1970).

Hence, ingestion precisely jorganism from exposure to wastewater contaminated

with a pathogen of a mean dose d is expressed as j given d(Mickey and Furumoto,

1970):

Py(j|d) 43
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Continually, the probability of ksurviving organism or pathogen particles within the

ingestion jorganism fo initiate an infection process can also be expressed as;
P(k|j) 4.4

Assuming independency for the two processes (thus the ingestion of precisely |
organism and the surviving pathogens remain fo inifiate infection process), the
probability of k organisms surviving fo initiate infection by breaking all defense
mechanism within the body is given by the independent event (Furumoto and

Mickey, 1970; Furumoto and Ray, 1967; Haas et al., 2014b):

00

P(k)=>"Pa(j]d)P:(k|j) 45

=

The least number of organism (kmin) surviving to initiate an infection leads to a
probability of infection ( Furumoto and Mickey, 1970; Furumoto and Ray, 1967; Haas

et al., 2014b).

(=)

Pi(d)= Y > Pijld)P2(k|j) 4.6

k=kmin j=k

Where (kmin) is not the minimal infection dose or threshold needed to be reached to

cause an infection, however the average inoculate dose required to cause half of
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the subjects to experience a response of infection(Furumoto and Mickey, 1970aq;

Mickey and Furumoto, 1970b).

4.2.2.1 Exponential Dose Response Model
Characterising the distribution of organism between each dose as random and
assuming independency for each ingested organism, this has an identical survival
probability? r and that kmin=1(thus for a single hit assumption). Hence for Poisson
distribution of organism(Furumoto and Mickey, 1970a; Mickey and Furumoto, 1970b).

i

Py(j|d) :%e‘d 4.7

Modelling survival means of organism fo cause an infection with binomial distribution

leads to

P2(k]j) =W(l—r)j_k 48

Hence, substituting equation 4.7 and 4.8 into equation 4.5 leads to equation 4.9

(Furumoto and Mickey, 1970a; Haas et al., 2014; Mickey and Furumoto, 1970b)

’Thisis a probability that an organism survives all barriers of defense mechanisms and initiate an infectious focus within
cell
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Pi(d)= [% ﬂk'( (- ) }

k=kmin
4.9
T
k=kmin k! = (J —k)!
dr)e
But Z ( ) _1, hence
k=kmin
kmin—l(d )ke_dr

Pi(d) =1-| Y A 410

=N

With the earlier single hit assumption (thus one organism survived is capable to cause

an infection) kmin =1yields (Mickey and Furumoto, 1970)
P (d)=1-¢€™ 4.11

Where d is the dose subjected to individuals and ris the infectivity rate of the
pathogen of interest or under study. Hence given a mean dose of dfrom ingestion

precisely jorganism with korganism surviving to initiate an infection, the exponential

dose response model is as given (equation 4.11).
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4.2.2.2 The Beta-Poisson Dose Response Model
Replacing equation 4.8 with a mixture distribution with respect to the parameter r to
account for variability in the interaction probability yields equation 4.12 (Furumoto

and Mickey 1967)
1 .
P2(k|j =j (1r) “r*|f (n)dr 4.12
0

From equation 4.11 and applying a mixture operation directly, for assuming a

variation in the dose to dose for the Poisson distribution, then

=j[1-e-”’]f (r)dr 4.13

i Al

:j f(r)dr —J'e""f(r)dr
0 0

4.14

T

e f(r)dr

O'—.H

Again, accounting for the variation between doses to dose, a great deal of flexibility
is the use of beta distribution, hence incorporating the beta distribution info equation

4.10 yields (Furumoto and Ray, 1967)
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The integral can be expressed as confluent hyper-geometric written as a series

expansion

Therefore,

1 1
fe‘rddr :e‘dj'ed(“)f (r) 4.15
0 0

= -4\ aj F(a+,8) a-1(q _ \Bti71
2 j!-!;—l’(a')l’(ﬁ)r (1-r)"" " dr

el Ta+h) T(e)r(8+)

S itr(a)r(B) r(a+p+i) 4.16

cetlie B g BBFY)
{1 (0’+,6’)d (a+B)(a+pB+1) 4 }

=e“\F(B.a+pd)
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h r(0'+,6’) -1 B-1| -rd
— (1~ e '"‘dr =, F(B,0+[;d 4.17
The ingestion of virion genome copies/oocyst is based on whether it is aggregated or
disaggregated, as virion genome copies/oocyst particles may or may not be

aggregated.

Hence in a confluent hyper-geometric function (Furumoto and Ray, 1967; Mickey and

Furumoto, 1970)
Rnf(d)zl_lFl(a’a+,87_d) 4.18

Furumoto and Mickey (1967) derived the following expression approximation to Hyper
geometric function (equation 4.16) based on the certain valid parameter values, thus

when B> 1and a <« Bthe simple relation holds.

d -a
Pi(d) :1—[1+—j
B 4.19

4.2.2.3 Modelling lliness Resulting from Infection

Given the presence of a high pathogen, colonization of a host with =1surviving
organism does not necessarily lead to illness, however, there is an increase in the
probability of the host defense measure to fight off the colonization of the surviving
organisms, this leads to two ingredients for the risk of acute iliness, thus the hazard of

illness and the duration of infection as described by Teunis et al., (1999).
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Definition 4.1

Suppose Tis a non-negative random variable representing the fime until an event of
interest happens. Let assume T is a continuous variable unless otherwise specify, then
the probability density function (pdf) and its cumulative distribution function (cdf) are
used to characterise the random variable distribution and denoted as:
df : f (t

Pt (1) F(0)=P(T =0)

cdf : F(t) =P(T <t)
Therefore, the survival function (the probability that the event of interest has not yet

occurred by time t) is defined as;

def

S(t)=1-F(t)=P(T >t),0t>0 4.20
And the corresponding hazard function is also defined as;

o Plt<T<t+hT=t]| f(t
h(t):"hfro‘[ h ]ZS((t))

Where S(t_)=|Lnt1 S(s), thus hazard function is the conditional density, given that the

event of intereste has not yet occurred prior to fime t. For continuous time T

h(t)= —%In[l— F(1)]= —%InS(t)

Let the cumulative hazard function defined as;
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Therefore,

S(t) =exp(-H (1)

f (1) =h(t)exp{-H (1)

4.21

Let infection at initial stage (0<t<A) and inactivation of pathogen within host at

given a hazard function h(t) where Ais the time until infection occurs. Moreover, the

commonest distribution for describing the survival function of illness be the

exponential distribution function with scale parameters, then

f (t)=nexp[-nA] and h(t) =7

H (t) = P(ill[inf : u) ﬂ—exp{—jndt} , GEt<A

then the probability that infection results in iliness can be written as the cumulative

function

P(iII linf; /\) =F(t) =1-exp(-7A)
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Assuming the duration Ais described by the gamma distribution to reflect individual

differences in resistance of host colonization of pathogen, gamma density distribution

is (Teunis et al., 1999)

g(Nwd)= rd(_:)) N exp(%j

-—w

P(ill]inf ) =r]jo[1—exp(—/7/\)]{rd(w) AH exp{%ﬂd/\ = +( ¥nd)™

P(ill]inf ) = H rd(:) A“*lexp(%ﬂd/\ - H rd(_:)) A? ex;{#ﬂd A

=1=(1+pd)*

The probability that iliness occurs is

P(ill|inf):jo[l—exp(—q/\)]{rd(:)) A ex;{%ﬂd/\ = +( #nd)™ Norovirus

P(ill|inf ) =
d(D,x:AB,C)=AD - Bx+C =1-(1+ AD - Bx+C) “ cryptosporidium oocyst

4.23

4.24

Hence from equation 4.24, the probability of illness per dose per person is calculated

as

Pill = Pinfint Pi(a)
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4.2.2.3 Annual Risk of infection/illness and Diseases Burden

The annual risk of infection and illness are determined with the frequency of
exposures (n)of an individual within a year and were modelled following the
independent assumption of Karavarsamis and Hamilton (2010)- The annual risk of

infection orillness P was estimated as
P:l—lj[l— R 4.26

Where Piis the ki median probability of infection or illness per exposure event in n
total exposures within a year. Estimating the annual disease burden using the
Disability Adjusted Life Year (DALY, person~tyear~1) metric (Barker, 2014; Barker et al.,
2014; Barker et al., 2013; Mok and Hamilton, 2014; Mok et al., 2014), which is used to
measure all disease burden expressed as the number of years lost due to disability,
illness or premature death (Mara and Sleigh, 2010, 2009; Mara et al., 2010). Hence

equation 4.26 is given as
DALY =P, ,BS 4.27
Where P, ,is the annual probability of illness per given dose per person and
:lea,for as<x<b(section 3.5.18) is the disease burden (DALY per case of

diarrhoea) and S is the proportion of population susceptible to the diseases.
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4.3 Modelling Scarce, Imprecise Data and Expert’'s Opinion for Uncertainty
Quantification in QMRA Model

Parameters input values for modelling in QMRA presents a challenge to the entire
model in itself, accounting for most of the uncertainty pertaining to the either the
model or the scenarios. Lack of data, imprecise data and interval assumptions are
characterised by ambiguity and imprecise linguistic description of events rendering
estimation of parameters based on combining experts’ opinion and limited data

available.

4.3.1 The Evidence Theory

The theory of evidence, popular referred to us Dempster-Shafer Theory (DST) is based
on two principal elements developed by Dempster (1976) and Shafer (1976) (Benavoli
et al., 2009), is solely based on belief and plausibility measures and are characterised

by a function m, called basic probability assignment (credibility) (bpa).

A body of evidence induce credibility on a class p(X) of all possible subset of X, with

the assumption that, evidence resides upon an empty set.

Thus m: p(X) - [0, and
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The class of the focal subset of X corresponding to m is F :{A‘AD X,m(A)> O}

A belief measure and plausibility are defined on a universal set X as a function of

mapping a power setf fo a range [0,] (Salmona, 2014), where plausibility measure is

the dual of the belief measure

Bel =m: Px - [0,]]
4.28
PI(A)=1-Be (A)

Given, ‘A’ a family of subset of X, then the belief, plausibility and ambiguity of ‘A’ by

mi is defined as (Ayyub and Klir, 2006).

Bel, (A)= > m(B) 4.29
Pl (A)= > m(B) 4.30
Amb (A)= > m(B) 4.31

BnA#0,BOA

4.3.2 Aggregation of Evidence and Conflict

Definition 4.2. (Simple Evidence)
A simple evidence denotes the case when the bodies of evidence are mutually

exclusive, and it induce a probability distribution
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Definition 4.3. (Mixed Evidence)

A pair of dependent bodies of evidence of experts dependently induce a joint

probability distribution, thus m,:P(X)P(X) -[0,d. If the body of evidence are
independent, then m (AB)=m(A)m(B). If m(B)>0, then the conditional
probability distribution on P(X) given B is defined as m (A[B)=m (AB)/m (B). The

corresponding class of focal pairs of subsefs is F| :{(A B)|AD X,BO X,m (AB)> (}

Let's mand m,be basic probability assignments to the same element from ftwo

experts, then Dempster’s rule of combination to obtain a combined opinion (m ,) as

allAﬂzAfA ml(AJ)mZ(A()

Al )A=e

Where A must be a nonempty set andm,(¢)=0, the term 1- > m(A)m,(A)
allaj[Ac=e

becomes the normalizing factor for the contradiction or conflicts among the two
experts (Sentz, 2002; Wierman, 2001; Zadeh et al., 1978). Generally, suppose we have
evidences and we want to fuse this info forming a single body of evidence and

assume all collected evidence concern the same universe X . Let evidence be

A=(F.,m),i=123,..and K be conflict among evidence, if A OF then (A =g¢. Then

Oi
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total conflict as described with the Dempster rule of combination is given as

K=Y m(A). Hence focal setis F :{ﬂA DA,ADE}. The basic probability for

ﬂ A =@ Oi
i

COF

m(C)s Lt — 433

Where C is the combination of the different expert’'s opinion, and K is the accounting

for the conflict among the overlaps of the experts’ opinion. Hence

> m(A)

(C) =t
1- 3 m(A)
Q/‘\:¢

4.34

4.3.3 Weighting Evidence Assignment
A body of evidence induces a probability distribution on the class m(A) of all possible
opinion on the subject A. Assuming residence of evidence for combination is not

equally credible and any confradiction are not taking info account expressed by

(Bae et al., 2004).

n

M3 n (A) :%Zwkmk (A) 4.35

k=1
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Definition 4.4

A family of weights is probabilistic if they safisfy the equalities

> w(C|A)=10A0F(X;m), where both C and A are a collections of suspects. ‘A’

COP(X)

must be a focal set of body of evidence, but C is arbitrary.

The weight factors are assigned based on the credibility of the evidence and ifs
source. Hence relaxing the (Bae et al., 2004; H.-R. Bae et al., 2004) (equation 4.35)

assumption and incorporating into Dempster rule (equation 4.34) leads to

> wm(A).wm (A)

allA (A=A

1- 4 V\&”H(Ai)"wnm('%)

alA (A=

M,s.0(C)= 4.36

4.4 Model Implementation for Fecal Indicator Ratio Conversion and Virus Genomic
copies for Dose Estimation through Vegetable Consumption in Ghana

The study includes the input parameters of different variables such as pathogen
concentration in wastewater, which are predominantly the first hand sources of water
available for irrigation in developing countries. Amoah et al., (2007) described the
different sources of water primarily used for irrigation in developing counfries,
considered as wastewater mainly from streams, drains and partially treated
wastewater from Waste Stabilization Ponds (WSP). This study uses data from these

sources of water (streams, drains wastewater) and Waste Stabilization Pond (WSP)
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effluent, however, the WSP on pond effluent involves the usage of both the influent

and effluent discharge waters used for irrigation by farmers.

Lettuce and cabbage were selected as the main vegetables for the study to
represent crops commonly eaten raw in developing countries such as Ghana and
other African counftries. These crops do not form part of the fraditional cuisines in

households, but are major component associated with street foods (Fung, 2011).

Information on actual volumes of consumed vegetables in Ghana is scarce and
various QMRA studies (Ackerson and Awuah, 2012; Barker, 2014; Seidu et al., 2008)
have therefore used estimates of salad consumption. Fung (Fung, 2011) reported that
salad mainly consisted of lettuce and cabbage (> 75%) with a salad serving size of
20g per meal. This meal size is higher than the estimated value of 10 g — 12 g of
lettuce per meal per day (Seidu et al., 2008), in Ghana there is lack of comprehensive
study on salad servings contaminated from Norovirus or Cryptosporidium spp, hence
all servings were assumed to be contaminated as a worst case scenario. The

estimated value for consumption data (C, )is combined through experts’ opinion, a

uniform distribution (Figure 4.2) was fitted to cater for the different portion sized found
in earlier studies and again, a uniform distribution (Figure 4.3) was also fitted for alll

year round frequency (total exposure) of consumption of vegetable.
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Comparison with Uniform(10,20)
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Figure 4.2: Fitted Distribution for Salad Consumption size

Comparison with Uniform(208,365)
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Figure 4.3: Fitted Distribution for Total Consumption Frequency
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Volume of water (V) caught on the surface of Asian vegetables (Mok et al., 2014)

was used as an approximate estimate for the study, as previous studies in Ghana
have shown that such values are appropriate(Barker et al., 2014). Uniform distribution
of water was used for cabbage (Figure 4.4) and normal distribution fruncated at zero
was used for leftuce (Figure 4.5) to characterize the volume of water detained by the

two vegetables.

Comparison with Uniform(0.00775,0.108)

0.0103 0.1055
2.5% 95.0% 2.5%
2.5% 95.0% 2.5%
12 1
/_g D Cabbage ‘
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U g : X L 54 G0 8 Mean 0.05787
= Mode 0.01427
% Std Dev 0.02894
E 6
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> 4 4 . -
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[7) | Maximum 0.10800
o 2 1 T i , Mean 0.05788
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[ ] Std Dev 0.02894
0 ..... )

o o <+ 0 © o ~

S (=} o = o — —

= = =) =) =} = S
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Figure 4. 4: Fitted Uniform Distribution for Wastewater caught on Cabbage
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Comparison with Normal(0.108,0.019)
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2.5%

2.5%

2.5%

25 1

Frequency (Times Measured)

<«
<
S

2.5%

>

o o~ <
— — —
o

Probability Value (X)

0.06
0.08

0.16

0.18

. Lettuce

Minimum 0.03368
Maximum 0.18390
Mean 0.10800
Mode 0.10871
Std Dev 0.01900

= = Normal(0.108,0.019)

Minimum -0
Maximum +0oo
Mean 0.108000
Mode 0.108000
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Figure 4.5: Fitted Normal Distribution for Wastewater Caught on Surface of Lettuce

The kinetic in-field decay constant (k) was fitted to normal distribution (Figure 4.6)

with data used in previous studies (Barker et al., 2013; Mok et al., 2014; Hamilton et al.,

2006a). However, cabbage and lettuce are perishable and consumption of these

products is usually done soon after harvest. Hence, post-harvest virus decay beyond

48 hours was considered insignificant and was not included.
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Comparison with Normal(1.07,0.07)
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Figure 4.6: Fitted Distribution for Pathogenic Kinetic Decay

Time for withholding water (t ) was assumed to be within O to 2 days after irrigation. A
uniform distribution (Figure 4.7) was fitted to cover zero to a maximum of two days as
vegetables in hot climatic conditions as in Ghana must be irrigated frequently,

typically daily, to keep fresh(Seidu et al., 2008).
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Comparison with Uniform(0,2)
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Figure 4.7: Fitted Distribution for Period of Irrigation Cessation before Harvest

Washing of vegetables during preparation is common practice in Ghanaian food
stalls and households (Amoah et al., 2007; Fung, 2011; Seidu et al., 2008). Although
reports on varying degree of efficiency of bacterial removal by washing and
disinfection are available(Amoah and Drechsel, 2007; WHO, 2006b), similar
information on reduction of viruses are scarce. Allwood and Malik, (2004) pointed out
that viruses may be more resistant than bacteria during washing, and Norovirus is no
exception (Mattison, 2011) as enteric viruses are known to be resistant to the
environment as well. The distribution fitted by Barker et al., (2014) for washing
vegetable was used as the modal value for the PERT distribution (Figure 4.8) in this

study though it referred to bacterial reduction. Nevertheless, previous studies

indicated that these values can be applied to virus as well (Ayuso-Gabella et al.,
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2011; Barker et al., 2013; Mara. , Sleigh, 2010; Mok and Hamilton, 2014; Seidu et al.,

2008) .
Comparison with Pert(0.1,1,2)
1.698
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Figure 4.8: Fitted Distribution for Pre-Consumption Vegetable Preparation

All input parameters are reported in Table 4.1 as well as Norovirus published data for

modelling (Table 4.2).
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Table 4.I: Distributions of input parameters

Parameter Notatio  Units Distribution type Reference
n (Value)~[mean]

Diarrheal Burden B personyear*  Uniform (1.06E-04-6.23E- Begg et al. 2007;

of Diseases in 03)~[3.16E-03] Haagsma et al.

Ghana 2008;

Salad C, gday™ Uniform(10-20) ~[14.1] Seidu et al. 2008;

consumption Fung 2011(Fung,
2011);

Frequency of n day(year ™) Uniform (208-365) Seidu et al. 2008;

consumption Mok et al. 2014.

Volume of Ve ml/g

irrigation water

caught by

product

Cabbage ml/g Uniform(0.00775,0.108) Mok et al. 2014;

~[0.0580] Barker et al. 2013;

Hamilton et al.
2006; Shuval et al.
1997

Lettuce ml/g Normal(0.108,0.019)~tru Mok et al. 2014;

ncated at zero~[0.108]  Barker et al. 2013;

Hamilton et al.
2006; Shuval et al.
1997

Pathogen kinetic  k day™ Normal(1.07,0.07)~trunc Barker et al. 2013;

decay constant

ated at zero~[1.07]

Hamilton et al.

2006; Petterson
2001; Petterson
2002

111



Time for
withholding or
irrigation
cessation

Post-
harvest/Food
Preparation
Washing for Virus
reduction

days

log,, units

Uniform (0,2)~[1.0]

Pert(0.1,1.0,2.0)~[1.0]

Barker et al. 2013

Mok et al. 2014;
Baert et al. 2009;

Baert &
Uyttendaele 2008;
Ndiaye et al
2011 (Ndiaye et al.,
2011); Croci et al.
2002(Croci et al.,
2002); Mitakakis
2004 (Mitakakis,
2004).
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Table 4.2: Norovirus/Cryptosporidium

spp and
sewage/Distributions and fit parameters used in models

fecal indicator in  raw

Dose Response Units Distribution type Reference
Parameters (Value)~[mean]
Norovirus dose- Hyper geometric Beta Poisson (Teunis et al.,

response parameters
for a+b inoculums3

2008) (Teunis and
Havelaar, 2000)

a =0.040, 5 =0.055,a=0.997, n=0.00255

w=0.086

Cryptosporidium spp  w=1.10, A=B=0, C=0.77, r =0.00419 (Teunis et al., 2002)

response parameters

Virus
Recovery

Rafio of Minratio Max. Ratio
Means

Norovirus Indicator Norovirus
Data Org.(CFU/mL)

(gc/mL)
Drain 107 -1¢ 1.85x 1G
Stream 10°-1C 1.03x 10
Pooled 107 - 10 1.64x 16

25%—- 50%

25%- 50%

25%- 50%

1.76x10* 1.85x10° 1.60x 10"
7.13x10* 1.03x10* 9.90x 102

1.56x 10" 1.64x10° 1.60x 10"

Reference:(Hassine-Zaafrane et al., 2014), (Katayama et al., 2008),(Haramoto et al., 2006),
(Silverman et al., 2013), (La Rosa et al., 2010) (Flannery et al., 2012)

*> Maximum likelihood estimates for the combined dose response models with and without virus aggregation and dose
response model with no aggregation applied to susceptible subjects.
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4.5 Simulation Results

4.5.1 Estimation of Annual Probability of infection and iliness of gastroenteritis

The annual probability of infection for Norovirus ranged from 9.2x 10" to 9.4x10" for
all genome copies Norovirus while the ratio conversion method also ranged from
8.8x10't09.1x 10". Again, the annual probability of diseasest at a given infection
ranged from 8.6x10" to 9.0x10" for the genome copies Norovirus and 8.1x10" to
8.3x 10" for ratio conversion Norovirus (Table 4.3). Moreover, the ratio conversion for
cryptosporidium spp. was found to be 2.3x10° and the oocyst cryptosporidium spp.
data annual probability of infection was 4.9x 10*, yet the annual probability of disease
given infection werel.5x10°, 2.7x10" for E.coli conversion and oocyst data
respectively. Using the USEPA’s threshold of 104 annual probability of infection and
the recommended 104 risk of infection by Signor and Ashbolt (2009) daily risk target,
all model scenario exceeded the thresholds, hence vegetables irrigated cannot be

said to be safe for consumption.

4 . .
All servings of salad were assumed to be contaminated
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Table 4.3: Annual probability of gastroenteritis infection an/illness and diseases burden

(DALYs) per person per year

Model Scenarios Annual probabilities Diseases Burden (DB: DALY pppy)
(Norovirus Analysis)  Infection Diseases/infect 5thPercent’ Median 95thPercent’
Stream genome 9.4x 10" 8.6x 10" 8.0x10° 4.1x10° 1.2x10*
copies Norovirus

Stream Norovirus 9.1x 10" 8.1x 10" 6.8x10° 1.2x10" 5.8x 107
Ratio

Drains genome 9.3x10" 9.0x10" 1.3x10° 1.8x10° 8.7x10°
copies Norovirus

Drains Norovirus 8.8x 10" 8.2x10" 8.7x10™ 1.4x10% 7.1x10°®
Ratio

Pooled genome 9.2x10" 8.9x 10" 8.2x10° 6.7x10° 1.7x10*
copies Norovirus

Pooled Norovirus 9.1x10" 8.3x 10" 2.6x10" 3.7x10° 1.7x10°
Ratio

Cryptosporidum spp Analysis

E. coli conversion 2.3x10° 1.5x10° 1.5x 107 3.7x10° 3.7x10°
Oocyst Data 4.9x10" 2.7x 10" 2.4x10° 6.6x 10" 3.8x10°

Ratio Conversion distribution values

Norovirus stream 1 Qlnormai(4.45.0.86) fruncatedat 3.3 and 7.5]/100-2.35x103b
Norovirus Drain 1 Qlnormal(4.35.1.06) . fruncatedat 3.2 and 7.0]/100-2.49x103b
Norovirus Pooled 1 Qlnormail(4.30.1.04) truncatedat 3.1 and 7.2]/100-2.40x103b

Cryptos oocyste Lognormal(0.002,0.003)

b is the mean from 3,650,000 iterations of pathogen concentration data
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4.5.2 Annual Diseases Burden

The median annual diseases burden for ranged from 1.8x10° to 6.7x10° for all
genome copies Norovirus (stream, drain and pooled data) concentration with 95t
percentile values ranged from 8.7x10° to 1.7x10* while for ratio conversion Norovirus
(stream, drain and pooled data), the median annual diseases burden ranged from

1.4x10% to 3.7x10° with 95t percentile ranges from 7.1x10° to 1.7x10°.

All scenarios (stream and drain data) using the genome copies Norovirus estimation
for diseases burden (DALY) were =2orders of magnitude higher than the use of ratio
conversion Norovirus method of franslating fecal indicator to Norovirus. It should be
noted that only scenarios involving ratio conversion Norovirus achieved the health
target of less than 1x10° DALY pppy, whereas scenarios involving the use of genome
copies Norovirus data were < 1order of magnitude less than the DALY health target
of 1x10" DALY pppy (Figure 4.9). When pooled data were used for both genome
copies and ratio conversion Norovirus, the median annual diseases burden for both

achieved the DALY of 1x10* but not 1x10° (Figure 4.10).

On the part of cryptosporidium spp., the median DALY diseases burden ranged from
1.5x10" to 3.7x10°for ratio conversion and 2.4x10° to 3.8x10° for oocyst data,
representing the 5 and the 95t percentile for each respectively. Again all scenarios
for the cryptosporidium spp. for the oocyst data DALY were close to =2order of

magnitude higher than the ratio conversion method (Figure 4.11).
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Figure 4.9: Cumulative Probability Curve of Daily Adjusted Life Years (Diseases Burden)
for Stream and Drain wastewater for Actual Norovirus® and ratio conversion. Each
cumulative probability represents the diseases burden for either the actual norovirus
genome copies dose estimation or the conversion ratio dose estimation for stream

water and drain water.

5 . . .
Actual Norovirus: genome copies norovirus dose
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Figure 4.10. Cumulative Probability Curve of Daily Adjusted Life Years (Diseases
Burden) for Pooled Data. This represents the combined pool data for stream and
drain water, the cumulative probability graph shows the differences of using either
the actual genome copies pool data or that of ratio conversion estimation for dose in

modelling risk assessment.
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4.5.3 Sensitivity Analysis

In this section, sensitivity analysis was used to ascertain the model parameters that
have strongest impact on the model output. This helps to account and to establish if
one needed Hazard Analysis Critical Control Points (HACCP) to mitigate adverse
effects of some essential input parameters. Different methods available for sensitivity
include factorial design, sensitivity index, one-at-a-time, differential sensitivity analysis,

the importance index, the spearmen, the Pearson etc. (Hamby, 1995, 1994)
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In this study, Spearman’s’ was used to determining the relative change in various
input parameters for estimation of probability of illness and for that matter the Daily
Adjusted Life Years. As shown in Table 4.4 the probability of illness was very sensitive
directly to water quality, volume of irrigation water caught by the vegetable, daily
consumption of vegetable, it was somehow less sensitive to the kinetic decay
constant. But it recorded an inversely sensitivity to the virus reduction due to food
preparation and the time between the last irrigation and harvest (cessation of

irigation).

On the part of cryptosporidium spp., there is a strong relation to water quality, and
diseases burden, kinetic decay constant and other weak positive correlation with
volume of irrigation water caught on surface of vegetable as well as consumption
frequency. Whiles there's a negative influence from pre-consumption food

preparation and cessation of irrigation (Table 4.5).
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Table 4.4: Spearman’s rank order correlation coefficients for probability of illness

(Norovirus)

Parameters Correlation Coefficient (Spearman
Rank)

Water Quality 0.62

Volume of irrigation water caught by 0.51

vegetable

Kinetic decay Constant 0.04

Virus Reduction by Food Preparation -0.24

Cessation of irrigation -0.118

Table 4.5: Spearman rank order correlation coefficients for DALYs (Cryptosporidium)

Parameters Correlation Coefficient (Spearman Rank)
Oocyst Data E.coli Conversion

Water Quality 0.64 0.72
Volume of irrigation water caught by 0.09 0.38
vegetable

Kinetic decay Constant 0.38 0.38

Virus Reduction by Food Preparation -0.43 -0.55
Cessation of irrigation -0.03 -0.05
Consumption Size 0.09 0.14

E. coli conversion - 0.12
Diseases Burden 0.52 0.52
Consumption Frequency 0.08 0.10
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4.6 SUMMARY

The probabilistic stochastic model presented to model exposure for dose estimation
of Norovirus and Cryptosporidium with vegetable consumption irrigated with low
quality water indicates the disease burden of the different model scenarios was
found to be acceptable under different thresholds of DALY. Silverman et al., (2013)
reported that sufficient Norovirus data in Ghana were not available to fit a distribution
(11 quantifiable samples), however, it was indicated that the figures are conservative
estimates and might be a few orders higher due to analytical challenges. Again the
use of empirical model to characterize the genome copies data due to ifs
insufficiency fo fit a parametric distribution also contributes to uncertainty. This
supports the result of this study to the effect that, the estimates for DALY in the case of
sfream and drain wastewater might be some orders higher than what is reported in

this study and hence serve as conservative estimates.

In the scenarios presented here, none of the models using genome copies of
Norovirus nor cryptosporidium spp. to predict the diseases burden found that it could
establish the safety of consuming the produce i.e. the threshold of < 10~ °pppyDALY
was not met. In confrast, the use of ratio conversion met the threshold for the same
model in the case of Norovirus. The WHO guideline states that “if the overall burden of
diseases from other exposures is very high, setting a less stringent level of acceptable
risk of 10-SDALY per person per year or 104DALY per person per year may be more

realistic as was argued by Mara and Hamilton (Mara and Hamilton, 2010) "This
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assertion of WHO may guide the results of accepting the burden of diseases level for
all model scenarios used in this study. On the other hand, the ratio conversion method
currently applied to estimate the diseases burden produces significantly lower
estimate of DALY with 2 or more orders of magnitude lower than the use of genome
copies Norovirus concentration data or oocyst cryptosporidium data. It should be
noted that, differences in diseases burden for stream and drain were significant for

Norovirus, yet, both achieved the threshold of the health target of 10 DALYppp, with

the estimation of diseases burden in drain wastewater being less than that of stream
water, whiles in case of cryptosporidium, the conversion ratio meets the threshold but

the oocyst data does not.

With emphasis placed on the differences of order of magnitude in DALYs as a result of
the use of fecal indicator ratio conversion in estimating health risk in various QMRA
models, (Payment and Locas, 2011) argued that, the use of E. coli as indicator of
fecal pollution does not represent well the presence of protozoa and other pathogen
microorganisms. These Indicators are useful for monitoring hygiene such as in
slaughter plants, but a high level fecal indicator does not necessarily mean a high
level of pathogens, as this will depend on the infectivity level of the source. On the
part of (Silverman et al., 2013), * while the ratio of NV Gll to E. coli or thermotolerant
coliform is likely to differ over place and time and may include animal fecal sources
as well as environmental sources and reservoirs, it is an important finding that the

current assumption of 0.1 — 1 Norovirus particles per 10° E. coli would underestimate
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virus dose with exposure to wastewater and surface water sample”. Again, “if
standard pathogen concentrations are to be used effectively, there should be a
move away from indicator species such as E. coli toward the pathogens of interest

such as viruses as put forward by Mok and Hamilton (2014).

This study shows that, a move away from using fecal indicator conversion rates can
lead to more realistic risk estimation as shown clearly with > 1 order of magnitude
higher when crypfosporidium oocyst or genome copies Norovirus particle
concentration is used, though the values are considered conservative and by no
means represent the total comprehensive Norovirus concentration in streams, drains
and WSPs as reported by (Silverman et al., 2013) due to factors such as the technique
applied for the quantification and the insufficient number of samples used to
characterize the concentration. Moreover, the unavailability of aggregation data for
quantification of risk in dose response model might contributes as a model
uncertainty. Still, it gives a basis for a virus interest health risk assessment based on the
concentration of genome copies of human Norovirus and a corresponding fecal

ratio conversion in order to established specific health based targets.
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CHAPTER 5

INTEGRATED IMMUNITY DOSE RESPONSE MODELING FOR ILLNESS REDUCTION
INCIDENCE OF NOROVIRUS
In this chapter, dose-response models are formulated and an extension is made on
the integration of immunity in risk assessment modelling with the use of Fractional-
Poisson dose response function. A detailed derivation of various Dose Response
Incidence(DRI) models are presented as a function of induced temporary immunity
on exposed individuals in order to obtain the effect of accounting for immunity in
dose response. Epidemiological results and compartment studies for transmission
dynamics of Norovirus have been incorporated to achieve a comprehensive
incidence of iliness on exposed individuals in risk assessment. The effects of the various
temporary immunity induced DRI models are determined integrating the transmission
dynamics scenarios. Simulated results on the transmission dynamics, illness inflation
factor (the protective effect of induced immunity to compensate for future infection
and disease transmission), partial and full immunity loss as well as effects of exposure
duration are presented. The models are applied on vegetable consumers’ exposure
to Norovirus and the results are presented to estimate the effect of immunity based

on the transmission dynamics scenarios for individual illness incidence.
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5.2 The Model and its Analysis

In this section, the Fractional Poisson Model for estimating the risk of ingestion of
Norovirus to account for the likelihood of individuals’ heterogeneous response to
infection is presented along with the modelling results. Temporary immunity models
are also shown to take into account the loss of partial and full immunity and how this

affects the estimation of the probable risk of illness.

5.2.1 The Fractional Poisson Model
A reference is made to equation 4.18 (Section 4.2.2.2) for estimating a response to
dose inoculums. Accounts from Teunis et al., (2008) for quantification of probability of

illness assume that individual complete virus genomic copies or particles ingested by

each human subject share a common probability (r)of independently initiating

infection in subjects. Moreover, under the beta-Poisson model r is a mixed distribution
(equation 4.15) indicating, some subjects may have very small values of r, thus
infection probabilities per individual virion near zero and vice versa. Hence, the
aggregated Norovirus infection probability is a beta function with parameters

described asé

Pi(dose,a,f)=1-,F(a,d (-a)ag+pB-alEta)

5.1
= _11F1(a a+ﬁ—4d)

Where u(a)is of the form

®The beta-poisson function in this case is the second order hyper geometric function which diverges at dose exceeding
342 genome copies of the virus particles replacing the first order hyper geometric function.
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1(a) =-al/((1-a)In(1-a)) 5.2

Hence
(d) = 5.3

Assumption of probability of infection (Messner et al., 2014)across susceptible

1 :
population Pz K] : 1-r f(r)dr (equation 4.14), leads to
@)

ﬂk.(—« )l

P, (d)= 5.4
r ~ Bernoulli

1- p,if r=0 (failure)
p(r, p) ~ Bernoulli = 55
p, if r=1 (Success)

Where pis the proportion of susceptible individuals.

Thus individuals are either perfectly susceptible or perfectly protected against
infection and cannot be anywhere in between in equation 5.5, hence, from 5.3 with

perfectly susceptible leads to:

-d

Pw(d,P) =1-¢“® 5.6
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Simulate Results for Probability of Infection with Fractional Poisson Dose Response

Simulated results for equation 5.6 shows a steady progression of probability of
infection (Figure 5.1). The lower infection probability is less than 1 log of dose
(genome copies) exhibiting a monotonic increment as dose ingestion increases. The
absoluteness of infection was not reached at the highest dose of 8logs of genomic
copies. However, it should be noted that dose ingestion alone is not the only factor
determining probability of infection. It depends also on exposure frequency. For
instance, very frequent exposure may lead to a confinuous ingestion of pathogens
and hence to a higher probability of infection. Naturally, when exposure leads to
infection (either symptomatic or asymptomatic) there is an associated acquired
immunity for the protection of individuals who are exposed frequently to the
pathogens. Such acquired immunity may explain the reasons behind the non-
confract of illness/diseases of individuals frequently exposed to wastewater and

henceforth the need fo integrate such acquired immunity in risk assessment models.
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Figure 5.1: Simulated results for probability of infection with Fractional-Poisson model
within a dose of genome copies.

5.2.2 Temporary Immunity Dose Response Incidence (DRI) Models

Dose Response models measure the response to ingestion of pathogens and are
thereby crucial for estimating the risk associated with the ingestion of pathogens. In
this section, four different DRI models are developed and their inclusion for assessing
risk estimates as applied in a Norovirus risk assessment. The purpose is to estimate the
impact as a result of exposures leading to temporary acquired immunity for an

individual.
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5.2.2.1 Naive DRI Model
Reference to equations 4.20 to 4.25, the conditional probability of illness from infected

subjectsis Pii = Pilint Pint

Assumption

1. lliness outcome is independent on all previous exposure.

2. Probability of illness at exposure P(dj)is Bernoulli distributed.

3. Total exposure E for a specified period

Then the probability of illness is given as (Havelaar and Swart, 2014)

E

Z Pufn (d,; ) Pr (d ) 5.7

T

For cases of independency, Pulnt =¢, the conditional probability per exposure is
P :¢me(d). For a constant average dose, the probability of illness for individual
exposure is

P, =EgPu (d) 5.8
Where Eis the total number of exposures within a year. Therefore, the probability of

illness within the population is also given as B, = NEgPn (d) (Havelaar and Swart,

2014), where N is the population size
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5.2.2.2 Model for Multiple Exposures
Modelling risk of illness estimation with integrated immunity, the cases of illness for
exposure is dependent on the waning of temporarily acquired immunity from

previous transition from susceptible to partial protection and then back to be

susceptible.

Effect of Acquired Immunity
In the case of a compartmental model to account for effect of acquired immunity,

(Swart et al., 2012) presented the schematic process as shown below (Fig. 5.2)

Involving lliness

A o
Susceptible o Full Protection | Partial Protection
(S) BT | (P) < Q)
X iy —— = -

Notinvolving Iljfses Notinvolving iliness

Figure 5.2: Schematic overview of infection and immunity
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Table 5.1: Description of Parameters used in the Model

Symbols Description

a Loss of full immunity

y Loss of partial immunity

A Force of infection

Vs Proportion of the susceptible involving of iliness
S Susceptible population

P Fully protected after infection

Q Partial protection

The deterministic first order differential equation for Figure 2.3 can be described by

equation (5.9) as follows;

ds
f,=—=pQ-AS
' m

dP
i = — +S)-aP 5.9
<—ta (Q+s)
-

da:aP—(y+/1)Q

where, all parameters are positive, thus $(0),P(0) and Q(0)>0. The Jacobian of

equation (5.9) is represented as;

o,
ds P dQ| ,
o e T
i 0 a -(A+y)
of, df, df,
[dS dP dQ]

For det(J - Xl )= 0, the resulting characteristic equation is
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-A-X 0 1%

0 a —(A+y)-X
XPHAXZ+yX2+aX?+alX +ayX + AX?+ A X + AyX =0
XE+AXZ+yX2+a X+ AX 2+ aAlX +ayX + A X +AyX =0
X +(24+y+a) X2 +(ad +ay+A*+Ay) X =0

X[x2+(2/1 +y+a) X +(aA +ay+/12+)ly)] =0

Therefore, the eigenvalues of the characteristics equation are

X =0,X5==(a+ 1), X, ==(A+y)

corresponding eigenvectors from equation 15.10 are:

(ay.A(A+y).a2) (~v(y-a).a) (1.0~ }.

Let R be the expected number of fransition of an individual from S to P before

ultfimately dying of natural cause, assuming that, illness does not leads to death.

Again, let the expected number of transitions from S to P be defined as

R=A|s(a)F (a)da, where s(a) is the probability of individual susceptibility at age ‘a’,
[s(a)F(a)

and F(a) is the individual probability to survive until age ‘a’. Therefore, the full and

partial waning of immunity is given as;
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S
—|p|=| A -a A p 5.11
q

s(0)=1,p(0=0g(Qg=Q

The general solution for the equation 5.11 using the eigenvalues and eigenvectors of

equation 5.10 and equation 5.11

s(a) ay -y 1
p(a)|=C| A(y+A)| +C,| (v-a) |exd-a(a+A)] +G| 0| exp-a(y+41)]
a(a) al a -1

Using the initial conditions from equation 5.11 results

1 ay % 1
0[=C,|A(y+A)| +C,|(y-a)|+G| O 5.12
0 al a =l

1=ayC, -yC,+C,

0=A(y+A)C,+(y-a)C,
0=a1C,+aC,-C,

1 - al
H fter, C, = ,C, = C,=rm———
erearrer, C; (C)’+A)(y+/]) 2 (a,_y)(a+/]) 3 (ﬂ_y)(y'f'/])

. Therefore, the

specific solution is given as;
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sa)) ) ay
NI A
1 ¥
+m (y;a) exp —a(a +41)] 5.13
al '
+—(a—y)(y+/1) _01 exp ~a(y+4) ]

The relevant solution for quantification of expected number of transition intfo the

susceptible compartment after waning of immunity is given as;

o(a) = aA(a+A)exp -a(y+A)|+ay(a-y)-yA(y+A) exq -a(a+1)]
(a=y)(a+A)(y+A)

5.14

Let the probability to survive until age ‘a’ be described by a survival function

|1, O=sasA . f .
F(a)= 0 a5 A where A is the life expectancy of the population under study,

consequently, the total transition from S to P of an individual is

R= 0 [a-exi-A(y+4)]]

(@-y)(y+a)
A2

- [1-exq-A(a+4)]] 5.15

(a=p)(a+2)

aAyA

+W[l— exp[—A(y+/1)]]
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. R aly
im—=—F N
AL A (a+2)(y+2) >1¢

Hence

R=pA—TY - a 5.17
(a+2)(y+4)

Where, a is loss of full immunity, p is loss of partial immunity, Ais force of infection (the

rate at which suscepftible individual acquire an infection)and ris illness inflation factor

(is the protective effect of induced immunity to compensate for future infection and

diseases transmission), hence r=sa GV ¥ » Therefore, /l:EPinf(d) and T is
(@+y)(y+4)

obtained from binomial model of exposure (Section 3.5.3).

ay
r= 5.18
(0’+ EPinf(d))(y+ EPinf(d))
5.2.2.3 Immunity DRI Model
Characterising the impact of immunity by the inflation factor through scaling the

naive model, it leads to the immunity model given as

o aER,(d)
. (a+ EPnt (d))(y+ EPint (d))

P, =TE@R, (d) 5.19

As D - « (for higher dose level), B, (d)=1, hence immunity model in such a scenario
is represented as
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R, = 2
il (a+EPinf(d))(y+ EPinf (d))

P, =TE¢ 5.20
Incorporating the Effect of Dose dependent conditional probability of illness

Modelling the hazard function of illness subject to exposure duration of infection
(equation), the infected duration describes the period of which infection persists in

an individual thus0<t <A, where Ais the entire period of infection hence describing

the hazard function H (t) (Probability of illness given infection)
t
H (t) = P(ill finf : u) =1~ exp{ [h(t dt} Et<A 5.21
0

For a hazard function defined as

h(t) = —%In[l— F(1)]= —%InS(t)
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Scaling the infection period leads to an integral of the hazard function H (t//\) over

the period of infection and assuming an exponential model for the survival function

(see equation 4.20 to 4.21). If the scale factoris 77, then
P(illfinf; A) =1-exp(-nA)

Varying the distribution of the unknown duration Awith Gamma distribution to
account for individual heterogeneity in resistance and persistence of host to

colonization of infection leads to

P(ill]inf) = T [1—exp(—/7/\)]{%A’*” exp{%ﬂd/\

r=0

= Eird(_:) N exp(%ﬂd/\ = rIO[/\‘H exp{%ﬂ exp—7A)dA

5.22
P(ill]inf) = 1~ (1+7d)™

Where w and nd are the shape and scale parameters of an underlying Gamma

distribution for duration of infection describing the heterogeneity in response of

subjects.
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5.2.2.4 Dose DRI Model

Replacing ¢ in this case for the immunity model leads to the dose model (Messner et

al., 2014)as

| =E(1-(1+nd) )R, (d) 5.23
5.2.2.5 Combined Model with Immunity and Dose Dependence

The dose-immunity DRI model has the effects of acquired immunity and dose-

dependent conditional probability of illness as

. ayE[1-(1+7d)* |R, @)
' (a+ EPinf(d))(y+ EPint (d))

R, =E(1-(1+1d) )R, (d) 5.24
5.3 Model Implementation
In this section, the model is implemented with the use of simulation from
epidemiological data sources for Norovirus for varying dose. An iterative approach of
sampling with hypercube sampling procedure (Section 3.7) is employed, unknown

parameters were estimated (Section 3.6) and model uncertainty quantified.

5.3.1 Simulated Model Implementation
Modelling the acquired temporary immune probability of illness requires multifaceted
data input parameters to describe the various relations and probability distributions.

Parameter description and generation are intrinsic and conservative, to evaluate the
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incidence models with global values of Norovirus, a simulation plot was carried out for
the illness inflation factor (Equation 5.18). Implementing the loss of full and partial
immunity impact with the illiness inflation factor, the plot shows a steeply decrement in
illness inflation factor for frequent exposures (daily and weekly) as dose increases, a
less steeply decrement was also recorded for monthly exposure with increasing dose
as well. Nevertheless, the illness inflation factor does not respond sensifively to
infrequent exposures (semi-yearly and yearly) as compared to the frequent exposures
for increasing dose. Figure 5.3 confirmed that exposure frequency do have impact on
the inflation factor of illness and contributes to its prediction of illness incidence with a

loss of either partial or full immunity into the susceptible compartment.
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09 §
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Figure 5.3: lliness inflation factor (tau) as a function of force of infection depending on
dose and exposure intensity for Norovirus for parametersa ~[0.1, y ~[2.42- 8.44 X 10
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5.3.2 Dose Response (DRI) Models for Incidence of iliness with Frequency of Exposure

In this thesis, the impact of temporary induced immunity and dose-dependent factors
for incidence of illness DRI models are compared to the naive and dose models
currently in use. It's worth noting that, the estimated parameters describing the range
of values for loss of full and partial immunity were used as a function of illness inflation

factor to estimate the incidence of illness in DRI models.

From Figure 5.4 to Figure 5.7, the various DRI models have striking effect on the
estimated incidence risk given exposure, as the illness incidence are strongly reliant
on the dose levels, besides the impact of illness is dependent on the different
frequency exposures as well as the characterisation of the DRI model with respect to

whether there is an inclusion of immunity or not.

Results show (Equation 5.8), the naive DR incidence model (Figure 5.4) increases
sharply with increment in dose level and therefore highly sensitive to frequent
exposure (daily and weekly exposures) whiles infrequent exposures also directly
responded, however, with less impact. On dose DRI model (Figure 5.5) resulted from
equation 5.23, there is a slight decrease in illness incidence for infrequent exposure
(Monthly, Semi-yearly and yearly) whereas the decrease is sharp with increasing dose

level for the frequent exposure (daily and weekly exposures).
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For immunity (Equation 5.19) DRI model (Figure 5.6), the frequent exposure (daily and
weekly) have a higher incidence level at low dose and decreases monotonically with
increasing dose, nevertheless, for infrequency exposures (monthly, semi-yearly and

yearly), illness incidence increases with increasing dose levels.

For dose-immunity (Equation 5.24) DRI model incidence (Figure 5.7) reaches
maximum, the model has a higher incidence of illness at lower dose and at a
frequent exposure level. Clearly, at a lower dose, the illness incidence is mostly
dependent on the DRI model, thus dose-immunity DRI model exhibits a higher illness
incidence reduction than the rest of the models, it is also influence by the frequency
of exposure, the more frequent exposure, the higher the level of illness incidence

reduction.

lliness incidence reduction is impacted significantly for DRI models with immunity
inclusion and exhibits a less prominent of increasing effect of dose on incidence of
illness at a higher dose levels. Generally, DRI models for risk estimates with immunity
inclusion are approximately 2 logs lower than those without immunity included for
Norovirus, and confirms a similar case for C. jejuni illness incidence reduction
(Havelaar and Swart, 2014)on the prediction that, the current use of probable risk of
ilness (naive and dose incidence DRI models approach) overestimate the true

incidence of risk of illness.
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Figure 5.4: iliness Incidence for Naive Dose Response Incidence Model
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Figure 5.5: iliness Incidence for Dose DRI Model
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Figure 5.6: iliness Incidence for Immunity Dose Response Incidence Model
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Figure 5.7: iliness Incidence for Dose-immunity Dose Response Incidence Model
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5.4 lliness Scenarios model Implementation with Norovirus Epidemiological Data

In this section, examination of simulated results on temporary immunity dose response
models shall be carried out, population dynamics shall be integrated into the model
to describe various scenarios, the scenarios model will be adopted from
epidemiological studies on Norovirus across all different clinical fransmissions, (Huynen
et al., 2013; Simmons et al., 2013). The models will keep track of the following groups in
the population: Symptomatic infectiousness, pre and post symptomatic infectiousness
low and high, innate genetic resistance, geno-group type 4. Duration of induced
immunity has been inconsistent from different studies(Simmons et al., 2013; Atmar,
2010; Frenck et al., 2012; Hamilton et al., 2006) especially in the case of Norovirus
which has been believed previously to be from 6 months to 2 years, yet rare studies is
seen to include both the influence of acquired temporary immunity and the
transmission dynamics of Nov in risk assessment. The inclusion of the different
transmission dynamics (Figure 5.8) will help to have an idea on how these dynamics
within the population could influence risk assessment given its immunity influence on

the different illness incidence reduction dose response models.
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Figure 5.8: Modified Schematic overview of population dynamics of immunity states

of Norovirus (Simmons et al., 2013)

Figure 5.8 describes an epidemiological model of modified Maternal Susceptible
Exposed Infected Exposure (MSEIR model) to describe Norovirus infectiousness in a
population. Five different Nov fransmission scenarios described below within the

population adopted for estimating the iliness inflation factor.

5.4.1 Scenario Description for Epidemiological Norovirus Transmission Dynamics in a
Population

The various scenarios are described below;
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+ Symptomatic Individual Infectious

Only symptomatic individuals are infectious. This comprises individuals in the
population under the assumption that all exposed individuals are susceptible to
Norovirus infection and none is genetically resistance. It is worth noting that, naive
model dose noft relates to symptomatic individuals infectiousness, the earlier refers to

estimation of risk without inclusion of femporary acquired immunity.

* Pre-symptomatic and Post-symptomatic infectiousness (Low)

Pre-symptomatic persons in compartment (E) are individual Exposed but yet to be
symptomatic of the infection (Ozawa et., 2007; Simmons et al., 2013; Sukhrie et al.,

2012; Sukhrie et al., 2010; Teunis et al., 2014).

* Pre-symptomatic and Post-symptomatic infectiousness (High)

In this scenario, individuals exposed in the compartment (E) of the mathematical

epidemiological model and asymptomatic compartment (Teunis et al., 2014).

* Scenario D: Innate Genetic Resistance

This is based on the assumption that part of the population is completely resistant to
infection and diseases (G), thus they possess the non-secretor phenotype and plays
no role in transmission process, however, they do make contact with persons included
in empirical incidence estimate (Frenck et al., 2012). This is also different from

immunity model or dose-immunity models; the innate genefic resistance is the
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inclusion of individuals whose genetic make-up excludes them from infectiousness,

yet forms part of the population.

Scenario E: Genogroup 2 Type 4 (Gll.4)

Model scenarios A to D assume all NoV to be anti-genetically indistinguishable. In this
scenario, it is assumed that only Gll4 are infectious. The incidence of Gll.4 is estimated
based on values from (Vega et al., 2011; Huynen et al., 2013; Nordgren et al., 2010)

;Frenck et al., 2012) (Simmons et al., 2013)

» Scenario F: No Immune Boosting by Asymptomatic Infection

Persons do not travel from recovery (R) compartment to asymptomatic (A)
compartment. The only pathway out of the recovery compartment is through waning

of partial immunity to become susceptible (S) again.

Data input for modelling scenarios based on epidemiological studies are as shown in

Table (5.2).
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Table 5.2: Norovirus Epidemiological Data for Population Dynamics Immunity Modelling

Parameter

Scenario A

Scenario B

Scenario C

Scenario D

Scenario E

Scenario F

Loss of full immunity(a per year)

Loss of partial immunity (yper
4
year (XlO )

Duration of incubation g
(days)

Duration of asymptomatic
infection p (days)

Duration of symptoms u,
(days)

Relative infectiousness during
asymptomatic infection period

Relative infectiousness during
incubation period

Strains Included

Boosting of immunity by
asymptomatic infection

Total Exposure for Annual
quantification (days)

0.1

4.22-7.02

10

All

Yes

1-365

0.1

4.12- 6.85

10

0.05

0.056

All

Yes

1-365

0.1

2.42- 4.02

10

>

0.25

All

Yes

1-365

0.1

5.39-8.44

10

All

Yes

1-365

0.1

3.42- 491

10

Gll.4

Yes

1-365

0.1

4.17-7.02

All
No

1-365
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The infection probability for
subjects with disaggregated

dose (P)

Parametric mean dose u(a)

Dose response parameters for
illness given infection( r,n)

Life Expectancy A(years)

0.722

1106

0.086,
2.60E-03
63

0.722

1106

0.086,
2.60E-03
63

0.722

1106

0.086.,
2.60E-03
63

0.722

1106

0.086,
2.60E-03
63

0.722

1106

0.086.
2.60E-03
63

0.722

1106

0.086,
2.60E-03
63

Parameter values (Simmons et al.,

2013; Sukhrie et al., 2012, 2010; Tribble et al., 2010)

150



5.4.2 Applied Induced immunity model of Dose-Response Models for Consumers

Exposure

In this section, consumers’ exposure to Norovirus is modelled based on the dose-

response immune induced models presented earlier, and characterized based on

the Nov transmission dynamic scenarios presented in Section 5.4.1. Parameters

describing the modelling process of the applied induced immunity model are given in

Table 5.3

Table 5.3: Parametric Values for Model Implementation

Parameter Description Estimate Estimate Value(s) Reference

Pint Probability of infection Calculated” Equation 5.61
Arithmetic Mean Dose per

d exposure per occasion Variable

,u(a) Parametric Mean dose 1106 (Teunis et al., 2008)
The infection probability for
subjects with disaggregated (Messner et al.,

P dose 0722 2014)

Pin Probability of illness Calculated Equation 5.8 to 5.24
Probability of illness given (Havelaar and

Pitt finf infection Calculated Swart, 2014)

Population
N Population 2.50E+07 pyramids (2015)
E Total Exposure Calculated [208.365]~[286.5] (Seidu et al. 2008,

’ Calculated values are based on the equations derived in the study and simulated to generated random numbers fitting
onto a distribution.
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Mara et al. 2010)

Dose response parameters

w1 for illness given infection 0.086, 2.60E-03 (Teunis et al., 2008)
(Simmons et al.,

a Loss of full immunity Calculated 2013)

14 Loss of partial immunity Calculated Equation 5.11

Values for different
A Force of infection Calculated epidemiological Equation 5.11-
scenarios refer
T Inflation factor Calculated (Table 5.1 Equation 5.12

Assigning a uniform distribution to the loss of full and partial immunity to characterise
its influence on the immunity-DR models, estimation of illness incidence for the various
transmission dynamics scenarios is therefore presented here with the Norovirus

fransmission dynamics using equations 5.8, 5.19, 5.23 and .5.24.

The fransmission dynamics in all scenarios had illness incidence for dose-immunity DRI
model within 1x10°-1x 10" , immunity DRI model also falls within 1x10° - 1x 10°, dose
DRI model also falls within 1x10° - 2x 10* and Naive DRI model falls within 1x10™" - 1x 10°
The estimated difference for the dose-immunity DRI model and naive DRI model is
approximately close to 8 logs of magnitude, whiles, dose-immunity and dose DRI
model also has a difference of approximately 6 logs of magnitude (Figure 5.9, 5.10,
5.11, 5.12, 5.13, 5.14). The individual illness incidence decreases from naive, dose-

model, immunity model and dose-immunity model.
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The illness incidence risk estimate for various acquired immunity-incorporated dose
models (dose-immunity, immunity) for all the fransmission dynamic scenarios gives a
much lesser estimation of risk as compare to the naive and dose-model approach
currently in use (Figure 5.9, 5.10, 5.11, 5.12, , 5.13, 5.14). Moreover, there is a significant
change in log magnitude of illness incidence estimation among all dose response

models and across all fransmission dynamics with or without immunity inclusion.
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Figure 5.9: lliness Incident Reduction Models for ‘Symptomatic infectiousness’ of
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Figure 5.11: lliness Incident Reduction Models for ‘Pre-Symptomatic and Post-
Symptomatic infectiousness High' of Norovirus per Person per Year
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Figure 5.12: lllness Incident Reduction Models for ‘Innate Genetic Resistance’ of

Norovirus per Person per Year
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Figure 5.13: lliness Incident Reduction Models for ‘Genogroup Il Type 4’ of Norovirus

per Person per Year
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Figure 5.14: lliness Incident Reduction Models for ‘No Immune Boosting after
Asymptomatic Infection’ of Norovirus per Person per Year

Comparatively, for the median risk of illness estimates, the dose DRI model has an
approximately 2 logs of magnitude less than the naive DRI model, the immunity DRI
model recorded a 4 logs of magnitude less to the naive DRI model and a 2 logs of
magnitude less to the dose model. Furthermore, by incorporating the temporary
immunity protection for the probability of illness given infection, the dose-immunity
DRI model has 7 logs, 5 logs and 3 log (in most cases) of magnitude less to the naive

DRI model; dose DRI model and immunity DRI model respectively (Table 5.4).

Across the different fransmission dynamics scenarios with respect to their loss of partial
and full induced immunity protection levels, a comparison of the various DRI models

with each of the epidemiological scenarios for individual illness incidence did not
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show a difference. The difference in the illness incidence DRI models is not sensitive to
the epidemiological scenarios, thus, Norovirus tfransmissions dynamics does not affect
the various DRI models predictions. In all cases, the immunity DRI model and the dose-
immunity DRI models resulted in significant lower levels of illness as compared to naive
and dose-DRI models (Table 5.4). A comparison difference of 7 logs of magnitude
exists for dose-immunity and naive DRI models for all epidemiological transmission
dynamics, 5 logs, and 3 logs differences for dose-immunity and dose-DRI model,
immunity DRI model respectively. Though the DRI models exhibit no differences in
terms of logs magnitude of incidence estimates of illness among the transmission
dynamics (with the exception of immunity dose model which had 1 log less for pre-
symptomatic and post-symptomatic low), there exist some differences in terms of
values which can translate into logs magnitude difference when the estimate is
extended for a large population. Furthermore, there is no difference for all DRI models
of the transmission dynamics of symptomatic infectiousness’ and the ‘no immune
boosting after asymptomatic infectiousness’ this confirms Teunis et al., (2014) study
indicating, shedding of virus is similar for both symptomatic and asymptomatic
infectiousness, however, it is also worth noting, some differences exist between studies
for shedding of virus of infected subjects (Atmar et al., 2008), this differences is
attributed to genotype studied, nevertheless, the difference in numbers shed could
not have clinical significance, hence such indifference in risk estimate of illness

incidence as seen is not unusual (Teunis et al., 2014).

157



Table 5.4: Annual Individuadl

risk of

Epidemiological Scenarios of Norovirus

lliness

for Dose-Response

Models with

Scenarios/Models Naive Immunity Dose Dose-Immunity
Model Model Model Model

Symptomatic Individual Infectious  3.09x 10 1.51x 10° 1.21x10°  5.7x10°

Pre-symptomatic and Post- 3.09x 10" 1.47x10° 1.19x10° 5.65x10°

symptomatic infectiousness (Low)

Pre-symptomatic and Post- 3.09x 10"  8.76x10° 1.20x10°  3.32x10°

symptomatic infectiousness (High)

Innate Genetic Resistance 3.09x 10" 1.87x10° 1.21x10°  7.11x 10°

Genogroup 2 Type 4 (Gll.4) 3.09x 10* 1.12x10° 1.19x10°  4.29x10°

No Immune Boosting by 3.09x10" 1.51x10° 1.21x10°®  5.77x10°

Asymptomatic Infection

Population Risk Estimate

In order to estimate for an approximate population of 25million total population for
Ghana, range of values characterising the transmission dynamics to estimate the
illness incidence in population with varying loss of partial and full immunity, shows a
significant decrease in illness incidence considering at different percentage level.
According to results (Appendix B, See basic statistics results, and output distributions),
the illness incidence level saw a decrease when dose-immunity or immunity DRI
model is used instead of dose model or naive model, and hence by incorporating the
effect of the immunity and dose-dependent lead to a further approximately logs

magnitude of less prediction of illness incidence in the population.
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5.5 Daily Adjusted Life Years (DALYs) with immunity incorporated DR models for
different transmission dynamics for Norovirus

Estimating the annual risk of infection or illness with tfemporary immunity dose response
models can be translated into estimating the overall DALY across transmission
dynamics as follows:

P =1{1— ﬁ (-Q )} 5.25

Where E is the total exposure and Qis illness incidence per exposure, hence

For Naive DRI model

P raive =1 {1 IEJ 1‘ } 5.26

Immunity DRI Model

E

Rll_immnity = {1

(1-(z¢R, (d)), )} 5.27

Dose DRI Model

P g1 {1 IEJ( ((1— t+1d) )P, (d))iﬂ 5.28

Dose-Immunity DRI Model

E

By amoe =1 1 [ 1 (3 (2070 (@) ) 529

Therefore, the Daily Adjusted life years is estimated as

P, =1- {1 ﬁ } 5.30
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Where k, is the DRI model used for the estimation, B is the diseases burden within the
population

Daily Adjusted Life Years, which measures the diseases or health conditions of people
as the sum of the years of life lost, due to premature mortality and disability (WHO,
2015). The DALY for the various DRI models across the transmission dynamics follows
similar patters as the risk estimate of individual iliness incidence. In all scenarios, the
dose-immunity DRI model falls within 1.0x10" - 1.0¢ 10DALY pppy. Immunity DR
model also falls within 1.0x10° - 1.0¢ 1°DALY pppy. the dose DRI model falls within
1.0x10°% - 1.x 10'DALY pppy and the naive DRI model falls within 1.0x10° - 1.x 10°

DALY pppy (Figure 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20).
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Figure 5.15: DALY for ‘Symptomatic Infectiousness’ fransmission dynamics
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fransmission dynamics

DALYs per person per year

1.00E-011 1.00E-003 . Dose-Immunity Model
0.99 1 A4 iAW P (DALY)
¢ [) b Mean 1.075E-010
0.88 1 ¢ 3 Median 1.020E-010
A ] Std Dev 6.576E-011
= 0.77 ‘( ; M
= [}
§ 0.66 1 ) : = = Dose Model (DALY)
[S) f ] F) Mean 4.794E-006
o 0.55 - ) s Median 2.810E-006
o " Std Dev 5.218E-006
B 0.4 $ ¢ ¥
= ] ’ [} @ Immunity Model (DALY)
g€ 0.33 1 . " o
e ] ' Mean 7.039E-008
3 0221 $ ,' » Median 2.444E-008
f | 7) ¢ Std Dev 1.250E-007
0.11 A / ',' Py
o’ - » ¢ Naive (DALY)
0.00 -“ .—_4‘ ; —Lp_-AP_A_*_A_L'——‘
N b = 8 8 '8 8 8 g 8 8 Mean 0.0008402
=) o =) =] =] ] =] ] =] S =] Median 0.0008245
w w w w w w w w w w W' Std Dev 0.0004879

Figure 5.17: DALY for ‘Pre-Symptomatic Post Symptomatic Infectiousness High' for
fransmission dynamics
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Figure 5.18: DALY for ‘Innate Genetic Resistance’ for tfransmission dynamics
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Figure 5.19: DALY for ‘Genogroup 2 Type 4’ fransmission dynamics
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Figure 5.20: DALY for ‘No Immune Boosting by Asymptomatic Infection’ for
fransmission dynamics

The median DALY estimate, puts all scenarios describing the transmission dynamics
acceptable for both immunity DRI model and dose-immunity DRI model by using the
WHO standard of 1.0x10*DALY pppy (Mara and Sleigh, 2009) whiles, the dose DRI
model and naive DRI model do not meet the WHO standard. The immunity included
dose response models had <1logs order of magnitude less than the WHO standard,
on the other hand, the dose-dependent DRI models also had =1log order of
magnitude higher than the WHO standard (Table 5.5). An inclusion of immunity into
DRI models predicts a lower risk of illness incidence due to temporary induced
protection, this confirms (Linnemann et al., 1984) that, there is limited risk of

infection/illness among farmers due to acquired immunity from continuous exposure
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Table 5.5: DALY(s) for Dose-Response Models with Epidemiological Transmission

Dynamics of Norovirus

Scenarios/Models Naive Immunity Dose Dose-Immunity
Model Model Model Model

Symptomatic Individual Infectious  3.09x 10 1.51x 10° 1.21x10°  5.7x10°

Pre-symptomatic and Post- 3.09x 10" 1.47x10° 1.19x10° 5.65x10°

symptomatic infectiousness (Low)

Pre-symptomatic and Post- 3.09x 10"  8.76x10° 1.20x10°  3.32x10°

symptomatic infectiousness (High)

Innate Genetic Resistance 3.09x 10" 1.87x10° 1.21x10°  7.11x 10°

Genogroup 2 Type 4 (Gll.4) 3.09x 10* 1.12x10° 1.19x10°  4.29x10°

No Immune Boosting by 3.09x10" 1.51x10° 1.21x10°®  5.77x10°

Asymptomatic Infection

5.6 Summary

This chapter presented various dose-response models for Norovirus, where the impact
of the illness incidence was determined based on whether the dose-response models
were based on immunity or dose-dependent probability. For immunity included dose-
response models, iliness incidence was low, whereas for dose-dependency models,
the illness incidence shifted and a steep rise is observed. The naive DRI model
increases monotonically with increasing exposure frequency. The influence of
pathogen dose was evident. At a low pathogen dose level, the iliness incidence is
affected by the choice of the DRI model (thus whether the model has induced
immunity included or not), while at high pathogen dose, the impact of immunity

protection dominates. Applying the models to the Norovirus data, all epidemiological
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scenarios had the same trend of movement of the various dose-response models,
and individual and population level of illness incidence reduction was much better
measured by the dose-immunity DRI model, followed by the immunity DRI models. The
study recorded a difference of 7 logs of magnitude less when the dose-immunity DRI
model is used compared to the naive model, whiles a 4 log of magnitude less is
recorded if immunity alone is integrated to get the immunity DRI model as compared
to the naive model across all the transmission dynamics. Applying the DALY showed a
similar trend of DRI models across all transmission dynamics of NoV. The immunity
incorporated models tend to predict a lower incidence all year round, while the non-
immunity incorporated models do notf. It was also found that, the immunity
dependent models (immunity and dose-immunity models) meet the WHO standard
of 1.0X10". Besides the dose-immunity DRI model meets the more stringent WHO
standard target of 1.0X10°%in all NoV transmission scenarios. It is worth noting that, the
transmission dynamics of NoV influence on predicting risk estimate is similar in all
scenarios and tends to have a minimal difference in terms of values for each

scenario.
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CHAPTER 6

STATISTICAL MEASUREMENT MODELING FOR UNCERTAINTY QUANTIFICATION OF LOW

QUALITY WATER EFFLUENT DISCHARGE

6.1 Introduction

This sectfion presents measurement of uncertainty quantification for Waste
Stabilization Pond (WSP) effluent discharge as against policy standard values for such
discharge. In risk assessment for microbial pathogens, there is a strong correlation
between risk estimates and the pathogen concentration in wastewater. Moreover,
strong correlation also exists between physico-chemical parameters and pathogen
concentrations as well. Total coliform count reveals an existence of strong positive
association with temperature, turbidity, pH and alkalinity. Chloride, fluoride and
Dissolve Oxygen (DO) are negatively correlated with total coliform count (Maheepal
and Singh, 2014). In most cases significant positive correlation is observed between
pollution indicator bacteria and pathogenic bacteria which may imply their co-

presence.

The study integrates the use of policy standards and acceptable compliance level
based on design model of WSP to establish refer charts for some physico-chemical
and biological parameters measure for discharge effluents from WSP and treatment
plants. Also, the study established the need for such a chart as a guide to monitor

effluent discharge parameter values and help in confroling pathogenic

166



concentration reduction as a result of discharging effluents either onto streams or for
irigation purposes based on accepted Environmental Protection Agency (EPA)

standards in Ghana.

6.2 Modelling Statistical Framework for Reliability
Several studies have defined reliability as the ability to perform the specified
requirements free from failure (Niku et al.,1979) e.g. the percentage of times a
wastewater treatment plant complies to discharge standards (Mcbride and Ellis, 2001;
McBride, 2003; Smith et al., 2001). The WSPs will be completely reliable if the process
performance does not violate the target standards of the regulatory bodies
specifications (Oliveira and Von Sperling, 2008). Mathematically,
Failure = effluent concentration > effluent requirements 6.1

A risk of failure is always unavoidable, hence

Reliability =1~ P( failure) 6.2
From equation 6.1, equation 6.2 becomes

Reliability =1~ P(effluent concentration > effluent requirements) 6.3

In measuring the effluent discharge, a suitable distribution function to describe such
effluent discharge is the use of lognormal distribution (Niku et al., 1979). The lognormal

distribution owning to its deviation in symmetry measured by the skewness coefficient,
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has positive skewness since there is usually a lower bound for effluent concentration,

but there are no upper bounds.

Let X:(Xl,Xz,...,Xn)be a random variable effluent quality values of physic-

chemical/biological property of low quality water having a lognormal distribution and

u and o® respectively denoted the mean and the variance of Y where

Y=In(X)~N (,u, 02). The probability density function of the lognormal distribution is

1 (In x - p)°
f(x,,u,az)= o2 20° ;forx>0 6.4
0 ;foe O

The mean for the lognormal population is E(X)=exp(,u+0%)where E(X) denotes

the expectation of X . For a known arithmetic mean and standard deviation of the

effluent discharge values, then the location parameters can be determined, thus

Var [ X]

(E0:T)

2 _ 2
o° =0, =Inl1+

Hence at different location parameter values, the probability density function and

the cumulative density function are as shown.
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X

Figure 6.1: The probability density function and the cumulative density function of the

log-normal distribution. Hence the density function for effluent quality is given as

2
1 - 1 X
f(X)=———exp} —| —In = >0 6.5
ot Xa.nxVZHGXp{ " [Umx n[mj } J

Where x represents effluent variable concentration, og,,, represents standard

deviation of the natural logarithm of X and nNy represents mean of x. For the rtt

moment about the origin in the moment generation function.
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E(x)=(m) exp{%rzaix}
— 1,
m, =m, exp(ao-lnxj

6.6

o? =m?[exp(ay,)- 1]

Where E[X]=m andVar[X]=0,, thus equation (6.6) is the mean and variance of the

original data of effluent discharge. Re-arranging equations 6.6 accounting for the
relationship of parameters of probability density function of lognormal distribution in

terms of moment of variable X leads to;

2
aix=ln(g%+1]

1,
LT In m, _Ea-lnx

6.7

Where m,, is the average natural logarithm of X

The maximum likelihood estimation of parameters for the log-normal distribution

parameters is represented by

n

fo=(xm,a,,)= HL)%J fu(Inx;m.a,,). f,

denotes the probability density function of the distribution and f that of the normall

distribution, hence the log-likelihood function
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(M, G [% %)

==Y Inx +1 (m, 0, [N, ,.... Inx,)

=@+l (m,0,,[Inx,...Inx))
hence it holds that, the logarithmic likelihood function reaches their maximum for

mean and variance as;

> Inx

n

> (Inx -m,)’

0'_

n
For some probability of failure at athe lognormal distribution will have a property of
X, thus
P(X<X,)=1-a 6.8
Where X.is the effluent concentration standard fixed for policy assessment. Hence

choosing the parameters of the lognormal distribution, equation 6.7 becomes

P(Zgln Xs_mnx)zl_a 6.9
g,

Inx

The standard Z normal distribution can also be defined from equation 6.10 as

P(z<z_,)=1-a 6.10
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Hence af reliability level of 1-a of a failure level of a a known standard of effluent
concentration level could be calculated given a coefficient of variation, the Z_,
values are as shown in Table 6.1 for the cumulative probability at (1-a) and its

percentiles.

Table 6.1: Values of Stfandard Normal Distribution

Cumulative Probability 1-a  Percentiles Z _,

50 0.000
60 0.253
70 0.525
80 0.842
90 1.282
92 1.405
95 1.645
98 2.054
99 225
99.9 3.090

It should be noted that, the higher the normal variate value the higher the
corresponding compliance level (cumulative probability). Hence substituting

equation 6.7 (mean and variance) into equation 6.9 leads to;
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In X, —[In m, i (VX2 +1)}
2 1 = Zl—a
[In(v?+1)

Making the mean value the subject of equation 6.11 becomes

1

m =[{v2) expl 2. [+ 4.

By simplification, equation 6.12 results

_ In{;lx(vfﬂ)}

Z_,=—

—-a

1
2

1

[In (sz +1)]E

6.11

6.12

6.13

The statistical parameters used in the reliability to relate the mean constituent value

m, fo standard X, defines the coefficient of variation (CV) as V,

From equation 6.12, the Coefficient of Reliability (COR) is given as

1

cor=[(vi ) exf .. [+ |

Putting equation 6.14 info equation 6.15

1

cor=[(cv: [l 2. [ fov 4]
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The COR values are obtained as a function of coefficient of variation and reliability
level, the different values of the coefficient of variation depends on the different
mean and standard deviation parameters. Hence equation 6.16 becomes

m, = COR X 6.17
Where X is the effluent quality standard;
COR is the coefficient of reliability, and mis the mean effluent concentration

needed fo achieve a certain compliance level of effluent quality standard.

6.3 Results on Statistical Measurement Modelling for Uncertainty Quantification

6.3.1 Simulated Results for Coefficient of Reliability

Simulated results indicate influences of coefficient of reliability as a function of
coefficient of variation and normal-variate values show that, a lower coefficient of
reliability is dependent on the high normal-variate value which signifies a lower failure
rate and a high coefficient of variation. As shown in Figure 6.2, the CV values are
inversely related to the COR values, nevertheless, the CV values are directly related

to the normal variate values that measure the reliability.
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Figure 6.2: Simulated Coefficient of Reliability values

6.3.2 Results on Application of Development Reference Charts

Result of effluent discharge compliance and performance are much to be desired,
when the effluent discharge is compared to the fixed standard value only and where
it is assume that discharge concentration is less than the standard value. The
performance is good and indicates a better compliance level of the WSPs. However
with inclusion of reliability and compliance levels, the reference chart developed
(Table 6.2 (See Appendix C also)), such an assumption is not always true.

From the developed chart, the required standard of effluent discharge concentration
of BODs or TSS is 50mg/L (EPA, Ghana Standard). If a sample taken from a specified

WSP gives a mean effluent quality of 48.00 and with standard deviation of 14.4, will
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have a CV value of 0.3, as indicated in Table 6.2 corresponds to a compliance level
(COR) of 0.6 (60%) i.e. less than the required less stringent compliance level of 0.8
(80%) for WSPs (Oliveira and Von Sperling, 2008), This is despite the fact that the mean
effluent concentration from the WSP as compared to the EPA standard falls below
the standard value of 50mg/L and can be classified as a good discharged value.
Nevertheless, the WSP is underperforming, ifs effluent discharge value is just less than
that of a compliance level of 0.60, hence its compliance level is below what's
generally accepted (even in a less stringent level of 0.80). Such information, if
available can trigger a further check to be done fo identify the segment of the
wastewater stabilization pond (Anaerobic, facultative and maturation) that is
underperforming, which could support the routine maintenance of the ponds.

The same procedure could be used by comparing the expected mean effluent
concentration of the segments of the pond to its samples using its design
compliance. Hence finding the compliance level of effluent to check for
malfunctioning of pond segments, this is necessary due to the different expected
work to be done by each segment to enhance the maintenance of the ponds
regularly. Nonetheless, a critical look should be taken because CV values directly
relate to reliability and inversely to COR values, the CV value with high standard
deviation and lower mean of an effluent can have the same value as a CV of high

mean and low standard deviation value of an effluent, the later shows a more
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consistent discharge as shown in Table 6.2. This shows that, a lower value of CV does
not necessarily indicate better results.

Moreover, with the use of the developed charts (Appendix C)for various parameters
of WSPs in Ghana, once an effluent concentration average is known and its
compliance level at design is also known, a quick reference point can be made to
find what was expected to be discharging and compare to its current discharge to
be assure of its compliance without necessary comparing it to fixed standard values.
These reference charts were developed to serve as reference points in assessing the
various characteristics of compliance and performance of WSPs in Ghana. Table 6.2
to 6.3 (See Appendix C for the rest) are intended to make it easier to assess the
performance of WSPs and its corresponding reliability and compliance level without

going through the task of using the log-normal procedure as shown above.
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Table 6.2: Reference Chart of Compliance of Mean Effluent Discharge of BODs TN and TSS for 50mg/L and

Trichloroethylene, Benzene for 50 pg/I

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 25 3
50% 50.00 50.25 50.99 5220 53.85 55.90 58.31 61.03 64.03 6727 70.71 78.10 86.02 9434 102.96 111.80 134.63 158.11
60% 50.00 49.00 48.50 48.46 4885 49.60 50.68 52.02 53.59 5536 57.28 61.50 66.09 7094 7596 81.11 9430 107.71
70% 50.00 47.69 45.95 4475 A43.99 43.62 43.58 43.81 4426 4489 45.67 47.57 4978 5221 5478 57.44 6430 71.28
80% 50.00 46.20 43.16 40.77 38.93 37.56 36.56 35.86 3542 3517 35.08 3526 3578 36.53 37.42 38.42 41.16 44.06
90% 50.00 44.22 39.56 3583 32.86 30.51 28.64 27.16 2599 2506 2432 2327 2263 2225 2205 21.98 2216 22.60
92% 50.00 43.68 38.61 34.56 31.34 2879 2675 25.13 23.84 2279 2195 20.72 1991 1937 19.02 18.81 18.63 18.75
95% 50.00 42.64 36.81 3221 2857 2570 23.42 21.60 20.13 18.95 17.98 16.52 1550 1478 1426 13.87 1329 13.03
98% 50.00 40.94 33.95 28.56 24.41 21.19 1867 16.68 1510 13.83 1279 1122 10.12 9.32 8.72 8.26 7.47 7.00
99% 50.00 39.84 32.17 2637 2198 1843 16.05 14.05 12.47 11.21 1020 8.68 7.63 6.86 6.29 5.85 5.10 4.64

999% 50.00 36.92 27.65 21.07 1638 1299 10.51 8.67 729 622 540 422 344 290 2.51 2.22 1.74 1.45
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Table 6.3: Reference Chart of Compliance of Mean Effluent Discharge of TP for 2.0mg/L

Coefficient of Variation

COR 0 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4
50% 200 201 204 209 215 224 233 244 256 2469 283 312 344 377 412 447 539 632 728 8125
60% 2.00 196 194 194 195 198 203 208 214 221 229 246 264 284 3.04 324 377 431 485 539
70% 200 191 184 179 176 174 174 175 177 180 183 190 199 209 219 230 257 285 313 341
80% 200 185 173 163 156 1.50 1.46 1.43 1.42 1.41 140 1.41 1.43 1.46 1.50 1.54 1.65 1.76 1.88  2.00
90% 200 177 1.58 143 131 122 115 109 104 1.0 097 093 091 082 088 08 082 090 093 095
92% 200 175 154 138 125 1.5 107 101 095 091 088 08 08 077 076 075 075 075 076 077
95% 2.00 171 1.47 129 114 103 094 086 081 076 072 066 062 059 057 055 053 052 052 0.52
98% 200 1464 136 1.14 098 085 075 0.67 060 0.55 051 045 040 037 035 033 030 028 027 026
99% 2.00 1.59 129 105 088 075 0.64 05 050 045 041 035 031 027 025 023 020 019 017 0.16

99.9% 200 1.48 1.11 084 0.66 052 042 035 029 025 022 0.17 0.14 0.2 010 009 007 006 005 0.05
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6.3.3 Statistical Measurement of Performance Based on Reference Chart

This study used two plants (KNUST waste stabilization pond, Ahinsan Waste
Stabilization pond data from 2009 student projects). From the comparison of the
various discharge qualities to the standards of EPA, it is very evident that, some of the
parameters for the KNUST plant do not conform to EPA standards (Table 6.4). Though
some exceptions like the temperature (24.66), TN (10.83), TC(79.69), pH (6.78) and
turbidity (59.69) level, which recorded a lower discharge values than the EPA
standard, all other parameters such as 1SS (51.53), TP (12.2), BODs (81.75) and E.coli
(26.50) were higher than the standard. In confrast, the Ahinsan WSP was performing
better in terms of discharge values than the KNUST plant. This WSP had most of its
effluent discharge values lower than the EPA, which included; temperature (26.6), pH
(7.3), TN (0.01), Ammonia (0.36), BODs (38), COD (99). Conductivity (484), TDS (242).
The performing discharge values of the Ahinsan WSP is attributed to some form of
maintenance during the trial work of aqua-culture in the ponds, whereas, the KNUST
plant did not receive any form of maintenance over quite a number of years, which

can explain its under-performance.
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Table 6.4: Effluent Discharge Values and the EPA standard

Parameter EPA standard KNUST Plant Ahinsan WSP
Temperature (°C) <30 24.66 26.60
pH 6-9 6.78 7.30
TSS (mg/L) 50 51.63 52.00
TP (mg/L) 2 12.20 6.10
Turbidity (NTU) V9 59.69 -
TN (mg/L) 50 10.83 0.01
Ammonia/Ammonium 1 - 0.36
(mg/L)

BODs (mg/L) 50 81.75 38.00
COD (mg/L) 250 - 99.00
Conductivity (uS/cm) 750 - 484.00
TDS (mg/L) 1500 - 242.00
DO (mg/L) 1 - 0.80
TC (MPN/100ml) 400 1.7x108
E.coli (MPN/100ml) 10 26.50 7.1x105

EPA’s Discharge Standards to be achieved in Operation Concentration

The measured reliability of the KNUST treatment plant and Ahinsan WSP (Table 6.5)
shows different compliance level of the discharge values to the standard values used

for the design. Only two discharge values (TN; 98.65) and pH; 48.80 - 80.00) met the
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less stringent design specification of 80.00 compliance on the KNUST plant and as well
recorded an observed value less than its mean design concentration value (Table
6.6). The different compliance levels of the actual effluent discharge were:
Temperature (73.60), TSS (63.70), TP (1.70), Turbidity (75.20), BODs (63.30) and E.coli
(31.90), and discharge values for temperature, pH, turbidity and TC were all lower
than the EPA standards, but fall short of meeting the design compliance of 95

percent.

The Ahinsan WSP had five of its discharge values (TN, 99.90, Conductivity 98.30
Ammonia, 26.70; COD, 95.20 and TDS, 98.20) conforming to the standard compliance
of 95 percent compliance and achieving its observed effluent discharge being less
than the mean design concentration with the required compliance level (Table 6.6),
whereas the rest were not complying with the design compliance level. These
included; Temperature (69.50), pH (48.00 to 74.20), 1SS (64.10), TP (8.40), BODs (77.30),
DO (74.90), TC (0.00) and E.coli (0.00). Again, temperature, pH, BODs, conductivity
and DO effluent discharge meet the EPA standard but its compliance level does not

meet the design specification.
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Table 6.5: Actual Mean Effluent Discharge, Reliability and its Compliance

Parameters KNUST Treatment Plant AHINSAN WSP

Mean Reliability Compliance Mean Reliability Compliance

Effluent Effluent

Discharge Discharge
Temperature (°C) 24.66 0.63 73.60 26.60 0.51 69.50
pH 4,78 -ggi- 48.8-80.0 7 30 —822— 48.0-74.2
TSS (mg/L) 51.63 0.35 63.70 52.00 0.36 64.10
TP (mg/L) 12.20 -2.11 1.70 6.10 -1.38 8.40
Turbidity (NTU) 59.69 0.68 o2 0 - - -
TN (mg/L) 10.83 2.21 98.65 0.01 17,09 99.90
Ammonia/Ammo
nium (mg/L) - = - 0.36 1.84 96.70
BODs (mg/L) 81.75 0.34 63.30 38.00 0.75 77.30
COD (mg/L) - £ - 99.00 1.66 95.20
az;wéj;)chvﬂy : . - 484.00 o1 98.30
DS (mg/L) 242.00 2.09 98.20
DO (mg/L) - - - 0.80 0.67 74.90
TC (MPN/100ml) 1.7x108 -13.17 00.00
I(E,;/c\:Fc))ll\il/]ooml) 26.50 0.47 31.90 7.1x105 . 00.00
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Table 6.6: Mean design effluent concentration to achieve 95% compliance with the
standard and observed actual effluent concentrations

Parameters KNUST AHINSAN

CV COR Mean Observed CV COR Mean Observed

Design Actual Design Actual Mean
Conc.
Conc. Mean Conc.
Conc.
Temperature 0.48 0.43
. 24. g2 26.

(°C) 0.57 14.40 e 0.7 12.90 6.60
pH 0.49 0.52 3.12 2.78 0.63 0.46 2.76 7.30
1SS (mg/L) 0.92 0.37 18.50 51.63 0.98 0.36 18.00 52.00
TP (mg/L) 0.84 0.39 0.78 12.20 0.73 042 0.84 6.10
Turbidity (NTU) 0.73 0.42 31.50 59.69 - - - -
TN (mg/L) 1.04 0.35 17.54 10.83 0.54 049 2450 0.01
Ammonia/Amm 077 041 041 0.36
onium (mg/L) - - - -
BODs (mg/L) 241 0.27 13.50 81.75 0.69 0.44 22.00 38.00
COD (mg/L) - - - - 0.81 0.40 100.00 99.00
Conductivity - - - - 0.69 0.44 660.00 484.00
(uS/cm)
TDS (mg/L) - - - 1.03 0.35 350.00 242
DO (mg/L) - 0.85 0.39 0.39 0.80
TC (MPN/100ml) 1.21 0.33 132.00 1.7x108
E.coli
(MPN/100ml) 1.32 0.32 3.20 26.50 0.84 0.39 3.90 7.1x10°
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6.4 Summary

In this chapter, uncertainty measurements were measured with a log-normal
distribution function. A measurement table incorporating compliance level, reliability
and standard policy value for effluent discharge were used to estimate various
coefficient of variation. Coeffecient of reliability were obtained based on the
discharge values and the designed compliance level of the waste stabilization
ponds. Compliance measurements were found that, by comparison of discharge
values to policy standard values for acceptance. In some cases, effluent values
might meet standard value by comparison by fails o meet the expected value when

compliance is to be measured as part of acceptable effluent discharge value.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions and recommendations of the study.

Probabilistic quantitative risk assessment models were presented, illustrating the
impact of two contrasting ideas, namely the use of fecal indicators as a ratio
conversion method due to lack of specific pathogen data, and the use of the scarce
pathogen data available as a best alternative to the ratio conversion method. The
quantitative model was analysed and the simulation results were discussed. Extension
of the model to include iliness incidence DR models were presented for the case of
Norovirus and different population epidemiological dynamics were integrated into
the model to find its effects on predicting illness given infection. An all-inclusive
modelling of measuring effluent discharge was presented by integrating both
reliability and compliance into such measurements. The results obtained were

presented in Chapter 4, 5 and é respectively and shall be summarized in this chapfter.

7.2 Conclusion Findings

The study revealed the following;

7.2.1 Risk Assessment using Dose Estimates based onGenome Copies and Conversion
Ratio
We estimated the risk of illness and disease burden with the use of fecal indicator

ratio conversion or genome copies Norovirus for consumption of vegetables in
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Ghana. A QMRA model was developed to estimate the differences in disease

burden, and the results showed that:

1.

All model scenarios for consuming vegetables irrigated with wastewater
(stream or drain) met the 10™* DALY pppy threshold for Norovirus. However,
models that use genomic copies Norovirus are considered highly conservative
estimates.

In all cases, stream water recorded a higher probability of illness and disease
burden than the drain water sources and again represents conservative
estimates due to insufficient data availability.

In the model of the same scenarios, the use of fecal indicator ratio conversion
tends to underestimate the risk of disease burden DALY pppy as compared to
the use of genome copies of Norovirus. This indicates that a shift from using
fecal indicator to data on the actual pathogen (virus) of inferest might give a
more realistic output of the risk estimates.

A 2 order of magnitude was recorded in terms of differences in DALY for fecal
indicator ratio conversion and genome copies Norovirus for stream and drain
water. However, when pooled data were used, more than 1 order magnitude
difference was recorded. Cryptosporidium spp. also showed a similar
difference of close to a 2 order of magnitude difference in DALY for fecal ratio

conversion and oocyst data.
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7.2.2 Resulis on lliness Incidence Model with Induced Immunity

The adoption of the best DR model to estimate the illness dependency on
infection/illness as well as DALY shows, inclusion of dose-dependent and immunity,
substantially reduces the uncertainty surrounding the estimation of illness due to
infection to a tune of >4 logs order of magnitude less than the naive DR model, as
immunity plays a substantial role in estimating the iliness. The study revealed that
transmission dynamics on response to disease infectiousness in epidemiological
modelling do not have a significant impact on the extent of illness reduction given
infection in terms of magnitude orders but a slight difference in values under the
same order of magnitude. On the part of the DALY calculation, the inclusion of
immunity in the dose-immunity DR model was found to result in acceptable pathogen
levels under WHO stringent condition of1.0X10° In all scenarios for the
epidemiological analysis. The dose-immunity DRI model was found to be performing
better and hence gives the best estimate as copare to Naive, Dose and Immunity DRI
models. Nevertheless, the immunity DRI model without the dose-dependent inclusion
also had a significant difference of >4 logs order of magnitude less as compared to
the naive DR model and = 2logs order of magnitude as compared to dose DR model
for DALYs, and can serve as an alternative in other scenarios where the dose-

dependent DR model estimation is not available for use.
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7.2.3 Statistical Measurement for Quantifying Uncertainty in Low Quality Water Effluent
From this study, it was observed that, measuring performance of WSP and treatment
plants using effluent discharge values in comparison to standards alone is sufficient
only for knowing effluent quality but cannot be used to evaluate compliance of the
WSP or treatment plant. It is evident that compliance that considers both effluent
quality discharges and design capability and its performance measure, is more
appropriate than the use of removal efficiency and fixed standard values alone. In
this study, we developed reference charts (Appendix C: Supplementary Results),
which can be used for assessing effluent discharge qualities. These were carried out

for different compliance levels from the Ghana EPA standard discharge values.

The importance of a stable operation and thus low CV should be remembered at all
times, so that the WSP or treatment plant should not need to be designed to achieve
very low mean effluent concentration. The effluent discharge values of the sites used
for the study were not complying fully with the design specification (for the less
stringent specifications of WSP and freatment plant). However, the Ahinsan WSP had
some of its water quality parameters (TN, Ammonia, TDS and COD) meeting both the
compliance level at 95% and the EPA discharge standards. Irrespective of the
presence of two maturation ponds in series for the Ahinsan WSP, it could not meet the

pathogen reduction standard values expected.
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7.3 Limitations and Recommendations
In this section, the limitation and recommendations of the study are presented. The
limitations are basically based on the various models built in this study. The

recommendations are based on the outcome of the study.

7.3.1 Limitations

The study has some limitations with regards to the modelling process and the data
validation, just like all other quantitative modelling approach, using probability
distributions, this add up to the model uncertainty as some of the assumptions made
and data applied are based on various studies differing in geographical location,
agricultural practices and human race. Response fo disease is also sensitive 1o
geographical locations, genetic make-up and environmental conditions. In this study,
not all model parameters used primary data that could be fitted and the predictions
validated against some observed outputs. Hence, we relied on assumptions of
probability distributions and theoretical theorems for such estimations. In some cases,
scarce data were used and some were combined with experts’ opinion. Though such
opinions are accepted in quantitative risk modelling, their subjectivity in nature makes

them less desirable for uncertainty quanfification.
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7.3.2 Recommendations

The study revealed that, modelling risk of infection and illness with ratio conversion
method underestimated the risk of infection and hence can lead to an insufficient
mitigation process. The study also revealed that in the face of scarce data for
Norovirus, using the pathogen of interest estimation was far better than the use of
ratio conversion, which was also confirmed forCryptosporidium spp, for which

sufficient data for quantifying its distribution were available.

The study further established that, estimating illiness incidence is better measured
when dose-dependency and induced immunity are included in the dose-response
modelling step. It is recommended that such models are used in estimating risk of
ilness given infection. However, in cases, where dose-dependent models are
unavailable, immunity DR models are recommended to be used instead of the naive

DR model.

The study also revealed that measures of effluent discharge that are compared to
policy standard should be used in conjunction with expected compliance and
reliability level. For measurements, where the effluent doesn’'t record negative values
and follows a log-normal distribution, it is recommended that the chart produced by
this study are used as a guide to measure the effluent outputs with a known

compliance level. Finally, this study can guide towards modelling risk assessment from
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the water freatment to estimating illness given infection for practitioners in the field of

risk assessment modelling.

7.4 Areas of Possible Further Research

The avenue for further research based on the resuts of this study is outlined below:

» Application of different methods for characterising mixed distributions to
account for variability in cases where such variability description is ambiguous
in nature.

« Estimation of shape parameter using different pathogen concentrations to
pave a way for more dose-dependent DR models to be constructed, which will
make the dose-immunity DR models available for most pathogen:s.

» Estimation and modelling of dose-dependent models for other pathogens of
interest with the use of parsimonious DR models like fractional poison,
exponential model and other empirical models.

« Studies to involve different mathematical epidemiological models to construct

appropriate illness inflation factor for various pathogen transmission dynamics
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APPENDICES

APPENDIX A

A1 CRYPTOSPORIDIUM OOCYST DATA RISK ASSESSMENT

209

DALY/ Oocystdata DALY/ Oocystdata
0.00002 0.00384 0.00002 0.00384
= 90.0% 5.0%
0.8 4
Maomumn 00051847
Values 10000

0.2 4

0.0 r - r T r y )
Summary Statistics for DALY / Oocyst data |
Statistics Percentile
Minimum -2.01643E-05 5% | 2.386E-05
Maximum 0.006184724 10% | 6.123E-05
Mean 0.001121648 15% | 0.0001058
Std Dev 0.001228328 20% | 0.0001538
Variance 1.50879E-06 25% | 0.0002175
Skewness 1.55299248 30% | 0.000284
Kurtosis 5.003454498 35% | 0.0003565
Median 0.000655246 40% | 0.0004397
Mode 1.55852E-05 45% | 0.0005408
Left X 2.38552E-05 50% | 0.0006552
Left P 5% 55% | 0.0007946
Right X 0.003842637 60% | 0.0009426
Right P 95% 65% | 0.0011277
Diff X 0.003818782 70% | 0.00134
Diff P 90% 75% | 0.0016273
#Errors 0 80% | 0.0019405
Filter Min Off 85% | 0.0023624
Filter Max Off 90% | 0.0029489
#Filtered 0 95% | 0.0038426




Change in Output Statistic for DALY / Oocyst

data

Rank | Name Lower Upper

1 PRODUCE DATA | 0.0001036 | 0.0022764

2 Disease Burden 0.0001521 | 0.0020863

3 Virus reduction / | 0.0003904 | 0.0021002
Water real data

4 volume of 0.0009586 | 0.0013629
irigation water

5 Daily 0.00090592 | 0.0013071
consumption

6 Frequency of 0.0009322 | 0.0012902
consumption

7 Days for 0.0010679 | 0.0011718
withholding
water
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A2 CRYPTO E.COLI CONVERSION

Cummulative Probability
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Minmum 10338-010
Mzomum 0.00022317
Maan 9.2742-006
4 Dev 1.5628-005
Values 10000
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Summary Statistics for DALY / E.coli conversion

Statistics Percentile

Minimum | 1.03267E-10 5% | 1.546E-07
Maximum | 0.000223168 10% | 3.411E-07
Mean 9.27416E-06 15% | 5.56E-07
Std Dev 1.56191E-05 20% | 8.103E-07
Variance | 2.43956E-10 25% | 1.12E-06
Skewness | 4.041970518 30% | 1.468E-06
Kurtosis 26.84844898 35% | 1.894E-06
Median 3.70901E-06 40% | 2.41E-06
Mode 7.36907E-08 45% | 2.995E-06
Left X 1.54578E-07 50% | 3.709E-06
Left P 5% 55% | 4.515E-06
Right X 3.71838E-05 60% | 5.547E-06
Right P 95% 65% | 6.784E-06
Diff X 3.70292E-05 70% | 8.448E-06
Diff P 920% 75% | 1.044E-05
#Errors 0 80% | 1.318E-05
Filter Min | Off 85% | 1.703E-05
Filter Max | Off 90% | 2.399E-05
#Filtered | O 95% | 3.718E-05
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Change in Output Statistic for DALY / E.coli conversion

Rank | Name Lower Upper

1 Virus reduction / 1.678E-06 | 2.787E-05
Water real data

2 Time for 8.475E-07 | 1.801E-05
withholding
irigation

3 Disease Burden 1.185E-06 | 1.652E-05

4 volume of irrigation | 2.488E-06 | 1.534E-05
water (Ké)

5 Daily consumption | 6.326E-06 | 1.247E-05

6 volume of irrigation | 6.7E-06 1.188E-05
water (D)

7 Frequency of 6.836E-06 | 1.133E-05
consumption

8 Days for 7.839E-06 | 1.049E-05

withholding water
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APPENDIX B

ILLNESS INCIDENCE PER POPULATION PER YEAR

Incidence in the population per year

Population Population Naive Immunity Dose Dose-immunity
Percentage Number Model Model Model Model
0 0.00E+00 0.00E+00  0.00E+00  0.00E+00 0.00E+00
5 1.25E+06 3.86E+05 1.81E+01  1.54E+03 7.21E-02
10 2.50E+06 7.72E+05  3.63E+01  3.07E+03 1.44E-01
15 3.75E+06 1.16E+06  5.44E+01  4.61E+03 2.16E-01
20 5.00E+06 1.54E+06  7.25E+01  6.14E+03 2.88E-01
25 6.25E+06 1.93E+06  9.07E+01  7.68E+03 3.61E-01
30 7.50E+06 2.32E+06  1.09E+02  9.21E+03 4.33E-01
35 8.75E+06 2.70E+06  1.27E+02 1.07E+04 5.05E-01
40 1.00E+07 3.09E+06  1.45E+02 1.23E+04 5.77E-01
45 1.13E+07 3.47E+06 1.63E+02 1.38E+04 6.49E-01
50 1.25E+07 3.86E+06 1.81E+02 1.54E+04 7.21E-01
55 1.38E+07 4.25E+06 1.99E+02 1.69E+04 7.93E-01
60 1.50E+07 4,63E+06 2.18E+02 1.84E+04 8.65E-01
65 1.63E+07 02 FQE SRS CEQ 2.2 00E£04 9.37E-01
70 1.75E+07 5.40E+06 2.54E+02 2.15E+04 1.01E+00
75 1.88E+07 DML NG 2B+ 2 228004 1.08E+00
80 2.00E+07 6.18E+06  2.90E+02  2.46E+04 1.15E+00
85 2.13E+07 GIoOEL06 - 3.QBEROZNEE BN +(1)4 1.23E+00
90 2.25E+07 6.95E+06  3.26E+02 2.76E+04 1.30E+00
95 2.38E+07 7.34E+06  3.45E+02 2.92E+04 1.37E+00
100 2.50E+07 7.72E+06  3.63E+02 3.07E+04 1.44E+00
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APPENDIX B1 ILLNESS INCIDENCE PER PERSON PER YEAR
B1A. (SYMPTOMATIC INFECTIOUNESS)
PROBABILITY GRAPHS FOR DR MODELS

3.00E-008 4.205-0q||| Doze-Immunity Mool /
80°% - Incidence per person per yesr
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o’ 27
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L 90% - . 0.0014957
E=] A aan110
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o K4 Dev 00012145
E 20% 4
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O 10% A parson per year
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: Madan 15128005
4 D=v 5.9218-005
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Summary Statistics for Symptomatic Infectiousness Individual

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 2.88E-08 5% | 4.02E-08 Minimum 3.14E-05 5% | 8.52E-05
Maximum | 1.02E-07 10% | 4.30E-08 Maximum | 5.07E-03 10% | 1.44E-04
Mean 5.92E-08 15% | 4.55E-08 Mean 1.50E-03 15% | 2.22E-04
Std Dev 1.30E-08 20% | 4.75E-08 Std Dev 1.22E-03 20% | 3.14E-04
Variance 1.69736E-16 25% | 4.94E-08 Variance 1.48551E-06 25% | 4.21E-04
Skewness | 0.471635968 30% | 5.13E-08 Skewness | 0.69866711 30% | 5.41E-04
Kurtosis 2.832924093 35% | 5.31E-08 Kurtosis 2.466732266 35% | 6.83E-04
Median 5.81E-08 40% | 5.47E-08 Median 1.21E-03 40% | 8.46E-04
Mode 5.99E-08 45% | 5.64E-08 Mode 6.06E-05 45% | 1.03E-03
Left X 4.02E-08 50% | 5.81E-08 Left X 8.52E-05 50% | 1.21E-03
Left P 5% 55% | 5.97E-08 Left P 5% 55% | 1.40E-03

| Right X 8.34E-08 60% | 6.13E-08 Right X 3.85E-03 60% | 1.63E-03
Right P 95% 65% | 6.31E-08 Right P 95% 65% | 1.85E-03
Diff X 4.32E-08 70% | 6.50E-08 Diff X 3.76E-03 70% | 2.11E-03
Diff P 90% 75% | 6.75E-08 Diff P 920% 75% | 2.37E-03
#Errors 0 80% | 7.00E-08 #Errors 0 80% | 2.66E-03
Filter Min Off 85% | 7.31E-08 Filter Min Off 85% | 2.99E-03
Filter Max | Off 90% | 7.72E-08 Filter Max | Off 90% | 3.34E-03
#Filtered 0 95% | 8.34E-08 #Filtered 0 95% | 3.85E-03

Immunity Model / Incidence per person per year

Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 3.02E-06 5% | 4.82E-06 Minimum 2.24E-01 5% | 2.33E-01
Maximum 4.28E-04 10% | 5.61E-06 Maximum 3.93E-01 10% | 2.41E-01
Mean 3.96E-05 15% | 6.32E-06 Mean 3.09E-01 15% | 2.50E-01
Std Dev 5.92E-05 20% | 7.00E-06 Std Dev 4.89E-02 20% | 2.58E-01
Variance 3.50246E-09 25% | 7.87E-06 Variance 0.002387251 25% | 2.67E-01
Skewness 2.809171132 30% | 8.83E-06 Skewness -2.71097E-06 30% | 2.75E-01
Kurtosis 11.6465013 35% | 9.99E-06 Kurtosis 1.799996474 35% | 2.83E-01
Median 1.51E-05 40% | 1.13E-05 Median 3.09E-01 40% | 2.92E-01
Mode 6.66E-06 45% | 1.31E-05 Mode 2.91E-01 45% | 3.00E-01
Left X 4.82E-06 50% | 1.51E-05 Left X 2.33E-01 50% | 3.09E-01
Left P 5% 55% | 1.78E-05 Left P 5% 55% | 3.17E-01
Right X 1.77E-04 60% | 2.13E-05 Right X 3.85E-01 60% | 3.26E-01
Right P 95% 65% | 2.60E-05 Right P 95% 65% | 3.34E-01
Diff X 1.72E-04 70% | 3.21E-05 Diff X 1.52E-01 70% | 3.43E-01
Diff P 90% 75% | 4.07E-05 Diff P 90% 75% | 3.51E-01
#Errors 0 80% | 5.34E-05 #Errors 0 80% | 3.60E-01
Filter Min Off 85% | 7.23E-05 Filter Min Off 85% | 3.68E-01
Filter Max Off 90% | 1.11E-04 Filter Max Off 90% | 3.77E-01
#Filtered 0 95% | 1.77E-04 #Filtered 0 95% | 3.85E-01
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B1B. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS LOW)
PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic Low

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage

Minimum 2.81E-08 5% 3.92E-08 Minimum 3.10E-05 5% 8.50E-05
Maximum 1.00E-07 10% 4.20E-08 Maximum 5.08E-03 10% 1.44E-04
Mean 5.78E-08 15% 4.43E-08 Mean 1.50E-03 15% 2.23E-04
Std Dev 1.28E-08 20% 4.65E-08 Std Dev 1.21E-03 20% 3.11E-04
Variance 1.63933E-16 25% 4.82E-08 Variance 1.46886E-06 25% 4.21E-04
Skewness 0.483785996 30% 5.00E-08 Skewness 0.676579428 30% 5.47E-04
Kurtosis 2.839293047 35% 5.16E-08 Kurtosis 2.42652171 35% 6.85E-04
Median 5.65E-08 40% 5.32E-08 Median 1.20E-03 40% 8.45E-04
Mode 5.57E-08 45%  5.49E-08 Mode 5.10E-05 45% 1.02E-03
Left X 3.92E-08 50% 5.65E-08 Left X 8.50E-05 50% 1.20E-03
Left P 5% 55% 5.82E-08 Left P 5% 55% 1.40E-03
Right X 8.12E-08 60% 5.98E-08 Right X 3.77E-03 60% 1.63E-03
Right P 95% 65% 6.16E-08 Right P 95% 65% 1.87E-03
Diff X 4.20E-08 70% 6.37E-08 Diff X 3.68E-03 70% 2.12E-03
Diff P 90% 75%  6.59E-08 Diff P 90% 75% 2.38E-03
#Errors 0 80% 6.86E-08 #Ermrors 0 80% 2.67E-03
Filter Min Off 85% 7.18E-08 Filter Min Off 85% 2.99E-03
Filter Max Off 90% 7.57E-08 Filter Max Off 90% 3.32E-03
#Filtered 0 95% 8.12E-08 #Filtered 0 95% 3.77E-03
Immunity Model / Incidence per person per year Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 2.83E-06 5% 4.69E-06 Minimum 2.24E-01 5% 2.33E-01
Maximum 4.33E-04 10% 5.46E-06 Maximum 3.93E-01 10% 2.41E-01
Mean 3.85E-05 15% 6.17E-06 Mean 3.09E-01 15% 2.50E-01
Std Dev 5.71E-05 20% 6.88E-06 Std Dev 4.89E-02 20% 2.58E-01
Variance 3.2615E-09 25% 7.68E-06 Variance 0.002387257 25% 2.67E-01
Skewness 2.815156623 30% 8.62E-06 Skewness -7.56816E-07 30% 2.75E-01
Kurtosis 11.81161483 35% 9.67E-06 Kurtosis 1.799994143 35% 2.83E-01
Median 1.48E-05 40% 1.11E-05 Median 3.09E-01 40% 2.92E-01
Mode 6.10E-06 45% 1.28E-05 Mode 3.72E-01 45%  3.00E-01
Left X 4.69E-06 50% 1.48E-05 Left X 2.33E-01 50% 3.09E-01
Left P 5% 55% 1.75E-05 Left P 5% 55% 3.17E-01
Right X 1.69E-04 60% 2.08E-05 Right X 3.85E-01 60% 3.26E-01
Right P 95% 65% 2.52E-05 Right P 95% 65% 3.34E-01
Diff X 1.64E-04 70% 3.12E-05 Diff X 1.52E-01 70% 3.43E-01
Diff P 90% 75% 4.01E-05 Diff P 90% 75% 3.51E-01
#Errors 0 80% 5.22E-05 #Errors 0 80% 3.60E-01
Filter Min Off 85% 7.38E-05 Filter Min Off 85% 3.68E-01
Filter Max Off 90% 1.05E-04 Filter Max Off 90% 3.77E-01
#Filtered 0 95%  1.69E-04 #Filtered 0 95%  3.85E-01
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B1C. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS HIGH)

PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic High

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 1.67E-08 5% 2.32E-08 Minimum 3.22E-05 5% 8.46E-05
Maximum 5.88E-08 10% 2.48E-08 Maximum 5.03E-03 10% 1.45E-04
Mean 3.39E-08 15% 2.62E-08 Mean 1.50E-03 15% 2.21E-04
Std Dev 7.44E-09 20% 2.73E-08 Std Dev 1.21E-03 20% 3.12E-04
Variance 5.53724E-17 25% 2.84E-08 Variance 1.47456E-06 25% 4.21E-04
Skewness 0.52151757 30% 2.93E-08 Skewness 0.69355851 30% 5.51E-04
Kurtosis 2.874078836 35% 3.03E-08 Kurtosis 2.468769613 35% 6.93E-04
Median 3.31E-08 40% 3.13E-08 Median 1.21E-03 40% 8.45E-04
Mode 2.87E-08 45% 3.22E-08 Mode 5.10E-05 45% 1.02E-03
Left X 2.32E-08 50% 3.31E-08 Left X 8.46E-05 50% 1.21E-03
Left P 5% 55% 3.41E-08 Left P 5% 55% 1.41E-03
Right X 4.77E-08 60% 3.50E-08 Right X 3.80E-03 60% 1.62E-03
Right P 95% 65%  3.60E-08 Right P 95% 65% 1.85E-03
Diff X 2.45E-08 70% 3.72E-08 Diff X 3.72E-03 70% 2.11E-03
Diff P 90% 75% 3.86E-08 Diff P 90% 75% 2.38E-03
#Errors 0 80% 4.02E-08 #Ermrors 0 80% 2.67E-03
Filter Min Off 85%  4.20E-08 Filter Min Off 85% 2.96E-03
Filter Max Off 90% 4.43E-08 Filter Max Off 90% 3.33E-03
#Filtered 0 95% 4.77E-08 #Filtered 0 95%  3.80E-03
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 1.74E-06 5% 2.76E-06 Minimum 2.24E-01 5% 2.33E-01
Maximum 2.40E-04 10% 3.16E-06 Maximum 3.93E-01 10% 2.41E-01
Mean 2.27E-05 15% 3.58E-06 Mean 3.09E-01 15% 2.50E-01
Std Dev 3.39E-05 20% 4.02E-06 Std Dev 4.89E-02 20% 2.58E-01
Variance 1.14885E-09 25% 4.54E-06 Variance 0.00238726 25% 2.67E-01
Skewness 2.814525713 30% 5.10E-06 Skewness -1.16214E-06 30% 2.75E-01
Kurtosis 11.62342123 35% 5.76E-06 Kurtosis 1.799999732 35% 2.83E-01
Median 8.79E-06 40% 6.54E-06 Median 3.09E-01 40% 2.92E-01
Mode 3.79E-06 45% 7.51E-06 Mode 3.60E-01 45% 3.00E-01
Left X 2.76E-06 50% 8.79E-06 Left X 2.33E-01 50% 3.09E-01
Left P 5% 55% 1.03E-05 Left P 5% 55% 3.17E-01
Right X 1.00E-04 60% 1.22E-05 Right X 3.85E-01 60% 3.26E-01
Right P 95% 65% 1.48E-05 Right P 95% 65% 3.34E-01
Diff X 9.76E-05 70% 1.82E-05 Diff X 1.52E-01 70% 3.43E-01
Diff P 90% 75% 2.32E-05 Diff P 90% 75% 3.51E-01
#Errors 0 80% 3.09E-05 #Errors 0 80% 3.60E-01
Filter Min Off 85% 4.24E-05 Filter Min Off 85% 3.68E-01
Filter Max Off 90% 6.21E-05 Filter Max Off 90% 3.77E-01
#Filtered 0 95% 1.00E-04 #Filtered 0 95% 3.85E-01
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B1D. (INNATE GENETIC RESISTANCE)
PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for Innate Genetic Resistance

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 3.57E-08 5% 5.05E-08 Minimum 3.13E-05 5% 8.52E-05
Maximum 1.23E-07 10% 5.41E-08 Maximum 5.12E-03 10% 1.45E-04
Mean 7.28E-08 15% 5.69E-08 Mean 1.49E-03 15% 2.22E-04
Std Dev 1.53E-08 20% 5.92E-08 Std Dev 1.21E-03 20% 3.14E-04
Variance 2.34802E-16 25% 6.15E-08 Variance 1.45973E-06 25% 4.23E-04
Skewness 0.487413486 30% 6.36E-08 Skewness 0.677393831 30% 5.48E-04
Kurtosis 2.890478312 35% 6.56E-08 Kurtosis 2.434814128 35% 6.88E-04
Median 7.13E-08 40%  6.74E-08 Median 1.20E-03 40% 8.43E-04
Mode 7.33E-08 45%  6.94E-08 Mode 5.18E-05 45% 1.02E-03
Left X 5.05E-08 50% 7.13E-08 Left X 8.52E-05 50% 1.20E-03
Left P 5% 55% 7.32E-08 Left P 5% 55% 1.41E-03
Right X 1.01E-07 60% 7.52E-08 Right X 3.78E-03 60% 1.64E-03
Right P 95% 65% 7.74E-08 Right P 95% 65% 1.85E-03
Diff X 5.07E-08 70% 7.98E-08 Diff X 3.69E-03 70% 2.12E-03
Diff P 90% 75% 8.24E-08 Diff P 90% 75% 2.38E-03
#Errors 0 80% 8.55E-08 #Ermrors 0 80% 2.67E-03
Filter Min Off 85% 8.95E-08 Filter Min Off 85% 2.96E-03
Filter Max Off 90% 9.42E-08 Filter Max Off 90% 3.29E-03
#Filtered 0 95% 1.01E-07 #Filtered 0 95%  3.78E-03
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 3.83E-06 5%  6.08E-06 Minimum 2.24E-01 5% 2.33E-01
Maximum 5.68E-04 10% 6.97E-06 Maximum 3.93E-01 10% 2.41E-01
Mean 4.87E-05 15% 7.80E-06 Mean 3.09E-01 15% 2.50E-01
Std Dev 7.28E-05 20% 8.66E-06 Std Dev 4.89E-02 20% 2.58E-01
Variance 5.30392E-09 25% 9.69E-06 Variance 0.002387262 25% 2.67E-01
Skewness 2.863963764 30% 1.09E-05 Skewness 1.13629E-06 30% 2.75E-01
Kurtosis 12.17038231 35% 1.23E-05 Kurtosis 1.799999743 35% 2.83E-01
Median 1.87E-05 40% 1.40E-05 Median 3.09E-01 40% 2.92E-01
Mode 8.23E-06 45% 1.61E-05 Mode 3.67E-01 45% 3.00E-01
Left X 6.08E-06 50% 1.87E-05 Left X 2.33E-01 50% 3.09E-01
Left P 5% 55% 2.17E-05 Left P 5% 55% 3.17E-01
Right X 2.11E-04 60% 2.63E-05 Right X 3.85E-01 60% 3.26E-01
Right P 95% 65% 3.16E-05 Right P 95% 65% 3.34E-01
Diff X 2.05E-04 70% 3.95E-05 Diff X 1.52E-01 70% 3.43E-01
Diff P 90% 75% 5.01E-05 Diff P 90% 75% 3.51E-01
#Errors 0 80% 6.53E-05 #Errors 0 80% 3.60E-01
Filter Min Off 85% 9.08E-05 Filter Min Off 85% 3.68E-01
Filter Max Off 90% 1.35E-04 Filter Max Off 90% 3.77E-01
#Filtered 0 95% 2.11E-04 #Filtered 0 95% 3.85E-01
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B1E. (NO-IMMUNE BOOSTING AFTER ASYMPTOMATIC INFECTIOUNESS)
PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for No-Immune Boosting after Asymptomatic Infectiousness

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 2.86E-08 5% 4.00E-08 Minimum 3.08E-05 5% 8.35E-05
Maximum 1.03E-07 10% 4.30E-08 Maximum 5.10E-03 10% 1.44E-04
Mean 5.89E-08 15% 4.52E-08 Mean 1.50E-03 15% 2.21E-04
Std Dev 1.31E-08 20% 4.73E-08 Std Dev 1.22E-03 20% 3.14E-04
Variance 1.7088E-16 25% 4.92E-08 Variance 1.4928E-06 25% 4.22E-04
Skewness 0.511478568 30% 5.10E-08 Skewness 0.702327797 30% 5.51E-04
Kurtosis 2.852008556 35% 5.28E-08 Kurtosis 2.488539216 35% 6.86E-04
Median 5.74E-08 40%  5.44E-08 Median 1.21E-03 40% 8.45E-04
Mode 5.88E-08 45%  5.58E-08 Mode 5.93E-05 45% 1.01E-03
Left X 4.,00E-08 50% 5.74E-08 Left X 8.35E-05 50% 1.21E-03
Left P 5% 55% 5.89E-08 Left P 5% 55% 1.41E-03
Right X 8.32E-08 60% 6.06E-08 Right X 3.81E-03 60% 1.62E-03
Right P 95% 65% 6.26E-08 Right P 95% 65% 1.86E-03
Diff X 4.32E-08 70% 6.47E-08 Diff X 3.73E-03 70% 2.11E-03
Diff P 90% 75% 6.72E-08 Diff P 90% 75% 2.39E-03
#Errors 0 80% 6.99E-08 #Ermrors 0 80% 2.66E-03
Filter Min Off 85% 7.32E-08 Filter Min Off 85% 2.98E-03
Filter Max Off 90% 7.73E-08 Filter Max Off 90% 3.35E-03
#Filtered 0 95% 8.32E-08 #Filtered 0 95% 3.81E-03
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 2.91E-06 5% 4.77E-06 Minimum 2.24E-01 5% 2.33E-01
Maximum 4.37E-04 10% 5.56E-06 Maximum 3.93E-01 10% 2.41E-01
Mean 3.93E-05 15% 6.25E-06 Mean 3.09E-01 15% 2.50E-01
Std Dev 5.84E-05 20% 6.99E-06 Std Dev 4.89E-02 20% 2.58E-01
Variance 3.41367E-09 25% 7.82E-06 Variance 0.002387261 25% 2.67E-01
Skewness 2.823672209 30% 8.79E-06 Skewness 2.71019E-06 30% 2.75E-01
Kurtosis 11.84958146 35% 9.99E-06 Kurtosis 1.800002432 35% 2.83E-01
Median 1.51E-05 40% 1.14E-05 Median 3.09E-01 40% 2.92E-01
Mode 6.62E-06 45% 1.31E-05 Mode 3.35E-01 45%  3.00E-01
Left X 4.77E-06 50% 1.51E-05 Left X 2.33E-01 50% 3.09E-01
Left P 5% 55% 1.77E-05 Left P 5% 55% 3.17E-01
Right X 1.72E-04 60% 2.12E-05 Right X 3.85E-01 60% 3.26E-01
Right P 95% 65% 2.57E-05 Right P 95% 65% 3.34E-01
Diff X 1.68E-04 70% 3.21E-05 Diff X 1.52E-01 70% 3.43E-01
Diff P 90% 75% 4.12E-05 Diff P 90% 75% 3.51E-01
#Errors 0 80% 5.28E-05 #Errors 0 80% 3.60E-01
Filter Min Off 85% 7.34E-05 Filter Min Off 85% 3.68E-01
Filter Max Off 90% 1.08E-04 Filter Max Off 90% 3.77E-01
#Filtered 0 95% 1.72E-04 #Filtered 0 95% 3.85E-01
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B1F. (GENEGROUP Il TYPE 4)
PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for Genogroup Il Type 4

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year

Statistics Percentage Statistics Percentage

Minimum 2.30E-08 5% 3.14E-08 Minimum 3.04E-05 5% 8.36E-05
Maximum 7.19E-08 10% 3.34E-08 Maximum 5.04E-03 10% 1.45E-04
Mean 4.39E-08 15% 3.50E-08 Mean 1.50E-03 15% 2.21E-04
Std Dev 8.54E-09 20% 3.63E-08 Std Dev 1.21E-03 20% 3.16E-04
Variance 7.28569E-17 25% 3.75E-08 Variance 1.47255E-06 25% 4.20E-04
Skewness 0.465230605 30% 3.86E-08 Skewness 0.672747896 30% 5.47E-04
Kurtosis 2.799305973 35% 3.97E-08 Kurtosis 2.414534399 35% 6.87E-04
Median 4.30E-08 40% 4.08E-08 Median 1.21E-03 40% 8.43E-04
Mode 4.14E-08 45%  4.19E-08 Mode 5.99E-05 45% 1.02E-03
Left X 3.14E-08 50% 4.30E-08 Left X 8.36E-05 50% 1.21E-03
Left P 5% 55% 4.41E-08 Left P 5% 55% 1.41E-03
Right X 5.95E-08 60% 4.52E-08 Right X 3.78E-03 60% 1.62E-03
Right P 95% 65% 4.65E-08 Right P 95% 65% 1.87E-03
Diff X 2.81E-08 70% 4.79E-08 Diff X 3.70E-03 70% 2.13E-03
Diff P 90% 75% 4.94E-08 Diff P 90% 75% 2.41E-03
#Errors 0 80% 5.11E-08 #Ermrors 0 80% 2.68E-03
Filter Min Off 85% 5.32E-08 Filter Min Off 85% 2.97E-03
Filter Max Off 90% 5.59E-08 Filter Max Off 90% 3.32E-03
#Filtered 0 95%  5.95E-08 #Filtered 0 95%  3.78E-03
Immunity Model / Incidence per person per year Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 2.39E-06 5% 3.61E-06 Minimum 2.24E-01 5% 2.33E-01
Maximum 3.33E-04 10% 4.20E-06 Maximum 3.93E-01 10% 2.41E-01
Mean 2.93E-05 15% 4.74E-06 Mean 3.09E-01 15% 2.50E-01
Std Dev 4.35E-05 20% 5.25E-06 Std Dev 4.89E-02 20% 2.58E-01
Variance 1.89012E-09 25% 5.83E-06 Variance 0.002387257 25% 2.67E-01
Skewness 2.766709876 30% 6.57E-06 Skewness -2.07672E-06 30% 2.75E-01
Kurtosis 11.25084402 35% 7.45E-06 Kurtosis 1.799997377 35% 2.83E-01
Median 1.14E-05 40% 8.55E-06 Median 3.09E-01 40% 2.92E-01
Mode 4.58E-06 45% 9.85E-06 Mode 3.69E-01 45% 3.00E-01
Left X 3.61E-06 50% 1.14E-05 Left X 2.33E-01 50% 3.09E-01
Left P 5% 55% 1.31E-05 Left P 5% 55% 3.17E-01
Right X 1.32E-04 60% 1.58E-05 Right X 3.85E-01 60% 3.26E-01
Right P 95% 65% 1.90E-05 Right P 95% 65% 3.34E-01
Diff X 1.28E-04 70% 2.37E-05 Diff X 1.52E-01 70% 3.43E-01
Diff P 90% 75% 3.02E-05 Diff P 90% 75% 3.51E-01
#Errors 0 80% 4.02E-05 #Errors 0 80% 3.60E-01
Filter Min Off 85% 5.45E-05 Filter Min Off 85% 3.68E-01
Filter Max Off 90% 8.13E-05 Filter Max Off 90% 3.77E-01
#Filtered 0 95% 1.32E-04 #Filtered 0 95%  3.85E-01
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APPENDIX B2 DAILY ADJUSTED LIFE YEARS

B2A. (SYMPTOMATIC INFECTIOUNESS)
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PROBABILITY GRAPH FOR DALY SYMPTOMATIC INFECTIOUNESS
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Summary Statistics for Symptomatic Infectiousness Individual

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage

Minimum 3.87E-12 5% 2.32E-11 Minimum 6.03E-09 5% 1.59E-07
Maximum 6.03E-10 10% 4.08E-11 Maximum 2.90E-05 10% 2.89E-07
Mean 1.87E-10 15% 5.77E-11 Mean 4.71E-06 15% 4.41E-07
Std Dev 1.15E-10 20% 7.57E-11 Std Dev 5.10E-06 20% 6.29E-07
Variance 1.32061E-20 25% 9.25E-11 Variance 2.59851E-11 25% 8.61E-07
Skewness 0.452798307 30% 1.10E-10 Skewness 1.521360609 30% 1.12E-06
Kurtosis 2.592060219 35% 1.27E-10 Kurtosis 5.037160683 35% 1.44E-06
Median 1.79E-10 40% 1.44E-10 Median 2.78E-06 40% 1.82E-06
Mode 2.08E-10 45% 1.62E-10 Mode 2.23E-07 45% 2.25E-06
Left X 2.32E-11 50% 1.79E-10 Left X 1.59E-07 50% 2.78E-06
Left P 5% 55% 1.96E-10 Left P 5% 55% 3.35E-06
Right X 3.90E-10 60% 2.13E-10 Right X 1.56E-05 60% 4.05E-06
Right P 95% 65% 2.29E-10 Right P 95% 65% 4.88E-06
Diff X 3.67E-10 70% 2.48E-10 Diff X 1.55E-05 70% 5.92E-06
Diff P 90% 75% 2.67E-10 Diff P 90% 75% 7.00E-06
#Errors 0 80% 2.89E-10 #Ermrors 0 80% 8.29E-06
Filter Min Off 85% 3.15E-10 Filter Min Off 85% 1.00E-05
Filter Max Off 90% 3.45E-10 Filter Max Off 90% 1.22E-05
#Filtered 0 95% 3.90E-10 #Filtered 0 95% 1.56E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 5.01E-10 5% 5.01E-09 Minimum 2.20E-05 5% 1.06E-04
Maximum 2.27E-06 10% 8.69E-09 Maximum 2.01E-03 10% 1.83E-04
Mean 1.23E-07 15% 1.23E-08 Mean 8.40E-04 15% 2.67E-04
Std Dev 2.18E-07 20% 1.59E-08 Std Dev 4.86E-04 20% 3.46E-04
Variance 4.74898E-14 25% 1.98E-08 Variance 2.36544E-07 25% 4.26E-04
Skewness 3.73522302 30% 2.39E-08 Skewness 0.171402279 30% 5.08E-04
Kurtosis 20.47696808 35% 2.79E-08 Kurtosis 2.040761429 35% 5.89E-04
Median 4.36E-08 40% 3.24E-08 Median 8.26E-04 40% 6.62E-04
Mode 6.09E-09 45% 3.75E-08 Mode 8.62E-04 45%  7.43E-04
Left X 5.01E-09 50% 4.36E-08 Left X 1.06E-04 50% 8.26E-04
Left P 5% 55% 5.17E-08 Left P 5% 55% 9.06E-04
Right X 5.52E-07 60% 6.17E-08 Right X 1.66E-03 60% 9.87E-04
Right P 95% 65% 7.51E-08 Right P 95% 65% 1.07E-03
Diff X 5.47E-07 70% 9.28E-08 Diff X 1.55E-03 70% 1.15E-03
Diff P 90% 75% 1.17E-07 Diff P 90% 75% 1.22E-03
#Errors 0 80% 1.55E-07 #Errors 0 80% 1.30E-03
Filter Min Off 85% 2.14E-07 Filter Min Off 85% 1.39E-03
Filter Max Off 90%  3.22E-07 Filter Max Off 90% 1.51E-03
#Filtered 0 95% 5.52E-07 #Filtered 0 95% 1.66E-03
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B2B. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS LOW)
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PROBABILITY GRAPH FOR DR MODELS

Cummulative Probability
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic Low

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 4.22E-12 5% 2.28E-11 Minimum 5.02E-09 5% 1.56E-07
Maximum 5.85E-10 10% 3.97E-11 Maximum 2.86E-05 10% 2.83E-07
Mean 1.83E-10 15% 5.72E-11 Mean 4.73E-06 15%  4.34E-07
Std Dev 1.12E-10 20% 7.30E-11 Std Dev 5.08E-06 20% 6.14E-07
Variance 1.24636E-20 25% 9.01E-11 Variance 2.58503E-11 25% 8.41E-07
Skewness 0.426850051 30% 1.06E-10 Skewness 1.469588941 30% 1.13E-06
Kurtosis 2.549796025 35% 1.24E-10 Kurtosis 4.780574204 35% 1.46E-06
Median 1.76E-10 40% 1.41E-10 Median 2.81E-06 40% 1.84E-06
Mode 9.85E-11 45% 1.58E-10 Mode 2.23E-07 45% 2.32E-06
Left X 2.28E-11 50% 1.76E-10 Left X 1.56E-07 50% 2.81E-06
Left P 5% 55% 1.92E-10 Left P 5% 55% 3.42E-06
Right X 3.80E-10 60% 2.09E-10 Right X 1.57E-05 60% 4.10E-06
Right P 95% 65% 2.26E-10 Right P 95% 65% 4.92E-06
Diff X 3.58E-10 70% 2.43E-10 Diff X 1.55E-05 70% 5.90E-06
Diff P 90% 75% 2.61E-10 Diff P 90% 75% 7.05E-06
#Errors 0 80% 2.82E-10 #Ermrors 0 80% 8.46E-06
Filter Min Off 85% 3.05E-10 Filter Min Off 85% 1.01E-05
Filter Max Off 90% 3.35E-10 Filter Max Off 90% 1.24E-05
#Filtered 0 95% 3.80E-10 #Filtered 0 95% 1.57E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 5.06E-10 5% 4.57E-09 Minimum 2.25E-05 5% 1.10E-04
Maximum 2.30E-06 10% 8.37E-09 Maximum 2.01E-03 10% 1.87E-04
Mean 1.23E-07 15% 1.21E-08 Mean 8.39E-04 15% 2.67E-04
Std Dev 2.19E-07 20% 1.60E-08 Std Dev 4.85E-04 20% 3.44E-04
Variance 4.81227E-14 25% 1.94E-08 Variance 2.35281E-07 25% 4.24E-04
Skewness 3.73975682 30% 2.33E-08 Skewness 0.173813979 30% 5.05E-04
Kurtosis 20.58032945 35% 2.70E-08 Kurtosis 2.047171235 35% 5.85E-04
Median 4.18E-08 40% 3.12E-08 Median 8.28E-04 40% 6.60E-04
Mode 1.63E-08 45% 3.61E-08 Mode 6.37E-04 45% 7.45E-04
Left X 4.57E-09 50% 4.18E-08 Left X 1.10E-04 50% 8.28E-04
Left P 5% 55% 4.97E-08 Left P 5% 55% 9.11E-04
Right X 5.54E-07 60% 5.94E-08 Right X 1.65E-03 60% 9.86E-04
Right P 95% 65% 7.23E-08 Right P 95% 65% 1.06E-03
Diff X 5.49E-07 70% 9.05E-08 Diff X 1.54E-03 70% 1.14E-03
Diff P 90% 75% 1.16E-07 Diff P 90% 75% 1.21E-03
#Errors 0 80% 1.53E-07 #Errors 0 80% 1.30E-03
Filter Min Off 85% 2.16E-07 Filter Min Off 85% 1.39E-03
Filter Max Off 90% 3.27E-07 Filter Max Off 90% 1.50E-03
#Filtered 0 95% 5.54E-07 #Filtered 0 95% 1.65E-03
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B2C. (PRE-SYMPTOMATIC AND POST SYMPTOMATIC INFECTIOUNESS HIGH)
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PROBABILITY GRAPH FOR DR MODELS

Cummulative Probability
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Summary Statistics for Pre-Symptomatic and Post-Symptomatic High

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage

Minimum 2.43E-12 5% 1.34E-11 Minimum 6.75E-09 5% 1.61E-07
Maximum 3.35E-10 10% 2.34E-11 Maximum 3.00E-05 10% 2.98E-07
Mean 1.07E-10 15% 3.34E-11 Mean 4.72E-06 15%  4.38E-07
Std Dev 6.55E-11 20% 4.28E-11 Std Dev 5.14E-06 20% 6.33E-07
Variance 4.28405E-21 25% 5.28E-11 Variance 2.64408E-11 25% 8.53E-07
Skewness 0.418612994 30% 6.33E-11 Skewness 1.584434156 30% 1.12E-06
Kurtosis 2.500428674 35%  7.35E-11 Kurtosis 5.382651481 35% 1.44E-06
Median 1.02E-10 40% 8.26E-11 Median 2.78E-06 40% 1.85E-06
Mode 4.20E-11 45%  9.25E-11 Mode 3.09E-07 45%  2.30E-06
Left X 1.34E-11 50% 1.02E-10 Left X 1.61E-07 50% 2.78E-06
Left P 5% 55% 1.12E-10 Left P 5% 55% 3.39E-06
Right X 2.22E-10 60% 1.22E-10 Right X 1.57E-05 60% 4.08E-06
Right P 95% 65% 1.32E-10 Right P 95% 65% 4.88E-06
Diff X 2.09E-10 70% 1.42E-10 Diff X 1.56E-05 70% 5.78E-06
Diff P 90% 75% 1.54E-10 Diff P 90% 75% 6.87E-06
#Errors 0 80% 1.67E-10 #Ermrors 0 80% 8.23E-06
Filter Min Off 85% 1.80E-10 Filter Min Off 85% 1.00E-05
Filter Max Off 90% 1.97E-10 Filter Max Off 90% 1.23E-05
#Filtered 0 95% 2.22E-10 #Filtered 0 95% 1.57E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 3.15E-10 5% 2.76E-09 Minimum 2.24E-05 5% 1.10E-04
Maximum 1.37E-06 10% 5.01E-09 Maximum 2.02E-03 10% 1.87E-04
Mean 7.12E-08 15% 7.08E-09 Mean 8.39E-04 15% 2.67E-04
Std Dev 1.29E-07 20% 9.40E-09 Std Dev 4.86E-04 20% 3.47E-04
Variance 1.65967E-14 25% 1.17E-08 Variance 2.3629E-07 25% 4.22E-04
Skewness 3.955094049 30% 1.40E-08 Skewness 0.176484417 30% 5.04E-04
Kurtosis 23.09409582 35% 1.62E-08 Kurtosis 2.032922131 35% 5.86E-04
Median 2.53E-08 40% 1.86E-08 Median 8.22E-04 40% 6.62E-04
Mode 7.75E-09 45% 2.16E-08 Mode 7.15E-04 45% 7.38E-04
Left X 2.76E-09 50% 2.53E-08 Left X 1.10E-04 50% 8.22E-04
Left P 5% 55% 2.93E-08 Left P 5% 55% 9.03E-04
Right X 3.25E-07 60% 3.47E-08 Right X 1.65E-03 60% 9.84E-04
Right P 95% 65% 4.17E-08 Right P 95% 65% 1.07E-03
Diff X 3.22E-07 70% 5.25E-08 Diff X 1.54E-03 70% 1.14E-03
Diff P 90% 75%  6.66E-08 Diff P 90% 75% 1.22E-03
#Errors 0 80% 8.74E-08 #Errors 0 80% 1.30E-03
Filter Min Off 85% 1.21E-07 Filter Min Off 85% 1.39E-03
Filter Max Off 90% 1.84E-07 Filter Max Off 90% 1.51E-03
#Filtered 0 95% 3.25E-07 #Filtered 0 95% 1.65E-03
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B2D. (INNATE GENETIC RESISTANCE)
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PROBABILITY GRAPH FOR DR MODELS

Cummulative Probability
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Summary Statistics for Innate Genetic Resistance

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage

Minimum 5.21E-12 5% 2.85E-11 Minimum 5.06E-09 5% 1.54E-07
Maximum 7.53E-10 10% 4.97E-11 Maximum 2.99E-05 10% 2.87E-07
Mean 2.30E-10 15% 7.10E-11 Mean 4.74E-06 15% 4.37E-07
Std Dev 1.40E-10 20% 9.29E-11 Std Dev 5.13E-06 20% 6.26E-07
Variance 1.9494E-20 25% 1.14E-10 Variance 2.62801E-11 25% 8.63E-07
Skewness 0.394049907 30% 1.36E-10 Skewness 1.5297722 30% 1.12E-06
Kurtosis 2.47116647 35% 1.57E-10 Kurtosis 5.145107801 35% 1.43E-06
Median 2.21E-10 40% 1.79E-10 Median 2.80E-06 40% 1.85E-06
Mode 2.44E-10 45% 1.99E-10 Mode 2.18E-07 45%  2.30E-06
Left X 2.85E-11 50% 2.21E-10 Left X 1.54E-07 50% 2.80E-06
Left P 5% 55% 2.42E-10 Left P 5% 55% 3.39E-06
Right X 4.74E-10 60% 2.62E-10 Right X 1.54E-05 60% 4.08E-06
Right P 95% 65% 2.84E-10 Right P 95% 65% 4.91E-06
Diff X 4.45E-10 70% 3.07E-10 Diff X 1.53E-05 70% 5.91E-06
Diff P 90% 75% 3.31E-10 Diff P 90% 75% 7.05E-06
#Errors 0 80% 3.56E-10 #Ermrors 0 80% 8.45E-06
Filter Min Off 85% 3.85E-10 Filter Min Off 85% 1.01E-05
Filter Max Off 90% 4.20E-10 Filter Max Off 90% 1.23E-05
#Filtered 0 95% 4.74E-10 #Filtered 0 95% 1.54E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year

Statistics Percentage Statistics Percentage

Minimum 5.17E-10 5%  6.22E-09 Minimum 2.43E-05 5% 1.08E-04
Maximum 2.85E-06 10% 1.10E-08 Maximum 2.02E-03 10% 1.86E-04
Mean 1.53E-07 15% 1.55E-08 Mean 8.40E-04 15% 2.65E-04
Std Dev 2.70E-07 20% 2.03E-08 Std Dev 4.87E-04 20% 3.45E-04
Variance 7.30434E-14 25% 2.47E-08 Variance 2.36977E-07 25% 4.29E-04
Skewness 3.697836184 30% 2.95E-08 Skewness 0.17210223 30% 5.05E-04
Kurtosis 20.40807467 35% 3.42E-08 Kurtosis 2.032512639 35% 5.83E-04
Median 5.25E-08 40% 3.92E-08 Median 8.26E-04 40% 6.62E-04
Mode 2.43E-08 45%  4.54E-08 Mode 4.99E-04 45% 7.45E-04
Left X 6.22E-09 50% 5.25E-08 Left X 1.08E-04 50% 8.26E-04
Left P 5% 55%  6.20E-08 Left P 5% 55% 9.08E-04
Right X 7.03E-07 60% 7.53E-08 Right X 1.66E-03 60% 9.83E-04
Right P 95% 65% 9.11E-08 Right P 95% 65% 1.06E-03
Diff X 6.97E-07 70% 1.13E-07 Diff X 1.55E-03 70% 1.14E-03
Diff P 90% 75%  1.44E-07 Diff P 90% 75% 1.23E-03
#Errors 0 80% 1.92E-07 #Errors 0 80% 1.31E-03
Filter Min Off 85% 2.67E-07 Filter Min Off 85% 1.40E-03
Filter Max Off 90%  4.04E-07 Filter Max Off 90% 1.51E-03
#Filtered 0 95% 7.03E-07 #Filtered 0 95% 1.66E-03
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B2E. (NO-IMMUNE BOOSTING AFTER ASYMPTOMATIC INFECTIOUNESS)
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PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for No-Immune Boosting after Asymptomatic Infectiousness

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 4.26E-12 5% 2.31E-11 Minimum 1.19E-08 5% 1.54E-07
Maximum 6.13E-10 10% 4.00E-11 Maximum 2.95E-05 10% 2.88E-07
Mean 1.87E-10 15% 5.70E-11 Mean 4.76E-06 15%  4.45E-07
Std Dev 1.14E-10 20% 7.50E-11 Std Dev 5.15E-06 20% 6.32E-07
Variance 1.30332E-20 25% 9.25E-11 Variance 2.65423E-11 25% 8.61E-07
Skewness 0.438631402 30% 1.10E-10 Skewness 1.503421922 30% 1.12E-06
Kurtosis 2.556541133 35% 1.27E-10 Kurtosis 4.939202974 35% 1.45E-06
Median 1.77E-10 40% 1.44E-10 Median 2.80E-06 40% 1.81E-06
Mode 1.48E-10 45%  1.60E-10 Mode 1.65E-07 45% 2.27E-06
Left X 2.31E-11 50% 1.77E-10 Left X 1.54E-07 50% 2.80E-06
Left P 5% 55% 1.94E-10 Left P 5% 55% 3.38E-06
Right X 3.87E-10 60% 2.12E-10 Right X 1.58E-05 60% 4.08E-06
Right P 95% 65% 2.31E-10 Right P 95% 65% 4.91E-06
Diff X 3.64E-10 70% 2.48E-10 Diff X 1.56E-05 70% 5.85E-06
Diff P 90% 75% 2.67E-10 Diff P 90% 75% 7.01E-06
#Errors 0 80% 2.89E-10 #Ermrors 0 80% 8.44E-06
Filter Min Off 85% 3.12E-10 Filter Min Off 85% 1.02E-05
Filter Max Off 90% 3.42E-10 Filter Max Off 90% 1.26E-05
#Filtered 0 95% 3.87E-10 #Filtered 0 95% 1.58E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 4.00E-10 5% 4.73E-09 Minimum 2.23E-05 5% 1.07E-04
Maximum 2.18E-06 10% 8.40E-09 Maximum 2.01E-03 10% 1.87E-04
Mean 1.23E-07 15% 1.23E-08 Mean 8.40E-04 15% 2.65E-04
Std Dev 2.16E-07 20% 1.62E-08 Std Dev 4.87E-04 20% 3.45E-04
Variance 4.68413E-14 25% 2.00E-08 Variance 2.37398E-07 25% 4.27E-04
Skewness 3.678275458 30% 2.38E-08 Skewness 0.178388897 30% 5.00E-04
Kurtosis 19.86742882 35% 2.78E-08 Kurtosis 2.043520821 35% 5.83E-04
Median 4.39E-08 40% 3.24E-08 Median 8.27E-04 40% 6.65E-04
Mode 1.35E-08 45% 3.71E-08 Mode 7.38E-04 45%  7.44E-04
Left X 4.73E-09 50% 4.39E-08 Left X 1.07E-04 50% 8.27E-04
Left P 5% 55%  5.08E-08 Left P 5% 55% 9.04E-04
Right X 5.51E-07 60% 6.07E-08 Right X 1.66E-03 60% 9.86E-04
Right P 95% 65% 7.38E-08 Right P 95% 65% 1.06E-03
Diff X 5.46E-07 70% 9.22E-08 Diff X 1.56E-03 70% 1.14E-03
Diff P 90% 75% 1.18E-07 Diff P 90% 75% 1.22E-03
#Errors 0 80% 1.56E-07 #Errors 0 80% 1.30E-03
Filter Min Off 85% 2.21E-07 Filter Min Off 85% 1.40E-03
Filter Max Off 90%  3.24E-07 Filter Max Off 90% 1.51E-03
#Filtered 0 95% 5.51E-07 #Filtered 0 95% 1.66E-03
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B2F. (GENEGROUP Il TYPE 4)
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PROBABILITY GRAPH FOR DR MODELS
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Summary Statistics for Genogroup Il Type 4

Dose-Immunity Model / Incidence per person per

Dose Model / Incidence per person per year

year
Statistics Percentage Statistics Percentage
Minimum 3.20E-12 5% 1.73E-11 Minimum 5.81E-09 5% 1.54E-07
Maximum 4.20E-10 10% 3.02E-11 Maximum 2.97E-05 10% 2.86E-07
Mean 1.39E-10 15% 4.28E-11 Mean 4.70E-06 15%  4.33E-07
Std Dev 8.40E-11 20% 5.57E-11 Std Dev 5.03E-06 20% 6.39E-07
Variance 7.05068E-21 25% 6.97E-11 Variance 2.52973E-11 25% 8.69E-07
Skewness 0.371280581 30% 8.28E-11 Skewness 1.498333705 30% 1.13E-06
Kurtosis 2.42294695 35% 9.55E-11 Kurtosis 5.001455157 35% 1.47E-06
Median 1.34E-10 40% 1.08E-10 Median 2.81E-06 40% 1.86E-06
Mode 1.61E-10 45% 1.21E-10 Mode 1.18E-07 45%  2.30E-06
Left X 1.73E-11 50% 1.34E-10 Left X 1.54E-07 50% 2.81E-06
Left P 5% 55% 1.47E-10 Left P 5% 55% 3.42E-06
Right X 2.87E-10 60% 1.60E-10 Right X 1.55E-05 60% 4.16E-06
Right P 95% 65% 1.73E-10 Right P 95% 65% 4.98E-06
Diff X 2.69E-10 70% 1.86E-10 Diff X 1.53E-05 70% 5.84E-06
Diff P 90% 75% 1.99E-10 Diff P 90% 75% 6.97E-06
#Errors 0 80% 2.15E-10 #Ermrors 0 80% 8.29E-06
Filter Min Off 85% 2.32E-10 Filter Min Off 85% 1.01E-05
Filter Max Off 90% 2.54E-10 Filter Max Off 90% 1.21E-05
#Filtered 0 95% 2.87E-10 #Filtered 0 95% 1.55E-05
Immunity Model / Incidence per person per year Naive/ Incidence per person per year
Statistics Percentage Statistics Percentage
Minimum 3.47E-10 5%  3.67E-09 Minimum 2.49E-05 5% 1.07E-04
Maximum 1.55E-06 10% 6.53E-09 Maximum 2.02E-03 10% 1.86E-04
Mean 9.25E-08 15%  9.48E-09 Mean 8.40E-04 15% 2.65E-04
Std Dev 1.64E-07 20% 1.23E-08 Std Dev 4.87E-04 20% 3.42E-04
Variance 2.68224E-14 25% 1.52E-08 Variance 2.37332E-07 25% 4.24E-04
Skewness 3.613497548 30% 1.78E-08 Skewness 0.171673405 30% 5.01E-04
Kurtosis 18.74992932 35% 2.08E-08 Kurtosis 2.021870674 35% 5.83E-04
Median 3.23E-08 40% 2.39E-08 Median 8.25E-04 40% 6.66E-04
Mode 1.76E-08 45% 2.79E-08 Mode 2.86E-04 45%  7.44E-04
Left X 3.67E-09 50% 3.23E-08 Left X 1.07E-04 50% 8.25E-04
Left P 5% 55% 3.76E-08 Left P 5% 55% 9.10E-04
Right X 4.18E-07 60% 4.48E-08 Right X 1.65E-03 60% 9.82E-04
Right P 95% 65%  5.45E-08 Right P 95% 65% 1.06E-03
Diff X 4.15E-07 70% 6.68E-08 Diff X 1.55E-03 70% 1.14E-03
Diff P 90% 75% 8.65E-08 Diff P 90% 75% 1.22E-03
#Errors 0 80% 1.16E-07 #Errors 0 80% 1.30E-03
Filter Min Off 85% 1.58E-07 Filter Min Off 85% 1.40E-03
Filter Max Off 90%  2.44E-07 Filter Max Off 90% 1.52E-03
#Filtered 0 95% 4.18E-07 #Filtered 0 95% 1.65E-03
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APPENDIX C1: Reference Chart of Compliance of Mean Effluent DischargeofBODs TN and TSS for 50mg/L and Trichloroethylene. Benzene for 50 pg/l
Coefficient of Variation
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4
50% 50.00 50.25 50.99 52.20 53.85 55.90 58.31 61.03 64.03 67.27 70.71 7810 86.02 94.34 102.96 111.80 134.63 158.11 182.00 206.16
60% 50.00 49.00 48.50 48.46 48.85 49.60 50.68 52.02 53.59 55.36 57.28 61.50 66.09 7094 7596 8111 94.30 107.71 121.19 134.66
70% 50.00 47.69 45.95 44.75 4399 43.62 4358 43.81 44.26 4489 45.67 4757 49.78 5221 5478 5744 6430 71.28 78.26 85.19
80% 50.00 46.20 43.16 40.77 38.93 3756 36.56 3586 3542 3517 3508 3526 3578 3653 3742 3842 4116 44.06 47.02 49.97
90% 50.00 44.22 39.56 35.83 3286 30.51 28.64 27.16 2599 25.06 2432 2327 2263 2225 2205 2198 2216 2260 23.18 23.83
92% 50.00 43.68 38.61 3456 31.34 28.79 26.75 25.13 23.84 2279 2195 20.72 1991 1937 19.02 1881 18.63 18.75 19.02 19.37
95% 50.00 42.64 36.81 32.21 2857 2570 2342 21.60 20.13 1895 1798 16.52 1550 14.78 14.26 13.87 13.29 13.03 1293 1293
98% 50.00 40.94 33.95 2856 2441 21.19 1867 16.68 15.10 13.83 12.79 11.22 10.12 9.32 8.72 8.26 7.47 7.00 6.70 6.50
99% 50.00 39.84 32.17 26.37 2198 18.63 16.05 14.05 1247 11.21 1020 868 7.63 6.86 6.29 5.85 5.10 4.64 4.33 4.11
99.9% 50.00 36.92 27.65 21.07 16.38 1299 1051 8.67 729 6.22 540 422 344 290 2.51 2.22 1.74 1.45 1.27 1.14
APPENDIX C2: Reference Chart of Compliance of Mean Effluent Discharge of TP for 2.0mg/L
Coefficient of Variation
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 12 1.4 1.6 1.8 2 25 3 3.5 4
50% 2.00 2.01 204 209 215 224 233 244 256 269 283 312 344 377 4.12 4.47 5.39 6.32 7.28 8.25
60% 200 196 194 194 195 198 203 208 214 221 229 246 264 284 3.04 3.24 3.77 4.31 4.85 5.39
70% 200 191 184 179 176 174 174 175 177 180 183 190 199 209 2.19 2.30 2.57 2.85 3.13 341
80% 200 18 173 163 156 150 146 143 142 141 140 141 143 1.46 1.50 1.54 1.65 1.76 1.88 2.00
90% 200 177 158 143 131 122 115 109 104 100 097 093 091 0.89 0.88 0.88 0.89 0.90 0.93 0.95
92% 200 175 154 138 125 115 107 101 095 091 0.88 083 0.80 0.77 0.76 0.75 0.75 0.75 0.76 0.77
9%5% 200 171 147 129 114 103 094 086 081 076 0.72 066 062 0.59 0.57 0.55 0.53 0.52 0.52 0.52
98% 200 164 136 114 098 085 0.75 067 060 055 051 045 040 0.37 0.35 0.33 0.30 0.28 0.27 0.26
99% 200 159 129 105 088 075 064 056 050 045 041 035 031 0.27 0.25 0.23 0.20 0.19 0.17 0.16
99.9% 200 148 111 084 066 052 042 035 029 025 0.22 0.17 0.24 0.12 0.10 0.09 0.07 0.06 0.05 0.05
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APPENDIX C3: Reference Chart of Compliance of Mean Effluent Discharge of Soluble Arsenic. Lead and Silver of 0.1mg/L

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 12 14 1.6 18 2 2.5 3 3.5 4
50% 0.10 0.0 0.0 0.0 0211 021 022 0212 0213 0213 024 016 017 0.9 0.21 0.22 0.27 0.32 0.36 0.41
60% 0.10 0.20 0.0 0210 010 0210 020 020 021 022 022 0212 013 0.14 0.15 0.16 0.19 0.22 0.24 0.27
70% 010 0210 009 009 009 009 009 009 009 009 009 0120 0120 0.10 0.11 0.11 0.13 0.14 0.16 0.17
80% 010 009 009 008 008 008 007 0.07 0.07 0.7 0.07 007 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.10
90% 0.10 0.09 008 007 007 006 006 005 005 005 005 005 005 0.04 0.04 0.04 0.04 0.05 0.05 0.05
92% 0.10 0.09 008 0.07 006 0.06 0.05 005 005 005 004 004 004 0.04 0.04 0.04 0.04 0.04 0.04 0.04
9%5% 010 0.09 007 006 006 005 005 004 004 004 004 003 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
98% 010 0.08 007 006 005 004 004 003 003 003 003 002 002 0.02 0.02 0.02 0.01 0.01 0.01 0.01
9% 0.10 0.08 006 005 004 004 003 003 002 002 002 002 002 0.01 0.01 0.01 0.01 0.01 0.01 0.01

99.9% 0.0 0.07 006 0.04 003 003 002 002 001 001 001 001 001 001 001 000 000 0.00 0.0 0.0

APPENDIX C4: Reference Chart of Compliance of Mean Effluent Discharge for Temperature of 30°C
Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 12 14 1.6 1.8 2 25 3 3.5 4
50% 30.00 30.15 30.59 31.32 3231 33.54 3499 36.62 38.42 40.36 42.43 46.86 51.61 56.60 61.77 67.08 80.78 94.87 109.20 123.69
60% 30.00 29.40 29.10 29.08 29.31 29.76 30.41 31.21 32.16 33.21 3437 36.90 39.66 4256 4558 48.66 56.58 64.62 72.71 80.80
70% 30.00 28.61 27.57 26.85 26.39 26.17 26.15 26.29 26.56 26.94 27.40 2854 29.87 31.33 3287 3446 3858 4277 46.96 51.12
80% 30.00 27.72 2590 24.46 23.36 2253 2193 2152 21.25 21.10 21.05 21.16 2147 2192 2245 23.05 24.69 2644 2821 29.98
90% 30.00 26.53 23.73 21.50 19.72 18.31 17.19 16.30 15.59 15.03 14.59 1396 13.58 13.35 13.23 13.19 13.29 1356 1391 14.30
92% 30.00 26.21 23.16 20.74 18.81 17.27 16.05 15.08 14.30 13.68 13.17 12.43 1194 1162 1141 1129 11.18 11.25 1141 11.62
95% 30.00 25.59 22.09 19.32 17.14 1542 14.05 1296 12.08 11.37 10.79 991 930 8.87 8.55 8.32 7.98 7.82 7.76 7.76
98% 30.00 24.56 20.37 17.14 1464 1271 1120 1001 9.06 830 7.67 6.73 6.07 559 5.23 4.95 4.48 4.20 4.02 3.90
99% 30.00 2391 19.30 15.82 13.19 11.18 9.63 843 748 6.73 6.12 521 458 412 3.77 3.51 3.06 2.78 2.60 2.47

99.9% 30.00 22.15 16.59 1264 983 779 631 520 437 373 324 253 206 174 1.51 1.33 1.04 0.87 0.76 0.68
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APPENDIX C5: Reference Chart of Compliance of Mean Effluent Discharge of TC of 400 MPN/100ml

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 18 2 25 3 35 4
50% 400.00 402.00 407.92 417.61 430.81 447.21 466.48 488.26 51225 538.14 565.69 624.82 688.19 754.72 823.65 894.43 1077.03 126491 1456.02 1649.24
60% 400.00 391.98 387.99 387.72 390.80 396.84 405.42 416.17 42875 442.86 45824 492.02 52874 567.51 607.69  648.86 754.36  861.65  969.49  1077.30
70% 400.00 381.48 367.64 357.96 351.92 348.99 348.66 35049 354.09 359.15 36538 380.55 398.28 417.70  438.23 45950 51442 57027  626.12  681.56
80% 400.00 369.61 34527 326.16 311.47 300.45 292.45 286.90 283.33 281.34 280.63 28209 286.27 29223 299.39  307.35 329.27 35251  376.14  399.74
90% 400.00 353.74 31646 286.63 262.90 244.07 229.14 217.30 207.91 200.46 19455 186.17 181.01 177.99  176.43 17588  177.25  180.80  185.43  190.60
92% 400.00 349.43 308.84 27647 250.73 230.29 214.03 201.06 190.68 18234 17562 16575 159.24 15496  152.18  150.47  149.08  150.02  152.16  154.96
95% 400.00 341.16 29450 257.66 228.59 20561 187.36 172.79 161.06 15157 143.81 132.14 12402 11824 11405 11097 106.34 10423  103.46  103.46
98% 400.00 327.52 271.59 22851 19527 169.49 149.34 13346 120.80 110.61 10231  89.80  80.99  74.58 69.76 66.05  59.80 56.03 53.61 51.97
99% 400.00 318.75 257.35 210.97 175.84 149.05 12843 11239 99.77 8970 8157  69.45 61.01  54.89 50.31  46.77  40.78 37.09 34.62 32.88

99.9% 400.00 29536 22121 16859 131.01 103.89 84.08 69.38 5829  49.80 4318 3375 27.53 2321 20.08 17.74  13.91 11.63 10.14 9.09
APPENDIX C6: Reference Chart of Compliance of Mean Effluent Discharge ofTotal Arsenic. Total Chromium and Nickel of 0.5mg/L
Coefficient of Variation
COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4
50% 050 050 051 052 054 056 058 061 064 067 071 078 086 094 1.03 1.12 1.35 1.58 1.82 2.06
60% 050 049 048 048 049 050 051 052 054 055 057 062 066 071 0.76 0.81 0.94 1.08 1.21 1.35
70% 050 048 046 045 044 044 044 044 044 045 046 048 050 0.52 0.55 0.57 0.64 0.71 0.78 0.85
80% 050 046 043 041 039 038 037 036 035 035 035 035 036 037 0.37 0.38 0.41 0.44 0.47 0.50
90% 050 044 040 036 033 031 029 027 026 025 024 023 0.23 0.22 0.22 0.22 0.22 0.23 0.23 0.24
92% 050 044 039 035 031 029 027 025 024 023 0.22 0.22 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19
9%5% 050 043 037 032 029 026 023 022 020 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.13 0.13
98% 050 041 034 029 024 021 019 017 015 014 0413 0.2 0.20 0.09 0.09 0.08 0.07 0.07 0.07 0.06
9% 050 040 032 026 022 019 0.16 014 012 011 0.10 0.09 0.08 o0.07 0.06 0.06 0.05 0.05 0.04 0.04
999% 050 037 028 021 0.16 0213 011 0.09 0.07 006 005 004 0.03 o0.03 0.03 0.02 0.02 0.01 0.01 0.01
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APPENDIX C7: Reference Chart of Compliance of Mean

Effluent Discharge for COD. Chloride and Total residual chlorine of 250 mg/L

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 25 3 35 4
50% 250.00 251.25 254.95 261.01 269.26 279.51 291.55 305.16 320.16 336.34 353.55 390.51 430.12 47170 51478 559.02 673.15 790.57  910.01 1030.78
60% 250.00 244.99 24249 242.32 24425 248.02 253.39 260.10 267.97 27679 286.40 307.51 33046 354.69 379.81 40554 47148 53853 60593  673.32
70% 250.00 238.43 229.77 223.73 219.95 218.12 217.91 219.05 221.31 224.47 22836 237.85 24892 261.06 273.90 287.19 32151 356.42 391.32  425.97
80% 250.00 231.01 21579 203.85 194.67 187.78 182.78 179.31 177.08 175.84 17539 17631 178.92 18265 187.12 192.09 20579 22032 23509  249.83
90% 250.00 221.09 197.79 179.15 16431 152.54 143.21 13581 129.95 12529 12160 11636 113.13 111.25 11027 109.92 110.78 113.00 11589  119.13
92% 250.00 21839 193.03 172.79 15671 143.93 133.77 125.66 119.18 113.96 109.76 103.60 99.53 96.85 9511  94.04  93.17  93.76 95.10 96.85
95% 250.00 213.22 184.07 161.04 142.87 12850 117.10 107.99 100.67 94.73 89.88 8259 7751 73.90 7128 6936  66.46  65.14 64.66 64.66
98% 250.00 204.70 169.74 142.82 122.04 10593 93.34 8341 7550 69.13 63.94 5612 50.62 4661  43.60 4128 3737 3502 33.50 32.48
99% 250.00 199.22 160.84 131.86 109.90 93.16 80.27 7025 6235 56.06 50.98  43.41 3813 3431 3144 2923 2549  23.18 21.64 20.55

99.9% 250.00 184.60 138.26 10537 81.88 6493 5255 4336 3643 3112 2699 2110 1720 1450  12.55 11.09 8.70 7.27 6.34 5.68

APPENDIX C8: Reference Chart of Compliance of Mean Effluent Discharge of Conductivity of 1500uS/cm
Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 14 1.6 1.8 2 2.5 3 3.5 4
50% 1500.00 1507.48 1529.71 1566.05 1615.55 1677.05 1749.29 1830.98 1920.94 2018.04 2121.32 2343.07 2580.70 2830.19 3088.69 3354.10 4038.87 4743.42 5460.08 6184.66
60% 1500.00 1469.91 1454.95 145395 1465.51 1488.14 1520.31 1560.63 1607.80 1660.72 1718.42 1845.07 1982.79 2128.16 2278.84 2433.23  2828.86 3231.18 3635.59  4039.89
70% 1500.00 1430.57 1378.65 1342.37 1319.72 1308.70 1307.46 1314.32 1327.84 1346.80 1370.19 1427.07 1493.55 1566.36 1643.37 1723.14 1929.07 2138.51 2347.93 2555.85
80% 1500.00 1386.04 1294.76 1223.08 1168.00 1126.70 1096.70 1075.88 1062.47 1055.02 1052.35 1057.84 1073.50 1095.87 1122.71 1152.57 1234.75 1321.92 1410.53 1499.01
90% 1500.00 1326.52 1186.71 1074.88 985.88 915.25 859.26 814.88 779.68 751.74 729.57 698.14 678.80 667.47 661.60 659.54 664.70 678.02 695.36 714.76
92% 1500.00 1310.34 1158.15 1036.76 940.25 863.59 802.61 753.98 715.06 683.79 658.56 621.58 597.16 581.08 570.68 564.25 559.03 562.58 570.61 581.09
95% 1500.00 1279.35 1104.39 966.23 857.22 771.03 702.60 647.95 603.99 568.37 539.28 495.51 465.07 443.39 427.68 416.14 398.78 390.86 387.96 387.97
98% 1500.00 1228.20 1018.47 856.91 732.25 635.57 560.03 500.46 453.00 414.77 383.65 336.74 303.72 279.66 261.60 247.69 224.25 210.13 201.03 194.90
99% 1500.00 1195.33 965.05 791.15 659.40 558.94 481.62 421.48 374.12 336.37 305.90 260.45 228.78 205.84 188.65 175.40 152.92 139.07 129.83 123.31

99.9% 1500.00 1107.61 829.55 632.20 491.27 389.61 315.30 260.16 218.60 186.74 161.94 126.58 103.22 87.02 75.31 66.54 52.18 43.63 38.02 34.08

248



APPENDIX C9: Reference Chart of Compliance of Mean Effluent Discharge of TDS of 1000 mg/L

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4

50% 1000.00 1004.99 1019.80 1044.03 1077.03 1118.03 1166.19 1220.66 1280.62 1345.36 1414.21 1562.05 1720.47 1886.80 2059.13 2236.07 2692.58 3162.28 3640.05 4123.11
60% 1000.00 979.94 969.97 969.30 977.01 992.09 1013.54 1040.42 1071.87 1107.14 1145.61 1230.05 1321.86 1418.77 1519.23 1622.15 1885.91 2154.12 2423.73  2693.26
70%  1000.00 953.71 919.10 894.91 879.81 872.47 871.64 876.22 885.23 897.87 913.46 951.38 995.70 1044.24 1095.58 1148.76  1286.05 1425.67 1565.29  1703.90
80%  1000.00 924.03 863.17 815.39 778.67 751.13 731.13 717.25 708.31 703.34 701.57 705.23 715.67 730.58 748.47 768.38 823.17 881.28 940.35 999.34
90%  1000.00 884.35 791.14 716.59 657.25 610.17 572.84 543.25 519.78 501.16 486.38 465.43 452.53 444,98 441.07 439.70 443.13 452.01 463.57 476.51
92%  1000.00 873.56 772.10 691.17 626.84 575.73 535.07 502.65 476.71 455.86 439.04 414.38 398.11 387.39 380.45 376.17 372.69 375.05 380.41 387.39
95%  1000.00 852.90 736.26 644.15 571.48 514.02 468.40 431.97 402.66 378.92 359.52 330.34 310.04 295.59 285.12 277.43 265.85 260.57 258.64 258.65
98%  1000.00 818.80 678.98 571.28 488.17 423.71 373.35 333.64 302.00 276.52 255.77 224.49 202.48 186.44 174.40 165.12 149.50 140.09 134.02 129.94
99%  1000.00 796.88 643.37 527.43 439.60 372.62 321.08 280.99 249.42 224.25 203.94 173.63 152.52 137.22 125.77 116.94 101.95 92.71 86.55 82.20
99.9%  1000.00 738.41 553.03 421.47 327.51 259.74 210.20 173.44 145.73 124.49 107.96 84.38 68.82 58.02 50.21 44.36 34.78 29.08 25.35 22.72

APPENDIX C10: Reference Chart of Compliance of Mean Effluent Discharge of DO. Total Cyanide. Phenol . Selenium and Ammonia of
1.0mg/L

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I =2 1.4 1.6 1.8 2 2.5 3 3.5 4

50 1.00 1.00 1.02 104 108 112 117 122 128 135 141 156 172 1.89 2.06 2.24 2.69 3.16 3.64 412
60% 1.00 098 097 097 098 099 101 104 107 111 115 123 132 142 1.52 1.62 1.89 2.15 2.42 2.69
70% 100 095 092 08 08 087 087 08 08 09 091 0595 1.00 1.04 1.10 1.15 1.29 1.43 1.57 1.70
80%» 100 092 08 08 078 075 073 072 071 070 070 071 072 0.73 0.75 0.77 0.82 0.88 0.94 1.00
%% 100 088 079 072 066 061 057 054 052 050 049 047 045 044 044 044 044 045 0.46 0.48
92% 100 087 077 069 063 058 054 050 048 046 044 041 040 0.39 0.38 0.38 0.37 0.38 0.38 0.39
9%5% 100 08 074 064 057 051 047 043 040 038 036 033 031 030 0.29 0.28 0.27 0.26 0.26 0.26
9%8% 100 082 068 057 049 042 037 033 030 028 026 022 020 0.19 0.17 0.17 0.15 0.14 0.13 0.13
99% 100 080 064 053 044 037 032 028 025 022 020 017 015 0.14 0.13 0.12 0.10 0.09 0.09 0.08
9.9% 100 074 055 042 033 026 021 0.17 015 012 011 008 0.07 0.06 0.05 0.04 0.03 0.03 0.03 0.02
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APPENDIX C11: Reference Chart of Compliance of Mean Effluent Discharge of Turbidity of 75 NTU

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 25 3 35 4
50% 7500 7537 76.49 7830 80.78 83.85 8746 9155 96.05 100.90 106.07 117.15 129.03 141.51 15443 167.71 201.94 237.17 273.00 309.23
60% 7500 7350 7275 7270 7328 7441 7602 7803 = 8039 83.04 8592 9225 99.14 10641 113.94 121.66 14144 16156 18178  201.99
70% 7500 7153 6893 6712 6599 6544 6537 6572 6639 6734 6851 7135 7468 7832 8217 86.16 9645 10693 117.40 127.79
80% 7500 6930 6474 6115 5840 5633 5484 5379 5312 5275 5262 5289 5368 5479 5614 5763 6174 6610 7053  74.95
90% 7500 6633 59.34 53.74 4929 4576 4296  40.74 3898 3759 3648 3491 3394 3337 3308 3298 3323 3390 3477 3574
92% 7500 6552 5791 51.84 47.01 4318 4013 3770 3575 3419 3293 3108 29.86 29.05 2853 2821 2795 2813 2853  29.05
95% 7500 63.97 5522 4831 4286 3855 3513 3240 3020 2842 2696 2478 2325 2217 2138 2081  19.94 1954  19.40  19.40
98% 7500 6141 5092 4285 3661 3178 2800 2502 22.65 2074 1918 16.84 1519 1398  13.08 1238  11.21 1051  10.05 9.75
99% 7500 59.77 4825 39.56 3297 2795 2408 2107 1871 1682 1530 13.02  11.44  10.29 9.43 8.77 7.65 6.95 6.49 6.17

99.9% 7500 5538 4148 31.61 2456 1948 1576  13.01  10.93 9.34 8.10 6.33 5.16 4.35 3.77 3.33 2.61 2.18 1.90 1.70

APPENDIX C12: Reference Chart of Compliance of Mean Effluent Discharge of E.coli of 10 MPN/100ml
Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 2 -2 1.4 1.6 1.8 2 25 3 35 4
50% 10.00 10.05 10.20 10.44 10.77 11.18 11.66 12.21 12.81 13.45 1414 1562 17.20 18.87 20.59 2236 2693 31.62 36.40 41.23
60% 10.00 9.80 9.70 9.69 9.77 9.92 10.14 1040 10.72 11.07 11.46 1230 13.22 1419 15.19 16.22 18.86 21.54 2424 26.93
70% 10.00 9.54 9.19 895 880 8.72 8.72 8.76 8.85 898 9.13 g 9.96 10.44 1096 1149 1286 14.26 15.65 17.04
80% 10.00 9.24 8.63 8.15 7.79 7.51 7.31 7.17 7.08 7.03 7.02 7.05 7.16 7.31 7.48 7.68 8.23 8.81 9.40 9.99
90% 10.00 8.84 791 7.17 6.57 6.10 5.73 5.43 5.20 501 486 465 453 4.45 441 4.40 4.43 4.52 4.64 4.77
92% 10.00 874 7.72 6.91 6.27 5.76 5.35 503 477 456 439 4.14 3.98 3.87 3.80 3.76 3.73 3.75 3.80 3.87
95% 10.00 8.53 7.36 6.44 571 514 468 432 403 3.79 3.60 3.30 3.10 2.96 2.85 2.77 2.66 2.61 2.59 2.59
98% 10.00 8.19 6.79 571 488 424 373 334 3.02 2.77 2.56 2.24 2.02 1.86 1.74 1.65 1.49 1.40 134 1.30
99% 10.00 7.97 6.43 5.27 440 3.73 3.21 2.81 2.49 224 2.04 1.74 158 1.37 1.26 1.17 1.02 0.93 0.87 0.82

99.9% 10.00 7.38 553 4.21 3.28 2.60 2.10 L. /3 1.46 1.24 1.08 0.84 0.69 0.58 0.50 0.44 0.35 0.29 0.25 0.23
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APPENDIX C13: Reference Chart of Compliance of Mean Effluent Discharge for pH
Lower bound for pH for 6 (interval equation 21)

Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 25 3 35 4
50% 600 6.03 612 626 646 671 700 732 768 807 849 937 1032 11.32 1235 13.42 16.16 18.97 21.84 24.74
60% 600 588 582 582 58 595 608 624 643 664 687 738 793 851 9.12 9.73 1132 1292 1454 16.16
70% 600 572 551 537 528 523 523 526 531 539 548 571 597 6.27 6.57 6.89 7.72 8.55 9.39 10.22
80% 6.00 554 518 489 467 451 439 430 425 422 421 423 429 438 4.49 4.61 4.94 5.29 5.64 6.00
0% 600 531 475 430 394 366 344 326 312 301 292 279 272 267 2.65 2.64 2.66 2,71 2.78 2.86
92% 6.00 524 463 415 3776 345 321 3.02 286 274 263 249 239 232 2.28 2.26 2.24 2.25 2.28 2.32
9%% 6.00 512 442 386 343 3.08 281 259 242 227 216 1.98 1.86 1.77 1.71 1.66 1.60 1.56 1.55 1.55
98% 6.00 491 407 343 293 254 224 2.00 1.81 166 1.53 1.35 1.21 1.12 1.05 0.99 0.90 0.84 0.80 0.78
9% 6.00 478 386 316 264 224 193 1.69 1.50 1.35 1.22 1.04 092 0.82 0.75 0.70 0.61 0.56 0.52 0.49

99.9% 6.00 443 3.32 2.53 1.97 1.56 1.26 1.04 0.87 0.75 0.65 0.51 0.41 0.35 0.30 0.27 0.21 0.17 0.15 0.14

Upper bound for pH for 9 (interval equation 21)
Coefficient of Variation

COR 0 0.1 0.2 0.3 0.4 0.5 0.6 0% 0.8 0.9 i 2 1.4 1.6 1.8 2 25 3 35 4
50% 9.00 9.04 918 940 9.69 10.06 10.50 10.99 1153 1211 12.73 14.06 1548 16.98 18.53 20.12 24.23 28.46 32.76 37.11
60% 9.00 882 873 872 879 893 912 936 965 996 1031 11.07 1190 12.77 13.67 14.60 16.97 19.39 21.81 24.24
70% 900 858 827 805 792 78 784 789 797 808 822 856 896 9.40 9.86 10.34 11.57 12.83 14.09 15.34
80% 900 832 777 734 701 676 658 646 637 633 631 635 644 6.58 6.74 6.92 7.41 7.93 8.46 8.99
90%  9.00 7.96 7.12 6.45 5.92 5.49 5.16 4.89 4.68 451 438 4.19 4.07 4.00 3.97 3.96 3.99 4.07 4.17 4.29
92% 900 786 695 622 564 518 482 452 429 410 395 3.73 358 349 3.42 3.39 3.35 3.38 3.42 3.49
%% 900 768 663 580 514 463 422 389 362 341 324 297 279 266 2.57 2.50 2.39 2.35 2.33 2.33
98%  9.00 7.37 6.11 5.14 439 3.81 3.36 3.00 2.72 2.49 2.30 2.02 1.82 1.68 1.57 1.49 1.35 1.26 1.21 1.17
99%  9.00 7.17 5.79 4.75 3.96 3.35 2.89 253 2.24 2.02 1.84 1.56 1.37 1.24 1.13 1.05 0.92 0.83 0.78 0.74

99.9%  9.00 6.65 4.98 3.79 2.95 2.34 1.89 1.56 1.31 1.12 0.97 0.76 0.62 0.52 0.45 0.40 0.31 0.26 0.23 0.20
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